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Abstract This paper describes the construction of intelligent hybrid architectures
and the optimization of the fuzzy integrators for time series prediction; interval
type-2 fuzzy neural networks (IT2FNN). IT2FNN used hybrid learning algorithm
techniques (gradient descent backpropagation and gradient descent with adaptive
learning rate backpropagation). The IT2FNN is represented by Takagi–Sugeno–
Kang reasoning. Therefore this TSK IT2FNN is represented as an adaptive neural
network with hybrid learning in order to automatically generate an interval type-2
fuzzy logic system (TSK IT2FLS). We use interval type-2 and type-1 fuzzy systems
to integrate the output (forecast) of each Ensemble of ANFIS models. Particle
Swarm Optimization (PSO) was used for the optimization of membership functions
(MFs) parameters of the fuzzy integrators. The Mackey-Glass time series is used to
test of performance of the proposed architecture. Simulation results show the
effectiveness of the proposed approach.

Keywords Time series � IT2FNN � Particle swarm optimization � Fuzzy
integrators

1 Introduction

The analysis of the time series consists of a (usually mathematical) description of
the movements that compose it, then building models using movements to explain
the structure and predict the evolution of a variable over time [3, 4]. The funda-
mental procedure for the analysis of a time series is described below
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1. Collecting data of the time series, trying to ensure that these data are reliable.
2. Representing the time series qualitatively noting the presence of long-term

trends, cyclical variations, and seasonal variations.
3. Plot a graph or trend line length and obtain the appropriate trend values using

the method of least squares.
4. When seasonal variations are present, obtain these and adjust the data rate to

these seasonal variations (i.e., data seasonally).
5. Adjust the seasonally adjusted trend.
6. Represent the cyclical variations obtained in step 5.
7. Combining the results of steps 1–6 and any other useful information to make a

prediction (if desired) and if possible discuss the sources of error and their
magnitude.

Therefore the above ideas can assist in the important problem of prediction in the
time series. Along with common sense, experience, skill and judgment of the
researcher, such mathematical analysis can, however, be of value for predicting the
short, medium, and long term.

As related work we can mention: Type-1 Fuzzy Neural Network (T1FNN) [15,
18, 19, 29] and Interval Type-2 Fuzzy Neural Network (IT2FNN) [13, 23–25, 44];
type-1 [1, 8, 16, 33, 45] and type-2 [11, 35, 41, 47] fuzzy evolutionary systems are
typical hybrid systems in soft computing. These systems combine T1FLS gener-
alized reasoning methods [18, 28, 34, 42, 43, 48, 51] and IT2FLS [21, 30, 46] with
neural networks learning capabilities [12, 14, 18, 37] and evolutionary algorithms
[2, 5, 9–11, 29, 35–37, 41] respectively.

This paper reports the results of the simulations of three main architectures of
IT2FNN (IT2FNN-1, IT2FNN-2 and IT2FNN-3) for integrating a first-order TSK
IT2FIS, with real consequents (A2C0) and interval consequents (A2C1), are used.
Integration strategies to process elements of TSK IT2FIS are analyzed for each
architecture (fuzzification, knowledge base, type reduction, and defuzzification).
Ensemble architectures have three choices IT2FNN-1, IT2FNN-2, and IT2FNN-3.
Therefore the output of the Ensemble architectures are integrated with a fuzzy
system and the MFs of the fuzzy systems are optimized with PSO. The
Mackey-Glass time series is used to test the performance of the proposed archi-
tecture. Prediction errors are evaluated by the following metrics: root mean square
error (RMSE), mean square error (MSE), and mean absolute error (MAE).

In the next section, we describe the background and basic concepts of the
Mackey-Glass time series, Interval type-2 fuzzy systems, Interval Type-2 Fuzzy
Neural-Networks, and Particle Swarm Optimization. Section 3 presents the general
proposed architecture. Section 4 presents the simulations and the results. Section 5
offers the conclusions.
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2 Background and Basic Concepts

This section presents the basic concepts that describe the background in time series
prediction and basic concepts of the Mackey-Glass time series, Interval type-2
fuzzy systems, Interval Type-2 Fuzzy Neural-Networks, and Particle Swarm
Optimization.

