
Chapter 16
An Approach for Determining Relationships
Between Disturbance and Habitat Selection
Using Bi-weekly Synthetic Images
and Telemetry Data
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Abstract Ecological studies can be limited by the mismatch in spatial-temporal
scales between wildlife GPS telemetry data, collected sub-hourly, and the large-area
maps used to identify disturbances, generally updated annually. Recent advance-
ments in remote sensing, data fusion modeling, mapping, and change detec-
tion approaches offer environmental data products representing every 16-day
period through the growing season. Here we highlight opportunities and chal-
lenges for integrating wildlife location data with high spatial and temporal res-
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olution landscape disturbance data sets, available from remotely sensed imagery.
We integrated 16-day outputs from the Spatial Temporal Adaptive Algorithm for
mapping Reflectance Change (STAARCH) disturbance maps with grizzly bear
(Ursus arctos) telemetry data. Our results indicate that males and females avoided
same-year disturbances, while male bears were most likely to avoid recently
disturbed areas in summer. When intra-year (disturbances mapped at a 16-day time-
step) analysis of disturbance was compared to traditional annual time-step analysis,
annual aggregation of disturbance data resulted in an increase in the observed
selection of same-year disturbed habitat, although change was not statistically
significant (’ 0.05). We caution the use of low-temporal resolution disturbance
data to evaluate short-term impacts on wildlife and highlight the need for further
development of probabilistic- and model-based techniques for overcoming spatial-
temporal differences between datasets.

16.1 Introduction

Capture of forest disturbance is a critical source of information for landscape
management. Traditionally, forest disturbance inventories are completed through
field work or by aerial surveys at 5- to 10-year time intervals and are operationally
costly and time consuming to implement over large areas. Alternatively, disturbance
records may be obtained from forest managers (Nielsen et al. 2004a) or government
agencies (Koehler et al. 2007); however, spatial coverage can be limited and
accuracy and consistency variable when data are collected by multiple agencies
for different uses. Satellite data are often also used by forest managers to provide
information regarding disturbance within an inventory cycle (Masek et al. 2008).
These inventory and disturbance datasets have become valuable in understanding
interactions between wildlife and their environment.

Availability of satellite imagery has allowed large-area mapping of landscape
disturbance (Zhang et al. 2002; Healey et al. 2005; He et al. 2009; Asner 2013). For
instance, the Landsat series, first launched in 1972, has emerged as one of the most
useful satellite datasets for mapping large-area disturbance due to its long temporal
record (Wulder et al. 2008, 2011), relevant spectral bands for vegetation mapping,
and affordability (Cohen and Goward 2004; Wulder et al. 2004). Landsat has
been used extensively by geographers, ecologists, and managers to map landscape
disturbance and vegetation change (Cohen and Goward 2004; Gu and Wylie 2010;
Huang et al. 2010). Traditionally, large-area maps of disturbance tended to be
representative of annual, or longer, time-steps (Masek et al. 2008; Cohen et al.
2010). In contrast, wildlife data, which are increasingly collected using GPS-based
telemetry systems, are commonly generated with much greater frequency; wildlife
locations are often now recorded on an hourly basis (Johnson et al. 2002; Sunde
et al. 2009; Boyce et al. 2010). The temporal discrepancy between environmental
and wildlife data has been identified as a limitation when using global positioning
system (GPS) technology in ecological studies (Hebblewhite and Haydon 2010).

The opening of the Landsat archive in 2008 to provide free access to analysis-
ready imagery (Woodcock et al. 2008) has enabled implementation of applications
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that would not have previously been practical due to image costs (Wulder et al.
2012). Notwithstanding the free and open access to all available Landsat imagery,
there is a maximum possible revisit of 16 days for image acquisition. When
combining the temporal revisit with the limited number of images that can be
collected on any given day, for a given path/row location there is variability in the
frequency of acquisition both within and between years.

