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Abstract This paper describes the enhancement of the water cycle algorithm
(WCA) using a fuzzy inference system to dynamically adapt its parameters. The
original WCA is compared in terms of performance with the proposed method
called WCA with dynamic parameter adaptation (WCA-DPA). Simulation results
on a set of well-known test functions show that the WCA is improved with a fuzzy
dynamic adaptation of the parameters.
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1 Introduction

Dynamic parameter adaptation can be performed in many ways, the most common
approaches being linearly increasing or decreasing a parameter, and other
approaches include nonlinear or stochastic functions. In this paper, a different
approach is taken, which is using a fuzzy inference system (FIS) to replace a
function or to change its behavior, with the final purpose of improving the per-
formance of the water cycle algorithm (WCA). The WCA is a population-based and
nature-inspired metaheuristic, which is inspired on a simplified form of the water
cycle process [2, 12].

Using a FIS to enhance global-optimization algorithms is an active area of
research; some works of enhancing particle swarm optimization are PSO-DPA [9],
APSO [17] and FAPSO [13]. Since the WCA has some similarities with PSO, a FIS
similar to the one in [9] was developed.
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A comparative study was conducted which highlights the similarities and dif-
ferences with other hierarchy-based metaheuristics. In addition, a performance
study between the proposed water cycle algorithm with Dynamic Parameter
Adaptation (WCA-DPA) and the original WCA was also conducted, using ten
well-known test functions frequently used in tin the literature.

This paper is organized as follows. In Sect. 2 the WCA is described. In Sect. 3,
some similarities with other metaheuristics are highlighted. Section 4 is about how
to improve the WCA with fuzzy parameter adaptation. A comparative study is also
presented in Sect. 5 and, finally in Sect. 6 some conclusions and future work are
given.

2 Nonlinear the Water Cycle Algorithm

The WCA is a population-based and nature-inspired metaheuristic, where a pop-
ulation of streams is formed from rainwater drops. This population of streams
follows a behavior inspired on the hydrological cycle. In which streams flows
downbhill, then they form rivers, which also flow downhill towards the sea. This
process in which streams flows toward rivers and rivers towards the sea is a sim-
plified form of the runoff process of the hydrologic cycle. Some of those streams are
evaporated and some new streams are formed from rain as part of the hydro-logic
cycle.

2.1 The Landscape

There are a number of landforms involved in the hydrologic cycle, for example:
streams, rivers, lakes, valleys, mountains, and glaciers. But in the WCA only three
of them are considered, which are streams, rivers, and seas, and in fact there is only
one sea. In this subsection the structure, preprocessing and initialization of the
algorithm are described.

In the WCA an individual (a.k.a. stream), is an object which consist of n vari-
ables grouped as a n-dimensional column vector

Xy = [xkl,...,xkn]T e R". (l)
And the whole population of N streams is denoted by

X = {xifk = 1,2,..., N}, 2)
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which is often represented as a N X n matrix:
X{ X131t Xip
le see

X XNn

=-

In short each row is an individual stream and their columns are their variables.
From the whole population some of those streams will become rivers and another
one will become the sea. The number of streams and rivers are defined by the
following equations:

Ny = Number of Rivers + L (4)

Nstreams =N - Nﬁra (5)

where N is a value established as a parameter of the algorithm and Ngyeams 1S the
number of remaining streams. Which individuals become rivers or sea will depend
on the fitness of each stream. To obtain the fitness, first we need an initial popu-
lation matrix X, and this matrix is initialized with random values as follows:

X; = blower +r- (blower - bupper)a for i= 17 27 . -7Na (6)

where biower, Pupper are vectors in R” with the lower and upper bounds for each
dimension which establish the search-space, and r is an n-dimensional vector of
independent and identically distributed (i.i.d) values, that follows a uniform
distribution:

r~U(0,1)". (7)
Once an initial population is created the fitness of each stream x; is obtained by:
f,’ :f(X,') :f(x,-l,xiz,...xm), for i= 1,2,3,...,N, (8)

where f(+) is a problem dependent function to estimate the fitness of a given stream.
This fitness function it is what the algorithm tries to optimize.
Sorting the individuals by fitness and in ascending order using:

X, f] — sort](X,f), 9)

the first individual becomes the sea, the next Ny._; the rivers, and the following
Ngtreams individuals turn into the streams who flow toward the rivers or sea, as show

m:
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rivers X114 v Xip

T X X
XN, +1 N1 Nn

streams

T
'XNST +Nstreams -

Each of the Nyeams 1S assigned to a river or sea, this assignment can be done
randomly. But the stream order [14, 15], which is the number of streams assigned
to each river/sea is calculated by:

fi
el =y 'NstreamsJ’ n=12,...,Ng, (11)
\‘ Zj:{ fi+e
NST
S0| < SO| + (Nslreams - Zi:l SOi)’ (12)

where ¢ ~ 0. The idea behind the Eq. (11) is that the amount of water (streams)
entering a river or sea varies so when a river is more abundant (has a better fitness)
than another, it means that more streams flow into the river, hence the discharge
(stream-flow) is higher. This means, the streamflow magnitude of rivers is inversely
proportional to its fitness in the case of minimization problems.