2.1 Mackey-Glass Time Series

The problem of predicting future values of a time series has been a point of
reference for many researchers. The aim is to use the values of the time series
known at a point x = t to predict the value of the series at some future point
x = t + P. The standard method for this type of prediction is to create a mapping
from D points of a D spaced time series, is (x (t − (D − 1) D)… x (t − D), x (t)), to a
predicted future value x (t + P). To allow a comparison with previous results in this
work [11, 19, 29, 41] the values D = 4 and D = P = 6 were used.

Chaotic time series data used is defined by the Mackey-Glass [26, 27] time
series, whose differential equation is given by Eq. (1)

xðtÞ ¼ 0:2xðt � sÞ
1� x10ðt � sÞ � 0:1xðt � sÞ ð1Þ

For obtaining the values of the time series at each point, we can apply the
Runge–Kutta method [17] for the solution of Eq. (1). The integration step was set at
0.1, with initial condition x(0) = 1.2, s = 17, x(t) is then obtained for 0 � t
� 1200, (Fig. 1) (we assume x(t) = 0 for t < 0 in the integration).

Fig. 1 The Mackey-Glass
time series
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2.2 Interval Type-2 Fuzzy Systems

Type-2 fuzzy sets are used to model uncertainty and imprecision; originally they
were proposed by Zadeh [49, 50] and they are essentially “fuzzy–fuzzy” sets in
which the membership degrees are type-1 fuzzy sets (Fig. 2).

The basic structure of a type-2 fuzzy system implements a nonlinear mapping of
input to output space. This mapping is achieved through a set of type-2 if-then
fuzzy rules, each of which describes the local behavior of the mapping.

The uncertainty is represented by a region called footprint of uncertainty (FOU).
When leAðx; uÞ ¼ 1; 8 u 2 lx�½0; 1�; we have an interval type-2 membership

function [5, 7, 20, 31] (Fig. 3).
The uniform shading for the FOU represents the entire interval type-2 fuzzy set

and it can be described in terms of an upper membership function �leAðxÞ and a lower
membership function leAðxÞ:

A fuzzy logic systems (FLS) described using at least one type-2 fuzzy set is
called a type-2 FLS. Type-1 FLSs are unable to directly handle rule uncertainties,
because they use type-1 fuzzy sets that are certain [6, 7, 46]. On the other hand,
type-2 FLSs are very useful in circumstances where it is difficult to determine an
exact certainty value, and there are measurement uncertainties.

2.3 Interval Type-2 Fuzzy Neural Networks (IT2FNN)

One way to build interval type-2 fuzzy neural networks (IT2FNN) is by fuzzifying a
conventional neural network. Each part of a neural network (the activation function,
the weights, and the inputs and outputs) can be fuzzified. A fuzzy neuron is

Fig. 2 Basic structure of the interval type-2 fuzzy logic system
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basically similar to an artificial neuron, except that it has the ability to process fuzzy
information.

The interval type-2 fuzzy neural network (IT2FNN) system is one kind of
interval Takagi–Sugeno–Kang fuzzy inference system (IT2-TSK-FIS) inside neural
network structure. An IT2FNN is proposed by Castro [6], with TSK reasoning and
processing elements called interval type-2 fuzzy neurons (IT2FN) for defining
antecedents, and interval type-1 fuzzy neurons (IT1FN) for defining the conse-
quents of rules.

An IT2FN is composed by two adaptive nodes represented by squares, and two
non-adaptive nodes represented by circles. Adaptive nodes have outputs that
depend on their inputs, modifiable parameters, and transference function while
non-adaptive, on the contrary, depend solely on their inputs, and their outputs
represent lower leAðxÞ and upper �leAðxÞ membership functions (Fig. 4).

