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Preface

The idea for this book was conceived at the 1st International Workshop on Temporal
Analysis of Satellite Images that I organized in Mykonos, Greece during May
23–25, 2012. The workshop was announced only a few months earlier when the
EARSeL Special Interest Group on Temporal Analysis of Satellite Images was
established and I became the co-chair. The organizing committee was expecting
30–40 participants for a one and half day event. We were pleasantly surprised,
however, that the workshop attracted over 100 participants from 28 countries with
100 presentations covering a variety of topics. This clearly demonstrated strong
interests in multitemporal analysis from the remote sensing community. Two months
later on July 23, 2012, the Landsat program celebrated its 40th anniversary and then
Landsat-8 was launched on Feb. 11, 2013, marking two significant milestones in
multitemporal remote sensing.

In 2012, the world also witnessed natural disasters striking across the globe, from
flooding, hurricanes and earthquakes to droughts, heat waves and wildfires, killing
thousands and inflicting billions of dollars in property and infrastructural damage.
Furthermore, our planet is facing unprecedented environmental challenges including
rapid urbanization, deforestation, pollution, loss of biodiversity, sea-level rising,
melting polar ice-caps and climate change. With its synoptic view and repeatability,
remote sensing offers a powerful and effective means to observe disaster damages
and monitor our changing planet at local, regional and global scale. Since the launch
of Landsat-1 in 1972, numerous Earth Observation satellites have been launched
providing huge volumes of multitemporal data. Significant progress has been made
to develop methods and techniques for multitemporal analysis, change detection and
time series processing. A wide range of applications has been conducted to monitor
global environmental changes and to assess disaster damages. It became apparent
that a book on multitemporal remote sensing was overdue to provide an overview
of the methods and techniques developed and to showcase a variety of application
examples. With the enthusiastic support from the authors, the book proposal was
submitted and approved by Springer in late 2013.

The chapters in this book are contributed by leading scientists in multitemporal
remote sensing from around the world. I would like to express my sincere gratitude
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vi Preface

to all authors for their commitment to this endeavor and for their patience in the
long process. I would also like to thank all reviewers for volunteering their time
to review the chapters and for their constructive comments and suggestions that
helped to improve the chapters. Special thanks to the former Book Series Editor of
EARSeL, André Marcal, and to the former Chairman of EARSeL, Ioannis Manakos
for their support to the book project. Many thanks to Dorothy Furberg and Jan Haas
for proofreading and language editing selected chapters.

I am grateful to my family for their enduring love and support. I am also thankful
to my parents for their love and strong commitment to my education. Special thanks
to my father who changed the subject in my university application to Computer
Cartography at Nanjing University that lead me to remote sensing where I found
my true passion.

Stockholm, Sweden Yifang Ban
July, 2016
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Chapter 1
Multitemporal Remote Sensing: Current Status,
Trends and Challenges

Yifang Ban

Abstract Our planet is facing unprecedented environmental challenges including
rapid urbanization, deforestation, pollution, loss of biodiversity, sea-level rising,
melting polar ice-caps and climate change. With its synoptic view and the repeata-
bility, remote sensing offers a powerful and effective means to observe and monitor
our changing planet at local, regional and global scale. Since the launch of Landsat-1
in 1972, numerous Earth Observation satellites have been launched providing large
volumes of multitemporal data acquired by multispectral, hyperspectral, passive
microwave, synthetic aperture radar (SAR), and LiDAR sensors. This chapter first
presents an overview of the Earth Observation sensors and trends in multitemporal
observation capacity. Then the current status, challenges and opportunities of
multitemporal remote sensing are discussed. Finally the synopsis of the book is
provided covering a wide array of methods and techniques in processing and
analysis of multitemporal remotely sensed images as well as a variety of application
examples in both land and aquatic environments.

1.1 Introduction

Our planet is facing unprecedented environmental challenges including rapid
urbanization, deforestation, pollution, loss of biodiversity, sea-level rising, melting
polar ice-caps and climate change, just to name a few. The conversion of Earth’s
land surface to urban areas is one of the most irreversible human impacts on
the global biosphere. It hastens the loss of highly productive farmland, affects
energy demand, alters the climate, modifies hydrologic and biogeochemical cycles,
fragments habitats, and reduces biodiversity (Seto et al. 2011). Deforestation, on the
other hand, is a growing problem in the world’s rain forests and has many negative
effects on the environment including the loss of habitat for millions of species, the
lessening of carbon sink, soil erosion and flooding, among others. Melting of the
Arctic glaciers and ice-caps as well as rising of sea-level not only are manifestation

Y. Ban (�)
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2 Y. Ban

of climate change but also have serious environmental consequences. Therefore,
effective methods and tools are of critical importance to map, monitor and analyze
environmental changes and evaluate their impact in a timely and reliable manner.

With its synoptic view and the repeatability, remote sensing offers a powerful and
effective means to observe and monitor our changing planet at local, regional and
global scale. Since the launch of Landsat-1 in 1972, numerous Earth Observation
(EO) satellites have been launched providing large volumes of multitemporal data
acquired by multispectral, hyperspectral, passive microwave, synthetic aperture
radar (SAR), and LiDAR sensors. The increasing number of Earth Observation
systems presents enhanced capability to acquire multitemporal data of the Earth
surface with improved spectral, spatial, radiometric and temporal resolutions. Such
new scenario significantly increases our ability to observe, monitor and predict
the dynamics of natural and anthropogenic processes, thus helps to improve
our understanding of environmental/climate changes and to support sustainable
development.

In this chapter, the Earth Observation sensors and trends in multitemporal
observation capacity are presented first. Then the current status, challenges and
opportunities of multitemporal remote sensing are discussed. Finally the synopsis
of the book is provided.

1.2 Multitemporal Earth Observation Satellites

The first Landsat, launched on July 23, 1972, marked a new era for Earth
observations. Since then, seven Landsat satellites have been successfully launched
providing data continuity for long-term observation and monitoring of regional and
global change. By the end of 2013, a total of 197 earth observing polar orbiters
were successfully launched and nearly 50 % were still operational. The number
of launches of polar orbiting Earth Observation satellites per year also increased,
especially in the past decade (Fig. 1.1). For examples, on 1st August 1972 there
was one mission in orbit; by 1st August 1982 the number of satellites had increased
to eight, by 1st August 1992 there were twenty such missions, by 1st August 2002
there were thirty-nine and by 1st August 2012 eighty-three. Out of the 197 satellites,
only 19 missions carry SAR imagers (Belward and Skøien 2015).

The 44-year archive of the Landsat program is the most extensive, longest-
running record of Earth observations from space. Through the Landsat open archives
program, the long-term satellite time series data have been freely available since
2008 (Wulder et al. 2012). Free imagery enables reconstruction of the history of
Earth’s surface back to 1972, chronicling both anthropogenic and natural changes
during a time when our population doubled and the impacts of climate change
became noticeable (Woodcock et al. 2008). The Earth Resources Observation and
Science (EROS) Center at USGS provided approximately 25,000 Landsat images
in 2001, the prior record for annual distribution, at a price of $600 per scene. By
comparison, EROS distributed approximately 2.5 million images for free in 2010.
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Fig. 1.1 The number of near-polar orbiting, land imaging civilian satellites. Left: # of operational
satellites/year as of 1st August 1972 to 2013; Right: # of launches per year. The horizontal dotted
lines denote the average number launched per decade (1970s–2010s) (Belward and Skøien 2015)

As a result of the free data policy, combined with notable advancements in technical
capacity to analyze large datasets for long-term and large area investigations
and applications, Landsat data are experiencing more widespread use by an ever
increasing range of end users in a variety of disciplines (Wulder et al. 2012). This is
reflected in the increasing number of publications as shown in the next section. One
important application example is the production of bi-temporal global land cover
maps at 30 m resolution for 2000 and 2010 that are also open access (Chen et al.
2014).

Multitemporal coarse-resolution satellite data (typically 250 m–1 km) have had
a ‘free-and-open’ data policy for many years, the longest-standing example being
the Advanced Very High Resolution Radiometer (AVHRR) data from the NOAA
satellites (Belward and Skøien 2015). The satellite sensors at coarse resolution
offer daily observations at global scales and provide the best possibility for cloud-
free observations (Lasaponara and Lanorte 2012). In fact, AVHRR NDVI time
series (1981–2015) were the first long time-series available for monitoring temporal
changes and dynamic processes of Earth surface. The launches of Moderate
Resolution Imaging Spectroradiometer (MODIS) on board Terra (2000-present) and
Aqua (2002 to present) were another significant milestones in multitemporal remote
sensing as they provide time series data in 36 spectral bands imaging the entire
Earth’s surface every 1–2 days. The availability of the large volume time series data
at 25 m resolution quickly expended the development of times series methodology
and applications (Eklundh and Jönsson 2015), as reflected in the number of publi-
cations described in next section. Other time series data at coarse resolution include
SPOT-4/-5 Vegetation (1998–2013), PROBA Vegetation (Follow-on to Vegetation,
2013-present), SeaWiFS (1997–2010), Suomi-NPP VIIRS (2012-present) (Pinzon
and Tucker 2014) as well as ENVISAT Medium Resolution Imaging Spectrometer
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(MERIS, 2002–2012). These time series data provide consistent, long-term satellite
records to monitor trends in land surface dynamics as well as processes occurring
in the oceans and the lower atmosphere.

The launch of SPOT-1 in 1986 marked a new era of commercialized Earth obser-
vation at high-resolution, i.e., 10 m and 20 m for panchromatic and multispectral
images respectively. Since then, three generations of SPOT satellites have been
launched with improved spatial resolution to 1.5 m for panchromatic and 6 m for
multispectral images. Compared to Landsat data, however, SPOT images were much
less used in multitemporal analysis primarily due to their higher-costs. The trend of
increasing spatial resolution is apparent in the emergence of ‘very high’ resolution
classes benefited from the declassified spy satellite technology. With the launch of
IKONOS, the first commercial very high resolution satellite in 1999, panchromatic
and multispectral images at spatial resolutions of 1 m and 4 m became available. The
spatial resolutions are further improved by QuickBird (0.65 m/2.62 m), WorldVew-
1/2 (0.46 m/1.84 m), GeoEye-1 (0.46 m/1.84 m), Pleiades-1A/1B (0.5 m/2 m). The
highest resolutions were reached by WorldView-3 at 31 cm panchromatic resolution
and 1.24 m multispectral resolution in 2014. Very high resolution multitemporal
data enable new, strategic and challenging applications, such as monitoring illegal
excavations in archaeological areas (Lasaponara and Lanorte 2012), precision
farming, detailed disaster damage assessment and urban mapping, among others.
However, the use of very high resolution data for multitemporal analysis are rather
limited as reflected in the low number of publications (see next section) due to their
high cost. Figure 1.2 shows then number of multispectral and panchromatic sensors
at different spatial resolutions on board near-polar orbiting, land imaging civilian
satellites per year (Belward and Skøien 2015).

15

10

15

1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012

N
um

be
r 

of
 s

en
so

rs

0 < Resolution <= 5
5 < Resolution < 10
10 <= Resolution < 50
50 <= Resolution < 250
250 <= Resolution < 2000

0 < Resolution <= 5
5 < Resolution < 10
10 <= Resolution < 50
50 <= Resolution < 250
250 <= Resolution < 2000

N
um

be
r 

of
 s

en
so

rs

10

8

6

4

2

Fig. 1.2 Number of multispectral (Left) and panchromatic (Right) sensors at different spatial
resolutions on board near-polar orbiting, land imaging civilian satellites per year (Belward and
Skøien 2015)
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One of the latest developments in the optical remote sensing is the use of the
CubeSat concept in Earth Observation. Since 2014, Planet Labs have launched over
100 small satellites with the objective of having 150 satellites in a sun synchronous
orbit by the end of 2016 collecting the entire land mass of the Earth every day at
3–5 m resolution in Red, Green, Blue and Near Infrared wavelengths (Planet Labs
2015). Terra Bella (formerly Skybox Imaging)’s SkySat-1/-2 are microsatellites
carrying a two-dimensional sensor array capable of providing 0.9 m resolution
imagery in red, green, blue, near-infrared and panchromatic bands as well as the
first-ever commercial high-resolution video (1.1 m resolution) of Earth from a
satellite (Terra Bella 2016). These data offer the potential to monitor land surface
changes at high-spatial and high-temporal resolution, but cost is an obvious issue.

The first SAR imaging system is the Seasat mission, launched by the U.S. in
1978 with a L-band SAR at 25 m resolution on board. As the mission duration
is only 105 days, Seasat SAR data had very little use in multitemporal remote
sensing. The first multitemporal SAR dataset became available with the launch of
the European Space Agency’s ERS-1 in 1991 with C-VV SAR at 30 m resolution
on board. This is followed by the launches of Russia’s ALMAZ-1B S-band SAR
at 30 m resolution in 1991 and Japan’s JERS-1 L-band SAR at 18 m resolution in
1992. These early SAR sensors are in single frequency, single polarization, single
incidence-angle and single resolution. The launch of Canada’s RADARSAT-1 in
1995 marked the beginning of high-resolution SAR systems with multiple beams at
various spatial resolutions (8 m–100 m). To provide data continuity, ESA launched
ERS-2 in 1995 with the same sensor and ENVISAT in 2002 with C-band SAR
in dual-polarization and multiple beam modes and resolutions. ESA’s ERS SAR
and ENVISAT ASAR data have been most used for multitemporal SAR remote
sensing, as reflected in the number of publications (see next section). Another
data continuity mission is Japan’s Phased Array type L-band Synthetic Aperture
Radar (PALSAR) in 2005, also with multiple beams and resolutions (10–100 m).
Very high resolution SAR data became available with the launch of RADARSAT-
2 with ultra-fine beam C-band SAR at 3 m resolution in 2007. Another advanced
feature of RADARSAT-2 SAR is to acquire data in fully polarimetric mode at
10 m resolution, in addition to the continued multi-beam multi-resolution modes
of RADARSAT-1. The highest resolution SAR became available in 2007 with the
launches of Italy’s CosmoSkymed and Germany’s TerraSAR, both in X-band at 1 m
resolution. Another advance is the launch of TanDEM-X in 2010 providing high-
resolution SAR interferometry (InSAR) data for multitemporal applications from
monitoring land subsidence to glacier retreats.

Time series data from very coarse resolution (25–50 km) passive microwave
scatterometer have also been available since the early 1990s, including ERS-1/-2
scatterometer (SCAT), European Meteorological Operational Satellites (MetOp)
Advanced Scatterometer (ASCAT), and NASA Quick Scatterometer (QuikSCAT).
These data are mainly used to derive soil moisture, wind speed and direction, and
for sea ice monitoring. Multitemporal thermal infrared data, on the other hand,
are mainly from Landsat sensors, AVHRR, MODIS and AATSR. They have been
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used to analyze multiannual to multidecadal LST patterns as well as hotspots and
anomalies in the context of urban heat islands and long-burning underground coal
fires, etc. However, the analysis of time series of convincing length is rare in these
contexts (Kuenzer et al. 2015).

One of the significant developments in multitemporal remote sensing is the
open access to big EO data at high-spatial and temporal resolutions. With the
recent launches of ESA Sentinel-1A/-B and Sentinel-2A, multitemporal SAR and
optical data in 10 m and 20 m resolution with 6-day global coverage become freely
available. The images acquired by the Sentinel satellites represent an enormous
amount of data: whereas ENVISAT provided 0.3 terabyte (TB) per day, each
Sentinel-1 provides 1.8 TB/day, with Sentinel-2 s providing 1.6 TB and Sentinel-
3 s providing 0.6 TB (Showstack 2014). Processing and mining such huge volume
of data presents both challenges and opportunities in multitemporal remote sensing.

1.3 Multitemporal Remote Sensing: Trend, Challenges
and Opportunities

As discussed in the previous section, a large number of new spaceborne remote
sensing systems have been launched in the past two decades. The enhanced
capability to acquire multitemporal data of the Earth surface with improved spatial,
spectral, radiometric and temporal resolution have significantly increased the
interest in multitemporal remote sensing, time series processing and applications.
As a result, various methods and algorithms have been development for change
detection (e.g., Bruzzone and Prieto 2000; Lu et al. 2004; Bovolo and Bruzzone
2005; Gamba et al. 2006; Bovolo and Bruzzone 2007a, b; Ban and Yousif 2012;
Yousif and Ban 2013; Liu et al. 2015) and time series analysis (e.g, Roerink et al.
2000; Jönsson and Eklundh 2004; Galford et al. 2008; Pinzon and Tucker 2014;
Hermosilla et al. 2015; Kuenzer et al. 2015; Müller et al. 2015). Multitemporal
remote sensing have been used for a wide range of applications including urban
mapping (e.g, Gong et al. 1992; Gamba and Harold 2009; Pesaresi et al. 2013; Ban
et al. 2015), urbanization monitoring (e.g., Taubenböck et al. 2012; Haas et al. 2015)
and environmental impact assessment (e.g., Güneralp and Seto 2013; Haas and Ban
2014), Crop monitoring (e.g., Shao et al. 2001; Bouvet et al. 2009; McNairn et al.
2014), deforestation (e.g., Skole and Tucker 1993; Rignot et al. 1997; Tucker and
Townshend 2000; Achard et al. 2002; Hansen et al. 2013), desertification (e.g., Yang
et al. 2005; Dawelbait and Morari 2012), flooding (e.g. Martinez and Le Toan 2007),
biodiversity monitoring (e.g., Turner et al. 2003; Kuenzer et al. 2014; Skidmore
et al. 2015), land cover mapping (e.g., Anderson et al. 1976; Friedl et al. 2002;
Bontemps et al. 2011; Ban and Jacob 2013; Chen et al. 2015) and change detection
(e.g, Bruzzone and Serpico 1997; Zhu and Woodcock 2014), vegetation dynamics
(Olsson et al. 2005; Hilker et al. 2014), land surface dynamics (e.g, Liang 2004;
Kuenzer et al. 2015), natural disasters and hazards (Tralli et al. 2005; Bovolo and
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Bruzzone 2007a; Gamba et al. 2007; Vu and Ban 2010), coastal monitoring (Arnone
and Parsons 2005; Kratzer et al. 2008), Retreat of glaciers and ice shelves (e.g.,
Rignot 2001; Rack and Rott 2004; Rignot et al. 2014), as well as sea ice monitoring
(e.g, Eriksson et al. 2010; Mahmud et al. 2016). Multitemporal remote sensing
has demonstrated its enormous capability and potential for environmental change
monitoring at various scales.

Driven by the increasing interests in studying the dynamics of environmental
changes, improved sensor technology and image processing techniques as well as
open data policy, the remote sensing community has witnessed a substantial increase
in multitemporal remote sensing research, development and applications in the
past two decades. As shown in Fig. 1.3, the number of journal articles (including
review articles) on change detection has been increasing rapidly since 2000. Similar
trends are observed when search for number of journal articles (including review
articles) on multitemporal remote sensing or time series. This period coincides with
the launches of high-spatial or high-temporal resolution optical satellite systems,
advanced spaceborne SAR sensors, the development of innovative multitemporal
image processing and analysis techniques as well as open access to Landsat data
archive. The most relevant peer-reviewed journals for multitemporal remote sensing,
change detection and time series analysis are presented in Table 1.1. It is apparent
that all major remote sensing journals have published articles on these subjects. The
top five journals are International Journal of Remote Sensing, Remote Sensing of
Environment and IEEE Transactions on Geoscience And Remote Sensing, Remote
Sensing, and IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing (JSTARS). Started in 2009 and 2008 respectively, Remote Sensing

Fig. 1.3 The number of articles (including review articles) per year on change detection derived
from a Scopus search on July 15, 2016, by the author
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Table 1.1 Literature search results using Scopus on ‘Multitemporal Remote Sensing’, ‘Change
Detection’, ‘Remote Sensing Time Series’

Number of journal papers on
multitemporal remote
sensing

Number of journal papers on
remote sensing C change
detection

Number of journal papers on
remote sensing C time series

International Journal of
Remote Sensing (299)

International Journal of
Remote Sensing (432)

Remote Sensing of
Environment (427)

IEEE Transactions on
Geoscience and Remote
Sensing (242)

Remote Sensing of
Environment (403)

International Journal of
Remote Sensing (277)

Remote Sensing of
Environment (213)

IEEE Transactions on
Geoscience And Remote
Sensing (262)

Remote Sensing (191)

Remote Sensing (135) Remote Sensing (165) IEEE Transactions on
Geoscience And Remote
Sensing (150)

IEEE Journal of Selected
Topics in Applied Earth
Observations and Remote
Sensing (78)

IEEE Geoscience and
Remote Sensing Letters (128)

IEEE Journal of Selected
Topics in Applied Earth
Observations and Remote
Sensing (97)

International Journal of
Applied Earth Observation
and Geoinformation (58)

IEEE Journal of Selected
Topics in Applied Earth
Observations And Remote
Sensing (124)

International Journal of
Applied Earth Observation
and Geoinformation (74)

ISPRS Journal of
Photogrammetry and Remote
Sensing (57)

Photogrammetric
Engineering And Remote
Sensing (106)

ISPRS Journal of
Photogrammetry and Remote
Sensing (63)

IEEE Geoscience and
Remote Sensing Letters

ISPRS Journal of
Photogrammetry And Remote
Sensing (88)

IEEE Geoscience and Remote
Sensing Letters (53)

Journal of Applied Remote
Sensing (36)

International Journal Of
Applied Earth Observation
And Geoinformation (65)

Journal of Applied Remote
Sensing (38)

Canadian Journal of Remote
Sensing (35)

Journal of Applied Remote
Sensing (62)

Canadian Journal of Remote
Sensing (37)

Photogrammetric
Engineering and Remote
Sensing (31)

Canadian Journal of Remote
Sensing (55)

Photogrammetric
Engineering and Remote
Sensing (37)

Note: The search was conducted on July 15, 2016. A total of 2290 papers on ‘multitemporal
remote sensing’, 3188 papers on ‘remote sensing C change detection’ and 3694 papers on ‘remote
sensing C time series’ were found

and JSTARS, the two new journals, have managed to reach the top five. A number of
special issues on multitemporal analysis or time series analysis have been published
in these top journals except in Remote Sensing of Environment.

Figure 1.4 shows the Scopus search of publications for multitemporal optical data
using the Keyword ‘Multitemporal’ or ‘Change Detection’ or ‘Time Series’ C ‘EO
optical sensor/satellite’, All publications include all journal articles, review articles,
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Fig. 1.4 Optical sensors: Scopus search of publications using the keyword ‘Multitemporal’ or
‘Change Detection’ or ‘Time Series’ C EO sensor/satellite’, all publications include all journal
articles, review articles, books, book chapters, conference papers, conference reviews, editorials,
and letters. Article or review only includes journal articles and reviews

books, book chapters, conference papers, conference reviews, editorials, and letters.
Article or Review only includes journal articles and reviews. With its longest time-
series, Landsat has the highest numbers of publications for ‘multitemporal’ and
‘change detection’, significantly more than other EO sensors. However, MODIS
has the top hit for ‘time series’ while Landsat in the second place and AVHRR in
the third place. This could be attributed to that MODIS time series have been freely
available since 2000 while Landsat’s open data policy was only in place since 2008.
Fewer publications were found on MERIS and SPOT Vegetation in comparison to
MODIS. In spite of the high costs of SPOT images, the number of publications
on ‘change detection C SPOT image’ gained number two place indicating interests
high-resolution data in change detection methodology and applications. Limited
number of publications on very high resolution sensors was due to their high
costs while the low number of publications on IRS and HJ-1 data is due to their
availability and accessibility.
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Fig. 1.5 Number of publications per year from Scopus search for ‘Change Detection’ and
‘Landsat’

Figure 1.5 Shows that the number of publications per year from Scopus search
for ‘Change Detection’ and ‘Landsat’. It shows that the number of publications per
year using Landsat for change detection/multitemporal analysis is relatively low in
the early years. Since the launch of Landsat-7 in 1999 with a new panchromatic
band at 15 m spatial resolution, the number of publications increased significantly,
especially after the Landsat free data policy in 2008, the publications per year
experienced exponential growth, from approx. 90 in 2009 to approx. 200 in 2015.

Scopus search of publications for multitemporal SAR data using the Keyword
‘Multitemporal’ or ‘Change Detection’ or ‘Time Series’ C EO sensor/satellite’ is
presented in Fig. 1.6. The total number of publications for SAR are much lower
than optical data. With its longest SAR time series, ERS holds the top places for
‘Multitemporal’ and ‘Time Series’ as well as ‘change detection’ in journal and
review articles. RADARSAT has the highest hit for all papers on ‘change detection’,
second place in ‘multitemporal’ and third place in ‘time series’. ENVISAT ASAR
holds the second place for ‘time series’. Compared to the top three, both ALOS
PALSAR and TerraSAR-X also have good number of publications indicating
interests in multitemporal L- and X-band SAR analysis and applications.

Multitemporal remote sensing has emerged as a new frontier for Earth obser-
vations. With the increasing number of Earth Observation systems with enhanced
capacities and free access to terabytes and petabytes of multitemporal data with
global coverage, the remote sensing community is presented with major challenges
and ample opportunities. Big data analytics paradigm needs to be introduced to
image processing and analysis frameworks, novel processing and data mining
methods are necessary to handle longer and denser time series data, effective change
detection techniques need to be developed to process VHR multispectral, SAR,
hyperspectral images and for cross-sensor change detection. Data fusion methods
need to be advanced to integrate multi-sensor multi-resolution data. Multi-scale
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Fig. 1.6 SAR: Scopus search of publications using the keyword ‘Multitemporal’ or ‘Change
Detection’ or ‘Time Series’ C EO sensor/satellite’, all publications include all journal articles,
review articles, books, book chapters, conference papers, conference reviews, editorials, and
letters. Article or review only includes journal articles and reviews

analysis with a holistic approach is necessary for monitoring environmental changes
from micro-level to macro-level. In addition, cloud-based data repository and
processing such as Google Earth Engine could also facilitate global environmental
change monitoring, with Global Forest Watch (Davis and Thau 2014) as an excellent
example. Last but not least, new applications are expected to emerge from these new
datasets, technological developments and paradigm shifts.

1.4 Synopsis of the Book

The book intends to provide an overview of a wide array of methods and techniques
in processing and analysis of multitemporal remotely sensed images as well as a
variety of application examples covering both land and aquatic environments. A
broad range of multitemporal datasets is used in the methodology demonstrations
and application examples. Multispectral and hyperspectral data include Landsat,
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ASTER, HJ-1, MODIS, AVHRR, MERIS, SPOT Vegetation, SeaWiFS and Hype-
rion while SAR data include ERS, ENVISAT, Sentinel-1A, RADARSAT, ALOS
PALSAR, TerraSAR-X and TanDEM-X. Passive microwave data is also used.

Chapter 1 provides a synopsis of Earth Observation sensors and trends in
multitemporal observation capacity as well as the current status, challenges and
opportunities of multitemporal remote sensing. Chapters 2, 3, 4, 5, 6 and 7 are
focused on change detection. First, Chap. 2 provides a comprehensive review of
the recent development in change detection techniques using both optical and SAR
images. Various aspects of change detection processes were presented including
data preprocessing, change image generation and change detection algorithms.
Major challenges for change detection are also identified. Chapter 3 provides a
detailed analysis of a number of the issues arising from urban change detection.
Specifically, the role of very high resolution sensors and their relevance with respect
to either fast or slow changes in human settlement is analyzed. The possibility to
exploit long temporal sequences of coarser resolution data is also explored. Chapter
4 addresses the multiple-change detection problem in multitemporal hyperspectral
remote sensing images in an agricultural landscape. First, an analysis of the
concept of “change” is given from the perspective of pixel spectral behaviors,
taking into account the intrinsic complexity of the hyperspectral data. Then a
hierarchical change-detection approach is presented aiming at detecting multiple-
change information in an unsupervised way. Satisfactory results obtained on both
simulated and real bi-temporal Hyperion images confirm the effectiveness of the
proposed hierarchical method. Chapter 5 investigates object-based unsupervised
change detection in Beijing and Shanghai using very high resolution SAR images.
Three thresholding algorithms, i.e., the Kittler-Illingworth algorithm, the Otsu
method, and the outlier detection technique, are tested and compared. Promising
results are presented and limitations are revealed. Chapter 6 evaluates multitemporal
spaceborne SAR and optical data for urban land cover mapping and urbanization
monitoring using KTH-SEG and KTH-Pavia Urban Extractor. The results indicate
that carefully selected multitemporal SAR dataset and its fusion with optical data
could produce nearly as good classification accuracy as the whole multitemporal
dataset. The results also show that urban areas as well as small towns and villages
could be well extracted using multitemporal Sentinel-1A SAR data while major
urban areas could be well extracted using a single-date single-polarization SAR
image. The results clearly demonstrate that multitemporal SAR data are cost-
and time-effective way for monitoring spatiotemporal patterns of urbanization.
Chapter 7 presents a processing chain for post-classification change detection in
Arctic glaciers using multi-polarization SAR images. The method consists of terrain
correction, segmentation using an unsupervised contextual non-Gaussian clustering
algorithm, consistency analysis of the segmentation algorithm, post-classification
change detection. A series of dual polarization C-band ENVISAT ASAR images
over the Kongsvegen glacier, Svalbard, are used for demonstration.

The basic theory of SAR interferometry and Multi-Temporal InSAR is discussed
in Chap. 8. InSAR is potentially a very powerful technology to estimate DEMs
and ground movement, however, InSAR is affected by important limitations such
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as decorrelation, phase ambiguity and atmospheric biases. Multi-Temporal InSAR
techniques offer a series of tools for lessening InSAR limitations, making it possible
to process and analyze displacement time series, and also to precisely estimate
ground elevation.

Chapters 9, 10, 11, 12, 13 and 14 present various processing and analysis
methods for coarse-resolution time series with a focus on monitoring vegetation
and land surface dynamics. Chapter 9 presents TIMESAT, a software package for
processing time-series data from coarse resolution satellite sensors for land surface
monitoring using asymmetric Gaussian fits, double-logistic fits, and Savitzky-Golay
filtering. Example applications using TIMESAT are also given including phenology
and phenological variations; ecological disturbances; vegetation classification and
characterization; agriculture applications; climate applications; and for improving
remote sensing signal quality. Chapter 10 presents PhenoSat, another software tool
that extracts phenological information from satellite-based vegetation index time-
series. The main characteristics and functionalities of PhenoSat are evaluated using
multi-year NDVI derived from SPOT VEGETATION and NOAA AVHRR with
six fitting methods: cubic splines, piecewise-logistic, Gaussian models, Fourier
series, polynomial curve-fitting and Savitzky-Golay. The results show that PhenoSat
is capable to extract phenological information consistent with reference mea-
surements, and to adapt to different vegetation types, and different satellite data
sources. Chapter 11 compares six methods to improve the temporal coherence and
continuity of leaf area index (LAI) time series. A dedicated approach combining
the local temporal smoothing gap filling (TSGF) filter with a climatology gap
filling technique is then developed. This method constitutes the basis of the
algorithm for the operational production of continuous and smooth time series of
biophysical variables from VEGETATION data within the European Copernicus
Global Land Service. Chapter 12 attempts to define metrics relevant for capturing
the soil moisture dynamics from an annual series of wetness estimates derived
from global MODIS images. Different algorithms for both smoothing and gap-
filling the time series are tested with the results compared to in-situ data. Metrics
capturing the global surface wetness phenology for 2011, extracted after smoothing
using a simplified locally weighted scatterplot smoothing (LOWESS) model, are
presented at a spatial resolution of 500 m for the calendar year 2011. Chapter
13 first discusses the potential and limitations of long-term time series analyses
of land surface albedo using satellite-derived surface albedo products such as
GLASS, GlobAlbedo, MERIS, MODIS. Then this chapter presents some recently
developed methods to detect sensor change, to reduce data gaps, and to improve data
consistency and accuracy of existing satellite products, followed by a case study on
the temporal analysis of regional long-term land surface albedo changes. Chapter
14 analyzes vegetation response to climate variability using time series analysis
of land surface temperature in two different spectral regions: Thermal Infrared
(TIR) observations of land surface temperature to study the thermal behavior of
the land surface in response to weather and climate; and 37 GHz observations of the
polarization difference in brightness temperature to retrieve the fractional abundance
of water-saturated soil. Two methods are applied to identify and remove anomalous
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observations (outliers) and to fill the resulting gaps: Harmonic ANalysis of Time
Series (HANTS) and the Multichannel Singular Spectrum Analysis (M-SSA). Three
applications of time series of land surface temperature are presented: (a) monitoring
of spectral thermal admittance of the land surface; (b) estimation and mapping of
air temperature and (c) monitoring of thermal load to assess the risk of forest fires.

Chapter 15 provides a comprehensive review of multitemporal SAR for crop
monitoring. First, SAR’s response to crop type and conditions are discussed,
then SAR for crop classification and acreage estimation is presented. Temporal
trends in SAR’s response and sensitivity to crop phenology is then discussed
and sensitivity of SAR to crop bio-physical properties including LAI, canopy
biomass and crop height are presented. Chapter 16 highlights the opportunities
and the challenges for integrating wildlife location data with high spatial and
temporal resolution landscape disturbance datasets, available from remotely sensed
imagery. The 16-day outputs from the Spatial Temporal Adaptive Algorithm for
mapping Reflectance Change (STAARCH) disturbance maps are integrated with
grizzly bear (Ursus arctos) telemetry data. The results indicate that males and
females avoided same-year disturbances, while male bears were most likely to
avoid recently disturbed areas in summer. When intra-year (disturbances mapped
at a 16-day time-step) analysis of disturbance was compared to traditional annual
time-step analysis, annual aggregation of disturbance data resulted in an increase
in the observed selection of same-year disturbed habitat, although change was not
statistically significant (’ 0.05). The use of low-temporal resolution disturbance
data to evaluate short-term impacts on wildlife is cautioned and the need for further
development of probabilistic- and model-based techniques for overcoming spatial-
temporal differences between datasets is highlighted.

Chapters 17, 18 and 19 present applications of multitemporal remote sensing
in coastal and aquatic environment. Chapter 17 summarizes remote sensing appli-
cations in water and wetland monitoring, in particular in the topics of monitoring
water quality, water surface areas and water fluctuation in wetland areas. The chapter
then introduces two cases of monitoring studies in the Poyang Lake, the largest
fresh water lake in China, in terms of monitoring of fluctuation and variation of
water surface areas using MODIS data product, and monitoring of variation of
natural wetlands corresponding to the changing water levels of Poyang Lake using
Landsat data. Chapter 18 describes a bi-temporal study of global land surface water
in China’s Global Land Cover Mapping project. Through collection and processing
of Landsat TM/ETMC, China’s HJ-1 satellite imagery and other remotely sensed
data, global water layers in 2000 and 2010 were extracted using a pixel-, object- and
knowledge-based approach. Based on the GlobeLand30-Water 2000/2010 products,
the spatial distribution patterns and temporal fluctuation trends of land surface water
at global scale are analyzed in the chapter. Chapter 19 addresses some of the recent
developments in marine coastal remote sensing with regards to the evaluation of
water quality using spaceborne multitemporal data. First, a general introduction
to marine remote sensing is provided. Then the chapter reports the recent results
from remote sensing of several coastal and aquatic environments, including (1).
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the Baltic Sea, that is optically dominated by the absorption of light by coloured
dissolved organic matter (CDOM), and during summer months, by high standing
stocks of filamentous cyanobacteria; (2). the Bay of Biscay in the north-eastern
Atlantic Ocean west of France, which is an area highly influenced by river discharge
and dinoflagellate blooms, and (3). a coastal area in the eastern Beaufort Sea in the
Canadian Arctic that is influenced by a pool of CDOM. The chapter concludes with
a synthesis on merging of satellite data from different ocean colour missions and
discusses the limitations for coastal applications.

Chapter 20 investigates the integration of multitemporal medium resolution
satellite images with and socio-economic field data for monitoring recovery of
the tsunami-affected areas in Phanga, Thailand. Multitemporal landuse/landcover
maps were produced using a supervised classification of ASTER images. Socio-
economic data was analyzed to obtain information related to the recovery process
on the ground. The two datasets presented a good agreement in detection of the
recovery of tourism and expansion of agricultural activities. The rehabilitation of
mangrove forest could be observed, but it was not possible to confirm whether a
building was newly built. To some extent, the integration of ASTER images and
ground data proved useful in providing a clear picture of the recovery process in an
area like Phang Nga, Thailand.
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Chapter 2
Change Detection Techniques: A Review

Yifang Ban and Osama Yousif

Abstract With its synoptic view and the repeatability, satellite remote sensing can
provide timely, accurate and consistent information about earth’s surface for cost-
effective monitoring of environmental changes. In this chapter, recent development
in change detection techniques using multitemporal remotely sensed images were
reviewed. The chapter covers change detection methods for both optical and SAR
images. Various aspects of change detection processes were presented including
data preprocessing, change image generation and change detection algorithms such
as unsupervised and supervised change detection as well as pixel-based and object-
based change detection. The review shows that significant progress has been made
in the field of change detection and innovative methods have been developed
for change detection using both multitemporal SAR and optical data. Attempts
have been made for change detection using multitemporal multisensor/cross-sensor
images. The review also identified a number of challenges and opportunities in
change detection.

2.1 Introduction

Change detection is the process of identifying differences in the state of an object
or phenomenon by observing it at different times (Singh 1989). With its synoptic
view and the repeatability, satellite remote sensing can provide timely, accurate and
consistent information about earth’s surface for cost- and time-efficient monitoring
of environmental changes. This information is vital to the management of natural
resources, the conservation of ecosystems and biodiversity as well as decision
support for sustainable development.

Change detection using multitemporal remote sensing imagery plays a crucial
role in numerous fields of applications. Examples include urbanization (e.g, Ban
and Yousif 2012; Taubenböck et al. 2012), deforestation (Achard, et al. 2002;
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Desclée et al. 2006; Vollmar et al. 2013), desertification (e.g., Yang et al. 2005;
Dawelbait and Morari 2012), flooding (e.g. Martinez and Le Toan 2007; Martinis
et al. 2011), disaster monitoring (Bovolo and Bruzzone 2007a; Gamba et al.
2007) and glacier change monitoring (Akbari et al. 2014). The wide spread use
of remotely sensed images in change detection can be attributed to their wide
geographic coverage and availability in a wide range of spatial, spectral, and
temporal resolutions.

A number of change detection methods and algorithms have been developed
and tested over the past decades. These algorithms have focused on various aspects
of the change detection processes, for examples, analysis and estimation of image
registration noise (Bovolo et al. 2009; Marchesi et al. 2010), speckle reduction in the
context of change detection (e.g., Dekker 1998; Yousif and Ban 2013), unsupervised
change detection (e.g., Bovolo and Bruzzone 2007b), extraction of detailed from-
to change information using post-classification comparison algorithm (e.g., Alphan
et al. 2008), change detection by fusion techniques to merge multiple difference
images (Du et al. 2012), change detection using multi-channel SAR images
(e.g., Moser and Serpico 2009), change detection using polarimetric SAR images
(e.g., Conradsen et al. 2003; Sabry 2009), spatio-contextual change detection (e.g.,
Bruzzone and Prieto 2002; Moser and Serpico 2009; Yousif and Ban 2014), change
detection by combining feature-based and pixel-based techniques (e.g., Gamba et
al. 2006), object-based change detection (e.g., Desclée et al. 2006; Bontemps et al.
2008; Qin et al. 2013; Yousif and Ban 2015), and the fusion of SAR and optical
images for change detection (e.g., Poulain et al. 2011; Ban et al. 2014).

The detection of changes using multitemporal remotely sensed images, however,
is complex due to uncertainties in the measured phenomenon, limitations in the
ability of the imaging sensors to measure the ground changes, the noise inherent
in the imaging process, compatibility of images from different sensors and the
uncertainties in the change detection process as well as phenology, soil moisture,
sun angles etc. The specific characteristics of remotely sensed images including
sensor characteristics (radar or optical), resolution (spatial, spectral, radiometric
and temporal), noise and distortions in imagery and the characteristics of the
phenomenon under study need to be carefully considered when selecting change
detection algorithm. Owing to the complexity, no single method exists that can
handle all types of change detection problems. Different applications call for
different approaches, and different types of remotely sensed data require sensor-
specific considerations. The development of new remote sensing systems that can
produce higher quality images, i.e., with better spatial, spectral, radiometric and
temporal resolution, will also require the development of new techniques.

In this chapter we review recent development in change detection techniques
using multitemporal remote sensing image. The chapter covers various aspects
of change detection including data preprocessing, change images generation and
change detection algorithms including unsupervised thresholding and supervised
classification as well as pixel- and object-based approaches. Figure 2.1 presents the
change detection workflow.
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Fig. 2.1 The change detection workflow

2.2 Change Detection Preprocessing

2.2.1 Geometric and Radiometric Correction

For a successful change detection analysis, the multitemporal images should be
preprocessed to ascertain that they are radiometrically and spatially comparable.
The first preprocessing step aims at making the multitemporal images radiomet-
rically comparable. Ideally, a ground object should show the same brightness
values if no change has occurred. In reality, measured intensities are to a high
degree sensitive to change in acquisition geometry and atmospheric condition.
Radiometric conditions can be influenced by many factors such as different
imaging seasons, different solar angles, different meteorological conditions, etc.
Acquisition geometry, such as sensor viewing angle, local incident angle, and solar
orientations in the case of optical image acquisition, can have a significant effect
on the acquired image. This is also true for radar image as radar return from
the ground is quite sensitive to the local incident angle. Atmospheric conditions
have a serious impact on the measured intensity when using optical remotely
sensed images. Therefore, it is usually necessary to carry out radiometric correction
before change detection (Leonardo et al. 2006). Absolute atmospheric correction
or image-to-image normalization is often used to reduce the negative impact of
the atmosphere and make the multitemporal optical images comparable. Absolute
atmospheric correction converts digital numbers to scaled surface reflectance. It
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requires information about the atmospheric condition during image acquisition,
which is not always easy to obtain. Image-to-image normalization consists of the
linear transformation of the spectral characteristics of the image to be corrected to
match those of a base (or reference) image (Gao et al. 2010). de Carvalho et al.
(2006) developed a radiometric normalization technique that searches for highest
quality invariant features. Velloso et al. (2002) proposed to use artificial neural
network to automatically perform a nonlinear image-to-image normalization. SAR
has the advantage of being less affected by atmospheric condition. Nevertheless,
SAR images should be calibrated if a proper change detection analysis is to be
conducted. SAR image calibration calculates the radar cross section (or backscatter
coefficient if area correction is applied). Calibration allows the comparison of radar
images with different resolutions, transmitted power and processing gains (Oliver
and Quegan 2004).

Geometric correction is accomplished by image-to-image registration or image
orthorectification in mountainous areas, and in urban areas for very high resolution
images (Boccardo et al. 2004) (Fig. 2.2). This process ensures that corresponding
pixels in the multitemporal images refer to the same geographic location. Image-to-
image registration is often carried out by manually selecting ground control points.
Automatic techniques, with different levels of success, also exist. Image-to-image
registration is particularly difficult when the analysis involves high spatial resolution
images, or when the images contain high frequency components (e.g., edges and
linear features). Inaccurate image-to-image registration is one of the main sources
of errors in change detection analysis, and can lead to a significant degradation
in accuracy (Dai and Khorram 1998; Townshend et al. 1992). Compared to pixel-
based, object-based change detection proved to be less sensitive to image-to-image
registration errors (Chen et al. 2014; 2012). While very high resolution optical
images have geometric distortions, radar images are affected by different types of
distortions, i.e, relief displacement including foreshortening, layover, and variations
in the ground resolution along the range direction. Therefore, it is necessary to
perform orthorectification on these images using satellite orbital models and a DEM
either using ground control points or automatically (Marsetic et al. 2016).

Fig. 2.2 High resolution images in Shanghai Left: GeoEye-1 image; Right: TerraSAR-X image
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2.2.2 SAR Speckle Filtering for Change Detection

Coherent processing of synthetic aperture radar (SAR) data makes images suscep-
tible to speckles, the salt and pepper appearances of SAR image because of the
existence of many scatterers within the resolution cell (Fletcher et al. 2007). Speckle
in SAR images complicates image interpretation by reducing the effectiveness of
image segmentation and classification (Lee et al. 1994). Change detection based
on multitemporal SAR images are affected by speckle. Dekker (1998) has shown
that speckle increases false and missed alarm rates when thresholding the SAR ratio
image. In the context of unsupervised change detection Bazi et al. (2005) attributed
the increase in the overlap between changed and unchanged classes in the 1D feature
space to the existence of speckle.

In SAR-based change detection, the traditional strategy for eliminating the effect
of speckle is to filter the individual SAR images before the comparison. Usually,
an adaptive filter is iteratively applied to the SAR image until a satisfactory result is
obtained. For examples, Moser and Serpico (2006) found that the best change map is
obtained by filtering the individual SAR images twice using the Gamma MAP filter.
Bazi et al. (2005) proposed an automatic method to estimate the optimum number
of filtering iterations to be applied to SAR images. The method is based on analysis
of the behavior of a criterion function that is related to the average classification
error. However, Dekker (1998) found that ratioing filtered SAR images causes the
accumulation of individual filter errors and consequently the degradation of the
quality of the change variable. The author suggested filtering the change image (e.g.,
the ratio image) rather than the individual SAR image. In Yousif and Ban (2013),
the negative effects associated with using a local adaptive filters in change detection,
e.g., the erosion of fine geometric details, were addressed by using the nonlocal
means denoising algorithm. There, the algorithm was applied directly to the change
variable (i.e., the modified ratio image) in order to prevent the accumulation of
individual filter errors and to reduce the computational burden.

The effects of speckle can also be reduced during the classification phase, i.e., no
speckle filtering is required. Moser and Serpico (2009) developed an unsupervised
change detection algorithm, in which the use of the MRF model successfully helped
in reducing the impact of speckle. Similarly, Yousif and Ban (2014) extended the
traditional MRF-based algorithm to include a nonlocal constraint that helps reducing
the negative impact of speckle and maintain fine geometric details in the image.

2.3 Deriving Change Variables from Multitemporal
Remote-Sensing Images

One of the essential steps in change detection analysis is the comparison of
multitemporal remote sensing images. The aim of this step is to generate a change
image that increases the contrast between changed and unchanged areas. A change
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map can then be generated by thresholding or classifying the change image using
either supervised or unsupervised techniques.

2.3.1 Driving Change Variables from Multitemporal
Optical Images

A comprehensive review of the mathematical operators that can be used to compare
multitemporal optical remote sensing images (Fig. 2.3) was provided by Lu et
al. (2004). These operators include image differencing, image ratioing, image
regression and change vector analysis (CVA). Berberoglu and Akin (2009) found
image ratioing to be effective in reducing topographic effects such as variation
in illumination and shadowing. However, image ratioing produces relatively poor
results compared to image differencing and CVA for detecting changes in the
Mediterranean land use/cover using Landsat images. Change vector analysis is an
extension of the concept of image differencing, and for given multi-date pairs of
spectral measurements, it computes spectral change vectors and compares their
magnitudes to a specified threshold criterion (Malila 1980). He et al. (2011)
extended the CVA technique to include textural information layers. Bovolo and
Bruzzone (2007b) found that the use of CVA magnitude does not utilize all the
information contained in the multispectral multitemporal difference image. They
suggested transforming the spectral change vector from the Cartesian to the polar
coordinate system, in which they developed rigorous statistical distributions for the
magnitude and the direction random variables. Liu et al. (2015a) used CVA to extract
change information from multitemporal hyperspectral images. They proposed a
novel hierarchical scheme by considering spectral change information to identify the
change classes having discriminable spectral behaviors. In a similar manner, Liu et
al. (2015b) proposed a sequential CVA technique that used an iterative hierarchical
scheme for discovering and detecting different kinds of changes from multitemporal
hyperspectral images. Thonfeld et al., (2016) proposed a modified version of CVA,
i.e., robust change vector analysis (RCVA), that can mitigate radiometric and
geometric distortions by taking into consideration neighboring pixels.

Fig. 2.3 Optical image pair in Shanghai, Left: 2000 IKONOS image; Right: 2009 GeoEye-1 image
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Comparison of multitemporal optical remote sensing images can also be carried
out in a new transformed space instead of in the raw data domain defined by the
observed multitemporal images. A simple example is differencing multitemporal
normalized difference vegetation index (NDVI) images, where the measured intensi-
ties in each image, i.e, red and near infrared values, are first transformed to the NDVI
space (Latifovic and Pouliot 2014; Lyon et al. 1998). Similarly, Cakir et al. (2006)
transformed each individual image in the multitemporal dataset to a component
space using correspondence analysis. The difference image is then constructed in
this new space.

2.3.2 Driving Change Variables from Multitemporal
SAR Images

Comparison of multitemporal SAR images (Fig. 2.4) is commonly carried out using
the ratio operator (Moser and Serpico 2006; Rignot and van Zyl 1993; Xiong et
al. 2012). Ratio-related operators have also been used to compare SAR images,
including the log-ratio (Bazi et al. 2005; Bovolo et al. 2013; Marin et al. 2015)
and the normalized mean-ratio (Ma et al. 2012). The ratio image is known for its
robustness with respect to the SAR multiplicative radiometric errors (Bazi et al.
2005). The detection of changes in SAR ratio images can be performed equally
well in regions with high and low levels of intensity (Rignot and van Zyl 1993).
Bujor et al. (2003) compared different types of parameters to quantify temporal
changes based on SAR images and found the ratio operator to be especially suitable
for the detection of step-like changes. Hou et al. (2014) proposed a Gauss log-
ratio operator for the comparison of multitemporal SAR images. This comparison
operator applies a low-pass filtering to the logarithmically transformed SAR images.

Fig. 2.4 Beijing international airport, Left: 1998 ERS-2 SAR image; Right: 2008 ENVISAT
ASAR image
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Image differencing is then applied to the filtered images. Hachicha and Chaabane
(2010) suggested two different types of change indicators that were developed
based on the assumption that SAR amplitudes are Rayleigh distributed. The first
indicator (Rayleigh ratio detector) works per pixel and uses first-order statistics,
while the second one, the Rayleigh Kullback-Leibler divergence, utilizes higher
order statistics for the comparison.

The comparison of multitemporal SAR images can also be carried out using
similarity measures (Chatelain et al. 2007; Cui et al. 2016). These measures have
been used extensively in the field of automatic image-to-image registration as a
mean of quantifying similarity in the spatial domain. In the context of change
detection analysis, given two co-registered images, similarity measures can be used
to quantify temporal rather than spatial similarity (Alberga 2009). The strength of
similarity measures lies in the fact that the estimation of the change indicator takes
into account the pixel and its neighbourhood in contrast to traditional arithmetic
operators, which work per pixel and normally ignore the contextual information
(Inglada and Mercier 2007).

In SAR-based change detection, it is common to transform the SAR change
variable (e.g., the ratio image) to a new transformed space. The new space preferably
allows for effective mitigation of speckle and preservation of geometric details. In
Bovolo and Bruzzone (2005) for example, the change variable was decomposed into
many scale-dependent images using a wavelet transform. Each wavelet transformed
image is a tradeoff between detail preservation and noise suppression. A suitable
scale is selected to classify each pixel based on global and local statistics. Similarly,
Celik (2010a) used a dual-tree complex wavelet transform to decompose the log-
ratio image into different scales. The change maps generated at each scale using
the expectation maximization algorithm are then combined using logical operators.
Finally, it worth mentioning the approach proposed in (Gong et al. 2016), where no
image comparison step was required. Instead a binary change map was generated
by submitting the multitemporal SAR images to a deep neural network classifier.

2.4 Pixel-Based Change Detection

2.4.1 Unsupervised Change Detection Algorithms

Unsupervised change detection algorithms have the advantage that no prior knowl-
edge about the study area (i.e., training data) is required. An unsupervised change
detection algorithm usually produces a binary change map that shows changed
versus unchanged areas. The main disadvantage of this type of algorithms is the
lack of detailed from-to change information.

There are several techniques for unsupervised change detection using multi-
temporal images. Bruzzone and Prieto (2000a) developed two unsupervised change
detection methods. The first method automatically selects the decision threshold
that minimizes the probability of error. The second method analyses the difference
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image by taking into consideration the spatio-contextual information included in
the neighbourhood of each pixel. Celik (2010b) considered unsupervised change
detection to be an intensive search for a change mask that optimizes a minimum
mean square (MSE) criterion function. The genetic algorithm is used to search for
this optimum mask—that is, the change map. Celik (2009) used the PCA technique
to map local neighbourhoods in the difference image to a higher dimensional space
defined using non-overlapping image blocks. The k-means algorithm was then used
to automatically separate the changed from the unchanged areas. Bruzzone and
Prieto (2002) proposed an unsupervised change detection algorithm in which a
Parzen estimate was used to model the likelihood function of the observations.
Hao et al. (2014) proposed an unsupervised change detection approach based on
the expectation-maximization-based level set method. Quin et al. (2014) develop
an automatic change detection technique that was especially designed for the
analysis of a SAR time series. In Liu et al. (2015a) different classes of change
were automatically extracted from multitemporal hyperspectral images using the
expectation maximization algorithm. Li et al. (2015) combined fuzzy c-mean
algorithm with nearest neighbor rule to automatically extract change information
from SAR images.

The minimum error thresholding algorithm proposed by Kittler and Illingworth
(1986) has been used extensively in change detection. This algorithm, developed
based on Bayesian decision theory, is known to be a fast and effective thresholding
tool. Melgani et al. (2002) used the algorithm successfully thresholding a change
variable derived from multispectral images. To deal with the non-Gaussian nature
of the SAR amplitude and intensity images, the algorithm was generalized by Bazi
et al. (2005) and Moser and Serpico (2006). There, different types of density-
function models suitable for describing the statistics of the changed and unchanged
classes in a SAR change image were proposed. Essentially, the algorithm assumes
the existence of one object (i.e., one typology of change) and one background.
Bazi et al. (2006) successfully applied the algorithm to a case in which more
than one typology of change existed in the study area—that is, to a case with
more than one threshold. The main drawback of the multithreshold version of
the Kittler-Illingworth algorithm is its high computational complexity. Ban and
Yousif (2012) developed a modified ratio operator that takes into account both
positive and negative changes to derive a change image. A generalized version
of Kittler-Illingworth minimum-error thresholding algorithm was then used to
classify the change image into change and no change classes. Various probability
density functions, i.e., Log normal, Generalized Gaussian, Nakagami ratio, and
Weibull ratio were investigated to model the distribution of the change and no
change classes. The results showed that Kittler-Illingworth algorithm applied to the
modified ratio image is effective in detecting urban changes using SAR images.
To apply this approach over large urban areas, Hu and Ban (2014) developed an
automatic approach to threshold the log-ratio change indicator whose histogram
may have one mode or more than one mode. A bimodality test is performed to
determine whether the histogram of the log-ratio image is unimodal or not. If it has
more than one mode, the generalized Kittler and Illingworth thresholding algorithm
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Fig. 2.5 Change detection results in Toronto. (a) RADARSAT-1 SAR image on August 18, 2002.
(b) RADARSAT-2 SAR image on August 22, 2008. (c) Change map produced by direct application
of Generalized Gaussian. (d) Change map produced by the approach of Hu and Ban (2014).
Positive changes are in yellow and negative changes are in cyan

based on the generalized Gaussian model is used to detect the optimal thresholds.
If it is unimodal, the log-ratio image is divided into small regions and a multi-
scale region selection process is carried out to select regions that are a balanced
mixture of unchanged and changed classes. Results obtained from multitemporal
SAR images of Toronto and Beijing demonstrate the effectiveness of the proposed
approach (Fig. 2.5).

2.4.2 Supervised Change Detection Algorithms

Traditionally, supervised change detection is carried out using post-classification
comparison logic. It consists of classifying each image in the multitemporal dataset
independently using the same classification scheme. The detailed from-to change
information can then be extracted by comparing the classified images on a pixel-by-
pixel basis. Yuan et al. (2005) applied the method to a series of Landsat images
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in order to study the dynamics of the land-cover change over the Twin Cities
Metropolitan Area. Del Frate et al. (2008) used post-classification-comparison to
extract change information from multitemporal SAR images. Instead of using the
maximum likelihood classifier, the authors used an artificial neural network for the
classification of each SAR image. In Castellana et al. (2007) the accuracy of the
change detection process is improved by combining supervised post-classification
logic with an unsupervised change detection algorithm.

Supervised change detection is not restricted to post-classification comparison
logic. For example, Volpi et al. (2013) investigated supervised change detection
using two techniques—namely, multidate classification and analysis of difference
image. To address the problem of high intraclass variability the authors suggested
using a support vector machine (SVM) classifier. Similarly, in Nemmour and
Chibani (2006) urban growth in the Algerian capital was extracted from Landsat
multitemporal images using SVM classifier.

The main drawback with the supervised change detection method is the need
for high-quality training data to classify each image in the multitemporal dataset.
This turns out to be rather difficult to achieve, especially for older images. Many
semisupervised change detection algorithms have been developed that require only
a limited amount of ground truth information or limited interaction from the analyst
(Moser et al. 2002; Roy et al. 2012).

2.4.3 Context-Based Change Detection Algorithms

Contextual information plays an essential role in image understanding and analysis
(Li 2009). In change detection, spatio-contextual information can be used at
different levels of analysis. For example, spatio-contextual information may be
utilized at the image-comparison stage; Im and Jensen (2005) used spatio-contextual
information to extract change images (i.e., correlation, slope, and intercept images)
from multitemporal optical remote sensing images. In an attempt to reduce the
negative impact of speckle noise, Gong et al. (2012a) developed a comparison
operator (i.e., neighbourhood-based ratio) that uses neighbouring pixels in the
comparison process.

The most common use of spatio-contextual information in image analysis,
however, is during classification rather than in the image comparison. Ghosh et al.
(2007) used a Hopfield-type neural network that takes spatial correlation between
neighbouring pixels into consideration to carry out an unsupervised change detec-
tion. Markov random field provides a rigorous statistical framework for modeling
the contextual information in image analysis. It has been used extensively in the
field of image classification (Garzelli 1999; Tso and Olsen 2005), in multisource
image classification (Cossu et al. 2005; Solberg et al. 1996), and in change detection
(Bruzzone and Prieto 2000a, 2002; Kasetkasem and Varshney 2002).
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Moser and Serpico (2009) developed an unsupervised change-detection algo-
rithm specifically tailored for the analysis of multichannel-multitemporal SAR
images. In that work the MRF model is used not only to model the spatio-contextual
information but also to provide a framework for the fusion of the change information
extracted from each SAR ratio channel. Similarly, Moser et al. (2007) devel-
oped an MRF-based change detection algorithm for the analysis of multichannel-
multitemporal SAR images. In that study, the multichannel change image was
transformed using Fisher transformation. Kasetkasem and Varshney (2002) pointed
out that transformations such as image differencing, destroy the MRF properties
of the image. Instead, they suggested a change detection algorithm in which the
observed multitemporal images and the required change map are modeled using
MRF. Wang et al. (2013) developed an unsupervised change detection algorithm for
multitemporal SAR images that utilizes a triplet Markov field. Baselice et al. (2014)
developed an MRF-based change detection algorithm for high resolution complex
SAR data. Each complex SAR image in the multitemporal dataset is modelled using
Markov random field hyperparameters. The hyperparameters maps are compared
using similarity measure.

Contextual information can also be modeled using conditional random field
(CRF). Unlike MRF, this model relaxes the assumption of conditional independence
of the observations. Zhou et al. (2016) proposed a method based on CRF and region
connection constraint to extract change information from high resolution images.
To extract change information from images with different resolutions, Hoberg et al.
(2015) CRF was extended to model temporal interactions.

2.5 Object-Based Change-Detection Algorithms

Although most of the available change detection algorithms are pixel-based, change
detection has also been approached using object-based logic (Zhong and Wang
2006; Berberoglu and Akin 2009; Jovanović et al. 2010; Bin et al. 2013; Rasi et al.
2013; Son et al. 2015; Janalipour and Mohammadzadeh 2016). Image segmentation
techniques subdivide the image into meaningful homogeneous regions (i.e., objects)
based not only on the spectral property, but also possibly on the shape, texture, and
size properties. In object-based techniques the contextual information is exploited
in the segmentation phase rather than during classification or change detection anal-
ysis. For high-resolution imagery, object-based analysis could also help reducing
the computational complexity. Moreover, object-based change detection proved to
be less sensitive to images coregistration errors.

The resort to object-based analysis was triggered by the increasing availability
of high spatial resolution imagery. With these images, the use of pixel-based
classification or change detection algorithms often leads to low-accuracy and rather
noisy results. Object-based change detection, on the other hand, was recognized
as offering unique approaches for exploiting high resolution imagery, to capture
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meaningful detailed change information while suppress noise in change detection
results in a systematic and repeatable manner (Chen et al. 2012; Hussain et al.
2013). A number of studies have investigated object-based change detection using
optical data (e.g., Hall and Hay 2003; Desclée et al. 2006; Bontemps et al. 2008).
However, object-based change detection using SAR data has been very limited.
Only one study was found by Yousif and Ban (2015) investigating the unsupervised
object-based urban change detection with high-resolution TerraSAR-X imagery.
The results indicate that, compared with pixel-based, the object-based approach
helps in improving the quality of the produced change maps.

2.5.1 Segmentation Strategies for Change Detection

With the development of several powerful segmentation techniques and software
tools entirely devoted to image segmentation, e.g., eCognition, a commonly used
commercial software and KTH-SEG, an edge-aware region growing and merging
algorithm. (Ban and Jacob 2013), several new segmentation possibilities in the
context of change detection arose. Remote sensing change detection, by default,
involves at least two images that are acquired over the same geographic area
at different times. Consequently, there are two possible segmentation strategies.
The first one consists of the independent segmentation of each image in the
multitemporal dataset. A consequence of this technique is the creation of sliver
polygons when comparing the segmented images. The main advantage of this
approach is that it allows the inclusion of objects’ geometrical properties and
topological relationships in the change detection analysis (Blaschke 2005). Hazel
(2001) developed a change detection framework, where a new image is segmented
separately and then compared with an existing site model.

The second strategy, known as multidate segmentation, dominates the object-
based change detection literature (Bontemps et al. 2008; Desclée et al. 2006; Hall
and Hay 2003; Im et al. 2008). It involves the segmentation of all images in
the multitemporal dataset in one step. The result is objects that are spectrally,
spatially, and temporally homogeneous (i.e., no sliver polygon). Because of the fixed
geometrical extent of objects, there is a limited ability to utilize objects’ geometric
relationships in the change detection analysis.

2.5.2 Objects Comparison and Change Map Generation

From certain perspective, the difference between pixel and segment representations
of an image is merely of the used spatial unit/scale. In light of this view, most pixel-
based comparison techniques are readily transferable to the object-based analysis.
Instead of pixel intensity, object’s mean intensity can simply be used as a feature
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for image analysis tasks. Comparison of multitemporal objects can then be carried
out using conventional mathematical operators usually used in pixel-based change
detection (e.g. differencing, ratioing : : : etc.). This logic is especially simple to apply
when multidate segmentation strategy is used. Hall and Hay (2003) for example,
compared the multitemporal objects using the absolute value of differenced image.
Nielsen (2007) developed a pixel-based change detection algorithm for multi- and
hyperspectral imagery that enhances the change information using multivariate
alteration detection (MAD) transformation. Niemeyer et al. (2008) successfully
extended this algorithm to the object-based case, where in addition to the spectral
information the analysis also considered objects geometric features.