The Spatial Temporal Adaptive Algorithm for mapping Reflectance Change
(STAARCH) is a data fusion model that allows for the creation of high spatial and
temporal resolution disturbance maps (Hilker et al. 2009). STAARCH integrates
Landsat and Moderate Resolution Imaging Spectrometer (MODIS) imagery to
enable mapping of disturbance at high spatial and temporal resolution. MODIS,
with a repeat cycle of one (towards the poles) or two days (near the equator), is
designed to provide near continuous monitoring of biophysical parameters (Justice
et al. 1998; Huete et al. 2002) at spatial resolutions from 250 to 1000 m, depending
on the spectral channel. A time series of MODIS images can be aggregated through
compositing daily observations in order to reduce cloud contamination (Vermote
et al. 1997; Hilker et al. 2009). The synthetic STAARCH product takes advantage
of the high spatial resolution of Landsat and high temporal resolution of MODIS
composite images to provide disturbance maps with a 16-day return interval and
30-m spatial resolution (Hilker et al. 2009; Gaulton et al. 2011).

In this chapter we examine the opportunities and challenges of integrating new
high spatial and temporal resolution disturbances maps with detailed wildlife GPS
data. As a case study, we integrated STAARCH disturbance maps with grizzly bear
(Ursus arctos) telemetry data from Alberta, Canada. Using a 16-day time-step, we
assessed the impact of disturbance presence and timing on spatial patterns of grizzly
bear habitat selection by statistically comparing observed frequency of disturbance
selection to a null hypothesis that, within available habitat, disturbances are selected
randomly regardless of time since disturbance. Results from the analysis using the
disturbance products with a 16-day time-step are compared with those obtained
when using a single annual disturbance layer.

16.2 Study Area

The 14,000 km2 study area is located in the foothills of the Rocky Mountains north
of the town of Grand Cache, Alberta, Canada (Fig. 16.1). Terrain heights range
from 600 m above sea level in the northeast to 2400 m in the Rocky Mountains
towards the southwest of the study area. The landscape is characterized largely by
forest cover, with forest disturbance and land use determined primarily by resource
extraction industries, including forestry, mining and oil and gas (Schneider et al.
2003), with the exception of a small area in the southwest that intersects the Kakwa-
Wilmore Interprovincial Park. Forests within our study area have been managed for
resource extraction for over 50 years with a substantial increase since the 1980s
(White et al. 2011). Given fire suppression, resource extraction and related activities
are the dominant landscape disturbance, with most disturbances arising from the
forest industry and oil and gas exploration (Schneider 2002). Approximately 76%
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Fig. 16.1 Study area in west central Alberta, Canada

of the forested land base in the Kakwa Region is managed for timber harvesting.
Forestry activities have created a patchwork of forest harvests as well as roads. The
growing oil and gas industry has also led to new roads as well as pipelines and well
sites. The longevity of the disturbances from resource extraction activities varies.
Forest harvests will undergo vegetation succession and provide food resources for
wildlife (Stewart et al. 2013). Roads that are not deactivated, pipelines, and active
well sites are more permanent.

16.3 Data and Methods

16.3.1 STAARCH-Derived Disturbance

The STAARCH algorithm requires a minimum of two Landsat images to mark the
beginning and end of the time period of interest (Hilker et al. 2009). The STAARCH
algorithm captures disturbance using a Tassled Cap transformation of the Landsat
observations, yielding a disturbance index (DI) value (described in Healey et al.
2005). A change mask is generated by thresholding consecutive DI values of
a given pixel. Changes detected in the Landsat imagery are then dated using
marked deviations through a time series analysis of a modified disturbance index
calculated from the MODIS imagery. The STAARCH process requires MODIS
8-day composite images to create a suite of high temporal resolution disturbance
indices (Zhang et al. 2002) for the time period between the first and last Landsat
images. Changes in DI values for the Landsat change mask are then matched to the
dates of disturbance obtained from theMODIS imagery. Preliminary results indicate
that 87 and 89% disturbances are assigned correct dates (Hilker et al. 2009) when
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validated against a manually verified, remotely sensed disturbance inventory (Linke
et al. 2009). More recent work has reported overall accuracies of 62%, with the
lower value being attributed to a larger study area, smaller disturbance sizes, and an
increased time period (Gaulton et al. 2011).