Fig. 3 Interval type-2
membership function

Fig. 4 The MFs used for training the IT2FNN architecture

Particle Swarm Optimization of the Fuzzy Integrators … 145



The IT2FNN-1 architecture has five layers (Fig. 5), consists of adaptive nodes
with an equivalent function to lower-upper membership in fuzzification layer
(layer 1). Non-adaptive nodes in the rules layer (layer 2) interconnect with fuzzi-
fication layer (layer 1) in order to generate TSK IT2FIS rules antecedents. The
adaptive nodes in consequent layer (layer 3) are connected to input layer (layer 0) to
generate rules consequents. The non-adaptive nodes in type-reduction layer
(layer 4) evaluate left-right values with KM algorithm [19–21]. The non-adaptive
node in defuzzification layer (layer 5) average left-right values.

The IT2FNN-2 architecture has six layers (Fig. 6 and uses IT2FN for fuzzifying
inputs (layers 1–2). The non-adaptive nodes in the rules layer (layer 3) interconnect
with lower-upper linguistic values layer (layer 2) to generate TSK IT2FIS rules
antecedents. The non-adaptive nodes in the consequents layer (layer 4) are con-
nected with the input layer (layer 0) to generate rule consequents. The non-adaptive
nodes in type-reduction layer (layer 5) evaluate left-right values with KM algo-
rithm. The non-adaptive node in defuzzification layer (layer 6) averages left-right
values.

Fig. 5 IT2FNN1 architecture
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IT2FNN-3 architecture has seven layers (Fig. 7). Layer 1 has adaptive nodes for
fuzzifying inputs; layer 2 has non-adaptive nodes with the interval fuzzy values.
Layer 3 (rules) has non-adaptive nodes for generating firing strength of TSK IT2FIS
rules. Layer 4, lower and upper values the rules firing strength are normalized. The
adaptive nodes in layer 5 (consequent) are connected to layer 0 for generating the
rules consequents. The non-adaptive nodes in layer 6 evaluate values from left-right
interval. The non-adaptive node in layer 7 (defuzzification) evaluates average of
interval left-right values.

2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a metaheuristic search technique based on a
population of particles (Fig. 8). The main idea of PSO comes from the social
behavior of schools of fish and flocks of birds [22, 32]. In PSO, each particle moves

Fig. 6 ITFNN2 architecture
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in a D-dimensional space based on its own past experience and those of other
particles. Each particle has a position and a velocity represented by the vectors
xi ¼ xi1; xi2; . . .; xiDð Þ and Vi ¼ vi1; vi2; . . .; viDð Þ for the i-th particle. At each iter-
ation, particles are compared with each other to find the best particle [32, 38]. Each
particle records its best position as Pi ¼ pi1; pi2; . . .; piDð Þ. The best position of all
particles in the swarm is called the global best, and is represented as
G ¼ G1;G2; . . .;GDð Þ. The velocity of each particle is given by Eq. (2).

Vid ¼ wvid þC1 � rand1ðÞ � ðpbestid � xidÞþC2 � rand2ðÞ. . . � ðgbest� xidÞ ð2Þ

In this equation, i = 1, 2, …, M; d = 1, 2, …,D, C1 and C2 are positive constants
(known as acceleration constants), rand1ðÞ and rand2ðÞ are random numbers in
[0,1], and w, introduced by Shi and Eberhart [39] is the inertia weight. The new
position of the particle is determined by Eq. (3)

xid ¼ xid þ vid ð3Þ

Fig. 7 IT2FNN3 architecture
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3 Problem Statement and Proposed Architecture

The general proposed architecture combines the ensemble of IT2FNN models and
the use of fuzzy systems as response integrators using PSO for time series pre-
diction (Fig. 9).