Similar to image comparison techniques, most of pixel-based threshold-
ing/classification algorithms can directly be applied to segmented images.
Post-classification comparison logic can be applied to extract change information
using object-based paradigm. Walter (2004) and Zhou et al. (2008) successfully
extracted detailed change information by comparing images classified using the
object-based technique instead of per-pixel classification. Similarly, Anders et al.
(2013) applied object-based post-classification comparison to obtain a detailed
from-to geomorphological change information using multitemporal LiDAR-based
digital terrain model (DTM). Im and Jensen (2005) developed a pixel-based change
detection algorithm that extracts the detailed from-to change information using
multidate composite image classification logic. Im et al. (2008) successfully
extended this algorithm to the objet-based case. To avoid the error accumulation
associated with the post classification comparison method, Qin et al. (2013)
performed supervised object-based change detection using the multidate composite
logic.

Unsupervised change detection algorithms have also been used extensively
in object-based change detection. Hall and Hay (2003) for example, applied
the Otsu method to threshold an object-based change image constructed using
image differencing technique. Desclée et al. (2006) proposed an automatic object-
based change detection algorithm, in which objects are compared using image
differencing technique. The final change map is generated using outlier detection
technique, where the changed objects are conceived as outliers disturbing the
statistical distribution of the unchanged objects. Similarly, Bontemps et al. (2008)
developed an automatic algorithm based on outlier detection technique to extract
environmental changes from SPOT vegetation time series images. Their main
target was to exploit the temporal dependence information in the time series to
model intra- and inter-annual changes. In Yousif and Ban (2015), three differ-
ent unsupervised thresholding algorithms, i.e., Kittler-Illingworth algorithm, Otsu
method, and outlier detection technique, were used to threshold the change image
and generate a binary change map. Two TerraSAR-X SAR images acquired over
Shanghai in August, 2008, and September, 2011, were used to test the methods. The
results show that the three unsupervised thresholding algorithms performed equally
well (Fig. 2.6).
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Fig. 2.6 Beijing object-based change detection (a) date I image, (b) date II image, (c) modified
ratio image, and change maps produced using (d) Kittler-Illingworth algorithm, (e) Otsu method,
(f) Outlier detection technique

2.6 Data Fusion for Change Detection

In remote sensing the ultimate goal of image fusion is to enhance the final product
in light of the intended application: visual image interpretation, classification or
change detection. Remote sensing image fusion typically involves different types of
images—for instance, images with different spatial or spectral resolutions—and in
many cases involves images with different modalities as in the fusion of SAR and
optical images.

In change detection analysis, the fusion of SAR and optical data is important
from two perspectives. First, on many occasions the limited availability of data
forces the generation of a change indicator through the comparison of an image
pair acquired over the same area but with different modalities. Although the images
were acquired with sensors that have different modalities, they are two different
representations of the same physical reality and consequently can be compared
(Inglada and Giros 2004). Recently, similarity measures have played an essential
role in performing such complicated image comparison. Mercier et al. (2008),
for example, successfully used Kullback-Leibler divergence to compare an ERS
SAR image with a SPOT image. In a similar line, Liu et al. (2014) proposed a
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Fig. 2.7 Detected changed areas in yellow, overlaid in a false color composite using (a) SAR &
Optical combined solution, (b) SAR modified ratio with log normal solution, (c) 1999 Landsat
image, & (d) 2008 Landsat image (Ban et al. 2014)

multidimensional evidential reasoning approach to extract change information from
heterogeneous multitemporal images.

Second, single-source multitemporal images (i.e., optical or radar) are known
for their limited capacity to provide exhaustive documentation of changes that have
occurred on the ground. Unlike optical, SAR images have a very high temporal
resolution. The existence of speckle, however, impedes the accurate identification of
shapes and edges. Optical images show more detail and allow the detection of sharp
edges and region boundaries (Orsomando et al. 2007). Change detection analysis
can benefit from the complementary nature of the change information represented
by each type of data—that is, by SAR and by optical multitemporal datasets. In
an attempt to improve the quality of the binary change map, Bruzzone and Prieto
(2000b) proposed an unsupervised change detection approach that uses consensus
theory to integrate many change variables. Ban et al. (2014) demonstrated that the
fusion of both optical and SAR data could improve change detection (Fig. 2.7). In
this research, a multidimensional change image was constructed by combining SAR
and optical change variables. An iterative classification strategy is then adopted to
separate changed and unchanged classes.
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Fig. 2.8 Image subset of 2008 Sichuan earthquake, Left: QuickBird image before earthquake;
Right: COSMO-SkyMed image after earthquake (Brunner et al. 2010)

Fusion in remote sensing analysis is not restricted to images with different
resolution or modalities; it is also extended to include the fusion of different types
of information extracted from the same source. Gong et al (2012b) improved the
quality of the final change indicator through the fusion of different change variables
extracted from the same multitemporal dataset using different comparison operators.
The authors claimed that the mean-ratio image emphasizes changed areas in the
scene, while the log-ratio image more reflects the background information, the
unchanged areas. Consequently, two change variables were constructed using the
mean-ratio and log-ratio operators. Each change variable can then be decomposed
into low- and high-frequency components using a wavelet transform. The fusion
of the change variables is performed in the wavelet domain, where different rules
were developed for the low- and high-frequency components. It is worth mentioning
that the same wavelet-based fusion approach was adopted by Ma et al. (2012),
where different fusion rules were used. In a similar way, Hou et al. (2014) fused
two change images produced using the Gauss log-ratio and log-ratio comparison
operators. In contrast, Du et al. (2013) each band in the multispectral image was used
to generate a change map. A final change map is generated by fusion at the decision
level.

For cross-sensor change detection, Brunner et al. (2010) presented a novel
method that detects buildings destroyed in an earthquake using pre-event VHR
optical imagery (QuickBird and WorldView-1) and post-event detected VHR SAR
imagery (TerraSAR-X and COSMO-SkyMed). They demonstrateed the feasibility
and the effectiveness of the proposed method for a heavily damaged in the Sichuan
earthquake of May 12, 2008. Figure 2.8 shows the complexity and challenges using
very-high resolution cross-sensor imagery for change detection.
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2.7 Concluding Remarks

The chapter covers change detection methods for both optical and SAR images.
Various aspects of change detection processes were reviewed including data pre-
processing, change image generation and change detection algorithms. In terms of
preprocessing, absolute or relative radiometric corrections are necessary for change
detection using multitemporal optical imagery. Geometric correction and image
co-registration in high-accuracy are critical for all images. Orthorectification are
mandatory for SAR images in mountainous regions and all very-high resolution data
in urban areas. Speckle filtering is also important for SAR-based change detection.
In terms of change image generation, most commonly used operators for optical
data are image differencing, image regression, change vector analysis and NDVI
differencing. For SAR images, image ratio, log ratio and similarity measures are
often used. In terms of change detection algorithms, unsupervised and supervised
change detection as well as pixel-based and object-based approaches were used.
The review shows that significant progress has been made in the field of change
detection and innovative methods have been developed for change detection using
both multitemporal SAR and optical data. Attempts have been made for change
detection using multitemporal multisensor/cross-sensor images.

In the past decade, many advanced Earth Observation systems have been
launched with increased spatial, spectral, radiometric and/or temporal resolutions.
With the recent launches of Sentinel-1A, -1B and -2A, multitemporal SAR and
optical data with the globe coverage in every 6 days become freely available.
They provide excellent opportunity to develop novel methods and algorithms
for operational applications and to expend to new applications. The review also
identified the following challenges and opportunities:

• First, the change detection methods developed are still at research and develop-
ment stage, with very few operational application examples. Operational methods
and algorithms need to be developed to support environmental monitoring and
sustainable decision-making.

• Second, most of the studies used relatively small study areas and datasets, but
to support global change research, change detection at global or regional scale
is necessary. Global land cover mapping (GLC), for example, took several years
to complete with significant cost, it would be more time- and cost-efficient to
update the GLC maps using change detection.

• Third, with the availability of huge volume of optical and SAR imagery, big data
analytical paradigm need to be introduced to change detection in order to handle
the multitemporal big EO data.

• Forth, new generation of satellite data at very high resolution demands the
development of robust processing techniques for change detection in VHR
multispectral, SAR, hyperspectral images and their fusion.

• Fifth, long time series (44 years for satellite optical or cross sensor imagery and
25 years for spaceborne SAR data) require the development of novel processing
and data mining methods.
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Chapter 3
Change Detection in Urban Areas:
Spatial and Temporal Scales

Paolo Gamba and Fabio Dell’Acqua

Abstract Urban areas are a challenging environment because of their ever chang-
ing structure and the different temporal behaviors and spatial patterns. In this chapter
a detailed analysis of some of the questions arising from the use of remotely sensed
data in urban area for change detection are addressed. Specifically, the role of very
high resolution sensors and their relevance with respect to either fast or slow changes
in human settlement is analyzed, with specific stress on rapid mapping in specific
sites (hotspots), e.g. for post-disaster damage assessment. Similarly, the possibility
to exploit long temporal sequences of coarser resolution data is also explored and
discussed, since the availability of huge archives is nowadays a reality that may be
used to look for interesting interrelationships between urban area pattern changes
and environmental changes, at both the local (town), regional and global level.
Examples related to a so-called “hypertemporal” sequences of EO data are offered,
and show the great potentials of these data sets.

3.1 Introduction

Change detection is an image processing technique that implies the availability
of images acquired at sufficiently different dates and the ability to detect all the
significant changes that occurred between two of these dates. Change detection
using Earth Observation (EO) data for any specific application induces some
additional constraints on the general statement above, specifically in two ways.

• Temporal resolution, i.e. the largest time difference between two acquired images
that can still be considered “enough”, as per the previous definition, to detect a
change in one or more elements of the urban area. Temporal resolution is defined
by the airborne or spaceborne EO sensor used, but also by the specific change
that is the focus of the analysis.

• Spatial resolution, i.e. the level of geographical details required to be able to
detect a change that happened, obviously related to the geographical scale of the
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changing event, the size of the change results that we may want to observe, and
the “significance” of these details with respect to the specific urban structures
whose changes we want to track. Once again, a suitable (range of) spatial
resolution depends on the sensors but also on the change to be tracked.

Specifying to change detection in urban areas, therefore, requires the definition of
the spatial scale of the change (by means, for instance, of the size of the objects
that are affected by the change) as well as the temporal scale of the same change.
Specifically, for the spatial scale the change may be considered at the scale of
the whole urban area, at the block or road/infrastructure network scale, at the
building/road element scale. Roughly speaking, these scales correspond to spatial
resolutions in the range between 100 and 10 m, from 10 to 5 m, from 2.5 to less than
1 m. Temporal scales correspond to a wide range of situations, too. Trend analysis
for urban areas may require temporal samples for various years, a few months or
even a few days/hours, depending on the structure that is monitored (e.g., urban
extents, land uses and road traffic, respectively).

3.2 Urban Changes at Different Spatial and Temporal Scales

There is a clear connection between spatial and spectral resolution of EO data
and the mapping task they can be used for. As graphically represented in Fig. 3.1,
different sensors and data sets support (very) different mapping tasks in urban areas.
For instance, for urban extent mapping purposes (from local up to the global scale),
single-band optical and/or radar data are enough, while building outlines may be
recognized only in VHR data sets. Please note that in Fig. 3.1 “very high spatial

Fig. 3.1 Graphical representation of urban mapping task related to the spectral and spatial
resolutions of the EO data sets at hand



3 Change Detection in Urban Areas: Spatial and Temporal Scales 47

resolution” means a pixel posting of 1 m or less, “high resolution” from 3 to
5 m, “medium resolution” from 10 to 100 m, and “moderate resolution” more
than 100 m (typically 250, 500 or 1000 m).

By adding the temporal dimension to the graph in Fig. 3.1, additional options
arise, according to the temporal behavior of the phenomenon to be investigated.
Sudden events, like natural disasters, require fast sampling during selected time
period, while long-term events, like urbanization, or land use changes, can be mon-
itored with a less dense time sequence of EO data sets, and with the correspodingly
useful spatial resolution (e.g., single band medium resolution and multi-band high
resolution, according to the figure above).

The combination of spectral, spatial and temporal requirements determines
in turn some constraints on the data sets and the algorithms that can be used.
In this chapter, after a preliminary survey of the technical literature on urban
change detection, we focus on a couple of examples, i.e. site-specific sudden
change detection mapping and long-term city-wide trend analysis. In the following,
therefore, first a brief overview of the most common approaches presented in
technical literature for change detection for site-specific (or “hotspots”) and long-
term trend analyses is offered. Then, some specific examples of processing chains
and algorithmic solutions to the these two problems in urban areas exploiting their
specific spatial and temporal scales are introduced and discussed.

3.2.1 Hotspot Change Detection

Hotspot monitoring is an application of urban change detection mainly devoted to
the characterization of short-term changes in well-defined areas. It is very similar,
in this sense, to pollution detection or fire detection or deforestation detection. As a
matter of fact, it is usually an unsupervised change detection problem, where we are
interested more to know that a change took place than to understand what change
happened. Sometimes the amount of change is enough to provide the user with a
reasonable interpretation (e.g., the amount of damages after a disaster can be used
to infer areas in need of more help). Sometimes, instead, there is a requirement of
a more precise classification of the changes, and the above mentioned assumption
is no longer true. In any case, if no particular requirement is posed on the changes
are to be detected, pixel-based or parcel-based unsupervised techniques comparison
methods are enough to reveal extent and location of changes in the observed area.
This is especially true when using medium resolution satellites, which provide low-
cost data that may be co-registered and corrected using very standard techniques
already available in common off the shelf (COTS) software. Indeed, even for sudden
changes medium resolution sensors (like those on board of Landsat-8 and in the
future on the Sentinel missions by ESA) are good enough to detect changes in urban
areas under surveillance. Instead, while the analysis of the actual change requires
very high resolution (VHR) imagery. As a matter of fact, when the focus is on
particular locations and urban (infra)structures, VHR data are mandatory. In this
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case more specific area surveillance techniques, suited to the task of this particular
target detection, can provide direct and better results. This is the reason why in this
section we treat both “generic” unsupervised change detection approaches and area
surveillance methods.

Unsupervised change detection may be obtained by very simple combinations of
the raw images at two dates. The combination depends on the sensor characteristics,
and is usually prone to errors due to misregistration and miscalibration. Basic
methods comprise differencing or ratioing (the latter is better if SAR data is used)
as in Rignot and van Zyl (1993). Alternatively, indexes may be extracted from
data, like the Normalized Difference Vegetation Index (NDVI). Similarly, in Zha
et al. (2003) a new index is proposed, namely the Normalized Difference Built-
up Index (NDBI), which seems to be a better descriptor than NDVI for urban
areas. This index exploits the fact that urban areas and barren soil shows a far
larger increment in digital number values from band 4 to band 5 (Medium Infrared)
for Landsat TM. A comparison with Max Likelihood results shows that NDBI
provides better results. A slightly more complex method is Change Vector Analysis
(CVA), since it allows tracking how the change affected each band, and thus
recognizing what happened. In Johnson and Kasischke (1998) CVA is applied to
some examples, among which the monitoring or urban expansion near Seattle. A
maximum likelihood classification allows then extracting information on the nature
of the change. Finally, in Grey et al. (2003) a very interesting analysis of multi-
temporal SAR sequence using interferometric measures is discussed. The paper
shows that it is possible to detect changes in built areas using satellite SAR data
and differencing the coherence between SAR images. Results are validated against
GIS land map layers in the UK Cardiff area.

Even if these simple methods may be effective, they usually require thresholds,
and this may be a subjective matter, unless some automatic or semi-automatic
approach is developed. This has been done in Bruzzone and Fernandez Prieto
(2000a), where the Bayesian theory is used to automatically determine the correct
threshold to be applied to a difference image. In particular, this image is analyzed by
considering the spatial-contextual information included in the pixel neighborhood,
relying on Markov Random Fields (MRF’s) to exploit inter-pixel class dependency
contexts. An iterative method based on the Expectation-Maximization (EM) algo-
rithm is used to estimate the statistical terms that characterize the distributions of
the changed and unchanged pixels in the difference image. The authors report to
have made experiments on both satellite and airborne multi-spectral data: results
appear to be good, and the robustness of the algorithm against noise is highlighted.
An extension of this work is presented in Bruzzone and Fernandez Prieto (2000b),
where a more application-oriented tool for monitoring land-cover changes is
proposed. The proposed technique relies on the definition of the unsupervised
change-detection problem in terms of the Bayes rule for minimum cost (BRMC),
which in turn allows the generation of change-detection maps in which the more
critical type of error is minimized according to end-user requirements.

A different unsupervised but equally adaptive techniques is proposed in Bruzzone
and Serpico (1997), the Selective use of multi-spectral Information (SMI). In
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this approach, even if a land cover change may be visible only in some spectral
bands, all the bands are considered. Those where the change is not detectable are
used to identify pixels affected by registration noise and pixels belonging to other
non-investigated changes. In Bruzzone and Fernandez Prieto (2000c) a technique
based on “adaptive parcels” (small homogeneous regions shared by both original
images) is presented. The adaptive nature of parcels allows spatial-contextual
information to be exploited so that noise may be reduced without damaging the
boundaries of changed areas. In addition, the characterization of parcels with a set of
different features allows identifying different land cover changes. In Bruzzone and
Fernandez Prieto (2002) an adaptive semi-parametric technique for the unsupervised
estimation of the statistical terms associated with the gray levels of changed and
unchanged pixels in a difference image is presented. Statistical estimation and
spatial/contextual information are jointly considered to generate the change map.
Similarly, in Kasetkasem and Varshney (2002) the authors exploit the spatial
correlation between adjacent pixels using Markov Random Fields. They find that
the method is particularly robust against noise and misregistration. Experiments are
on simulated an actual images of the San Francisco Bay area.

Finally, some very specific methods have been proposed in technical literature
for area surveillance. One of them is Carlotto (1997), where methods for modeling
and detecting general patterns of change associated with construction and other
kinds of activities that can be observed in remotely sensed imagery are presented.
They include a new nonlinear prediction technique for measuring changes between
images and temporal segmentation and filtering techniques for analyzing patterns
of change over time. Another, very interesting, example is Hazel (2001). Here
objects are first extracted from each image to be analyzed, and a site model is
built; then, site models extracted from different images are compared and the
differences highlighted. Besides robustness against misregistration, this method
provides higher-level information and potentially allows some degree of scene
understanding; moreover, addition of more imagery helps to perfect the model and
thus tends to improve detection results. Finally, Smits and Meyer (2000) investigate
a method that can be used to characterize and understand the spatial behavior of
change by decomposing the change intensity image into a tree of entities called
echelons. Such a tree can be extremely helpful in discovering connections between
changes.

3.2.2 Detailed Urban Change Information from Long
Temporal EO Series

For medium and long-term urban change detection, the temporal sampling of
polar orbit satellites with environmental and scientific mission is almost ideal. The
possibility to acquire one image per month on a long time span, which is Landsat
legacy, is indeed invaluable in this respect, and the analysis can be complemented
using SAR data from ESA satellites (ERS-1 and 2 and ENVISAT), as well as
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those operated by JAXA and the Canadian Space Agency (the RADARSAT family).
Following well-established techniques in EO data interpretation technical literature,
when more data sets are available over the same area at different dates, even not
from the same satellite, a change detection map can be drawn by cross-checking
the land use maps obtained at different dates. This operation, however, may not
always be possible, because land covers easily classified in one image type (e.g.,
optical images) are sometimes very difficult to extract from another type (e.g.,
radar images), and vice versa. Another way of accomplishing the same task, but
mostly in case there are more data sets from the same sensor/satellite, is that of
directly classifying multi-temporal images.

The very basic approach (Madhavan et al. 2001) corresponds to a previous
classification step and a pixel by pixel post-classification comparison. A slightly
different approach is proposed in Clapham (2003), relying on continuum-based
classification, i.e. classification maps based on variables that assume values in a
continuum, like percent impervious land surface and percent canopy cover. This
allows better understanding each change, but requires a final step to assign changes
to classes again. A post-classification change detector tailored to the “built-
up” class may be found in Zhang (2001). It uses multi-spectral (Landsat TM)
together with panchromatic optical satellite data (SPOT pan), and performs a
heavy post-classification processing in order to improve the accuracy, especially
for the “built-up” class. The processing is based on three steps: a co-occurrence
matrix-based filtering for separating buildings from noise, an axis-oriented linking
and segmentation for a complete extraction of urban and water areas, and finally
mathematical morphology operations for improving the classified green areas. The
differences are detected by comparison with the same results on earlier data; the
authors report an accuracy of about 86 % on detection of new buildings and state
that big buildings (10–20 m) can be individually detected. Finally, there are papers
such as Xiuwan (2002) and Sunar (1998) comparing different methods vs. Post-
classification comparison, showing its problems but also its strength with respect
to unsupervised techniques. In Xiuwan (2002), for instance, the authors provide
a comparison of many methods, rather than a single method. Post-classification
is used, and the importance of ancillary data (possibly integrated into a GIS) is
stressed. Emphasis is put, like for other post-classification methods, on improving
single date classification performance.

When the temporal sequence come from the same sensor/satellite, urban land
use change can be detected and classified by means of a supervised classification of
multi-temporal data, either original raw data or transformed ones. A first example
is Li and Yeh (1998), where the authors use principal component analysis of optical
Landsat multi-temporal images to overcome the problems related to obtaining from-
to class information. Tested on urban areas in Dongguan, close to Hong Kong,
the method has showed superior performance with respect to conventional post-
classification comparison, both in terms of accuracy and of limited overestimation of
land use change. In Seto et al. (2002), Tasseled Caps is instead used, since it provides
3 bands virtually independent from the observed scene. After normalization and
transformation, data are classified using a Bayesian supervised classifier and a hier-
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archical approach that leads directly to 9 change classes. A final image segmentation
approach is used to discard “salt-and pepper” noise in the final classification map.
The accuracy is very precisely assessed and provides very good results for most of
the change classes, showing that the method is reliable and precise.

A very interesting point of view has been added to this series of works by Smits
and Annoni (2000), where the user requirement are explicitly introduced in the
change detection chain. The first point raised by the paper is that region-based
change detection is usually required by the final user, while the above mentioned
methods are mainly pixel-based. Second, a cost function taking into account the
user requirements is often the key for a successful acceptance of the final change
map. This consideration leads us quite naturally to the topic of the integration of
GIS and remote sensing data. An interface to and from GIS layer is usually essential
for providing information that is valuable for final users, especially in urban areas.
This may lead to a direct comparison of one date classification to a GIS layer, like
in Prol-Ledesma et al. (2002), or to drive the classification by means of the already
considered GIS layer (Jansen and Molenaar 1995; Smits and Annoni 1999; Smit
and Fuller 2001).

As an algorithmic note to this overview, most of the examples discussed above
deal with the comparison of a couple of images at a time. This is the most direct
definition of change detection and can be enough to adapt to the different time scales
of different events in urban areas. However, the availability of more and more data
sets and the possibility to model the temporal process using information extracted
from images for more dates has been also explored (Almeida et al. 2003; Xia and
Yeh 2000).

3.3 Sudden Change Detection in SAR Images Using
“ad hoc” Indexes

One of the most important problems related to urban change detection is the
recognition of sudden changes that may happen due to a natural or human-induced
disaster, but also because of a specific change in a given site, as mentioned above.
Without extensively treating the problem of damage assessment after earthquakes
(which is thoroughly analyzed in Dell’Acqua and Gamba 2012), we would like to
focus in the following on sudden detection in case of natural/man-made disasters
using “ad hoc” indexes. In this section, therefore, the focus is more on the spatial
scale and resolution, while the punctual nature of the event requires images that are
as temporally close as possible to it.

As a matter of fact, it is usually expected that a sudden change induces an
extensive change in the appearance of the objects in EO data, but this is not
always the case. Changes depend on the phenomenon, on the spatial resolution and
on the type of sensor providing the data. Sometimes, for instance, it is easier to
spot a change in the pattern of more buildings than the change on a building-by-
building comparison. This is particularly true when dealing with SAR data, where
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the combination of materials and geometry defines the backscattering pattern in a
given area. Therefore, although it is recognized that change detection application
require the most detailed imagery available, the best way to process these data and
achieve a (semi) automatic detection of the change is not always corresponding to
an analysis at the pixel level.

For SAR imagery related to urban area, for instance, it has been demonstrated
in Gamba et al. (2011) that the use of textural feature is helpful to extract urban
extents, and specifically a combination of different scales of texture is important.
In that work it was highlighted that the best result to extract extents from high
resolution and very high resolution SAR imagery is obtained when combining c-
occurrence matrix textural features (Haralick et al. 1973) and Local Indicator of
Spatial Association (LISA, Sokhal and Thompson 2006) features. The latter ones, in
particular, describe very well the chessboard patterns that may appear in urban area
due to the intertwines high backscattering and mirror-like reflectance phenomenon
due to the simultaneous presence of buildings (corner reflectors) and road (flat
surfaces). The same methodologies can be used for change detection, but with
different.

On the last point the most recent results include an analysis of LISA indicators
for building level change detection, when very local damages occur due to peculiar
and spatially limited event. LISA indicators (the Moran index, the Geary index and
the Getis-Ord index) describe together the positive and negative autocorrelation
effects of SAR backscatters in urban areas. Specifically, Moran’s index evaluates
the similarity between the neighbors of a pixel by comparing its value with the
average local value, and describes local homogeneity. On the contrary, Geary’s
index identifies areas of high contrast, providing a measure of local dissimilarity,
while Getis-Ord index Gi is useful to identify “outliers”, i.e. values very different
from the surroundings. The latter is represented by means of the following formula

Gi D

P
wijxj
P

xj
(3.1)

where xi is the generic pixel value at the i-th position, and wij are the elements of a
weight matrix, here set to either ‘0’ or ‘1’ according the so called “Rook’s case”.

The examples considered here refer to an event occurred on 7th June, 2012
in Conversano, south Italy, where a gas explosion caused the complete collapse
of a three-story building in the densely built-up area of the village center. The
damage inflicted to the surrounding buildings was, though, hardly visible to an
external observer as noticed in the pictures published on the news. In this case
the damage was assumed to be visible in very high resolution radar images, due
to the substantial shape change of the target, but very complex to detect, because of
the surrounding environment. Moreover, the limited spatial extent of the damage
would ease fair comparisons between backscattering patterns of damaged and
non-damaged buildings in real-world cases. By considering the above mentioned
Getis-Ord LISA indicator, and looking at the patterns averaged on the building
shape for the area, it is possible to obtain a first interpretation of a TerraSAR-X
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Fig. 3.2 Getis-Ord patterns for damaged and undamaged building in the Conversano (Italy) event
using the LISA Getis-Ord textural index

scene covering the whole village. The quantitative results are shown in Fig. 3.2,
where the damaged building has a distinct behavior, different from most of the other
undamaged ones. By using this indicator, however, some false positive could also
show up, as visible in the figure, but the majority of the area will reveal the lack of
any change.

3.4 “Hypertemporal” Sequences

The second example of urban change detection in this chapter refers to a very
different temporal scale than the one discussed in the previous section, and also to
a different target with respect to the required spatial resolution to match its extents.
Specifically, the idea is to classify the temporal behavior of urban areas (as a whole,
or at the block level) by considering a sequence of datasets covering the same
area. Since the temporal datasets available tends to be made by long sequence of
information from the same sensors, which may be considered as bands of the same
image, this idea has been introduced in Gamba et al. 2008, and these sequence have
been labeled as “hypertemporal”, by similarity with hyperspectral imaging, where a
lot of bands help to discriminate targets via their spectral behaviors on several tens
of wavelengths. Examples of the same idea already existing in technical literature
(in addition to those mentioned by the end of the hotspot section) are Yang and Lo
(2002) and Masek et al. (2000), where respectively the land use/land cover change
data of Atlanta metropolitan area over 25 years have been extracted, by using a
time series of Landsat MSS and TM images, and the dynamics of urban growth in
the Washington DC metropolitan area in the period from 1973 to 1996 have been
studied from Landsat observations.

The main idea, following Gamba et al. (2008), is that a hypertemporal data series
Xn, n 2 f1; : : : ; Ng is a long enough sequence of consistent data sets directly
from the sensor or obtained by processing EO data, with N � 1. For each of the
pixel with geographical position (i, j), Xn(i, j) has the meaning of its temporal. In
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order to be able to work on these sequences, a few pre-processing steps must be
guaranteed:

• first of all, since the “bands” of this hyperspectral image are not acquired
simultaneously, their alignment must be ensured by means of a multitemporal
co-registration;

• second, the data at different dates is temporally correlated in some portions of it,
both in the spatial and in the temporal terms; they can (and must) be subject to
de-noising and/or feature reduction steps. In Gamba et al. (2008), for instance, a
multitemporal speckle filter like in Quegan and Yu (2001) was considered, while
in case of an optical sequence techniques like Principal Component Analysis of
Minimum Noise Fractions may be considered more suitable.

A graphical representation of a typical processing procedure for a hypertemporal
data set (very similar to the one for an hyperspectral image) is thus proposed in
Fig. 3.3.

Although the procedure in the previous figure refers to an analysis at the pixel
level, the same approach may be considered at a very different spatial scale by
considering the possibility to include information about “objects” in the target area,
whose changes are more relevant than those detected at the pixel scale. Moreover,
in a per-segment approach, there is no need for a precise denoising of the hyper-
temporal sequence, since the same effect could be achieved by means of the spatial
analysis (e.g., a simple spatial average). If a segmentation map is available, the first
step of the procedure should be to substitute pixel values with segment values for
any of the bands of the hyper-temporal sequence. Please note however that the sig-
nificance of these measures for each segment would be best where boundaries have
been extracted in accordance to some consistent segmentation procedure based on
the original EO data itself. If the boundary information is obtained from an indepen-
dently extracted GIS layer, the analysis at the segment level may be less significant.

An example considering a sequence of SAR images over the town of Pavia, Italy,
and using a GIS layer determining boundaries between homogeneous portions of
the town with respect to building types and land uses, is proposed in Fig. 3.4.

Fig. 3.3 Graphical representation of the main processing steps of the hypertemporal data process-
ing chain
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Fig. 3.4 Per-segment analysis of a hypertemporal ERS SAR data sequence for Pavia (Italy),
from 1996 to 2004. The different temporal evolution of the mean backscattered value for a few
segments depicted in the bottom graph reflects the substantially stable situation in the town, with
the exception of segment n. 11
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Specifically, in this case a sequence of 7 SAR images collected by the ERS-1 and
2 satellites in a time range of 8 years, between 1996 and 2004, is considered. After
a precise co-registration, the spatial segmentation of the sequence and thus the per-
segment index computation is obtained by considering the above mentioned GIS of
the test area. In Fig. 3.4 the different segments are highlighted by different colors,
and their temporal pattern is depicted by using the same color, to visually show the
match. As for the index, a simple per-segment average of the backscattered value is
used as a way to analyze the temporal behavior of each portion of the town. This
index strictly related with the presence of strong scattering (double bounce) effects,
which in turn are highly correlated in urban areas with buildings and other artificial
built-up structures. As clearly visible, the index shows a substantial stability, and no
actual change can be detected, apart from the sudden drop in the average value for
all segments due to the flooding event in 1998. As for the general trend, it denotes
in general a slight decrease, but with the exception of segment 11, whose tendency
to increasing values from 1999 on is due to the construction of the new site for the
Engineering School of the University.

A different example for this hypertemporal sequence framework is the classi-
fication of urban evolution patterns using Landsat data. The idea is that Landsat
provides a continuous and interesting monitoring of land use patterns, and can be
used to monitor, at the global level, urbanization and its change in time. Besides the
variability in different geographical areas, here we focus on the possibility to extract
different time behaviors, discriminating areas that, for instance, became urbanized at
different dates. The results shown in the following are obtained therefore by means
of a processing chain composed of the following two steps:

1. urban extent extraction at different dates using the Normalized Difference
Spectral Vector (NDSV);

2. unsupervised multitemporal classification of the stack of urban extent maps at
different dates to discriminate among different temporal patterns.

The first step follows the approach proposed in Trianni and Angiuli (2013).
The NDSV has been proposed as a mean to group existing normalized different
indexes (such as the normalized difference vegetation index – NDVI, the normalized
difference water index – NDWI, and the normalized difference Built-up index –
NDBI). The idea is to include in one single vector all the possible normalized
indexes that can be computed starting from a Landsat 5 or 7 image, considering
therefore 6 bands and 15 possible combinations (the dual ones are not considered as
their result is the same with opposite sign). As a result, each pixel is characterized
by a set of values that have been at this point “labeled” only partially, and whose full
potential is still to be explored. By looking at a standard calibrated Landsat scene,
it can be demonstrated that urban areas exhibit a NDSV spectral signature that is
basically “flat” across all indexes, and can be discriminated from other classes by
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their distinct behavior in this new “multispectral” 15-dimensional space. The NDSV
can be therefore well exploited to extract human settlement extents, by applying
a classifier such as the Spectral Angle Mapper classifier in the original version,
that captures the differences in multispectral vectors and is robust with respect to
difference in illumination. Due to the unavailability of this classifier in the analysis
framework that was used for the implementation, and according to our experience,
we considered instead, with very similar results, a Classification and Regression
Trees (CART) supervised procedure.

The second step instead exploits a very basic K-means or ISODATA unsuper-
vised classifier. The input of the classifier is the multi-temporal stack of human
settlement extents extracted from the previous step, and thus a set of binary
(urban/non-urban) images where each pixel reflects the pattern of urbanization in the
corresponding scene portion. To avoid or at least reduce as much as possible errors
in classification, the training set of the previously described NDSV classification
procedure are selected by jointly considering the first and the last images in the
stack, to ensure a selection of areas that belong to the same land use along the
whole sequence. Moreover, since misclassifications are expected, the assumption
that urban areas tend to become bigger and do not shrink is considered. Although
not completely accurate in time, for the time period considered by our satellite
archives, corresponding to one of the biggest push into urbanization of the human
history, this is a quite reasonable assumption. In terms of our algorithms, it translates
into a set of masking operation implemented on the time sequence of extracted
human settlement extents maps in reverse order. In other words, the extents at one
date are constrained by those obtained at a later date and cannot extend beyond
them.

The overall chain is implemented in Google Earth Engine (2013), which provides
a powerful and very flexible platform to analyze multiple remote sensing data sets,
including the whole collection of NASA/USGS Landsat imagery, by being able
to run processing steps on Google’s dedicated cloud storage and computational
hardware.

Results for the city of Sao Paulo by means of the implemented version of the
above mentioned algorithm are proposed in Fig. 3.5, and correspond to a sequence
of 36 Landsat-5 images from 1992 to 2010, selected every other year with the
criterion of a cloud cover of less than 1 % of the scene, and combined into yearly
composites. Note that the area in purple in the final multi-temporal classification
corresponds to the core part of the city, which did not change during the time period
of this analysis, while the other shades, from purple to blue, highlight different time
behaviors. Specifically, the areas in the center of Sao Paulo show changes in the
typology of built-up elements, that in turn show up as different colored patterns in
the hypertemporal combined map.
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Fig. 3.5 Analysis of a hypertemporal sequence of Landsat data for the city of Sao Paulo (Brazil),
from 1992 (left top image) to 2010 (right top image). The different temporal patterns for the
urbanization obtained from a stack of 36 images are shown with different colors in the bottom
map (see the text for a more detailed explanation and analysis)
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3.5 Conclusions

The techniques and examples presented in this chapter may be summarized,
according to the authors’ vision, in the following points:

• Spatial and temporal scales are, in general, equally important in urban area
monitoring. Although this statement is somehow a trivial one, it is still not always
considered. Examples may be studies working on damage extraction using image
with a wrong spatial/temporal sampling, or change detection approaches not
matching the temporal scale of the event.

• In this sense, a second important point is that the selection of relevant scales is
problem-dependent. This is a less trivial sentence, and data processing algorithms
should consider it as well. A “change detection” technique not always fits the
temporal change, although it may fits the same data for a different detection
problem. An example is urban sprawl monitoring using SAR coherence, which
makes sense because of the long time span of this change, while the same
approach applied to urban hotspots would not work and would require additional
steps like a dedicated spatial filtering routine.

• A definitely more interesting outcome of the researches discussed in this chapter
is that the combined use of relevant spatial and temporal scales in urban areas is
a feature-dependent (object-dependent) problem. According to the application,
different features/objects are affected by the change to be detected, and the
selection of the target object includes a priority on the spatial and temporal scale
to be considered.

• The most important challenge to be met by using EO data in urban area to capture
their changes and monitor at different scales their evolution is thus that they do
not capture enough scales to be useful by themselves. The most important aspect
is that some a priori or associated information is required, and some sort of fusion
at the information or decision level is required. For instance, damage mapping at
the block level proved (Dell’Acqua and Polli 2011) to be more effective when
information about where damaged areas may happen is included at the global
city scale, usually obtained by running vulnerability/exposure models of the area.
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Chapter 4
Change Detection in Multitemporal
Hyperspectral Images

Lorenzo Bruzzone, Sicong Liu, Francesca Bovolo, and Peijun Du

Abstract Multitemporal hyperspectral images provide very detailed spectral infor-
mation that directly relates to land surface composition. This results in the potential
detection of more spectral changes than those visible in the traditional multispectral
images. However, the process of extracting changes from hyperspectral images is
very complex. This chapter addresses the multiple-change detection problem in
multitemporal hyperspectral remote sensing images by analyzing the complexity
of this task. An analysis of the concept of “change” is given from the perspective
of pixel spectral behaviors, in order to formalize the considered problem. A
hierarchical change-detection approach is presented, which aims to identify the
possible changes occurred between a pair of hyperspectral images. Changes having
discriminable spectral behaviors in hyperspectral images are identified hierarchi-
cally by following a top-down structure in an unsupervised way. Experimental
results obtained on simulated and real bi-temporal images confirm the validity of
the proposed hierarchical change detection approach.
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4.1 Introduction

Global change is a big challenge for the whole human society in the twenty-first
century. Accordingly, how to effectively monitor and comprehensively understand
the changes is important for the sustainable development of human society. As
one of the interesting topics in global change study, detection of anthropogenic
and natural impacts on land surface is essential. To enable a whole monitoring
and evaluation of changes occurred on the ground, both long term and short
term observations are required. The conventional monitoring approach is mainly
conducted by field investigation, which is usually time costly and labour expensive.
Due to the revisit property of polar Earth Observation (EO) satellites, remote sensing
images can be regularly acquired in a given geographical area at different times.
Therefore, multitemporal remote sensing images become an important data source
to detect the land surface changes in wide geographical areas, representing an
effective alternative to the conventional field investigation.

For an effective exploitation of multitemporal remote sensing images, Change
Detection (CD) techniques are required that automatically discover and detect the
changes occurred between two (or more) images (Bruzzone and Bovolo 2013).
Automatic CD techniques have been widely used in various remote sensing
applications (e.g., ecosystem monitoring, urban area study, disaster monitoring)
(Coppin and Bauer 1996; Ridd and Liu 1998; Marin et al. 2014). However, most
of the available CD methods are designed for the analysis of multitemporal images
acquired by multispectral (MS) remote sensing sensors (Coppin and Bauer 1996;
Ridd and Liu 1998; Du et al. 2012a; Singh 1989). With the launch of a new
generation of hyperspectral (HS) sensors onboard of satellites (e.g., PRISMA,
HISUI, ENMAP), in the future, satellite multitemporal HS images are expected to
become more available for CD. Differently from the traditional MS sensors, HS
sensors measure the solar reflected radiation in a wide wavelength spectrum (e.g.,
400–2500 nm), but at narrow spectral intervals (e.g., 10 nm). For a given pixel on
the HS image, a near-continuous spectral signature can be obtained over the whole
range of wavelengths. Therefore, HS images can point out very small variations
in their spectral signature along the temporal direction. Thus makes it possible to
identify changes that are usually not detectable with MS data. However, those latent
variations are often hidden inside strong changes and highly mixed with each other.
Thus available CD methods fail in detecting and separating them. This makes the
change analysis more complex and challenging, especially when ground truth data
are not available (i.e., unsupervised approaches should be employed). Therefore,
it is important and necessary to define novel CD techniques capable to exploit the
intrinsic properties of HS images and to meet the requirements of practical CD
applications.

After an overview about CD methods developed for HS images, in this chapter
we focus the attention on methods that exploit the difference image. The difference
image (computed by subtracting pixel by pixel in spectral channels) carries multiple
change information. Thus the behavior of spectral signatures in the hyperspectral
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difference domain results in a fine modeling of different kinds of changes, which
is not possible with MS images. To better understand this concept let us consider
an example. Let us consider a vegetated field affected by land-cover changes. On
the one hand, MS images can highlight strong changes, which are class transitions
that significantly affect the spectral signature (e.g., vegetation to land covers like
water, built-up areas, soil). However within such strong changes, other changes may
be observed that correspond to slightly different realizations of the strong change
itself. In a given vegetation change class there might be more change contributions
due to different factors (e.g., difference on the vegetation growth status, density,
water content). These kinds of changes show small spectral differences with respect
to those of the strong change they are associated with. Such differences are usually
localized in specific parts of the spectrum, which are difficult to be recognized from
the rough spectral representation typical of MS images. On the other hand, these
subtle changes become detectable in HS images due to the detailed representation
of the spectral signatures. Moreover, if calibrated data are available, it is possible
to obtain the explicit semantic meaning of the class transition (“from-to”) for a
change by matching the spectral signature of each single date with the standard
reference spectra in spectral libraries. However, in the reality, reference samples are
often not available. Therefore, the design of effective unsupervised CD methods
that are independent from ground truth data availability is highly attractive in real
applications.

In this chapter, we analyze and define the concept of “change” in HS images
from the spectral signature point of view. Then a hierarchical unsupervised CD
approach is present that is suitable to identify different kinds of changes between
two HS images (Liu et al. 2015). The developed CD method: (1) addresses the
problem of multiple-change detection; (2) makes adequate use of the detailed
spectral information in HS data; and (3) is unsupervised.

The outline of this chapter is as follows. Section 4.2 gives an overview of CD
techniques presented in the literatures for both MS and HS images. Moreover, it
addresses and formalizes the concept of changes in the HS case. The proposed CD
method based on the hierarchical clustering is described in Sect. 4.3. Experimental
results on the different data sets are shown in Sect. 4.4. Finally, Sect. 4.5 draws the
conclusion.

4.2 Change Detection in Hyperspectral Images

4.2.1 Overview of CD Techniques

For decades, many CD techniques have been proposed for addressing the CD
problem (Bruzzone and Bovolo 2013; Coppin and Bauer 1996; Ridd and Liu 1998;
Du et al. 2012a; Lu et al. 2004; Radke et al. 2005). From the application purpose,
these techniques can be divided into those for binary and for multiple change
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detection. Binary CD methods consider only the presence/absence of change,
ignoring the possible different class transitions. Thus all kinds of changes present
on the ground are considered as a single general change class. For multiple change
detection, the aim is not only to detect the changes, but also to identify different
kinds of changes among each other. From the methodological point of view, the CD
techniques can be clustered into two main groups: supervised and unsupervised.
Supervised CD methods are based on supervised classification schemes having
the available prior knowledge for training a classifier. This is the case of post-
classification comparison (PCC) (Castellana et al. 2007), joint-classification of
multi-date images (Soares and Hoffer 1994), compound classification (Bruzzone
and Serpico 1997), classification of differential features (Nemmour and Chibani
2006) and sub-pixel level change identification (Du et al. 2014). Some other
methods are designed based on partially unsupervised (Bruzzone and Cossu 2002)
or semisupervised learning (Demir et al. 2012). Note that such supervised CD
methods were mainly developed for MS images but are applicable to HS images
as well. However, when dealing with HS data, more attention should be devoted
to define effective classification systems that: (i) are suitable to the analysis of
high-dimensional data and overcome the Huges phenomenon (i.e., with a fixed
number of training samples, the predictive power of a classifier reduces as the
dimensionality increases) (Hughes 1968), and (ii) can effectively exploit informative
features thus enhancing change detectability. Although supervised CD methods
generally outperform the unsupervised ones in detecting land-cover transitions, the
process of collecting reference data for multitemporal images is always time costly
and often unfeasible. Thus unsupervised methods are more attractive from the real
application point of view.

For the unsupervised category, several methods have been proposed for binary
CD (Bruzzone and Serpico 1997; Bruzzone and Prieto 2000a; Bruzzone and Prieto
2000b; Celik 2010; Du et al. 2012b; Du et al. 2013; Hégarat-Mascle and Seltz
2004; Ghosh et al. 2011). From the methodological point of view, they can be
categorized into thresholding-based and clustering-based techniques. In (Bruzzone
and Prieto 2000b), the problem of binary CD was solved automatically by modeling
the statistical distribution of classes and incorporating spatial-context information,
thus significantly improved the previous works that are mainly based on manual
thresholding (Bruzzone and Serpico 1997; Bruzzone and Prieto 2000a). Some other
techniques were designed to improve the CD performance by using optimized
computation algorithms (Celik 2010), ensemble learning schemes (Du et al. 2012b),
data fusion approaches (Du et al. 2013) and multi-feature strategies (Hégarat-Mascle
and Seltz 2004). Clustering algorithms have been used for solving the same binary
CD problem as well (Ghosh et al. 2011). However, a more challenging goal is
to distinguish among multiple changes. Some attempts based on transformation,
multivariate analysis, etc., have been done to address this kind of problems in (Canty
and Nielsen 2006a; Canty and Nielsen 2006b). A simple yet effective method named
Compressed Change Vector Analysis (C2VA) was recently proposed in (Bovolo
et al. 2012), which was developed based on the polar Change Vector Analysis
(CVA) approach (Bovolo and Bruzzone 2007). In C2VA the considered multiple-



4 Change Detection in Multitemporal Hyperspectral Images 67

change detection problem is represented in a magnitude-direction 2-D domain
generated by a lossy compression (potentially ambiguous) procedure. Thus both the
change detection and change separation can be easily implemented within the 2-D
domain, without relying on any band selection which might result in loss of change
information. C2VA has proved to be effective in different CD applications with MS
images (Bruzzone and Bovolo 2013; Bovolo et al. 2012). However, the problem
becomes more complex and challenging (and the efficiency of these methods is
reduced) when HS images are considered. This is mainly due to the ambiguity
that generated when compressing a high dimensional feature space into only two
components, and also to the potentially critical situation when too many changes
are present.

The relatively few works present in the literature on the topic of CD in HS images
are based on: (1) transformation methods (Schaum and Stocker 2004; Schaum
and Stocker 1998; Nielsen 2007; Ortiz-Rivera et al. 2006; Liu et al. 2012); (2)
spectrum analysis methods (Adar et al. 2011; Du et al. 2004, 2005, 2007; Vongsy
and Mendenhall 2011), and (3) other techniques (Meola et al. 2007, 2011; Vongsy
et al. 2012; Eismann et al. 2008). Covariance equalization and cross covariance
(chronochrome) are two commonly used linear transformation algorithms (Schaum
and Stocker 1998, 2004). They identify changes in the transformed space by
subtracting feature vectors. Another type of transform-based methods represent
the images in a new transformed feature space, where the change information is
concentrated into fewer components, thus reducing the data dimensionality and
noise, and focusing on the components that are related to the specific changes of
interest. Multivariate Alteration Detection (MAD) method, which is based on the
Canonical Correlation Analysis (CCA), was first introduced in (Frank and Canty
2003) to solve vegetation CD problems by using multitemporal HS images in
an unsupervised way. Then it was extended to an iterative reweighted procedure
(IR-MAD) in (Nielsen 2007). Other attempts like Temporal-PCA (TPCA) and
Independent Component Analysis (ICA) can be found in (Ortiz-Rivera et al. 2006;
Liu et al. 2012). After a given transformation, one (or several) component(s) can be
selected for change identification. The spectrum analysis based CD methods take
advantage of the detailed spectral signature in HS images. On the one hand, the
distance and similarity measurements can be used to detect the difference between
the considered pixel spectral signatures at two times [e.g., Spectral Angle Measure
(SAM), Spectral Information Divergence (SID) and Spectral Correlation Measure
(SCM) (Adar et al. 2011; Du et al. 2004; Vongsy and Mendenhall 2011)]. On the
other hand, spectral analysis can be done by using linear unmixing techniques (Du
et al. 2005), change vector analysis after radiometric normalization (Du et al. 2007).
Other works have been also developed to explore the CD problem from different
perspectives: model-based methods by formulating the CD as a statistical hypothesis
test (Meola et al. 2011); CD based on tensor-factorization and PCA (Du 2012).
Moreover, there are some other works focusing on the external factors that affect the
CD performance, which include limiting image parallax errors (Vongsy et al. 2012),
studying vegetation and illumination variation (Meola et al. 2007), and addressing
diurnal and seasonal variations (Eismann et al. 2008). These factors may introduce
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errors into the CD process and thus decrease the detection accuracy, which should
be limited as much as possible in real applications.

4.2.2 Challenges for CD in HS Images

Due to the intrinsic properties of HS images, the CD problem is more challenging
than that in MS images. The main challenges are from both the data and the CD
techniques. From the data itself the challenges are as follows:

(a) High dimensionality. It involves challenges in data handling, including storage
volume and computing bottle necks, which are actually common problems
for all HS data processing tasks (i.e., classification, change detection, target
recognition). For CD task, the main difficulty is to effectively extract changes
from a high dimensionality feature space. Methods developed for MS images,
like CVA or C2VA (Bovolo et al. 2012; Bovolo and Bruzzone 2007), may fail
to give a proper change representation after compression of a high dimensional
data, thus decrease the CD accuracy.

(b) Redundant information. Indeed, the spectral information of the adjacent bands
in HS images results in a non-negligible redundancy. Moreover, a reduction
of the signal-to-noise ratio (SNR) of the spectral signal is obtained when
the spectral resolution increases (Dalponte et al. 2009). Thus information in
a single HS band becomes more sparse and implicit, which may reduce the
discriminability of a detector.

(c) Accurate data pre-processing. An accurate pre-processing phase (e.g., radiomet-
ric correction, image co-registration) is required for CD in HS images, which
may significantly affect the final CD accuracy.

Other problems and challenges arise from the methodological point of view. We
can observe that:

(i) Most of the existing unsupervised CD methods directly compare and analyze
the difference of pixel radiance values, ignoring the rich near-continuous
spectrum information that is the peculiar property of HS data. The high-
dimensionality and redundant information in HS data makes the changes
more implicit and difficult to be identified: changes become more mixed and
less separable. Thus the identification of the number of changes and their
discrimination boundaries become a critical problem.

(ii) Most of CD approaches present in the literature for HS images focus on either
binary CD (Vongsy and Mendenhall 2011; Du et al. 2005) or the detection
of specific changes [e.g., (Nielsen 2007; Liu et al. 2012; Du et al. 2007;
Frank and Canty 2003; Du 2012)]. Still there is less method that addresses the
challenging problem of detecting multiple changes simultaneously (which can
be very important especially when unexpected changes occur on the ground).
Moreover, some methods still rely solely on change magnitude information
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(Nielsen 2007; Liu et al. 2012; Frank and Canty 2003), neglecting the direction
information (and thus the whole spectrum information) for discriminating
different changes.

(iii) Although the transformation-based methods (e.g., MAD, IR-MAD, TPCA)
allow us to detect multiple changes (Canty and Nielsen 2006b; Ortiz-Rivera
et al. 2006; Frank and Canty 2003), the application of transformation to
high-dimensionality data results in a high computation cost, in a difficult
interpretation of all components and in a qualitative and ambiguous description
of change classes, especially for subtle changes.

(iv) Definition and description of the detected changes are still rough. Although
the unsupervised approaches are not capable to provide the “from-to” land-
cover transition information, it is necessary to define methods that are able to
differentiate the detected changes related to the complex different land-cover
transitions.

(v) The existing methods try to extract all changes directly from the original
data space or from a transformed feature space relying only on a single
operation (e.g., transformation, differencing), which increases the difficulties
of separating multiple change classes and thus affects the detection accuracy.

4.3 Analysis of the Change Concept in Multitemporal HS
Images

Our aim is to develop a method that is able to identify all class transitions having
discriminable spectral behaviors either globally or locally in the spectrum of multi-
temporal HS images. These class transitions are defined as change endmembers.

First it is important to understand the concept of “change” in multitemporal HS
images and its relationship with the concept of endmember. The very high spectral
resolution makes it possible to detect many differences in the spectral signatures
of pixels acquired in a scene of interest. Note that such differences may occur at
different spectral resolution levels or spectral detail scales.

Let us consider two HS images X1 and X2 with size P � Q, acquired over the
same geographical area at times t1 and t2, respectively. To analyze the behaviors
of spectral differences between the two images, the HS difference image XD is
computed by subtracting multitemporal images from each other pixel by pixel
(Bovolo et al. 2012).

XD D X2 � X1 (4.1)

Let xi be a Spectral Change Vector (SCV) with spatial position i (i D1, : : : ,
P � Q) in XD, xi 2 XD. In such image each pixel is characterized by a SCV that shows
as many elements as the spectral channels in the original HS images. Each element
assumes values that depend on whether a change occurred or not for a specific
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wavelength, and on the kind of change. Therefore, we use SCV signatures that are
related to the land-cover class transitions to formalize the considered problem.

Generally speaking, a pixel can belong to the class of changed pixels �c or
the one of unchanged pixels !n according to its SCV magnitude �i (Bovolo and
Bruzzone 2007).

�i D
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u
t

BX

bD1

�
xb

i

�2
(4.2)

where B denotes the number of spectral channels of the HS images (i.e., the
dimensionality of SCVs), and xb

i is the b-th spectral difference in xi. Figure 4.1a
shows a qualitative example of the expected behavior of the XD magnitude.
Unchanged pixels show a SCV magnitude close to zero (blue mode in Fig. 4.1a), and
their SCV signatures have all spectral components close to 0 (see the blue signature
in Fig. 4.1b). Changed pixels have high magnitude values (red mode in Fig. 4.1a),
and their SCV signature have one or more components that are far from 0. It is
worth noting that in the 1-D magnitude domain usually all changes contribute to a
single class �c, and different kinds of change cannot be separated (see Fig. 4.1a).
A finer analysis of SCV behaviors points out that �c may include contributions
from several change classes (see red and green signatures associated in Fig. 4.1b)
depending on how the specific kind of change impacts on the spectral signature.
Thus SCVs can be preliminary separated into major changes. Major changes mainly
depend on the land-cover class transitions and have a large spectral difference with
respect to no-change class and among each other. Usually, major changes can be
easily and directly identified as they significantly affect a large portion of their
SCVs. In many cases they can be also detected from MS images. As shown in
Fig. 4.1c, each major change (i.e., !C1

and !C2
) produces statistically significant

different spectra compared with each other and with the class of !n. Within each
major change, depending on the data, it is possible to detect other clusters of pixels

Fig. 4.1 Qualitative illustration of (a) the statistical distribution of the magnitude of SCVs [h(�)];
the sample spectra on SCVs of major and subtle change classes that defined in multitemporal HS
images: (b) major changes; (c) subtle changes (solid line) within the given major changes (dotted
line)
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having significant statistical differences in some specific parts of the spectrum. Such
clusters are defined as subtle changes. Subtle changes have SCVs similar to a major
change, but differ from it in small portions of the spectrum. In Fig. 4.1c, subtle
changes !C1�1

and !C1�2
belong to the same major change !C1

, whereas !C2�1
and

!C2�2
belong to !C2 . It happens only if a fine sampling of the spectral signature is

available as it is in HS images. If the sampling is poor as in the case of MS images,
they cannot be detected.

On the basis of the above discussion �c D f!C1
; !C2 ; : : : g is the set of major

changes, i.e., changes that affect a large part of the spectrum and that have statistical
properties significantly different from each other. Each major change may include
subtle changes (i.e., !C1

D f!C1�1
; !C1�2 ; : : : g and !C2 D f!C2�1

; !C2�2 ; : : : g)
whereas others may not (i.e., !C3 D ∅). By iteratively applying the reasoning to
each subtle change it is possible to isolate changes having statistical homogeneity
at different spectral resolution. Each major or subtle change that cannot be split
anymore is defined as change endmember.1 Accordingly, pixels associated with
a specific change endmember have the same (or very similar) spectral behaviors
in the SCV domain and thus can be clustered into a same group. Let �e D fe1,
e2, : : : ,eEg be the set of E possible change endmembers. Let en be the endmember
associated to no-changed pixels. Thus the problem that we need to address is related
to the identification and separation of change endmembers from each other and from
unchanged pixels. We assume that the considered images are all radiometrically
corrected, thus change endmembers are only related to the application and the end-
user. Note that the external factors (e.g., illumination conditions, seasonal effects)
might have impacts on the detected change endmembers, but will not be identified
as one of them due to its low change magnitude.

4.4 Hierarchical Technique for the Detection of Multiple
Changes in Hyperspectral Images

According to the aforementioned discussion and definitions, we illustrate a hier-
archical CD method for detecting changes in HS images and separating them
into different change endmembers. The method mainly consists of three steps: (i)
pseudo-binary change detection to initialize the process and extract general changes
�c; (ii) change endmember detection based on hierarchical spectral change analysis;
and (iii) generation of the CD map by merging endmember clusters. The block
scheme of the hierarchical CD approach is illustrated in Fig. 4.2.

1Note that the definition of change endmember is conceptually different from the definition of
endmembers in spectral unmixing. In the latter case, endmembers are the spectral signatures of pure
classes that result combined in mixed pixels due to the limited spatial resolution of the acquisition
sensor.
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Fig. 4.2 Block scheme of the hierarchical change-detection approach to multitemporal hyperspec-
tral images

4.4.1 Pseudo-Binary Change Detection

This step is based on the analysis of the SCVs magnitude according to traditional
binary CD techniques. However it is referred as pseudo-binary because the output
has three classes: change (�c), no-change (!n) and an uncertainty buffer class (�u),
where the class of changes (�c) is used to initialize the hierarchical analysis in the
next step. Thus the magnitude � is a 1-D feature that compressed from the whole
B-D feature space. The rationale behind this choice is: (1) to simplify and avoid
any feature selection procedure; (2) to exploit the contribution of all portions of the
spectrum. If noisy bands are detected in the pre-processing (e.g., due to atmosphere
absorption) they can be neglected.

Changed (�c) and unchanged (!n) pixels are separated into two groups accord-
ing to a threshold value T� computed on the magnitude �. Bayesian decision
theory is applied to find this threshold (Bruzzone and Prieto 2000b). Expectation
Maximization (EM) algorithm is used for estimating the class statistical parameters
(i.e., the class prior probabilities, the mean values and variances) in an unsupervised
way (Bruzzone and Prieto 2000b). Note that �c and !n classes are assumed to
be Gaussian distributed, as widely done in binary CD with MS images. This
demonstrated to be a good approximation also for HS images (Bruzzone and Bovolo
2013; Bovolo et al. 2012; Bovolo and Bruzzone 2007). The approximation is
acceptable as this is only a preliminary step.

In order to reduce the possible thresholding errors and obtain conservative results
that do not propagate significant errors in the next steps, a margin ı is set on the
threshold T� computed on the histogram h(�) of the magnitude � (see Fig. 4.3)
and three classes are defined: (1) class of uncertain pixels (�u), on which it is not
possible to take a reliable decision at this level of the processing. These pixels will
be analyzed and reclassified according to the generated endmembers; (2) class of
changed pixels (�c), which includes pixels having a high probability to be changed,
but without any information on their kind. The problem of the multiple changes
identification will be addressed in the next step by the developed hierarchical
method; (3) class of no-changed pixels (!n), which only contains pixels having a
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Fig. 4.3 Block scheme of the pseudo-binary CD step used for initializing the tree structure

high probability to be unchanged. These pixels are treated as a pure no-change class
endmember due to their low magnitude. Thus for a given SCV xi in XD, a label is
assigned according to the following rule:

xi 2

8
<̂

:̂

�c; if �i � T�
�u; if T� � ı � �i < T�
!n; if �i < T� � ı

(4.3)

where �i is the SCV magnitude of the considered xi. Figure 4.3 illustrates the
flowchart of the pseudo-binary CD step.

4.4.2 Hierarchical Spectral Change Vector Analysis (HSCVA)

In this step, we focus on the classes of changed (i.e., �c) and uncertain (i.e., �u)
pixels obtained in the previous step in order to identify the change endmembers.
The problem can be addressed by automatically clustering different change classes.
However, the problem of multiple-class separation in HS images is much more
difficult than in MS images. This is due to the following issues: (1) the high spectral
resolution makes the spectrum more sensitive to changes, thus a high number of
changes might be detected; and (2) subtle changes within major changes are always
difficult to be identified directly from�c. These problems decrease the detectability
of all the hierarchy of changes directly from the data in one shot, and limit the
effectiveness of clustering methods.
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Fig. 4.4 Example of the hierarchical tree for the detection of change endmembers with tree depth
D D 4 and identified leaves (K D 8)

To overcome these problems, the idea of Hierarchical Spectral Change Vector
Analysis (HSCVA) is employed (see Fig. 4.4 for a qualitative example of hierarchy).
The hierarchical structure is modeled by a tree of changes defined to drive the
analysis. Let Ld be a generic level in the tree structure with d D 0, 1, : : : , D�1.
The depth of the tree is D (e.g., D D 4 in Fig. 4.4). The main idea is to start from
the root node in the top level (i.e., L0 that represents the general change class �c

identified in the pseudo-binary CD step) and gradually separate different kinds of
change into child nodes by selectively exploiting the spectral information. At the
first level (i.e., L1) of the hierarchy the priority is given to identify the major changes
that have significant spectral difference among each other. Within each child node,
subtle changes (if any) are detected and separated. This process is iterated until all
change endmembers (i.e., leaf nodes of the tree) are found.

Let us consider�c in the root node. To model the spectral homogeneity of all the
considered changed pixels in �c, a similarity measure based on the Spectral Angle
Distance (SAD) (Plaza et al. 2004) is used. The SAD ª is computed between each
xi in �c, and a reference spectral signature S�c calculated as the average of all the
xi in �c, i.e.,
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xb
i and Sb

�c
are the b-th component in xi and S�c , respectively. For each xi, the

smaller # .xi; S�c/, the higher the similarity with the reference spectrum and vice
versa. For a pure change endmember we expect that all SCVs have very similar
spectral behaviors, thus resulting in a small standard deviation of the similarity
measure. Thus to verify the homogeneity of �c we compare the standard deviation
value �#�c

of # .xi; S�c/ with a threshold value T� . If �#�c
is smaller than T� , the

change class is considered to be homogeneous and a change endmember is detected.
In this case, the process will be in convergence and the tree only has a single node.
Otherwise the change class is considered as inhomogeneous and likely to contain
more kind of changes. Therefore the hierarchical decomposition starts.

