
Chapter 12
Soil Moisture Dynamics Estimated from MODIS
Time Series Images

Thomas Gumbricht

Abstract The annual cyclic phenomena of soil surface wetness influences for
instance vegetation growth, drought, flooding, and soil properties. This study
presents an attempt to define metrics relevant for capturing the soil moisture
dynamics from an annual series of wetness estimates derived from global Moderate-
resolution imaging spectroradiometer (MODIS) images. Different algorithms for
both smoothing and gap-filling the time series are tested with the results compared
to in-situ data. Neither the smoothing nor the gap-filling improve the capturing of
the surface wetness phenology compared to using unsmoothed time series data.
The smoothing, however removes the effects of erratic rainfall events and noise,
and the smoothed time series was considered more robust for identification of
wetness phenology. Metrics capturing the global surface wetness phenology for
2011, extracted after smoothing using a simplified locally weighted scatterplot
smoothing (LOWESS) model, are presented at a spatial resolution of 500m for the
calendar year 2011.

12.1 Introduction

Soil moisture content and its annual variation are of key interest for understanding
e.g. vegetation production, rainfall to runoff response and flooding, drought and
fire risk, and soil formation including the occurrence of wetlands. Hitherto, time-
series of continental to global scale soil surface wetness have been restricted to
coarse scale (�25–50 km) estimates derived from passive microwave sensors and
global hydrological models (Haddeland et al. 2011; Ochsner et al. 2013; Papa et al.
2013; Reichle et al. 2004; Wagner et al. 2003). The successful launch of the Soil
Moisture Active Passive (SMAP, smap.jpl.nasa.gov) mission in January 2015 now
produces refined estimates, even though one the radar instruments stopped operating
in July 2015. But also the SMAP data is at a too coarse scale for satisfying the
needs in many applications. Elsewhere (Gumbricht 2015) I introduce an attempt to
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develop a quantitative estimation of soil wetness retrieved from optical image data,
the Transformed Wetness Index (TWI). TWI is a non-linear normalized difference
(ND) index that uses biophysical feature vectors representing the soil line and
wetness as input. TWI can in principle be derived from any multi-spectral image
data source, but soil moisture content is better captured with Short-Wave Infra-
Red (SWIR, 1100–2500 nm) compared to visible and near-infrared (VNIR, 400–
1100 nm) wavelengths. Adopting Bidirectional Reflection Distribution Function
(BRDF) corrected Moderate-resolution Image Spectroradiometer (MODIS) data for
calculating TWI has several advantages for soil moisture mapping; the product
includes three SWIR bands, the data are reflectance corrected and easily accessible
for the whole earth, atmospheric attenuations including cloud contaminations are
negligible, and the annual cycle of wetness can be captured from discrete images
over an annual cycle, each representing a 16-day period. A disadvantage is that the
exact date for each observation is not known, only the 16-day interval within which
it falls is.

This study briefly describes TWI, and focuses on techniques for retrieving
metrics for capturing the global annual soil moisture dynamics. While several
studies validate the temporal performance of microwave derived soil-moisture
estimates compared to in-situ probes measuring soil moisture (Draper et al. 2009;
Jackson et al. 2010; Reichle et al. 2007), relatively few studies have explored the
metrics of seasonal and annual variations in soil-moisture (Cheema et al. 2011). To
remove noise and outliers, and fill in data-gaps, different smoothing algorithms are
tested, and model results compared to in-situ probed wetness. The study presents
phenological metrics depicting the global soil moisture dynamics for the calendar
year 2011.

12.1.1 Phenological Characterization

Characterization of cyclic annual or seasonal natural phenomena (phenology)
has been widely adopted for studying vegetation dynamics extracted from time-
series of satellite images (Heumann et al. 2007; Jones et al. 2011; Tan et al.
2011). Phenological characterization includes both value based and temporal
metrics. The most common value metrics include mean (MEAN), minimum (MIN),
maximum (MAX), and seasonal integration (INT) (e.g. accumulated vegetation
growth). The most widely used temporal metrics include time of start of (growing)
season (SS), end of season (ES), length of season (LS) and timing of peak
season (PS). Some vegetation phenological studies also explore the derivative of
the vegetation cycle during green-up and brown-down to identify both timing
and rate of change representing the periods of maximum growth and maximum
senescence.