Previous research has demonstrated the Tasseled Cap Transformation (TCT)
of spectral image data as a tool for effective mapping of land cover change and
disturbance (Healey et al. 2005; Masek et al. 2008). The accuracy and applicability
of STAARCH as a disturbance detection technique has been assessed in this study
area. Using many of the same Landsat scenes as applied to this study, Hilker
et al. (2009) found STAARCH had an accuracy rate for correctly identifying
disturbances in the correct year of 87%, 87% and 89% in 2002, 2003, and 2005
respectively, based on a disturbance mapping dataset derived independently from
aerial photography. The spatial accuracy of the detection area itself was 93% when
compared to the validation dataset. Areas where the algorithm had poorer accuracy
were wetter sites, and as a result, disturbances within flood plains and bogs, may be
more poorly represented.

An example of STAARCH disturbance mapping is shown in Fig. 16.2. Distur-
bance is defined as any event that increases the disturbance index of a previously

Fig. 16.2 Sample of map of disturbance created using the STAARCH algorithm. Also shown is a
Tasseled-Cap-based disturbance index. Bright pixels indicate areas of greater disturbance
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forested region as assessed by the STAARCH algorithm. Disturbances in this region
are predominantly, if not exclusively, anthropogenic including forest harvests,
wellsites, and roads. Disturbance mapping was conducted using a 16-day return
interval and extended from September 2001 to June 2008. The modal disturbance
patch size is 1.08 ha (Gaulton et al. 2011).

16.3.2 Telemetry Points

Grizzly bear telemetry data were collected using GPS radio collars attached to 40
adult (age 5C) bears. The locations of 23 male and 17 female bears were obtained
between May 2005 and December 2009. The GPS collars were programmed to
record a location each hour during the non-denning period (April–November),
however actual recorded locations varied with individual collars. Individual bears
were tracked for between one and three years. Only bears with high sampling
frequencies (�10 GPS fixes/day) and�500 telemetry point locations were included,
resulting in 23 total bears, 12 females and 11 males. The spatial distribution of trap
locations are shown in Fig. 16.1 and the number of traps varied annually between
10 and 22.

16.3.3 Data Integration

To integrate bear telemetry data with the 16-day temporal resolution STAARCH
disturbance data, we evaluated the spatial-temporal overlap between the two data
sets. First, telemetry data were aggregated to represent 16-day periods to correspond
with the STAARCH time intervals. For each 16-day period, the number of grizzly
bear collar locations intersecting disturbance polygons was quantified, and the total
disturbed area recorded by STAARCH calculated.

16.4 Grizzly Bear Response to Disturbance

We compared the observed habitat selection, recorded in the telemetry data, to
expected habitat selection, based on a model to randomize telemetry data within
available habitat.

16.4.1 Observed Selection

Many aspects of grizzly bear biology, such as diet and behaviour, change seasonally
(Nielsen et al. 2004a, c; Munro et al. 2006), which in turn affects the spatial pattern
of habitat selection (Nielsen et al. 2004a). To account for seasonal variability,
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disturbance and telemetry data were subdivided into: spring (den emergence to
June 25), summer (June 26 to August 15) and autumn (August 16 to denning)
(Nielsen et al. 2006; Smulders et al. 2012).

For each telemetry point, the nearest forest disturbance polygon was identified.
Due to the availability of unique, high spatial and temporal resolution disturbance
data it was possible to only consider disturbances that occurred prior to when a bear
was observed when calculating nearest disturbance. Grizzly bear telemetry locations
that were farther than 500 m from any disturbance were excluded from analysis.
A 500 m threshold has been used previously in relating landscape disturbance to
grizzly bear habitat selection (Berland et al. 2008). For each disturbance, by year,
observed selection was quantified as the number of telemetry points nearest to
a disturbance. Since the number of telemetry points and the sampling frequency
associated with each bear was different, results were normalized by dividing the
number of telemetry points associated with a particular disturbance age by the total
number of telemetry points within that season.

16.4.2 Expected Selection

Observed patterns of disturbance selection were statistically compared to an
expected pattern. The expected pattern or null model was that bears did not select
for disturbances based on disturbance age (Smulders et al. 2010). We generated
a frequency distribution of expected selection by randomizing the observed of
telemetry locations within available habitat. Available habitat was defined using
minimum convex polygons (MCP) that were created for each of the grizzly bears.
The MCP is the smallest convex area that contains all data points (Mohr 1947)
and represents the outer limit of observed habitat used by bears sampled through
telemetry data collection. Ninety-nine randomizations were generated, and for each
randomization the number of random telemetry points nearest to a disturbance was
quantified, generating a null model for statistical comparison. Statistical results were
grouped by disturbance age and presented using box plots. We defined disturbance
age as the difference between the year a grizzly bear’s location was recorded and the
year a disturbance occurred. Disturbance age, or time since disturbance, indicates
how much time has elapsed between initial disturbance and subsequent selection.
The disturbance age is an indicator of forest successional stage and reflects food
availability (Nielsen et al. 2004c).