To distinguish major changes in �c, Principal Component Analysis (PCA) and
clustering algorithm are used. Any other transformation technique can be considered
as well. Note that PCA is applied only to the xi belonging to �c. Thus we optimize
the representation of the changes. Then the clustering algorithm is applied to the
subset of transformed Principal Components (PCs) that includes more than 95 % of
change information to reject the noise and redundant information. This choice also
reduces the computational complexity. Let P be the image with selected M (M < B)
PCs and let Pi be the vector characterizing spatial position i (i D1, : : :P � Q) in P, Pi

2 P. An effective clustering technique should be used to correctly identify the major
change classes inside �c, addressing the following two issues: (1) identification
of the number of major changes; (2) modeling and clustering the multiple change
information.

To this end, the adaptive x-means algorithm is used to automatically find an
optimal number of major changes and generate reliable clustering results in an
unsupervised framework (Pelleg and Moore 2000; Ishioka 2005). Differently from
the popular k-means method, x-means adaptively searches on a range of k values
and aims to find the best clustering model according to the Bayesian Information
Criterion (BIC) (Pelleg and Moore 2000). BIC identifies an adequate tradeoff
between simplicity of the model (number of parameters) and quality of fit. It
analyzes the maximum likelihood-based models of a given data distribution. We
adopt the algorithm proposed in (Ishioka 2005), which is an expansion of the
original x-means, and modified it in order to satisfy our requirements. A given
range U D [k0, k0 C t] is first defined to initialize the x-means. This is the only
input parameter to the algorithm. k0 denotes the lower bound for the number of
major changes k, and t is a constant value to control the upper bound. Then M-
dimensional PCs of �c are given as input to the x-means clustering and the method
is initialized by applying k-means with k D k0. We assume that all kinds of change
approximately follow the Gaussian distribution. The BIC value of each generated
cluster is then compared with the joint BIC value of its split into two clusters, and
the clusters associated with the smaller value are selected (the smaller BIC value
the better the fitting) (Pelleg and Moore 2000). An additional merging operation
is applied if necessary to ensure that the final output number of clusters is within
the defined range U (Ishioka 2005). After applying the x-means clustering, the final
output includes: (1) the optimal number k of major changes; (2) the detected major
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changes in �c (i.e., the level L1 of the hierarchical tree structure). Note that BIC
is just one of the choices for the model selection. However, it is a reliable criterion
especially for normal distributions. Other test criteria such as Akaike Information
Criterion (AIC) and Minimum Description Length (MDL) may also be used (Hu
and Xu 2004; Tu and Xu 2012).

To define a reliable range U for the clustering process, the initial number of
classes should be identified, which is the lower bound k0 (k0 � 2) in the x-means.
k0 should be small enough to include the minimum number of change classes that
can be directly recognized. To obtain a reliable initial number of this parameter,
we apply a method based on the analysis of the compressed change direction
representation proposed in (Bovolo et al. 2012). Instead of directly computing the
angular distance in the original feature space, it was computed on the selected M-
dimensional PCs of �c as follows:
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where ' .Pi/ is the compressed change direction of Pi, and Pm
i is the m-th component

of vector Pi. In this way we emphasize in the direction variable only the possible
changes associated with �c. The first PCs can properly model the changes that we
are looking for. Thus the modes of the obtained distribution on the compressed
change direction ' .Pi/ can be recognized as the initial number k0 of major changes
existing in�c (see Fig. 4.5). The upper bound of the range U is defined by adding a
small integer bias value t to k0. t is in the order of few units and takes into account
the intrinsic uncertainty of defining k0 by analyzing ' .Pi/.

Fig. 4.5 Example of definition of the initial cluster number (k0) analyzing of the compressed
change direction
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Fig. 4.6 Block scheme of the HSCVA step in the hierarchical change-detection approach

Once the major changes in �c have been recognized and separated by using the
adopted clustering algorithm, the root node splits into different child nodes at L1 in
the tree. Each node corresponds to one major change class (i.e., !C1

; !C2 ; : : : ). For
each of them, the spectral homogeneity of SCVs is tested according to (4.4). For
example, if we consider the first child node associated to class !C1

. The SAD of !C1

is computed as #
�
xi; S!c1

�
for each xi 2 !C1

. If for a given node convergence is not
reached then all the above operations (i.e., PCA, x-means, homogeneity evaluation)
are iterated by considering only the SCVs of pixels xi in the considered node (e.g.,
!C1

). Once all the nodes at L1 are processed, the algorithm moves to the next level.
The hierarchical decomposition is applied to each node in every level of the tree
until the convergence is reached for all of them (see Fig. 4.6). The homogeneous
condition of each node is evaluated according to the similarity measures in (4.4).
The leaf node of each branch corresponds to a change endmember in �e D fe1,
e2, : : : ,eEg. Note that at convergence change endmembers might appear at different
levels of the tree. The block scheme of this step is shown in Fig. 4.6.

4.4.3 Generation of the Change-Detection Map

After identifying E change endmembers �e D fe1, e2, : : : ,eEg, pixels in the uncer-
tain class �u derived in the pseudo-binary CD step are considered. These pixels are
assigned to one of the change endmembers or to the no-change class on the basis
of spectral similarity. SAD (4) is computed between the SCV xi (xi 2 �u) and the
reference spectra Sej (i.e., the average spectrum of each detected change endmember
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in�e and of the no-change endmember en). Then xi is assigned to the class with the
minimum distance value, i.e.,

xi 2 arg min
ej2f�e;eng

˚
#
�
xi;Sej

��
(4.6)

where #
�
xi;Sej

�
denotes the SAD between xi (xi 2 �u) and a given reference

spectrum Sej . The final CD map is generated by merging the results obtained in
the three sets of changed, uncertain and unchanged pixels (see in Fig. 4.6).

4.5 Experimental Results and Discussion

The hierarchical CD approach has been applied to two HS data sets, including
one synthetic bi-temporal HS data set and a pair of real bi-temporal images. The
pseudo-binary CD step was conducted firstly and three clusters (�c, �u and !n)
were generated. The value ı was set such that the �u class includes 25 % of the
pixels in !n. After obtaining the general change class �c, T� was set to drive
the decomposition of the root node and to build the hierarchical tree for change
endmember detection. T� is a user dependent parameter and controls the level of
spectral homogeneity of the detected change endmembers. The smaller the T� , the
higher the homogeneity level is and thus the number of change endmembers, and
viceversa. In practical applications, the threshold should be selected taking into
account the desired sensitivity to subtle changes. In our experiments trials were
carried out with different values of T� , achieving different trade-offs in terms of
endmember homogeneity.

After the initialization of �c (i.e., root node of the tree), the identification of
multiple change endmembers was done by using the HSCVA. The initial number
of k0 was defined based on the compressed change direction, and t was set equal
to 3 to define the upper bound of U. The final CD map was obtained when all
change endmembers were generated and the pixels in �u were assigned to one of
them or to the no-changed endmember. The results obtained by HSCVA method
were compared with the ones obtained by the popular unsupervised k-means and
fuzzy C-means (FCM) clustering methods. The two reference methods were applied
to the subset of PCs selected by the HSCVA method for the root node, i.e., the
ones that contain most of the information for �c. The class number k of k-means
and FCM was fixed on the basis of the HSCVA method outcome. In this way,
we give clear advantage to the reference techniques that have not the intrinsic
capability to estimate the number of expected change endmembers. This choice
implicitly penalizes the HSCVA method. To reduce the uncertainty due to the
random initialization in two reference methods, we ran them 200 times. The final
accuracy was calculated as the average over 200 trials.

To evaluate the CD results both quantitative and qualitative assessments were
carried out for each of the considered data sets. For the synthetic data set, the
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quantitative assessment was based on the CD accuracy (i.e., endmember accuracy
and kappa accuracy) and error indices obtained according to the reference map.
In addition, the average endmember distance has been computed to assess the
average endmember separability. To this end, pair-wise Bhattacharyya distance was
computed among all the pairs of change endmembers. For two generic detected
change endmembers e˛ and eˇ (˛, ˇ 2 [1,E] and ˛ ¤ ˇ), the Bhattacharyya distance
B˛, ˇ is calculated as follows:
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where �˛ and � ˇ denote the mean vectors, � ˛ and � ˇ represent the covariance
matrices of change endmembers ˛ and ˇ, respectively. The higher distance the better
the class separability, and viceversa. The average pairwise Bhattacharyya distance
computed on all pairs of change endmembers indicates the overall class separability.
In this chapter, we will refer to it as multi-class Bhattacharyya distance.

The CD results were also analyzed qualitatively by comparing: (1) the obtained
CD maps; (2) the 2-D scatterplots of change endmembers in the feature space
(i.e., the first PC versus the second PC on �c); and (3) the spectral signatures of
all the detected change endmembers in XD with the ones obtained with reference
techniques.

4.5.1 Simulated Hyperspectral Data Set

The first data set is taken from a real-world database of HS images, which includes
images acquired by a commercial HS camera (Nuance FX, CRI Inc.) (Chakrabarti
and Zickler 2011). The considered image has 31 narrow wavelength bands. The
bandwidth is approximately 10 nm in a wavelength range from 420 nm to 720 nm,
covering mainly the visible spectrum region. The selected image is an outdoor scene
in the Harvard University with a size of 1392 � 1040 pixels (see Fig. 4.7a). To
simulate the change targets and build the synthetic dataset, eight tiles were extracted
from the original image (X1) over all the spectral bands (see highlighted rectangles
in Fig. 4.7a). They correspond either to different materials on the wall in the scene or
to the same material but under different illumination conditions. Tiles were inserted
into disjoint areas on a copy of the original image to generate a simulated image (X2)
showing two kinds of changes that are associated to: (1) the material transitions; and
(2) the same material transitions but affected by different illumination conditions.
By doing this, we simulated the subtle changes and increased the complexity of
the considered problem. The same simulation setup was conducted three times by
varying the position of tiles, thus generating three simulated multitemporal datasets.
Each one is composed of X1 and one among the three simulated X2. Figure 4.7b
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e10

Fig. 4.7 Original HS image (a) acquired by the Nuance FX HS camera (X1); (b) one of the
simulated image (X2) with changes; (c) Reference map (10 changes in different colors, no-change
class in white color)

Table 4.1 Average kappa
accuracy and multi-class
Bhattacharyya distance
obtained by the three
considered methods on the
simulated data sets

Method Average k
Average multi-class
Bhattacharyya distance

PCA k-means 0.9772 ˙ 0.0007 5.28
PCA FCM 0.9002 ˙ 0.0012 5.03
HSCVA 0.9930 ˙ 0.0009 5.91

shows one of the simulated images, and Fig. 4.7c presents the corresponding change
reference map, which includes 10 change endmembers. The performance indices for
this data will be presented as the average values over the three simulated data sets.

In this case the pseudo-binary CD step was neglected as the general change
class �c is explicitly defined by the change simulation step. Thus we directly
focused on the pixels in �c and tried to identify different change endmembers
inside it. Performance is assessed quantitatively on the three reference maps.
The final performance indices are given as the average accuracy over the three
simulated datasets. Experimental results were obtained by fixing T� D 0.05 for all
the three image pairs. The average kappa accuracy (k) and the average multi-class
Bhattacharyya distance obtained by the three considered methods are shown in
Table 4.1. As one can see, the HSCVA method obtained both the highest kappa
accuracy and the highest average Bhattacharyya distance.

Let us now analyze one of the three simulated cases in greater detail (see
Fig. 4.7). In this case, the complete tree has a structure with 3 levels and 14 nodes,
where 10 of them are leaf nodes identified as change endmembers. The CD maps
obtained by the HSCVA and the reference ones are shown in the first row of Fig. 4.8.
Figure 4.8a–c reports the results of the HSCVA method, the reference k-means and
FCM, respectively. Figure 4.8d shows the reference map. Each color corresponds
to a specific detected change endmember, whereas the unchanged pixels are in
white. In the second row, 2-D scatterplots of the detected change classes are shown
in the feature space of first two PCs extracted from pixels in �c. The spectral
behaviors of the change endmembers in the SCV domain are presented in row 3.
Tiles extracted from the whole CD maps are illustrated and further compared in
row 4. Accuracies and error indices obtained according to the reference data are
summarized in Table 4.1.
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Fig. 4.8 CD results obtained on the simulated HS data set. Results provided by: (a) HSCVA, (b)
k-means, and (c) FCM, (d) ground truth. From up to down, each row represents: (1) CD maps (or
reference map); (2) 2-D scatterplots of change classes in the feature space; (3) SCV signatures of
detected changes; (4) a subset from results in (1)

As one can see from Fig. 4.8, the HSCVA method detected the expected changes
on this simulated data set accurately. In particular, it identified properly all the
change classes in a hierarchical way. However, it was not affected by the problem
on minority classes. The subtle changes with small amount of pixels (e.g., change of
letters and their edges) were also detected in a precise way (see row 4 in Fig. 4.8). On
the contrary, despite the conventional k-means and FCM received as input the true
number of change endmembers, their results were less accurate. This demonstrates
the advantages of using the hierarchical analysis structure. A visual comparison
of scatterplots confirms the better results produced by the proposed method with
respect to the other techniques. The two reference methods obtained in overall good
performance, but showed a higher error rate for some change endmembers. By
comparing the SCV signatures of changes detected by the three methods [Fig. 4.8
row 3 (a)-(c)] with the one of reference change map [Fig. 4.8 row 3 (d)], we
can observe: (1) higher similarity between results of the HSCVA method and the
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Table 4.2 Endmember and
kappa accuracy, number of
detection errors and
multi-class Bhattacharyya
distance obtained by three
considered methods on one of
the simulated data sets

Method k
Tot. errors
(pixel)

Multi-class
Bhattacharyya
distance

PCA k-means 0.9770 1367 5.49
PCA FCM 0.9007 2218 4.93
HSCVA 0.9933 650 6.22

reference spectra; and (2) different kinds of change (i.e., change endmembers) have
discriminable spectral behaviors in the SCV domain [see row 3 (a) in Fig. 4.8], thus
indicating the effectiveness of the HSCVA method in separating change information.
The reference techniques detected some wrong change endmembers. For example,
in the result of the FCM there are two couples of change endmembers with
very similar spectral signatures. The first couple is represented by red and purple
signatures, and the second is given by green and sienna signatures in Fig. 4.8c row
3. These changes were wrongly detected by the FCM method even by fixing the
correct number of input classes.

The above analysis is confirmed by the numerical results in Table 4.2. We can
observe that: (1) the hierarchical method outperformed reference approaches in
terms of kappa accuracy and number of errors. The kappa accuracy is the highest
among the three (i.e., 0.9933 compared to 0.9770 for k-means and 0.9007 for FCM).
The total error of the HSCVA method (i.e., 650 pixels) is significantly smaller than
the ones of reference methods (i.e., 1367 pixels for k-means and 2218 pixels for
FCM); (2) the multi-class Bhattacharyya distance values indicate that the HSCVA
approach achieves the highest class separability (i.e., 6.22) with respect to two
clustering methods (i.e., 5.49 in k-means and 4.93 in FCM, respectively).

4.5.2 Hyperion Satellite Images of an Irrigated Agricultural
Area

The second data set is made of a pair of real bi-temporal HS remote sensing images
having a size of 211 � 396 pixels. These images were acquired by the Hyperion
sensor mounted onboard the Earth Observing-1 (EO-1) satellite on May 1st, 2004
(X1) and May 8th, 2007 (X2). Figure 4.9a, b shows a false color composite of the
two images. The study area covers an irrigated agricultural land of Hermiston city in
Umatilla County, Oregon, United States. Land-cover changes include the transitions
among the crops, soil, water and other land-cover types. The changes occurred
in the cropland are mainly due to the vegetation water content that affected the
irrigation condition in the field (see the circles on the image, which correspond
to the radius of the irrigation system), and to the difference of the crop growth
situation. The original Hyperion images contain 242 spectral bands, wavelength
ranges are from 350 nm to 2580 nm, with a spectral resolution of 10 nm and a
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Fig. 4.9 Hyperion images acquired on an irrigated agricultural area. The original images acquired
in (a) 2004 (X1) and (b) 2007 (X2); (c) composite three SCVs channels (R: 1729.70 nm, G:
1023.40 nm, B: 752.43 nm); single SCVs channel of (d) band 30 (650.67 nm) and (e) band 40
(752.43 nm)

spatial resolution of 30 m. Pre-processing was applied to the images, including
bad stripes repairing, atmospheric corrections, and image co-registration with a
residual error of 0.5 pixels. Radiometric correction was conducted to mitigate
differences in illumination conditions and their impact on the CD process, thus
reducing changes that are mainly irrelevant to the application and the end-users.
In addition, we removed the uncalibrated bands (according to the prior knowledge
on the Hyperion sensor), the overlapped redundant bands and the noisiest bands



84 L. Bruzzone et al.

due to low SNR values (Beck 2003). It should be noted that even if we removed
the noisiest bands and uncalibrated bands, the selected channels include both clean
and partially noisy bands, which still maintain the complexity of the data. Finally,
159 pre-processed bands (i.e., 8–57, 82–119, 131–164, 182–184, 187–220) were
selected for performing the CD task. However, no ground truth samples are available
for this data set. Thus the validation of results is done mainly in a qualitative way.
Figure 4.9c represents a false color composite of spectral channels in XD. Different
colors indicate possible kinds of change classes, whereas gray areas represent the
unchanged pixels. The same change class can be described differently in different
wavelengths (e.g., see Fig. 4.9d, e where the same kind of change is highlighted
in orange and green circles and has different behaviors in bands 30 and 40 of XD).
Accordingly the two examples given in Fig. 4.9 do not fully describe the complexity
of the problem.

In this case the threshold T� was set to 0.13. The HSCVA method detected 15
change endmembers as leaf nodes in the hierarchical tree, which includes 4 levels
and 20 nodes. Figure 4.10 illustrates CD results obtained by (a) the hierarchical
method, (b) the k-means, and (c) the FCM. From row 1 to row 3 the figure shows
the CD maps, the 2-D scatterplots in the two-dimensional feature space (i.e., the first
two PCs extracted from pixels in �c), and the SCV signatures of all the detected
changes, respectively. For the hierarchical approach the 15 change endmembers are
represented with different colors, whereas the no-change pixels are in white. For the
two reference methods, the change clusters are also shown in different colors, but it
is not possible to establish a direct correspondence among the legend given for the
HSCVA method in Fig. 4.10, and the colors used for the reference methods. Also in
this case the number of clusters for the k-means and the FCM was fixed on the basis
of the result produced by the HSCVA technique.

The hierarchical CD approach obtained satisfactory results detecting change
endmembers (validated by the detailed photointerpretation) and separating them
according to the defined spectral homogeneity level. In greater detail, we can
observe that: (1) The HSCVA method detected change endmembers due to the
hierarchical analysis. On the contrary, two reference methods (that identify all the
changes in a single step) ignore the intrinsic hierarchy of the change information
in HS images. This increased the errors in the detection of change classes. (see
also Fig. 4.10 row 1, where the hierarchical method detects changes with a higher
homogeneity than the two reference methods). (2) All the considered methods
are able to discriminate multiple changes, but with different performance on the
change separability of change endmembers. The multi-class Bhattacharyya distance
values were 4.12 (HSCVA), 3.78 (k-means) and 3.65 (FCM). The HSCVA method
obtained the highest separability among all the detected change endmembers. (3)
The generated spectra of change endmembers point out the spectral differences in
the SCV domain, which illustrate the change separability of the different considered
methods.
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Fig. 4.10 CD results obtained on the real Hyperion HS images on an agricultural area. Results
provided by (a) the HSCVA, (b) the k-means, and (c) the FCM. From row 1 to row 3: (1) change-
detection maps; (2) 2-D scatterplots of all change classes in the feature space by using the first two
PCs computed on pixels in�c; (3) spectra of the detected changes in the SCV domain. The legend
only applies to the HSCVA method results

4.6 Conclusion

This chapter focused on the problem of change-detection in multitemporal hyper-
spectral images. In more details, taking into account the intrinsic complexity of
the HS data, a proper definition of the concept of “change” in HS images is
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given and together with the concept of change endmembers. A hierarchical spectral
change analysis approach has been presented that aims at detecting and identifying
multiple-change information in an unsupervised way. The hierarchical analysis
can identify the discriminable spectral change endmembers from coarse to fine
level (major change, subtle change and finally change endmembers) leading to
a better model, whereas the reference methods are based on a single processing
step only. In this way, we progressively decompose the complex problem into
several specific sub-problems, focusing on each specific portion of the multiple-
change information. This makes it possible to discover the difference among similar
changes by decreasing the difficulty of detection.

Satisfactory results obtained on both simulated and a pair of real bi-temporal
HS remote sensing images confirm the effectiveness of the proposed hierarchical
method.

As future development of this work, we plan to: (i) consider in the hierarchical
approach also the spatial information in order to increase the robustness and the
accuracy of the CD results; (ii) define alternative method for the identification of
change endmembers; (iii) validate the CD-HS results on data sets for which an
exhaustive ground truth is available.
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Chapter 5
Object-Based Change Detection in Urban Areas
Using Multitemporal High Resolution SAR
Images with Unsupervised Thresholding
Algorithms

Osama Yousif and Yifang Ban

Abstract With the recent launches of optical and SAR systems that are capable of
producing images in very high resolution, the quantification of temporal changes can
be achieved with unprecedented level of details. However, very high resolution data
presents new challenges and difficulties such as the strong intensity variations within
land cover classes thus the noisy appearance of change map generated by pixel-
based change detection. This has led to the development of object-based approaches
that utilize image segmentation. For unsupervised change detection, on the other
hand, automatic thresholding algorithms provided a simple yet effective technique to
produce a binary change map. Thresholding techniques have been used successfully
for pixel-based change detection using medium resolution SAR images. They have
also been used for object-based change detection using high resolution optical
imagery. However, they have not been tested in the context of object-based change
detection using high resolution SAR images. Therefore, this chapter investigates the
potential of several thresholding techniques for object-based unsupervised detection
of urban changes using high resolution SAR images. To avoid the creation of
sliver polygons, the multidate image segmentation strategy is adopted to produce
image objects that are spectrally, spatially, and temporally homogeneous. A change
image is generated by comparing objects multitemporal mean intensities using
the modified ratio operator. To threshold the change image and generate a binary
change map, three thresholding algorithms, i.e., the Kittler-Illingworth algorithm,
the Otsu method, and the outlier detection technique, are tested and compared.
Two multitemporal datasets consisting of TerraSAR-X images acquired over Beijing
and Shanghai are used for evaluation. Quantitative and qualitative analyses reveal
that the three algorithms achieved similar results. The three algorithms achieved
Kappa coefficients around 0.6 for the Beijing dataset and 0.75 for the Shanghai
datasets. The analysis also reveals the limitation of the mathematical comparison
operator in accentuating the difference between the changed and the unchanged
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class, thus calls for the development of more sophisticated object-based change
image generation mechanisms capable of reflecting all types of changes in the
complex urban environment.

5.1 Introduction

Change detection using multitemporal remote sensing imagery plays an essential
role in numerous fields of applications. Examples include urbanization (Ban and
Yousif 2012), deforestation (Desclée et al. 2006), flooding (Moser and Serpico
2006), wetland mapping (Nielsen et al. 2008), and disaster monitoring and damage
assessment (Bovolo and Bruzzone 2007). The wide spread of remotely sensed
images in change detection can be attributed to their wide geographic coverage and
availability in a wide range of spatial, spectral, and temporal resolutions. In recent
years, a great deal of attention has been dedicated to change detection based on
multitemporal SAR images due to SAR’s independence of solar illumination and
atmospheric conditions (Ban and Yousif 2012; Moser and Serpico 2009). Various
SAR based change detection methods have been developed including unsupervised
change detection (Bazi et al. 2005; Melgani et al. 2002; Hu and Ban 2014),
spatio-contextual change detection (Yousif and Ban 2014), and speckle filtering and
geometric detail preservation (Dekker 1998; Yousif and Ban 2013).

Recently, unsupervised change detection using automatic thresholding algo-
rithms has gained a lot of popularity. These techniques analyze the change image
(e.g., ratio or differenced image) in order to generate a binary change map that shows
changed versus unchanged class. Example of these algorithms include Kittler-
Illingworth (Kittler and Illingworth 1986), Otsu (1975), and Huang and Wang’s
fuzzy thresholding method (Huang and Wang 1995). These algorithms do not
require training data (i.e., automatic), and are known for being very fast since, in
most cases, the analysis only considers the histogram of the input image. Because of
their simplicity, automatic thresholding algorithms have been used widely in change
detection analysis using medium resolution optical (Melgani et al. 2002), and SAR
images (Ban and Yousif 2012; Bazi et al. 2005; Moser and Serpico 2006), where the
analysis has been carried out at the pixel level.

Recent technological developments led to the design and launch of several optical
and SAR systems (e.g., QuickBird, IKONOS, RADARSAT-2, COSMO-SkyMed,
and TerraSAR-X) capable of producing images in very high resolution. Using these
data, the quantification of temporal changes can be achieved with unprecedented
level of details. Nevertheless, very high resolution data presents new challenges
and difficulties. One example is the strong intensity variations within land cover
classes. This phenomenon is responsible of the noisy appearance of change map
generated by applying pixel-based techniques to high resolution images, and has
led to the development of object-based approaches that utilize image segmentation
techniques.
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Segmentation subdivides image into meaningful homogeneous regions/objects
based not only on the spectral properties, but also on shape, texture, and size (Ban
et al. 2010; Qin et al. 2013). The object-based paradigm allows the contextual
information to be exploited in the segmentation phase rather than during the
classification/change detection analysis. For high resolution imagery, object-based
analysis can significantly help reducing the computational load. Compared to pixel-
based techniques, object-based change detection proved to be less sensitive to image
coregistration errors (Chen et al. 2012, 2014).

Several studies have shown the potential of object-based change detection
approaches. In (Walter 2004; Zhou et al. 2008), for example, the detailed from-to
change information was extracted by comparing images classified using object-
based technique. Niemeyer et al. (2008) developed an algorithm that enhance
change information at the object level using multivariate alteration detection
transformation. Desclée et al. (2006) proposed an unsupervised object-based change
detection algorithm that utilizes outlier detection technique. Similarly, Bontemps
et al. (2008) developed an automatic change detection technique for the extraction
of change information from SPOT vegetation time series. Using SAR images, Ye
et al. (2013) developed an object-based change detection algorithm that fuses several
change maps generated at different segmentation scales. In a similar line, Xiaoxia
et al. (2013) proposed change detection algorithm for multitemporal POLSAR
images that utilizes unitemporal segmentation strategy.

On the one hand, unsupervised thresholding algorithms have been used to
extract change information from medium resolution SAR images (e.g. ERS-2 SAR,
ENVISAT ASAR : : : etc.), where the analysis is often conducted at the pixel level
(Adam and Ban 2009; Moser and Serpico 2006). On the other hand, object-based
techniques have been used to extract change information from high resolution
optical images (Desclée et al. 2006; Im et al. 2008). This study, therefore, investi-
gates the object-based unsupervised detection of urban changes using multitemporal
high resolution TerraSAR-X images. In particular, three unsupervised thresholding
algorithms, i.e., Kittler Illingworth, Otsu, and outlier detection, will be investigated.
The Kittler-Illingworth algorithm is common in pixel-based change detection using
either optical or SAR multitemporal images. The outlier detection technique, on the
other hand, has been used in object-based change detection using optical images
(Bontemps et al. 2008; Desclée et al. 2006). Otsu method has also been used for
pixel-based change detection using optical images (Melgani et al. 2002), however,
its application in change detection based on SAR images is not common. All three
algorithms have not been tested in the context object-based change detection using
very high resolution SAR images.

This chapter is organized in five sections. The next section describes the
methodology in detail. A description of the test datasets is given in Sect. 5.3. Results
are discussed in Sect. 5.4 and conclusions are drawn in Sect. 5.5.
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5.2 Methodology

In this section the change detection workflow (Fig. 5.1) based on a combination
of image segmentation and automatic thresholding techniques, is presented. The
subsections describe the steps involved in more details.

5.2.1 Preprocessing

The first step in change detection analysis is the accurate coregistration of the mul-
titemporal images. Inaccurate image-to-image registration can cause a significant
degradation of the accuracy of the change detection analysis. The TerraSAR-X
images used in this study are enhanced ellipsoid corrected product (EEC). EEC
generation includes the use of a medium resolution digital elevation model to correct
for terrain induced distortions (Roth et al. 2004). As a result, this product has
high positional accuracy. Visual analysis of the images reveals that image-to-image
registration is not necessary.

SAR images are affected by speckle. The presence of speckle affects the
extraction of useful information from SAR images. A despeckling step is therefore
necessary before segmentation. In this study an enhanced Lee filter with a 7 � 7 pixel
window is used to filter each image in the multitemporal dataset.

Preprocessing

Multidate seg-
mentation

Object-based 
Change Image

OtsuKittler-
Illingworth Outlier Detection

Fig. 5.1 A work flow for object-based unsupervised change detection using high spatial resolution
SAR imagery
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5.2.2 Segmentation

Segmentation subdivides the image into meaningful homogeneous regions. For
change detection analysis, there are two types of segmentation strategies. The first
one consists of segmenting, separately, each image in the multitemporal dataset. A
consequence of this technique is the creation of sliver polygons when comparing the
segmented images. Sliver polygons can complicate the change detection analysis.
With this approach, however, objects can be compared not just in terms of
their spectral properties (e.g., object’s mean intensities), but also geometrically
(e.g., objects areas and perimeters). In the second strategy, known as multidate
segmentation (Desclée et al. 2006), all images in the multitemporal dataset are
stacked and segmented together in one step. This technique results unique object
layout (i.e., no sliver polygons). With this segmentation technique, the difference
between object- and pixel-based change detection is merely of the used spatial scale.
Most existing pixel-based change detection techniques can simply be extended to
the object-based case.

Because of the involved simplicity, the multidate image segmentation approach
is adopted in this work (Desclée et al. 2006; Qin et al. 2013). The multitemporal
image segmentation is carried out using the Multiresolution segmentation algorithm
(eCognitionTM). The Multiresolution algorithm is a bottom-up region growing
segmentation technique that takes into consideration the objects spectral and
geometrical properties. For more information about this algorithm the reader is
referred to (Baatz and Schäpe 2000; Benz et al. 2004).

5.2.3 Change Image Generation

After image segmentation, the next step is to compare the multitemporal objects
in order to generate an object-based change image that emphasizes the contrast
between the changed and the unchanged areas. Due to speckle statistical charac-
teristics, multitemporal SAR images are often compared using the ratio, or a ratio
related (e.g., log-ratio) operator (Rignot and van Zyl 1993). Here, a version of the
ratio operator, known as modified ratio, will be used. Let the average intensities
of an object i at the first and second date images be Ii1 and Ii2, respectively. The
modified ratio operator computes the intensity of change ri as:

ri D
max .Ii1; Ii2/

min .Ii1; Ii2/
(5.1)

The modified ratio operator clusters both positive and negative changes together,
allowing the use of a single threshold to separate changed and unchanged classes
(Ban and Yousif 2012). Positive and negative changes refer to changes that induce
intensity increase and intensity decrease over time, respectively.
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5.2.4 Thresholding

Thresholding involves the selection of an optimum threshold that can be applied
to a change image in order to generate a binary change map. According to
(5.1), objects with modified ratio less than the estimated threshold are considered
unchanged, while those with greater values are assumed to be changed. Several
techniques exist to estimate the unknown threshold. In this work, three algorithms
will be considered, i.e., Kittler-Illingworth, Otsu method, and outlier detection. All
algorithms considered are unsupervised techniques in the sense that no training
phase is required.

5.2.4.1 Kittler-Illingworth Algorithm

This algorithm has been developed to separate an object from a background
in a generic image (Kittler and Illingworth 1986). The algorithm assumes that
the probability distribution of the input image is a mixture of two populations
(e.g., changed and unchanged classes). If the classes’ density functions and prior
probabilities are known, then Bayesian decision theory can be used to estimate
an optimum threshold that minimizes the average classification error. Since these
quantities are unknown in an unsupervised context, the algorithm uses histogram
fitting to estimate the unknown probabilities and an optimum threshold that can be
used to binarize the input image.

Let h(r) be the normalized histogram of the modified ratio image r 2

Œr1; r2; : : : ; rL�, where L indicates the number of levels used to construct the
histogram. Let pu .rj!u/ and pc .rj!c/ be the conditional probability density
functions of the unchanged (!u) and the changed class (!c), respectively, while
Pu(!u) and Pc(!c) are their corresponding prior probabilities. The histogram of
the change image provides an approximation of its probability distribution. This
in turn is considered to be a mixture of two distributions, i.e., h.r/ � P.r/ D

pu .rj!u/Pu .!u/C pc .rj!c/Pc .!c/.
Each possible value of the threshold rT frT 2 Œr1; r2; : : : ; rL�g divides the his-

togram into two sections (i.e., unchanged and changed). Histogram fitting tech-
niques can then be used to estimate the density function parameters and prior
probability of the classes (Ban and Yousif 2012). From all possible threshold values,
the Kittler-Illingworth algorithm chooses the one that minimizes the following
criterion function:

JKI .rT/ D �
X

i2.u;c/

"

Pi .!iI rT/ ln Pi .!iI rT/C
X

r

h.r/ ln pi
�
r
ˇ
ˇ!iI rT

�
#

(5.2)

The criterion function JKL(rT ) is related to the average classification error—the
smaller JKL(rT ) the smaller the classification error will be. The algorithm performs
an intensive search in the 1D feature space trying to find a threshold that minimizes
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the criterion function. The algorithm was originally developed assuming the classes
to be normally distributed. For change detection using SAR images, the statistics of
the classes in the ratio image are known to be far from normal. Several probability
density functions have been proposed to model the statistics of the classes (Bazi
et al. 2005; Moser and Serpico 2006). Here, the log-normal model, which proved
to be effective in urban change detection (Ban and Yousif 2012), will be used. For
more information about how to estimate the unknown probability quantities, please
refer to (Ban and Yousif 2012).

5.2.4.2 Otsu’s Method

This is also a histogram-based thresholding technique. Unlike the Kittler-
Illingworth algorithm, however, the Otsu method is nonparametric—that is, no
assumptions are made about the probability distribution of the classes (Otsu 1975).
The Otsu method is very popular among the digital image processing community.
Its application in remote sensing change detection using SAR images is not as
common as the Kittler-Illingworth algorithm. The Otsu algorithm searches for a
threshold that maximizes the separation between the object and the background
(e.g., the changed and unchanged classes). This criterion is satisfied searching for a
threshold rT that maximizes the between-class variance �2

b(rT ) shown in (3).

JO .rT/ D �2b .rT/ D Pu .!uI rT/Pc .!cI rT/ Œ�u .rT/ � �c .rT/�
2 (5.3)

where, �u and �c are the means of the unchanged and the changed classes,
respectively. The optimum solution can also be obtained by searching for the
threshold that minimizes the within-class variance. Between-class minimization is
often used since it only requires the calculation of first-order moments.

Despite the apparent difference between the Kittler-Illingworth and the Otsu
algorithms, Yan (1996) provided a unified mathematical formulation, where their
criterion functions were conceived as a weighted sum of the histogram grey levels.
It turns out that these algorithms are similar except for the form of the cost function
(i.e., the weight) adopted by each. Insights about the similarities and differences
between these algorithms can be found in (Kurita et al. 1992; Xue and Zhang 2012).

5.2.4.3 Outlier Detection Technique

An outlier is defined as “an observation that deviates so much from other obser-
vations so as to arouse suspicion that it was generated by a different mechanism
(Ben-Gal 2005)”. Outlier detection can either be parametric or nonparametric. The
former makes assumption about the probability distribution of the observations.
From a parametric point of view, changed objects can be considered outliers that
contaminate the probability distribution of the unchanged class. Accordingly, outlier
detection boils down to the identification of region in the feature space in which



96 O. Yousif and Y. Ban

an observation will be rejected (Ben-Gal 2005). Given the form of the probability
density function of the unchanged class pu .rj!u/, and a confidence level 1� ˛, it is
possible to estimate an optimum threshold r1�˛ that separates outlying observations
(i.e., changed objects) from non-outlying observation (i.e., unchanged objects) such
that:

P .r < r1�˛/ D

Z r1�˛

�1

pu
�
r
ˇ
ˇ!u
�
dr D 1 � ˛ (5.4)

Solving (5.4) for the threshold r1�˛ is equivalent to computing the inverse cumula-
tive distribution function for a certain confidence level. The parameters character-
izing the unchanged class probability density function pu .rj!u/ are estimated from
the observations (e.g., the modified ratio image). Unfortunately, the existence of
outliers (i.e., changed objects) will contaminate (bias) the estimates of unchanged
class PDF parameters and, consequently, affect the accuracy of outlier identification,
i.e., masking and swamping effects (Ben-Gal 2005). For this reason, an iterative
trimming procedure is usually adopted (Desclée et al. 2006), where at each iteration
a new estimate of PDF parameters and a threshold value are obtained followed
by identification and removal of outlying observations. The iterative trimming
continues until a certain convergence condition is met (e.g., when the unchanged
class PDF parameters stabilize). For a successful application of this technique, the
size of the changed class (i.e., the outliers) should be small fraction of the size of
the unchanged class (Bontemps et al. 2008).

Most applications of parametric univariate outlier detection assume the target
distribution to be Gaussian. For the same reason discussed in the Kittler-Illingworth
algorithm case, the unchanged class is assumed to be lognormally distributed. In
this work, the confidence level .1 � ˛/ is set equal to 0.995.

5.3 Datasets Description

To evaluate the object-based change detection using three unsupervised thresholding
techniques, two multitemporal TerraSAR-X datasets, each has 4000 � 4000 pixels
in size with a pixel spacing of 1.25 m, are used. The first dataset covers a portion of
Shanghai, and consists of two TerraSAR-X scenes from August 20, 2008 (Fig. 5.2a),
and September 16, 2011 (Fig. 5.2b). The second dataset covers part of Beijing,
and consists of a pair of TerraSAR-X images acquired on May 9, 2008 (Fig. 5.3a)
and May 9, 2013 (Fig. 5.3b). The SAR images in each dataset were acquired on
near anniversary dates to eliminate seasonal effects. A substantial amount of change
occurred in Shanghai and Beijing within the time frame. The changes vary in nature
(i.e., type of change) and, subsequently, the intensity in the modified ratio image. To
quantitatively assess the performance of the thresholding algorithms, 735 changed
and 781 unchanged validation pixels for Shanghai, and 672 changed and 677
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Fig. 5.2 Shanghai dataset (a) date I image, and (b) date II image

Fig. 5.3 Beijing dataset (a) date I image, and (b) date II image

unchanged validation pixels for Beijing, are used. The ground truth samples were
collected using stratified random sampling strategy. Unchanged/changed labels
were assigned to samples on a pixel-by-pixel basis with the help of Google EarthTM

images acquired at approximately the same time as the experimental SAR images.
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5.4 Results and Discussion

To carry out a successful segmentation, the multitemporal SAR images were first
filtered using an enhanced Lee filter with a 7 � 7 pixels window size. The seg-
mentation was then carried out using the eCognition Multiresolution segmentation
module. For both datasets, the scale (i.e., heterogeneity), shape, and compactness
(parameters required by the Multiresolution segmentation module) were set equal
to 70, 0.5, and 0.5, respectively. These values give satisfactory results in the current
experimentation setup.

Figure 5.4a–c show segmentation results of Shanghai date I and date II images,
and the corresponding modified ratio image, respectively. In Fig. 5.4c the brighter
the object, the higher the probability of being a change object. The change
maps generated by thresholding the change image (i.e., the modified ratio image)
using Kittler-Illingworth, Otsu, and outlier detection are shown in Fig. 5.4d–f,
respectively. In these change maps, blue and gray colors indicate changed and
unchanged areas, respectively.

From the figure, one can observe the great similarity between the change
maps produced using the three techniques. This is also confirmed by the accuracy
assessment report shown in Table 5.1, i.e., the three algorithms achieved comparable
false alarm rates, detection accuracies, and kappa coefficients of agreement. This
is surprising given the fact that these algorithms are developed based on different
assumptions. Kittler-Illingworth and outlier detection are parametric techniques
that employ the lognormal distribution. The Otsu method tries to maximize
the separation between the classes, with no assumptions about their statistical
distribution. This algorithm, therefore, does not consider the special characteristics
of SAR images.

The comparison of these change maps with Google EarthTM optical images
acquired at approximately the same time reveals that many false alarms are due
to small objects of nonpermanent nature (e.g., cars) that happened to exist in the
scene during the acquisition of one of the images. Furthermore, one can observe that
some changes did not create sufficiently strong intensity in the change image to be
detected. A representative example is indicated by the red ellipse in Fig. 5.4, where
bare (smooth) soil changed to a new building with a smooth extended roof (see
Date I and Date II Google EarthTM images shown in Fig. 5.4g and h, respectively).
Both ground cover types interact similarly with the incident radar energy (i.e., a
low intensity of change in the modified ratio image), thus the change that has
occurred is not easily detectable. Note that with outlier detection this change can
be detected reducing the confidence level to 0.99 for example. This action, however,
will increase the false alarm rate from 8.07 % to 15.49 %.

Figure 5.5 shows the same information as in Fig. 5.4 but for the Beijing dataset.
This figure shows important aspects of urban change detection using SAR images,
in addition to what we have observed in the Shanghai case. The red arrow in Fig. 5.5
shows an agricultural field. From an urban point of view, no change of interest has
occurred (see Date I and Date II Google EarthTM optical images shown in Fig 5.5g
and h). However, from the perspective of the multitemporal SAR images, the field
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Fig. 5.4 Shanghai object-based (a) date I image, (b) date II image, (c) modified ratio image,
and change maps produced using (d) Kittler-Illingworth algorithm, (e) Otsu method, (f) Outlier
detection technique, (g) Date I image—Google EarthTM, (h) Date II image—Google EarthTM

Table 5.1 Shanghai results accuracy assessment

False alarm Detection accuracy Overall accuracy Kappa

K&I 11.14 85.58 87.27 0.74
Otsu 7.17 82.04 87.60 0.75
Outlier 8.07 82.72 87.47 0.75
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Fig. 5.5 Beijing object-based (a) date I image, (b) date II image, (c) modified ratio image,
and change maps produced using (d) Kittler-Illingworth algorithm, (e) Otsu method, (f) Outlier
detection technique, (g) Date I image—Google EarthTM, (h) Date II image—Google EarthTM

appears different. This can be attributed, for example, to different moisture content
due to heavy rain before the acquisition of the first image. Note that the images
in the Beijing dataset were acquired at the anniversary date (i.e., May 9th) and,
consequently, one does not expect significant differences in the growth cycle. The
difference in environmental condition was strongly reflected in the modified ratio
image (the field appeared bright), and the field was identified as changed by all three
thresholding algorithms. The accuracy assessment report for the Beijing results is
shown in Table 5.2, which indicates that the three algorithms achieved similar kappa
coefficients, and comparable false alarm rates.
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Table 5.2 Beijing results accuracy assessment

False alarm Detection accuracy Overall accuracy Kappa

K&I 13.74 73.81 80.06 0.60
Otsu 18.32 79.32 80.50 0.61
Outlier 13.74 72.32 79.32 0.59

Tables 5.1 and 5.2 also show that the result obtained for the Beijing dataset
is rather poor compared with that obtained for Shanghai dataset. This could be
attributed to the fact that a substantial amount of the change that has occurred in
the Beijing study area is due to the replacement of informal settlements with new
modern buildings. This is another example of when the occurred ground change
does not induce strong enough intensity in the change image to be successfully
detected.

Although all three algorithms achieved equivalent results for both datasets, a
few points need to be carefully considered. Kittler-Illingworth and outlier detection
allow the inclusion of prior knowledge about the classes in the thresholding process.
If the parametric form of the two classes probability density function is known,
then capturing this knowledge in the thresholding process is an advantage, and
Kittler-Illingworth could be the right choice. The distribution of the unchanged class
in the ratio can often be inferred from empirical (e.g. log normal and Weibull)
or theoretical (e.g., Gamma and square root Gamma) models used to describe
the statistical behavior of the intensity/amplitude (Moser and Serpico 2006). The
changed class in urban environments often consists of several types of changes. In
this case, one would be less confident about which model to use to model the change
class, and the use of Kittler-Illingworth could lead to the estimation of a biased
threshold. In this case outlier detection could be the right choice. This technique is
flexible in the sense that it only requires assumptions about the distribution of the
unchanged class, and the false alarm rate (or for that matter the detection accuracy)
can easily be controlled by varying the confidence level. As for the Otsu method,
it is not possible to include any prior knowledge we might have about the statistics
of the classes. The algorithm depends exclusively on the information conveyed by
the histogram of the modified ratio image. The success of the algorithm depends
on how the input image meets the assumptions on the background—for example,
a biased threshold will be obtained if the assumption of equal class variances is
violated (Kurita et al. 1992).

At this point it is pertinent to ask the question: is it possible to achieve a better
detection accuracy using any other thresholding method? To answer the question,
Fig. 5.6 shows variations in kappa coefficient of agreement as a function of the
threshold value, for (a) Shanghai and (b) Beijing datasets. One hundred threshold
values were used to construct the graphs. For each threshold value, a change map is
generated and the kappa coefficient of agreement is calculated. The figure shows that
the maximum attainable kappa coefficients for Shanghai and Beijing dataset are 0.75
and 0.62, respectively. The corresponding false alarm rates are 7.2 % and 18.8 %,
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(a) (b)

Fig. 5.6 Variations in kappa coefficient of variation as a function of the threshold value, (a)
Shanghai, and (b) Beijing dataset

respectively. The graphs in Fig. 5.6 together with Tables 5.1 and 5.2 indicate that the
three thresholding algorithms achieved results very close to the maximum possible
given the modified ratio images as change indicator. The maximum achievable
accuracies, however, are not very high especially for the Beijing dataset. This
shortcoming could be attributed to the fact that multitemporal SAR images are
not capable of reflecting/expressing all types of change that might have occurred
in the urban environment. Some changes do not produce intensity in the change
image strong enough to be correctly classified by any thresholding/classification
algorithm without causing extremely high false alarm rates in the background. This
finding emphasizes the need to include more information to characterize all types of
urban changes. This could be achieved by (1) considering multichannel SAR images
(e.g., polarmetric SAR images) with their richer information content as opposed
to single-frequency single-polarization SAR images (Moser and Serpico 2009); (2)
using more than one SAR image per date with different acquisition geometries (e.g.,
viewing angles) or different seasons; (3) resorting to SAR and optical data fusion
for enhanced change detection analysis.

The abovementioned accuracy limitations can also be accredited to the way
we construct our change image—that is, the mathematical comparison operator
used. The ratio operator is suitable for SAR images because it suits SAR speckle
statistics better. Some studies have pointed out that this comparison operator has
certain limitations in accentuating the difference between the changed and the
unchanged class (Gong et al. 2012). This fact necessitates the development of more
sophisticated change image generation mechanisms capable of extracting more
change information from the multitemporal high resolution SAR images.
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5.5 Conclusion

In this study the unsupervised generation of a binary change map using multitem-
poral high resolution imagery was investigated using the object-based approach,
because of the strong intensity variation in high resolution imagery and the
SAR speckle. For image segmentation, multidate segmentation was used. Image
comparison was carried out using a modified version of the ratio operator that
groups both positive and negative changes together, and consequently allows
for the separation of changed and unchanged classes using a single threshold.
Three automatic thresholding algorithms, i.e., Kittler-Illingworth, Otsu, and outlier
detection, were investigated for the generation of a binary change map. Qualitative
and quantitative analyses of the results indicate that the three algorithms achieved
similar accuracies. This finding is quite unexpected given the different assumptions
upon which each algorithm is based. The analysis also reveals that compared with
Shanghai, lower detection accuracies were achieved for the Beijing dataset. This
is mainly due to the complicated nature of the changes that have occurred in this
dataset.

Given the modified ratio change image, the analysis also reveals that the
accuracies achieved by the three algorithms are very close to the maximum possible.
Improvements are possible using multichannel multitemporal SAR images; using
more than one SAR image per date with different acquisition geometries; or through
the fusion of optical and SAR data since SAR has limited ability in reflecting all
types of ground changes. Improvement could also be achieved by the development
of more sophisticated images comparison techniques capable of extracting more
change information from the multitemporal SAR images.
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Chapter 6
Fusion of Multitemporal Spaceborne SAR
and Optical Data for Urban Mapping
and Urbanization Monitoring

Yifang Ban and Alexander Jacob

Abstract The overall objective of this research is to evaluate multitemporal
spaceborne SAR and optical data for urban land cover mapping and urbaniza-
tion monitoring. Multitemporal Sentinel-1A SAR and historical ERS SAR and
ENVISAT ASAR data as well as HJ-1B multispectral data were acquired in Beijing,
Chendgdu and Nanchang, China where rapid urbanization has taken place. KTH-
SEG, a novel object-based classification method is adopted for urban land cover
mapping while KTH-Pavia Urban Extractor, a robust algorithm is improved for
urban extent extraction and urbanization monitoring. The research demonstrates
that, for urban land cover classification, the fusion of multitemporal SAR and optical
data is superior to SAR or optical data alone. The second best classification result
is achieved using fusion of 4-date SAR and one HJ-1B image. The results indicate
that carefully selected multitemporal SAR dataset and its fusion with optical data
could produce nearly as good classification accuracy as the whole multitemporal
dataset. The results also show that KTH-SEG, the edge-aware region growing and
merging segmentation algorithm, is effective for classification of SAR, optical and
their fusion. KTH-SEG outperforms eCognition, the commonly used commercial
software, for image segmentation and classification of linear features. For Urban
extent extraction, single-date and multitemporal SAR data including ERS SAR,
ENVISAT ASAR and Sentinel-1A SAR achieved very promising results in all
study areas using the improved KTH-Pavia Urban Extractor. The results showed
that urban areas as well as small towns and villages could be well extracted
using multitemporal Sentinel-1A SAR data while major urban areas could be well
extracted using a single-date single-polarization SAR image. The results clearly
demonstrate that multitemporal SAR data are cost- and time-effective way for
monitoring spatiotemporal patterns of urbanization.
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6.1 Introduction

For the first time in history, more than half of the people on the planet live in cities.
By 2050, the world is expected to add an additional 2.5 billion urban dwellers, with
nearly 90 % of the increase concentrated in Asia and Africa. Just three countries—
China, India and Nigeria—together are expected to account for 37 % of the projected
growth of the world’s urban population between 2014 and 2050 (United Nations
2014). China, the most populous country on earth, has been in transition from a
largely rural society to a predominantly urban one since 1980s (Fig. 6.1). With the
urbanization rate at 50 %, now China has 89 cities with a population of a million or
more while the United States has 37 and India 32. As a result, huge areas of arable
land, forest, and grassland, as well as numerous bodies of water, have been used
in new ways to meet strong demand stemming from urbanization and industrial
development. Although only a small percentage of global land cover, urban areas
significantly alter climate, biogeochemistry, and hydrology at local, regional, and
global scales (Seto et al. 2011). Cities are hot spots of production, consumption,
and waste generation. According to the United Nations, cities are responsible for
75 % of global energy consumption and 80 % of greenhouse gas emissions (Ash
et al. 2008). Thus, accurate and timely information on the current state of urban land
cover as well as the rate and distribution of urbanization is of critical importance to
support sustainable urban development.

Despite the growing importance of urban land in local, regional to global scale
environmental studies, it remains extremely difficult to map urban areas at multi-
scales due to the heterogeneous mix of land cover types in urban environments.
At present, the information urban planners and decision makers needed to support
planning activities are either dated or collected through time-consuming field survey
or visual interpretation of images. With its synoptic view and the repeatability,
remote sensing can reveal spatio-temporal growth trajectories of cities, thus allow
a thorough understanding of the impacts of urbanization on ecosystems and

Fig. 6.1 Urbanization in Shanghai, Left: 1979 Landsat image; Right: 2010 HJ-1B image
(Shanghai: dark grey in the center of 1979 image; light grey in 2010 image; Agriculture: red)
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ecosystem services. Since the launch of Landsat-1 in 1972, a large number of
earth observation (EO) satellites have been launched. With the recent launches of
ESA Sentinel-1A/-B and Sentinel-2A, SAR and optical data with global coverage
and operational reliability will become routinely available. They provide excellent
opportunity to develop novel methods and algorithms for urban mapping and
urbanization monitoring at local, regional and global scales.

Various studies have investigated the magnitude, patterns, and types of changes
in urban regions with remote sensing images and spatially explicit data. However,
the interpretation and analysis of urban land cover change using satellite imagery
still presents many challenges because of the spatial and spectral heterogeneity of
urban environment. Although urban areas could be extracted from time-series global
land cover (GLC) databases, each of the datasets that have emerged during the last
decade (e.g, GLC2000, GlobCover) suffers from limitations related to scale and
definitional issues. Moreover, the maps differ by an order of magnitude in how they
depict urban areas. The extreme variability in these estimates calls into question the
accuracy of each map’s depiction of urban and built-up land (Schneider et al. 2009).
Using Landsat TM/ETMC and HJ-1 data, China recently produced the first 30 m
GLC maps, GlobeLand30 for 2000 and 2010 with a self-reported overall accuracy at
83 % (Chen et al. 2014, 2015). The artificial surface class was well extracted using
a pixel-, object- and knowledge-based approach. These maps, however, took 4 years
to produce at a very high cost. Using a fully automated approach, FROM GLC was
also produced by China with a promising overall accuracy of 65 %. Several classes
including impervious areas, however, were poorly classified. Some of the accuracies
for impervious lands fall below 20 %, with a barely 10.5 % producer’s accuracy and
30.8 % user’s accuracy. In addition, for the 2010 classification, 74 % of all Landsat
data were from 2006 to 2011 and majority of the data were from non-summer season
(Gong et al. 2013). Therefore, there is an urgent need to development effective
method for extracting and monitoring urban areas from satellite data in a timely,
accurate and consistent manner.

Single-date and multitemporal SAR data have been increasingly used in in urban
applications for mapping urban extent (e.g., Ban et al. 2015; Esch et al. 2011, 2013;
Gamba and Lisini 2013), urban land-cover classification (e.g., Hu and Ban 2012;
Niu et al. 2015), and change detection (e.g., Ban and Yousif 2012; Yousif and Ban
2013). In terms of SAR data used, various multitemporal spaceborne SAR data in
single polarization (e.g., Hu and Ban 2012), dual polarization (e.g., Ban and Jacob
2013), and full polarimetry (e.g, Niu and Ban 2012) have been evaluated for urban
applications. In terms of SAR processing and feature extraction methods, texture
measures (e.g., Dekker 2003; Pellizzeri et al. 2003), contextual information (e.g.,
Niu and Ban 2012, 2014), and classification algorithms such as statistical (e.g.,
Lombardo et al. 2003) neural network (e.g., Bruzzone et al. 2004), support vector
machine (SVM) (Niu and Ban 2013a; Waske and Benediktsson 2008), knowledge-
based, and rule-based approaches (e.g., Niu and Ban 2013b), have been investigated
for urban mapping with varying degree of success.

Pixel-based methods have been commonly employed for image classification
and information extraction. However, for high resolution optical and SAR data,
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pixel-based approach often results in “pepper-salt” effects due to the high variance
of the pixel values. Object-based methods, on the other hand, have been increasingly
adopted in urban and land cover using high-resolution optical data (Blaschke 2010),
SAR data (e.g. Hu and Ban 2012; Niu and Ban 2013a) and fusion of SAR and
optical data (e.g. Ban et al. 2010) since more information such as object features and
spatial relationships could be explored in the analysis thus improved classification
accuracy. The existing automatic image segmentation techniques can be classified
into four approaches, namely, (1) thresholding techniques, (2) boundary-based
methods, (3) region-based methods, and (4) hybrid techniques. The pros and cons
of the techniques are discussed in Blaschke (2010) and Fan et al. (2001). The most
commonly used segmentation methods is region growing and merging in eCognition
(Blaschke 2010). Such method often results in segments growing across region
boundaries. Boundary-based methods using edge detection such as Canny edge
detector are also explored for image segmentation (Senthilkumaran and Rajesh
2009). Several studies found that integrating edge and region detection can produce
better segmentation of images (Yu and Clausi 2008; Yu et al. 2012) than region-
based and boundary-based method. However, these studies used relatively simple
images such as photographs of faces, flowers and buildings, not the complex
Spaceborne SAR and optical data in challenging urban, land cover and coastal water
environments. Therefore, further research is needed to develop robust methods for
segmentation of SAR and optical data that integrates edge detection and region
growing and merging. An initial study showed promising results using KTH-
SEG, an edge-aware region growing and merging algorithm (Ban and Jacob 2013).
Further development of this method are needed to make it more robust, automatic
and with multi-resolution segmentation capability.

Very high resolution optical and/or SAR imagery and object-based approaches
dominate urban remote sensing at the local level (e.g., Gong et al. 1992; Jacquin
et al. 2008; Ban et al. 2010; Moran 2010; Gamba et al. 2011; Hu and Ban 2012;
Haas and Ban 2016) while Landsat, ENVISAT ASAR, MERIS as well as MODIS
or nighttime light data and pixel-based techniques are mostly used for regional
and global analysis (e.g., Elvidge et al. 2010; Esch et al. 2010; Schneider et al.
2010; Wang et al. 2010; Zhang and Seto 2011; Taubenböck et al. 2012; Gamba
and Lisini 2013; Haas and Ban 2014). One of the recent developments are moving
towards global urban extraction using optical data at very high spatial resolution.
For examples, Pesaresi et al. (2011) developed a texture-based algorithm to extract
urban extent of over 40 cities around the globe using Ikonos and QuickBird
panchromatic data resampled to a nominal resolution at 10 m. The technique is
promising, but true global mapping with such data remains a challenge due to the
huge amount of data and computations involved as well as data availability issue
due to cloud cover. Compared to optical data, SAR data have not been equally
explored in urban applications due to the complexity of their interactions with
diverse urban features. With its all-weather/illumination capability and its unique
information content, however, SAR data have been increasingly investigated for
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global urban extent extraction at various spatial resolutions with promising results.
For examples, Gamba et al. (2011) developed a method to extract global urban
area extent from SAR images. The method has been tested in different set of SAR
images produced using different sensors with different spatial resolutions that cover
different cities around the world with promising results. Esch et al. (2012 and 2013),
on the other hand, developed a method to extract global urban settlement from
TanDEM-X images at 12 m spatial resolution. The proposed methodology was
evaluated using images from several cities with an overall accuracy up to 94.8 %
achieved. The Global Urban Footprints (GUF) produced by DLR showed promising
results, but the final products are yet to be publically available. Recently, Ban et al.
(2015) developed a robust processing chain, the KTH-Pavia Urban Extractor, using
ENVISAT ASAR data and very good results were achieved in ten global cities.
It is desirable to improve the Urban Extractor for effective urban mapping and
urbanization monitoring using Sentinel data.

Furthermore, the fusion of SAR and optical data has been proven advantageous
by making use of the complementary nature of the data acquired by different
sensors. Both SAR and optical data have their own merits and limitations, thus the
fusion of SAR and optical data can overcome the deficiencies associated with a
single sensor. Various studies have been conducted for urban land-cover mapping
and change detection using fusion of SAR and optical data (e.g., Amarsaikhan
and Douglas 2004; Ban et al. 2010; Ban and Jacob 2013; Ban et al. 2014; Gamba
and Houshmand 2001; Gamba and Aldrighi 2012; Griffiths et al. 2010; Waske and
Linden 2008; Zhu et al. 2012). It was demonstrated that feature- and decision-level
fusion of multi-source data could achieve higher accuracy for classification and
object recognition than the use of single source data. Therefore, the objective of
this research to investigate the fusion of multitemporal spaceborne SAR and optical
data for urban mapping and urbanization monitoring.

6.2 Study Areas and Data Description

6.2.1 Study Areas

The study areas include Beijing, Chengdu and Nanchang where rapid urbanization
has taken place in the past three decades. Beijing, the capital of China, is currently
China’s second largest and the world’s eighth largest city with a population of
19.5 million in 2014 and the city is expected to grow further up to 25.7 million
citizens until 2030, making it the world’s fifth largest city (United Nations 2014).
Chengdu, the capital of Sichuan province, is the fifth-most populous agglomeration
in China. Nanchang, the capital of Jiangxi province, has 5 million inhabitants.
The major land cover classes include high-density builtup areas, low-density
builtup areas urban green spaces, golf courses, agricultural fields, forest and water
bodies.
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6.2.2 Data Description

For urban extent extraction and urbanization monitoring, multitemporal multi-
resolution Sentinel-1A SAR acquired in Interferometric Wide swath mode (IW) at
20 m resolution were acquired in Beijing in 2015 during the vegetation season to
maximize the difference between urban and rural areas. One date Sentinel-1A SAR
Multi-date, dual-polarization SAR data from both ascending and descending orbit
were selected to evaluate the potential of SAR data for improved urban extraction
and urban change detection. Historical ENVISAT ASAR and ERS-1/2 SAR data
were also collected in Beijing for urbanization monitoring. The Sentinel-1A SAR
and historical SAR images used in Beijing are listed in Table 6.1. For urban
extent extraction and urbanization monitoring, multitemporal ERS-1/2 SAR and
ENVISAT ASAR acquired in 1998, 2003, 2008 and 2011 were selected Chengdu
while one Sentinel-1A C-HH SAR image acquired on May 12, 2014 and one
ENVISAT ASAR C-HH image acquired on April 19, 2006 were used in Nanchang
(Fig. 6.2).

For urban land cover mapping, six-date ENVISAT ASAR images with multiple
incidence angle, alternating polarization (HH/VV), and single polarization (VV)
at 12.5 m pixel spacing (30 m resolution) were acquired from May to September,
2009. All SAR images were in ascending orbit except one. The data set contains four
ASAR beam modes with incidence angles ranging from 20ı to 45ı. Table 6.2 shows
the characteristics of the ASAR images used in this research. One scene of HJ-1B
charge-coupled device (CCD) image acquired on May 12, 2009, was selected for
this research since no images were acquired during the peak vegetation season when
confusion between urban classes and bare fields can be reduced. The early season
image also presents an opportunity for research into the role of SAR in improving
land-cover classification of optical data acquired in non-optimal season as this is

Table 6.1 Multitemporal SAR images acquired in Beijing

Satellite Sensor Polarization Beam mode Orbit Acquisition date

Sentinel-1A SAR VV/VH IW D 2015-05-24
Sentinel-1A SAR VV/VH IW D 2015-06-05
Sentinel-1A SAR VV/VH IW D 2015-06-17
Sentinel-1A SAR VV/VH IW D 2015-07-23
Sentinel-1A SAR VV/VH IW A 2015-07-30
Sentinel-1A SAR VV/VH IW A 2015-08-23
Sentinel-1A SAR VV/VH IW D 2015-09-09
Sentinel-1A SAR VV/VH IW D 2015-09-16
Sentinel-1A SAR VV/VH IW A 2015-10-03
Sentinel-1A SAR VV/VH IW A 2015-10-10
ENVISAT ASAR VV IS2 D 2008
ERS-2 SAR VV IM D 1998
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Fig. 6.2 Multitemporal Nanchang images: Left: 2006 ENVISAT ASAR; Right: 2014 Sentinel-1A
SAR

Table 6.2 Multitemporal ENVISAT ASAR images acquired in Beijing

Satellite Sensor Polarization Beam mode Orbit Acquisition date

ENVISAT ASAR HH/VV IS2 A 2009-05-17
ENVISAT ASAR HH/VV IS2 D 2009-05-27
ENVISAT ASAR HH/VV IS4 A 2009-06-08
ENVISAT ASAR HH/VV IS6 A 2009-06-11
ENVISAT ASAR VV IS7 A 2009-08-04
ENVISAT ASAR VV IS7 A 2009-09-08

often the case in many parts of the world due to cloud cover. HJ-1B stands for
Disaster and Environment Monitoring and Forecast Small Satellite Constellation
B, which is one of the small Chinese Earth observation satellites. Launched on
September 6, 2008, HJ-1B payloads include a CCD camera that acquires images
in blue, green, red, and near-infrared parts of the spectrum at 30-m resolution and
an infrared camera (CEOS 2011). The ENVISAT ASAR multittemporal composite
and HJ-1B images are shown in Fig. 6.3.