The Eq. (11) has been changed from the original proposed in [2], the round
function was replaced by a floor function, a value of ¢ was added to the divisor, and
Eq. (12) was also added to handle the remaining streams. These changes are for the
implementation purposes and an alternative to the method proposed in [12].

After obtaining the stream order of each river and sea, the streams are randomly
distributed between them.

2.2 The Run-off Process

The run-off process is one of the three processes considered in the WCA, which
handles the way water flows in form of streams and rivers towards the sea. The
following equations describe how the flow of streams and rivers are simulated at a
given instant (iteration):
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i1l i i i
Xsream = Xstream +r-C- (Xsea - Xslream)? (13)
Xt o=x - C- (X, — X ) (14)
stream stream Tiver stream/
xitl=xi  4r.C-(x,, —x. ) (15)
river — “‘river sea river/?
fori=1,2,...,Ny, where N;, and C are parameters of the algorithm, and r is a

vector with i.i.d values defined by Eq. (7), although any other distribution could be
used.

The Eq. (13) defines the movement of streams who flow directly to the sea,
Eq. (14) is for streams who flow toward the rivers, and Eq. (15) is for the rivers
flow toward the sea. A value of C > 1 enables streams to flow in different direc-
tions toward the rivers or sea. Typically, the value of C is chosen from the range
(1,2] being 2 the most common.

2.3 Evaporation and Precipitation Processes

The runoff process of the WCA basically consists of moving indirectly toward the
global best (sea). Algorithms focused on following the global best although they are
really fast, tend to premature convergence or stagnation. The way in which WCA
deals with exploration and convergence is with the evaporation and precipitation
processes. So when streams and rivers are close enough to the sea, some of those
streams are evaporated (discarded) and then new streams are created as part of the
precipitation process. This type of reinitialization is similar to the cooling down and
heating up reinitialization process of the simulated annealing algorithm [3].

The evaporation criterion is: if a river is close enough to the sea, then the streams
assigned to that river are evaporated (discarded) and new streams are created by
raining around the search space. To evaporate the streams of a given river the
following condition must be satisfied:

|Xsea - Xriver‘ <dmax, (16)

evaporation criterion

where dm.x ~ 0 is a parameter of the algorithm. This condition must be applied to
every river, and if its satisfied each stream who flow toward this river must be
replaced as:

Xstream = blower +r- (blower - bupper>7 (17>

raining around the search space

a high value of dp,x will favor the exploration and a low one will favor the
exploitation.



302 E. Méndez et al.

To increase the exploration and exploitation around the sea an especial evapo-
ration criterion is used for the streams, which flow directly to sea:

|Xsea - Xseastream | < dmdx 9 ( 18)

evaporation criterion

where Xgeastream 1S @ Stream which flows directly to the sea. If this criterion defined
by the inequality (18) is satisfied then, the stream is evaporated and a new one is
created using:

Xseastream — Xsea T &5 (19)

raining around the sea

where g is an n-dimensional vector of independent and identically distributed (i.i.d)
values, that follow a normal distribution:

g~ AN (nt=0,6*=001)" (20)

2.4 Steps of WCA

The steps of WCA are summarized as an algorithm in Fig. 1.

Algorithm: Water Cycle Algorithm

inplu : f7 Ny, dmax: N, bloweh bupperw, Ifmax

Generate the initial population of streams (raindrops) using eq. (3).
Calculate the fitness of each stream by Eq. (8).
Sort the population of streams by fitness to determine streams, rivers and sea, as in (10).
Calculate the intensity of flow for rivers and sea using (11) and designate which streams
flows towards each river or sea.
5. Streams flow towards the sea and rivers by Eqgs. (13) and (14) respectively, and rivers
flow to the sea by Eq. (15).
6: Update the fitness of each stream by Eq. (8). After each update check:
If a stream new fitness is better than his assigned river/sea, exchange positions.
If a river new fitness is better than the sea, exchange positions.
7: Check the evaporation conditions for both rivers and streams, using Eqs. (16) and (18)
respectively, and start the evaporation and raining processes using Eqs. (17) and (19).
8: Check the convergence criterion. If satisfied stop the algorithm, otherwise return to the
step 5.
output: The individual with the best fitness also known as the sea.