16.4.3 Temporal Resolution of Disturbance Data

To assess the impact of the temporal resolution of disturbance data on research
findings, we reprocessed the data for same-year disturbance with disturbance
dates aggregated to an annual resolution. The effect of the temporal resolution
of disturbance data on observed patterns of habitat selection was quantified by
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comparing the resulting annual frequency-of-selection distributions to the 16-
day resolution frequency-of-selection distributions using a Komologorov-Smirnov
test.

16.5 Results

16.5.1 Data Integration

In Fig. 16.3 we show the total disturbed area and total number of telemetry points
that fall within disturbance polygons for each 16-day time step. In this figure we
are quantifying general correspondence between all the harvest areas and telemetry
data. Generally, an increase in the total disturbed area corresponds to a larger
number of telemetry points within the disturbances. The number of points within the
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Fig. 16.3 Bar plot showing the variation in total disturbed area with time for 2 years. Numbers
above bars indicate how many telemetry points fell within disturbance polygons for a given time
interval (nD 99,929). All harvests are considered regardless of age, in order to show the general
correspondence. As might be expected, as an area of disturbance increases there tends to be a larger
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disturbance polygons is small relative to habitat usage; for any given time interval,
the total number of points within a STAARCH forest disturbance polygon represents
less than 0.005% of the total number of points. Similarly, the total disturbed area for
any one time interval is small (5.52 km2) compared to the study area (14,000 km2).

16.5.2 Grizzly Bear Response to Disturbance

Figures 16.4 and 16.5 show the preferential selection of disturbed habitat through
time for female and male bears, respectively. For most disturbance ages, selection
was highly variable, as evidenced by the large interquartile ranges. Variability
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Fig. 16.4 Results for female bears grouped by season. Positive values represent selection of
disturbed habitat. Negative values represent avoidance of disturbed habitat. Horizontal line at 0.0
signifies proportional selection of disturbance exactly equal to proportional disturbed area for a
given year. Analysis includes 12 female bears and 53,139 telemetry locations
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Fig. 16.5 Results for male bears grouped by season. Positive values represent selection of
disturbed habitat. Negative values represent avoidance of disturbed habitat. Horizontal line at 0.0
signifies proportional selection of disturbance exactly equal to proportional disturbed area for a
given year. Analysis includes 11 female bears and 46,732 telemetry locations

in selection of disturbance appeared to decline in the seventh and eighth years
following disturbance, but this is likely a spurious finding resulting from smaller
sample sizes (three bears as opposed to 12 or more bears).

In all seasons female bears exhibited avoidance of same-year disturbance and
showed reduced selection of one- and two-year-old disturbances (Fig. 16.4). In
spring, selection increased for older disturbances, with three- and four-year-old
disturbances exhibiting mixed responses, and five- and six-year-old disturbances
slight preferential selection. In summer, variability in selection generally increased
with disturbance age up to five year old disturbances. In autumn, variability in
selection increased for one-, two-, and three-year-old disturbances, and decreased
for four- and five-year-old disturbances, which were generally avoided.



16 An Approach for Determining Relationships Between Disturbance. . . 351

Table 16.1 Mean relative frequency of use for same-year disturbance. Negative values signify
avoidance, whereas positive values signify preferential use. Data are presented here for 16-day
STAARCH disturbance, as well as for down-sampled annual disturbance data. In every case, down-
sampling of disturbance data to an annual resolution results in an increase in use

Spring Summer Autumn
16-day Annual 16-day Annual 16-day Annual

Female �0.0625 �0.0196 �0.0409 �0.0332 �0.0276 �0.0212
Male �0.127 �0.0403 �0.147 �0.134 0.0463 0.0573

In spring and summer, male bears exhibited slight avoidance of same-year dis-
turbance (Fig. 16.5). During spring, selection of disturbed habitat increased slightly
for one- to four-year-old disturbances, and decreased slightly for disturbances older
than 5 years. For male bears in summer, older disturbances were selected more
frequently than younger ones. Males in autumn were the only instance of male bears
selecting for same-year disturbance. Selection of disturbance decreased for one- to
four-year-old disturbance, with a minimum for 4-year-old disturbances, and then
increased again for disturbances older than 5 years.