Field data, existing land cover maps as well as high resolution Google images
were used for calibration and validation.

6.3 Methodology

The methodology in this research involves multitemporal analysis of spaceborne
SAR and optical data as well as historical SAR data including image preprocessing,
object-based image classification, urban extent extraction, change detection and
validation/accuracy assessment.
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Fig. 6.3 Multitemporal Beijing images, Left: ENVISAT ASAR; Right: HJ-1B Multispectral

6.3.1 Image Preprocessing

In order to evaluate and compare satellite data from different sensors and different
dates, each image must be georeferenced to a common database by orthorectification
using satellite orbital models and the 30 m Shuttle Radar Topographic Mission
(SRTM) digital elevation model (DEM).

Multitemporal speckle filtering was then performed on all SAR data to remove
speckle. After that, the SAR data were linearly scaled to 8 bits to enhance the
contract between urban and non-urban areas for urban extraction and to reduce
computation cost.

6.3.2 Urban Land Cover Classification with KTH-SEG

KTH-SEG algorithm is selected for urban land cover classification for its edge-
aware feature in region growing and merging and its ability to effectively segment
both SAR and multispectral data (Ban and Jacob 2013). KTHSEG is based on an
edge-aware region growing and merging algorithm. For edge detection a canny
edge detector is applied on every image and a majority voting is used to derive
the final edge. This layer is then used to enhance the region growing and merging
stage of the segmentation procedure. Therefore region growing is performed along
edges and offside the edges. As different ground features have different object size,
multi-resolution segmentation is being investigated. To handle large volume of data,
parallel computing is also implemented making use of an advanced tiling scheme
that avoids edge effects between the borders of two different adjacent tiles. The
growing phase can hence easily be parallelized and every tile is segmented by
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Fig. 6.4 KTH-SEG: multi-resolution edge-aware region growing and merging algorithm

itself first before merging into a bigger context of the adjacent tiles and regions.
Support Vector Machines (SVM) is selected for post-segmentation classification
as it has been proven superior to other classifiers in classification of multisensor,
high-dimensional data. For benchmarking, the eCognition is used for assessing the
quality of the segmentation from KTH-SEG. The methodology workflow of KTH-
SEG is presented in Fig. 6.4.

6.3.3 Urban Extent Extraction

The KTH-Pavia Urban Extractor, the processing chain for urban extent extraction
includes urban extraction based on spatial indices and Grey Level Co-occurrence
Matrix (GLCM) textures, and SAR and optical data preprocessing, enhancement,
and post-processing. The method is based on Local Indicators of Spatial Associ-
ation (L.I.S.A.), including the Moran index, the Geary index and the Getis-Ord
index, and Grey Level Co-occurrence Matrices (GLCM) variance and correlation
textures. For Sentinel-1A SAR data, the dissimilarity texture is used instead of
correlation. Preprocessing includes orthorectification, speckle filtering and scaling.
Post-processing include mountain removal using the 30 m SRTM DEM and fusion
of various urban extraction results using logical operators or majority voting (MV).
The detailed methodology can be found in Fig. 6.5 below. The method has been
tested on ENVISAT ASAR data, and the results showed urban areas can be
automatically extracted in good accuracy with only 1–2 ASAR images (Ban et al.
2015). The method workflow of the KTH-Pavia Urban Extractor is presented in
Fig. 6.5.
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Fig. 6.5 Overview of the KTH-Pavia urban extractor for urban extent extraction

6.3.4 Accuracy Assessment

The urban land cover classifications, urban extent maps and urban changes are
preliminarily validated using random sampling based on high resolution Google
images and field survey. Rigorous validation are planned using more validation
samples and in comparison with existing reliable land cover maps.

6.4 Results and Discussion

6.4.1 Fusion of Multitemporal SAR and Optical Data for
Urban Land Cover Classification

The classification results for various combinations of multitemporal ENVISAT
ASAR data and their fusion with HJ-1B multispectral data are presented in
Table 6.3. The results show that the more multitemporal images are used, the better
the SAR classification. The best classification accuracy (overall: 65.1 %, kappa:
0.61) is achieved using the whole multitemproal ASAR dataset while the second
best accuracy (overall: 59 %, kappa: 0.54) is using 4-date SAR in both ascending
and descending orbits. The best fusion result is achieved using all multitemporal
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Table 6.3 Urban land cover classification accuracies in Beijing: a comparison

May 17 May 27 Jun. 8 Jun. 11 Aug. 04 Sept. 8 May 12

IS2 A IS2 D IS4 A IS6 A IS7 A IS7 A HJ-1B
Overall
accuracy Kappa Name

x x 47.3 0.41
x x 48.3 0.42
x x x 50.6 0.44

x x x 53.4 0.48
x x 53.9 0.48

x x x x 54.5 0.49
x x x 53.1 0.47

x x 54.6 0.49
x x x x x 54.4 0.49 ASC only

x x x x x 56.9 0.52 ASC C
DSC

x x x x x 56.9 0.52
x x x x 56.5 0.51
x x x x 59.0 0.54 4-Date SAR

x x x x x x 65.1 0.61 All SAR
x 70.6 0.67 Hj-1B only

x x x x x 74.1 0.71 Fusion red
x x x x x x x 75.5 0.72 Fusion all

SAR data and HJ-1B optical data at 75.5 % (kappa: 0.72), much better than
the optical (overall: 70.6 %, kappa: 0.67) or SAR classification alone. Similar to
the multitemporal SAR classification, the second best fusion result is achieved
using the 4-date SAR data and HJ-1B data. These results clearly demonstrated
that multitemporal SAR data could complement the optical data and improve
urban land cover classification. Figure 6.6 presents the comparisons of the various
results in Beijing International Airport. For examples, the new terminal on Beijing
International Airport in shown in the encircled area on the right. This could easily
be identified as a building using SAR data (B) but was classified as bare soil when
using optical data (E). In lower-left corner of the encircled area shows the confusion
among low backscatter classes such as airport runways, water, golf courses and
roads, a problem of the SAR classification (B). These were much better separated in
the optical result (E). When looking at these areas in the fusion result (C) it is evident
that both confusions are mostly resolved, demonstrating a good synergy of the SAR
and optical data. In (F) the best classification result based on the segments from
eCognition is shown. The accuracy of the eCognition result is around 5 % lower than
the best result from KTH-SEG. A possible reason for this could be that, attributed
to edge detection, the segments of KTH-SEG find better boundaries especially for
small linear features such as roads and rivers (see the river and the golf course in the
left encircled area in C and F in Fig. 6.6).
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Fig. 6.6 Classification comparison in Beijing International Airport, (a): SAR image; (b): All
SAR; (c): Fusion; (d): Optical Image; (e): Optical Alone; (f): eCognition

6.4.2 Multitemporal SAR Data for Urban Extent Mapping
and Urbanization Monitoring

Figure 6.7 presents the urban extent extractions in Beijing using a single-date
Sentinel-1A IW C-VV SAR acquired on May 24, 2015 as well as the multitemporal
average Sentinel-1A SAR in both ascending and descending orbits during May to
October, 2015. The results demonstrate that urban areas could be well extracted
using a single-date single-ploarization Sentinel-1A SAR data. However, the small
towns and villages outside Beijing are under-estimated. Using the multitemporal
average of Sentinel-1A SAR data in dual polarization from both ascending and
descending orbits, urban areas as well as small towns and villages are well extracted.
Visual comparison with 2010 GlobeLand30’s artificial surface layer showed very
good match except the new builtup areas during 2010 and 2015. Rigorous validation
are being conducted using 10 000 random sampled pixels for urban/non-urban
respectively and accuracy assessment are expected to be reported in the near future.

Urban extent extractions were also performed using historic ERS-2 SAR and
ENVISAT ASAR SAR images with very good results. Figure 6.8 shows the
urbanization patterns in Beijing during 1998 to 2015. It is observed that urban areas
expended rapidly in Beijing during 1998 and 2003 as shown in A and B in Fig. 6.8.
Urban expansions continue in the urban-rural fringe during 2003–2015, but they are
outside the subset shown in Fig. 6.8. In the Olympic Park area, some buildings were
built during 1998–2003, but then removed to built the Olympic Park during 2003–
2008. Figure 6.9 shows the successful extraction of urban areas and the changes
detected using 2014 Sentinel-1A SAR and 2006 ENVISAT ASAR data. Both new
builtup areas, marked by the black oval, and smaller changes such as new bridges,
the linear features inside the blue ovals are well extracted.
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Fig. 6.7 Urban extent extraction in Beijing: Left: Extraction from a Single Date SAR (2015-05-24,
C-VV); Right: Extraction from 2015 Multitemporal Average SAR

Fig. 6.8 Urban extraction in Beijing from SAR Data. (a): 1998 ERS-2; (b): 2008 ENVISAT

ASAR; (c): 2015 Sentinel-1A SAR. (d): Change analysis result. Buildings removed after 1998;

Buildings removed after 2008; Buildings added between 1998 and 2008; Buildings

added between 2008 and 2015; Agreement 1998–2015

Figure 6.10 presents the urbanization trend in Chengdu During 1998 to 2011,
extracted from multitemporal SAR images. The time series clearly show that
Chengdu expanded rapidly during the past two decades, connecting isolated satellite
towns into a continuous urban area.
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Fig. 6.9 Urban extraction and change detection in Nanchang. Left: 2006; Center: 2014, Right:
Change with differences in Red)

Fig. 6.10 Urbanization seen from SAR. Upper Left: Chengdu in1998; Upper Right: Urban
expansion from 1998 to 2003 in Red; Lower Left: 1998 to 2003 to 2008; Lower Right: 1998 to
2003 to 2008 to 2011, the cumulative changes between the years
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6.5 Conclusions

The research demonstrates that the fusion of multitemporal SAR and optical data
is superior to SAR or optical data alone for urban land cover classification. Fusion
of 4-date SAR and one HJ-1B image could achieve almost as good classification
accuracy as the whole multitemporal dataset. The results also show that the edge-
aware region growing and merging segmentation algorithm, KTH-SEG, performs
very well on SAR, optical and their fusion. KTH-SEG outperforms eCognition, the
commonly used commercial software, for image segmentation and classification
of linear features. For Urban extent extraction, single-date and multitemporal
spaceborne SAR data including ERS SAR, ENVISAT ASAR and Sentinel-1A
SAR achieved very promising results in Beijing, Chengdu and Nanchang using the
improved KTH-Pavia Urban Extractor. The results clearly show that the SAR time
series data are cost- and time-effective way for monitoring urbanization patterns and
detecting urban changes.
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Chapter 7
Post-classification Change Detection in Arctic
Glaciers by Multi-polarization SAR

Vahid Akbari, Anthony P. Doulgeris, and Torbjørn Eltoft

Abstract This chapter presents a method for post-classification change detection
in Arctic glaciers from multi-polarization synthetic aperture radar images. We
produce terrain corrected multilook complex (MLC) covariance data by including
the effects of topography on both geolocation and SAR radiometry, as well as
azimuth slope variations on polarization signature. An unsupervised contextual
non-Gaussian clustering algorithm is employed for segmentation of each terrain
corrected polarimetric SAR image and subsequently labeled with the aid of ground
truth data into glacier facies. We demonstrate the consistency of the segmentation
algorithm by characterizing the expected random error level for different SAR
acquisition conditions. This allows us to determine whether an observed variation
is statistically significant and therefore can be used for post-classification change
detection of Arctic glaciers. Subsequently, the average classified images of succeed-
ing years are compared, and changes are identified as the detected differences in the
location of boundaries between glacier facies. In the current analysis, a series of
dual polarization C-band ENVISAT ASAR images over the Kongsvegen glacier,
Svalbard, is used for demonstration.

7.1 Introduction

Identifying and monitoring fluctuations in glacier facies provide a visible mani-
festation of climate change (Solomon et al. 2007). The only feasible method to
obtain good spatial and temporal coverage of the Arctic glaciers is through the
use of satellites. Space-borne synthetic aperture radar (SAR) instruments, operating
independently of weather and daylight, are a particularly valuable tool in Arctic
areas. SAR has an added advantage over higher frequency instruments (visible
and laser) because the signal penetrates some distance into the glacier such that
the return signal is influenced not only by the surface, but also by the shallow
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subsurface. Another advantage of SAR in glacier monitoring is its sensitivity to
moisture content and surface roughness, which enables it to detect different glacial
zones. Multi-polarization SAR may provide additional information, and thus is a
better tool for glacier monitoring than single-channel SAR sensors.

A difference in radar backscattering between multi-temporal multi-polarization
SAR data may be caused by several factors such as actual land cover change,
differences in viewing geometry (satellite orbit and sensor look angle), terrain
topography (surface slopes), differences in polarization configuration, and differ-
ences in meteorological conditions. These considerations motivate us to develop a
processing chain for post-classification change detection in Arctic glaciers. Models
accounting for temporal variation in multi-temporal multi-polarization SAR images
should separate useful temporal variation, i.e., land cover or seasonal changes from
variation arising due to other factors mentioned above.

Satellite-borne SAR instruments have proven to be very useful tools for multi-
temporal image analysis. However, terrain topography has a significant impact on
the geometric and radiometric quality of SAR images. For the geometric correction
of topographic effect, precise terrain geocoding of SAR data is required. This can
be accomplished by using a digital elevation model (DEM) and precise satellite
state vectors. In addition to geometric distortions, surface slopes modulate SAR
backscatter and can be split into two main effects. The first effect is changes in radar
cross sections (RCS) per unit image area (Ulander 1996; Small 2011) and the second
effect is that polarization states are also affected since the terrain slopes, especially
azimuthal slopes, induce polarization orientation changes (Schuler et al. 1999; Lee
et al. 2000). Hence, before analyzing the data, terrain correction is a prerequisite for
comparison of multi-temporal SAR images. This study first addresses the precise
geocoding and geometric terrain correction (GTC) of SAR data and then radiometric
terrain correction (RTC) of multi-polarization SAR data that utilizes the pixel size
normalization on each element of the sample covariance matrix (Atwood et al.
2012). Moreover, orientation angle compensation (OAC) is included immediately
following RTC (Lee et al. 2002). Accurate backscatter estimates enable more robust
use of the retrieved values for our task of change detection.

Polarimetric SAR (PolSAR) data distributions are generally derived from the
product model, which describes that the backscattered signal results from the
product between a Gaussian speckle noise component and the textured terrain
backscatter (Lee et al. 1994; Oliver and Quegan 2004). Several statistical models
have been proposed in the literature to describe the texture term. For textured areas,
the Kd (or K-Wishart) model is commonly used (e.g., Lee et al. 1994; Doulgeris et
al. 2008). However, the analysis shows that this model does not always represent
the data well. The G0

d -distribution is another multivariate distribution (Freitas et al.
2005) to model extremely heterogeneous data. The two-parameter Kummer-U dis-
tribution has been introduced by Bombrun et al. (2011) to model polarimetric vector
data. We use its multilook extension, named the matrix-variate Ud-distribution, for
multilook covariance matrix data. The Ud-distribution is applicable to describe both
single-channel and PolSAR data. The flexibility of this model, with an extra texture
parameter with respect to Kd and G0

d, encourages the authors to use this model for
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multi-temporal multi-polarization SAR data. It is expected to yield improved results
because of its flexibility to model more varied textures.

In this study, we use an unsupervised contextual non-Gaussian clustering algo-
rithm, named U-MRF in (Doulgeris et al. 2012; Doulgeris 2015), to segment each
terrain corrected SAR scene. This contextual non-Gaussian clustering algorithm
uses a Markov random field (MRF) model that integrates the Ud-distribution for the
multi-polarization SAR data statistics conditioned to each image cluster, and a Potts
model for the spatial context. The parameters of the U-MRF model are estimated by
the iterative expectation-maximization (EM) algorithm (Dempster et al. 1977) and
Besag’s algorithm (Besag 1977) in the segmentation process. Contextual informa-
tion can improve the accuracy and robustness of the image segmentation and hence
leads to improved change detection results. The theoretical approach proposed in
this paper is general for multipolarization SAR data and applicable not only to
full-polarization data, but also to dual polarization and single-channel SAR data,
although with some reduction in distinguishing power. The analysis utilizes several
ENVISAT ASAR, dual polarization scenes over Kongsvegen glacier, Svalbard from
spring 2004, 2005 and 2006, together with some ground based field observations.
Ground truth data are used to label segmented images and to investigate the accuracy
of classifications. We demonstrate consistency by comparing classified scenes taken
on the same day and from different acquisition parameters (e.g., look angle). The
surface of a glacier can be roughly divided into accumulation and ablation areas,
separated by the equilibrium line (the dividing line between the accumulation and
ablation areas) (König et al. 2004). Monitoring the firn line position over time
is of interest, because there are indications that this line is correlated with the
equilibrium line. Hence, we demonstrate the consistency of the classification results
as firn area total variation between chosen no change pairs to obtain the expected
variation of firn area boundary with superimposed ice (SI) zone. Subsequent yearly
classifications are discussed in terms of post-classification change detection and
changes are identified as the detected difference in the location of boundaries
between glacier facies.

This chapter is organized as follows: in Sect. 7.2, we define the backscatter
quantities measured by a PolSAR, namely the scattering vector, radar backscatter,
and the area normalized scattering vector. Section 7.3 describes the processing chain
of time series analysis including multilook processing, terrain correction, unsuper-
vised segmentation and post-classification change detection. Sect. 7.4 introduces
the study area and describes the example data. Sect. 7.5 presents the results. Finally,
conclusions from the presented research are given in Sect. 7.6.

7.2 Measurements from SAR Sensors

Fully-polarimetric imaging radar measures the amplitude and phase of backscat-
tered signals in the four combinations of the linear receive and transmit polar-
izations: HH, HV, VH, and VV. Assuming that the target reciprocity condition is
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satisfied, the backscattering of a monostatic polarimetric SAR system is character-
ized by the complex scattering vector, �, with dimension d D 3

� D
�

Shh

p
2Shv Svv

�T
2 C

3 (7.1)

where the elements represent the complex backscattering coefficients in the three
polarimetric channels, the superscript T denotes the matrix transpose, and

p
2 arises

from the requirement to conserve the total scattered power. The vector � is the
single-look complex (SLC) format representation of polarimetric SAR data. Single
and dual-channel polarimetric data can be treated in a similar way as subsets of
lesser dimension and, most likely, proportionally less information.

The radar backscatter (“) of a given target measured in the range-azimuth
coordinates for linear polarizations r,t 2 fH,Vg can be obtained from the elements
of scattering vector in (1) as follows (Freeman 1992):

ˇrt D 4�jSrtj
2: (7.2)

Both Srt and ˇrt are functions wave frequency, viewing geometry, wave polarization,
geometrical structure and dielectric properties of the object (Lee and Pottier 2009).
Eqs. 7.1 and 7.2 above represent the quantities which are directly measurable
by a SAR sensor. The area normalized scattering vector in the slant range plane
(subscriptˇ) is defined as:

�ˇ0 D
�ˇ
p

Aˇ
: (7.3)

where Aˇ represents the reference area of the ˇ0 backscatter coefficient that
contributes to the recorded signal.

Fully-polarimetric data is not always available because the wider coverage of
dual polarization or single polarization modes are often preferred for monitoring
purposes such as change detection. The different possible configurations of the
dual polarization mode systems are: HH/HV, VV/VH, or HH/VV. Therefore, only
a reduced version of � is available. Single channels are also possible, generally in
HH or VV.

7.3 Processing Chain for Post-classification
Change Detection

The time series analysis of multi-temporal multi-polarization SAR data for post-
classification change detection in this study consists of a processing chain with four
stages, as depicted in Fig. 7.1, and can be used for both single and multi-channel
SAR data. These stages are explained in detail below. The inputs are multi-temporal
multi-polarization SAR images with different configurations.
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Fig. 7.1 Processing chain for
post-classification change
detection

7.3.1 Stage 1: Multilooking

The scattering vectors are first transformed into the form of multilooked sample
covariance matrices in order to reduce speckle noise at the expense of spatial
resolution (Lee and Pottier 2009), i.e.,

C D

LX

lD1

�l�
H
l (7.4)

where L is the nominal number of looks used for averaging and .�/Hmeans the
Hermitian transposition operator. Hence, after multilooking, each pixel in the image
is a realization of the d � d stochastic matrix variable denoted C, and the image
is referred to as the multilook complex (MLC) covariance image. We assume that
the MLC data is generated by a simple box-car multilook averaging of single-look
scattering vectors. The box-car is used so that we can assume a global number
of looks (degree of smoothing) and “simpler” statistical models, as opposed to
advanced dynamic speckle filters that produce a variable number of looks that
complicate the modelling.

7.3.2 Stage 2: Terrain Correction

Terrain topography influences both the placement of each observed point on the
Earth’s surface and the brightness of the radar return in radar geometry (Wivell et al.
1992; Loew and Mauser 2007). In this stage, we implement a three-step method to
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generate terrain corrected polarimetric SAR images for time series analysis. The
procedure consists of the following steps:

1. Geometric terrain correction (GTC);
2. Radiometric terrain correction (RTC);
3. Orientation angle compensation (OAC);

(1) GTC: The objective of SAR geocoding is to find the corresponding position on
the Earth for each image pixel, thereby transforming from the SAR coordinate
image into an Earth-based coordinate image. Since the satellite state vector is
known from the orbit information, the position of each SAR pixel is estimated
for a given earth model by solving the so-called range-Doppler equations
(Curlander and McDonough 1991). Due to geometrical distortions caused by
the side-looking geometry and rugged terrain, a one-to-one relation does not
always exist between the radar and the geographic map coordinates (Small
2011). The pixels that are located in layover and radar shadow regions have
to be masked out in this step. The importance of accurate geocoding of
multi-temporal imagery is obvious because largely spurious results of change
detection will be produced if there is misregistration. In cases of misregistration,
a number of false alarms occur, especially in the region of rapid intensity change
such as edges. This necessitates the use of precise terrain geocoding of SAR
data that not only transforms the images to a standard map projection, but
also accounts for topography with a high resolution DEM and precise orbital
information.

(2) RTC: The normalization of SAR imagery for systematic terrain variations
is required for meaningful single sensor multi-track intercomparisions and
post-classification change detection. Although the position of the backscatter
estimate has been corrected by the GTC, the radiometry of the geocoded
image remains in the slant range plane. Therefore, RTC is applied to correct
distortions due to the side-looking geometry of SAR systems and hill-slope
modulations. In this study, we first normalize the scattering coefficients with
respect to the ˇ0 reference area (Aˇ) according to Eq. 7.3, and then apply the
radiometric slope correction factor cos(‰), proposed in (Ulander 1996), on the
covariance matrices. Provided that the data are already calibrated with respect
to the elevation antenna pattern, range spreading loss, and channel to channel
calibration, all elements of covariance matrix in Eq. 7.4 can be simultaneously
radiometrically corrected to the ground range area by

CRTC D
cos .‰/

L

LX

lD1

�
�ˇ0

�
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�
�ˇ0

�H

l
D cos .‰/ :Cˇ0 (7.5)

where ‰ is the projection angle between the surface normal and the image
plane normal, which is assumed to vary between 0ı and 90ı and exclude
layover areas (Ulander 1996). All covariance matrix values now correspond
to the �0 backscatter coefficient, which is equivalent to �0 D ˇ0: cos .‰/. The
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conventional radiometric normalization method, which relies on the ellipsoidal
incidence angle only, is adequate for flatlands or for pixels with zero slope.
The expected results are radiometrically “flattened” SAR images. The required
parameters for performing the RTC are estimated in the geocoding step using an
available DEM and satellite state vector. In cases where a DEM is not available,
ellipsoidal-based radiometric correction is achieved over an earth model such
as WGS-84.

(3) OAC: Since different scattering mechanisms (double bounce, surface scatter-
ing, and volume scattering) have different sensitivity to terrain topography,
RTC is not sufficient for polarimetric applications to produce reliable results for
scattering characteristics (Atwood et al. 2012). The last step of terrain correction
is to compensate the polarization signature which is due to topography effects,
specifically azimuth slope variations. Polarization orientation angle (POA)
shifts are introduced by terrain topography slopes in the azimuth direction.
These shifts make the covariance matrix reflection asymmetric and can be
compensated based on the DEM-derived POA in (Lee et al. 2000). After
deriving the POA, the compensation can be done on the covariance matrices by

COAC D R .	/CRTCRT .	/ (7.6)

where 	 is the shift in the POA determined from the DEM, R(	 ) denotes the
rotation matrix (Lee et al. 2002), and CRTC and COAC are the covariance matrix
before (after the RTC) and after rotation, respectively.

Reflection symmetry holds for most natural backscatter media, meaning that
the co- and cross-polarized channels are uncorrelated. However, azimuth slope
variations may induce correlation between these channels. Subsequently, OAC over
natural images usually leads to reflection symmetric covariance matrix data. When
a DEM is not available, target decomposition-based methods are an alternative to
estimate the azimuth slope induced POAs directly from polarimetric SAR data, by
essentially enforcing reflection symmetry. The data are now ready for quantitative
image analysis, such as surface cover change detection.

7.3.3 Stage 3: Unsupervised Segmentation

An unsupervised, non-Gaussian, contextual segmentation method is used that
combines an advanced statistical distribution with spatial contextual information
for MLC data. The Ud-distribution is used for the data statistics because it is one of
the most flexible distributions to model more varied SAR textures and includes the
previously used models, the Wd, Kd and G0

d, as special cases. The Markov Random
Field (MRF) model is used to introduce spatial contextual smoothing in a rigorous
manner and produces more solid, contiguous clusters and reduces the effect of
speckle noise. The fully automatic algorithm was chosen for its consistency and
invariance to initial conditions to make the whole process more robust.
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The textural-contextual model integrates the highly flexible Ud-distribution for
the polarimetric SAR data statistics conditioned to each data cluster and a Potts
model for the spatial context (Doulgeris et al. 2012; Akbari et al. 2013). The
proposed algorithm is based upon the iterative expectation maximization (EM)
algorithm (Dempster et al. 1977) for data clustering, with the mean-field approach
of (Celeux et al. 2003) and the pseudo-likelihood algorithm of (Besag 1977) for
optimizing the MRF. In addition, it adds a goodness-of-fit test stage to assess the fit
of the estimated model to the actual data histogram and uses this to split poor fitting,
and presumed mixed, clusters, or merge equal and competing clusters. This allows
for a consistent initial condition as one single class that overcomes the well-known
influence of random initial conditions, and also finally determines the statistically
appropriate number of clusters. More details about the clustering algorithm can be
found in (Doulgeris et al. 2012).

Although the method may be used fully automatically, including finding the
number of clusters, the present work restricted it to three clusters for the expected
glacier facies only. Even though the automatic number of clusters is not used, the
algorithm benefits from the consistent initial condition and obtains a repeatable
cluster result.

The Ud-distribution parameter estimation is achieved with the method of matrix
log-cumulants (MoMLC) because closed form maximum likelihood estimates do
not exist for the Ud-distribution model. MoMLC has been clearly shown to be fast,
accurate and a suitable alternative for clustering when large sample sizes are routine.

We obtain unlabeled segmentation results that then need additional knowledge
to align classes for comparison. The mean class backscatter (intensity) can be used
for glacier facies labelling, as the three zones have distinctly different brightness.
The majority ground truth data classes are used to obtain overall classification
accuracies. Note that this stage applies for every scene of the multi-temporal multi-
polarization SAR data.

7.3.4 Stage 4: Post-classification Change Detection

This approach for change detection requires very high accuracy of the classification
results of each image scene from Stage 4. We believe that by using the unsupervised
contextual non-Gaussian segmentation method on terrain corrected SAR scenes
results in a robust segmentation that improves also the reliability of change
detection. Since the class labels match on all images (due to the mean-backscatter
relation and only 3 simple classes), we investigate changes for consistency and post-
classification comparison change detection. The consistency of the segmentation
method is characterized by comparing segmentation results of scenes taken on the
same day (assumed ‘no change’) with different acquisition parameters. This ‘no-
change’ variability gives a baseline and allows us to determine whether an observed
variation is statistically significant. Subsequently, the differences between classified
image pairs of succeeding years are compared to this baseline, to identify whether
significant change has occurred.
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7.4 Study Area and Data Set Description

The glacier Kongsvegen, situated at approximately 78ı500 N and 13ı E in the
northwest of Spitsbergen, Svalbard, close to the meteorological station Ny-Ålesund,
is selected for the workflow presented in Sect. 7.3. Kongsvegen is a surge-type
glacier about 25 km long, covers an area of approximately 100 km2, and is oriented
in a northwest-southeast direction extending from an elevation of 800 m above sea
level to sea level. The glacier has a flow velocity of < 4 m a�1 and is thus a very slow
moving glacier.

The satellite data set consists of a time series of acquired SAR images for
the period 2004–2006 over the glacier. The images are generally collected under
different acquisition configurations. The series consists of dual polarization C-
band ENVISAT-advanced-synthetic-aperture-radar (ASAR) images in alternating
polarization (AP) mode from both ascending and descending orbits; in both HH/HV
and VV/VH polarizations; and over a large range of look angles, from 14ı to 43ı

(swath angles IS1 to IS7). For a descending orbit, as seen in Fig. 7.2, the SAR looks
down glacier and the satellite flight path is across glacier. In ascending orbits, the
SAR look direction is across glacier and the satellite track is approximately parallel

Fig. 7.2 Suitable ENVISAT C-band SAR scenes with different acquisition configurations for time
series analysis
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Fig. 7.3 Example of quasi-Pauli red, green, blue (RGB) images of Kongsvegen glacier from 2005
with GPR-derived ground truth overlaid. Legend on the right shows homogeneous samples of
different glacier zones along with class label colors: red D GI, blue D SI, and yellow D firn

to the glacier center line. The initial resolution of the raw SAR SLC images is 7.8 m
in the slant range and 3.2 m in the azimuth direction. The SAR intensity image in
Fig. 7.3 shows the spatial variability of the three different distinct zones across the
glacier. Each zone has specific backscatter characteristics. In the upper parts of the
glacier, where firn accumulation occurs, layers dominated by large firn grains and
ice layers cause considerable volume scattering on the ENVISAT SAR wavelength
leading to high backscatter (Engeset et al. 2002). The SAR signature in the ablation
area is dominated by backscatter from the previous summer surface only, with few
bubbles and very little volume scattering. In the SI area, varying fractional volumes
of bubbles cause more variability and medium backscatter values. Although the
previous summer surface still contributes, the increase in total backscatter, which
distinguishes SI from glacier ice (GI), is caused by the air bubbles (König et al.
2004). The smoothness of GI does not reflect much of the incoming SAR signal
back to the sensor, resulting in low backscatter values.

A DEM of 20 m pixel resolution covering all of Svalbard was also available,
which was produced by the Mapping Section of the Norwegian Polar Institute (NPI).
Ground truth data are derived from a network of C-band ground penetrating radar
(GPR) profiles oriented parallel to the glacier center line collected by the NPI in
2005 under the same spring conditions as the ASAR images. GPR is commonly used
in glaciology for mapping layers within the glacier such as internal accumulation
layers and the previous summer surface, as well as bedrock topography (Evans and
Smith 1969). A differential GPS (DGPS) was used to determine the position of
the GPR profiles with a horizontal accuracy within 10 cm. The C-band GPR is
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Fig. 7.4 Daily air temperature and precipitation observed in Ny-Ålesund between 2004 and 2006.
Data are from the Norwegian Meteorological Institute. The black/red bars between the temperature
and precipitation represents times of SAR acquisition. The black bars indicate the chosen SAR
images based on the temperature and precipitation constraints, listed in Table 7.1, for time series
analysis

a step-frequency continuous-wave (SFCW) radar operating at 4.8–5.8 GHz. The
center frequency of 5.3 GHz is the same as the ASAR instrument onboard ENVISAT
(Langley et al. 2008). Details of the GPR data are given in (Langley et al. 2008;
Langley 2007). The along glacier profiles have been manually classified into three
zones of interest, i.e., GI, SI, and firn.

Meteorological conditions also affect the backscatter in addition to the SAR
imaging geometry and surface topography effects as discussed in Sect. 7.3.2.
Therefore, from temperature and precipitation observations of Ny-Ålesund station,
located at sea level about 15 km west of the terminus of Kongsvegen, we select
only SAR images collected in spring under cold and dry conditions on the glacier
surface (see Fig. 7.4). When just a small amount of liquid water is present in the
upper layer of snow and firn, the radar backscatter properties change significantly
and the underlying structure has no influence on the measurements (Engeset et al.
2002). However, in early spring the snow pack on the glacier surface is mostly
dry and the previous summer surface at the base of the winter snow pack gives
the strongest return. Thus, cold spring conditions give the most consistent annual
measure for long time trend analysis and is recommended for monitoring of glaciers
(Langley 2007). We refer readers to (Akbari et al. 2010) to show the influence of
wet conditions on radar response. The authors demonstrated a good example image
coinciding with the onset of rain in the meteorological records and an image taken
after the onset of rain clearly showed significant change compared to the day before.
The suitable SAR images are chosen based on the temperature and precipitation
constraints. The remaining images for the time series analysis are listed in Table 7.1.



136 V. Akbari et al.

Table 7.1 Suitable
ENVISAT C-band SAR
scenes with different
acquisition configurations for
time series analysis

Image no Date Look angle Path Polarization

I1 04 May 2004 IS3 Des VV/VH
I2 05 May 2004 IS5 Des HH/HV
I3 05 May 2004 IS7 Asc VV/VH
I4 09 May 2004 IS5 Asc VV/VH
I5 10 May 2004 IS3 Asc VV/VH
I6 28 Dec 2004 IS2 Dec VV/VH
I7 02 Feb 2005 IS2 Asc VV/VH
I8 09 Mar 2005 IS2 Asc VV/VH
I9 11 Apr 2005 IS7 Des VV/VH
I10 13 Apr 2005 IS2 Asc VV/VH
I11 14 Apr 2005 IS6 Asc VV/VH
I12 15 Apr 2005 IS4 Asc VV/VH
I13 17 Apr 2005 IS6 Des VV/VH
I14 17 Apr 2005 IS7 Asc VV/VH
I15 18 Apr 2005 IS4 Asc HH/HV
I16 19 Apr 2005 IS3 Des HH/HV
I17 21 Apr 2005 IS1 Des HH/HV
I18 27 Apr 2005 IS7 Des VV/VH
I19 28 Apr 2005 IS2 Des VV/VH
I20 28 Apr 2005 IS3 Asc VV/VH
I21 29 Apr 2005 IS1 Asc VV/VH
I22 29 Apr 2005 IS4 Des VV/VH
I23 30 Apr 2005 IS6 Asc HH/HV
I24 01 May 2005 IS2 Des VV/VH
I25 01 May 2005 IS4 Asc VV/VH
I26 02 May 2005 IS2 Asc VV/VH
I27 03 May 2005 IS6 Des HH/HV
I28 05 May 2005 IS3 Des VV/VH
I29 17 May 2005 IS2 Des VV/VH
I30 21 Feb 2006 IS2 Des VV/VH
I31 15 Apr 2006 IS6 Asc HH/HV
I32 16 Apr 2006 IS2 Des VV/VH
I33 17 Apr 2006 IS2 Asc VV/VH
I34 19 Apr 2006 IS4 Asc VV/VH
I35 20 Apr 2006 IS2 Asc VV/VH
I36 20 Apr 2006 IS3 Des VV/VH

7.5 Experimental Results

We now use the proposed workflow in Sect. 7.3 to analyze multi-temporal dual
polarization SAR data for glacier change detection. The calibrated SLC data
are geocoded and multilooked simultaneously to a final geocoded resolution of
approximately 30 � 30 m. The SLC image pixels were multilook averaged with
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2 looks in the range direction and 12 looks in the azimuth, 24-looks in total. We
have chosen 24-looks for the multilooking because it is a moderately large degree
of multilooking and would achieve a high degree of speckle reduction. The 30 m
ground resolution is good enough for monitoring purposes in glacier areas.

The reconstruction of radar geometry with the help of a DEM, the known orbit
data vector, and image-line timing is done for each ASAR image. This stage not
only derives the geocoding look-up tables, but also derives various geometrical
parameters for each ground point that are required for terrain corrections, such as
local incidence angle, and the layover-shadows mask. The pixels affected by the
geometrical distortions are mainly located at slopes larger than 40ı. Kongsvegen
glacier has a gentle surface slope of 0.5ı � 5ı and therefore, such geometric
corrections will be minimal over the glacier region.

The radiometric normalization of the covariance matrix data was then applied for
each scene. Although the glacier slopes are generally small, if left uncorrected they
may manifest as misclassification of the glacier class boundaries. The projection
factor is shown in Fig. 7.5c as an example. The backscatter coefficient is reduced
when using the projection factor to radiometrically correct the covariance matrix

Fig. 7.5 Terrain correction parameters of the covered area in the map geometry. (a) slope angle
map in degrees (b) shadow/layover mask produced from the geocoding step (c) projection factor
(d) the DEM-derived POA in degrees
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data. The negative projection factors (the projection angles larger than 90ı.),
correspond to the dark blue areas in Fig. 7.5c and red areas in the slope map. These
areas are mostly affected by layover and in the geocoding step have to be masked
out, as seen in Fig. 7.5b. The DEM-derived POAs are used to correct for the azimuth
slope effect on the polarization signature. By estimating the POA for the data [see
Fig. 7.5d], we observe that for the rugged-terrain areas surrounding the glacier, the
polarization shifts are more significant. Subsequently, the OAC over images leads
to reflection symmetric covariance matrix data sets.

To demonstrate the effect of both RTC and OAC on the covariance matrix data,
the profile along the glacier center line was plotted for the four images with different
geometries. It should be mentioned that the middle of the three GPR ground truth
lines in Fig. 7.3 follows the glacier center line extending from the firn area into
the GI zone. The original backscatter coefficient, RTC and OAC values are shown
with red, green and blue lines respectively. The reduction of backscatter coefficient
is geometry-dependent and shows the suppression of the SAR geometry effects
on the data such that the images are comparable for monitoring purposes. For
example, the offset between original backscatter and RTC backscatter for the look
angle IS1 is larger than look angle IS7 (see Fig. 7.6). The total backscatter power

Fig. 7.6 The effect of terrain correction on dual polarization ASAR data for the four candidate
images with different geometries: before radiometric normalization (a); after radiometric normal-
ization (b); and after the OAC with DEM (c) along the glacier center line extending from the the
firn area into GI zone
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Fig. 7.7 Unsupervised segmentation of the candidate images for each year (2004, 2005, and 2006)

(Span D C11 C C22) in Fig. 7.6 does not change significantly after OAC except some
small changes for the pixels located at the higher azimuth slopes. For those pixels,
the total power increased after the OAC.

A mask is applied to mask out mountains and isolate the glacier pixels for classifi-
cation. The segmentation algorithm was working with 2 � 2 covariance matrix data.
Unsupervised contextual non-Gaussian segmentation was then performed using the
U-MRF classifier on the terrain corrected dual polarization data set. We fix the
number of clusters to 3 for the segmentation. Figure 7.7 shows the segmentation
results for three SAR images as candidates from each year of the study period. Since
the three surface types (GI, SI, and firn) have distinct backscatter characteristics,
they can be reliably discriminated in the segmented images. The firn line, i.e.,
the boundary between SI and firn, is detected in all segmentations. The boundary
between SI and GI is also detected. The segmentation results are now validated using
in-situ observations. The three GPR ground truth lines acquired in 2005, shown in
Fig. 7.7, are used to label the segmented images into glacier facies and to validate
the classification results. The validation is only performed on scenes acquired in
spring 2005 that are within a few weeks of the GPR data. Table 7.2 reports the
overall classification accuracies and omission errors of the glacier zones for the
2005 images. The classification accuracies for the scenes indicate overall accuracies
higher than 80 % for all cases. We did not find any obvious preference among
different configurations because the geometric and radiometric terrain corrections
should suppress the effects of both SAR geometry and surface topography on the
covariance matrix data sets.

Next, the images that have been taken on the same day with different geometries
are chosen as pairs for the consistency investigation of the classification results.
Table 7.3 is a list of the total variation of firn line for given pairs and is an indicator
of variability of this boundary in terms of percentage of the glacier mask error
(PGME), the total change area error (TCAE), and equivalent linear displacement
error (ELDE) along the glacier. PGME is defined as the percentage of the change
area between the firn and SI boundaries with respect to the whole glacier. TCAE is
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Table 7.2 Classification
accuracies for the
classification results for the
2005 images, including
overall accuracy (OA) and
omission error (OE) for the
three glacier zones

OE%
Image OA% GI SI Firn

20050202IS2ascVV/VH 88.3 18.4 1.5 8.0
20050309IS2ascVV/VH 87.1 19.3 1.8 11.0
20050411IS7desVV/VH 81.1 18.9 4.3 37.7
20050413IS2ascVV/VH 88.3 17.5 1.3 10.3
20050414IS6ascVV/VH 94.7 1.3 4.8 16.0
20050415IS4ascVV/VH 95.3 1.6 5.9 11.3
20050417IS6desVV/VH 88.0 19.6 0.8 7.3
20050417IS7ascVV/VH 87.4 20.8 1.0 6.7
20050418IS4ascHH/HV 87.9 18.5 0.8 10.30
20050419IS3desHH/HV 86.4 23.5 0.0 6.0
20050421IS1desHH/HV 85.9 24.0 0.0 7.3
20050427IS7desVV/VH 85.7 24.3 0.0 7.7
20050428IS2desVV/VH 86.7 21.3 0.5 9.7
20050428IS3ascVV/VH 87.8 17.8 4.1 8.7
20050429IS1ascVV/VH 87.2 18.1 1.0 14.7
20050429IS4desVV/VH 84.8 26.1 0.0 7.3
20050430IS6ascHH/HV 86.3 23.5 0.0 6.7
20050501IS2desVV/VH 86.4 22.5 0.0 8.7
20050501IS4ascVV/VH 96.2 1.3 4.1 9.7
20050502IS2ascVV/VH 81.9 1.4 6.7 11.0
20050503IS6desHH/HV 95.5 4.2 3.3 6.7
20050505IS3desVV/VH 84.6 25.8 0.0 9.0
20050517IS2desVV/VH 86.5 21.7 0.0 10.3

Table 7.3 Consistency characterization: the variation of firn/SI boundary in terms of percentage of
the glacier mask error (PGME), total change area error (TCAE), and equivalent linear displacement
error (ELDE) for some pairs. Image identities are given in Table 7.1

Image 1 Image 2 PGME TCAE (m2) ELDE(m)

I2 I3 1.36 % 763,200 120.74
I13 I14 0.63 % 354,600 57.70
I21 I22 1.81 % 1,017,000 179.52
I24 I25 1.55 % 869,400 153.20

measured as the areal variation between the firn and SI zones. ELDE is determined
by dividing the TCAE by the total length of the firn/SI boundary. Among these three
indicators, the ELD may be a very robust indicator, because the other two depend
on the size of the glacier and the accuracy of its mask. An average ELDE error of
128 m is obtained between the pairs and represents the worst case “no-change”
variation between different configurations. To produce an average classification
result over each year, we take the majority count of the class label for each pixel
from the stack of several yearly-classified images. The differences between average
yearly-classified images can only be considered significant when compared to that
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of the classification total variation. By taking the average classification result over
each year, the expected variation of 128 m (between scene pairs with differing
configurations) will decrease by

p
N for the mean, where N is the number of scenes

used in the averaging. This variation may include the effect of different collection
geometries, the segmentation algorithm, and other processing errors. Using similar
geometries and the segmentation itself should have much reduced variability.
Basically, if we have a collection of a time series using data acquired from similar
geometries (i.e., interferometric pairs), then we could anticipate reduced variation
and better change detection ability. In such cases, we may not need to perform
radiometric terrain correction for change detection, since all would have the same
geometric properties.

After consistency characterization, the classified images are compared and
analyzed on a pixel-by-pixel basis to form a change matrix which describes the
mapping of classes between the images. From this matrix we can extract a simple
map of change versus no change, but also more detailed information on the nature of
the change. Figure 7.8 shows the glacier change images within the periods of study
(2004–2005, 2005–2006, and 2004–2006). It illustrates changes in the locations of
boundaries between glacier facies.

Firn line monitoring is important for glaciologists, thus we concentrate only on
the variation of firn area boundary with SI zone in the quantitative analysis. Total
variation of the firn line in terms of both PGME and TCAE (firn to SI) and ELDE for
change detection pairs are estimated to verify whether significant changes occur for
the periods. Table 7.4 indicates these measures of variation of the firn/SI boundary
for those periods. After averaging scenes within each year, we obtain the reduced

Fig. 7.8 Change images of Kongsvegen glacier within the periods of 2004–2005 (left), 2005–2006
(middle), and 2004–2006 (right). The changes of firn line for these periods are shown by blue color
(movement toward top of the glacier which is bottom right)
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Table 7.4 Change detection
analysis: total change of firn
line in terms of PGME,
TCAE, and ELDE for three
periods

Period PGME TCAE (m2) ELDE (m)

2004–2005 1.36 % 764,100 127.06
2005–2006 0.69 % 358,200 107.16
2004–2006 1.78 % 980,900 203.32

variation in the mean of 52.24 m, 26.72 m, and 47.58 m for the years 2004, 2005,
and 2006 respectively, to be used when testing significance. The total variation of
this boundary found between 2004 and 2005 exceeds the expected classification
variation, which indicates significant change for this period. The same is found for
the periods 2005–2006 and 2004–2006. A total movement of the approximately
200 m toward the top of the glacier is obtained for the whole period.

7.6 Conclusions and Discussion

This chapter addressed glacier change detection from multi-temporal multi-
polarization SAR images. A robust algorithm for firn line monitoring was
developed. This suggests that we have a tool for glacier change detection and mon-
itoring that is applicable over the Arctic region on a timescale of a few years. The
recent findings may form the basis for more operational monitoring of Arctic areas.

It is noted that when a difference in radar backscattering between multi-temporal
data is taken as a change indicator, the difference may be due to several factors
such as actual land cover change, viewing geometry, surface topography and other
external factors (such as meteorological conditions, that are minimized by using
radar frequencies and choosing the scenes wisely). These considerations were the
main reason for developing a complete workflow for post-classification change
detection from time series of polarimetric SAR images, and where we also choose
our SAR images to avoid the wet weather conditions.

The algorithm has been tested on dual polarization ENVISAT ASAR images for
the period 2004–2006 over the Arctic glacier, Konsvegen, Svalbard. The images
are first corrected for terrain effects by thoroughly reducing topographic effects on
geolocation, radiometry and polarization signature, and subsequently stacked into
proper time series for further analysis. This is an important step for a meaningful
time series analysis.

We showed in (Akbari et al. 2013) that the Kd distribution can be used to model
SAR image texture. However, the analysis shows that this model does not always
represent the data well. We now chose a more flexible model, the matrix-variate Ud-
distribution, for multilook covariance matrix data. It tends to yield improved results
because of its flexibility to model more varied textures.

We then applied an unsupervised contextual non-Gaussian clustering method,
named U-MRF, over terrain corrected SAR scenes. The unsupervised segmentation
algorithm together with the DEM-based terrain correction are reliable and robust
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enough to give consistent change detection results. It should be mentioned that the
example glacier was only a very slow moving glacier and the annual change is small.
More drastic change examples like deforestation, would likely work much better.
Ground truth data are used to label segmented images into the three major classes of
glacier facies, i.e., firn, glacier ice (GI), and superimposed ice (SI) and to investigate
the classification accuracies.

We then characterized the consistency of the classification as the total variation
of firn/SI boundary between two no-change images to obtain the expected variation
due to processing errors in the processing chain. Finally, we did post-classification
change detection analysis based on the classified images on a pixel-by-pixel basis.
The variations of the boundaries between glacier facies were clearly detected within
the period of study. The total variations of the firn/SI boundary for the 1-year
periods, 2004–2005 and 2005–2006, exceed the measured classification variation,
and thus show significant change (with respect to the ELDE) for both periods and
also over the 2 years, i.e., 2004–2006.
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Chapter 8
Interferometric SAR Multitemporal Processing:
Techniques and Applications

Daniele Perissin

Abstract SAR Interferometry (InSAR) is a technology that makes it possible
to extract ground deformation measurements from spaceborne radar sensors with
a centimeter level precision. By processing long series of SAR images, InSAR
techniques can be pushed forward up to reaching the millimeter sensitivity. In this
way, data acquired by SAR satellites can be effectively used for monitoring not
only ground movements but also tiny displacement of structures, dams, buildings,
bridges and more. In this chapter, written at the beginning of year 2014, we
give a brief overview of the concepts behind InSAR and Multi-Temporal InSAR
techniques. Examples of results and processing steps implemented by Sarproz
(www.sarproz.com) are shown and the interested reader can deepen his understand-
ing of the topic by carrying out exercises on his own.

8.1 Introduction

Active radar imaging is a coherent technology that allows the generation of
interferograms. An interferogram is the product of one image by the complex
conjugate of another image. Whenever a correlation exists between corresponding
pixels in the two images, the interferometric phase reveals very precise readings
of the sensor-target distance. The phase is in fact a precise measurement of the
alignment between two radar signals (as shown in Fig. 8.1) which is a fraction of the
wavelength. Since microwave signals have wavelength in the order of centimeters,
the interferometric phase has the potential to read changes of distance with sub-
millimeter precision.

The first Synthetic Aperture Radar Interferometry (InSAR) experiment was
carried out by Graham in 1974 (Graham 1974), using two receiving antennas
mounted on an aircraft. In 1988 Goldstein published the first single-antenna repeat-
pass InSAR Digital Elevation Map retrieved through interferometric processing of
two images acquired by the Shuttle Imaging Radar (SIR-B) (Goldstein et al. 1988).
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Fig. 8.1 The phase
difference ® quantifies the
delay or misalignement
between two ElectroMagnetic
signals. Since microwaves are
characterized by centimetric
wavelengths, the phase can
reveale millimiter changes

Even though the potential of InSAR was clear since the beginning, many were the
limitations and difficulties related to the technology. Changes in the terrain reflectiv-
ity cause radar decorrelation, which makes the InSAR phase unreadable (Zebker and
Villasenor 1992). Moreover, atmospheric water vapor delays radar signals, turning
phase readings into precise but inaccurate measurements (Hanssen 2001). It took a
bit more than a decade before the availability of multi-temporal archives brought
to the discovery of techniques for overcoming the InSAR limitations. Pioneer in
multi-temporal InSAR processing is the Polytechnic of Milan, which published and
patented the Permanent Scatterers technique (PSInSAR) in early 2000 (Ferretti et
al. 2001). Since then, many groups worldwide worked on different Multi-temporal
InSAR approaches (also called PSI, Persistent Scatterer Interferometry). Picking up
a few representatives, it is worth to quote the Small Baseline Subset (SBAS) InSAR
(Berardino et al. 2002), the Stanford Method for PSs (StaMPS) (Hooper et al. 2004)
up to the most recent SqueeSAR (Ferretti et al. 2011). For a more complete list of
references, the interested reader can refer to two recent reviews sketching the state
of the art of SAR and multi-temporal InSAR (Moreira et al. 2013; Zhong and Lei
2014).

Applications of multi-temporal InSAR are mainly ground movements detection
and DEM estimation. Examples of terrain movements are landslides (Colesanti and
Wasowski 2006), subsidence (natural or due to underground operations as mines,
excavations, water/oil extraction) (Herrera et al. 2010), soil compaction, seismic
activity (Massonnet et al. 1993), volcanoes activity (Wadge 2003). However, with
appropriate techniques and with higher spatial resolution, multi-temporal InSAR
can also be successfully exploited to monitor buildings and infrastructures. Many
examples of InSAR DEM generation are available from the literature (Ferretti et al.
1999), and the most recent mission dedicated to this aim is the Tandem-X bistatic
configuration (Martone et al. 2013). Nevertheless, repeat-pass interferometry has
been shown providing useful information also for terrain mapping and classification
(Engdahl and Hyyppa 2003).

Several books have been published on Synthetic Aperture Radar, SAR Inter-
ferometry and related processing techniques. Among them, we wish to quote here
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Curlander for SAR (Curlander and McDonough 1991), the European Space Agency
(ESA) manual for InSAR (Ferretti et al. 2007) and Kampes for PSI (Kampes 2006).
It is not aim of this chapter to present a complete review of all works carried out in
this field, neither to cover all possible multi-temporal techniques. Rather, the attempt
is to provide the reader with a set of concepts for understanding the basics of InSAR
and to conduct him through a series of experiments to keep the discussion as applied
as possible.

The author of this Chapter received his education at the Polytechnic of Milan,
where he started researching on PSI. After a few years as a postdoc in the
same institution, he moved to Hong Kong as research assistant professor at the
Chinese University and he is currently with the Civil Engineering School at Purdue
University as assistant professor. The examples reported in this chapter have been
processed with the software Sarproz (Perissin, www.sarproz.com; Perissin et al.
2011) developed by the author in his 12 years research career. The interested reader
may replicate the examples by requesting the author for a Sarproz license.

The present Chapter is divided into two sections. In the first section, the basic
of SAR interferometry are introduced, starting from the definition of the geometry
of the problem and ending up with phase unwrapping. The second section presents
the main PSI concepts, together with a few more recent extensions of the original
Permanent Scatterers ideas, like multi-master and weighted approaches and non-
linear time series estimation.

8.2 SAR Interferometry

For tackling InSAR concepts and processing techniques, we assume in this Chapter
to deal with a set of co-registered SAR images. SAR images may be delivered by
data providers either in L0 format (raw data) or in L1 format (also called SLC,
Single Look Complex). Raw data need firstly to be focused before co-registration.
The process of co-registration refers to the alignment of two SAR images, so that
corresponding pixels in the two images contain the same portion of imaged terrain.
To perform interferometry, images acquired with the same nominal geometry (orbit
and incidence angle) are required. Even when the nominal geometry is the same,
the satellite position may be slightly different from one acquisition to the other,
and this is at the origin of the images misalignment. Usually, a single image is
taken as reference (the Master image) and all other images (called Slaves) are
resampled on the same sampling grid. We call pixel coordinates in range “samples”
and pixels coordinates in azimuth “lines”. We will not consider hereafter possible
oversampling factors and we assume to deal with zero-doppler geometry1 (even if
both aspects could be modified without affecting significantly the treatment).

1In zero-doppler geometry, a target is focused at the location where it’s closer to the satellite (as if
the satellite would be looking down orthogonally to its path).
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Fig. 8.2 Intensity (left) and phase (right) of a complex SAR image taken in Hong Kong by
TerraSAR-X on 25th of October 2008. Three buildings are visible

We call Imgi(s, l) the complex value of image i at coordinates s,l. An example of
intensity and phase of a SAR image is shown in Fig. 8.2. Like all pictures presented
in this Chapter, samples are the vertical coordinate (range) and lines the horizontal
one (azimuth). The SAR image intensity in Fig. 8.2 reveals three buildings (the
image has been taken in Hong Kong on the 25th of October 2008 by TerraSAR-X).
The picture of the phase looks simply noisy. This is due to the independency of
the phase of nearby resolution cells. In fact, each resolution cell (corresponding to
about 3 m by 3 m on the ground for TerraSAR-X) is plotted with a color showing
the corresponding phase value 
. Assuming a single target is present in a resolution
cell, the phase can be expressed as a function of its distance Ri from the sensor in
the following way:


i D
4�

�
Ri (8.1)

The phase quantity in Eq. 8.1 is ambiguous and it is measured in radians, thus


i D 
i ˙ 2n� (8.2)

where n is an arbitrary integer number. For TerraSAR-X � D 3:1 cm. Considering
that the target may be located anywhere in the resolution cell (3 m by 3 m), it
becomes evident how the phase of two nearby resolution cells is totally independent.
In case more targets would be present in the resolution cell, the discussion would be
slightly more complex, but the outcome would not change.

The interference between two radar images removes the independent component
of the phase, leaving just phase variations among nearby resolution cells, which may
be correlated, as visible in Fig. 8.3. The interferogram between images i and k can
be expressed as

Inti;k .s; l/ D Imgi .s; l/ 	 Img�
k .s; l/ (8.3)
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Fig. 8.3 Example of interferogram generated between the image shown in the previous picture
and the Master image (taken on the 14th of November 2009). On the right the Sarproz window
used for interferogram generation is shown

In Eq. 8.3 the product is applied pixel by pixel and the star sign * indicates
the complex conjugate. The interferometric phase between images i and k can be
expressed as


i;k .s; l/ D 
i .s; l/ � 
k .s; l/ (8.4)

and by exploiting Eq. 8.1 we obtain:


i;k .s; l/ D
4�

�
ŒRi .s; l/ � Rk .s; l/� (8.5)

Figure 8.3 shows an example of interferogram generated between the image in
Fig. 8.2 and the Master image acquired in November 2009. While the phase of the
image in Fig. 8.2 was totally uncorrelated, the interferogram shows correlation on
the facades of the three imaged buildings.

8.2.1 The InSAR Geometry

In order to better understand the interferometric phase in Eq. 8.5, we refer to the
geometry depicted in Fig. 8.4.We abandon for a moment the pixel notation s,l and
we concentrate on the targets coordinates on the ground. We want to derive the
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Fig. 8.4 Acquisition geometry for interferogram generation. S is the satellite at positions i and k.
O is the reference point and P the target under examination. P is located at distance �x w.r.t. O
and at height�h. The Master slant range is indicated as r. On the right the projections of OP along
slant range and cross-range (normal to slant range) are highlighted in green and blue respectively

interferometric phase at point P with respect to a reference point O. Point P lies at
a distance �x from O and at a height �h. The satellite reference location (Master)
is Sk, while the Slave position is Si. The relative position between Master and Slave
is measured in terms of distance along the direction normal to the reference slant
range (indicated with r in Fig. 8.4) and it is called Normal Baseline Bn. The relative
incidence angle �	 is thus

�	 D
Bn

Rk
(8.6)

where Rk D SkO is the Master range of reference point O. The relative interfero-
metric phase is thus

�
i;k D 
i;k.P/ � 
i;k.O/ D
4�

�
ŒRi;k.P/ � Ri;k.O/� (8.7)

where Ri;k.P/ D SiP�SkP and Ri;k.O/ D SiO�SkO. The double difference operation
can be solved via trigonometry, leading to the following expression:

�
i;k D
4�

�

Bn

Rk

ˇ
ˇOP

ˇ
ˇ
n (8.8)

where
ˇ
ˇOP

ˇ
ˇ
n (the blue arrow in Fig. 8.4) is the projection of OP onto the direction

normal to r. The term can be further decomposed into slant range and height
components

ˇ
ˇOP

ˇ
ˇ
n D

�r

tan 	
C

�h

sin 	
(8.9)

as easily derived by looking at Fig. 8.4 on the right.
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By combining Eqs. 8.8 and 8.9 the relative interferometric phase becomes

�
i;k D �

flat
i;k C�


height
i;k (8.10)

where

�

flat
i;k D

4�

�

Bn

Rk

�r

tan 	
and �


height
i;k D

4�

�

Bn

Rk

�h

sin 	
(8.11)

are called respectively flat terrain and topographic (height) phase terms.

8.2.2 Interferogram Flattening

Equations 8.10 and 8.11 highlight the first two main components of the inter-
ferometric phase. The first of them, the flat terrain phase term, is depending
on the slant range coordinate of target P (and not on its height). In a generic
interferogram Inti,k(s, l) we can thus expect a phase ramp in range direction, function
of the coordinate s, with a rate proportional to the interferometric baseline Bn. An
example of flat terrain phase component is shown in Fig. 8.5, where a Tandem-
X interferogram is reported. The Interferometric baseline Bn is equal to 214 m. A
longer baseline would generate a higher frequency of fringes.

Fig. 8.5 Example of Tandem-X interferogram (Normal Baseline D 214 m). Fringes in the range
direction (vertical in the image) show the flat terrain phase component
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Fig. 8.6 Example of Tandem-X interferogram (Normal Baseline D 214 m), after estimation and
removal of the flat terrain. Fringes are proportional to the topography of the imaged terrain

The flat terrain phase term is not carrying information useful for any kind of
applications and it is usually simply removed. However, in case orbital data are not
available, the flat terrain phase ramp can be used to estimate the interferometric
normal baseline. The aim can be easily reached via a Fourier transform in the
two-dimensional space range/azimuth. Conversely, if orbital data are available, the
flat terrain phase term can be estimated by simulating the interferometric phase
generated by a surface in ground coordinates with constant ellipsoidal height.

Figure 8.6 shows an example of flattened interferogram (that is, after removing
the flat terrain phase term). The area reported in Fig. 8.6 is the same as the one in
Fig. 8.5, the difference between the two images is the flat terrain removal.

8.2.3 The Topographic Term

The second phase term in Eqs. 8.10 and 8.11 is proportional to the height of
point P with respect to the reference point O. This phase component reveals
that interferograms are sensitive to the topography of the observed area. This is
the reason why the production of Digital Elevation Maps (DEM’s) was the first
application developed for SAR interferometry over land.

From Eq. 8.11 we can derive an important quantification of the sensitivity of
the interferometric phase towards topography: the ambiguity height. The ambiguity
height �ha is the height that generates a phase rotation equal to 2 .

�ha D
�Rk sin 	

2Bn
(8.12)
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In other words, while looking at a flattened interferogram like the one shown
in Fig. 8.6, each phase fringe corresponds to a height range �ha. It is easy to
understand then that the integration of all phase fringes in a flattened interferogram
would lead to the estimation of the topography of the observed area. The operation
of integration of phase fringes, when possible, is called phase unwrapping, and it
will be discussed later in this Section.

Equation 8.11 shows the role played by the interferometric baseline Bn in the
height estimation. A large normal baseline reduces the ambiguity height, increasing
the frequency of topographic fringes of a given area. While this could be desirable
for achieving a higher sensitivity of the interferometric phase towards the terrain
height, its drawback is to cause decorrelation of the interferometric phase. Also
decorrelation will be addressed further in this Section.