This architecture is divided into four sections, where the first phase represents
the database to simulate in the Ensemble [40] of IT2FNN, which in this case is the
historical data of the Mackey-Glass [26, 27] time series. From the Mackey-Glass
time series we used 800 pairs of data points (Fig. 1), similar to [35, 36].

We predict x(t) from three past (delays) values of the time series, that is, x(t − 18),
x(t − 12), and x(t − 6). Therefore the format of the training and checking data is

xðt � 18Þ; xðt � 12Þ; xðt � 6Þ; xðtÞb c ð4Þ

where t = 19–818 and x(t) is the desired prediction of the time series.
In the second phase, training (the first 400 pairs of data are used to train the

IT2FNN architecture) and validation (the second 400 pairs of data are used to

Fig. 8 Flowchart of the PSO algorithm
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validate the ITFNN architecture) is performed sequentially in each IT2FNN, in this
case we are dealing with a set of 3 IT2FNN (IT2FNN-1, IT2FNN-2, and
IT2FNN-3) in the Ensemble. Therefore each IT2FNN architecture has three input
variables xðt � 18Þ; xðt � 12Þ; xðt � 6Þð Þ and one output variable ðxðtÞÞ is the
desired prediction.

In the fourth phase, we integrate the overall results of each Ensemble of IT2FNN
which are (IT2FNN-1, IT2FNN-2, and IT2FNN-3) architecture, and such integra-
tion will be done by the fuzzy inference system (type-1 and interval type-2 fuzzy
system) of Mamdani type; but each fuzzy integrators will be optimized with PSO of
the MFs parameters. Finally the forecast output determined by the proposed
architecture is obtained and it is compared with desired prediction.

3.1 Design of the Fuzzy Integrators

The design of the type-1 and interval type-2 fuzzy inference systems integrators are
of Mamdani type and have three inputs (IT2FNN1, IT2FNN2, and IT2FNN3) and
one output (Forecast), so each input is assigned two MFs with linguistic labels
“Small and Large” and the output will be assigned three MFs with linguistic labels
“OutIT2FNN1, Out IT2FNN2 and Out IT2FNN3” (Fig. 10) and have eight if-then

Fig. 9 The general proposed architecture

150 J. Soto et al.



rules. The design of the if-then rules for the fuzzy inference system depends on the
number of membership functions used in each input variable using the system [e.g.,
our fuzzy inference system uses three input variables which each entry contains two
membership functions, therefore the total number of possible combinations for the
fuzzy rules is 8 (e.g., 2*2*2 = 8)], therefore we used eight fuzzy rules for the
experiments (Fig. 11) because the performance is better and minimized the pre-
diction error of the Mackey-Glass time series.

In the type-1 FIS integrators, we used different MFs (Gaussian, Generalized Bell,
and Triangular) Fig. 12a and for the interval type-2 FIS integrators we used dif-
ferent MFs (igaussmtype2, igbelltype2, and itritype2) Fig. 12b [7] to observe the
behavior of each of them and determine which one provides better forecast of the
time series.

3.2 Design of the Representation for the Particle Swarm
Optimization

The PSO is used to optimize the parameters values of the MFs in each of the type-1
and interval type-2 fuzzy integrators. The representation in PSO is of Real-Values

Fig. 10 Structure of the type-1 FIS (a) and interval type-2 FIS (b) integrators

Fig. 11 If-then rules for the fuzzy integrators
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and the particle size will depend on the number of MFs that are used in each design
of the fuzzy integrators.

The objective function is defined to minimize the prediction error as follows in
Eq. (5)

f ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 ðat � ptÞ2
n

s
ð5Þ

where a, corresponds to the real data of the time series, p corresponds to the output
of each fuzzy integrators, t is de sequence time series, and n is the number of data
points of time series.