Most vegetation phenology studies use a per-pixel definition of seasons, either
by analyzing derivates or by threshold(s). Seasonal separation is usually dynamic,
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derived from the statistical moments of an annual cycle, or by using multi-year
statistical moments. The latter requires that the data show some persistency, and
the more advanced models used in e.g. the widely adopted TIMESAT software
(Jönsson and Eklundh 2004) for instance require a minimum of 3 years of data.
Studies capturing the phenology of for instance snow cover or ice formation (Kang
et al. 2012), instead rely on absolute thresholds.

The soil moisture regimes in many landscapes vary more erratically and less
predictable than vegetation growth and density (or snow/ice phenology). While
vegetation growth is dependent on soil moisture, the biological processes driving
vegetation growth and senescence moderate the variability and change rates of
the vegetation density compared to soil moisture. Further, the surface wetness
cycle can vary on short distances, dependent on e.g. topography, hydrology and,
not least, human management. Hydrological recharge (“uphill”) and discharge
(“downhill”) areas usually have different wetness conditions, with e.g. ridges next
to floodplains able to show extreme differences both in moisture content and timing.
These differences between the phenology of vegetation and surface wetness prompt
different approaching for both time-series smoothing and definition of relevant
metrics for characterization of phenology.

12.1.1.1 Smoothing

Reducing bias and smoothing noise is commonly regarded as a prerequisite when
retrieving phenology from satellite derived time-series data (Atkinson et al. 2012;
de Beurs and Henebry 2010; Hird and McDermid 2009; Jönsson and Eklundh
2004). Noise reduction and gap-filling techniques are either based on model fitting
or smoothing algorithms. The best technique depends both on the satellite derived
index, as well as the objective of the study and the phenology metrics explored.
For indexes with a known bias (e.g. the Normalized Difference Vegetation Index,
NDVI), methods adjusting the smoothing considering this bias perform better; Hird
and McDermid (2009), for instance, found that asymmetric Gaussian (Jönsson and
Eklundh 2004) and double logistic (Beck et al. 2006) model fitting outperformed
smoothing algorithms when cleaning time series derived from NDVI. These models,
however, performed less well in a comparative study using the (unbiased) Medium
Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI)
(Atkinson et al. 2012).

More advanced models for smoothing vegetation indexes implicitly rely on rates
and restrictions in biological processes, and are also criticized for being over-
parameterized (de Beurs and Henebry 2010). Advanced models are further less
suited for studies covering different ecological or climatic regions or landscapes,
and most can not be adopted without a-priori assumptions on the annual sea-
sonality. Also, other routine algorithms used for smoothing time-series, including
Fourier-analysis and harmonics, can not be adopted for smoothing irregular and
asymmetrical time-series with an unknown number of annual cycles.
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Assuming that the TWI soil moisture estimates are unbiased, the smoothing
should aim at identifying the local mean. The most widely approach for identifying
the local mean is moving average. Seeking a more flexible approach, this study
adopted a modified variant of the robust locally weighted scatterplot smoothing
(LOWESS) (Cleveland 1979; Cleveland and Devlin 1988) for smoothing time-
series of soil moisture. LOWESS is flexible both through allowing weighting, and
the selection of polynomial functions for fitting local regressions to an arbitrary
sized filter window. LOWESS can be applied without any a-priori assumptions on
seasonality (smoothness) and at the same time adapts well to data variations. Outlier
removal in LOWESS most commonly uses an iterative process and the statistical
moments of the time-series itself to decide whether any single observation should
be omitted or not. As discussed above, changes in soil surface moisture can be
fast, but are not per se linked to the statistical moments of the time-series at large.
An alternative LOWESS approach was thus developed in this study, using absolute
thresholds for discarding outliers. For regular interval time-series data, the filter size
in effect determines the length of the period influencing any observation, and in this
study also the LOWESS filter size was set to absolute values.

12.1.1.2 Metrics

For vegetation, the local variations in production can be directly captured from a
vegetation index and used for setting both dynamic and local thresholds for e.g.
growing seasons. Relevant thresholds for soil wetness instead relate to biophysical
characteristics, including e.g. wilting point, field capacity and water content at fully
saturated soils. These thresholds vary both locally and with soil type (Brady and
Weil 2007), and ideally soil wetness phenology should relate to local thresholds.
There is, however at present no technique available for directly capturing these
thresholds from remote sensing data. The TWI soil moisture estimates used in
this study are given as volume water over total volume, and converted to percent.
Assuming a soil pore volume of 50%, a soil moisture estimate of 50 thus represent
a fully water saturated soil.