16.5.3 Temporal Resolution of Disturbance Data

In all cases, aggregating disturbance data to a yearly resolution resulted in an
increase in the observed selection of same-year disturbed habitat. The difference in
results was most pronounced for male bears in spring, though it was not statistically
significant at the 5% confidence interval for any of the categories (Table 16.1).
Seasonal variation in the strength of trends could be due to the timing of den
emergence. The sampling in spring may be less consistent as bears will emerge
on different dates depending on snow pack and inter-annual variation. The summer
signal may be slightly less biased by sampling.

16.6 Discussion

Our aim was to highlight opportunities and challenges of integrating high temporal
resolution disturbance and telemetry data sets using a grizzly bear case study.
One of the opportunities afforded by the availability of fine temporal resolution
disturbance data is that the grizzly bear response to disturbance can be assessed
intra-annually. Though remote sensing data have been used to investigate wildlife
disturbances (e.g., Ndegwa and Murayama 2009), when disturbance data are
represented annually it is not be possible to determine when within the year a
given disturbance occurred on the landscape. The ability to determine when, to the
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nearest 16-day interval, a given disturbance occurred is an important contribution of
synthetic remote sensing products such as STAARCH in support of ecological and
habitat studies.

A limitation when integrating fine temporal wildlife and disturbance data sets
is the often insufficient spatial-temporal overlap between the animal GPS locations
and mapped forest disturbance. In some cases, when there was little disturbance
proximal to a bear’s location, it was impossible to ascertain how selection of
disturbance changed on a same-year basis because the bear would pass through the
disturbed area only once in the entire year. Another difficulty associated with data
integration is that, assuming negligible error, disturbance data represent all disturbed
locations. However, as a consequence of the discrete sampling through time and the
practical reality of collaring a sample of individuals, telemetry points necessarily
represent a sample of selected wildlife locations (Wells et al. 2011). While the
remote sensing-derived disturbance data represent the statistical population of
events, the wildlife data represent a sample that is relatively sparse.

Artificially downgrading the temporal resolution of the disturbance data from
16 days to one year led to results that overrepresented the selection of disturbances.
When disturbance is represented annually, the nearest disturbance that occurred at
any time within the year would be selected. This may be problematic if the distur-
bance actually occurred after the grizzly bear utilized a specific location. Although
the changes in selection results were not statistically significant, this may not always
be the case, particularly in areas that are undergoing high levels of anthropogenic
activity. Implications for wildlife management include misinterpretation of wildlife
response to recently disturbed habitat. In cases where disturbance results in a loss of
usable habitat and subsequent animal avoidance, selection of annually aggregated
disturbance data could result in a failure to recognize the full impact of habitat loss.

Our results indicated that both male and female bears may be avoiding same-
year disturbances, though the trend is stronger for females. Forest harvests are well
documented to be attractors to bears to do the availability of food (Nielsen et al.
2004a). However, the establishment of berries will take at least a year. The noise and
activity of humans during the year of harvesting may well be a deterrent to bears.
The behavioural response of male bears to disturbance age is clearest in summer,
where selection of disturbances increased markedly with age of disturbance. It
is common to see differences in male and female patterns of habitat selection
(Bourbonnais et al. 2013). The summer availability of bears likely explains the
seasonal variation and related research has found that the spatial-temporal pattern
of habitat selection, in female grizzly bears, has the strongest signal in summer
(Smulders et al. 2012). Although sample size was insufficient to assess the impacts
of offspring status on female patterns of habitat selection, we expect selection of
disturbance to vary with presence and age of offspring and differences between
summer and autumn responses to disturbance age may be partly associated with
offspring (Smulders et al. 2012).