Other geometrical InSAR phase components may arise as a consequence of
variation of other acquisition parameters (like central frequency and Doppler
Centroid). Moreover, a precise treatment should consider the possible presence of
single strong scatterers in the resolution cell and their sub-cell location. For both
topics, the interested reader can refer to (Perissin and Rocca 2006; Perissin et al.
2006) for a detailed analysis.

8.2.4 Differential Interferometry and Displacement Detection

Repeat pass SAR interferometry is possible thanks to the characteristics of the
orbits along which SAR satellites fly. Satellites carrying SAR sensors for Earth
Observation are usually placed along sun-synchronous Polar orbits, which allow
scanning the Earth surface regularly with a given (usually fixed) revisit time. In
particular, every time a satellite flies over a given point on the ground at each
revisit time, the UTC time of the day is the same, allowing keeping environmental
parameters with daily variations constant. Moreover, the orbital tubes are designed
in order to guarantee a distribution of normal baseline values compatible with
interferometry.

As a consequence, besides the geometric component discussed in the previous
sections, the interferometric phase may be influenced by the terrain displacement
occurred between the two acquisition times. A movement of point P in a generic
direction can be expressed in the x,h plane as

�!
d D ı�!x C ı

�!
h (8.13)

where the arrow indicates a vector. The range displacement detected by the radar
would therefore be

�

disp
i;k D

4�

�

ˇ
ˇ
ˇ
�!
d
ˇ
ˇ
ˇ
r

D
ˇ
ˇı�!x

ˇ
ˇ sin 	 C

ˇ
ˇ
ˇı

�!
h
ˇ
ˇ
ˇ cos 	 (8.14)
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The interferometric phase is thus very sensitive to displacement (half a wave-
length movement causes a 2  phase rotation). However, the sensitivity is only along
the slant range r. Given a single acquisition geometry, it is not possible to reconstruct
the direction of the displacement. Moreover, a movement in the direction orthogonal
to the slant range would not be detected at all. For an incidence angle ™D 30 deg,
almost 90 % of the vertical component of the displacement would be detected by the
sensor, against only 50 % of the horizontal component.

The high sensitivity to displacement is what makes InSAR a very powerful tool
for detecting ground movements. Whenever displacement estimation is the aim of
the interferometric analysis (rather than topographic reconstruction), it is therefore
helpful to remove the geometric phase component to facilitate the identification
of phase temporal changes. The interferometric phase after removal of flat terrain
and topographic phase components is called Differential Interferometric phase
(DInSAR):

�
DInSAR
i;k D �
i;k ��


flat
i;k ��


height
i;k (8.15)

An example of Differential interferogram is shown in Fig. 8.7. The interferogram
in Fig. 8.7 has been generated using a pair of Envisat images over L’Aquila
acquired one before and one after the Earthquake happened in 2009. To remove
the topographic phase component SRTM data was used.

Fig. 8.7 Example of geocoded Differential Interferogram produced by Sarproz using Envisat
images (20090201–20090412) showing the displacement caused by L’Aquila Earthquake. SRTM
data has been used to remove the topographic phase component (Processing by A. Rocca)
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8.2.5 Phase Decorrelation and the Interferometric Coherence

InSAR is potentially an extremely powerful technique for DEM generation and
displacement monitoring. However, whenever changes occur in the terrain reflec-
tivity, the two images involved in the interferogram generation may lose correlation
and the phase may become unreadable. An example of this can be observed in
Fig. 8.7, where the fringes become noisy. Changes could occur in time: some terrain
characteristic (like shape, material, orientation) is modified. This happens often e.g.
in case of vegetation/forests/fields, but also in case of human activities. We talk
therefore of temporal decorrelation. However, changes could occur also because of
geometric modification of the terrain reflectivity: due to the short wavelength of the
radar signal, even slight changes of the looking angle may determine very different
reflections (Perissin et al. 2006). This phenomenon takes the name of geometric
decorrelation.

Regardless the source of decorrelation, it is useful to quantify its impact. To this
aim, the normalized complex cross-correlation coefficient of images i,k is used:

�i;k D
E
�
ImgiImg�

k

�

r

E
h
jImgij

2
ir

E
h
jImgkj

2
i (8.16)

In Eq. 8.16 E[] denotes the expected value. The absolute value of � i,k is called
interferometric coherence. Values of the coherence close to 1 indicate high correla-
tion between the two images, and thus readable interferometric phase. Conversely,
low coherence identifies decorrelation and thus noisy and unreliable phase.

In order to estimate the quantity in Eq. 8.16 two main aspects have to be
addressed. The first one is the substitution of the expected value with a spatial
average of nearby pixels. Key role is played in this regard by size and shape of the
window chosen for the average calculation. In the following we will simply adopt
a general rectangular window, however, optimum performances are reached by an
adaptive window. The second matter is phase ramps correction before the estimation
of the expected value. Should the interferogram at the numerator of Eq. 8.16 be
taken raw, phase ramps caused e.g. by the flat terrain would strongly reduce the
estimated coherence. The estimator of � i,k can then be expressed as

�i;k .s; l/ Š

X

u;v2Win.s;l/

Imgi .u; v/ Img�
k .u; v/ e�j�' mod el

i;k .u;v/

s X

u;v2Win.s;l/

jImgi .u; v/j
2

s X

u;v2Win.s;l/

jImgk .u; v/j
2

(8.17)

The quantity � i,k is calculated for each pixel s,l over a given window Win(s,l).
The term �
mod el

i,k indicates the phase ramps to be removed and it may include one
or more geometrical phase terms described in the previous paragraphs.
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Fig. 8.8 Mount Vesuvius, Italy. Left: reflectivity map. Right: spatial interferometric coherence
(taken from the average of 40 interferograms). The coherence maps reveals lava flows on the right
and on the left of the caldera. Lava flows are more coherent than the surrounding terrain because
of the lack of vegetation

The interferometric coherence j� i,kj is not only a useful indicator of the reliability
of the interferometric phase. The coherence can be used also for change detection
or classification purposes. An example is shown in Fig. 8.8, where a case study in
Italy, Mt Vesuvius is reported. The image on the left shows the reflectivity map of the
volcano. The image on the right is the interferometric coherence (in particular, the
map displayed in Fig. 8.8 has been generated from the average of 30 interferograms).
It is very nice to notice the lava flows on the right and on the left of the caldera: they
are pretty well visible from the coherence map, but not from the reflectivity map.
The reason for the higher coherence is the lack of vegetation over the lava flows. The
coherence can thus be used for mapping purposes, together with other SAR/InSAR
products as well as with other data (as optical, multispectral, and more).

8.2.6 Interferogram Filtering

The absolute value of � i,k tells us the correlation of nearby pixels. Its phase, on
the other side, is an estimator of the expected value of the interferometric phase.
The averaging operation of nearby pixels has the effect of smoothing noisy phase
variations, enhancing the signal to noise ratio. This effect corresponds to the one of
filtering for noise reduction.

Many typologies of filters have been introduced in the literature, addressing
different aspects of decorrelation and of the possibility to recover information from
noisy interferograms. Some of them are discussed in the ESA manual (Ferretti et al.
2007). It is worth to mention here the most widely used InSAR filter, proposed firstly
by Goldstein (Goldstein and Werner 1998) and then later modified by other authors
(Baran et al. 2003).
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Fig. 8.9 Filtered Tandem-X interferogram (the same area as in Fig. 8.6). After filtering, fringes
became much clearer, even if some spots of decorrelation can still be observed (in particular at the
top of slopes)

An example of interferogram filtered by the modified Goldstein filter is shown
in Fig. 8.9. The interferogram reported there is the same of Fig. 8.6, and data have
been taken by Tandem-X in bistatic configuration. After filtering, fringes are much
cleaner, even if one can observe a few spots of decorrelation, in particular on the top
of slopes.

8.2.7 Interferogram Unwrapping

The integration of fringes of an interferogram for solving phase ambiguities is
called phase unwrapping. More specifically, phase unwrapping refers to solving the
following equation for the integer number n


UW
i;k .s; l/ D 
i;k .s; l/˙ 2n� (8.18)

The unwrapped phase (left in Eq. 8.18) is equal to the wrapped phase plus an
integer multiple of 2 ’s. Usually, if an interferogram is highly coherent, phase
unwrapping is not a big issue. However, in case of poor coherence it may even
be impossible to solve Eq. 8.18. Or at least, it may be impossible to solve it using a
single interferogram. We will see in the next Section how multi-temporal InSAR is
actually a much more robust solution to phase unwrapping.
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Fig. 8.10 Unwrapped and converted interferogram. The Tandem-X interferogram previously
shown has been here unwrapped and converted into meters. The high coherence allowed a very
precise unwrapping. Some flickering noise is still present in low coherence spots

Several solutions have been proposed in the literature for the phase unwrapping
problem. Also in this case, the ESA manual can furnish an overview of some of
them, providing a good starting point for a deeper investigation of the topic (Ferretti
et al. 2007).

An example of interferogram unwrapped by Sarproz is shown in Fig. 8.10. The
phase of the interferogram of Fig. 8.9 has been unwrapped and converted into height.
The final result is pretty nice and smooth, thanks to the high coherence of the
Tandem-X interferogram. However, the low coherence spots are still visible in the
unwrapped phase.

8.2.8 The Atmospheric Delay

Despite the high potential of SAR interferometry, even when high coherence is
found and fringes unwrapped correctly, an attentive analysis trying to interpret
the result in terms of topography or of terrain displacement may end up showing
poor accuracy. The reason for the possible frustrating outcome is that repeat-
pass SAR interferometry is affected by different atmospheric conditions at the
acquisition time. Water vapor is in fact delaying radar signals and its spatially
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varying distribution biases the InSAR phase. Therefore, the expected millimeter
precision of displacement measurements turns into centimeters accuracy, while the
metric precision in height estimation can quickly become tens of meters.

In recent years many research group have worked on the atmospheric delay
correction in InSAR (Li et al. 1978). Spectrometers, numerical weather models,
GPS networks can in fact provide water vapor maps and partly mitigate atmo-
spheric effects in InSAR, however, only at very low resolution and for very long
spatial wavelengths. As a matter of fact, classical InSAR is strongly impaired by
atmospheric disturbances. Research-based large scale applications (as earthquake
modeling) are still possible, but, with a level of details far away from the claimed
millimeter accuracy.

Figure 8.11 brings an example of the Atmospheric Phase Screen estimated by
Sarproz. The dataset used in the analysis is composed by 64 TerraSAR-X images
over Los Angeles. The footprint is 30 km by 60 km. From Fig. 8.11 one can
appreciate how important the impact of atmospheric delay is in X-band.

Fig. 8.11 Example of atmospheric delay estimated from TerraSAR data over Los Angeles. The
image is 30 km by 60 km wide, and the high atmospheric variability is revealed by the X-band
short wavelength. In the background the Sarproz module for atmospheric delay estimation
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8.3 Multi-temporal InSAR

In the previous Section we have introduced the basics of classic InSAR. SAR
interferometry is a very promising technology, however, it is affected by a series
of important problems. First of all, interferograms suffer decorrelation (temporal
and/or geometrical). In second instance, the interferometric phase is wrapped,
and it may be quite difficult (if possible at all) to unwrap it correctly using a
single interferogram. Moreover, if the topography of the area of interest is not
known with enough precision, it may be very hard to distinguish between residual
topography and terrain displacement. Finally, even by solving all previous problems,
atmospheric artefacts can vanish all efforts, strongly biasing the detected signals. In
this section, we introduce a possible solution to the mentioned problems: Multi-
Temporal InSAR.

8.3.1 Introduction

The first satellite carrying a SAR sensor for Earth Observation was the NASA Seasat
in 1978. Even though its life time was quite limited, the mission was very useful
to demonstrate the SAR capabilities. However, only with the launch of ERS-1 in
1991, archives of repeated SAR images became available. As soon as multiple
images of the same area were collected, researchers started working at problems
like DEM estimation via Multi-Temporal InSAR, trying to solve limitations as
decorrelation, phase unwrapping, atmospheric delay. In early 2000, the Polytechnic
of Milan firstly proposed the Permanent Scatterers (PS) technique (Ferretti et al.
2001). The PS technique is based on the idea that, exploiting long series of SAR
images, it is possible to identify targets that do not change their electromagnetic
signature throughout the dataset. Such targets are not affected by temporal or
geometrical decorrelation and their InSAR phase can thus be studied as a function
of the acquisition parameters (normal and temporal baseline). It is possible then to
observe that height, displacement and atmospheric delay show different spectral
characteristics as a function of normal and temporal baseline and as a function
of space. Based on such observation, their separation and estimation become then
possible.

In this Section we will firstly introduce the basics of Persistent Scatterers
Interferometry (PSI). Afterwards, we will discuss a series of extensions of the
original ideas (like seasonal and non-linear signals estimation). We will then
conclude the treatment with multi-master and weighted approaches. All examples
brought here were processed by Sarproz (Perissin, www.sarproz.com; Perissin et al.
2011).



8 Interferometric SAR Multitemporal Processing: Techniques and Applications 161

8.3.2 The PSI Approach

To introduce here the main concepts of the PSI technology, we take our steps from
a real processing example. The interested reader can replicate the experiment on
its own using a licensed copy of Sarproz (Perissin, www.sarproz.com; Perissin et
al. 2011). The dataset under study is composed by NI D 51 TerraSAR-X images
acquired over Hong Kong in the period October 2008–May 2011. A sketch of the
acquisition parameters of the dataset is reported in Fig. 8.12. From the upper left
corner of Fig. 8.12 on the left, in clockwise order, we have the histogram of the
Normal Baselines, the histogram of the Doppler Centroids, the temperature at the
acquisition time, and the sensors that acquired the data (TerraSAR and Tandem). On
the right of Fig. 8.12 we can see the interferometric configuration of the analysis:
each image is connected to form an interferogram with the Master image, chosen at
the barycenter of the distribution of normal and temporal baselines. From Fig. 8.12
on the right it is possible to observe eight images with a lower barycenter of normal
baselines: they are the eight Tandem images of the dataset. The analyzed area is the
same of the SAR image example reported in Fig. 8.2, and it covers three buildings
in the Hong Kong harbor.

Figure 8.13 shows the starting point of the PSI analysis: the Reflectivity Map of
the area of interest. The Reflectivity Map has been estimated as the average of all
images of the dataset. It is interesting to compare it with the intensity of one single
SAR image (as the one shown in Fig. 8.2). The averaging operation has strongly
suppressed the noise, enhancing all targets which kept stable reflectivity throughout
the dataset.

Fig. 8.12 Dataset used in the PSI experiment. 51 images taken by TerraSAR-X in Hong Kong. On
the left, upper plots: Histograms of Normal Baseline and Doppler Centroid. Lower part, acquisition
dates and temperature at the acquisition time. The image on the right shows the interferometric
combination: one image is taken as reference and interferograms are generated with respect to it
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Fig. 8.13 Reflectivity map (average intensity) of the area of interest. Three buildings are visible
in the area of interest

We decide then to analyze all targets that present a visible peak in the image,
and we select them posing a threshold on the Reflectivity equal to 0.5. Figure 8.14
shows Np D 1472 points selected for the analysis.

As previously mentioned, the aim of the analysis is solving the InSAR limita-
tions, estimating height and displacement of targets. We take a reference point o
among the selected targets (e.g. the one with highest Reflectivity) and we analyze
the interferometric phase of all selected points p (we omit from now on the reference
index o to lighten the notation)

�
i;k.p/ D �

flat
i;k .p/C�


height
i;k .p/C�


disp
i;k .p/C�
atmo

i;k .p/C��i;k.p/ (8.19)

Indexes i,k denote again the interferometric couple, with k master image and i a
generic image of the dataset.

The interferometric phase in Eq. 8.19 is made of the following components: flat
terrain, height, possible displacement, atmospheric delay and noise. As stated in
the previous Section, more factors should be considered for a complete analysis
(Perissin and Rocca 2006; Perissin et al. 2006), but we will keep the complexity
limited in this discussion.

The first term in Eq. 8.19, the flat terrain, can be estimated from orbital data and
removed. We will not consider here possible orbital inaccuracies for the sake of
simplicity. The second term, the topographic phase, is given by Eq. 8.11, and it is
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Fig. 8.14 Targets selected for the PSI processing: 1472 points with Reflectivity higher than 0.5

linear with the normal baseline and with the target height. We can rewrite it here,
making explicit the dependency of the height �h(p) on the target of interest p and
the dependency of the normal baseline Bn,i on the i-th image of the dataset:

�

height
i;k .p/ D

4�

�

Bn;i

Rk

�h.p/

sin 	
(8.20)

The third term is the displacement. A common way to model the displacement
is that of assuming it linear in time. We will see later on in this Section that such
assumption is not always working, but we take it as a starting point. Defining thus
�v(p) the relative velocity of point p with respect to the reference and Bt,i the
temporal baseline

�

disp
i;k .p/ D

4�

�
�v.p/Bt;i (8.21)

The fourth term is the atmospheric delay. It has been shown in the literature
that the atmospheric delay has a decorrelation length of several hundreds of meters
(Hanssen 2001). We can thus assume its impact small in our area of interest, and
neglect it. We will not consider here how to extend the analysis at bigger areas and
estimate the Atmospheric Phase Screen. For that purpose, the interested reader can
refer to (Kampes 2006).
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The last term in Eq. 8.19 is ��i,k(p), with which we have indicated noise. The
noise will be estimated from the model residuals, and it will tell us the stability and
reliability of the target at hand.

As a conclusion, in our small area of interest, we can see our problem as a
set of Np equations with NI samples each, where the unknowns are height �h(p)
and velocity �v(p) of each point to be estimated in the space Bt,i-Bn,i. The system
looks linear, but, considering that the phase is wrapped, it is not. In (Ferretti et al.
2001) the proposed solution to solve the system comes from the maximization of the
periodogram in which height and velocity represent the 2-dimensional frequencies
to be scanned. In formulas, the periodogram �[�v(p),�h(p)] is

� Œ�v.p/;�h.p/� D
1

NI

NIX

iD1

ejŒ�
i;k.p/��v�v.p/Bt;i��h�h.p/Bn;i� (8.22)

In Eq. 8.22, �v D 4�
�

and �h D 4�
�R sin 	 group the factors linking velocity to time

and height to normal baseline. For the sake of simplicity, we did not include here
the flat terrain term: we assume it was already removed. The solution is given by the
pair �Qh.p/, �Qv.p/ which maximizes the absolute value of the periodogram

�Qv.p/;�Qh.p/ D arg max
nˇ
ˇ
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ˇ
ˇ
ˇ
o

(8.23)

The maximum of the absolute value of the periodogram is called temporal
coherence

Q�.p/ D
ˇ
ˇ�
�
�Qv.p/;�Qh.p/

�ˇ
ˇ (8.24)

When the model driven by �Qh.p/, �Qv.p/ matches the observed interferometric
phase, the argument of the periodogram in Eq. 8.22 is close to zero, and the temporal
coherence tends to 1. Conversely, if the model does not match the observed phase,
the argument of the periodogram will be random-like and the temporal coherence
will get low values. Very important in this discussion is the number of images NI

used in the estimate. A low number of images will bias the temporal coherence to
higher values, making it difficult to distinguish between stable and noisy points.

We are now ready to run the estimation in our test area. Figure 8.15 shows the PSI
module for time series processing. In the left frame we can choose the parameters
we want to estimate, and we select height and velocity. The search range of the
height is �50 m 
 150 m, while for the velocity �50 mm/year 
 50 mm/year. The
result of the analysis is shown in Fig. 8.16. The two upper plots in Fig. 8.16 are the
estimated velocity and height, while the lower plot contains the temporal coherence.
From Fig. 8.16 we can see that the bottom of the three buildings has been processed
well, with the model matching the observed phase. In fact, the temporal coherence
has values close to 1 and the estimated parameters look reasonable. However, the
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Fig. 8.15 PSI processing module. The settings show that the targets were processed estimating
velocity (linear trend) and height. Velocity range: �50 � 50 mm/year. Height: �50 � 150 m

tops of the buildings have low coherence (around 0.3), and the estimated parameters
show unreasonable jumps. To conclude, the analysis was only partly successful. The
model we are using to process the InSAR time series of the top of the building is not
matching the observations. In the next paragraph, we introduce a model modification
to solve the situation.

8.3.3 Seasonal Signals

The reason for the failure of the time series processing described in the previous
paragraph is that high buildings suffer thermal expansion (Perissin and Rocca
2006). As a consequence, by taking a reference point on the ground, targets at
high elevation have a displacement which is not well modeled by a linear trend.
The solution has then to be found by introducing a new model which can account
for seasonal expansion. In particular, we can expect higher elongations with higher
temperature. A possible model is thus the following

�
 therm
i;k .p/ D

4�

�
�˛.p/Ti (8.25)
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Fig. 8.16 PSI processing results. Upper left corner: estimated velocity. Upper right corner:
estimated height. Lower image: estimated coherence. Where the temporal coherence is high
(.7�.9) the estimated parameters are reasonable. For lower coherence values (less than .5) both
velocity and height show unreasonable jumps. The model is not matching the data

In Eq. 8.25 Ti is the temperature at the acquisition time2 and�˛(p) is the thermal
expansion coefficient of point p with respect to the reference point, measured in
mm/degC. Equation 8.25 can be added to the model and the periodogram solved for
three unknowns: height, velocity and thermal expansion coefficient.

Figure 8.17 shows the PSI module with the new added option for including in the
estimation also the thermal expansion. Thermal expansion coefficient search values
range from �.2 to .6 mm/degC. Figure 8.18 summarizes the result of the estimation.
The first two plots report estimated height and velocity. The lower plots show
coherence and thermal expansion coefficient. This time, targets on the buildings
are coherent, the estimated velocity shows that no important movement is affecting

2Sarproz automatically downloads Temperature data from historic weather records, however, also
independent Temperature data can be imported in the system.
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Fig. 8.17 PSI processing module. The settings show that, beside velocity and height, also
a seasonal trend is going to be estimated. Range of the thermal expansion coefficient:
�.2 � .6 mm/degC

the buildings, the estimated height is proportional to the buildings profile, and the
thermal expansion coefficient is well correlated with the building height. The result
demonstrates that the main reason for the low coherence detected on the building
was due to the un-modeled thermal expansion.

Several points in Fig. 8.18 still show low coherence values. Such points are not
well modeled neither by linear nor by seasonal displacement. In this particular
example, the reason for low coherence resides in temporal random changes. The
strip of low coherence targets on the right of the first building (starting from the left)
is a harbor docking line, where boats stop for short periods of time. The strip of
land on the right of the image is an area under construction, with excavators, cranes
and other mechanical objects in motion. Thus both areas cannot be analyzed with
Multi-Temporal InSAR. In the next paragraphs we will see other possible model
extensions to fit different scenarios.

Before moving to other extensions of the PSI technique, we take a look of the
geocoded results we’ve just processed. Figure 8.19 shows the results of the PSI pro-
cessing in geographic coordinates over an optical layer as background. Figure 8.20
displays the same module, but the PSI results are plotted in 3 dimensions, with a
color proportional to the estimated thermal expansion coefficient. The list of values
beside the picture is relative to a selected point. Values show the target temporal
coherence (.72), its height (113 m), displacement velocity (0 mm/year), thermal
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Fig. 8.18 PSI processing results. Upper left corner: estimated velocity. Upper right corner:
estimated height. Lower left: temporal coherence. Lower right: thermal expansion. Now the
temporal coherence has been increased also for high targets, and all parameters are correctly
estimated. The thermal expansion is increasing proportionally to the targets height. Low coherence
points are still present on the right of the left building and on the right of the image

expansion coefficient (.35 rad/degC). Finally, Fig. 8.21 displays an example of time
series. Figure 8.21 is divided into two parts: in the upper one, the SAR intensity
of the target at hand is plotted versus time; in the second one, the displacement
in millimeters is plotted as a function of the acquisition time. In the second plot, 5
replicas of the time series are displayed. Replicas correspond to the phase ambiguity
of the system: each vertical sample is equivalent. In particular when data are
missing, one should consider the possibility that phase jumps occurred from one
replica to another without being detected. In this example, the phase stability is
quite high and phase jumps are not likely to have taken place. The trend in time is
not smooth because the recorded temperature is not smooth in time. The blue line
shows how well the model fits the data.
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Fig. 8.19 PSI results geocoded on an optical layer. Here the color is proportional to the estimated
coherence. One target is selected and a list of estimated parameters is visible on the right of the
image

8.3.4 Non-linear Signals

Low temporal coherence can be caused also by displacement trends which are
not linear and not correlated with temperature either. Movements may present
acceleration: in this case a good model to use is the polynomial approximation

�

disp
i;k .p/ D

4�

�
�v.p/Bt;i C�a.p/B2t;i (8.26)

In Eq. 8.26, �a(p) is the acceleration of point p with respect to the reference.
Other possible temporal behaviors are multiple linear segments, sudden jumps (like
in the case of landslides activation or earthquakes), seasonal patterns (but not related
to temperature, like dam oscillations related to the water level) or a combination of
more of them. Even if still keeping the model-approach for comparison and for
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Fig. 8.20 3D visualization of the geocoded targets. The color is proportional to the thermal
expansion coefficient. The three analyzed buildings are well resolved and the targets on the facades
are geocoded vertically

educational purposes, Sarproz is now including alternative ways to process time
series, without the need of models. An example is reported in Fig. 8.22. A dam
in Hong Kong has been analyzed without displacement models, and a time series
is reported on the left. The time series is displaying the interferometric phase after
removal of the geometric terms (no smoothing is applied). The blue line, conversely,
is derived by smoothing the phase to follow the displacement trend avoiding possible
noisy oscillations. In the example in Fig. 8.23 the noise level is very low and
smoothed line and phase values match pretty well.

When non-linear displacement trends are analyzed, velocity maps are not
meaningful anymore. Cumulative displacement maps should be considered instead.
A cumulative displacement map shows the total amount of millimeters a given
area on the ground moved from the beginning to the end of the analyzed period.
An example is shown in Fig. 8.23. A dataset of 64 TerraSAR-X images has been
processed in Los Angeles. Red areas show a cumulative displacement of �50 mm
in the period 2010–2014. Red spots in the picture identifies oil extraction areas. One
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Fig. 8.21 Example of displacement time series. The time trend is not very smooth and not very
sinusoidal, because summer in Hong Kong is longer than winter

Fig. 8.22 A dam in Hong Kong. On the right: targets detected on the Dam structure. On the
left: non-linear time series detected by Sarproz. Notice that the software does not apply any
smoothing operation: the phase displayed there is the original interferometric phase after removing
the topographic term



172 D. Perissin

Fig. 8.23 Cumulative displacement map detected by Sarproz in Los Angeles using 64 TerraSAR-
X images. Red corresponds to about �50 mm, in the period 2010–2014. The two spots of
subsidence are over Oil extraction fields

of them has also blue features, meaning that water or gas is pumped underground
to stabilize the subsidence. The Los Angeles basin is known to be characterized by
seasonal movements. A linear analysis here would never work.

8.3.5 The Multi-master Approach

PSI techniques solved the main InSAR issues and made it possible to retrieve
reliable time series from archived SAR data. However, the original PSI concept
as published in (Ferretti et al. 2001) is very restrictive. In fact, according to the
primordial algorithm, a target is required to be coherent in all interferograms
generated with a single Master image. Such a strong condition is met only by
manmade isolated targets whose dimensions are much smaller than the resolution
cell. Whilst urban areas usually are characterized by such features, it is very difficult
to find them in other scenarios (as rural/deserted/mountainous areas). The need thus
for increasing the density of coherent targets also in extra-urban areas brought to
a series of improvements/generalizations of the original PSI algorithm. We already
mentioned in the introduction a couple of them (SBAS, StamPS and Squeesar), we
briefly describe here the algorithm implemented by Sarproz: the Quasi-PS technique
(Perissin and Wang 2012).

The main idea of multi-master approaches is to relax the strict conditions
imposed by PSI techniques. Thus, instead of analyzing the InSAR phase generated
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with respect to a single Master image, more options can be considered. If the
computational power is not an issue, all possible interferograms should be evaluated,
searching for the coherent ones. Otherwise, subset of interferograms can be selected
(as small normal baseline subsets or pairs that can guarantee the connectivity of the
images graph (Perissin and Wang 2012)). In any case, in a multi-master framework,
in Eq. 8.19 and following, index k does not refer any more to a single image.
Moreover, in the single-master approach, the number of samples per equation in
the periodogram (Eq. 8.22) was indicated as NI (equal to the number of images and
also to the number of interferograms3). In a multi-master approach, the number of
samples of Eq. 8.22 is equal to the number of interferograms NInt, which is usually
higher than NI . By taking into account these points, we can modify Eq. 8.22 in the
following way:

� Œ�v.p/;�h.p/� D
1

NInt

NIntX

i;k

ejŒ�
i;k.p/��v�v.p/Bt;i;k��h�h.p/Bn;i;k� (8.27)

In Eq. 8.27, the sum is carried out on NInt i,k pairs. Similarly to the single-master
case, we can solve the system by searching for the model parameters (velocity and
height in Eq. 8.27) which maximize the absolute value of the periodogram.

Figure 8.24 shows an example of DEM estimation by means of a Quasi-PS
analysis of ALOS data. The image on the left of Fig. 8.24 is the interferometric
combination used in the analysis: 34 interferograms were generated out of 9 images.
The image on the right shows the estimated height in Google Earth. No initial

Fig. 8.24 Example of DEM generated via Quasi-PS analysis. On the left, interferometric config-
uration: 34 interferograms were generated out of 9 ALOS images. On the right, estimated height.
Notice that no DEM was removed from the interferograms for this purpose. Multi-Temporal InSAR
performs a reliable phase unwrapping

3Here for the sake of simplicity we assume that an all-zeros interferogram (Master-Master) is
included in the dataset.
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DEM was removed from the interferometric phase and no initial phase unwrapping
was applied. This analysis shows that Multi-Temporal InSAR can provide a more
reliable phase unwrapping than working with single interferograms.

8.3.6 Weighted Approaches

Together with the multi-master idea, a big improvement with respect to the original
PSI algorithm is the introduction of weights in the parameters estimation. Weights
act as flags that tell us in which interferograms a given target is coherent. Thus, not
only highly coherent targets (Persistent Scatterers) can be successfully processed,
but also decorrelating targets, thanks to the adaptive choice of interferograms
subsets. For instance, seasonal targets (as mountain tops periodically covered
by snow or trees loosing leaves) may be coherent only in summer (or only in
winter) months. Extended geometrically decorrelating targets (as fields, low density
vegetation) may be coherent only in very short normal baselines. Temporally
decorrelating targets (as growing vegetation, areas under construction), may be
coherent only in short temporal baselines. By knowing in which interferograms each
of those target typologies is coherent, we can mask uncoherent interferograms out
and keep only the informative ones.

The utilization of weights can be implemented with just a small modification in
Eq 8.27. In order to keep an InSAR phase sample in the height/velocity estimation
(or in order to disregard it) we can insert the weight wi,k (a number between 0 and 1)
as it follows:

� Œ�v.p/;�h.p/� D
1

X
wi;k

NIntX

i;k

wi;kejŒ�
i;k.p/��v�v.p/Bt;i;k��h�h.p/Bn;i;k� (8.28)

The process for estimating the model parameters is still the same, but only InSAR
pairs with high weight wi,k will be used. Notice that the same modification could be
applied in a single-master framework with the same effect.

The Quasi-PS algorithm uses the absolute value of the interferometric coherence
� i,k(p) in Eq. 8.17 as weight. Sarproz gives different options for the choice of
weights. Besides the coherence, another option is using intensity values or models
estimated by processing intensity values. This is particularly useful when dealing
with areas under construction, where targets remain coherent for short periods of
time.

An example of a temporary target is reported in Fig. 8.25. The upper plot on
the left in Fig. 8.25 displays the radar signal intensity, showing that the target
disappeared in 2010. The plot below shows the displacement time series. Without
masking the data-series for the life-time of the target, it would not be possible to
successfully process it.
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Fig. 8.25 Example of temporary target in Hong Kong. The plot on the left, upper position shows
the intensity as a function of time. It is easy to observe that the target at hand was visible for a short
period of time. The plot below shows the displacement time series during the target life time

8.4 Conclusions

In this Chapter we have discussed the basic theory behind SAR interferometry
and Multi-Temporal InSAR. In particular, we have seen that InSAR is potentially
a very powerful technology to estimate DEMs and ground movement, but also
that InSAR is affected by important limitations (as decorrelation, phase ambiguity
and atmospheric biases). Multi-Temporal InSAR techniques offer a series of tools
for attenuating InSAR limitations, making it possible to process and analyze
displacement time series, and also to precisely estimate ground elevation.
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Chapter 9
TIMESAT for Processing Time-Series Data
from Satellite Sensors for Land Surface
Monitoring

Lars Eklundh and Per Jönsson

Abstract The TIMESAT software package has been developed to enable monitor-
ing of dynamic land surface processes using remotely sensed data. The monitoring
capability is based on processing of time-series for each image pixel using either of
three smoothing methods included in TIMESAT: asymmetric Gaussian fits, double-
logistic fits, and Savitzky-Golay filtering. The methods have different properties and
are suitable for a wide range of data with different character and noise properties.
The fitting methods can be upper-envelope weighted and can take quality data into
account. Based on the fitted functions, growing season parameters are then extracted
(beginning, end, amplitude, slope, integral, etc.), and can be merged into images.
TIMESAT has been used in a number of application fields: mapping of phenology
and phenological variations; ecological disturbances; vegetation classification and
characterization; agriculture applications; climate applications; and for improving
remote sensing signal quality. Future developments of TIMESAT will include
new methods to better handle long gaps in time-series, handling of irregular time
sampling, improved smoothing methods, and incorporation of the spatial domain.
These modifications will enable use of TIMESAT also for high-resolution data, e.g.
data from the planned ESA Sentinel-2 satellite.

9.1 Introduction

Time-series of Earth observation (EO) data can aid the understanding of land
ecosystem dynamics, biogeochemical processes and exchanges, and ecosystem
responses to climate and human-induced activities (Townshend and Justice 1986;
Malingreau 1986; Hickler et al. 2005). With more than 30 years of data from the
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National Oceanic and Atmospheric Administration Advanced Very High Resolution
Radiometer (NOAA AVHRR), close to 15 years of data from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS), and many new time-series products
being developed, there is a need for efficient and practical methods for handling
these data. In this chapter we describe the ideas behind the TIMESAT1 software for
meeting this need.

TIMESAT was developed from ideas based on the early uses of meteorolog-
ical satellite data for studies of global land vegetation dynamics (Justice et al.
1985; Townshend and Justice 1986), as well as the use of time-series data for
characterizing land cover classes (Defries and Townshend 1994; Running et al.
1994). The science field developed in tandem with the emergence of high temporal
resolution data sets of vegetation index data from NOAA AVHRR, particularly
the normalized difference vegetation index (NDVI) (Rouse et al. 1973; Tucker
1979; Tucker et al. 1983). A series of investigations of the properties of these data
led to the development of biophysical vegetation models (Running 1990; Prince
1991; Ruimy et al. 1994; Prince and Goward 1995; Goetz et al. 1999), opening
up for new applications in vegetation productivity mapping and estimation of land
surface parameters. Implementing models based on physical understanding of the
remotely sensed signals has led to improved capability to monitor biogeochemical
and ecological land processes (Rautiainen et al. 2010). The ability to map the spatial
and temporal variability of these factors using MODIS satellite data has enabled
estimation of gross primary productivity (GPP) and net ecosystem exchange (NEE)
(Sims et al. 2006; Potter et al. 2007; Olofsson et al. 2008; Schubert et al. 2010;
Sjöström et al. 2011). Furthermore, analyses of the now relatively long time-series
of EO records have demonstrated their value for monitoring changes in vegetation
cover for large areas of the globe, helping to elucidate mechanisms and agents of
change (Myneni et al. 1997; Zhou et al. 2001; Nemani et al. 2003; Eklundh and
Olsson 2003; Olsson et al. 2005; Hickler et al. 2005). These and other studies have
firmly established the role of time-series remote sensing in global change science.

However, given the large influence of noise on the satellite-derived measure-
ments, the direct use of the data is often difficult. Cloud conditions and hazy
atmosphere are the primary causes of noise in optical satellite sensor data, although
other factors, e.g. directional effects, geometric inaccuracies, and sensor distur-
bances also contribute to the noise in the final products (Goward et al. 1991).
While several highly processed data sets exist, they are usually far from noise-
free. This noise severely affects the possibility to estimate accurate land surface
parameters, particularly during the rainy parts of the season – which is year-round
in many humid tropical areas. Tackling the noise problem was one of the reasons
for developing TIMESAT.

1TIMESAT (Jönsson and Eklundh 2004) is a freely available software package, accessible from
http://www.nateko.lu.se/TIMESAT/

http://www.nateko.lu.se/TIMESAT/
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Early methods for handling noise were based on relatively simple methods, for
example the use of maximum-value compositing (Holben 1986). This method relies
on the ability of the normalized difference vegetation index (NDVI) to minimize
noise, by selecting the highest value during a specific time-period. The principle
of selecting the highest value is also the basis for the Best Index Slope Extraction
(BISE) (Viovy et al. 1992), an early time-series processing method. Though simple
and generally effective in removing many disturbances, these methods ignore the
fact that also positively biased noise may be present in the NDVI series, and they are
limited to NDVI and similar vegetation indices in which noise is negatively biased.
For more general noise reduction, various smoothing filters have also been tested
(van Dijk et al. 1987; Reed et al. 1994). Another line of development for extracting
seasonality information from remotely sensed imagery is the use of Fourier series,
whereby the periodic annual fluctuations in data is utilized (van Dijk et al. 1987;
Menenti et al. 1993; Olsson and Eklundh 1994; Roerink et al. 2000). Though
the parameters of these harmonic functions contain information about the timing
of the seasons, the method is generally too inflexible for remotely sensed time-
series data, in which the timing of seasons can vary considerably between different
years.

Recent methods are generally based on fitting mathematical functions to the
time-series data, e.g. asymmetric Gaussian functions (Jönsson and Eklundh 2002),
logistic functions (Zhang et al. 2003; Jönsson and Eklundh 2004; Fisher et al. 2006),
and spline functions (Bradley et al. 2007; Hermance et al. 2007; Atzberger and
Eilers 2011). Also wavelet transforms have shown to be useful (Sakamoto et al.
2005; Lu et al. 2007; Campos and Di Bella 2012). Choices for data smoothing in
TIMESAT are described in the sections below.

A further motivation for developing TIMESAT was the realization that satellite-
observed changes in vegetation phenology may act as useful indicators of climate
change (cf. Schwartz 2013). Phenology is the study of recurring seasonal phenom-
ena such as leaf emergence, flowering, and leaf fall. Considerable changes in these
phenological variables have been noted across extensive global regions during the
last 20–30 years (Menzel et al. 2006; IPCC 2014), and future climate trends towards
increasing temperatures will most likely affect forest phenology strongly (Schröter
et al. 2005). Changes in tree phenology will have consequences on carbon allocation
and biomass production (Bergh et al. 1998; Lucht et al. 2002); on tree vulnerability
to frost damage (Jönsson et al. 2004); and on risks of increased problems with
insects and pathogens (Ayres and Lombardero 2000; Jönsson et al. 2007). Pheno-
logical variations affect the physiological and biochemical state of the forest canopy,
influencing albedo, heat flux, momentum flux, CO2 flux, and net radiation (Menzel
2002). Visually, phenology is most apparent as variations in leaf area index (LAI),
and is thereby directly observable by remote sensing. Consequently, extracting
parameters that describe phenology and phenology variations from remotely sensed
time-series data is another important aim of TIMESAT.

In the remainder of the chapter we describe the main concepts and technical
solutions behind the algorithms in TIMESAT.
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9.2 Processing Principles in TIMESAT

TIMESAT was developed over a series of years (Jönsson and Eklundh 2002,
2004; Eklundh and Jönsson 2012). It operates on stacks of images, where each
image represents a certain time or time period. Typically, TIMESAT has been used
for estimating vegetation seasonality, and is normally applied to NDVI, EVI, or
some biophysical vegetation parameters like LAI or fAPAR (fractional absorbed
photosynthetically active radiation). However, in principle, any signal with a clear
seasonal trajectory can be used (e.g. albedo, spectral reflectance, soil moisture, or
land surface temperature). Ideally several years of data should be used.

9.2.1 Extraction and Processing of Time-Series for a Pixel

Given a stack of images, time-series are extracted for each image pixel. The
processing for each of these time-series is then carried out in a series of steps (further
processing details are given in Eklundh and Jönsson 2012):

(1) Temporal trend estimation. This was in the first TIMESAT versions done using
second-order polynomials. To better adapt to non-linear trends, it is currently
done using the STL (Seasonal Trend decomposition by Loess) algorithm
(Cleveland et al. 1990). This is an efficient method for separating the data into
trend, seasonal component and residual variation; it is used in TIMESAT for
de-trending the data before further processing, and for identifying noise.

(2) Pre-filtering of data. It is a step for weeding out extreme outliers. It can be either
be done using median-filtered data and a user-defined threshold, or based on the
residual of the STL filtering.

(3) Determining the number of growing seasons. This is done using sinusoidal
harmonics, and a user-defined amplitude threshold. The model function is
defined as:

f .t/ D c1 C c2 sin .!t/C c3 cos .!t/C c4 cos .2!t/C c5 cos .2!t/ ; (9.1)

where t is time, !D 2� /N, where N is the number of observations per year.
The model provides minima and maxima giving the approximate location of
the seasons. Though in principle several seasons per year could be determined,
the maximum number of annual seasons in TIMESAT is limited to two. The
reason for this is that noise in the remotely sensed data makes determination of
several annual seasons highly uncertain.

(4) Data smoothing. This can be done using either of three methods: asymmetric
Gaussian functions, double logistic functions, and Savitzky-Golay filtering.
Gaussian and logistic functions are very smooth, enforce a bell-shaped pattern
on the data, and are useful when data are very noisy. The Savitzky-Golay
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Fig. 9.1 Some of the seasonality parameters in TIMESAT: (a) beginning of season, (b) end of
season, (c) length of season, (d) base value, (e) time of middle of season, (f) maximum value, (g)
amplitude, (h) small integrated value, (h C i) large integrated value (Source: http://www.nateko.lu.
se/TIMESAT/. Published under Creative Commons license)

method, on the other hand, follows local variations in the seasonal curve more
closely. Descriptions of the three methods follow below.

(5) Computing seasonal parameters for the extracted seasons. This is done based
on user-defined thresholds for defining the start and end of seasons, using either
absolute values or fractions of the amplitude. When these values are defined,
TIMESAT computes eleven parameters for each season: times of start and end
of season; length of the season; base level value; time of season midpoint;
maximum seasonal value; seasonal amplitude; rates of increase and decrease;
and large and small seasonal integrals (Fig. 9.1). As a final step, output data in
the form of single-pixel data or images are generated.

9.2.2 Asymmetric Gaussian and Double Logistic Functions

These methods fit local model functions to data in intervals around maxima and
minima of the approximate growing seasons defined in (1). The local model
functions have the general form:

f .t/ � f .t; c; x/ D c1 C c2g .tI x/ ; (9.2)

http://www.nateko.lu.se/TIMESAT/
http://www.nateko.lu.se/TIMESAT/
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where the linear parameters c D (c1, c2) determine the base level and the amplitude.
The non-linear parameters x D (x1, x2, : : : , xp) determine the shape of the basis
function g(t; x).

The asymmetric Gaussian function is defined as:

g .tI x1; x2; : : : ; x5/ D

8
ˆ̂
<

ˆ̂
:

exp

	

�



t�x1
x2

�x3
�

if t > x1

exp

	

�



x1�t
x4

�x5
�

if t < x1

(9.3)

where x1 determines the position of the maximum or minimum, x2 and x3 determine
the width and flatness of the right function half; x4 and x5 determine the width and
flatness of the left half.

The double logistic function is defined as:

g .tI x1; x2; : : : ; x4/ D
1

1C exp



x1�t
x2

� �
1

1C exp



x3�t
x4

� (9.4)

where x1 and x3 determine the positions of the left and right inflection points, and x2

and x4 determine the rates of change at these points. To ensure smooth shapes of the
model functions, all parameters are restricted in range. The parameters c and x are
obtained by minimizing a merit function using the Levenberg-Marquardt method.
Initial values of the non-linear parameters are obtained by searching a number of
pre-defined model functions.

In order to create a flexible fit to the full time-series the local functions are finally
merged to a global function.

9.2.3 Adaptive Savitzky-Golay Filtering

The Savitzky-Golay filtering suppresses noise by filtering the data by means of a
least-squares fit to a quadratic polynomial. For each data point a polynomial is fitted
to the data in a window:

f .t/ D c1 C c2t C c3t
2 (9.5)

where c1, c2, and c3 are determined by weighted least-squares fitting, and the degree
of smoothing is controlled by the width of the window. The estimated value in
the data point then replaces the original value. In TIMESAT, the window size is
tightened in case of large increases or decreases around data points, thereby adapting
to rapid changes in the data. This makes the method very flexible and useful for
describing fast seasonal changes.

Examples of Savitzky-Golay smoothing and asymmetric Gaussian fits are shown
in Fig. 9.2a, b.
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Fig. 9.2 TIMESAT fits to 3 years of 10-day AVHRR data for two pixels in the Sahel: (a) Savitzky-
Golay fit to pixel in northern Sahel, (b) asymmetric Gaussian fit to pixel in S. Sahel. Both fits are
upper envelope weighted and without use of ancillary quality data (Source: http://www.nateko.lu.
se/TIMESAT/. Published under Creative Commons license)

9.2.4 Handling Measurement Error and Noise Bias
in TIMESAT

By the use of weighted least squares, each data point can in TIMESAT be weighted
by its data quality. Normally, the quality of remotely sensed data is described using
qualitative flags, denoting missing data, cloudiness, or other conditions. With e.g.
MODIS data, a complex combination of data quality flags (QA flags) is provided
for each image pixel. These flags need to be converted to weights that express the
relative contribution of the pixel to the final fit. For example, pixels denoted as
“cloudy” can be given a weight of 0.01, “confident clear” a weight of 1.0, and
“probably clear” a weight of 0.5. No objective system for assigning the weights
exists, and judicious testing of various weights and combinations of flags to obtain

http://www.nateko.lu.se/TIMESAT/
http://www.nateko.lu.se/TIMESAT/
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the best fit to the data is necessary. Nevertheless, the possibility to include not only
perfect but also somewhat lower-quality data in the processing is an advantage.

NDVI and some other vegetation indices have the property of being negatively
biased in the presence of e.g. clouds, snow and atmospheric disturbances. In
TIMESAT, this property can be utilized by fitting to the upper envelope of the
data cluster, rather than to its centre. This is done by iterative fitting and a user-
defined value that regulates the degree of upper-envelope adjustment. This method
for avoiding noise has proven very effective, and as TIMESAT uses least-squares
fitting the final curves will not be forced to pass through extreme high values that
may be caused by positive noise (e.g. due to bi-directional effects at high solar-
zenith angles).

9.2.5 Processing Considerations

Selection of smoothing algorithm and processing parameters is far from straight
forward, and no objective method for doing this with unknown data points currently
exists. The Gaussian and logistic methods are very similar, although the Gaussian
functions sometimes adapt better than the logistic functions to flat growing season
peak periods. The Savitzky-Golay implementation in TIMESAT is very adaptive to
local variations in that it iteratively tightens the search window and may capture
very rapid increase or decrease in the data. On the other hand, smoothing very noisy
data requires an increased search window, which in turn can produce some artefacts.
Therefore, Savitzky-Golay filtering should not be used with extremely noisy data.

Since the distributions of the noise and the true signal are unknown, it is generally
not possible to apply objective statistical test parameters for choosing the best
smoothing method or parameter settings. However, if possible the user should utilize
data from ground-based measurements for known reference areas to gain experience
about the accuracy of different methods and parameter settings (e.g., Baret et al.
2006; Eklundh et al. 2011). It might also be possible to use some indicators, e.g. to
estimate inter-class variability of the output data, correlations with ancillary data
(cloudiness, elevation etc.) or the temporal persistence of variations (Atzberger
and Eilers 2011). Use of synthetic data sets for testing filter methods has also
been proposed (Hird and McDermid 2009), but this relies on accurate statistical
representation of the image noise. In TIMESAT, the results of different settings can
be viewed in a graphical user interface, and it is advisable to do this for a number
of areas across the image. If different land cover classes are to be processed, the
TIMESAT user can define different smoothing methods and parameters for each
land cover class.

When parameters have been selected, processing is carried out in a separate
executable which has been compiled in FORTRAN for fast performance. This
can be executed in parallel mode to exploit as many processing cores as possible.
The method currently being tested in TIMESAT has nearly linear scaling with the
number of CPUs.
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9.2.6 TIMESAT Outputs

The outputs of TIMESAT consist of smoothed data and seasonality parameters for
each growing season, which can be presented as ASCII data or graphs for single
pixels, or as full images for each time step (smoothed data) or season (seasonality
parameters). Examples are shown in Fig. 9.3, which, in addition to elevation, shows
estimated values of start and length of the 2009 growing season, derived from
MODIS 8-day values of EVI-2 for a mountain area in N. Sweden. The images
clearly show the dependence of vegetation seasonality on topography; the length

Elevation
(m)

Season start
(DOY)

Season length
(days)

20 70 120 cc 10 16090

50 km

55 160 235

Fig. 9.3 Land elevation and TIMESAT estimated seasonal parameters for Ammarnäs mountain
area, Sweden (lat. 65.3–67.0, long. 15.0–18.7) Seasonality parameters are computed from 250-m
MODIS EVI-2 using double logistic and asymmetric Gaussian fits depending on land cover type
(Source: http://www.nateko.lu.se/TIMESAT. Published under Creative Commons license)

http://www.nateko.lu.se/TIMESAT
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of season has the strongest (negative) correlation with elevation (R2 D 0.7), while
the start of season date is somewhat weaker (positively) correlated with elevation
(R2 D 0.54).

9.2.7 Uses of TIMESAT

TIMESAT has since its first publication (Jönsson and Eklundh 2002) been used
within several different application fields:

– Phenology, and phenological variations, e.g. for the Sahel by Heumann et al.
(2007), for Fennoscandia and the Kola Peninsula by Beck et al. (2007), for
Ireland by O’Connor et al. (2012), and for S. England by Boyd et al. (2011).
TIMESAT was also used when investigating the difficulty in extracting pheno-
logical parameters over boreal coniferous forests by Jönsson et al. (2010). Some
recent case studies have been conducted in different parts of the world, e.g. the
US (Cong et al. 2013), Europe (Han et al. 2013), South America (van Leeuwen
et al. 2013), and in Arctic areas (Zeng et al. 2013).

– Ecological disturbances, e.g. insect infestations (Eklundh et al. 2009; Olsson
et al. 2012; Buma et al. 2013), and fire and fire risk modeling (Verbesselt et al.
2006; Veraverbeke et al. 2010; Le Page et al. 2010).

– Vegetation classification and phenological ecosystem characterization (Tottrup
et al. 2007; Clark et al. 2010; van Leeuwen et al. 2010; Wessels et al. 2011;
Zhang et al. 2013; Leinenkugel et al. 2013), and for investigating the impact of
vegetation variability on the coupled land-atmosphere system (Weiss et al. 2012).

– Agricultural applications, e.g. for estimation of sow dates (Lobell et al. 2013)
and for mapping of abandoned cropping fields (Alcantara et al. 2012).

– Climate applications, e.g. for estimating diurnal air temperature from MSG
SEVIRI data (Stisen et al. 2007), to study change of the thermal growing season
and biospheric carbon uptake (Barichivich et al. 2012), and to study the impact
of extreme precipitation (Tang et al. 2013).

– Data smoothing to improve signal quality in satellite sensor data, e.g. in a number
of studies pertaining to drought and dryland conditions in the African Sahel
(Eklundh and Olsson 2003; Hickler et al. 2005; Olsson et al. 2005; Seaquist et al.
2009), and to improve estimation of carbon fluxes (Olofsson and Eklundh 2007;
Olofsson et al. 2007, 2008; Sjöström et al. 2009, 2011; Schubert et al. 2010,
2012; Barichivich et al. 2013). It has been used for data quality improvement
with MODIS and AVHRR satellite products (Fensholt and Proud 2012), and for
smoothing of GIMMS NDVI(3G) data for high northern latitudes (Zhao et al.
2013). Data quality improvement is also the reason for using TIMESAT in an
improved reprocessed version of the global MODIS LAI data set for land surface
and climate modeling (Yuan et al. 2011).
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The large number of applications of TIMESAT has proven its robustness and
versatility, and contributed to its continued improvement.

9.3 Discussion

Although TIMESAT is today a widely used tool and has shown its versatility
in analyzing different temporal data sets, there are several difficulties associated
with processing of remotely sensed time-series data. Primarily, choosing optimal
smoothing methods and parameters is by no means objective, and depends on data
and noise properties of the area under study (Garcia 2010). Several alternative time-
series methods exist in the literature, and in order to bring clarity into this, some
comparisons of different smoothing methods have been made (Eilers 2003; Hird and
McDermid 2009; White et al. 2009; Kandasamy et al. 2013). However, in general,
these studies have not been able to identify any ultimate method that fits in all situa-
tions. A clear weakness with many methods, including TIMESAT, is the sensitivity
to large numbers of missing data (Kandasamy et al. 2013). This was addressed by
Verger et al. (2013), who utilized the average long-term seasonal curve to obtain
robust estimates. Although their method may not be general enough to handle all
data situations, the suggested approach to handling missing data is promising.

The Savitzky-Golay method in TIMESAT has become popular, since it can fit
curves to very rapidly varying data. However, due to some artefacts there may be
reason to look into also other local methods, such as smoothing splines (Eilers 2003;
Atzberger and Eilers 2011). These are very flexible and have, in a modified version
extendable to several dimensions (Garcia 2010), been tested with good results in
TIMESAT (Eklundh and Jönsson 2013).

Beginnings and ends of seasons are in TIMESAT estimated based on fractions
of amplitude or on absolute values. The former method is practical with images
where different pixels have widely differing base levels; however, in situations with
interannual variations caused by e.g. soil color variations, the use of amplitude
fractions can lead to fluctuating seasonal parameters. Using absolute values to
define the seasons is preferable when expressing their limits in terms of biophysical
properties, e.g. when a certain LAI limit is exceeded. Some authors have used
derivatives of the seasonal curve to define growing season limits (e.g. Zhang et al.
2003; Tan et al. 2008; Rodrigues et al. 2013). This is in practice not much different
from defining a small threshold value of the amplitude, but has the disadvantage of
being more sensitive to noise, in particular when using higher-order derivatives (e.g.
Tan et al. 2008). Therefore, derivatives should not be used with local methods like
Savitzky-Golay filtering, or the seasonally merged Gaussian or logistic functions in
TIMESAT.

In light of increased use of time-series techniques for handling high-resolution
data, e.g. from Landsat (e.g. Huang et al. 2010; Zhu et al. 2012), and from the
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planned ESA Sentinel-2 satellite, there are good reasons to adapt TIMESAT to
high-resolution data, and to utilize also the spatial domain when processing time-
series data. This holds promise for reducing spatially uncorrelated noise (Eklundh
and Jönsson 2013), although more developments and tests of these spatio-temporal
methods are necessary.

A further consideration when dealing with time-series data is the physical
meaning of the remotely sensed data sets. Without doubt, popular vegetation
indices like the NDVI have simplified data analysis and made remote sensing more
accessible and operational. However, the somewhat unclear physical meaning of
most vegetation indices makes interpretation of the signals sometimes difficult. For
example, apart from being responsive to vegetation development, both NDVI and
EVI are strongly affected by snow (Huete et al. 2002; Jönsson et al. 2010; Schubert
et al. 2012). This may be the reason for the use of the ambiguous term “land
surface phenology”, a term adopted by the CEOS-LPV phenology Focus Group
(LPVS 2014). The term addresses the visible dynamic phenomenon as observed
by remote sensing instruments rather than the physical or biological phenological
processes underlying these variations. To enable unambiguous interpretation of
satellite-derived phenological parameters, biophysical variables like LAI or fAPAR
are preferable. There is also a need for developing new accurate vegetation indices
and products that more directly refer to identifiable biophysical processes (e.g. Jin
and Eklundh 2014).

9.4 Conclusions and Future Developments

TIMESAT has been developed to enable monitoring of dynamic land surface
processes using remotely sensed data, and has been used in a wide array of
applications. It provides different smoothing algorithms, which gives the user the
freedom to choose the most appropriate method depending on the characteristics
of the data and noise. Although TIMESAT has proven its versatility for several
years, there is a demand for continued development of new and efficient time-
series processing methods, e.g. to handle high-resolution data from the planned ESA
Sentinel-2 satellites.

To meet this demand, several improvements to TIMESAT are underway. These
planned changes include the ability to handle irregular time-steps in data; new
fast and efficient smoothing methods; methods for handling long data gaps; and
inclusion of the spatial domain in the time-series analysis. Improved validation
will be necessary to better understand the implementation of the methods and their
effects on parameter estimation. Hence, the new methods will be tested against
ground data sets, e.g. time-series of spectral measurements (Eklundh et al. 2011)
and eddy-covariance flux measurements, to estimate their performance within the
fields of phenology, vegetation productivity, and carbon modelling. It is our aim to
make TIMESAT a useful and versatile tool that aids analyses and data integration
for addressing a range of urgent environmental issues.
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Chapter 10
PhenoSat – A Tool for Remote Sensing Based
Analysis of Vegetation Dynamics

Arlete Rodrigues, André R. S. Marcal, and Mário Cunha

Abstract PhenoSat is a software tool that extracts phenological information from
satellite based vegetation index time-series. This chapter presents PhenoSat and
tests its main characteristics and functionalities using a multi-year experiment and
different vegetation types – vineyard and semi-natural meadows. Three important
features were analyzed: (1) the extraction of phenological information for the main
growing season, (2) detection and estimation of double growth season parameters,
and (3) the advantages of selecting a sub-temporal region of interest. Temporal
NDVI satellite data from SPOT VEGETATION and NOAA AVHRR were used.
Six fitting methods were applied to filter the satellite noise data: cubic splines,
piecewise-logistic, Gaussian models, Fourier series, polynomial curve-fitting and
Savitzky-Golay. PhenoSat showed to be capable to extract phenological information
consistent with reference measurements, presenting in some cases correlations
above 70 % (n D 10; p � 0.012). The start of in-season regrowth in semi-natural
meadows was detected with a precision lower than 10-days. The selection of
a temporal region of interest, improve the fitting process (R-square increased
from 0.596 to 0.997). This improvement detected more accurately the maximum
vegetation development and provided more reliable results. PhenoSat showed
to be capable to adapt to different vegetation types, and different satellite data
sources, proving to be a useful tool to extract metrics related with vegetation
dynamics.
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10.1 Introduction

Temporal vegetation profiles based on remotely sensed data provide valuable
information for understanding land cover dynamics, generally interpreted by veg-
etation phenological events. Sensors such as the Advanced Very High Resolution
Radiometer (AVHRR), SPOT VEGETATION (Satellite Pour l’ Observation de la
Terre – Vegetation), MODIS (Moderate-Resolution Imaging Spectroradiometer),
MERIS (Medium Resolution Imaging Spectrometer) and PROBA-V (Project for
On-Board Autonomy – Vegetation) are able to provide a spatial overview of the
land surface and spectral reflection information, which can be measured and used
to monitor phenology, stage type and crops health (pionnering studies were made
by Allen et al. 1969, 1973; Gausman et al. 1969, 1974; Wooley 1971; Gausman and
Allen 1973; Gausman and Hart 1974). Furthermore, their ability to collect imagery
at frequent time intervals (multitemporal images) permits to observe how the
vegetation changes throughout the growing season and better monitor the changes
naturally occurred or induced by humans.

Vegetation phenology based on remote sensing data refers to the spatio-temporal
development of the vegetated land surface as revealed by satellite sensors (de Beurs
and Henebry 2004). The main assumption behind all methods for phenological
determination from satellite sensor data is that the signal is related to measures of
vegetation. A time-series of a given vegetation index (VI) follows annual cycles of
growth and decline. Thus, deriving phenological metrics from remotely sensed data
consists on the analysis of the seasonal VI trajectory, and identifying critical points
such as the start-of-season or the end-of-season (Bradley and Mustard 2008).

Although the access to Earth Observation Satellite VI time-series is cur-rently
widespread, with low or without costs, there is still a gap between the data itself
and the meaningful information that can be extracted. Phenological metrics exploit
the seasonal growth cycle information, which could be influenced by non-climatic
factors, biogenic and anthropogenic disturbances (fires, land degradation, insect
attacks), or temperature and rainfall variations (Julien and Sobrino 2009; Potter et al.
2003). The large amounts of data and the presence of noise can make the analysis
and extraction of relevant vegetation information a difficult and time consuming
process.

The Maximum Value Composites (MVC) process is generally used to mini-
mize the noise influence by analyzing the VI values on a pixel-by-pixel basis,
in a predefined time-period, retaining the highest value for each pixel location
(Holben 2007). A MVC image is obtained when all pixels have been evaluated.
The MVC imagery is highly related to the green vegetation dy-namics, and
common problems encountered in single-date remote sensing studies, as cloud
contamination, atmospheric attenuation and observation geometry are minimized
using MVC (Tucker et al. 1985). However, generally the MVC process is not
sufficient to eliminate all unrealistic variability from VI time-series (Jonsson and
Eklundh 2004; Rodrigues et al. 2013). Further-more, additional noise may be also
introduced by the process of overlaying several images (for example due to image
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Table 10.1 Filtering methods proposed for smoothing remotely sensed time-series of vegetation
indices

Filtering method Some prominent applications

Running medians Velleman (1980)
Best index slope extraction Viovy et al. (1992) and Lovell and Graetz

(2001)
Weighted least squares windowed regression Sweets et al. (1999)
Harmonic series and higher order splines Roerink et al. (2000), McCloy and Lucht

(2004) and Bradley et al. (2007)
Wavelets Li and Kafatos (2000) and Sakamoto et al.

(2005)
Asymmetric Gaussian Jonsson and Eklundh (2002)
Double logistic Zhang et al. (2003) and Beck et al. (2006)
Savitzky-Golay Chen et al. (2004)
Mean value iteration Ma and Veroustraete (2006)
Whittaker smoother Atzberger and Rembold (2009) and Atzberger

and Eilers (2010)
Breaks for additive seasonal and trend Verbesselt et al. (2010)
Frequency analysis Lhermitte et al. (2011)
Adaptive local iterative logistic fitting Cao et al. (2015)

misregistration). Thus, it is necessary to fit a model to the observed data before
the extraction of vegetation dynamics information. An appropriate model should be
capable of smoothing the data without introducing artifacts or suppressing natural
variations of the vegetation (Fontana et al. 2008). During the last years, different
filtering techniques have been proposed (summarized in Table 10.1). In general, data
smoothing facilitates the satellite time-series analyses, by eliminating the unrealistic
abrupt peaks and aberrant values that appears in the VI profile (Fontana et al. 2008).
Moreover, it permits a better observation of the vegetation changes over time and the
identification of the main and double growing seasons, which is not always clearly
possible using the VI original data. This is illustrated in the example presented in
Fig. 10.1.