In this study, the phenological extraction was done for four arbitrarily fixed soil
moisture thresholds: Flooding Seasons (FS) (soil moisture >50%), Soaking Season
(SS) (soil moisture >37.5%), Wet Season (WS) (soil moisture >25%), and non-Dry
Season (DS) (soil moisture >12.5%). The thresholds are loosely set to represent:
FS, fully water saturated soil conditions, SS: soil conditions favoring rapid rainfall
to runoff conditions; WS: soil wetness at field capacity (threshold for drainage of
soil water), and DS: representing soil moisture at the wilting point. The labeling
should be regarded as one of convenience. Both the length of the season with soil
moisture exceeding each threshold, as well as the annual integrated soil moisture
above each of these thresholds are calculated as phenological metrics (Table 12.1).
Additionally, the start and end dates of up to three seasons of each threshold are also
calculated.
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Table 12.1 Definition of metrics for capturing the annual soil surface moisture phenology

Abb. Full label Definition

Value metrics

MEAN Mean soil wetness Mean annual soil wetness (%)

SD Standard deviation of soil wetness Variation in annual soil wetness (%)

MIN Minimum soil wetness Lowest recorded wetness (%)

MAX Maximum soil wetness Highest recorded wetness (%)

IFS Integration of flood season wetness Integration of soil moisture >50%

ISS Integration of soaking season wetness Integration of soil moisture >37.5%

IWS Integration of wet season wetness Integration of soil moisture >25%

IDS Integration of non-dry season wetness Integration of soil moisture >12.5%

Temporal metrics

LFS Length of flooding season Length of season with soil moisture >50%

LSS Length of soaking season Length of season with soil moisture >37.5%

LWS Length of wet season Length of season with soil moisture >25%

LDS Length of non-dry season Length of season with soil moisture >12.5%

PWS Peak wet season Day of year with highest recorded wetness

PDS Peak dry season Day of year with lowest recorded wetness

12.2 Objective

The primary aim of the study was to create global maps of annual soil moisture
dynamics at moderate spatial resolution, to be used as support for other map-
ping efforts, including mapping of tree cover, soil organic carbon and wetlands
(Gumbricht 2015). The main objective was to define metrics for capturing the
surface wetness phenology, and to identify a smoothing algorithm that both
removes/reduces outliers and smoothes soil moisture time-series noise.

12.3 Data

This study was based on a global annual time-series of 16-day composited MODIS
BRDF data (MCD43A4) for the calendar year 2011. To allow Inverse Distance
Weighting (IDW) of data gaps, and smoothing at the beginning and end of the
calendar year 2011, the two last MODIS tile-dates for 2010 and the two first for
2012 were also included. If data for IDW were lacking, the 2011 MODIS TWI
time-series was filled by extrapolation (all data used for model development could
be filled by IDW, but the production of the global maps required extrapolation over
some densely clouded regions). For the equatorial tropics (MODIS vertical tiles 8
and 9) the complete time series for 2010, 2011 and 2012 were combined to fill in
data gaps over heavily clouded regions.
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Ground probed soil moisture data were taken from all networks and stations
available from the International Soil Moisture Network (ISMN) (Dorigo et al. 2011;
Ochsner et al. 2013). For each station only the top most recording (usually within 5
cm from the soil surface) was used. In total 745 stations were used in this study. 451
stations with data covering at least 6 months in 2011 were used for testing the time
series smoothing and divided into two random sub-sets, for model calibration (281
stations) and model validation (170 stations). The land cover for each ISMN station
was extracted from the MODIS land cover product (MCD12Q1 version 051) for
2011 using the International Geosphere-Biosphere Program (IGBP) classification
scheme.

The performance validation of TWI compared to in-situ data was done solely
using the 2011 MODIS data, and all ISMN stations with available data for 2011
(disregarding the number of observations coinciding with the MODIS imagery).