It is possible that recent disturbances have insufficient over- and mid-storey
vegetation for visual cover and must mature before providing beneficial food
resources (Ndegwa and Murayama 2009). During summer, a large part of the bears’
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diet is comprised of forbs such as Trifolium and Equisetum spp. (Munro et al.
2006), both of which are more common in forest harvests than in mature forests
(Nielsen et al. 2004b). However, immediately following forest disturbance, the
abundance of forbs is likely reduced, and gradually increases for older disturbances
before reaching a maximum abundance. In the case of locations subject to forest
harvesting, subsequent successional developments mean that increasing age is
positively correlated with increasing food availability (Nielsen et al. 2004c).

The consistently low selection of same-year disturbance, even when compared
to one-year-old disturbance, suggests that the increased human activity associated
with active forest disturbance may also discourage selection. Avoidance of human
activity by grizzly bears is consistent with a recent study that found grizzly bears
avoided habitat with active wellsites, but not habitat with inactive wellsites (Laberee
et al. 2014). Given that 90% of recorded grizzly bear deaths are found within
500 m of a road or 200 m of a trail (Benn and Herrero 2002), avoiding areas
with human activity may reduce mortality (Nielsen et al. 2004b). The avoidance
of young disturbances by grizzly bears may be a mechanism for avoiding human
interaction (Graham et al. 2010). Although the food resources near roads provide
important food for bears, the increased interaction with people leads to increased
risk of mortality (Nielsen et al. 2004c; Benn and Herrero 2002).

16.7 Outlook

The integration of remote sensing and telemetry data is in its infancy and there are
many future developments both in terms of the methods that need to be developed
and the biological research questions that can be addressed. At present, improved
approaches to integrating the disparate space-time scales of remote sensing and
wildlife telemetry data are required. While wildlife habitat selection research
often focuses on relatively large areas, unique insights are anticipated through the
integration of high spatial resolution remote sensing data, sub-meter optical imagery
and/or lidar, with high resolution telemetry data sets (e.g., Loarie et al. 2013). Rather
than characterizing the interaction over large areas, examination of patterns between
movement and habitat use in smaller exemplar areas may reveal trends that can then
be scaled up using appropriate remotely sensed data products that represent habitat
over large areas. Long time series remotely sensed data, especially that from the
Landsat program, can provide informative baseline data as well as capture trends
over time (White et al. 2011) that, in turn, can be integrated with telemetry data
sets. There is also much potential to integrate remotely sensed data into movement
research by developing approaches to interpolate, condition, and inform movement
based on habitat conditions (Long and Nelson 2013).

While here we highlight the integration of telemetry and remotely sensed there is
additional potential for these data types over a wide range of hypothesis generating
and confirming research topics. For example, we can assess impacts of new roads
on wildlife habitat selection, quantify how long after large machines leave an area it
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takes for wildlife to return, or to determine the influence of road closures on wildlife
movement. Many of these research questions will benefit from data collection
programs that have suitable overlap between telemetry data and landscape change.

16.8 Conclusions

An advantage when using disturbance products derived from remote sensing is the
ability to synoptically and repeatedly map large areas. Using novel data processing
to blend data with high temporal frequency with other imagery with fine spatial
characterization provides for unique and otherwise unavailable data products.
Through creating and applying data blending methods, such as offered by the
STAARCH algorithm, high spatial and temporal resolution mapping of landscape
change is afforded. These spatial tools may be most valuable for investigations
covering large areas with needs for distance information within, as well as, between
years. To act as an example of such an application, we demonstrated the use of
high spatial and temporal resolution disturbance mapping products to provide a
critical linkage disturbance and the GPS-based wildlife telemetry data. The new
approaches and techniques presented here are useful in long-term monitoring efforts
where it is important to determine species at risk population trends in conjunction
with landscape change. However, probabilistic and model-based techniques must
be developed and tested to enable differences in scale and limited overlap to be
accounted for when investigating research questions. Research using low-temporal
resolution disturbance data may generate results that misrepresent selection of
disturbed habitat since same-year disturbances that occur before a GPS location
is recorded are not differentiated from those occurring after the location is recorded.
The preliminary findings of our case study suggest further investigation into the
short term impacts of disturbance on habitat selection may be warranted. The com-
plexity of interactions between bears, their habitat, and co-occurring disturbances is
reiterated in our findings.
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