The general representation of the particles represents the utilized membership
functions. The number of parameters varies according to the kind of membership
function of the type-1 fuzzy system (e.g., two parameter are needed to represent a
Gaussian MF’s are “sigma and mean”) Fig. 13a and interval type-2 fuzzy system
(e.g., three parameter are needed to represent “igaussmtype2” MF’s are “sigma,
mean1 and mean2”) Fig. 13b. Therefore the number of parameters that each fuzzy
inference system integrator has depends of the MFs type assigned to each input and
output variables.

The parameters of particle swarm optimization used for optimizing the type-1
and interval type-2 fuzzy inference systems integrators are shown on Table 1.

We performed experiments in time series prediction, specifically for the
Mackey-Glass time series in ensembles of IT2FNN architectures using fuzzy
integrators optimized with PSO.

Fig. 12 Type-1 MFs (a) and interval type-2 MFs (b) for the fuzzy integrators
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4 Simulations Results

This section presents the results obtained through experiments on the architecture
for the optimization of the fuzzy integrators in ensembles of IT2FNN architectures
for time series prediction, which show the performance that was obtained from each
experiment to simulate the Mackey-Glass time series.

The best errors were produced by the type-1 fuzzy integrator (using Generalized
Bell MFs) with PSO are shown on Table 2. The RMSE is 0.035228102 and the
average RMSE is 0.047356657, the MSE is 0.005989357 and the MAE is
0.056713089, respectively. The MFs optimized with PSO are presented in Fig. 14a,
the forecasts in Fig. 14b, and the evolution errors in Fig. 14c are obtained for the
proposed architecture.

The best errors were produced by the interval type-2 fuzzy integrator (using
igbelltype2 MFs) with PSO are shown on Table 2. The RMSE is 0.023648414 and
the average RMSE is 0.024988012, the MSE is 0.00163873 and the MAE is

Fig. 13 Representation of the particles structure of the type-1 (a) and interval type (b) fuzzy
integrators

Table 1 Parameters of PSO Parameters Value

Particles 100

Iterations 65

Inertia Weight “x” Linear decrement [0.88−0]

Constriction “C” Linear increment [0.01–0.9]

r1, r2 Random

c1 Linear decrement [2–0.5]

c2 Linear increment [0.5–2]
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Table 2 PSO results for the optimization of the fuzzy integrators

Metrics Type-1 MFs Interval type-2 MFs

Gaussian Generalized
Bell

Triangular Igaussmtype2 Igbelltype2 Itritype2

RMSE
(best)

0.035946912 0.035228102 0.0797536 0.024183221 0.023648414 0.0251151

RMSE
(average)

0.044289015 0.047356657 0.0928408 0.026416896 0.024988012 0.0286363

MSE 0.008587152 0.005989357 0.0147635 0.003288946 0.00163873 0.0022031

MAE 0.065247859 0.056713089 0.0968261 0.039278738 0.028366955 0.0326414

Time
(HH:
MM:SS)

00:19:06 00:18:10 00:17:33 02:23:06 02:12:10 02:59:21

Fig. 14 Variables inputs/output MFs (a), forecast (b), and evolution errors of “65 iterations” (c),
are generated for the optimized of the type-1 FIS integrator with PSO
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0.028366955 respectively. The MFs optimized with PSO are presented in Fig. 15a,
the forecasts in Fig. 15b, and the evolution errors in Fig. 15c are obtained for the
proposed architecture.

5 Conclusion

Particle swarm optimization of the fuzzy integrators for time series prediction using
ensembles of IT2FNN architecture was proposed in this paper.

The best result generated for the optimization the interval type-2 FIS (using
igbelltype2 MFs) integrator is with a prediction error of 0.023648414 (98 %).

The best result generated for the optimization of type-1 FIS (using Generalized
Bell MFs) integrator with a prediction error of 0.035228102 (97 %).

These results showed efficient results in the prediction error of the time series
Mackey-Glass generated by proposed architecture.

Fig. 15 Variables inputs/output MFs (a), forecast (b), and evolution errors of “65 iterations” (c),
are generated for the optimized of the interval type-2 FIS integrator with PSO
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