12.4 Definition of the Transformed Wetness Index (TWI)

At its core, TWI is a normalized difference (ND) index, but rather than using original
satellite image bands as inputs, the ND algorithm in TWI uses data obtained after a
linear transformation of the image bands. The transformation is achieved by a fixed
orthogonal matrix optimized to separate wet and dry pixels. The first transformation
component aligns from dark soil reflectance to light soil reflectance, representing
the soil-line (Baret et al. 1993) brightness (Eq. 12.1). The second and third compo-
nents represent photosynthetic and non-photosynthetic vegetation, while the fourth
represents open water (Eq. 12.2). Omitting the vegetation components and using the
soil line and wetness components in an ND approach has two distinct advantages;
the vegetation influence is reduced, and the index can be adjusted for local soil
conditions. The calculations of MODIS TWI used in here retain the reflectance
value factors (reflectance * 105) of the MODIS MCD43A4 product, and the soil
line (sl) and wetness (w) components are calculated as:

sl D 0:3148.RL � 563/ C 0:3209.NIR � 1008/ C 0:3595.BL � 147/

C0:3364.GL � 507/ C 0:2498.SWIRa � 1531/

C0:6573.SWIRb � 1836/ C 0:2471.SWIRc � 1699/ (12.1)

w D 0:1882.RL � 563/ C 0:0384.NIR � 1008/ C 0:4940.BL � 147/

C0:3501.GL � 507/ � 0:3581.SWIRa � 1531/

�0:1731.SWIRb � 1836/ � 0:6621.SWIRc � 1699/ (12.2)

with band order given as in the MODIS reflectance products (RL= red, NIR= near
infrared, BL= blue, GL= green, SWIR= short wave IR).
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The TWI ND algorithm is defined by a reference line of iso-wetness and applied
using a trigonometric, scale preserving, rotation combined with a re-scaling factor
(R) and a calibration factor (C) allowing for non-linear reflectance mixing between
soil and water:

TWI D R � sin.ˇ C 45/.sl C w C a/ C cos.ˇ C 45/.�sl C w C a/

sin.ˇ C 45/.sl � w � a/ C cos.ˇ C 45/.sl C w C a/ C C
(12.3)

where a is the reference iso-wetness line intercept with the soil-line and ˇ the
reference iso-wetness line slope. The global values for the reference iso-wetness
line and the calibration factor were determined from reference sites sampled
by the author in Botswana, Uganda, Kenya and Indonesia: a (2080), ˇ (�57ı)
and C (7000). Setting the re-scaling factor R to 5942 scales the TWI range to
approximately �4300 for dry soil, 2000 for water saturated dark soil and 3500
for deep open water. MODIS TWI is converted to actual soil moisture, ‚TWI

(volume/volume) by a linear-power function:

‚TWI D .TWI C 4300/=430 C 1:067.TWIC4300/�0:0086 (12.4)

TWI performance was evaluated directly comparing ‚TWI to in-situ data and
after assimilation of ‚TWI to fit the statistical moments (mean and variance) of
each local in-situ time-series (Reichle et al. 2004, 2007). The assimilation was done
against the in-situ data representing the same 16-day period as each ‚TWI estimate.
Each 24 h cycle of in-situ data, adjusted for the local noon where first calculated
separately, and then averaged. The smoothing algorithms and parameterizations
were evaluated by aggregating all local results, and comparing model results to in-
situ data by the coefficient of determination (r2), the Random Mean Square Error
(RMSE), and model efficiency (E) (Nash and Sutcliffe 1970):

E D 1 �
P

.‚o � ‚m/2

P
.‚o � ‚o/

2
(12.5)

where ‚o is the mean of observed soil moisture, and ‚m is modeled and ‚o

observed soil moisture for matching data pairs.

12.5 Estimating Soil Moisture Dynamics from TWI

To retrieve metrics of the global annual soil moisture dynamics, the TWI estimates
(‚TWI) derived for each 16-day cycle in 2011 were used. Soil moisture metrics
for the annual phenology were extracted from the original TWI time-series, and
after applying different smoothing procedures. Adopted smoothing models include
a weighted moving average (WMA) model, and a modified LOWESS model
assigning lower weights to gap-filled data points. In the latter, the weighting (wi)
combines the standard LOWESS tri-cube weight function with lower weights for
gap-filled points:
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wi D
 

1 �
ˇ
ˇ
ˇ
ˇ
x � xi
d.x/

ˇ
ˇ
ˇ
ˇ

3
!3

� wfi (12.6)

where x is the point to be estimated, wfi is the weight assigned for each data value
i falling within the filter span of x, and d(x) the maximum distance (i.e. number of
days) between x and the predictors xi. The weights for gap-filled points (wf ) were
varied between 0.25 and unity (step = 0.25), whereas original points were assigned a
wf of unity. The maximum filter span (d(x)) was set to predefined values of 24 days
(3 data points), 40 days (5 data points), and 56 days (7 data points). The LOWESS
local polynomial fitting was done using linear regression (first degree polynomial).
The weighting for the WMA used wf directly, and the same filter spans.