Fig. 1 The water cycle algorithm (WCA)
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3 Similarities and Differences with Other Metaheuristics

The WCA has some similarities with other metaheuristics, but yet is different from
those. Some of the similarities and differences have already been studied, for
example: In [2], differences and similarities with particle swarm optimization
(PSO) [7] and genetic algorithms (GA) [4] are explained. In [11], WCA is com-
pared with the Imperialist Competitive Algorithm (ICA) [1] and PSO [7]. In [12],
the WCA is compared with two nature-inspired metaheuristics: the intelligent water
drops [5] and water wave optimization [18]. So far similarities and differences with
population-based and nature-inspired metaheuristics have been studied, in this
subsection, WCA is compared with two metaheuristics who use a hierarchy.

3.1 Hierarchical Particle Swarm Optimization

In hierarchical particle swarm optimization (H-PSO), particles are arranged in a
regular tree hierarchy that defines the neighborhoods structure [6]. This hierarchy is
defined by a height # and a branching degree d, this is similar to the landscape
(hierarchy) of the WCA, in fact the WCA would be like a tree of height 7 = 3 (sea,
rivers, streams), but with varying branching degrees, since the level-2 consist of Ng;
branches (rivers) and the level-3 depends of the stream orders (so), so WCA
hierarchy it is not a nearly regular tree like in the H-PSO.

Another difference is that H-PSO uses velocities to update the positions of the
particles just like in standard PSO. But a similarity is that instead of moving towards
the global best like in PSO they move toward their parent node, just like streams flow
to rivers and rivers flow to the sea. As in WCA, in H-PSO particles move up and
down the hierarchy, and if a particle at a child node has found a solution that is better
than the best so far solution of the particle at the parent node, the two particles are
exchanged. This is similar yet different to the runoff process of the WCA, the
difference being that WCA uses only the social component to update the positions,
and H-PSO uses both the social and cognitive components, and also the velocity
with inertia weight. The cognitive component and the inertia weight are the ways in
which H-PSO deals with exploration and exploitation. The WCA uses the evapo-
ration and precipitation processes for those phases.

3.2 Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) algorithm mimics the leadership hierarchy and
hunting mechanism of grey wolves in nature. Four types of grey wolves are sim-
ulated: alpha, beta, delta, and omega, which are employed for simulating the
leadership hierarchy [10]. This social hierarchy is similar to the WCA hierarchy
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with a N = 3, where the alpha could be seen as the sea, the beta and delta as the
rivers and the omegas as the streams. Although the hierarchy is similar, the way in
which the GWO algorithm updates the positions of the individuals is different.
GWO position update depends of the hunting phases: searching for prey, encircling
prey, and attacking prey. Those hunting phases are the way in which the GWO
deals with exploration and exploitation. As mentioned before, the WCA uses the
evaporation and precipitation process, which are very different to the hunting
phases.

4 Fuzzy Parameter Adaptation

The objective of dynamic parameter adaptation is to improve the performance of an
algorithm by adapting its parameters. Dynamic parameter adaptation can be done in
many ways, the most common being linearly increasing or decreasing a parameter,
usually the acceleration coefficients. Other approaches include using nonlinear or
stochastic functions. In this paper, a different approach is taken, which is using a
fuzzy system to replace a function or to change its behavior.

In the WCA there are two parameters which can be adapted dynamically, that is
while the algorithm is running. One is the parameter C, which is used in Eqgs. (13)—
(15) for updating the positions of the streams. The other one is the parameter dp,x
used in Eq. (16) as a threshold for the evaporation criterion. In [12] the parameter
dmax 1s linearly decreased and a stochastic evaporation rate for every river is
introduced, together both changes improve the performance of the WCA.

Since there are already improvements with the parameter dp,y, the subject of
study in this paper is the C parameter.

4.1 Mamdani’s Fuzzy Inference System

A single-input and multiple-output (SIMO) Mamdani’s FIS [8] was developed. The
system consists of the Iferation input and the outputs C and Ciiyers. In Fig. 2 the
layout of the FIS is shown. The idea is to use different values of the parameter C,
one for Egs. (13) and (14) which are for the flow of streams and another one
(Ciivers) for Eq. (15) which is for the flow of rivers.