Developing algorithms to automatically remove the time-series noise and retrieve
land surface phenology metrics from satellite data has been an active research topic
for the last decade. TIMESAT (Jonsson and Eklundh 2004) is the most known
software for time-series phenology analysis, being used in several research studies
(e.g. Gao et al. 2008; Verbesselt et al. 2012; Zeng et al. 2013). It is an open source
software and provides three different smoothing functions to fit the time-series data:
asymmetric Gaussian, double logistic and adaptive Savitzky-Golay filter. TIMESAT
uses a simple method, based on thresholds, to determine a set of phenological
metrics, including the start-of-season, mid-season and end-of-season.

Besides TIMESAT, there are other software packages allowing the analysis
of the satellite time-series, reduction of noise components and/or extraction of
phenological metrics from satellite time-series data. HANTS (Roerink et al. 2000),
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Fig. 10.1 Example of a temporal series of NDVI acquired from NOAA AVHRR for a semi-
natural meadows region in Montalegre (Portugal) between 2001 and 2004. The dotted black line
corresponds to the original NDVI data and the solid green line the smoothed data produced using
the Savitzky-Golay method

TiSeG (Colditz et al. 2008), TSPT (Prados et al. 2006; McKellip et al. 2008), PPET
(McKellip et al. 2010), TIMESTATS (Udelhoven 2011), the software developed
by USGS Earth Resources Observation and Science Center (Ross et al. 2009),
Enhanced TIMESAT (Tan et al. 2011) and the SPIRITS (Eerens et al. 2014) are
some examples. Although these software products have important functionalities
for the extraction of phenological information, they present two great limitations:
(i) none of them allows the selection of an in-season window of interest, which
is fundamental for analyzing vegetation types and crop systems with more than
one growth cycle through the year; and (ii) except for TIMESAT, none of them
has a specific option to characterize a double growth season phenology. Moreover,
they work well in ecosystems with predictable minimum and maximum VI values,
however they cannot adapt so well to different vegetation dynamics over the years,
caused by uncontrollable conditions (drought year, unseasonal snow, fire, plagues
and diseases), and crops with partial ground cover or period of dormancy.

To address the aforementioned limitations, PhenoSat was developed to detect the
number of growth seasons in each year and has the option to define an in-season
window of interest. The ability to model more than one growing season makes
PhenoSat an useful tool for study different crops, able to deal with adverse weather
and soil conditions. The main characteristics and functionalities of PhenoSat were
tested using a multi-year experiment and different vegetation types, as well as data
from two different sensors.
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10.2 PhenoSat Description

PhenoSat is a software tool developed to extract phenological information from
satellite VI time-series. This tool was implemented in Matlab (Higham and Higham
2000) using a simple interface to provide an easy-to-use soft-ware. PhenoSat can
receive two standard input text files: containing the orig-inal satellite VI images, or
containing a temporal VI dataset. For the VI im-ages, a pixel-by-pixel approach is
conducted, and a specific region can be selected instead of using all image size. For
a temporal dataset, the numerical values (VI) are already standardized in a text file.

A number of satellite based metrics related with main growing season phe-
nological parameters (e.g. start-of-season, maximum vegetation develop-ment,
end-of-season) can be determined by PhenoSat. Some vegetation types and crops
systems present more than one growth cycle through the year manly related with
crop rotation or vegetation regrowth. The timing and magnitude of these in-season
cycles present high intra-annual variability due to some factors such as climate,
animal grazing and human land use decisions. Information about the timing of
start and maximum of these seasonal cycles can be obtained using PhenoSat. It
is important to note that some extreme conditions (e.g. fire, unseasonal snow) could
result in a false report of a double growing season. For this reason, a new feature was
developed in PhenoSat that allows the selection of a sub-temporal region of interest,
based on vegetation dynamics knowledge. The annual VI time-series subinterval,
defined manually or automatically, improves the fitting process, providing more
realistic results of the vegetation dynamics.

PhenoSat outputs two files containing the phenological information (es-timated
date and respective VI value) and the processed data at each of the fitting steps.
When the VI images are used as input, three additional output images will be
created. These images present, for each pixel analyzed, the phenological estimated
dates for three main stages: start-of-season, maximum vegetation development and
end-of-season.

10.2.1 PhenoSat Fitting Methods

Some VI datasets available online from different sensors (e.g. AVHRR, SPOT
VEGETATION (SPOT_VGT), MODIS) are already preprocessed in order to reduce
the noise caused by a variety of biophysical factors (Carreiras et al. 2003; Gutman
1991; Li and Strahler 1992). Although this preprocessing is generally effective,
the VI datasets still retain some problems (punctual outliers or abrupt changes)
that require additional processing. Noise reduction filters can be applied to remove
the undesirable artifacts, improving the subsequent analysis, and leading to more
reliable vegetation dynamics information.
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PhenoSat analyses year-by-year and considers as outliers the VI values that
present a VI difference above 0.2 from the median (Mw), and from its left and
right spatial neighbors. A VI profile variation of more than 0.2 is considered a high
variation (abrupt increase or decrease) which is unexpected between consecutive
observations in any vegetative crop cycle. The values of these outliers are replaced
by the Mw value. To modify the bias of the fit, an upper envelope (Beck et al. 2006)
can be applied. The upper envelope compares the smoothed and original data, and
the data points below the model function are considered to be less important. This
method enhances the spring and summer periods, allowing a better discrimination
of the maximum vegetation development. Although these actions can remove the
VI time-series outliers, some noise might still remain. For this reason, PhenoSat
provides six methods that can be used to obtain improvements in the noise reduction
process. The methods are: cubic smoothing splines (CSS), piecewise-logistic (PL),
Gaussian models (GM), Fourier series (FS), polynomial curve-fitting (PCF) and
Savitzky-Golay (SG). The CSS algorithm (Reinsch 1967) fits a cubic smoothing
spline to the VI time-series data. The adherence of the smoothing spline method to
the given data depends on the algorithm parameter selected.

Beck et al. (2006) and Fontana et al. (2008) proved that vegetation dynamics
tends to follow a well-defined growth temporal pattern and the vegetation cycle
can be represented by a double-logistic function. PhenoSat uses a particular case of
a double-logistic function (PL) defined by Eq. 16.1, where t represents the time,
VIt the VI value at time t, c and d are the slopes at the ‘left’ and the ‘right’,
and p and e are the inflection points dates. VIw and VIw1 are the VI values before
the bud break and after the leaf fall, respectively. The k parameter is related with
the asymptotical value and assures the continuity between vegetation growth and
senescence parts, even when they differ in shape (Cunha et al. 2010). The PL seven
parameters are estimated using the Levenberg-Marquardt algorithm (Montgomery
et al. 2006), which requires reasonable initial values.

VIt D VIw C
k

1C exp Œ�c .t � p/�
�

k C VIw � VIw1

1C exp Œ�d .t � e/�
(10.1)

Figure 10.2 presents a representation of the PL parameters, using two consecutive
years of NDVI (Normalized Difference Vegetation Index) SPOT_VGT data. The
continuity between the 2 years is assured by the VIw and VIw1, being the VIw for
the second year (beginning of the time-series) the same as the VIw1 for the first year
(final of the time-series).

The GM adjustment to data is given by the Eq. 16.2 (Goshtasby and Oneill 1994):

y D
Xn

iD1
aie

2

4�

 x � bi

ci

!23

5

(10.2)

where a is the amplitude, b the centroid (location), c is related to the peak width and
n is the number of peaks to fit (1 � n � 8).
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Fig. 10.2 Representation of the piecewise-logistic function parameters, using NDVI SPOT VEG-
ETATION data from two consecutive years

The FS is a sum of sine and cosine functions of different period that describes a
periodic signal (Mitra 2010). In the trigonometric form, it is represented as:

y D a0 C
Xn

iD1
Œai cos.nwx/C bi sin.nwx/� (10.3)

where a0 models a constant (intercept) term in the data and is associated with the
i D 0 cosine term, w is the fundamental frequency of the signal, and n is the number
of terms (harmonics) in the series .1 � n � 8/.

The PCF (Verschelde 2007) finds the coefficients of a polynomial, of a given
degree, that fits the data. The higher the degree, the closer the fitting curve will be
to the data, although this should be done only up to a certain (reasonable) degree.

The SG filter (Press et al. 2007) defined by

gi D
XnR

nL
cnfi C n (10.4)

is a particular type of low-pass filter, that replaces each data value fi; i D 1; : : : ;N;
by a linear combination gi of nearby values in a window defined by the number of
points ‘to the left’ (nL) and ‘to the right’ (nR) of a data point i. In PhenoSat, the
SG filter uses nL D nR and is always applied to smooth the original VI data. For
the subsequent analysis, it can be used alone or combined with one of the other
methods.

Figure 10.3 presents a comparison of the six fitting methods described, using a
NDVI SPOT_VGT annual time-series obtained from a Closed Deciduous Forest.
The PCF and GM methods present the most distinct fitting results for the main and
double growing seasons. The biggest differences are on the double growth season,
where these two methods present low sensitivity to detect the regrowth peak, over
smoothing this occurrence. It is important to note that PCF, GM, FS and CSS require
a smoothing parameter to fit the da-ta. The results presented were obtained using an
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Fig. 10.3 Comparison of PhenoSat fitting methods using a NDVI SPOT VEGETATION annual
time-series obtained from a Closed Deciduous Forest

intermediate value for each method in order to provide a more coherent comparison
(a parameter of 5 was used in FS, GM and PCF methods, and a value of 0.5 for
CSS).

10.2.2 Phenological Metrics

PhenoSat is able to determine the VI value and time of occurrence of the following
seven phenological events in the main growing season: start-of-season (SOS),
maturity (MAT- beginning of the ripening stage/full canopy), maximum vegetation
development (MVD), senescence (SEN), end-of-season (EOS), and the maximum
growth and maximum senescence rates (namely left (LIP) and right (RIP) inflexion
points, respectively).

The phenological information is obtained using the derivatives of the fitting
VI time-series, as illustrated in Fig. 10.4. The LIP (and RIP) corresponds to the
maximum (and minimum) of the fitted first derivative. The MVD is determined as
the maximum VI fitted value in the interval defined by LIP and RIP. The maxima
of the fitted VI time-series second derivative, at the left/right of the MVD, identify
the SOS/EOS. Similarly, the MAT/SEN can be found using the minima of the fitted
data second derivative, at the left/right of the MVD.

Some factors, such as adverse weather conditions (snow, ice or extreme heat),
water availability, pasture management and/or herbaceous vegetation growth in the
winter season, can interrupt the first growth vegetation cycle and induce an annual
regrowth in some crops (e.g. crop systems with more than one growth cycle a year,
shrublands or semi-natural meadows). This phenological information can also be
extracted by PhenoSat if required. This option allows recording the VI value and
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Fig. 10.4 Representation of PhenoSat derived phenological stages using the maxima and minima
of the first and second derivatives of the NDVI fitted data

date of occurrence for the start and maximum of this in-season period. PhenoSat
calculates the regrowth parameters using the pre- smoothed time-series (removed
outliers and SG filter application) after the EOS time occurrence.

The regrowth start is defined as the point where an increase of three or more
points occurs after the EOS stage. After this starting point, a decreasing period of
two or more points determines the maximum of the regrowth. In some cases, the
regrowth reported can be a “false regrowth”. For example in vineyards, as many
other discontinuous canopies, during the winter season the inter-row vegetation
growth appears as a regrowth in the vineyard annual profile. The unseasonal snow
could also result in a false report of a double growth season in many environments.
Only with the knowledge/analysis of the ground conditions it is possible to infer
about the truth of the regrowth.

The selection of an in-season temporal region of interest, based on known
vegetation dynamics, can help dealing with a false regrowth, particularly for natural
land cover types. PhenoSat has the possibility to select, automatically or manually,
the in-season temporal region of interest. The manual selection can be done by
inputting the initial and final time positions, based on known behavior of the
vegetation in the field at normal growth conditions. This type of selection presents
some limitations when adapting to different dynamics over the years. PhenoSat tries
to solve this problem with an optional approach that automatically detects the region
of interest. This option, based on the VI time-series profiles, is more flexible and
can adapt to the dynamics variations over the years. To determine the annual time-
series subinterval, PhenoSat firstly calculates the maximum value of the VI unfitted
data. Then, searches for the initial position, which corresponds to the point where
a significant increase (or abrupt decrease) is verified to the left of the maximum.
Afterwards, to determine the final position, the algorithm proceeds in a similar way
but evaluating the data to the right of the maximum.
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10.3 PhenoSat Application

10.3.1 Study Area and Satellite Data

The PhenoSat software was tested for different vegetation types and geographical
locations in continental Portugal. The NDVI time-series from AVHRR (10-days
composite and 1-km resolution) and SPOT_VGT (10-days composite and 1-km
resolution) covering Portugal, were downloaded from The Joint Research Centre
Community Image Data portal (JRC-CID 2013).

The performances of PhenoSat were tested in two land use types that present,
mainly, a different annual growth pattern (Table 10.2): vineyard (VIN) in Douro
wine region (Northeast Portugal); and semi-natural meadows (SNM) in Montalegre
(Northeast Portugal). In Douro region the predominant land cover is the vineyard
with extensive contiguous areas. The vineyard has a long dormancy period with
intense understory vegetation growth and a discontinuous canopy (Cunha et al.
2010). The SNM are an essential element of the mountain landscapes in Northern
Portugal, and represent the main fodder resource for livestock production. This type
of crop is characterized by a regrowth around the month of August, whose intensity
and date of occurrence are mainly dependent of climatic conditions (Pocas et al.
2012).

The different vegetation profiles provided by these crops (Fig. 10.5) permit to
evaluate the adaptability and performance of PhenoSat to distinct situations. For
each crop, a training area was defined carefully to avoid pixel boundaries with other
crops, hence the reduced number of pixels (Table 10.2) used in these experiments.
Entire training areas were considered as units, instead of using a pixel-by-pixel
approach. The median of the NDVI values of the pixels assigned to each crop

Table 10.2 Description of training areas and satellite datasets used to test PhenoSat

Land cover Acronym

Coordinates
(Long/Lat
WGS84)

Satellite
products

Time-series
period Size (pixels)

Vineyarda VIN UL:
7d45’17.7W,
41d09’51.6N

SPOT_VGT
AVHRR

2001–2010 6

BR:
7d43’41.8W,
41d08’48.4N

Semi-natural
meadows

SNM UL:
7d57’36.9W,
41d38’15.2N

SPOT_VGT
AVHRR

2001–2010 4

BR:
7d56’33.4W,
41d37’11.6N

aphenological field measures available
UL upper left corner, BR bottom right corner
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Fig. 10.5 Original NDVI temporal profiles obtained from SPOT VEGETATION and AVHRR
data, for the semi-natural meadows (a) and vineyard (b) land use types, for the period 2001–2010

were computed. The yearly NDVI time-series were created using the median values
obtained for each of the images available in a year.

10.3.2 Extraction of Phenological Information

The ability of PhenoSat to estimate phenological metrics from satellite VI data
was evaluated by a comparison between PhenoSat derived phenology and reference
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Table 10.3 Statistics of reference phenological measures obtained for vineyard (VIN) and semi-
natural meadows (SNM) vegetation types

Phenological stage Statistics VIN SNM

Start-of-Season Mean (DOY) 82.16 98.00
Maximum (DOY) 92.00 150.00
Minimum (DOY) 78.00 70.00
Standard deviation (days) 4.73 23.15

Flowering Mean (DOY) 145.76 n.a.
Maximum (DOY) 153.00 n.a.
Minimum (DOY) 125.30 n.a.
Standard deviation (days) 7.18 n.a.

Veraison/Maximum Vegetation Development Mean (DOY) 204.20 169.00
Maximum (DOY) 213.50 180.00
Minimum (DOY) 199.70 150.00
Standard deviation (days) 4.07 10.44

End-of-season Mean (DOY) n.a. 237.00
Maximum (DOY) n.a. 250.00
Minimum (DOY) n.a. 210.00
Standard deviation (days) n.a. 12.69

n.a. means that no reference phenological measurements were available. Flowering for SNM and
End of Season for VIN are two stages extremely difficult to obtain through reference observations.
For this reason they were not considered in this study

measures. Table 10.3 presents the statistics of reference phenological measures
obtained for each study area. For the VIN test site, the reference phenological mea-
sures were obtained by field collection, according to the Baggiolini scale (Baggiolini
1952). The bud break (BUB), flowering (FLO) and veraison (VER, define as the
‘change of color grapes’ stage) reference measurements were compared with the
SOS, MAT and SEN derived by PhenoSat. As no ground measures of phenology
were available for SNM, the PhenoSat results for SNM were compared with the
observed measures (named reference measures from this point) derived by visual
inspection of the original VI time-series, taking into account the knowledge of the
vegetation behavior in the field at normal conditions. As an example, Fig. 10.6
presents the reference measures determined from the SNM for 1 year. The SOS
was determined as the first point where a significant (four or more points) NDVI
growth was occurred (March/April). The MVD was identified as the maximum
NDVI value in the annual time-series, which generally occurs in June or early July.
The abrupt decrease verified after this point is due to the grass cutting process. The
remaining ground vegetation (about 5 cm height) begins a senescence period until
the maximum senescence (EOS), occurring mostly around August. In general the
SNM EOS stage is followed by a regrowth (RG), representing the first significant
(three or more points) vegetation growth after the EOS occurrence.
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Fig. 10.6 Example of phenological “reference measures” derived from the analysis of a 1-year
series (from NDVI SPOT VEGETATION for the semi-natural meadows)

Table 10.4 Correlations between reference and PhenoSat estimated vineyard phenology, using
NDVI data from SPOT_VGT and AVHRR sensors

SPOT_VGT (n D 10) AVHRR (n D 10)
Fitting methods Start Maturity Mid-season Start Maturity Mid-season

CSS �0.27 �0.78 �0.40 0.49 �0.28 0.07
FS �0.17 �0.76 �0.58 0.56 �0.32 �0.27
GM 0.77 �0.69 0.67 0.45 0.47 0.36
PCF �0.33 �0.71 �0.38 �0.30 0.41 0.21
PL 0.63 �0.66 �0.55 �0.06 0.30 0.18
SG 0.30 �0.77 �0.25 0.30 �0.21 �0.08

The start, maturity and mid-season represent the comparison between SOSvsBUB, MATvsFLO
and SENvsVER, respectively. The SOS, MAT and SEN are the derived PhenoSat phenology, and
BUB, FLO and VER are the phenological measures obtained in the vineyard
Fitting methods: CSS Cubic Smoothing Splines, FS Fourier Series, GM Gaussian Models, PCF
Polynomial Curve Fitting, PL Piecewise-Logistic, SG Savitzky-Golay

10.4 Results and Discussion

10.4.1 PhenoSat-Derived Phenology

The VIN phenological parameters estimated by PhenoSat were compared with those
obtained from reference measurements. The results are presented in Table 10.4.

Using the SPOT_VGT data, the correlations obtained for the start-of-season were
no higher than 33 %, except for GM and PL which obtained, respectively, values
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of 0.77 (n D 10; p D 0.004) and 0.63 (n D 10; p D 0.025). The inter-row vegetation
growth during the winter, and the difficulty in discriminating the first grapevine
leaves from the satellite data, makes it difficult to estimate with high precision the
SOS VIN stage. For maturity and mid-season stages, representing the period around
VIN full canopy, PhenoSat obtained, in general, higher correlations than for the SOS
stage.

The NDVI values for AVHRR were always greater than SPOT_VGT values
(Fig. 10.5b), being the higher differences at the end of the years. Comparing with
reference measurements (Table 10.4), the AVHRR data achieved better correlations
for the SOS, for most of the fitting methods. For the remaining phenological
stages, the SPOT_VGT data were better, providing correlations above 70 % (n D 10;
p � 0.012), in some cases.

The overall results proved that PhenoSat is capable to extract phenological
information from VI data provided by different satellite sensors, with a slightly
better performance for the SPOT_VGT. The AVHRR sensor was not originally
designed for vegetation studies (Cracknell 1997), having some limitations as water
vapor sensitivity and lacks on quality and atmospheric corrections. These limitations
are partially solved by the SPOT_VGT sensor that was specifically designed to
capture the main characteristics of the vegetation development in the land surface,
presenting better navigation, atmospheric correction and improved radiometric
sensitivity system (Gobron et al. 2000).

The flexibility of PhenoSat to extract phenology data from different land use
types was tested using the SNM. A comparison between the estimations and
reference measures is presented in Table 10.5. The phenological dates for SOS,
MVD and EOS stages were extracted with a reasonable precision with correlations
higher than 0.50 in most cases. All the fitting methods produced similar results,
being PCF the method with best performance for the SOS stage (n D 10; r D 0.86;
p D 0.001).

Table 10.6 shows the standard error (SE) of PhenoSat estimations obtained
using NDVI SPOT_VGT data, for VIN and SNM crops. For VIN, the SE was not

Table 10.5 Comparison between reference and PhenoSat estimated phenology for the semi-
natural meadows crop, using SPOT_VGT data

Correlation Reference vs PhenoSat

Fitting methods Start of season
Maximum vegetation
development End of season

CSS 0.58 0.54 0.51
FS 0.50 0.45 0.66
GM 0.43 0.56 0.63
PCF 0.86 0.44 0.63
PL 0.38 0.51 0.65
SG 0.53 0.53 0.54

Fitting methods: CSS Cubic Smoothing Splines, FS Fourier Series, GM Gaussian Models, PCF
Polynomial Curve Fitting, PL Piecewise-Logistic, SG Savitzky-Golay
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Table 10.6 Standard error of PhenoSat estimations using SPOT_VGT data for the two crops
studied

Vineyard Semi-natural meadows

Fitting methods SOS Maturity Mid-season SOS

Maximum
vegetation
development EOS

CSS 6.76 4.08 2.22 16.5 14.4 10.2
FS 7.95 4.35 3.21 11.2 14.1 12.3
GM 8.03 5.65 2.44 7.2 14.1 10.7
PCF 9.94 4.08 4.21 13.1 14.3 10.3
PL 5.08 2.47 1.76 11.7 4.4 5.4
SG 8.83 4.08 4.12 15.3 14.9 10.4

SOS Start of season, EOS End of season
Fitting methods: CSS Cubic Smoothing Splines, FS Fourier Series, GM Gaussian Models, PCF
Polynomial Curve Fitting, PL Piecewise-Logistic, SG Savitzky-Golay

higher than 10 days. The higher values were obtained for VIN SOS stage, being in
accordance with the low correlations showed in Table 10.4. For both VIN and SNM
crops, the PL was, in general, the best method with a minimum SE for the VIN
mid-season of 1.76 days, and a maximum of 11.7 days for SNM start of season.

The capability of PhenoSat in determining multiple growths in a same year was
also tested using the SNM data. This crop is characterized by an annual regrowth
around the month of August. However, the start of the regrowth can suffer changes
due to some factors such as the climatic conditions and human intervention.

Figure 10.7 presents the original and smoothed NDVI SPOT_VGT profiles for
the SNM land use type, for the three final years (2008, 2009 and 2010). The
smoothed data were obtained using a SG filter with a first degree polynomial and
frame size 5. These parameters removed the outliers/spikes without suppressing the
natural variations of the SNM VI original data. From the analysis of the smoothed
profiles it is possible to see that 2010 is the only year that presents a double
growth season, with start (3 or more consecutive points increasing) around the DOY
270. Table 10.7 shows the timing of regrowth derived from the original data and
determined using PhenoSat. All six fitting methods were capable to detect the start
of the regrowth, obtaining similar results. The similar, and in some cases equal,
results can be explained by the fact that the regrowth estimations are obtained using
the pre-smoothed data (removed outliers and SG application). These pre-smoothed
data present high correlation (around 88 %) with the original data, thus allowing
a more realistic analysis and leading to more reliable results. In the years 2001,
2003, 2007, 2008 and 2009 there was no regrowth, which was correctly verified
by PhenoSat. For the remaining years, PhenoSat accurately detected the beginning
of the double growth season, being the differences between original and estimated
parameters of 10-days (except for PCF in the year 2004). Similar conclusions were
observed for the maximum of the regrowth.
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Fig. 10.7 Original and smoothed NDVI SPOT VEGETATION time-series for the semi-natural
meadows crop, for years 2008, 2009 and 2010

Table 10.7 Start of double growth season estimations using original and fitted data, for semi-
natural meadows

Start of double growth (day of the year)

Method 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
CSS n.a. 260 n.a. 230 260 250 n.a. n.a n.a. 260
FS n.a. 270 n.a. 230 260 260 n.a. n.a. n.a. 260
GM n.a. 260 n.a. 230 260 260 n.a. n.a. n.a. 270
PCF n.a. 260 n.a. 250 270 260 n.a. n.a. n.a. 270
PL n.a. 260 n.a. 230 260 250 n.a. n.a. n.a. 260
SG n.a. 260 n.a. 230 260 250 n.a. n.a. n.a. 280
Original n.a. 260 n.a. 230 260 250 n.a. n.a. n.a. 270

n.a. signifies that no regrowth is verified on this year
Fitting methods: CSS Cubic Smoothing Splines, FS Fourier Series, GM Gaussian Models, PCF
Polynomial Curve Fitting, PL Piecewise-Logistic, SG Savitzky-Golay

10.4.2 Advantages of Selecting an In-season Region of Interest

PhenoSat has the option to select a region of interest, instead of using all range
of observations in a year. The reduction of the VI time-series improves the
fitting process, capturing more efficiently the maximum vegetation development,
thus producing more realistic results. To evaluate the utility of this feature on
phenological studies, PhenoSat was tested using the VIN. The interest region must
be selected according to the behavior of the studied vegetation in the field, under
normal conditions. The grape-growth cycle in Douro (Portugal) starts with the
bud break stage, which occurs around March. The harvest period typically occurs
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Fig. 10.8 NDVI SPOT VEGETATION original time-series (dot line) and the piecewise-logistic
fitted results using all range of observations (dash line) and the in-seasonregion of interest (solid
line), for the vineyard in 2009

between August and September/October, however it is deeply dependent on the
winemakers according to the style and quality of the wine they wish to produce.
Considering these facts, the main phenological cycle of the studied VIN crop is
assumed to be ranged from March (DOY 70) to September (DOY 270).

Figure 10.8 presents the VIN NDVI SPOT_VGT data for the year 2009, and
the PL fitting results using all range of observations (dash line) and the in-season
region of interest. Using all range of observations, the maximum peak of the VIN
(around the DOY 180/190) cannot be detected due to the initial peak around the
DOY 30 that could be related with winter vegetation growth in the vineyard inter-
row. The inclusion of this early pick of NDVI profile led to an over smoothed of the
main growing cycle. On the other hand, the use of the region of interest allowed a
more accurate adaptation of the fitting method to the variations of the original data
during the main growth cycle. The full canopy and senescence stages were captured
with high precision and more realistic results were produced. The PL fitted data,
produced using region of interest (from 7 to 27 10 days NDVI; 21 observations)
instead the all 36 observations, improves the R-square from 0.596 to 0.997.

Another example of the importance of the use of the interest zone in vineyards
is presented in Fig. 10.9. The PL fitted results, using all the 36 observations,
captured the initial peak (DOY 70) as the maximum development of the VIN crop.
This erroneous information led to non-accurate phenological estimations. Using the
region of interest, the fitted results captured more precisely the VIN growing season,
over smoothing the period related with the soil vegetation growth.

The selection of a region of interest proved to be useful not only in reducing the
processing time, but also in obtaining better fitted results, and consequently more
reliable phenological information.
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10.5 Conclusions

PhenoSat is an easy-to-use software tool which enables phenological information
to be extracted from satellite VI data. The experiments carried out indicate that
PhenoSat is capable of estimating phenological metrics with significant precision,
obtaining, in some cases, correlations with reference measurements above 70 %
(n D 10; p � 0.012).

PhenoSat permits the detection of an annual regrowth and the possibility to define
an in-season region of interest, which are limitations of other software packages
used to extract phenology.

The option to select an in-season region of interest results on an improvement
of the fitting process, leading to more reliable results. This PhenoSat feature
proved to be a valuable tool for vineyard monitoring and can extend the PhenoSat
application to crops with discontinuous canopy, like forestry and deciduous fruit
trees. PhenoSat proved to be capable to detect efficiently the regrowth occurrence.
The independency of the fitted results leads to a more realistic time-series profile
over the year and, thus, more accurate regrowth-derived results.

Comparing PhenoSat with other tools available for phenological studies (e.g.
TIMESAT, HANTS, Enhanced TIMESAT, PPET), PhenoSat appears as an intuitive,
easy-to-use software with two new important features: the possibility to select an in-
season region of interest, and the capability of identifying multiple regrowth within a
single year. Moreover, the extraction of phenological parameters using an algorithm
based on changes of growth rates allows PhenoSat to avoid thresholds or empirical
constants, providing a flexible tool that can be applied to different crops and VI data
provided from different data sources.

PhenoSat is freely available at http://www.fc.up.pt/PhenoSat website.

http://www.fc.up.pt/PhenoSat
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Chapter 11
Temporal Techniques in Remote Sensing
of Global Vegetation

Aleixandre Verger, Sivasathivel Kandasamy, and Frédéric Baret

Abstract Time series processing is an important ingredient of a biophysical
algorithm in order to get the expected continuous and smooth dynamics required
by many applications. Several temporal techniques have been proposed to reduce
noise and fill gaps in the time series of satellite data. The choice of the compositing
method may have a large impact on the accuracy of the phenology extracted from
the reconstructed time series. This chapter presents a comparison of six methods to
improve the temporal coherence and continuity of leaf area index (LAI) time series.
The temporal smoothing gap filling (TSGF) method which is based on an adaptive
Savitzky-Golay filter combined with a linear interpolation approach for filling gaps
over a limited temporal window showed the best performance when applied to time
series with less than 60 % of gaps. A climatology based approach outperformed
other approaches for filling gaps in time series with more than 60 % of missing
data or when the period of missing data is longer than 100 days. Based on these
findings, a dedicated approach combining the local TSGF filter with a climatology
gap filling technique was developed. It constitutes the basis of the algorithm for
the operational production of continuous and smooth time series of biophysical
variables from VEGETATION data within the European Copernicus Global Land
Service.

11.1 Introduction

Continuous and consistent time series of satellite biophysical variables raised an
increasing interest in the context of the global change studies. A set of Essential
Climate Variables was identified as being both accessible from remote sensing
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observations and intervening within key processes (GCOS 2010) including Leaf
Area Index (LAI). LAI is defined as half the total developed area of leaf elements
per unit horizontal ground area (Chen and Black 1992). It controls the exchanges of
energy, water and greenhouse gases between the land surface and the atmosphere.
Satellite observations in the reflective solar domain have been used intensively
for more than a decade to monitor LAI dynamics over the globe using medium
resolution sensors such as MODIS (Knyazikhin et al. 1998), VEGETATION (Baret
et al. 2007, 2013; Deng et al. 2006), MERIS (Bacour et al. 2006a) or AVHRR
(Ganguly et al. 2008; Zhu et al. 2013; Verger et al. 2012). However, these satellite
derived biophysical products show a significant fraction of missing observations as
well as sometimes unexpected high frequency temporal variations mainly caused by
cloud contamination, residual atmospheric or directional effects, and snow cover in
addition to the possible instrumental and algorithmic effects (Garrigues et al. 2008;
Weiss et al. 2007; Verger et al. 2011).

Several mathematical filters which use either temporal or spatial techniques
have been proposed to fill gaps in remotely sensed data and produce temporally
smoothed and spatially continuous products. Spatial filters using pixel-level or
regional ecosystem statistical data include geostatistical and regression methods
(Goovaerts 1997; Berterretche et al. 2005; Wang et al. 2012). Nevertheless, spatial
filters may fail for LAI products derived from coarse resolution satellites to represent
the complexity of real landscapes mainly over mixed pixels where LAI could vary
widely within a short distance. To overcome this limitation, some studies tried to
combine both temporal and spatial methods by using historical high-quality data
and temporal curves from neighbor pixels. Fang et al. (2008) proposed a temporal
spatial filtering algorithm for MODIS LAI data applying an improved ecosystem
curve fitting method based on the MODIS vegetation continuous fields product
which imposes regional dependant phenological behaviour onto each target pixel’s
temporal data in order to maintain pixel-level spatial and temporal integrity. Gao
et al. (2008) proposed using preferentially a seasonal-variation curve within a small
window around the pixel of the MODIS LAI product and an ancillary seasonal curve
within the tile when no high-quality data is available within the defined maximum
distance.

Temporal filters include a broad variety of strategies such as the well-known
MVC (maximum value compositing) (Holben 1986), best index slope extraction
(BISE) (Viovy et al. 1992), Fourier-based fitting methods (Roerink et al. 2000),
wavelet decomposition (Martínez and Gilabert 2009), asymmetric Gaussian fil-
tering (Jönsson and Eklundh 2002), Savitzky-Golay filtering (Savitzky and Golay
1964), logistic function fitting (Zhang et al. 2003) or curve-fitting procedure
(Bradley et al. 2007). The choice of the smoothing gap filling or compositing
method may have a large impact on the accuracy of the phenology extracted from
the reconstructed time series (Hird and McDermid 2009; Atkinson et al. 2012).
However, quantitative comparisons of alternative temporal filters are relatively rare.
Chen et al. (2004) showed the effectiveness of a modified Savitzky–Golay filter
in comparison to the BISE algorithm and fast Fourier transform technique for
reconstructing SPOT VEGETATION high-quality NDVI time-series. Later, Hird
and McDermid (2009) revealed the general superiority of the Beck et al. (2006)
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double logistic and Jönsson and Eklundh (2002) asymmetric Gaussian function-
fitting methods over more simple local filtering methods: Chen et al. (2004)
Savitzky–Golay, Velleman (1980) 4253H Twice filter, Ma and Veroustraete (2006)
mean-value iteration, and Filipova-Racheva and Hall-Beyer (2000) autoregressive
combination ARMD3-ARMA5 filters for noise reduction of MODIS NDVI time
series. It is however still difficult to identify the potentials and limitations associated
with different methods since most of these studies focus on a small sample of global
conditions and they have been applied to NDVI rather than on a true biophysical
variable such as LAI with few exceptions (Gao et al. 2008; Fang et al. 2008; Jiang
et al. 2010; Kandasamy et al. 2013).

This chapter focuses on the temporal techniques used operationally to provide
continuous estimates of biophysical variables from global satellite observations. The
chapter is divided into two parts. We first evaluate the capacity of several methods
to provide faithful reconstructions of LAI time series in the presence of a significant
amount of missing observations and noise. The gap filling capacity and the fidelity
of reconstructed values with the actual ones is evaluated with due attention given to
the missing data structure: length of gaps and fraction of missing data in the time
series. Based on the findings of this first comparison, the principles of the temporal
compositing techniques which are proposed for the generation of LAI time series
from VEGETATION data within the European Copernicus Global Land Service are
justified in the second part of the chapter.

11.2 A Comparison of Methods for Smoothing
and Gap-Filling Satellite LAI Time Series

A selection of six methods is systematically evaluated for the ability to provide
continuous and smooth reconstructions of the noisy and discontinuous MODIS
LAI time series estimates. To exclude implementation bias in this comparison, the
methods were implemented as close as possible to their original source with similar
parameterization as suggested by their authors. If the parameterizations were not
provided, their values are obtained by trial and error. The various methods are
presented first. Then the evaluation approach is detailed. Finally the performances
of the six compared methods are analyzed.

11.2.1 Temporal Smoothing and Gap Filling Techniques

Six methods were selected based either on local curve-fitting techniques, or
decomposition techniques working on the time series as a whole:

Empirical Mode Decomposition Method (EMD) This method was proposed by
Huang et al. (1998) as a precursor to the Hilbert-Spectrum Analysis for nonlinear
and non-stationary time series data. The method decomposes a given time series data
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into a series of Intrinsic Mode Frequencies (IMFs) through a data-driven adaptive
iterative process. The method includes two parameters: a threshold of convergence
to identify an IMF which was set to 0.3 and the maximum number of IMFs which
was fixed to 10. The first IMF containing the highest frequency component, mostly
affected by noise, was smoothed using a uniform mean kernel (Demir and Erturk
2008). The EMD method requires the time series to be continuous. The missing
data within 128 days were filled by linear interpolation as proposed by Verger et al.
(2011). However, EMD was not applied to time series containing gaps longer than
128 days and, in this case, EMD was considered unsuccessful to reconstruct the time
series.

Low Pass Filtering (LPF) This method, originally proposed by Thoning et al.
(1989) for analyzing CO2 data from Mauna Lao observatory, was later adapted
by Bacour et al. (2006b) for processing AVHRR satellite time series. This method
involves fitting a time-dependent function with 2 polynomial and 8 harmonic terms.
The residuals of this fitting are then filtered using 2 Low Pass Filters to separate
inter- and intra-annual variations. The final reconstructions result from the sum of
the time-dependent function and the filtered residuals. This method requires the data
to be continuous. Similarly to EMD method, the gaps within 128 days were first
filled by linear interpolation (Verger et al. 2011). For time series containing longer
gaps than 128 days, the LPF reconstructions are missing.

Whittaker Smoother (Whit) This method is based on a penalized regression method
proposed by Whittaker (1922) as an alternative form of b-spline with the number
of knots equal to the number of data points. The method involves the minimization
of a cost function having two terms – a term for fidelity expressed as a quadratic
difference between the estimates and actual observations, and a term for roughness
expressed as a quadratic difference between two successive estimates. The balance
between these two terms is achieved by a smoothing parameter (œ). The higher the
œ, the smoother is the estimated series but at the expense of fidelity. Analytical
estimation of this value is difficult as the value is dependent on the time series being
smoothed. Hence, by trial and error this value was set to 100. The smoothness is
also controlled by the order of differentiation, which is fixed to 3 in this study as
proposed by Eilers (2003).

Asymmetric Gaussian Fitting (AGF) This method was proposed by Jönsson and
Eklundh (2002) within the TIMESAT toolbox. An asymmetric Gaussian function
is locally fitted to the data over the growing and senescing parts of each season.
Then the fitted functions are merged to get a smooth transition between seasons.
This method can handle small gaps (up to 72 days). The original TIMESAT
implementation requires a minimum seasonality in the data and a maximum fraction
of missing data of 25 %. However, in this study these two conditions were removed
to allow a more rigorous comparison between the different time series methods.

Temporal Smoothing and Gap Filling (TSGF) This method proposed by Verger
et al. (2011) is an adaptation of the Savitzky-Golay filter (Savitzky and Golay 1964)
where the order of the polynomial is fixed to 2 but an asymmetric and variable in
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length temporal window is considered. The temporal window is defined to include 3
observations on each side of the date being smoothed within a maximum 64 day
period. If less than 6 observations are available in the compositing period, the
polynomial fitting is not applied. Gaps shorter than 128 days are reconstructed with
a 2-iteration linear interpolation. Gaps longer than 128 days will result in missing
data. The possible flattening of the seasonal peaks due to smoothing is further
corrected by scaling the smoothed series to the actual series (Verger et al. 2011).

Climatology (Clim) The climatology describes the average yearly time pattern. It
may provide smooth and continuous time series with, however, no changes from
1 year to another. The climatology was computed at 8-day time steps as the inter-
annual average of the values available in a ˙12-day window across all the years
in the time series (Baret and Weiss 2010). The climatology was then corrected
to provide a more continuous and smoother time course. A Savitzky-Golay filter
(Savitzky and Golay 1964) was first applied. Linear interpolation was applied to
fill gaps shorter than 128 days (Verger et al. 2011). Gaps longer than 128 days will
result in missing data. The corrected climatology was then replicated across all years
to provide the reconstructed time series.

11.2.2 Evaluation Approach

The several methods were evaluated using time series corresponding to actual
MODIS LAI products over the 420 BELMANIP2 sites identified by Baret et al.
(2006) to represent the variability of vegetation types and conditions around the
world. The considered methodology to evaluate the methods is based on a two-step
process as proposed by Kandasamy et al. (2013):

1. In a first step, reference LAI time series were first generated. MODIS LAI time
series (LAIori) over a sample of 25 sites of different biome types were selected to
be both representative of the diversity of seasonal patterns and with a low fraction
of missing observations. The different evaluated methods were applied to each
of the 25 sites and the median value across all reconstructions was kept as the
reference time course for the evaluation (LAIref).

2. In the second step, emphasis was put on the occurrence of missing data
(% gap) and noise to provide realistic LAI values. The original time series
(LAIori) were first completed at the location of missing data by LAIref values
contaminated by a noise that was randomly drawn within the distribution of
residuals (LAIref�LAIori) for each site. This results in realistic but continuous
temporal profiles with no gaps (LAIcomp). Then, the gap structure observed over
each one of the 420 sites belonging to the same vegetation class was applied to
the 25 sites with completed time series (LAIcomp). This results in 1920 simulated
time series (LAIsim). This approach was expected to improve the realism of the
analysis that accounts for the implicit links between the vegetation type and the
distribution of missing observations. The various methods were applied over
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the simulated time series (LAIsim) and the resulting reconstructions (LAIrec)
compared to the reference data (LAIref) were used to quantify the accuracy of
each of the 6 methods as a function of the fraction of missing observations.

The fidelity of reconstruction, i.e. how similar the LAIrec reconstructed values are
to the LAIref reference values, is evaluated based on the root mean square evaluation
over all the simulation cases over dates with missing data in LAIsim:
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where LAIj
rec(t) and LAIj

ref (t) are the reconstructed and reference values for date t
and case j, respectively. nj is the number of dates with observations for case j and N
is the number of cases considered.

In many cases, the methods may fail to reconstruct the time series due to the long
periods of gaps or due to the large amount of gaps. These are respectively quantified
by the success fraction (%success), i.e. the fraction of gaps that were able to be
filled, and the reconstruction fraction (%reconstructions), i.e. the fraction of dates
with reconstructed LAI values.

11.2.3 Performances for Time Series Reconstruction

The capacity of the considered methods to reconstruct the time series under varying
conditions of length of gaps (LoG) and amount of gaps (%Gap) is first evaluated.
The fidelity of the reconstructions is then evaluated.

11.2.3.1 Gap-Filling Performances

Among the evaluated methods, only Whit method was able to fill all the gaps even
if they are very long (Fig. 11.1a). Conversely, EMD, AGF and LPF methods show
a rapid decrease in the %success with the increase in the LoG. AGF was unable
to provide any reconstructions for LoG > 88 days, while the EMD and LPF fail for
LoG >128 days. Even for small gaps, only 50 % of them were filled. The TSGF
was able to successfully fill the gaps up to a gap length of 128 days as expected by
its definition. The Clim also shows a decrease of %success as a function LoG but
was able to fill gaps in more than 80 % of cases for LoG < 128 days because of the
accumulation of observations over the 9 year period.

LPF, AGF and EMD fail in about 50 % of the cases when the fraction of missing
observations (%gap) was larger than 20 % (Fig. 11.1b), which represents about 60 %
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Fig. 11.1 (a) Fraction of gaps reconstructed (%success) as a function of length of gaps (LoG). (b)
Fraction of dates reconstructed (%reconstruction) as a function of %gap. The horizontal dashed
line represents the 50 % threshold of %reconstructions. The different methods are indicated by the
different colors. Some values were slightly shifted vertically for better readability (Adapted from
Kandasamy et al. 2013)

of the simulation cases investigated in this study. This is partly attributed to their
principles and partly to their implementation. Hence, great care should be taken
during the implementation of such methods to improve their rate of applicability in
cases with significant periods of gaps. Conversely, Whit and Clim methods were
applicable in almost all situations while TSGF shows an intermediate behavior
(Fig. 11.1b).

11.2.3.2 Fidelity of Reconstructions

The fidelity of the methods degrades rapidly as a function of the length of
gaps (Fig. 11.2a), particularly, for Whit method. Clim shows similar performance
independently of the LoG. For LoG < 100 days, LPF and TSGF are found to provide
the best performances. For gaps exceeding 100 days, Clim appears to be more robust
and performs the best.

The fidelity of reconstructions in gaps as a function of the fraction of missing
observations in the time series (Fig. 11.2b) shows relatively low RMSE values
(around 0.1) up to %gap < 20 % for all methods except for Clim which performs
the worst in this condition since it is not able to capture the inter-annual variability
in LAI seasonality. Then Whit shows a rapid increase of the RMSE with %gap
with poorer performance as compared to Clim for %gap > 30 %. TSGF was found
to perform the best up to 60 % gap.

To summarize the first part of this chapter, TSGF provides more accurate
reconstructions of MODIS LAI time series up to a %gap < 60 %. Most methods
performed worse than Clim for gap durations longer than about 100 days or when
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Fig. 11.2 RMSE as a function of LoG (a) and %Gap (b). The RMSE is computed between LAIref

and LAIrec over dates with missing observations in LAIsim (Adapted from Kandasamy et al. 2013)

the fraction of gaps in the time series is greater than 60 %. The combination of the
local TSGF fitting with the climatology gap-filling approach appears to be optimal
for improving the consistency and continuity of LAI time series from moderate
resolution satellite sensors. This combined approach is further explored in the
second part of this chapter.

11.3 Temporal Techniques in Remote Sensing of Global
Vegetation

The temporal compositing techniques for ensuring consistency and continuity
of GEOV2/VGT LAI products derived from VEGETATION (VGT) data within
the Copernicus Global Land Service are here presented as well as the derived
products. The principles of the temporal composition are presented first. Then the
GEOV2/VGT products are evaluated as compared to the first version GEOV1/VGT
products (Baret et al. 2013) with emphasis on the improvements in terms of temporal
continuity and smoothness.

11.3.1 Principles of the Temporal Compositing Approach

The GEOV2/VGT algorithm for the estimation of global LAI from VEGETATION
satellite data at 1 km spatial resolution and 10-day steps in near real time as well
as in offline mode (time series from 1999 to 2013) consists of three main steps: (1)
neural networks to provide instantaneous estimates from daily VGT-P reflectances,
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(2) a multi-step filtering approach based on an iterative upper envelope process to
eliminate data mainly affected by atmospheric effects and snow cover, and (3) a
temporal composition to ensure consistency and continuity of the LAI time course
every 10 days. Here we focus on this third step, i.e. the temporal composition, and
the historic LAI time series generated in offline mode. We refer the interested reader
to Verger et al. (2014, 2016) for further details about the GEOV2/VGT algorithm.

The GEOV2/VGT temporal composition combines the TSGF (Verger et al. 2011)
and the climatology-based CACAO (Verger et al. 2013) techniques. TSGF fits a
second-degree polynomial over an asymmetric temporal window as described in
Sect. 11.2.1. The compositing period is made of past and future semi-windows of
adaptive length varying between 30 and 60 days. The length of the semi-window
is determined by the availability of 6 valid observations the closest to the date
of the dekad at which the product is estimated (Verger et al. 2011). If less than
6 observations exist in a 60 day semi-window, CACAO values evenly distributed
every 10-days are used to fill gaps before the application of TSGF.

CACAO (Consistent Adjustment of Climatology to Actual Observations) con-
sists of fitting the climatology to actual observations for each growth season by
scaling the magnitude and shifting the phenology. CACAO copes better with
missing and noise contaminated data as compared to standard methods as found
in Verger et al. (2013). The climatology is computed as the inter-annual average
of GEOV1/VGT time series over the 1999–2010 period (Verger et al. 2015). If it
is available for a given pixel, the CACAO method allows filling all the gaps in the
time series, even for missing data during long periods. Indeed, CACAO is closer
to the actual data than the original climatology .Clim/ because it allows inter-
annual variations of the time course (Fig. 11.4). However, the main limitation of
CACAO reconstruction method is its inability to capture underlying atypical modes
of seasonality including rapid natural and human induced disturbances in the time
series that strongly differ from the average climatology (e.g. flood or fire events,
changes in the land cover) (Verger et al. 2013). To avoid this drawback, priority is
given to TSGF smoothing since it is closer than CACAO to the actual observations,
while CACAO is only used to fill large gaps in the time series before the application
of TSGF.

11.3.2 Assessment of the Temporal Continuity and Consistency

11.3.2.1 Inspection of a Sample of Sites

Few BELMANIP2 sites showing typical features have been selected to illustrate the
performances of GEOV2/VGT LAI time series per large biome types (Fig. 11.3).

For the evergreen broad leaf forest (site #445), the effect of residual clouds is
very pronounced, creating strongly negatively biased estimates of daily products.
These are efficiently filtered thanks to the frequency criterion used. This results in
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Fig. 11.3 Temporal profile of GEOV2/VGT (black solid line) over typical sites of different biome
types. Daily estimates derived from VGT-P products are indicated by the dots: black squares
correspond to outliers. Empty circles to the valid LAI estimates used to compute the GEOV2/VGT
product. The dashed green line corresponds to the GEOV1/VGT climatology. The solid green line
to the CACAO estimates. The red line corresponds to GEOV1/VGT product

a very flat temporal profile with a high level of LAI as expected. As compared
to GEOV2, GEOV1 shows generally lower LAI values, discontinuous and shaky
temporal profiles.
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For deciduous broadleaf forest (site #394), similarly, the negative bias due to
cloud contamination is efficiently filtered by the GEOV2 algorithm. For this high
latitude site, the winter period is continuously and consistently gap filled although
very few observations are available in GEOV2 while some discontinuities are
observed in GEOV1.

For very high latitude needle leaf forests (site #407), the GEOV2 temporal profile
is very consistent with that of GEOV1 during the vegetation season, with however
no interruption during the winter period conversely to GEOV1.

The temporal profiles over the cropland site with double seasonality (site #150)
show also a high consistency between GEOV1 and GEOV2. However, some artifacts
noticed for GEOV1 (site #150, end of 2010) have disappeared in GEOV2 due to
the use of the CACAO fitted climatology as a background information to provide
dekadal estimates in absence of observations. For this particular site near the
Equator (site #150), GEOV2 shows significant improvements in terms of continuity
as compared to GEOV1.

The temporal profiles of shrub-savana-bare soils are also very well captured by
GEOV2, with large improvements as compared to GEOV1 regarding continuity
and smoothness of estimates. However, site #137 shows large scattering of daily
estimates, particularly during the winter season probably largely contaminated by
clouds.

To summarize, as compared to the GEOV1/VGT products, GEOV2/VGT dis-
plays more continuous and smooth temporal profiles (Fig. 11.3). This will be better
quantified in the following.

11.3.2.2 Temporal Continuity

The continuity of time series is evaluated by the fraction of missing data based on the
BELMANIP2 sites during the 2003–2010 period. Only 1 % of the potential dekads
are missing globally, i.e. much less than for GEOV1/VGT showing about 20 % of
missing data. GEOV1/VGT products are missing if less than 2 observations exist in
the 30-day compositing window. GEOV2/VGT benefits from the use of the TSGF
and the CACAO climatology based techniques for filling, respectively, the small
gaps within 120 days or the larger gaps: data are missing only if the climatology is
not available due to too large discontinuities in the data.

The climatology values are used to fill large gaps in 10–55 % of the cases
depending on the biome type as displayed in Fig. 11.4. The fraction of dekads
that were not filled but with available observations are slightly higher than those
observed for GEOV1/VGT due to the use of daily estimates and a larger compositing
window. Identical patterns per biome are observed with lower fraction of high
quality observations for evergreen broadleaf forests mostly located in areas with
continuous cloud cover around the Equator. In this particular case, the fraction of
non filled data is higher for GEOV1/VGT because in GEOV2/VGT a high fraction
of data is filtered out in the outlier rejection process.
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Fig. 11.4 Average fraction of valid GEOV1/VGT and GEOV2/VGT products per biome. The
biome classes are derived from the GLOBCOVER (Defourny et al. 2009) global landcover:
SSB Shrubs/Savana/Bare soil, CG Crops and Grassland, DBF Deciduous Broadleaf Forests, NF
Needleleaf Forest, EBF Evergreen Broadleaf Forest. For GEOV2/VGT, high quality data (grey)
and gap filled data (black) are distinguished. Evaluation over the BELMANIP2 sites for the 2003–
2010 period

11.3.2.3 Temporal Smoothness

LAI variable results from incremental bio-physical processes. It is therefore
expected to show relatively smooth temporal variations except in extreme situations
such as flooding, fire or changes in the land-use. High variability in the temporal
profiles would indicate a lack of reliability of the derived products. The smoothness
of the LAI temporal series was evaluated based on the absolute value of the
difference, ıLAI; between LAI(t) product value at date t and the mean value
between the two closest bracketing dates in a maximum �t period of 60 days:
ıLAI D j1=2 .LAI .t C�t/C LAI .t ��t// � LAI.t/j (Verger et al. 2011). The
smoother the temporal evolution, the smaller the • difference should be. The
histogram of • over the whole dataset of BELMANIP2 sites in the 2003–2010 period
(Fig. 11.5) shows that both GEOV1/VGT and GEOV2/VGT products are very
smooth with differences lower than 0.25 for most of cases. However, GEOV2/VGT
shows generally smoother temporal profiles as attested in Fig. 11.3.
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Fig. 11.5 Histogram of the
•LAI absolute difference
representing temporal
smoothness for GEOV2/VGT
and GEOV1/VGT LAI
products. Evaluation over the
BELMANIP2 sites for the
2003–2010 period

11.4 Conclusions

Time series processing is an important ingredient of a biophysical algorithm in order
to get the expected continuous and smooth dynamics required by many applications.
A comparison of six widely used smoothing and gap filled techniques shows that the
structure of missing data in the time series (length of gaps and fraction of missing
data) appears as a major limitation of the accuracy of the reconstructed temporal
profiles. A local asymmetric Savitzky-Golay filter using linear interpolation for gap
filling over a limited temporal window of 120 days provides the best performances
in terms of the fidelity of reconstructions to actual LAI observations for time series
with a gap fraction up to 60 %. Most methods were performing poorer than the
climatology to fill gaps longer than about 100 days or fraction of gaps greater
than 60 %. This suggest the interest of developing dedicated methods where the
features derived from the exploitation of the several years available in the time
series including the climatology, could be injected more explicitly as a background
information for improving the reliability of methods working over a limited time
window, such as a season or part of it. This constitutes the basis of the proposed
temporal techniques for the generation of continuous and consistent time series
of LAI from global VEGETATION observations. A climatology is fitted to the
data for each sub-season and used to fill data before the application of a Savitzky-
Golay filter. This method is being implemented within the Copernicus Global Land
service and GEOV2/VGT continuous (less than 1 % of missing data) biophysical
products over the whole globe will be freely delivered through the Copernicus
portal (land.copernicus.eu/global) at 1/112ı spatial resolution every 10 days in near
real time as well as in offline mode (time series from 1999 to 2013). The GEOV2
algorithm will be further adapted to other sensors including AVHRR, PROBA-V,
Sentinel-3 for the extension of the time series after 2014.
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Chapter 12
Soil Moisture Dynamics Estimated from MODIS
Time Series Images

Thomas Gumbricht

Abstract The annual cyclic phenomena of soil surface wetness influences for
instance vegetation growth, drought, flooding, and soil properties. This study
presents an attempt to define metrics relevant for capturing the soil moisture
dynamics from an annual series of wetness estimates derived from global Moderate-
resolution imaging spectroradiometer (MODIS) images. Different algorithms for
both smoothing and gap-filling the time series are tested with the results compared
to in-situ data. Neither the smoothing nor the gap-filling improve the capturing of
the surface wetness phenology compared to using unsmoothed time series data.
The smoothing, however removes the effects of erratic rainfall events and noise,
and the smoothed time series was considered more robust for identification of
wetness phenology. Metrics capturing the global surface wetness phenology for
2011, extracted after smoothing using a simplified locally weighted scatterplot
smoothing (LOWESS) model, are presented at a spatial resolution of 500 m for the
calendar year 2011.

12.1 Introduction

Soil moisture content and its annual variation are of key interest for understanding
e.g. vegetation production, rainfall to runoff response and flooding, drought and
fire risk, and soil formation including the occurrence of wetlands. Hitherto, time-
series of continental to global scale soil surface wetness have been restricted to
coarse scale (�25–50 km) estimates derived from passive microwave sensors and
global hydrological models (Haddeland et al. 2011; Ochsner et al. 2013; Papa et al.
2013; Reichle et al. 2004; Wagner et al. 2003). The successful launch of the Soil
Moisture Active Passive (SMAP, smap.jpl.nasa.gov) mission in January 2015 now
produces refined estimates, even though one the radar instruments stopped operating
in July 2015. But also the SMAP data is at a too coarse scale for satisfying the
needs in many applications. Elsewhere (Gumbricht 2015) I introduce an attempt to
develop a quantitative estimation of soil wetness retrieved from optical image data,
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the Transformed Wetness Index (TWI). TWI is a non-linear normalized difference
(ND) index that uses biophysical feature vectors representing the soil line and
wetness as input. TWI can in principle be derived from any multi-spectral image
data source, but soil moisture content is better captured with Short-Wave Infra-
Red (SWIR, 1100–2500 nm) compared to visible and near-infrared (VNIR, 400–
1100 nm) wavelengths. Adopting Bidirectional Reflection Distribution Function
(BRDF) corrected Moderate-resolution Image Spectroradiometer (MODIS) data for
calculating TWI has several advantages for soil moisture mapping; the product
includes three SWIR bands, the data are reflectance corrected and easily accessible
for the whole earth, atmospheric attenuations including cloud contaminations are
negligible, and the annual cycle of wetness can be captured from discrete images
over an annual cycle, each representing a 16-day period. A disadvantage is that the
exact date for each observation is not known, only the 16-day interval within which
it falls is.

This study briefly describes TWI, and focuses on techniques for retrieving
metrics for capturing the global annual soil moisture dynamics. While several
studies validate the temporal performance of microwave derived soil-moisture
estimates compared to in-situ probes measuring soil moisture (Draper et al. 2009;
Jackson et al. 2010; Reichle et al. 2007), relatively few studies have explored the
metrics of seasonal and annual variations in soil-moisture (Cheema et al. 2011). To
remove noise and outliers, and fill in data-gaps, different smoothing algorithms are
tested, and model results compared to in-situ probed wetness. The study presents
phenological metrics depicting the global soil moisture dynamics for the calendar
year 2011.

12.1.1 Phenological Characterization

Characterization of cyclic annual or seasonal natural phenomena (phenology)
has been widely adopted for studying vegetation dynamics extracted from time-
series of satellite images (Heumann et al. 2007; Jones et al. 2011; Tan et al.
2011). Phenological characterization includes both value based and temporal
metrics. The most common value metrics include mean (MEAN), minimum (MIN),
maximum (MAX), and seasonal integration (INT) (e.g. accumulated vegetation
growth). The most widely used temporal metrics include time of start of (growing)
season (SS), end of season (ES), length of season (LS) and timing of peak
season (PS). Some vegetation phenological studies also explore the derivative of
the vegetation cycle during green-up and brown-down to identify both timing
and rate of change representing the periods of maximum growth and maximum
senescence.

Most vegetation phenology studies use a per-pixel definition of seasons, either
by analyzing derivates or by threshold(s). Seasonal separation is usually dynamic,
derived from the statistical moments of an annual cycle, or by using multi-year
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statistical moments. The latter requires that the data show some persistency, and
the more advanced models used in e.g. the widely adopted TIMESAT software
(Jönsson and Eklundh 2004) for instance require a minimum of 3 years of data.
Studies capturing the phenology of for instance snow cover or ice formation (Kang
et al. 2012), instead rely on absolute thresholds.

The soil moisture regimes in many landscapes vary more erratically and less
predictable than vegetation growth and density (or snow/ice phenology). While
vegetation growth is dependent on soil moisture, the biological processes driving
vegetation growth and senescence moderate the variability and change rates of
the vegetation density compared to soil moisture. Further, the surface wetness
cycle can vary on short distances, dependent on e.g. topography, hydrology and,
not least, human management. Hydrological recharge (“uphill”) and discharge
(“downhill”) areas usually have different wetness conditions, with e.g. ridges next
to floodplains able to show extreme differences both in moisture content and timing.
These differences between the phenology of vegetation and surface wetness prompt
different approaching for both time-series smoothing and definition of relevant
metrics for characterization of phenology.

12.1.1.1 Smoothing

Reducing bias and smoothing noise is commonly regarded as a prerequisite when
retrieving phenology from satellite derived time-series data (Atkinson et al. 2012;
de Beurs and Henebry 2010; Hird and McDermid 2009; Jönsson and Eklundh
2004). Noise reduction and gap-filling techniques are either based on model fitting
or smoothing algorithms. The best technique depends both on the satellite derived
index, as well as the objective of the study and the phenology metrics explored.
For indexes with a known bias (e.g. the Normalized Difference Vegetation Index,
NDVI), methods adjusting the smoothing considering this bias perform better; Hird
and McDermid (2009), for instance, found that asymmetric Gaussian (Jönsson and
Eklundh 2004) and double logistic (Beck et al. 2006) model fitting outperformed
smoothing algorithms when cleaning time series derived from NDVI. These models,
however, performed less well in a comparative study using the (unbiased) Medium
Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI)
(Atkinson et al. 2012).

More advanced models for smoothing vegetation indexes implicitly rely on rates
and restrictions in biological processes, and are also criticized for being over-
parameterized (de Beurs and Henebry 2010). Advanced models are further less
suited for studies covering different ecological or climatic regions or landscapes,
and most can not be adopted without a-priori assumptions on the annual sea-
sonality. Also, other routine algorithms used for smoothing time-series, including
Fourier-analysis and harmonics, can not be adopted for smoothing irregular and
asymmetrical time-series with an unknown number of annual cycles.
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Assuming that the TWI soil moisture estimates are unbiased, the smoothing
should aim at identifying the local mean. The most widely approach for identifying
the local mean is moving average. Seeking a more flexible approach, this study
adopted a modified variant of the robust locally weighted scatterplot smoothing
(LOWESS) (Cleveland 1979; Cleveland and Devlin 1988) for smoothing time-
series of soil moisture. LOWESS is flexible both through allowing weighting, and
the selection of polynomial functions for fitting local regressions to an arbitrary
sized filter window. LOWESS can be applied without any a-priori assumptions on
seasonality (smoothness) and at the same time adapts well to data variations. Outlier
removal in LOWESS most commonly uses an iterative process and the statistical
moments of the time-series itself to decide whether any single observation should
be omitted or not. As discussed above, changes in soil surface moisture can be
fast, but are not per se linked to the statistical moments of the time-series at large.
An alternative LOWESS approach was thus developed in this study, using absolute
thresholds for discarding outliers. For regular interval time-series data, the filter size
in effect determines the length of the period influencing any observation, and in this
study also the LOWESS filter size was set to absolute values.

12.1.1.2 Metrics

For vegetation, the local variations in production can be directly captured from a
vegetation index and used for setting both dynamic and local thresholds for e.g.
growing seasons. Relevant thresholds for soil wetness instead relate to biophysical
characteristics, including e.g. wilting point, field capacity and water content at fully
saturated soils. These thresholds vary both locally and with soil type (Brady and
Weil 2007), and ideally soil wetness phenology should relate to local thresholds.
There is, however at present no technique available for directly capturing these
thresholds from remote sensing data. The TWI soil moisture estimates used in
this study are given as volume water over total volume, and converted to percent.
Assuming a soil pore volume of 50 %, a soil moisture estimate of 50 thus represent
a fully water saturated soil.