Different approaches were validated for (1) general smoothing, (2) reducing or
removing outliers, and (3) gap-filling. The influence of outliers was tested by an
iterative approach, identifying outliers after an initial smoothing by comparing the
original and smoothed time-series and assigning points varying more than between 1
to 10% units of soil moisture (step = 1% unit) as outliers. The smoothing algorithm
was then iterated but with the outlier values altered (set either to the smoothed value,
or replaced by IDW gap-filling) or removed. Gap-filling was tested by first filling
all data time-series using IDW and then applying the smoothing algorithm. In the
combined tests of outlier smoothing and gap-filling, the IDW for gap-filling was
iterated after the outlier replacement to reflect the initially smoothed outliers. Trials
were made using varying weights also for outliers, and by using separate weights
for outliers and gap-filled points. None of these more complex models, however
improved model performances, and hence they are not presented. Tested smoothing
approaches and models are summarized in Table 12.2.

All smoothing models operate on the original ‚TWI time-series, and assimilation
to fit in-situ data (see Sect. 12.4) was done as a post-processing step. The results of
the smoothing models were then evaluated compared to the original ‚TWI estimate,
with all ‚TWI time-series assimilated to the in-situ data. The effects of smoothing
outliers and gap-filling was also separately examined using r2 and RMSE compared
to coinciding observations in the in-situ data.

Table 12.2 Summary of smoothing algorithms tested for extracting annual phenology from soil
moisture time-series data

Model code Gap-filling Outliers Smoothing algorithm Smoothed data

GF IDW No action None (orignal model) None

GFWMA IDW WMA smoothed WMA All

GFLOWESS IDW LOWESS smoothed LOWESS All

GFOLOWESS IDW LOWESS smoothed LOWESS Outliers only

GFROLOWESS IDW Replaced by IDW LOWESS All

T None No action None (orignal model) None

TLOWESS None LOWESS smoothed LOWESS All

TOLOWESS None LOWESS smoothed LOWESS Outliers only
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For in-situ sites with data covering at least 10 months, the phenological perfor-
mance was evaluated modified after Hird and McDermid (2009). Phenology was
calculated for both assimilated ‚TWI and in-situ data representing; value metrics:
MIN, MAX and INT (integration of soil moisture during wet season); and temporal
metrics: LS, PWS and PDS. To allow all local time-series to be evaluated in the
model development, the threshold between wet and dry seasons was set to the mean
wetness of each local time-series (with ‚TWI assimilated to fit the in-situ data, the
mean is always the same for both time-series). The score for each phenological
metric (PSm) was calculated as:

PSm D 1 � jPM
m � PM

i j
Pmax

(12.7)

where PM is the derived phenological metric of the in-situ (i) and modeled (m)
time-series of soil moisture, and Pmax is the maximum range for each metric, simply
pre-defined to a soil moisture value of 50%, and a maximum temporal value of
365 days. To convert INT to a maximum range of 50, INT was divided by LWS.
Phenological metrics for in-situ data was calculated using the full in-situ time
series. The phenological performance was evaluated for each local (pixel-wise)
time-series individually, and using the overall mean of all local performances for
model evaluation.

Model performances were evaluated using all the criteria presented above,
but primarily ranked from the smoothing model abilities to capture the soil-
moisture phenology compared to the in-situ data. Model performances for the best
phenological parameter settings for each smoothing model were tested against the
validation data set using the same smoothing and rescaling approach as in the
calibration. Exploring the results of the smoothing algorithms, the global phenology
for 2011 was calculated using a LOWESS smoothing without any gap-filling (and
thus no weighting) or outlier adjustment, and a filter size of 5 data points (or
less if gaps occur within the filter) with a maximum distance span (d(x)) set to
35 days.

Figure 12.1 illustrates some of the smoothing algorithms and the effects of
varying filter sizes and how the adjustment of outliers affect the smoothing results.
The figure also shows the simplified LOWESS weighing algorithms selected for
generating the global surface wetness phenology for 2011.