Before going into the FIS, the Iteration input is scaled to the interval [0, 1] by the
following equation:

Iteration = NL’ for i=1,2,...,N;. (21)

it

The membership functions for the iteration input are shown in Fig. 3. The range
of the first output C had been chosen as the interval (1.8, 3.7), and for the output
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SIMO
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Iteration (3)
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Fig. 2 Single-input and multiple-output Mamdani’s fuzzy inference system
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Ciivers the interval (2, 10), the details of the membership functions are shown in
Figs. 4 and 5. The idea of using higher values for these parameters is to favor the
exploration in the runoff process at an early stage. Since having a greater value than
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2 means that there is a higher probability of moving beyond the rivers or sea. For
the special case of Ciyers it also helps to prevent the evaporation and precipitation
processes. Figure 6 shows a flowchart of the WCA with the SIMO-FIS integrated.
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5 Experiments and Comparisons

For the comparison between the WCA and the WCA-DPA, a subset of test func-
tions was used. Although in the literature there is no agreed set of test functions for
measuring the performance of algorithms, a diverse subset of 10 test functions who
had been used before for some bio-inspired algorithms was chosen. In Table 1 the
specifications of those functions are summarized and in Fig. 7 the plots for
2-dimensions viewed from a 3D perspective and from above are shown. In [16]
there is a more detailed description of those functions.

‘ Generate the initial ‘ @

population of streams |
l No
fstream < friver

[ Evaluate fitness j Yes l
l [ stream & river J
Calculate flow
Intensities l N
o
l fr'ive,r < fsea
Determine streams, Yes l
rivers and sea [ - — J
river sea
(o) =

Update parameters
z C i Is the evaporation No
condition satisfied?

. -]

M Make clouds and start
!

the raining
Streams flow to the

rivers or sea. Rivers Are the termination >1%

flow to the sea criteria satisfied?

[ Eval tl fit ) et @
valua f ness
O

Fig. 6 Flowchart of the water cycle algorithm with fuzzy dynamic adaptation of parameters
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Fig. 7 Test functions plots for 2-dimensions, shown from a 3D perspective and from above

Table 2 MAE of 100 No. | Function WCA WCA-DPA
Ejﬁfggfffzf(;;zﬁzléfst 1 Michalewicz | 628 X 10 | 2.66 x 107"
2 Rosenbrock 1.36 x 1077 292 x 107"
3 De Jong 1.72 x 107% 3.18 x 107'1°
4 Schwefel 6.16 x 10713 490 x 1071
5 Ackley 3.43 x 1078 3.77 x 107"
6 Rastrigin 7.81 x 107" 1.42 x 1071
7 Easom 1.26 x 107" 555 % 107'®
8 Griewank 8.88 x 1074 8.14 x 1074
9 Shubert 1.78 x 1078 1.92 x 107%
10 Yang 8.83 X 107° 8.83 X 107°
Npop = 50, Nyt = 7, dimaxe = 1 X 107°, Ny = 4000

Experiments in 2 and 30 dimensions were performed. The experiments consisted
of 100 samples, taking the mean absolute error (MAE) as the measure of perfor-
mance. Optimization results for the experiments in 2 and 30 dimensions are listed in
Tables 2 and 3, respectively. Also, the parameters used are listed at the end of each
table. From the results obtained in 2 dimensions (Table 2), we can observe
improvements in most of the test functions. However, for 30 dimensions (Table 3),
although it performed better for most of the test functions the results are only

slightly better.
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Table 3 MAE of 100 No. | Function WCA WCA-DPA
?35535?16?5832"21??12};&3; 1 Michalewicz | 1.13 X 10! 7.38
2 Rosenbrock 4.53 7.88
3 De Jong 1.68 x 107° 324 x 1078
4 Schwefel 425 x 10° 3.94 x 10°
5 Ackley 4.13 2.12
6 Rastrigin 1.07 x 10? 1.02 x 10?
7 Easom - -
8 Griewank 275 X 1072 132 x 1072
9 Shubert - -
10 Yang 7.82 x 1071 1.14 x 107"

Npop = 50, Nyt = 7, dimaxe = 1 X 107°, Ny = 4000

6 Conclusions

From the experiments, it can be concluded that dynamically adapting the parameter
C, can help to improve the performance of the WCA. But establishing an interval
for the outputs, to work with any number of dimensions for the type of FIS
developed could be a difficult or impossible task. It would be more appropriate not
to bind the outputs to a given interval. Instead, could be better to have as outputs an
increment or decrement of the parameter. Similar to the improved versions of
particle swarm optimization: APSO or FAPSO developed in [13, 17], respectively.
Another alternative could be to add a velocity component to the equations that
update the positions of the streams, and then adapt an inertia weight instead of
actual value C.
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