In this study, the phenological extraction was done for four arbitrarily fixed soil
moisture thresholds: Flooding Seasons (FS) (soil moisture >50 %), Soaking Season
(SS) (soil moisture >37.5 %), Wet Season (WS) (soil moisture >25 %), and non-Dry
Season (DS) (soil moisture >12.5 %). The thresholds are loosely set to represent:
FS, fully water saturated soil conditions, SS: soil conditions favoring rapid rainfall
to runoff conditions; WS: soil wetness at field capacity (threshold for drainage of
soil water), and DS: representing soil moisture at the wilting point. The labeling
should be regarded as one of convenience. Both the length of the season with soil
moisture exceeding each threshold, as well as the annual integrated soil moisture
above each of these thresholds are calculated as phenological metrics (Table 12.1).
Additionally, the start and end dates of up to three seasons of each threshold are also
calculated.
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Table 12.1 Definition of metrics for capturing the annual soil surface moisture phenology

Abb. Full label Definition

Value metrics

MEAN Mean soil wetness Mean annual soil wetness (%)

SD Standard deviation of soil wetness Variation in annual soil wetness (%)

MIN Minimum soil wetness Lowest recorded wetness (%)

MAX Maximum soil wetness Highest recorded wetness (%)

IFS Integration of flood season wetness Integration of soil moisture >50 %

ISS Integration of soaking season wetness Integration of soil moisture >37.5 %

IWS Integration of wet season wetness Integration of soil moisture >25 %

IDS Integration of non-dry season wetness Integration of soil moisture >12.5 %

Temporal metrics

LFS Length of flooding season Length of season with soil moisture >50 %

LSS Length of soaking season Length of season with soil moisture >37.5 %

LWS Length of wet season Length of season with soil moisture >25 %

LDS Length of non-dry season Length of season with soil moisture >12.5 %

PWS Peak wet season Day of year with highest recorded wetness

PDS Peak dry season Day of year with lowest recorded wetness

12.2 Objective

The primary aim of the study was to create global maps of annual soil moisture
dynamics at moderate spatial resolution, to be used as support for other map-
ping efforts, including mapping of tree cover, soil organic carbon and wetlands
(Gumbricht 2015). The main objective was to define metrics for capturing the
surface wetness phenology, and to identify a smoothing algorithm that both
removes/reduces outliers and smoothes soil moisture time-series noise.

12.3 Data

This study was based on a global annual time-series of 16-day composited MODIS
BRDF data (MCD43A4) for the calendar year 2011. To allow Inverse Distance
Weighting (IDW) of data gaps, and smoothing at the beginning and end of the
calendar year 2011, the two last MODIS tile-dates for 2010 and the two first for
2012 were also included. If data for IDW were lacking, the 2011 MODIS TWI
time-series was filled by extrapolation (all data used for model development could
be filled by IDW, but the production of the global maps required extrapolation over
some densely clouded regions). For the equatorial tropics (MODIS vertical tiles 8
and 9) the complete time series for 2010, 2011 and 2012 were combined to fill in
data gaps over heavily clouded regions.
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Ground probed soil moisture data were taken from all networks and stations
available from the International Soil Moisture Network (ISMN) (Dorigo et al. 2011;
Ochsner et al. 2013). For each station only the top most recording (usually within 5
cm from the soil surface) was used. In total 745 stations were used in this study. 451
stations with data covering at least 6 months in 2011 were used for testing the time
series smoothing and divided into two random sub-sets, for model calibration (281
stations) and model validation (170 stations). The land cover for each ISMN station
was extracted from the MODIS land cover product (MCD12Q1 version 051) for
2011 using the International Geosphere-Biosphere Program (IGBP) classification
scheme.

The performance validation of TWI compared to in-situ data was done solely
using the 2011 MODIS data, and all ISMN stations with available data for 2011
(disregarding the number of observations coinciding with the MODIS imagery).

12.4 Definition of the Transformed Wetness Index (TWI)

At its core, TWI is a normalized difference (ND) index, but rather than using original
satellite image bands as inputs, the ND algorithm in TWI uses data obtained after a
linear transformation of the image bands. The transformation is achieved by a fixed
orthogonal matrix optimized to separate wet and dry pixels. The first transformation
component aligns from dark soil reflectance to light soil reflectance, representing
the soil-line (Baret et al. 1993) brightness (Eq. 12.1). The second and third compo-
nents represent photosynthetic and non-photosynthetic vegetation, while the fourth
represents open water (Eq. 12.2). Omitting the vegetation components and using the
soil line and wetness components in an ND approach has two distinct advantages;
the vegetation influence is reduced, and the index can be adjusted for local soil
conditions. The calculations of MODIS TWI used in here retain the reflectance
value factors (reflectance * 105) of the MODIS MCD43A4 product, and the soil
line (sl) and wetness (w) components are calculated as:

sl D 0:3148.RL � 563/C 0:3209.NIR � 1008/C 0:3595.BL � 147/

C0:3364.GL � 507/C 0:2498.SWIRa � 1531/

C0:6573.SWIRb � 1836/C 0:2471.SWIRc � 1699/ (12.1)

w D 0:1882.RL � 563/C 0:0384.NIR � 1008/C 0:4940.BL � 147/

C0:3501.GL � 507/ � 0:3581.SWIRa � 1531/

�0:1731.SWIRb � 1836/ � 0:6621.SWIRc � 1699/ (12.2)

with band order given as in the MODIS reflectance products (RL = red, NIR = near
infrared, BL = blue, GL = green, SWIR = short wave IR).
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The TWI ND algorithm is defined by a reference line of iso-wetness and applied
using a trigonometric, scale preserving, rotation combined with a re-scaling factor
(R) and a calibration factor (C) allowing for non-linear reflectance mixing between
soil and water:

TWI D R 
sin.ˇ C 45/.sl C w C a/C cos.ˇ C 45/.�sl C w C a/

sin.ˇ C 45/.sl � w � a/C cos.ˇ C 45/.sl C w C a/C C
(12.3)

where a is the reference iso-wetness line intercept with the soil-line and ˇ the
reference iso-wetness line slope. The global values for the reference iso-wetness
line and the calibration factor were determined from reference sites sampled
by the author in Botswana, Uganda, Kenya and Indonesia: a (2080), ˇ (�57ı)
and C (7000). Setting the re-scaling factor R to 5942 scales the TWI range to
approximately �4300 for dry soil, 2000 for water saturated dark soil and 3500
for deep open water. MODIS TWI is converted to actual soil moisture, ‚TWI

(volume/volume) by a linear-power function:

‚TWI D .TWI C 4300/=430C 1:067.TWIC4300/�0:0086 (12.4)

TWI performance was evaluated directly comparing ‚TWI to in-situ data and
after assimilation of ‚TWI to fit the statistical moments (mean and variance) of
each local in-situ time-series (Reichle et al. 2004, 2007). The assimilation was done
against the in-situ data representing the same 16-day period as each ‚TWI estimate.
Each 24 h cycle of in-situ data, adjusted for the local noon where first calculated
separately, and then averaged. The smoothing algorithms and parameterizations
were evaluated by aggregating all local results, and comparing model results to in-
situ data by the coefficient of determination (r2), the Random Mean Square Error
(RMSE), and model efficiency (E) (Nash and Sutcliffe 1970):

E D 1 �

P
.‚o �‚m/

2

P
.‚o �‚o/

2
(12.5)

where ‚o is the mean of observed soil moisture, and ‚m is modeled and ‚o

observed soil moisture for matching data pairs.

12.5 Estimating Soil Moisture Dynamics from TWI

To retrieve metrics of the global annual soil moisture dynamics, the TWI estimates
(‚TWI) derived for each 16-day cycle in 2011 were used. Soil moisture metrics
for the annual phenology were extracted from the original TWI time-series, and
after applying different smoothing procedures. Adopted smoothing models include
a weighted moving average (WMA) model, and a modified LOWESS model
assigning lower weights to gap-filled data points. In the latter, the weighting (wi)
combines the standard LOWESS tri-cube weight function with lower weights for
gap-filled points:
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wi D

 

1 �

ˇ
ˇ
ˇ
ˇ
x � xi

d.x/

ˇ
ˇ
ˇ
ˇ

3
!3

 wfi (12.6)

where x is the point to be estimated, wfi is the weight assigned for each data value
i falling within the filter span of x, and d(x) the maximum distance (i.e. number of
days) between x and the predictors xi. The weights for gap-filled points (wf ) were
varied between 0.25 and unity (step = 0.25), whereas original points were assigned a
wf of unity. The maximum filter span (d(x)) was set to predefined values of 24 days
(3 data points), 40 days (5 data points), and 56 days (7 data points). The LOWESS
local polynomial fitting was done using linear regression (first degree polynomial).
The weighting for the WMA used wf directly, and the same filter spans.

Different approaches were validated for (1) general smoothing, (2) reducing or
removing outliers, and (3) gap-filling. The influence of outliers was tested by an
iterative approach, identifying outliers after an initial smoothing by comparing the
original and smoothed time-series and assigning points varying more than between 1
to 10 % units of soil moisture (step = 1 % unit) as outliers. The smoothing algorithm
was then iterated but with the outlier values altered (set either to the smoothed value,
or replaced by IDW gap-filling) or removed. Gap-filling was tested by first filling
all data time-series using IDW and then applying the smoothing algorithm. In the
combined tests of outlier smoothing and gap-filling, the IDW for gap-filling was
iterated after the outlier replacement to reflect the initially smoothed outliers. Trials
were made using varying weights also for outliers, and by using separate weights
for outliers and gap-filled points. None of these more complex models, however
improved model performances, and hence they are not presented. Tested smoothing
approaches and models are summarized in Table 12.2.

All smoothing models operate on the original‚TWI time-series, and assimilation
to fit in-situ data (see Sect. 12.4) was done as a post-processing step. The results of
the smoothing models were then evaluated compared to the original ‚TWI estimate,
with all ‚TWI time-series assimilated to the in-situ data. The effects of smoothing
outliers and gap-filling was also separately examined using r2 and RMSE compared
to coinciding observations in the in-situ data.

Table 12.2 Summary of smoothing algorithms tested for extracting annual phenology from soil
moisture time-series data

Model code Gap-filling Outliers Smoothing algorithm Smoothed data

GF IDW No action None (orignal model) None

GFWMA IDW WMA smoothed WMA All

GFLOWESS IDW LOWESS smoothed LOWESS All

GFOLOWESS IDW LOWESS smoothed LOWESS Outliers only

GFROLOWESS IDW Replaced by IDW LOWESS All

T None No action None (orignal model) None

TLOWESS None LOWESS smoothed LOWESS All

TOLOWESS None LOWESS smoothed LOWESS Outliers only



12 Soil Moisture Dynamics Estimated from MODIS Time Series Images 241

For in-situ sites with data covering at least 10 months, the phenological perfor-
mance was evaluated modified after Hird and McDermid (2009). Phenology was
calculated for both assimilated ‚TWI and in-situ data representing; value metrics:
MIN, MAX and INT (integration of soil moisture during wet season); and temporal
metrics: LS, PWS and PDS. To allow all local time-series to be evaluated in the
model development, the threshold between wet and dry seasons was set to the mean
wetness of each local time-series (with ‚TWI assimilated to fit the in-situ data, the
mean is always the same for both time-series). The score for each phenological
metric (PSm) was calculated as:

PSm D 1 �
jPM

m � PM
i j

Pmax
(12.7)

where PM is the derived phenological metric of the in-situ (i) and modeled (m)
time-series of soil moisture, and Pmax is the maximum range for each metric, simply
pre-defined to a soil moisture value of 50 %, and a maximum temporal value of
365 days. To convert INT to a maximum range of 50, INT was divided by LWS.
Phenological metrics for in-situ data was calculated using the full in-situ time
series. The phenological performance was evaluated for each local (pixel-wise)
time-series individually, and using the overall mean of all local performances for
model evaluation.

Model performances were evaluated using all the criteria presented above,
but primarily ranked from the smoothing model abilities to capture the soil-
moisture phenology compared to the in-situ data. Model performances for the best
phenological parameter settings for each smoothing model were tested against the
validation data set using the same smoothing and rescaling approach as in the
calibration. Exploring the results of the smoothing algorithms, the global phenology
for 2011 was calculated using a LOWESS smoothing without any gap-filling (and
thus no weighting) or outlier adjustment, and a filter size of 5 data points (or
less if gaps occur within the filter) with a maximum distance span (d(x)) set to
35 days.

Figure 12.1 illustrates some of the smoothing algorithms and the effects of
varying filter sizes and how the adjustment of outliers affect the smoothing results.
The figure also shows the simplified LOWESS weighing algorithms selected for
generating the global surface wetness phenology for 2011.

12.6 Results and Discussions

12.6.1 Transformed Wetness Index

Compared to 745 in-situ ground sites ‚TWI has a bias of 2.5 % and a global RMSE
of 14.0 %, which reduces to 8.5 % when assimilating the mean and variance to fit
local in-situ data. The assimilated RMSE for cosmic-ray soil moisture probes (Zreda
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Fig. 12.1 Illustration of the effects of different smoothing parameterizations. The upper panel
shows the results for LOWESS smoothing with filter sizes (F) of 3, 5 and 7 elements, and the
results from a WMA smoothing using 7 elements. The lower panel shows how the smoothing is
affected by identified outliers, using LOWES smoothing with filter sizes of 3, 5 and 7 elements.
The identified outliers are replaced by the initial smoothing value, and the smoothing algorithm
applied in a second iteration which generated the finally smoothed time-series. Both panels also
show the simplified LOWESS model selected for calculating the global phenology for 2011 (see
text). The example represent a real time-series without any data gaps (see Fig. 12.2)

et al. 2008), with a foot-print comparable to the resolution of MODIS images, is
5.3 % (with a bias of 3.7 %). The assimilated model efficiency for the cosmic-ray
probes is 0.79, compared to an overall global model efficiency of 0.42.
‚TWI overestimates surface wetness for regions with dark surfaces, including

basaltic outcrops and vertisols. Dense stands of e.g. reeds and papyrus leads to
underestimations of soil moisture content over wetlands, whereas the soil moisture
is overestimated in dense and moist forests (in particular over evergreen needleleaf
forests). The model performance for non forested areas is hence better, with an
estimated bias of �0:4% and a global RMSE of 11.6 % (574 stations), reduced to
8.0 % for assimilated time-series. ‚TWI in general underestimates the variations in
soil moisture, which is probably related both to the inability of optical sensors to
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capture surface conditions under clouds (i.e. during precipitation events and rainy
seasons), and to differences in soil moisture variations at point scale compared to
the 500 m foot-print of the MODIS images.

12.6.2 Phenological Characterization

The differences in overall smoothing model performance, whether using statisti-
cal measures or scores relating to phenological metrics, are small (Tables 12.3
and 12.4). No particular model can be identified as performing better than the
others. Indeed, the unsmoothed time-series performs equally well, or better, com-
pared to the smoothing algorithms. Further, the results of the calibration tests
for each individual model only show minimal variances in performance between
different parameter settings (not explicitly shown, but indicated from the results in
Table 12.3). The parameters presented in Table 12.3 represent the parameterizations
that best captures the phenological performances compared to in-situ data. Using
other criteria (e.g. model RMSE, model efficiency E, or outlier RMSE) for selecting
the optimal model lead to different parameterizations.

The largest variations between different models relate to the smoothing of
outliers. Models smoothing the complete time-series (GFWMA, GFLOWESS and
TLOWESS) all indicate that a thresholds of 6 % soil moisture is optimal for identifying
outliers (i.e. peaks and troughs in soil moisture larger than 6 % units over a
period of approximately one to two months are likely to be erroneous). But only
very few such peaks and troughs are identified (Tables 12.3 and 12.4), and the
RMSE of the identified outliers themselves increase in the smoothing except for
in the TLOWESS model. Applying smoothing to only outliers (models GFOLOWESS

and TOLOWESS), instead identifies a very large number of outliers as optimal.
Non-outliers are not smoothed in these models, and the outlier smoothing hence
replaces the general smoothing, reducing both the overall RMSE and the RMSE
of the outliers themselves. The model replacing the outliers with IDW filled value
(GFROLOWESS) is the worst performing. These results indicate that in general the
‚TWI time-series data have no problems related to outliers. Visual inspection of the
data (Fig. 12.2), reveals that most peaks and troughs are no artifacts, but discernible
also in the in-situ data. MODIS TWI rather tends to miss peaks with short duration.
For any 16-day interval the MODIS data always represent cloud free conditions,
more likely to represent drier ground conditions compared to cloudy conditions.

The RMSE and r2 of the gap-filled data points show a low fit to the in-situ data
(Table 12.3), and gap-filled models do not perform better compared to those with no
gap-filling. With rainfall events linked to cloud cover, it is more likely that peaks in
surface wetness are missed by the MODIS optical sensors, indicated in Fig. 12.2. As
the gap-filling interpolates adjacent observations, gaps due to cloudy conditions with
associated precipitation can not be properly estimated. The LOWESS models used
in this study utilize the trends adjacent to gaps for the gap-filling, but the LOWESS
filling of gaps only performs slightly better than the filling by IDW.
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Table 12.5 Production model results (including both the calibration and validation data sets),
reported for both the original (not rescaled) MODIS TWI model (with wet season set to the
average wetness of the in-situ data for each local site) and with each MODIS TWI local time-
series assimilated to fit the mean and standard deviation of the in-situ data. Results are reported
for the global dataset, and separately for cosmic-ray probes, and for forests and non-forest (as
identified from the MODIS land cover product MCD12Q1.v005). See Table 12.3 for explanations.
Phenological scores (Eq. 12.7) for applicable metrics are separately reported

Overall results Phenological scores (PSm)

Regionalization RMSE r2 E PSm MIN PDS MAX PWS LWS IWS MEAN

Orginal time-series

Global 11:1 0:02 �0:50 0:74 0:80 0:74 0:80 0:61 0:57 0:86 0.84

Cosmic-ray probes 11:3 0:06 �0:51 0:79 0:84 0:85 0:86 0:69 0:51 0:90 0.82

Non-forested sites 10:9 0:06 �0:07 0:75 0:84 0:75 0:81 0:63 0:56 0:87 0.86

Forested sites 11:3 0:0 �2:1 0:69 0:65 0:70 0:71 0:56 0:61 0:81 0.75

Assimilated time-series

Global 7:9 0:51 0:42 0:85 0:94 0:74 0:93 0:61 0:88 0:92 –

Cosmic-ray probes 5:0 0:82 0:80 0:89 0:96 0:85 0:95 0:69 0:89 0:95 –

Non-forested sites 7:4 0:56 0:50 0:86 0:94 0:75 0:94 0:63 0:89 0:92 –

Forested sites 9:4 0:32 0:13 0:82 0:93 0:70 0:91 0:56 0:84 0:91 –

Accepting that neither outlier reduction nor gap-filling improve the phenological
extraction, but that smoothing in general removes small temporal variations (noise),
a simpler LOWESS model was used for calculating global wetness phenology. The
selected model smoothing filter size was set to five elements, with a maximum date
span of 35 days. The advantage of five elements is primarily that, compared to a
filter with only three elements, it bridges single data gaps. Reducing the maximum
date span from 40 to 35 days, however reduces the weight of the more distant dates.
With the identification of outliers omitted and no gap-filling (i.e. no weighting), the
LOWESS weighting algorithm (Eq. 12.6) can be replaced by a simple weighting
vector (w) applied to each element of the original time-series:

w D Œ0:08 0:74 1:0 0:74 0:08� (12.8)

The results using w for weighting, and a first degree polynomial for estimating
the smoothed values are summarized in Table 12.5. In general the smoothing reduces
the variance, but otherwise does not affect model performance. The global phenol-
ogy value metrics (% soil moisture) for mean (MEAN) and standard deviation (SD)
are shown in Fig. 12.3, with additional global maps shown as Figs. 12.5 and 12.6 in
the Appendix.

The smoothing algorithm adopted for calculating wetness phenology reduces
the variance compared to the original time-series data. The ‚TWI original model
underestimates the variance compared to point scale in-situ data, and this underes-
timation is further accentuated by the smoothing. Comparing the smoothing results
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Fig. 12.2 Comparison of soil moisture observations from in-situ station data and soil moisture
estimated by the MODIS Transformed Wetness Index (TWI) (expressed as volumetric soil
moisture – ‚TWI). Each panel shows the MODIS TWI original (not rescaled) time-series, and
the same time-series smoothed using the simplified LOWESS weighting algorithm selected for
calculating the global phenology for 2011 (see text). The four panels represent different networks
and land cover (from the MODIS land cover product MCD12Q1.v051) as indicated in each
graph (Ev.G.N.L.F. = evergreen needleleaf forest; Cropl/Nat = cropland/natural vegetation mosaic).
Details about each station are available in the ISMN dataset

with cosmic-ray probes (measuring soil moisture at a spatial scale equalling that of
the MODIS pixel size) the variances of the ‚TWI time-series are adjusted to closer
matching the variances captured by the cosmic-ray probes. Arguably, the results for
the cosmic-ray probes more correctly represent the ability of ‚TWI to capture the
spatially integrated soil moisture regime.

For non-forested sites the ‚TWI estimated soil moisture bias is negligible
(�0:4%) and does only marginally affect extraction of the wetness phenology.
The phenology is also better captured for non-forested sites compared to forested
sites (Table 12.5). Large positive bias over primarily evergreen needleleaf forests
(16.2 %), but also other forests (10 %), cause over-estimation of both temporal
metrics and value metrics when retrieving soil moisture. The Okavango Swamps
in Botswana (Fig. 12.4 and Appendix Fig. 12.7) are less affected. The maps over the
Okavango Swamps clearly capture both the wetter sites, but also separates the more
permanent (central swamps) from the distal floodplains.
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Fig. 12.3 Mean (MEAN) (top panel) and standard deviation (SD) (bottom panel) soil surface
wetness (%) metrics for 2011 estimated from the Moderate-resolution imaging spectroradiometer
(MODIS) Transformed Wetness Index (TWI). The wetness phenology metrics is calculated after
applying a locally weighted scatterplot smoothing (LOWESS) to the original MODIS TWI time-
series (expressed as volumetric soil moisture – ‚TWI). For the tropical region (between 20 degrees
latitudes) the map represents the average conditions for 2010, 2011 and 2012, whereas for other
regions it represents the calendar year 2011. Note that the scaling is different for MEAN and SD.
White areas have too few recordings for extracting phenological metrics

12.7 Conclusions

This study has attempted to define metrics and identify smoothing algorithms for
capturing the annual soil moisture phenology from ‚TWI, a soil wetness index
derived from MODIS data. While most approaches for retrieving time-series of e.g.
vegetation, snow or ice cover are based on the assumption that proximity in time
or space is the key for cleaning and smoothing, this assumption is challenged when
mapping variable properties with unknown or unpredictable scales of spatial and
temporal variation.
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Fig. 12.4 Mean (MEAN) (left panel) and standard deviation (SD) (right panel) phenological soil
moisture metrics for the Okavango Swamps, Botswana for 2011 (see Fig. 12.3). The wetland
mask is modified after McCarthy et al. (2003) and divided into four regions: (1) the Panhandle
tectonically bound entry channel, (2) the central permanent wetlands, (3) the seasonally inundated
wetlands, and (4) the most distal areas only temporally flooded. Okavango is situated on a
tectonically active region and the swamp naturally oscillates across the underlaying alluvial fan.
Compared to the estimated area of wetlands between 1972 and 2000, the maps indicate that the
north-eastern parts of the swamps are drying out and the south-western parts receive more water.
Further, the maps reveal that Lake Ngami was filled during 2011, whereas it contained no or little
water from 1972 to 2000

Metrics for the global surface wetness phenology have been developed at a spatial
scale of 500 m. A large bias and high RMSE for ecosystems dominated by dense
forests causes overestimated wetness conditions in particular for higher latitude
evergreen needleleaf forests. The phenology metrics for non forested landscapes,
and large (non forested) wetlands are better captured. Phenology is better captured
when compared to in-situ data captured by cosmic-ray probes, integrating the soil
moisture over a spatial scale closely matching the MODIS image resolution.

The LOWESS smoothing algorithm used in this study is a compromise, but
does have several advantages. It is flexible by allowing selection of both filter
size (i.e. defining the temporal range that influences the soil wetness conditions
at any particular date), and customized weighting (and also by selecting different
fitting functions, but this was not tested in this study). But primarily LOWESS can
handle irregular time-series data, and thus removes the need for pre-defining e.g.
rates of changes and seasonality commonly required by more advanced smoothing
algorithms and model fitting routines. As the MODIS product used in this study
is delivered with regular interval time-steps (16 days), the LOWESS weighing
function could be replaced by a fixed vector, also decreasing the computational
processing time manyfold.
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Appendix
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Fig. 12.5 Lengths of wet season (LWS) (months (m) with soil wetness >25 % in 2011). The over-
estimation of soil moisture content under forests, in particular evergreen needleleaf forests causes
a large positive bias in temperate forests
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Fig. 12.7 Illustration of soil moisture phenological metrics for the Okavango Swamps in
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Fig. 12.3
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Chapter 13
Temporal Analysis of Remotely Sensed Land
Surface Shortwave Albedo

Tao He and Shunlin Liang

Abstract Satellite-derived surface albedo products have offered great opportunities
in monitoring surface energy budget. However, existing satellite albedo products
may have suffered from data gaps and/or inconsistency caused by cloud contam-
ination, sensor difference, and retrieval algorithm failure, which will lead to the
limitations in long-term time series land surface albedo analysis. This chapter
presents some recently developed methods to detect sensor change, to reduce data
gaps, and to improve data consistency and accuracy of existing satellite products,
followed by a case study on the temporal analysis of regional long-term land surface
albedo changes.

13.1 Introduction

Surface albedo, defined as the ratio of the outgoing to the incoming solar radiation
at Earth’s surface, is a critical variable that controls surface energy budget in the
climate studies. Albedo is highly variable both spatially and temporally. Significant
changes in surface albedo are accompanied by variations in surface conditions,
such as snow cover (He et al. 2013), vegetation cover (Loarie et al. 2011; Lyons
et al. 2008), soil moisture (Govaerts and Lattanzio 2008; Zhu et al. 2011), and
urbanization (Offerle et al. 2005). Ghimire et al. (2013) reconstructed the global
albedo change with land cover changes, and found the global albedo increase of
0.0012 had a net cooling effect of a top-of-atmosphere (TOA) radiative forcing of
�0.23 Wm�2 from 1700 to 2005. Aerosols like dust and soot may also contaminate
snow and greatly reduce its albedo (Hansen and Nazarenko 2004; Xu et al. 2009).
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Accurate surface albedo data are needed to characterize climate system and to help
improve the development and predictability of climate models.

Satellite data provide unique capabilities in monitoring surface albedo on the
global basis (Liang et al. 2010, 2013b). Algorithms for albedo estimation from
various remote sensing imagery have been developed, including those designed
for different sensor characteristics, from geostationary to polar-orbiting, from
multispectral to hyperspectral, from nadir-view to multi-angle, from coarse resolu-
tion to fine resolution, and from space-borne to air-borne (e.g., Csiszar and Gutman
1999; Govaerts et al. 2010; He et al. 2012, 2014b; Liang et al. 2005a; Maignan
et al. 2004; Martonchik et al. 1998; Pinty et al. 2000; Roman et al. 2013; Schaaf
et al. 2002; Shuai et al. 2011; Wang et al. 2013). During the past few decades,
many albedo products have been generated from satellite observations (listed in
Table 13.1).

Surface albedo products with an absolute accuracy of 0.02–0.03 are generally
required for regional and global climate studies (Dozier et al. 1989; Sellers et al.

Table 13.1 List of some existing satellite land surface shortwave albedo products

Albedo data setsa Resolution Frequency Temporal coverage References

GLASS 1 km/0.05ı 8-day 1981–present Liang
et al. (2013a), Liu
et al. (2013), Qu
et al. (2014)

GlobAlbedo 1 km/0.05ı 8-day 1998–2011 Lewis et al. (2013),
Muller et al. (2012)

MERIS 0.25ı Monthly 2002–2006 Popp et al. (2011)
MODIS 500 m/0.05ı daily/8-day 2000–present Lucht et al. (2000),

Schaaf et al. (2002)
CLARA-SAL 0.25ı 10-day/monthly 1982–2009 Riihela et al.

(2013), Xiong et al.
(2002)

VIIRS 375 m daily 2011–present Liang et al.
(2005b), Wang
et al. (2013)

MISR 1100 m 16-day 2000–present Martonchik et al.
(1998)

POLDER 8 km 10-day 1996–1997 Maignan et al.
(2004)2003

2005–present
Geoland2 1 km 10-day 1999–present Hagolle et al.

(2005)
Meteosat 3 km daily/10-day 1982–present Carrer et al. (2010),

Pinty et al. (2000)
aGLASS global land surface satellites, MERIS medium resolution imaging spectrometer; MODIS
moderate resolution imaging spectroradiometer, CLARA-SAL clouds, albedo and radiation–surface
albedo, VIIRS visible infrared imaging radiometer suite, MISR multi-angle imaging spectrora-
diometer, POLDER polarization and directionality of the Earth’s reflectances
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1995). Extensive validations have been made on the existing satellite albedo prod-
ucts using ground measurements and fine-resolution remote sensing data (Cescatti
et al. 2012; He et al. 2012, 2013, 2014c; Liang et al. 2002; Liu et al. 2009; Stroeve
et al. 2013; Wang et al. 2006, 2012b), showing that most of these products can
satisfy the accuracy requirements and be used to validate and calibrate regional and
global climate models (He et al. 2014a).

Surface albedo varies both spatially and temporally. For example, Gao et al.
(2005) found that the inter-annual variation of the MODIS shortwave albedo is
less than 0.01 over snow-free surfaces and the averaged values over 20ı latitude
vary little between consecutive years. Fang et al. (2007) observed that the albedo
variation shows a strong seasonal character that it increases in winter and spring
and decreases in the growing season. They also found the strong linkage between
the largest variation in surface albedo and events such as winter snow and spring
thaw. Zhang et al. (2010) analyzed MODIS albedo data from 2000 to 2008 and
found that although there was no significant global annual mean surface albedo
change, a decrease of �0.01 for the Northern Hemisphere and an increase of �0.01
for the Southern Hemisphere was identified during the time period.

Although extensive examinations on these satellite albedo products showed
satisfactory accuracy for global scale research, in some cases the albedo accuracy
was reported to be between 10 and 28 % (Chen et al. 2008; Liu et al. 2009; Pinty
et al. 2011; Roman et al. 2009; Rutan et al. 2009; Stroeve et al. 2005), out of
which 3–5 % error was reported as a result of the band differences in generating the
broadband albedos (Govaerts et al. 2006). Sensor changes (degradation, orbital drift,
and spectral response difference) may have also contributed to the systematic bias
found in existing products (Gao et al. 2014; Kim et al. 2014; Loew and Govaerts
2010; Wang et al. 2012a). This accuracy can be translated into absolute values
of around 0.03–0.09, which suggests that current albedo products may still need
improvement to satisfy the requirement of climate modeling studies (Yang et al.
2008; Zhang et al. 2010). Moreover, there is a common problem of data gaps
in current albedo products due to either cloud contamination or rapid changes in
surface albedo. Take the MODIS albedo products for example: the global mean
annual probability of obtaining a sufficient number of clear sky observations for
a typical 16-day compositing period is 80 %; as the temporal window reduces to
10 days, the amount of data gaps increases to 40 % (Liu et al. 2013; Roy et al.
2006).

In this chapter, various methods from recent studies are briefly introduced for
detecting and correcting changes in TOA reflectance/surface albedo resulted due
to sensor degradation, orbital drift, and spectral response changes, gap-filling and
smoothing to obtain continuous and complete surface albedo product, and fusing
multiple albedo products to reduce data uncertainties (Sect. 13.2). Section 13.3
shows some examples of time series albedo analysis, followed by conclusions in
Sect. 13.4.
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13.2 Sensor Change Detection and Correction, Gap-Filling,
and Data Fusion for Time Series Albedo Analysis

13.2.1 Detection and Correction of Sensor Changes on Surface
Broadband Albedo Estimation

Long-term time series analysis usually relies on well-calibrated data and temporally
consistent data from different satellite sensors. However, previous research has
found that issues such as the sensor degradation and orbital drift could have
undermined the long-term trend analysis for surface properties (Gao et al. 2013;
Jiang et al. 2008; Wang et al. 2012a). Various approaches have then been developed
to detect sensor changes and/or to adjust either the TOA observations or directly the
surface albedo estimation (e.g., Cao et al. 2009; Gao et al. 2014; Kim et al. 2014;
Loew and Govaerts 2010; Molling et al. 2010). Some examples are given below.

13.2.1.1 Sensor Degradation

Kim et al. (2014) developed a new approach to detect the radiometric degradation
of satellite sensor. Two time series algorithms, seasonal trend decomposition
procedures based on loess (STL) and discrete wavelet transform (DWT) have been
developed in this study trying to remove the seasonal oscillation in the TOA signal
that was caused by changes and variation in the atmosphere and surface, and then
detect the trend of sensor degradation that has not been well calibrated. Details on
the algorithm implementation can be found in (Kim et al. 2014). Both algorithms
were found successful in detecting long-term trends in TOA reflectance without
introducing the surface anisotropy model and radiative transfer (see an example in
Fig. 13.1). In addition, the STL and DWT algorithms were found to have higher
statistical significance than other approaches. Assuming the surface target (e.g.,
desert) is stable, the extracted trend would be able to improve the radiometric
calibration coefficients, and eventually to correct the TOA reflectance.

13.2.1.2 Orbital Drift

Apart from the sensor degradation, orbital drift of satellite platforms could also
result in significant variation of TOA reflectance on the scene-basis. Gao et al.
(2013, 2014) evaluated the orbital drift effect on the historical Landsat-5 data from
1984 to 2010 and found the TOA reflectance may be biased as much as �6 % if
the nominal 10 am local time rather than the actual local acquisition time was not
considered in surface anisotropy correction (Fig. 13.2). A database for bidirectional
reflectance distribution function (BRDF) built from MODIS albedo/BRDF product
was later used in their study as a priori information to compensate the orbital drift
effects in surface albedo estimation.
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Fig. 13.1 STL decomposition of Landsat TOA reflectance on an area in Lydia desert (Kim et al.
2014). Blue dots: Landsat TOA spectral reflectance; red curve: STL fitted pattern; blue line: trend
of sensor degradation

Fig. 13.2 Variation of solar zenith angle from Landsat 5 data ( 45ıN) because of orbital drift (Gao
et al. 2013)
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13.2.1.3 Temporal Continuities Between Sensors

Systematic discontinuities identified in existing long-term surface albedo product
would have been a critical issue in climate change related surface energy budget
analysis. Besides the sensor degradation and orbital drift, difference in sensor
spectral response also contributed in the discontinuities. Loew and Govaerts (2010)
evaluated the surface albedo product derived from Meteosat First Generation (MFG)
satellites from 1982 to 2006 and proposed a new set of coefficients to account
for changes in sensor spectral response in albedo narrow-to-broadband conversion
in order to generate consistent broadband albedo from different satellite sensors.
Figure 13.3 shows that the impacts of sensor changes have been significantly
reduced in the albedo generated using the new coefficients.

Fig. 13.3 Surface broadband albedo (BHR: bi-hemispheric reflectance) time series of different
targets calculated using: (a) original band conversion coefficients, (b) new conversion coefficients
considering the sensor differences (Loew and Govaerts 2010)
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13.2.2 Gap-Filling and Data Fusion

To reduce the gaps and improve the albedo estimations, researchers have been
working on two types of approaches. The first one is to improve the retrieving
procedure by introducing some other sources of data, such as the prior information
(He et al. 2012). The second is to improve the albedo datasets from existing satellite
data, which can take advantage of the sensor characteristics, and/or retrieving
algorithms from different satellites (Fang et al. 2007; He et al. 2008, 2014c; Jin
et al. 2002; Ju et al. 2010; Moody et al. 2005; Roy et al. 2008; Shuai et al. 2011).

13.2.2.1 Gap-Filling and Data Smoothing

Many researchers have been focusing on reducing the data gaps and producing spa-
tially and temporally continuous albedo maps based on currently available satellite
products. There are two major methodologies used to generate this type of albedo
dataset to satisfy the needs of land surface modeling studies. The first one is the
physical method, which relies on the surface bidirectional reflectance distribution
function (BRDF) information. Research has been done using BRDF information
from datasets with better angular sampling to convert surface reflectance with
reduced angular sampling to albedo (Jin et al. 2002; Ju et al. 2010; Roy et al. 2008;
Shuai et al. 2011). Multiple other strategies using a priori knowledge have been
developed to reduce gaps in existing albedo products. Based on the standard retrieval
technique of MODIS nadir BRDF-adjusted reflectance products, an adapted method
was employed to improve the integrity of reflectance/albedo time series (Ju et al.
2010; Shuai et al. 2011). These methods assume that there are some homogeneous
pixels with coarser spatial resolution that correspond to the finer resolution data
for each of the land cover types. Therefore, it is sometimes difficult to translate
information across scales if pure pixels are hard to be found at the coarser resolution.
To reduce the data gaps through the retrieval procedure, a Kalman filter was used to
improve the completeness of BRDF coefficients series (Samain et al. 2008). In the
retrieval algorithm of the GlobAbledo albedo product, a regularization method was
utilized to generate daily kernel coefficients (Lewis et al. 2013). In addition, He et al.
(2012) used the multiyear surface BRDF database as a priori knowledge and fewer
instantaneous TOA observations to retrieve surface albedo with much less gaps.

The second methodology uses the data-driven models that are directly based
on the albedo products and utilize the spatial and/or temporal information to fill
the gaps (Fang et al. 2007; He et al. 2008; Liu et al. 2013; Moody et al. 2005).
Albedo climatology is the basis of temporal filter in gap-filling product from a
single sensor. Fang et al. (2007) designed a temporal-spatial filter (TSF) based on
Liang’s (2004) method to generate gap-free albedo product from multiyear MODIS
albedo data. In the TSF method, the climatology of each pixel ˛b is first determined
from multiyear observations. Gap-filled surface albedo ˛a was then calculated from
weighted average of multiyear background and temporal neighbor observations
using Eq. (13.1).
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Here, ˛b denotes the multiyear average background albedo; ˛a(ri), j D 1,2, : : : ,n,
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where R is the radius of the influence. This technique implicitly assumed that all the
observed values are error-free and could represent the “true” values of the dynamic
system.

As Fang’s et al. (2007) method took no account of observational errors, Liu
et al. (2013) developed a spatial-temporal filter (STF) method by considering both
the temporal correlation and the observational errors of the albedos in neighboring
days. The surface albedo estimates were calculated using the maximum likelihood
approach. Albedo climatology (multiyear mean and standard deviation) was adopted
to fill in data gaps when the available temporal observations were not enough. In
addition, this method could generate mean and standard deviation of surface albedo
estimates based on the posterior from the maximum likelihood approach.

This algorithm has been applied on the intermediate GLASS albedo product, in
order to generate smooth land surface albedo in the final stage (Liang et al. 2013a).
Figure 13.4 showed an example of applying the STF algorithm in the GLASS albedo
retrieval procedure and it turned out that the algorithm improved the smoothness of
surface albedo time series.

13.2.2.2 Data Fusion of Multiple Surface Albedo Products

Most of the existing algorithms mentioned before use only one dataset, which may
introduce systematic bias in the final albedo maps, which possibly results from
simplified atmospheric/surface condition and/or sensor calibration (Govaerts et al.
2006; Pinty et al. 2011). Utilizing data from multi-source satellite products may be
a solution to simultaneously reduce data gaps and improve estimation accuracy of
surface albedo.

Dou et al. (2013) proposed a method called multi-angular and multi-band inver-
sion model to estimate surface albedo/BRDF from MODIS and AVHRR surface
reflectances. They first established an empirical relationship between spectral bands
of AVHRR and MODIS based on surface spectra libraries:
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Fig. 13.4 Comparison of surface albedo derived from STF and other data sets at automatic
weather station BJ (31.3687ıN, 91.8987ıE) (Liu et al. 2013). GLASS02A22 is the intermediate
product estimated using algorithm mentioned in (Qu et al. 2014). GLASS02A06 is the final GLASS
albedo product
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where �A,j and �M,i are the directional reflectances for band j of AVHRR and band i
of MODIS, respectively. ai,j is the regression coefficients.

Surface directional reflectance can then be modeled by the BRDF kernel models
for MODIS bands (Eq. 13.4) and AVHRR bands (Eq. 13.5) assuming surface
anisotropic properties do not change:
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Here, fiso,i, fvol,i, fgeo,i are the kernel coefficients to be estimated for band i. Kvol

and Kgeo are the volumetric and geometric kernels, which can be directly calculated
from sensor-target-sun geometries (	 s

M , 	 v
M ,®M are solar zenith angle, sensor zenith

angle, and relative azimuth angle for MODIS; 	 s
A, 	 v

A,®A are for AVHRR). In this
way, the reflectance data from both sensors can be combined to estimate the kernel
coefficients with a smaller temporal composite window. This research, however, did
not take into account of errors in the surface reflectance in MODIS and AVHRR
products.
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An alternative way to fusing data from different satellite products is using statis-
tical models to establish relationship among different products. The multi-resolution
tree (MRT) method being developed in recent years offered a great opportunity to
take advatange of data across different spatial resolutions by assuming a statistical
model that is autoregressive in levels of resolution (Chou et al. 1994). The MRT
method has been widely used on large datasets to overcome the computational
difficulties that other existing methods (optimal interpolation, kriging, etc.) may
have (Yue and Zhu 2006). Many researchers have been applying this method to
interpolate and to smooth data over various satellite products (Huang et al. 2002;
Wang and Liang 2010; Yue and Zhu 2006; Zhu and Yue 2005; Zhu et al. 2010).

He et al. (2014c) developed a prototype data fusion procedure based on MRT
that combines three satellite albedo products from MISR, MODIS, and Landsat
to generate consistent and gap-free albedo datasets at different spatial resolutions.
The theoretical basis of the MRT is the assumption that data at different spatial
resolutions are autoregressive and can be organized in a tree structure. The linear
tree-structure model can be expressed using Eq. (13.6):

yu D Auypa.u/ C wu (13.6)

where yu is the variable used to estimate at the scale u and ypa(u) is the variable at
the parent node. wu is the spatial stochastic process that follows a Gaussian normal
distribution with a variance of Wu. Au is the state conversion matrix that estimates the
variable at scale u from its parent node. There is a similar formulation that transfers
the variable at scale u from its child node ch(u). To determine the state conversion
matrix, the “change-of-support” problem has been widely discussed (Huang et al.
2002; Plumejeaud et al. 2011; Wikle 2003). An observation model is also used in
this method by linking the satellite products to the “truth” data:

zu D Cuyu C "u (13.7)

Here, zu is the satellite product with a white noise "u that follows a normal
distribution N(0,˚u). Cu is the observation matrix that converts the variable of
interest to the satellite data.

To apply the MRT algorithm and fuse multiple satellite albedo products, three
steps were included.

First, the data uncertainties of different satellite products need to be evaluated
and quantified based on ground measurements and product inter-comparison.
Systematic biases of each product could be removed in this step.

Second is the leaves-to-root filtering (Eq. 13.8). The basic assumption of the tree
model is that the tree-structure follows a Markov chain process, which implies that
the state variable is only related to its instant child nodes and instant parent node(s).
The step is a fine-to-coarse resolution filtering, which is used to estimate the state
variable from higher resolution data. The major purpose of this step is to fill in the
gaps at different resolutions using Kalman filter.
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Third is the root-to-leaves smoothing step (Eq. 13.9). A coarse-to-fine resolution
smoothing was used to update the state variable with the information at a coarser
resolution. This step generally assumes that the process at the parent scale provides
the foundation of the process at current scale. After the Kalman-smoothing step,
the datasets at different spatial scales become smooth and consistent. Details of the
Kalman filter derivations can be found in Huang et al. (2002).
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Uncertainties of each satellite albedo products have been significantly reduced
after applying the MRT algorithm (Fig. 13.5). A new set of gap-free albedo products
were produced with improved data consistency across different spatial resolutions
(Fig. 13.6).

13.3 Time Series Analysis of Surface Albedo: A Case Study
at Greenland

Surface albedo may change with land cover dynamics caused by deforestation,
afforestation, urbanization, snowfall, and snowmelt, etc. Previous studies have
shown the surface albedo changes at different locations throughout the past three
decades (He et al. 2013, 2014a; Shi and Liang 2013). With the help of various
temporal/spatial filtering and data fusion techniques, a set of more accurate and
continuous albedo products can be used for long-term albedo analysis. In this
section, a case study of long-term surface albedo analysis using GLASS product
over Greenland (He et al. 2013) is present.

13.3.1 Validation and Evaluation of Satellite Albedo Product

The GLASS albedo product is derived from the Advanced Very High Resolu-
tion Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer
(MODIS) observations (Liang et al. 2013a). It records surface shortwave broadband
albedo every 8 days at a spatial resolution of 0.05ı from 1981 to 2012. The impacts
of orbital drift have been considered and minimized in the albedo retrieval and post-
processing algorithms (Liu et al. 2013; Qu et al. 2014). Evaluation and/or removal
of the impacts of sensor degradation and sensor changes on GLASS surface albedo
are needed before the time series analysis can be carried out.
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Fig. 13.5 Error comparisons between albedo maps before and after MRT for the three products
on DOY 192, 2005 (zero means no data). The error of the original albedo datasets is calculated as
the product of the relative error and absolute albedo value (He et al. 2014c)

Ground measurements of surface albedo are available at 19 Greenland Climate
Network (GC-Net) sites from 1995 (Steffen and Box 2001). While the ground
measurements of surface albedo were obtained from the pyranometers every 30
mins, satellite products provide local noon albedo values. Ground measurements
within 1 h range of satellite overpass time were averaged to match the satellite
albedo product. Validation of the monthly mean albedo with ground measurements
(Fig. 13.7) showed consistent accuracy of GLASS albedo from 1995 to 2012. Inter-
comparison of albedo derived from AVHRR and MODIS in the overlap time period
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Fig. 13.6 Time-series comparison of albedo maps before and after MRT (left-to-right order:
original MISR albedo, MISR albedo after MRT, original MODIS albedo, MODIS albedo after
MRT, original Landsat albedo, and Landsat albedo after MRT); dark blue color (0 value) means no
data. DOYs for the rows from the top to bottom are 160, 168, 176, 184, and 192 (He et al. 2014c)

(2000, 2003, and 2004) also showed consistent root-mean-square-error (0.041–
0.045) and R2 (0.964–0.970). This indicates that sensor changes did not result
in significant differences between albedo estimates derived from the two satellite
platforms.

13.3.2 Time Series Changes in Surface Albedo at GC-Net Sites

To examine whether the changes in surface albedo detected from satellite data were
artifacts or real signals, time series of surface albedo from satellite product and
ground measurements were compared at GC-Net sites (Fig. 13.8). In the overlap
time periods, albedo decreases were observed from both satellite observations
and ground measurements at most sites with similar magnitude of trends (He
et al. 2013). This demonstrates that the magnitude of albedo trend was much
larger than artifacts caused possibly by sensor degradation, etc. In other words,
sensor degradation would not have resulted in significant errors in the albedo trend
detection over Greenland.
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et al. 2013)

The accompanied increase of near surface air temperature would explain a large
portion of albedo decrease, particularly at the two sites of Swiss Camp and JAR1,
where temperature was close to snow melting point. Accelerated albedo decrease
was observed from both satellite data and ground measurements because of positive
feedback of snow albedo to temperature.

13.3.3 Time Series Changes in Surface Albedo over
the Entire Greenland

After removing/minimizing the possible impacts of sensor changes on GLASS sur-
face albedo trend analysis using ground measurements and data inter-comparison,
the satellite product could be used to assess albedo changes over the entire
Greenland, which otherwise could not be possible with only ground measurements.
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Fig. 13.8 Time series of albedo anomaly (left axis) and near surface air temperature (ıC) (right
axis) at GC-Net sites in July (1981–2012). Black solid line: GLASS albedo products; black dots:
ground albedo data; red dashed line: ground measured air temperature (He et al. 2013)

Albedo trends were found to vary both spatially and temporally (Fig. 13.9). He
et al. (2013) found that over the entire study area, albedo decreased at a rate of
0.009 ˙ 0.002 decade�1 (p <0.01). However, the decrease has been accelerating
with a large decrease since 2000 (�0.028 ˙ 0.008 decade�1, p <0.01). Most
significant decreases occurred at elevations between 1000 m and 1500 m (�0.055
decade�1, p <0.01). The accelerated decrease in land surface albedo since 1980s
may cause expansion of ablation area towards inner Greenland if temperature
continues to increase.

13.4 Conclusions

Long-term time series analyses of satellite land surface albedo have been carried
out in some recent studies thanks to the development of multiple long-term satellite
products, which would greatly improve our understanding of climate change
induced by human activities and benefit the climate modelling communities to
improve the model predictions in the future. However, data gaps, systematic bias,
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Fig. 13.9 (a) Decadal July albedo change rate over Greenland from GLASS products in 1981–
2000; (b) Decadal July albedo change rate over Greenland from GLASS products in 2000–2012;
(c) Digital elevation model of Greenland from USGS GMTED data divided into 8 levels: sea level
and below (white), �500 m (green), 501–1000 m (blue), 1001–1500 m (yellow), 1501–2000 m
(cyan), 2001–2500 m (magenta), 2501–3000 m (maroon), and above 3000 m (red) (He et al. 2013)

and artefacts from sensor degradation, orbital drift, and sensor inconsistency may
have undermined such analyses. This chapter presents some recent research trying
to detect and remove these problems. It would be very helpful if the user community
can understand and mitigate these issues in long-term time series analyses in surface
energy budget studies.
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Chapter 14
Observing the Response of Terrestrial
Vegetation to Climate Variability Across
a Range of Time Scales by Time Series Analysis
of Land Surface Temperature

Massimo Menenti, H. R. Ghafarian Malamiri, Haolu Shang, Silvia M. Alfieri,
Carmine Maffei, and Li Jia

Abstract Satellite observations of the terrestrial biosphere cover a period of time
sufficiently extended to allow the calculation of a reliable climatology. The latter
is particularly relevant for studies of vegetation response to climate variability.
Observations from space of the land surface are hampered by clouds at shorter
wavelength and affected by water in the atmosphere in the microwave range. Both
polar orbiting and geostationary satellites have a revisit frequency high enough
to allow for some redundancy relative to the processes being observed, so that time
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series where a fraction of observations are removed and the resulting gaps filled
are still very useful to monitor land surface processes. Two examples illustrate this
concept in two different spectral regions: Thermal Infrared (TIR) and observations
of land surface temperature to study the thermal behavior of the land surface
in response to weather and climate and 37 GHz observations of the polarization
difference in brightness temperature to retrieve the fractional abundance of water-
saturated soil. Three applications of time series of land surface temperature are
presented: (a) monitoring of spectral thermal admittance of the land surface; (b)
estimation and mapping of air temperature and (c) monitoring of thermal load to
assess the risk of forest fires.

Two methods were applied to identify and remove anomalous observations
(outliers) and to fill the resulting gaps: Harmonic ANalysis of Time Series (HANTS)
and the Multichannel Singular Spectrum Analysis (M-SSA). The HANTS algorithm
has been widely used to reconstruct time series of Normalized Difference Vegetation
Index (NDVI), Leaf Area Index (LAI), Land Surface Temperature (LST) as well as
the polarization difference brightness temperature (PDBT) during the past 20 years
to remove random noise or eliminate cloud/snow contamination. The M-SSA, an
advanced methodology for time series analysis, was utilized to reconstruct gap-free
LST time series using both the spatial and the temporal information content in the
data set.

14.1 Introduction

The Earth’s surface and atmosphere form a complex and dynamic system in which
matter and energy are continuously exchanged at different time scales. Observations
of the exchange of available energy between the land surface and the atmosphere
(i.e. the latent and sensible heat flux) are important to understand land surface
processes, to evaluate parameterization schemes in weather and climate models,
water resource management, and for agricultural applications such as irrigation
scheduling (Bowen 1926; Penman 1948; Monteith 1965; Priestley and Taylor 1972;
Brutsaert 1982; Morton 1983; Menenti 1984; Famiglietti and Wood 1994; Su and
Menenti 1999).

The Fast Fourier transform (FFT) and HANTS have been developed and applied
to time series of satellite observations, e.g. NDVI and Land Surface Temperature,
to study vegetation phenology and land surface climate (Menenti et al. 1993, 2010;
Verhoef 1996; Roerink and Menenti 2000; Julien et al. 2006; Jia et al. 2011; Moody
and Johnson 2001; Roerink et al. 2000, 2003; Alfieri et al. 2013). In contrast to
the FFT which uses all observations regardless of quality, HANTS identifies and
removes outliers in data samples.

A global study of the accuracy of HANTS in the reconstruction of NDVI time
series has been completed by (Zhou et al. 2015). The overall reconstruction error
was divided into gaps-related error and fitting method-related error.



14 Observing the Response of Terrestrial Vegetation to Climate Variability. . . 279

A 3 year time series (2008–2010) of gap-free daily and hourly Land Surface
Temperature (LST) and actual evaporation derived from geostationary data collected
by the Fengyun-2C (FY-2C) satellite was reconstructed for a large area including the
Qinghai – Tibet Plateau and the surrounding river basins (Faivre 2014; Ghafarian
2015). Hourly LST observations, estimated from radiometric data acquired by
the Single channel Visible and Infrared Spin Scan Radiometer (S-VISSR) sensor
onboard the FY-2C Chinese geostationary satellite have been used to construct a
gap- and cloud-free data set which covers the whole Tibetan Plateau from 2008
through 2010 with a 5 � 5 km spatial resolution. Multi-channel Singular Spectrum
Analysis (M-SSA), an advanced methodology for time series analysis, has been
utilized to reconstruct LST time series.

Due to the revisit frequency and swath width of microwave radiometers on
polar orbiting satellites, time series of passive microwave data will have gaps of
3–5 days. To make a consistent daily time series, we need some statistical methods,
such as a moving window filter, to fill these observation gaps. In addition, the
effects of rain drops on microwave ground surface observations at 37GHz are not
negligible. Geo-location and resampling introduce random errors in the conversion
from swath brightness temperature to the gridded data. Radiometric noise, such as
the reference warm-up, also has an additional and unpredictable impact on observed
BT. Erroneous observations need therefore to be identified and removed. In this case,
we applied the Harmonic ANalysis of Time Series algorithm (HANTS) (Menenti
et al. 1993; Roerink et al. 2000; Verhoef 1996) to fill gaps and remove noisy samples.

14.2 Material and Methods

14.2.1 Modeling and Reconstruction of Cloud-Free LST
Time Series

14.2.1.1 HANTS Algorithm

HANTS algorithm was proposed by Verhoef (1996) to fill the missing or cloudy
observations and eliminate the outliers in time series data with periodic behaviour.
HANTS algorithm is based on the concept of discrete Fourier transform (Menenti
et al. 1993; Verhoef 1996; Roerink and Menenti 2000; Verhoef et al. 1996) to model
time series of satellite data.

A temporal sequence of N observations yi, i D 1 to N can be described by a
Fourier series as:

yi D a0 C

MX

jD1

aj cos
�
!jti � 'j

�
(14.1)
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where ! j is the frequency of jth harmonic term in the Fourier series, ti is the time
at which the ith sample was taken, M is the number of frequencies of the Fourier
series (M < DN), ˛j and ®j are the amplitude and the phase of the jth harmonic term
respectively. Because the zero frequency has no phase, the amplitude related to the
zero frequency, a0, is equal to the average of all N observations of y. The harmonic
frequencies are a base frequency (i.e. ¨1 D 2 /N) and all integer (i.e. i D 1 to N)
multiples of the base frequency:

!i D .2�=N/ � i; where i D 1; 2; : : : ;N

In the HANTS algorithm after selecting the number of frequencies (M) and the
frequencies (! j), the unknown parameters of the Fourier series are the amplitudes
aj and the phase ®j values, which are determined by fitting the time series of
observations.

In order to create a reliable model of the signal with HANTS, there are multiple
parameters that should be defined by users:

1. Valid data range: the acceptable range of observed values. The observations out
of this range are removed at the first stage by assigning zero weight to them.

2. Period: number of time samples in each periodic component in the Fourier series.
3. Number Of Frequencies (NOF): the number of harmonic terms. NOF determines

the amount of detail that can be captured in the reconstructed signal. Low NOF
creates a smoother signal than a high NOF value. The number of frequencies is
counted from the base period onwards (numbered one).

4. Direction of outliers: indicates the direction of outliers with reference to the
current model of the signal. For example, cloud contamination causes lower
LST values, therefore, the direction of outliers should be selected as low when
applying the HANTS algorithm to LST data.

5. Fit Error Tolerance (FET): specifies which absolute deviation from the current
curve in the selected direction is still acceptable. After each iteration, obser-
vations that have a deviation greater than FET are set as outliers and removed
from the calculation by assigning a zero weight to them. Iterations stop when the
deviation of all remaining observations becomes smaller than FET.

6. Degree of Over Determinedness (DOD): minimum number of extra data points
which have to be used in curve fitting. The number of valid observations
must always be greater than the number of parameters required to describe
the signal (2 � NOF-1). In order to get a reliable result more data points than
the necessary minimum should be included which is indicated by DOD. The
iteration is terminated if the number of remaining points becomes less than
DOD C 2 � NOF-1, if it was not already terminated because the FET criterion
was met.

The HANTS algorithm was designed to execute two tasks: (i) identifying and
removing outliers and cloudy observations, and (ii) gap-filling of the remaining
valid observations by temporal interpolation. Besides that, HANTS can be used
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to decompose a periodic time series into the significant periodic components that
describe the time series. HANTS handles the Fourier analysis as a curve fitting
problem using a weighted least squares solution. In the HANTS algorithm, each
observation in the time series is assigned a weight of one or zero for good and
bad (outliers) data, respectively. In order to find outliers and cloud contaminated
observations, HANTS performs the curve fitting iteratively. In the first step, the
least square curve fitting is performed using all data in the series. In the second step,
observations are compared to the curve determined in the 1st iteration. Observations
that deviate more than a pre-defined threshold are removed by assigning a zero
weight to them. The remaining data are used to compute the least square curve
fitting again, and the outliers are identified and removed again using the same
threshold as in the first step. This iteration procedure is repeated until either all
the remaining observations are within the pre-defined threshold or the number of
remaining data becomes less than the number of parameters by which the curve is
described (or < DOD).

14.2.1.2 Multi-channel Singular Spectrum Analysis (M-SSA)

The workflow of the SSA algorithm is illustrated as follows based on (Musial et al.
2011):

Step 1: A single scalar time series F(t); t D 1, 2, : : : , n is embedded into
a multidimensional trajectory matrix of lagged vectors X D [f1, : : : , fk] where
k D n�m C 1 and each lagged vector is defined as Xj D (fj, : : : , fjCm–1); j D 1, : : : ,
k. This trajectory matrix contains the complete record of patterns present within a
time window of size (m; m < n). Increasing the window size increases the spectral
coverage of SSA and more information about the basic pattern of the time series will
be captured, while decreasing the window size enhances the statistical confidence
of the final results (Elsner and Tsonis 1996), since the structure of a time series will
be captured repeatedly (Ghil et al. 2002). The final form of the trajectory matrix X
is a rectangular matrix of the form:

X D

0

B
B
B
B
B
@

f1 f2 f3 : : : fk
f2 f3 f4 : : : fkC1

f3 f4 f5 : : : fkC2

: : : : : : : : : : : : : : :

fm fmC1 fmC2 : : : fn

1

C
C
C
C
C
A

(14.2)

Step 2: The next step is the decomposition of the trajectory matrix X of size m � k
using the Singular Value Decomposition (SVD) method which yields:

X D DLET (14.3)
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where D and E are left and right singular vectors of X with m � m and k � k size
respectively, and L is a rectangular diagonal matrix of size m � k. The elements of
L, called singular values, are the square roots of the eigenvalues of the lagged –
covariance matrix S D XXT of size m � m. The lagged covariance matrix is a
symmetric matrix (i.e. S D ST ), and the elements of S are proportional to the linear
correlation between all pairs of snapshots (patterns appearing in the m-window). The
columns of matrix D are the eigenvectors of S also known as Empirical Orthogonal
Functions (EOFs). The rows of ET are eigenvectors of matrix XTX. If the time series
is naturally periodic and corresponding eigenvalues have high covariance elements
along the diagonal values of the lagged-covariance matrix, the eigenvectors will
include the periodic components of the time series, but this is not the case for
aperiodic time series. Since periodic patterns in the time series will result in some
segments being in phase and others out of phase, high covariance elements aligned
along the diagonals of the lagged covariance matrix S will indicate oscillations in the
time series (Elsner and Tsonis 1996). If we plot the singular values in descending
order, one can often distinguish between an initial steep slope, representing a signal,
and a (more or less) flat floor, representing the noise level (Vautard et al. 1992). Then
any subset of d eigenvectors (EOFs), 1 � d � m, for which the related eigenvalues
are positive provides the best representation of the matrix X as a sum of matrices Xi,
i D 1, 2, : : : , d (Golyandina et al. 2001).

Step 3: Partitioning d eigentriples into p distinct subsets and then summing all
the components inside each subset so that

X D

pX

n0D1

XIn0

where;XIn0

D
X

i"In0

Xi (14.4)

The matrices XIn0 have the form of a Hankel matrix (a square matrix in which
the positive diagonal elements are constant) in an ideal case and consequently fit the
trajectory matrices.

Step 4: Since the ideal case described in step 3 is not usually the case, the XIn0

matrices should be transformed into the form of a Hankel matrix to fit the trajectory
matrices. This step is known as diagonal averaging. In this sense, the original matrix
can be reconstructed as the sum of these matrices.

xt D

pX

n0D1

xt
n0

; t D 0; 1; : : : ; n � 1 (14.5)

where for each p, the series xt
n0

is the result of the diagonal averaging of the matrix
XIn0 .

The multi-channel SSA (M-SSA) is an extension of SSA that is used when time
series of maps exist (e.g. our time series of hourly LST maps) (Broomhead and
King 1986b). In this context, M-SSA utilizes an L number of spatial time profiles
(L � m, where m is the window size chosen in SSA) and uses the Spatial information
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(i.e. a few leading S-PCA components of spatial time series) along with Temporal
information (T-PCA) to reconstruct the time series more accurately especially where
the gaps are long.

If we have more than one time series of given observations, Xli, where i D 1, 2,
: : : , N and l D 1, 2, : : : , L; the generalization of SSA to construct the multi-variable
lagged covariance matrix (T) will be as follows:

T D

2

6
6
6
4

T1;1 T1;2 	 	 	 T1;L
T2;1 T2;2 	 	 	
:::

::: 	 	 	

TL;1 TL;2 	 	 	 TL;L

3

7
7
7
5

(14.6)

where Tl,l0 is the lagged-covariance matrix between channel l and l0. The Tl,l

is the same as S for single channel SSA with just one time series with l D 1.
By diagonalizing matrix T, L � m eigenvectors and eigenvalues of matrix T are
calculated by M-SSA. Each eigenvector (Ek), which is called Space-Time Principal
Components (ST-PCs), consists of L successive m-long segments. As with SSA, by
selecting p ST-PCs, the original time series can be reconstructed.