12.6 Results and Discussions

12.6.1 Transformed Wetness Index

Compared to 745 in-situ ground sites ‚TWI has a bias of 2.5% and a global RMSE
of 14.0%, which reduces to 8.5% when assimilating the mean and variance to fit
local in-situ data. The assimilated RMSE for cosmic-ray soil moisture probes (Zreda
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Fig. 12.1 Illustration of the effects of different smoothing parameterizations. The upper panel
shows the results for LOWESS smoothing with filter sizes (F) of 3, 5 and 7 elements, and the
results from a WMA smoothing using 7 elements. The lower panel shows how the smoothing is
affected by identified outliers, using LOWES smoothing with filter sizes of 3, 5 and 7 elements.
The identified outliers are replaced by the initial smoothing value, and the smoothing algorithm
applied in a second iteration which generated the finally smoothed time-series. Both panels also
show the simplified LOWESS model selected for calculating the global phenology for 2011 (see
text). The example represent a real time-series without any data gaps (see Fig. 12.2)

et al. 2008), with a foot-print comparable to the resolution of MODIS images, is
5.3% (with a bias of 3.7%). The assimilated model efficiency for the cosmic-ray
probes is 0.79, compared to an overall global model efficiency of 0.42.

‚TWI overestimates surface wetness for regions with dark surfaces, including
basaltic outcrops and vertisols. Dense stands of e.g. reeds and papyrus leads to
underestimations of soil moisture content over wetlands, whereas the soil moisture
is overestimated in dense and moist forests (in particular over evergreen needleleaf
forests). The model performance for non forested areas is hence better, with an
estimated bias of �0:4% and a global RMSE of 11.6% (574 stations), reduced to
8.0% for assimilated time-series. ‚TWI in general underestimates the variations in
soil moisture, which is probably related both to the inability of optical sensors to
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capture surface conditions under clouds (i.e. during precipitation events and rainy
seasons), and to differences in soil moisture variations at point scale compared to
the 500m foot-print of the MODIS images.

12.6.2 Phenological Characterization

The differences in overall smoothing model performance, whether using statisti-
cal measures or scores relating to phenological metrics, are small (Tables 12.3
and 12.4). No particular model can be identified as performing better than the
others. Indeed, the unsmoothed time-series performs equally well, or better, com-
pared to the smoothing algorithms. Further, the results of the calibration tests
for each individual model only show minimal variances in performance between
different parameter settings (not explicitly shown, but indicated from the results in
Table 12.3). The parameters presented in Table 12.3 represent the parameterizations
that best captures the phenological performances compared to in-situ data. Using
other criteria (e.g. model RMSE, model efficiency E, or outlier RMSE) for selecting
the optimal model lead to different parameterizations.

The largest variations between different models relate to the smoothing of
outliers. Models smoothing the complete time-series (GFWMA, GFLOWESS and
TLOWESS) all indicate that a thresholds of 6% soil moisture is optimal for identifying
outliers (i.e. peaks and troughs in soil moisture larger than 6% units over a
period of approximately one to two months are likely to be erroneous). But only
very few such peaks and troughs are identified (Tables 12.3 and 12.4), and the
RMSE of the identified outliers themselves increase in the smoothing except for
in the TLOWESS model. Applying smoothing to only outliers (models GFOLOWESS

and TOLOWESS), instead identifies a very large number of outliers as optimal.
Non-outliers are not smoothed in these models, and the outlier smoothing hence
replaces the general smoothing, reducing both the overall RMSE and the RMSE
of the outliers themselves. The model replacing the outliers with IDW filled value
(GFROLOWESS) is the worst performing. These results indicate that in general the
‚TWI time-series data have no problems related to outliers. Visual inspection of the
data (Fig. 12.2), reveals that most peaks and troughs are no artifacts, but discernible
also in the in-situ data. MODIS TWI rather tends to miss peaks with short duration.
For any 16-day interval the MODIS data always represent cloud free conditions,
more likely to represent drier ground conditions compared to cloudy conditions.

The RMSE and r2 of the gap-filled data points show a low fit to the in-situ data
(Table 12.3), and gap-filled models do not perform better compared to those with no
gap-filling. With rainfall events linked to cloud cover, it is more likely that peaks in
surface wetness are missed by the MODIS optical sensors, indicated in Fig. 12.2. As
the gap-filling interpolates adjacent observations, gaps due to cloudy conditions with
associated precipitation can not be properly estimated. The LOWESS models used
in this study utilize the trends adjacent to gaps for the gap-filling, but the LOWESS
filling of gaps only performs slightly better than the filling by IDW.
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Table 12.5 Production model results (including both the calibration and validation data sets),
reported for both the original (not rescaled) MODIS TWI model (with wet season set to the
average wetness of the in-situ data for each local site) and with each MODIS TWI local time-
series assimilated to fit the mean and standard deviation of the in-situ data. Results are reported
for the global dataset, and separately for cosmic-ray probes, and for forests and non-forest (as
identified from the MODIS land cover product MCD12Q1.v005). See Table 12.3 for explanations.
Phenological scores (Eq. 12.7) for applicable metrics are separately reported

Overall results Phenological scores (PSm)
Regionalization RMSE r2 E PSm MIN PDS MAX PWS LWS IWS MEAN

Orginal time-series

Global 11:1 0:02 �0:50 0:74 0:80 0:74 0:80 0:61 0:57 0:86 0.84

Cosmic-ray probes 11:3 0:06 �0:51 0:79 0:84 0:85 0:86 0:69 0:51 0:90 0.82

Non-forested sites 10:9 0:06 �0:07 0:75 0:84 0:75 0:81 0:63 0:56 0:87 0.86

Forested sites 11:3 0:0 �2:1 0:69 0:65 0:70 0:71 0:56 0:61 0:81 0.75

Assimilated time-series

Global 7:9 0:51 0:42 0:85 0:94 0:74 0:93 0:61 0:88 0:92 –

Cosmic-ray probes 5:0 0:82 0:80 0:89 0:96 0:85 0:95 0:69 0:89 0:95 –

Non-forested sites 7:4 0:56 0:50 0:86 0:94 0:75 0:94 0:63 0:89 0:92 –

Forested sites 9:4 0:32 0:13 0:82 0:93 0:70 0:91 0:56 0:84 0:91 –

Accepting that neither outlier reduction nor gap-filling improve the phenological
extraction, but that smoothing in general removes small temporal variations (noise),
a simpler LOWESS model was used for calculating global wetness phenology. The
selected model smoothing filter size was set to five elements, with a maximum date
span of 35 days. The advantage of five elements is primarily that, compared to a
filter with only three elements, it bridges single data gaps. Reducing the maximum
date span from 40 to 35 days, however reduces the weight of the more distant dates.
With the identification of outliers omitted and no gap-filling (i.e. no weighting), the
LOWESS weighting algorithm (Eq. 12.6) can be replaced by a simple weighting
vector (w) applied to each element of the original time-series:

w D Œ0:08 0:74 1:0 0:74 0:08� (12.8)

The results using w for weighting, and a first degree polynomial for estimating
the smoothed values are summarized in Table 12.5. In general the smoothing reduces
the variance, but otherwise does not affect model performance. The global phenol-
ogy value metrics (% soil moisture) for mean (MEAN) and standard deviation (SD)
are shown in Fig. 12.3, with additional global maps shown as Figs. 12.5 and 12.6 in
the Appendix.

The smoothing algorithm adopted for calculating wetness phenology reduces
the variance compared to the original time-series data. The ‚TWI original model
underestimates the variance compared to point scale in-situ data, and this underes-
timation is further accentuated by the smoothing. Comparing the smoothing results
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Fig. 12.2 Comparison of soil moisture observations from in-situ station data and soil moisture
estimated by the MODIS Transformed Wetness Index (TWI) (expressed as volumetric soil
moisture – ‚TWI). Each panel shows the MODIS TWI original (not rescaled) time-series, and
the same time-series smoothed using the simplified LOWESS weighting algorithm selected for
calculating the global phenology for 2011 (see text). The four panels represent different networks
and land cover (from the MODIS land cover product MCD12Q1.v051) as indicated in each
graph (Ev.G.N.L.F. = evergreen needleleaf forest; Cropl/Nat = cropland/natural vegetation mosaic).
Details about each station are available in the ISMN dataset

with cosmic-ray probes (measuring soil moisture at a spatial scale equalling that of
the MODIS pixel size) the variances of the ‚TWI time-series are adjusted to closer
matching the variances captured by the cosmic-ray probes. Arguably, the results for
the cosmic-ray probes more correctly represent the ability of ‚TWI to capture the
spatially integrated soil moisture regime.

For non-forested sites the ‚TWI estimated soil moisture bias is negligible
(�0:4%) and does only marginally affect extraction of the wetness phenology.
The phenology is also better captured for non-forested sites compared to forested
sites (Table 12.5). Large positive bias over primarily evergreen needleleaf forests
(16.2%), but also other forests (10%), cause over-estimation of both temporal
metrics and value metrics when retrieving soil moisture. The Okavango Swamps
in Botswana (Fig. 12.4 and Appendix Fig. 12.7) are less affected. The maps over the
Okavango Swamps clearly capture both the wetter sites, but also separates the more
permanent (central swamps) from the distal floodplains.
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Fig. 12.3 Mean (MEAN) (top panel) and standard deviation (SD) (bottom panel) soil surface
wetness (%) metrics for 2011 estimated from the Moderate-resolution imaging spectroradiometer
(MODIS) Transformed Wetness Index (TWI). The wetness phenology metrics is calculated after
applying a locally weighted scatterplot smoothing (LOWESS) to the original MODIS TWI time-
series (expressed as volumetric soil moisture – ‚TWI). For the tropical region (between 20 degrees
latitudes) the map represents the average conditions for 2010, 2011 and 2012, whereas for other
regions it represents the calendar year 2011. Note that the scaling is different for MEAN and SD.
White areas have too few recordings for extracting phenological metrics

12.7 Conclusions

This study has attempted to define metrics and identify smoothing algorithms for
capturing the annual soil moisture phenology from ‚TWI, a soil wetness index
derived from MODIS data. While most approaches for retrieving time-series of e.g.
vegetation, snow or ice cover are based on the assumption that proximity in time
or space is the key for cleaning and smoothing, this assumption is challenged when
mapping variable properties with unknown or unpredictable scales of spatial and
temporal variation.
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Fig. 12.4 Mean (MEAN) (left panel) and standard deviation (SD) (right panel) phenological soil
moisture metrics for the Okavango Swamps, Botswana for 2011 (see Fig. 12.3). The wetland
mask is modified after McCarthy et al. (2003) and divided into four regions: (1) the Panhandle
tectonically bound entry channel, (2) the central permanent wetlands, (3) the seasonally inundated
wetlands, and (4) the most distal areas only temporally flooded. Okavango is situated on a
tectonically active region and the swamp naturally oscillates across the underlaying alluvial fan.
Compared to the estimated area of wetlands between 1972 and 2000, the maps indicate that the
north-eastern parts of the swamps are drying out and the south-western parts receive more water.
Further, the maps reveal that Lake Ngami was filled during 2011, whereas it contained no or little
water from 1972 to 2000

Metrics for the global surface wetness phenology have been developed at a spatial
scale of 500m. A large bias and high RMSE for ecosystems dominated by dense
forests causes overestimated wetness conditions in particular for higher latitude
evergreen needleleaf forests. The phenology metrics for non forested landscapes,
and large (non forested) wetlands are better captured. Phenology is better captured
when compared to in-situ data captured by cosmic-ray probes, integrating the soil
moisture over a spatial scale closely matching the MODIS image resolution.

The LOWESS smoothing algorithm used in this study is a compromise, but
does have several advantages. It is flexible by allowing selection of both filter
size (i.e. defining the temporal range that influences the soil wetness conditions
at any particular date), and customized weighting (and also by selecting different
fitting functions, but this was not tested in this study). But primarily LOWESS can
handle irregular time-series data, and thus removes the need for pre-defining e.g.
rates of changes and seasonality commonly required by more advanced smoothing
algorithms and model fitting routines. As the MODIS product used in this study
is delivered with regular interval time-steps (16 days), the LOWESS weighing
function could be replaced by a fixed vector, also decreasing the computational
processing time manyfold.
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Appendix
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Fig. 12.5 Lengths of wet season (LWS) (months (m) with soil wetness >25% in 2011). The over-
estimation of soil moisture content under forests, in particular evergreen needleleaf forests causes
a large positive bias in temperate forests
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wetness 2011. The map clearly shows the spatially mirrored wetness phenology across the equator.
Large parts of the Sahara Desert have no discernible seasonality, and no dates for peak wet and dry
seasons can be retrieved
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Fig. 12.7 Illustration of soil moisture phenological metrics for the Okavango Swamps in
Botswana. The upper panels show the Lengths of non-dry season (LDS) and Wet season (LWS),
while the lower panels show the integrated non-dry season (IDS) and integrated wet season (IWS).
All panels represent the calendar year 2011. The location of the Okavango swamps is indicated in
Fig. 12.3
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