The (M)-SSA software, manuals and help can be freely downloaded from the
following website: http://web.atmos.ucla.edu/tcd//ssa/guide/guide4.html (Ghil et al.
2002).

14.2.2 Downscaling and Estimation of Air Temperature

The SINTESI approach (Alfieri et al. 2013) is a procedure developed to map air
temperature at fine spatial resolution by combining the LST observed by satellite
and Ta data at a reference location. SINTESI is structured in several steps including
preprocessing of the LST time series image-data to identify missing data and outliers
and to fill the resulting gaps (see Sect. 14.2.1). These steps include: the evaluation
of the temporal stability of LST spatial patterns, determination of the relationships
between near-surface Ta and LST and finally the combination of the model of the
time series of normalized LST with the regression Ta vs LST to obtain Ta (x,y,t) as
a function of LST (x0,y0,t).

Spatial variability is normalized to a reference location by the construction of
the time series of the ratio of LST (x,y,t) to the LST at the reference location LST
(x0,y0,t), with x and y as the East and North coordinates respectively and t the time.
The result is the pixel-wise ratio r:

r .x; y; t/ D
LST .x; y; t/

LST .x0; y0; t/
(14.7)

http://web.atmos.ucla.edu/tcd//ssa/guide/guide4.html
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The choice of the reference location is arbitrary provided r (x,y,t) is stationary
and can be modeled by maps of the Fourier coefficients. The choice of the reference
location changes the value of the ratio r (x,y,t) but does not change the value of LST
(x,y,t).

The temporal stability of the pixel-wise ratio is evaluated using harmonic
analysis. Fourier analysis is used to decompose the ratio r (x,y,t) in three periodic
signals with periods respectively 365, 180 and 120 days by means of HANTS (see
Sect. 14.2.1.1). The r time series are processed by Fourier analysis on a yearly basis.
For each frequency the amplitude and phase of the sine and cosine functions are
determined. The inter-annual stability of the spatial pattern is evaluated on the basis
of the inter-annual variability of the Fourier coefficients (amplitudes).

Mapping of Ta at fine spatial resolution can be done by determining the
relationship between LST and air temperature. The relationship between the Ta
measured at the available stations within a study area and LST is established by
linear regression analysis:

Ta D LST � mi C ni (14.8)

where subscript i refers to a ground (meteorological) station. A single regression
equation with coefficients m and n for the entire study area, estimated by averaging
mi and ni, may be used in some cases. When aiming at the estimation of Ta over
a period of time when no satellite observations of LST are available, the inverse
regression is required at the reference location:

LST .x0; y0; t/ D
1

m0

� Ta .x0; y0; t/ � n0 (14.9)

where subscript0 indicates the reference location. The result of this analysis are the
parameters m, n, 1/m0 and – n0. The Ta at each pixel location is estimated by:

Ta .x; y; t/ D

	

Ta .x0; y0; t/ �
1

m0

� n0

�

� r .x; y; t/

�

� m C n (14.10)

with Ta (x0,y0,t) the air temperature at the reference location. In Eq. 14.7 the ratio r
is calculated as:

r .x; y; t/ D a0 C

iD3X

iD1

ai cos
�
2� fity

�
C bi sin

�
2� fity

�
(14.11)

where,

ai D Ai � cos


 i �

�

180

�
I bi D Ai � sin



 i �

�

180

�
(14.12)



14 Observing the Response of Terrestrial Vegetation to Climate Variability. . . 285

with Āi and  i being respectively the amplitude and phase of the ith harmonic
component averaged over the years spanning the analysed LST time series, once
the inter-annual stability of the ratio r has been verified.

14.2.3 Time Series of LST Anomalies and Fourier Coefficients
to Characterize Fire Occurrence and Size

The research focussed on the study area of Campania (13,595 km2), Italy and
the results are presented later in this Chapter. The Italian Forest Corps (Corpo
Forestale dello Stato) provided a dataset including more than 7700 fire records
between 2000 and 2008. The data included date and time, coordinates, duration
and extent of each event. A collection of daily Terra-MODIS LST data observed
at approximately 10:30 am local time from 2000 to 2008 was used for this study.
These data are publicly available at the Land Processes Distributed Active Archive
Center (LP DAAC) hosted by the United States Geological Survey (USGS). Fourier
series comprising three harmonics (365, 180 and 120 days) were fitted to the data
with two different methods, to achieve two different purposes:

• HANTS (see Sect. 14.2.1.1) was executed on each yearly sequence of daily LST
data separately, to reconstruct missing or cloudy data (Roerink and Menenti
2000; Roerink et al. 2000). The retrieved yearly images of Fourier coefficients
(mean LST, amplitude and phase of the three harmonics) were masked on forest
and natural areas and segmented into labelled classes. The number of fires and
mean burnt area were then mapped using the fire records mentioned above, then
the spatial patterns of both variables were compared with the probability given
by a random null model (Bajocco and Ricotta 2007). This comparison indicates
that fires are induced by external drivers.

• The algorithm was executed on the whole 2000–2008 dataset to construct daily
maps of reference temperature (Azzali and Menenti 2000). Thermal anomalies
(TA) were computed by subtracting the daily reference temperature from daily
MODIS LST. Forest fires are expected to occur in areas where there has been
a prolonged exposure to lack of rainfall and high air temperature. In these
circumstances an LST anomaly is observed over a number of consecutive days.
For this reason cumulated anomalies (CTA) were calculated as the sum of all the
observed thermal anomalies from the day when the thermal anomaly was first
recorded in the pixel up to the current day. Each fire in the database was then
associated to the values of TA and CTA observed at each fire location on the day
preceding the event.
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Fig. 14.1 A soil slab at
depth z

14.2.4 Monitoring of the Spectral Thermal Admittance
of the Land Surface

Heat transfer takes place by three different processes, namely, conduction, convec-
tion and radiation. In a porous solid, conduction is the dominant process, while
convection and radiation are usually negligible (Carslaw and Jaeger 1959). In this
section, the general theory of heat conduction in the soil will be explained to define
the spectral thermal admittance. As mentioned above, heat is mainly transported
in soils by conduction. The analytical solution we applied to relate the amplitude
of heat flux at the surface to the amplitude of surface temperature holds under the
following assumptions:

1. Heat flow is one dimensional in the vertical direction.
2. No heat source or sink is present in the soil.

Under these conditions the heat flux density at depth z (Fig. 14.1) is directly
proportional to the vertical temperature gradient at that depth:

G D ��


ıT

ız

�

(14.13)

where G is the soil heat flux density (Wm�2) (positive and downward if the
temperature decreases with depth), � is the thermal conductivity (Wm�1K�1) and
ıT/ıZ is the temperature gradient (Km�1). The amount of heat stored in the same
slab per unit of time can be written as �c(ıT/ıt)dz. The �c is the volumetric soil
heat capacity and it is defined as the amount of heat required to increase by 1 K the
temperature of a unit volume of soil and ıT/ıt is the temperature change per unit
time.

We assumed that no heat source or sink is present, so that the continuity equation
reads:

ıG

ız
D ��c

ıT

ıt
(14.14)
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and by substitution of Eq. 14.13 in Eq. 14.14 we get:

ı

ız



�
ıT

ız

�

D �c
ıT

ıt
(14.15)

Assuming constant � and �c in a soil slab, the vertical heat flow in the soil
(Eq. 14.15) becomes:

�
ı

ız


ıT

ız

�

D �c
ıT

ıt
(14.16)

ıT

ıt
D ˛

ı2T

ız2
(14.17)

where ˛D�/�c (m2s�1) is soil thermal diffusivity.
The Eq. 14.17 can be solved to obtain the soil temperature at any depth and time

if the proper initial and boundary conditions are given (van Wijk and De Vries 1963;
Carslaw and Jaeger 1959). In order to solve the Eq. 14.17 for a homogeneous semi-
infinite soil, we need to define the boundary condition, i.e. if we assume a periodic
surface temperature T(0,t) at time t and depth z D 0:

T .0; t/ D T C A sin .!t C '/ (14.18)

where T is the mean surface temperature, A is the amplitude of the surface
temperature, ® is the phase and ¨ is the angular frequency (2 /p and p is the period,
i.e., 2 /86,400 D 7.27 � 10�5 s�1 for diurnal variation). The traveling wave solution
of Eq. 14.17 can be sought with the boundary condition Eq. 14.18 (van Wijk and De
Vries 1963; Horton and Wierenga 1983; Carslaw and Jaeger 1959) as:

T .z; t/ D T C A exp .�z=d/ sin .!t C ' � z=d/ (14.19)

where d (m) is damping depth defined as:

d D

r
2a

!
(14.20)

When the soil heat flux passes through the soil surface, the change in LST and
soil heat flux is not in phase and soil heat flux has a phase shift of  /4 relative to
LST (i.e. G leads T by 3 h for diurnal cycle and 1.5 month for the annual cycle)
(Carslaw and Jaeger 1959). The soil heat flux G(z, t) for a sinusoidal variation of
temperature can be obtained from Eqs. 14.13 and 14.19 as follows (Sellers 1965):

G .z; t/ D A.��c!/1=2 exp .�z=d/ sin


!t C ' � z=d C

�

4

�
(14.21)
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The final relationship between soil heat flux and soil temperature is illustrated by
(Menenti 1984) as follows:

G .z; t/ D ��T .z; t/ (14.22)

The complex variable œ” can be written as:

�� D .��c!/1=2 exp .i�=4/ (14.23)

� D .1C i/

 !

2˛

�1=2
(14.24)

At the soil surface, the parameter �� is defined as the thermal admittance y0

(Wm�2K�1) at the frequency ¨. The term exp (i� /4) accounts for the phase shift
between flux and temperature waves of period P, while the modulus (��c!)1/2

accounts for the ratio between surface amplitude of soil heat flux and LST
(Eq. 14.25) (Menenti 1984).

The soil thermal admittance (y0) can be determined as done by (Menenti 1984;
Idso et al. 1976; Wang et al. 2010) as follows:

y0 D
�G0

�T0
(14.25)

where y0 (Wm�2K�1) is the thermal admittance at the soil surface, �G0 (Wm�2)
is the surface amplitude of soil heat flux and �T0 (K) is the surface amplitude of
land surface temperature. As defined above, the surface soil thermal admittance is
the ratio between the amplitude of soil heat flux and soil surface temperature. The
same relationship can be derived by Eqs. 14.19 and 14.21, now at any frequency !
and assuming again a semi – infinite homogenous soil, if we use just the amplitudes
as follows:

y0 .!/ D
�G0

�T0
D .��c!/1=2 (14.26)

The spectral soil thermal admittance is defined as a set of observations of the
apparent soil thermal admittance at multiple frequencies and conveys information
about the soil thermal properties of different layers (Menenti 1984). We estimated
the frequency dependent (spectral) soil thermal admittance of the entire Qinghai –
Tibet Plateau using the 2008–2010 time series data on LST and G0. The Eqs. 14.19
and 14.21 assume a homogeneous semi-infinite soil whose surface is heated by
a periodic (sinusoidal) heat flux that corresponds to the daily, annual or other
significant periodic heating cycles. The soil surface temperature and soil heat flux
variations are not a pure periodic function of time around a mean value (van Wijk
and De Vries 1963), but yet the periodic model can be applied successfully to
represent the time series by a series of harmonic functions at significant frequencies.
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So if we have the amplitudes of soil heat flux and soil surface temperature at those
frequencies, then we can obtain the thermal admittance at these frequencies.

It is necessary first to identify the most significant periodic components in a time
series and then estimate the related amplitudes. As we deal with hourly LST time
series to estimate the soil thermal admittance, we are interested in finding some
harmonic components which may exist in the data over a rather wide spectral range.

In the Sect. 14.3.4, we will illustrate first the results of estimating the significant
frequencies and then the amplitudes of G0 and LST. Then we will estimate the
Spectral Soil Thermal Admittance (SSTA) which is the variation of soil thermal
admittance versus frequency.

14.2.5 Monitoring Flooded Area Using Time Series
of the Polarization Difference Brightness Temperature
(PDBT) at 37 GHz

The zero-order radiative transfer model (Kirdiashev et al. 1979; Wigneron et al.
1993) was simplified to retrieve the water saturated soil and standing water area from
the PDBT data at 37GHz (Shang et al., 2012). The Vertical Brightness Temperature
(VBT) data at 37GHz and NDVI data are the auxiliary data: the former is used
to retrieve the land surface temperature (Holmes et al. 2009), and the latter one is
used to retrieve the vegetation fractional area and vegetation transmission function
(Shang et al. 2012). All these remote sensing data are full of observation gaps and
contaminated by noisy samples and thus need to be preprocessed before they can be
used in the simplified model.

14.2.5.1 Materials and Study Area

The PDBT and VBT observations at 37 GHz by the SSM/I, on board the Defense
Meteorological Satellite Program (DMSP) F13 satellite, were used in this case.
They have been calibrated and registered to the Equal-Area Scalable Earth Grid
(EASE-Grid) with a spatial resolution of 25 km (Brodzik and Knowles 2002). The
NDVI data were calculated from the MOD09A1 data product, which is the 8-day
reflectance data with a spatial resolution of 500 m. The mean reflectance in the red
and near-infrared bands was calculated for each 25 km EASE-Grid. The EASE-Grid
NDVI is then calculated from these aggregated reflectance data.

The study area is the Poyang Lake, the largest lake in the Yangtze River Basin,
which is located between 28.048ı N to 29.384ı N, and from 115.444ı E to 117.007ı

E and includes 10 pixels area of EASE-Grid. There is a clear dry season from
October to March and the flooding season is from April to September.



290 M. Menenti et al.

14.2.5.2 Time Series Analysis of the SSM/I and MODIS Data

The gaps are given a zero value, then the processing of the SSM/I data includes
three steps:

1. Moving window filter: a moving window of 10 days, is applied to the original
time series of PDBT and VBT, taking into account the 3–5 days gaps in the
observations. The window size needs to be greater than the double of the
maximum gap length. The maximum and minimum values within the window
are eliminated and the valid observations are averaged to estimate the observation
on the central day of each window, reducing the noise.

2. Fast Fourier Transform (FFT) algorithm: it calculates the Fourier Transform of
the filtered time series. The power spectrum helps separate the surface signal at
lower frequencies from the atmospheric signal, including precipitation, at higher
frequencies.

3. Harmonic ANalysis of Time Series (HANTS) algorithm: it reconstructs the
upper-envelop of the filtered time series and eliminates the remaining outliers.

The NDVI data are processed by applying the 3rd step only, with the significant
components identified on the basis of vegetation phenology in the area observed.

14.2.5.3 Retrieve Flooded Area from PDBT Observations

To correct observations for the attenuation by vegetation, the zero-order radiative
transfer model (Shang et al. 2012, 2015) was simplified by assuming that the
single scatter albedo of vegetation canopy is the same for horizontal and vertical
polarization and that the apparent sky brightness temperature is negligible compared
with the surface brightness temperature. Then the PDBT at 37GHz (�T) can be
expressed as:

�T D Ts ��– � Œ.1 � fv/C fv � ı� (14.27)

ı D exp .�2�0=�/ (14.28)

Where Ts is the surface brightness temperature; �� is the Polarized Effective
Emissivity Difference (PEED); fv is the fractional vegetation cover; ı is the
vegetation transmission function; �D cos(	 ), 	 is zenith view angle; �0 is the
optical thickness of vegetation.

The PEED can be derived from Eq. 14.27, when the remaining variables, i.e. the
land surface temperature, fractional vegetation cover and vegetation transmission
function, are derived from auxiliary remote sensing data, as described in (Shang et
al. 2012, 2015). The fractional Water Saturated Soil (WSS) and standing water area,
fss, can be derived from the PEED, �", as:
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fss D
�
�" ��"dry

�
=
�
�"sat ��"dry

�
(14.29)

where �"dry and �"sat are the PEED of a completely dry soil and water saturated
soil respectively. Their derivation can be found in (Shang et al. 2012, 2015). �"sat

has the same value as that of water, thus the fractional area in Eq. 14.29 represents
the sum of the WSS and standing water.

14.3 Results

14.3.1 Modeling and Reconstruction of Cloud-Free LST
Time Series

The SSA technique was applied to hourly observations by the FY – 2C S-VISSR
to reconstruct the LST diurnal variation over a period of time. As described in
Sect. 14.2.1.2, window size (m) and main SSA dominant modes (d) are the two main
parameters of SSA. To select the optimum window size and the number of relevant
periodic components we used ground measurements with a 10 min sampling time
during January 2008 with a total 4464 measurements. This is because we need error–
and gap–free data to evaluate the impact of different window sizes and of periodic
components on the accuracy of the reconstructed time series. Cross-validation is
then used to determine the optimum number of leading SSA dominant modes and
the window size. We created some artificial gaps in the ground measurements and
then applied SSA with different window sizes and number of components to the
gappy data. The R-squared (R2) metric was applied to determine the optimum SSA
parameters.

Figure 14.2a shows that by increasing the Number of component (No.com) from
7 to 28, the R2 increased from 89.43 to 91.26 %: given the limited improvement
in accuracy at the price of a much higher computation time, we selected 7 as the
number of components. A similar test led to selection of the optimum window size
and as Fig. 14.2b shows, the optimum window size is 432 which is equal to 3 days
or 72 h. These values (7 as No.com and 72 h as window size) were then used as main
SSA parameters to reconstruct the hourly time series of FY – 2C LST observations.

14.3.1.1 Removal of Positive and Negative Outliers

The existence of outliers (negative and positive) besides gaps imposes additional
challenges in the reconstruction of LST time series. Hourly LST time series
observed from space appear as a combination of slow, periodic signal components,
e.g. daily and yearly, and faster changes, which often appear as random, unpre-
dictable events (noise), as due to random errors in the observations. By modeling the
time series using the selected signal components, the outliers can be removed (see
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Fig. 14.2 (a) Correlation coefficient of estimated and observed LST as a function of the number
of components, (b) Correlation coefficient of estimated and observed LST as a function of the
windows size (right)

Fig. 14.3). Neither SSA nor M-SSA allow the direct identification and removal of
outliers, so we adopted an alternate approach. We first applied M-SSA to the original
LST time series and estimated the reconstructed time series (Fig. 14.4, green line)
and determined the absolute differences between the original values and the ones
given by the reconstructed time series.

Outliers in a LST time series appear as clearly lower values. The latter is most
likely due to clouds: taking into account a lapse rate of about 10 K km�1, we set 10 K
as a threshold to identify outliers. By replacing cloud – contaminated observations
with zero, these were excluded in the reconstructed time series. Then we applied
again M-SSA on the new time series and the results show that the reconstructed
time series gets much closer to the valid observations in the original data (Fig. 14.4,
red line).
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Fig. 14.3 Outliers removal and reconstruction using M-SSA
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Fig. 14.4 Reconstruction of LST before and after outliers removal

14.3.1.2 Validation of SSA Using Ground Measurement of LST

We evaluated the performance of our reconstruction method by applying the cross–
validation method, by creating some randomly distributed gaps in the time series
and then comparing the reconstructed with the original observations. This was again
done using a gap-free time series of LST ground measurements at the Nagqu station
(165257.0112ıN, �279574.1757ıE) in January 2008.

We identified the outliers using HANTS (see Sect. 14.2.1.1), then imposed the
same gaps on the time series of ground measurements. Then SSA was applied on the
gapped ground measurements and the reconstructed time series was compared with
the actual data. In Fig. 14.5, the red areas show the gaps while the blue areas belong
to actual ground measurements. The black line shows the result of applying SSA to
fill the gaps: even with 63 % of gaps, we obtained R2 D 0.83 with Mean Absolute
Error (MAE) D 2.25 Kelvin.
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Fig. 14.5 Validation of SSA gap-filling using ground measurements with the same pattern of gaps
as in the FY – 2C observations

14.3.2 Downscaling and Estimation of Air Temperature

The SINTESIS approach described in Sect. 14.2.2 has been applied to the Valle
Telesina area (20,000 ha), a complex landscape located in Southern Italy using
two sets of meteorological data: daily meteorological measurements at four ground
stations (period 2000–2010); daily meteorological data available for the period
from 1950 onwards gridded at 35 km � 35 km resolution and derived by kriging
with external drift method (Esposito 2010). The SINTESIS approach was used to
downscale these gridded data on Ta to a finer 1 km � 1 km grid using MODIS LST
time series.

The spatial pattern of LST on any given day was characterized by the ratio r of
LST image to the LST at the position of the node 1221 (San Salvatore Telesino),
using reconstructed surface temperature values. Intra-annual variability cannot be
neglected although its inter-annual trend seems to be stable. Here we only show
the summer and winter patterns of a representative year (2007) compared with the
anomalous year 2003 (Fig. 14.6). Summer and winter spatial fields of the ratio r
calculated over the remaining years present similar patterns.

Harmonic analysis was applied to the LST time series for each year separately
in order to obtain a quantitative estimation of the inter-annual variability of the
yearly, half yearly and seasonal periodic components of the r signal. The inter-
annual variability of the pixel-wise ratio r has been evaluated by statistics of the
yearly mean value A0 and of the amplitudes A1, A2, A3 of components with periods
of 365, 180 and 120 days obtained by Fourier analysis. We have then evaluated the
contributions ıri to the total error on r (x,y,t) due to assuming constant values of
A0, A1, A2 and A3 (Table 14.1). We have taken ır0 D �A0/A0 and ıri D �Ai/ (A0 C

Āi) (A0 is the yearly average of r and Ai is the amplitude of the ith component of
the Fourier series with i¤0). This gives an estimation of the contribution to the total
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Fig. 14.6 Spatial pattern of the winter and summer average of the daily ratio r in 2003 and 2007

Table 14.1 Comparison of the statistics (mean (Āi), standard deviation (¢) and coefficient of
variation (ıri) of the mean ratio r and harmonic amplitudes calculated over the period 2001–2010

Statistics over 2001–2010 Statistics leaving out 2003
Period in days Period in days
A0 365 (A1) 180 (A2) 120 (A3) A0 365 (A1) 180 (A2) 120 (A3)

Ai (�102) 98.96 0.72 0.49 0.36 99.06 0.62 0.37 0.32
�(�102) 0.31 0.32 0.35 0.14 0.09 0.10 0.07 0.09
ıri(%) 0.31 0.32 0.35 0.14 0.10 0.10 0.07 0.09

relative error we introduced when assuming inter-annual stability of the ratio r, i.e.
assuming constant values of A0, A1, A2 and A3.

The total relative error has been calculated as ır D

iD3X

iD0

ıri using the statistics

over the period 2001–2010 and then over the same period but leaving out 2003. In
the former case we obtained ır D 1.1 % and in the latter ır D 0.3 %. On the basis
of these findings we considered negligible the inter-annual variability of the annual
evolution of the ratio r. Then we can construct a yearly time series of the ratio r,
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describing the spatial and intra-annual variability in any period of time, using the
mean values of r and of the harmonic components over the period from 2001 to
2010.

The relationship between Ta data at the stations within the Valle Telesina area and
MODIS LST observations has been determined by linear regression analysis. Daily
values of maximum Ta and daytime MODIS LST were correlated for each station
and for each year from 2001 till 2010. The coefficients R2 were always greater than
0.83 and do not vary significantly across the stations. The largest variation has been
observed at Guardia Sanframondi that is located at a higher altitude than the other
stations. Considering these results as well as the impossibility to define a detailed
spatial pattern of regression coefficients (because of the scarce availability of ground
stations) we used a single relationship valid for the whole area under study (m D

0.81; n D 59.41).
The inverse relationship (LST vs Ta) was evaluated at the reference location

(node 1221) giving the regression coefficients 1/m0 D 0.87 and �n0 D 38.81.
In order to validate the proposed approach we evaluated using Eq. 14.10:

1. the Ta (x,y,t) estimates over 2007–2009 (using the mean Fourier coefficients from
2000 to 2006) against available observations in the same period.

2. a set of data collected during the pre-MODIS period of time at ground stations
within the MODIS image frame. Some of these stations are located outside the
Valle Telesina area, although in the same physiographic region. These data were
rather sparse both in time and in space because of the irregular operation of the
stations.

In each case we compared estimated maximum daily Ta with the one measured at
the available ground stations. We calculated the following statistics: RMSE, AME,
mean and standard deviation of the differences between estimated and measured Ta
(MR and STDR) and R2.

In case 1 (Table 14.2) RMSE values range between 1.98 and 3.33 K. Higher
values were found for the Castelvenere and Guardia Sanframondi stations, although
the mean deviation for Guardia is rather small, i.e. �0.25 K. The RMSE values for
all the stations are consistent with the scientific literature, e.g. (Yan et al. 2009; Shen
and Leptoukh 2011).

In case 2 (Table 14.3) we overestimated Ta, particularly during the winter, but the
available observations span a very short period of time. For all stations, observations

Table 14.2 Statistics of case 1 (values in K). Error statistics of Ta estimates over 2007–2009 using
the mean of the Fourier coefficients from 2000 to 2006 against Ta observations

RMSE AME MR STDR R2

Castelvenere 3.33 2.81 2.25 2.45 0.94
Telese 2.41 1.88 0.80 2.27 0.95
Guardia Sanframondi 3.30 2.78 �0.25 3.29 0.90
Solopaca 1.98 1.55 �0.20 1.97 0.95
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Table 14.3 Statistics of case 2 (values in K). Error statistics of Ta estimates in different periods
of time using the mean of the Fourier coefficients from 2001 to 2011

RMSE AME MR STDR R2

Castelvenere (1999–2000) 2.86 2.27 1.48 2.45 0.94
Solopaca (1999) 2.74 2.13 0.09 2.74 0.90
Bucciano (1984) 3.11 2.57 2.31 2.09 0.95
Piedimonte Matese (1984–1985) 4.9 3.93 3.03 3.85 0.92
Piedimonte Matese M.(1984–1985) 4.64 3.72 2.84 3.67 0.95

are available for just about one year, even in different years. Larger errors were
observed for stations located at higher altitude, i.e. 523 m at Piedimonte Matese and
865 m at Piedimonte Matese Muto. The RMSE values found when using the same
linear regression relationship for the entire area were slightly larger than when using
station specific relationships. We have observed that both slope and intercept depend
on elevation but it was not possible to parameterize such dependence on elevation
with sufficient accuracy given the limited number of stations at higher elevation and
the short record of observations. To some extent the difference between estimated
and observed daily Ta is due to the quality of ground observations of air temperature.

14.3.3 Time Series of LST Anomalies and Fourier Coefficients
to Characterize Fire Occurrence and Size

The mean annual temperature and the amplitudes of the three harmonics used in
the analysis have an evident role in determining spatial patterns of fire occurrence
(Tables 14.4, 14.5, 14.6, and 14.7). Among the phase components, fire occurrence
shows clear spatial selectivity only against the first (Table 14.8, other tables
not shown). Mean fire size shows unambiguous spatial selectivity solely in the
amplitude of the second harmonic (Table 14.6).

Temperature anomalies (TA) and cumulated temperature anomalies (CTA) were
evaluated against fire size by first calculating the conditional mean fire size observed
when the TA (CTA) was larger than the considered value, and then plotting the
calculated means against the values of anomaly (cumulated anomaly) used in the
calculation. In a similar manner, the conditional proportion of large fires (larger
than 16 ha, which is the 90th percentile in the study area) was evaluated against
anomaly and cumulated anomaly.

Fire size appears to be related to daily thermal anomalies: with increasing values
of the thermal anomaly, the expected mean fire size in all areas with thermal
anomaly larger than that value increases (Fig. 14.7a). A similar pattern is observed
with the conditional fraction of large fires (Fig. 14.7b). A wider dynamic range in
fire size and fraction of large fires is observed when the same analysis is performed
against CTA (Fig. 14.8a, b).
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Table 14.4 Selectivity of
fires’ number and mean size
for mean temperature classes

Mean LST classes (K)
Class Number of fires Mean fire size (ha)

<288 34 ��� 15.74 CCC

288–289 47 ��� 7.09 CCC

289–290 121 �� 5.39 C

290–291 264 CCC 7.34 C

291–292 494 CCC 4.4 �

292–293 782 CCC 4.23 �

293–294 904 CCC 4.85 �

294–295 751 CCC 3.99 ��

295–296 560 � 5.52 C

296–297 279 ��� 4.81 C

297–298 127 ��� 9.67 CCC

>298 41 ��� 4.79 C

Symbol “C” means class preference, “�” class
avoidance. One symbol: selectivity non- significant.
Two symbols: significant P<0.05. Three symbols:
significant P<0.01

Table 14.5 Selectivity of
fires’ number and mean size
for classes of amplitude of the
first harmonic

Amplitude of the first harmonic (K)
Class Number of fires Mean fire size (ha)

<8 59 � 7.79 C

8–9 203 C 4.97 C

9–10 453 CCC 5.8 C

10–11 984 CCC 4.55 �

11–12 1242 CCC 4.94 C

12–13 872 ��� 4.71 �

13–14 411 ��� 4.39 �

14–15 158 ��� 6.02 C

>15 22 ��� 27.05 CCC

Symbol “C” means class preference, “�”
class avoidance. One symbol: selectivity non-
significant. Two symbols: significant P<0.05.
Three symbols: significant P<0.01

14.3.4 Monitoring of Spectral Thermal Admittance

14.3.4.1 Finding the Most Significant Periodic Components in LST
Time Series

The power spectrum P(f) at frequency f is p(f) D A(f)2 and it can be applied to
identify significant periodic components in a time series (Fig. 14.9).

Figure 14.9a shows the actual LST signal for a pixel (having very few gaps in
the original time series data) in the study area from the 1st of January 2008 until
the 31st of December 2010. The power spectrum is shown in Fig. 14.9b. Since
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Table 14.6 Selectivity of
fires’ number and mean size
for classes of amplitude of the
second harmonic

Amplitude of the second harmonic (K)
Class Number of fires Mean fire size (ha)

0–1 2083 CCC 3.52 ���

1–2 1723 C 6.01 CCC

2–3 570 ��� 7.24 CCC

>3 28 ��� 12.85 CCC

Symbol “C” means class preference, “�”
class avoidance. One symbol: selectivity non-
significant. Two symbols: significant P<0.05.
Three symbols: significant P<0.01

Table 14.7 Selectivity of
fires’ number and mean size
for classes of amplitude of the
third harmonic

Amplitude of the third harmonic (K)
Class Number of fires Mean fire size (ha)

0–1 1486 CCC 5.06 C

1–2 2450 CCC 4.99 �

2–3 447 ��� 5.2 C

>3 21 ��� 4.88 C

Symbol “C” means class preference, “�”
class avoidance. One symbol: selectivity non-
significant. Two symbols: significant P<0.05.
Three symbols: significant P<0.01

Table 14.8 Selectivity of
fires’ number and mean size
for classes of phase of the
first harmonic

Phase of the first harmonic (ı)
Class Number of fires Mean fire size (ha)

<180 21 ��� 10.15 CC

180–185 126 ��� 3.12 ���

185–190 645 ��� 3.21 ���

190–195 1438 CCC 4.29 ��

195–200 1329 CCC 6.63 CCC

200–205 623 CC 5.28 C

205–210 193 CCC 5.27 C

>210 29 C 6.9 C

Symbol “C” means class preference, “�” class
avoidance. One symbol: selectivity non-significant.
Two symbols: significant P<0.05. Three symbols:
significant P<0.01

some of the components have very high power and some very low, the variations
are not completely visible. Since we are attempting to find the most significant
periodic components that have relatively higher power values than others, we first
sorted all power values in descending order, then we normalized power values to
the integral of the power spectrum. The first few higher values are the significant
periodic components as shown in Fig. 14.9c: the most significant periods are 365
and 1 day(s) respectively with a total relative power of 82.5 %. We selected the
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Fig. 14.7 (a) Relationship between conditional mean fire size and, (b) conditional fraction of large
fires against values of thermal anomaly (TA) observed on the day preceding the event at the fires’
locations

11 most important periods which account for 88.4 % relative power. They are the
yearly, daily, 1252 h (1.74 months), 2190 h (�3 months), 2630 h (�3.65 months),
2920 h (�4 months), 3288 h (�4.5 months), 3757 h (�5 months), 4384 h (�6
months), 5260 h (�7 months) and 6576 h (�9 months).
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Fig. 14.8 (a) Relationship between conditional mean fire size and, (b) conditional fraction of large
fires against values of cumulated thermal anomaly (CTA) observed in the day previous to the event
at the fires’ locations

14.3.4.2 Estimating the Amplitudes of LST and Soil Heat Flux Data
at Significant Frequencies

We calculated the amplitude of the dominant components of LST and soil heat
flux (G0) for the entire study area. To do so, we used the procedures described
in Sect. 14.2.1.1 and estimated the amplitude and phase of LST in each pixel in
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Fig. 14.9 (a) Actual three year hourly time series of LST for a pixel in the study area with lower
gaps in the original data; (b) Power spectrum of LST time series against the period in days; (c)
accumulated power in percentage against the related period

the study area. As we selected 11 frequencies as the dominant components (see
Sect. 14.3.4.1), this gives 11 maps of LST amplitudes and 11 maps of soil heat flux
amplitudes. The LST amplitude map of the 24 h component is shown in Fig. 14.10a.
The daily LST amplitudes vary from 1.5 to 24 Kelvin and clearly show patterns
related to land cover. The large amplitudes belong to the drier areas, i.e. lower soil
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Fig. 14.10 (a) Amplitude map of LST for a period of 24 h, (b) Land cover map for the Tibetan
Plateau for the year 2000
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moisture in the top soil layer (i.e. desert area in the northern part of the study area
with brown colours). The water bodies, shown as black circles in the amplitude map,
have lower daily amplitudes, because of the high thermal capacity of water and also
glaciers (some parts with pink and white colour in the southern and western part of
the study area) have smaller daily amplitudes. The land cover map of the Tibetan
Plateau is shown for reference in Fig. 14.10b.

14.3.4.3 Estimating the Spectral Soil Thermal Admittance (SSTA)

As we have already estimated the amplitudes of G0 and LST at significant periods
(see Sect. 14.3.4.2), we calculated the soil thermal admittance (Eqs. 14.25 and
14.26) for those periodic components in the study area. Figure 14.11 shows as
an example the spatial variation of the soil thermal admittance for daily and
annual periods covering the whole study area. They show the variability of thermal
admittance in the study area as different patterns (�2–11 Wm�2 K�1 for the
daily period and 0.14–6 Wm�2 K�1 for the yearly period). Assuming constant
soil heat flux amplitude, the areas having higher thermal admittance values are
areas which may have higher soil water content or vegetation area with lower LST
fluctuations (low LST amplitude), while areas having lower values of soil thermal
admittance have lower soil water content which cause higher LST fluctuations (high
LST amplitude). This result is confirmed by the comparison between the daily
LST amplitude (Fig. 14.10a) and daily soil thermal admittance (Fig. 14.11b). The
Spectral Soil Thermal Admittance is given for some pixels in Fig. 14.12.

14.3.5 Monitoring Flooded Area Using Time Series
of the Polarization Difference Brightness Temperature
(PDBT) at 37 GHz

14.3.5.1 Noise-Free PDBT and NDVI Data

The original PDBT time series of an arbitrary EASE grid (Fig. 14.13) is full of
observation gaps (zero values) adding up to about 42.7 % of the total. The low value
observations always occur when there is precipitation in this area. This proves that
the precipitation largely attenuates the PDBT at 37 GHz, however, the magnitude of
the attenuation depends on the rain drop size. After applying the moving window
filter, the overall trend of the original time series is captured by the filtered one
(Fig. 14.14), but the fluctuation range of the whole time series is reduced from 5.3
to 44.7 K of the original time series to 19.7–40.8 K. The filter reduces the noise in
adjacent pixels but also the dynamic range of the signal. It is interesting to note that
there are large and frequent jumps in the whole time series. They are caused by the
combination of observation gaps and persistent attenuation. For example, the short
duration of precipitation events leads to continuous and sharp jumps from the end



14 Observing the Response of Terrestrial Vegetation to Climate Variability. . . 305

Fig. 14.11 (a) Soil thermal admittance maps for daily and, (b) yearly periods

of February to the middle of April 1998 (Fig. 14.14) while the relatively longer
duration of precipitation events from June to July causes persistent attenuation
during the same period.

To filter out these jumps in the filtered time series by HANTS, the amplitude of
each frequency component needs to be analyzed in detail on the basis of the FFT
results. We found that the component with period 73 days separates the real seasonal
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Fig. 14.12 Soil spectral thermal admittance of some pixels in the study area

Fig. 14.13 The study area of the Poyang Lake within white numbered EASE-Grid pixels

surface changes from the (atmosphere) contaminated changes in the filtered time
series. As shown in Fig. 14.15, the components with periods greater than 73 days
contribute to the major seasonal surface changes, although the amplitude of the
73 days component has relatively low values in the amplitude map (Fig. 14.16).
This is because this component and those with periods shorter than 73 days are
contaminated by large jumps (Fig. 14.14). To remove the influence of jumps on the
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Fig. 14.14 The original, moving filtered, and reconstructed time series of the 6th numbered open
water area in Poyang Lake, 1998, with the daily cumulated precipitation data

Fig. 14.15 The filtered time series, and oscillations of components with periods not shorter than
73 days, periods shorter than 73 days, and periods of 60 days, 46 days and 30 days, for the 6th
numbered open water area of Poyang Lake in 1998

amplitudes of the periodic components, the ones with relatively small amplitudes,
i.e. at 60 days, 46 days and 30 days, are selected. Finally, the components with
periods of 365 days, 183 days, 122 days, 91 days, 73 days, 61 days, 46 days and
30 days are taken as the noise-free components and used in the Harmonic ANalysis
of Time Series. The Vertically polarized Brightness Temperature, VBT, time series
has exactly the same frequency components. The parameter settings of the HANTS
algorithm for the PDBT, VBT and NDVI time series are shown in Table 14.9.
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Fig. 14.16 The FFT of moving filtered data and HANTS reconstruction data for the 6th numbered
open water area; x-axis is the period of frequencies used in FFT, y-axis is the percentage of each
amplitude to the annual average

Table 14.9 The parameter settings of the HANTS algorithm for the PDBT, VBT and NDVI time
series

Data set

SSM/I 37GHz
vertical brightness
temperature

SSM/I 37GHz
polarized difference
brightness
temperature MODIS NDVI

Number of frequencies 8 8 6
Corresponding periods
(unit of days)

365, 183, 122, 91,
73, 61, 46,30

365, 183, 122, 91,
73, 61, 46, 30

360, 184, 123, 91,
74, 61

Data range 0–100 k 0–400 K 0–1
Direction of outlier low low low
Number of
over-determine

80 80 10

Delta 0.5 0.5 0.5
Fit of tolerance 1.5 K 1.5 K 0.05 K

The reconstructed time series of PDBT follows the upper-envelope of the filtered
time series, and also the overall trend of the original time series. It is interesting to
see that the amplitude maps of the filtered and reconstructed time series are rather
similar (Fig. 14.16).

The reconstructed one is not simply the combination of the same frequency
components in Fig. 14.15. This is the major advantage of HANTS, which filters out
the outliers, and the reconstructed signal captures the upper envelop of the observed
time series.
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14.3.5.2 Water Saturated Soil and Standing Water Retrieved from PDBT
Time Series

Using the noise-free reconstructed time series, we can retrieve the WSS and standing
water area of the Poyang Lake from 2001 to 2003. Our results have a similar trend
as the lake area monitored by MODIS (with the spatial resolution of 250 m) and
Advanced Synthetic Aperture Radar (ASAR with the spatial resolution of 30 m)
data, as shown in Fig. 14.17. The RMSE of the retrieved WSS and standing water
area is 361.22 km2 or 17.74 % of the mean area during the same period of time. A
comparison of microwave data and MODIS observations (spatial resolution of 1 km)
for the area centered at 29.0485ı N and 116.0954ıE is shown in Fig. 14.18. On July
4th, 2002, the fractional area of WSS and standing water, which is calculated from
SSM/I (65.28 %), is close to the fractional area of open water (58.81 %) observed
from MODIS. However, On October 24th, 2002, the fractional area of WSS and
standing water area (46.24 %) was much larger than that estimated from NDVI
(21.85 %). That is because, while the lake area is now smaller, a large wetland
occupied by aquatic vegetation, mainly Phragmites, has appeared. An optical sensor,
like MODIS, cannot observe the standing water beneath the vegetation canopy,
while a microwave radiometer can penetrate it. Thus the WSS and standing water
area is close to the total area of open water and the wetland vegetation in Fig. 14.18.

Fig. 14.17 Scatter plot of lake area estimated with MODIS and ASAR data by Yesou et al.
(2011) and water-saturated soil and standing water area calculated from SSMI 37GHz (Yésou
and Coauthors 2011)
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Fig. 14.18 The wet and dry
case of the 5 numbered pixel
at the Poyang Lake with
corresponding NDVI image

14.4 Summary and Discussion

General The materials summarized above show that observations from space of
surface emittance in both the thermal infrared and the microwave spectral range
are affected by gaps in the data records and by atmospheric effects, namely clouds
in the thermal infrared and precipitation at 37 GHz. This notwithstanding, such
observations are still useful, as demonstrated by the applications described in
this Chapter. The combination of gaps and outliers in the data record requires
additional processing to generate consistent time series of at-surface observations
and two aspects need to be mentioned here. First, the data record must be somewhat
redundant with respect to the process to be observed, i.e. the sampling interval
must be shorter that the inherent temporal scale of variability of observed variables
and processes. If this is the case, methods like HANTS can be applied to model
the observed time series with fewer and irregularly spaced observations. We have
demonstrated that HANTS, a method based on Fourier series developed to model
NDVI time series, can successfully be applied to very diverse time series: hourly
(FY-2C) and daily LST (MODIS) and daily PDBT (SSM/I). Second, a systematic
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evaluation should be carried out, e.g. by applying an approach similar to the one
proposed by Zhou et al. (2015), of the accuracy of the time series reconstructed
with few and irregular observations.

Downscaling air temperature We presented a new approach to map air temper-
ature at high resolution. The innovation is in the use of time series of land surface
temperature (LST) observed by a spaceborne imaging radiometer to construct a
stable model of the spatial and annual pattern of LST and, subsequently, to estimate
time series of air temperature Ta maps using such a model. The spatial and annual
pattern of LST is constructed by normalizing the LST(x,y,t) at any location to
the LST(x0,y0,t) at a reference location (x0,y0). In our study the latter is a node
where gridded climate data are available for both past and future climate. Once the
model r(x,y,t) has been constructed we estimate Ta(x,y,t) using only the Ta(x0,y0,t)
at the reference location. The relationship between Ta and LST has been constructed
using a limited number of meteorological stations (just four in this study). This is
inherently different from approaches reported in literature where air temperature is
estimated from concurrent observations of LST or LST and NDVI. The advantage
of our method is that it can be applied to periods of time, including predicted future
climate, when no LST observations are available. The accuracy of our estimated
daily Ta is comparable, e.g. RMSE D 3 K, with other studies, which are based on
use of concurrent satellite data. We have also shown that the spatial annual pattern of
LST has a rather limited inter-annual variability, i.e. the pattern is mainly determined
by the combination of the yearly evolution of solar irradiance with rather stable
landscape properties such as terrain, land cover (albedo, aerodynamic roughness)
and soil thermal properties.

Thermal load and forest fires The HANTS algorithm plays an important role in
both characterizing spatial patterns of fire occurrence and in predicting mean fire
size. Fire occurrence shows clear selectivity against mean value, amplitude of the
three harmonics and phase of the first harmonic of LST computed on a yearly basis.
Mean fire size is selective only against the amplitude of the second harmonic. Here,
an inverse relationship between number of fires and mean fire size is observed, with
larger fires significantly preferring areas where the amplitude is larger (Table 14.6).
The only phase component of the Fourier analysis related to fires occurrence is that
of the first harmonic. The phase carries information on the timing of fire events: a
larger number of fires is observed where the phase is higher, i.e. when a prolonged
warm season occurs.

A relationship was found between conditional mean fire size and thermal anoma-
lies (Fig. 14.7). With increasing values of the thermal anomaly, the conditional
mean fire size increases. A similar trend is observed with the conditional fraction
of fires larger than 16 ha. CTA is a measure of heat “accumulated” in a certain
area, providing more direct information on the prolonged exposure of vegetation to
stress conditions. This is reflected in the prediction of expected mean fire size over
two orders of magnitude (Fig. 14.8), potentially allowing the production of more
meaningful fire hazard maps as compared to TA.
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Land surface thermal admittance We have shown that it is feasible to use time
series of satellite observations of LST and soil heat flux to estimate the soil thermal
admittance. The method developed here is simple, and it needs minimum input data
compared to other methodologies. The data needed to estimate the soil thermal
admittance are the amplitudes of LST and G0, which can be estimated assuming the
periodicity of both time series by means of Fourier series and least square method.
When the available time series is incomplete (i.e. time series of G0) and consists
of just the daily mean and instantaneous value in each day, it is still possible to
derive the amplitude of time series components with good accuracy and estimate the
soil thermal admittance. The soil thermal admittance values at different frequencies
give us the Spectral Soil Thermal Admittance (SSTA) which contains valuable
information about the soil thermal properties in different soil layers. The thermal
properties of soil layers can be estimated indirectly using spectral soil thermal
admittance (Ghafarian 2015).

Water saturated soil and flooded area We used a simplified radiative transfer
model and linear model to retrieve the fractional area of water saturated soil (WSS)
and standing water from the polarization difference brightness temperature (PDBT)
at 37 GHz. The moving filter is first used to fill the observation gaps of the PDBT
time series. Noise-free daily PDBT, vertical brightness temperature (BT), and NDVI
are derived from the Harmonic ANalysis of Time Series (HANTS) algorithm of
their raw data time series. The vegetation transmission function is obtained from
the regression between NDVI and its dependent variable PDBT for flooded paddy
fields, under the assumption that the land surface temperature and PEED of the
flooded rice is constant during its growing season. The quasi-linear relationship
between the PEED and fractional area of WSS and standing water exists no matter
what the frequencies are. This indicates that the regional water-storage capacity can
be derived from PDBT observations at other frequencies. The retrieved WSS and
standing water area in the Poyang Lake region shows a good fit with the lake area
from the MODIS and SAR data. Our method seems to provide satisfactory estimates
of the water-storage capacity of the upper catchment of the Poyang Lake, and as
such, it is a useful early indicator of flooding events in the lake area.

14.5 Conclusion

Time series of satellite observations of land surface temperature capture multiple
aspects of the land surface response to radiative forcing. We have demonstrated that
such response leads to a strong dependence of air temperature on the surface energy
budget and specifically on land surface temperature, which is determined by the
dynamic equilibrium of radiative and heat fluxes. Such dependence can be exploited
to use land surface temperature as a predictor of air temperature and particularly of
its spatial variability.
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Reduced water availability forces the land surface temperature to increase to the
point where both soil and foliage can dissipate the excess energy. Large positive
anomalies in the foliage temperature appear to be a significant driver of forest fires,
particularly of their size.
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Chapter 15
A Review of Multitemporal Synthetic Aperture
Radar (SAR) for Crop Monitoring

Heather McNairn and Jiali Shang

Abstract Synthetic Aperture Radars (SARs) transmit and receive energy at
microwave frequencies. The response recorded by these sensors is largely a function
of the structure and dielectric properties of the target. The structure of a canopy is
different among crops, and changes as crops grow. SARs respond very well to these
structural differences and thus these sensors are able to accurately identify crop type
and have proven sensitive to several crop biophysical parameters (Leaf Area Index,
biomass, canopy height). Although optical sensors have traditionally been used for
crop monitoring, advances in SAR applications research coupled with availability
of SAR data at different frequencies and polarizations has raised the profile of
these sensors for agricultural monitoring. And the “all weather” capability of SARs
makes their use in operational activities of particular interest. Advancements in
SAR applications development, continued improved access to data, and a push to
transfer SAR research methods to monitoring agencies will lead to an increased role
of SAR in monitoring agricultural production. This chapter reviews SAR research
as it relates to crop type and acreage estimation, as well as determination of crop
condition and crop bio-physical properties.

15.1 Requirements for Crop Monitoring

Balancing the supply of food with the demands from a growing global population is
an ongoing challenge. To meet changing global food requirements, the UN Food and
Agriculture Organization (FAO) estimated that food production must double in the
next 40 years (www.un.org/News/Press/docs/2009/gaef3242.doc.htm). Quantifying
food supply can be difficult as national, regional and global crop production
fluctuates due to local land management decisions (what and where to seed) and
meteorological conditions (principally precipitation and temperature). Anticipating
production is further exacerbated when unforeseen disasters hit. Thus forecasting
food supply necessitates on-going and frequent updates on acres seeded, yields
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(bushels per acre) and meteorological parameters which impact crop growth. Crop
production data can be gathered from a range of sources (for example, knowledge
from extension workers, reports from farmers, climate data (Jayne and Rashid
2010)). Earth observing satellites also offer a source of data and as an example, will
be used in initiatives such as the Group on Earth Observations Global Agricultural
Monitoring (GEO-GLAM) to identify crop types and estimate acreages to monitor
global food production (European Space Agency 2012).

Satellites suitable to map acreage and monitor crop growth condition are
numerous. Sensors on these satellite platforms operate in both the electro-optical
spectrum (400–2500 nm) and longer microwave wavelengths (1–100 cm). The
configurations of these sensors also vary in terms of frequency of orbital repeat
(and re-look), available swath and spatial resolution. At the global scale operational
monitoring is for the most part, limited to coarser-resolution optical sensors such
as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the National
Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution
Radiometer (AVHRR) (Becker-Reshef et al. 2010). These sensors are a source
of daily data, yet their coarse spatial resolutions are less suitable for field-based
production monitoring. When field-level monitoring is needed, higher resolution
sensors are required.

15.2 Synthetic Aperture Radar (SAR) Responses to Crop
Type and Condition

Optical sensors are well suited for mapping crop type and monitoring crop growth
condition. At shorter wavelengths, the amount of solar energy absorbed, reflected
and transmitted by vegetation is mainly driven by plant pigmentation as well
as internal leaf structure and moisture. These chemical and physical properties
(at the atom level) are crop type specific and are indicative of the growth stage
and condition of the plant. At the other end of the electromagnetic spectrum,
scattering of longer-wavelength microwaves is driven by larger scale structures
(size, shape and orientation of leaves, stems and fruit) as well as the volume of
water in the vegetation canopy (at the molecule level). Soil conditions (moisture and
roughness) also effect microwave response. The significance of the effects of these
soil conditions depends upon the crop type and growth stage, and the configuration
of the microwave sensor. While optical wavelengths are more intuitively linked
with crop condition, atmospheric conditions (for example presence of ozone, carbon
dioxide, water, pollution) also cause absorption and scattering thus affecting spectral
signals. As well, since these sensors rely on ambient energy imaging is limited to
“daylight” hours.

Synthetic Aperture Radars (SARs), although currently not widely used for oper-
ational crop monitoring, provide a reliable source of data. These are active sensors
generating their own source of energy, measuring the magnitude of transmitted
energy scattered by the Earth back to the radar antenna. With their own source

http://en.wikipedia.org/wiki/National_Oceanic_and_Atmospheric_Administration#National%20Oceanic%20and%20Atmospheric%20Administration
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of energy SARs can operate day or night and at these longer wavelengths are
unaffected by the presence of cloud and haze. Using data from SARs for crop
monitoring is not without challenge, primarily due to the confounding contributions
of canopy moisture, crop structure and soil properties to the returned radar signal.

15.2.1 SAR Sensor Configurations

SAR sensors are defined by their operating frequency, incident angle and polariza-
tion. Incident angle can be defined by the angle (in degrees) between the radar beam
and a line perpendicular to the Earth’s surface. Each of these configurations affects
the interaction of microwaves with the target in terms of backscatter intensity and
scattering characteristics. Frequency (GHz or wavelength (cm)) and incident angle
affect penetration depth of the transmitted microwave into the crop canopy. Depth
of penetration increases with wavelength but decreases as angle increases. This
depth affects which elements of the crop canopy interact with the microwave signal.
Higher frequencies (i.e. X-Band with wavelengths of 2.4–3.75 cm) respond more
to upper canopy structures while lower frequency (i.e. L-Band with wavelengths
of 15–30 cm) microwaves penetrate further and generate more interaction with
structures lower in the canopy. McNairn et al. (2009a) suggested that this differential
penetration was the reason that crops were best identified when C-Band and L-Band
data were integrated into a classifier; the higher frequency C-Band microwaves pen-
etrated low biomass crops (wheat and hay-pasture) without significant interference
from the soil, while L-Band waves penetrated further into larger biomass crops
(corn and soybeans) allowing greater canopy interaction. Also important, to create
scatter from a target element the target should be of equivalent size or larger than
the wavelength of the transmitted wave. Otherwise attenuation of the radar signal
will dominate.

Polarization is defined by the orientation of the electric field vector of the
transmitted and received electromagnetic wave (Raney 1998). Polarization should
be interpreted in the context of the structure of the target. The types of scattering
from a target are identified as single bounce (surface), multiple (volume) or
double-bounce. One source of scattering typically dominates, but depending on
the complexity of the target secondary and tertiary sources of scattering can
also be present. For well-developed crop canopies, vertical structures (stalks) can
create double-bounce scattering, randomly oriented leaves, stems and fruit volume
scattering, and large scatters (leaves, stems) oriented towards the sensor can result
in single bounce scattering. Direct scattering from the soil, as well as double-bounce
and multiple scattering events between the soil and canopy, may also contribute to
the SAR response. The contribution from the soil will depend on penetration depth
(determined by frequency, incident angle and canopy development).

Most SAR sensors transmit and receive microwaves in the horizontal (H)
and/or vertical (V) linear polarizations. Early satellites transmitted and received
microwaves in a single linear polarization (European Remote Sensing 1 and 2
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(ERS-1/2) (VV), Japanese Earth Resources Satellite 1 (JERS-1) (HH) and
RADARSAT-1 (HH)). Second-generation sensors (i.e. Advanced Synthetic
Aperture Radar (ASAR)) were capable of transmitting and/or receiving in both
linear polarizations, generating like (HH and/or VV) as well as cross (HV or VH)
polarizations. A linear cross polarization response (HV or VH) results when the
transmitted wave (i.e. H) is re-polarized to its orthogonal polarization (i.e. V). A
strong HV or VH response is characteristic of targets where multiple scattering (at
least two bounces) dominates (Raney 1998). Without multiple or double-bounce
scattering events, HV or VH response will be low.

15.2.2 SAR Polarimetry

Polarimetric-capable satellites (i.e. the Advanced Land Observation Satellite
(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR),
RADARSAT-2 and TerraSAR-X) capture the complete characterization of the
scattering field by recording all four mutually coherent channels (HH, VV, HV,
VH), as well as retaining and processing the phase information between orthogonal
polarizations. With phase retained, users can synthesize any wave orientation
or ellipicity (providing linear, elliptical or circular polarizations) in addition to
parameters that characterize target scattering. SARs can transmit completely
polarized waves, but multiple scattering events will completely or partially de-
polarize the wave. The degree of de-polarization (d) increases as multiple and
volume scattering increases. With multiple scattering events phase becomes less
predictable (more random) from point to point within the target. Degree of de-
polarization varies by crop type and condition. Single bounce scattering (from
smooth soil before crop emergence, for example) creates little de-polarization
(Evans and Smith 1991), while thick vegetation canopies created diffuse scattering
and almost completely un-polarized responses (d close to 0) (Groot et al. 1992).
Pedestal height is one measure of degree of de-polarization with height increasing
as multiple scattering increases. Hinds et al. (1993) discovered that the degree of
polarization varied by crop type, growth stage and polarization. For the same crop
type, degree of polarization varied through the growth cycle, decreasing as the crop
canopy developed and increasing as the crop matured and dried out.

Cloude-Pottier (1997) and Freeman-Durden (1998) provided methods to decom-
pose the polarimetric SAR signal within each resolution cell into characteristics of
target scattering. Cloude-Pottier decomposes the signal into a set of eigenvectors
(which characterize the scattering mechanism) and eigenvalues (which estimate the
intensity of each mechanism) (Alberga et al. 2008). From the eigenvalues, entropy
(H) and anisotropy (A) are calculated. H measures the degree of randomness of the
scattering (from 0 to 1); values near zero are typical of single scatter targets while
entropy increases in the presence of multiple scattering events as expected in a crop
canopy. Anisotropy estimates the relative importance of the dominant scattering
mechanism and the contribution from secondary and tertiary scattering mechanisms.
Zero anisotropy indicates two mechanisms of approximately equal proportions; as
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values approach 1 the second mechanism dominates the third (Lee and Pottier 2009).
The average alpha (˛) angle (0–90ı) calculated by Cloude-Pottier identifies the
dominant scattering source (Alberga et al. 2008). Single bounce scatters have alpha
angles close to 0ı; for crop canopies angles close to 45ı (volume scattering) and
nearing 90ı (double-bounce) will be observed.

Freeman-Durden (1998), a three-component decomposition method, separates
the total power of each SAR resolution cell into contributions from three scattering
mechanisms – single bounce (surface), volume (multiple) and double bounce. This
decomposition provides the magnitude of the contribution from each scattering
mechanism.

15.2.3 Crop Characteristics Affecting SAR Response

SARs measure the intensity of energy scattered from targets back towards the radar
antenna (recorded as backscatter in decibels (dB)). Properties of the target affect
not only the intensity of backscatter, but also the scattering behavior. Scattering
caused by natural targets can only occur when the radar waves encounter a dielectric
discontinuity. Typically discontinuity is due to the presence of water which has
a high dielectric constant (�80) relative to air (�1) (Dobson and Ulaby 1998).
Backscatter is positively correlated with the dielectric constant of a target and thus
typically, backscatter increases as water content increases. This relationship has
been demonstrated repeatedly for soils, with higher backscatter recorded as soil
moisture increases. However the relationship between canopy water content and
SAR backscatter is more complex due to the sensitivity of SAR response to canopy
structure. Findings have been mixed depending on the crop type, growth stage and
SAR configuration. Studies have reported negative correlations with canopy water
content for cereals (Hinds et al. 1993 using Ku-VV) and potatoes (McNairn et al.
2002 using C-HH). For canola, positive correlations with volume of canopy water
have been reported by some (Hinds et al. 1993) while others reported no correlation
(McNairn et al. 2002).

It is precisely because microwave scattering is sensitive to canopy structure
that SARs can provide information on crop type and condition. When targets are
physically oriented to the polarization of the incident wave, greater microwave
interaction occurs. This is most pronounced for crops with vertical structures which
align well with vertical (V) transmitted waves. Secondly the structure (stems, leaves,
fruit) within the crop volume create ample opportunity for multiple scattering events
which re-polarize and de-polarize the incident wave. Re-polarization creates higher
HV or VH backscatter while de-polarization increases the un-polarized component
of the scattered wave. Considering the scattering in the context of crop canopy
structures, the linear cross polarization (HV or VH) has repeatedly proven to be
the single best polarization for classification (Paris 1983; Brisco et al. 1991; Foody
et al. 1994; McNairn et al. 2000, 2009a, b). Increases in classification accuracy can
be achieved by including a second polarization into the classification. Because of
the coupling of V-polarized waves with the vertical crop structure, an integration of



322 H. McNairn and J. Shang

VV and VH (or HV) is preferred (McNairn et al. 2009a, b; Deschamps et al. 2012;
McNairn and Shang 2014). Smaller incremental improvements are also reported
with the inclusion of a third polarization (typically HH) (McNairn et al. 2000,
2009a; Hoekman and Vissers 2003).

Planting density and row direction (relative to the SAR look direction) can also
impact SAR response. The intensity of scattering is generally higher when crop
row direction is perpendicular rather than parallel to SAR look direction (Paris
1983). The cross polarization has the advantage of being insensitive to planting
row direction (McNairn and Brisco 2004) and this, along with its sensitivity to
canopy structure, make HV (or VH) an important polarization for crop monitoring.
Wiseman et al. (2014) observed differences in C-Band backscatter and scattering
responses among soybean fields due to differences in planting densities, even though
all fields were at the same phenology stage.

15.3 Crop Classification to Support Acreage Estimation

15.3.1 Requirement for Multi-temporal SAR Data

Regardless of the sensor used, accurate crop identification requires that the energy
recorded be unique to each crop type. Different crops can look “spectrally similar”
at a given point in their growth cycle. For SARs, this confusion is due primarily to
similarities in the crop structures. However, as crops move from one growth stage
to the next, the development of leaves and fruit and the accumulation of biomass
change the canopy structure, helping to differentiate one crop from another. The
number of images required depends upon the crops present and the complexity of the
cropping system (for example number of crops, consistency of planting practices,
presence of inter-cropping and number of cropping seasons per year).

A key to successful crop classification is to understand which growth stages
are best for crop separation and to identify which SAR configurations are best
suited for crop classification. McNairn et al. (2009b) found that SAR response was
very sensitive to changes in canopy structure during seed and fruit development,
stages which occur later in the growing season. This study and a second study by
Deschamps et al. (2012) recommended including a SAR image acquired during
seed and reproductive phenology stages, at the point of peak biomass, in order to
maximize classification accuracies.

15.3.2 Combining Multiple Frequencies for Crop
Classification

Researchers have disagreed on recommendations for the optimal SAR frequency
for crop discrimination. Discrepancies are most likely due to differences in crops
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(and thus canopy structure and total canopy biomass) among the various studies.
Some studies have reported that shorter Ku-, X- and C-Band wavelengths were
very sensitive to canopy architecture and were better at separating crops (Bouman
and Hoekman 1993; Brown et al. 1992; Paris 1986). Longer wavelengths penetrate
deeper into the canopy and for low biomass crops this could introduce scattering
from the soil. Yet for larger biomass crops these lower frequencies offer more
opportunity for waves to interact with deeper canopy structures. Jia et al. (2012)
favoured longer wavelengths at C-Band (ASAR) over X-Band (TerraSAR-X) for
separating winter wheat from cotton. McNairn et al. (2009a) found that longer L-
Band data (from ALOS PALSAR) was needed to accurately identify higher biomass
crops (corn, soybean), although C-Band data was most suitable for separating lower
biomass crops (wheat, hay-pasture).

Regardless of conclusions regarding the single best frequency, researchers agree
on the advantages of integrating SAR acquired at multiple frequencies. Wooding
(1992) clearly stated that discrimination of crops was best achieved by integrating
SAR data acquired at more than one frequency, rather than combining two
polarizations or two incidence angles. Using airborne and satellite SAR platforms
researchers have determined that relative to single frequency data, higher crop
classification accuracies are achieved using X- and C-Band (Thomson et al. 1990;
Jia et al. 2012), C- and L-Band (Bouman and Uenk 1992; Dobson et al. 1996;
Skriver 2012) X-, C- and L-Band (Brisco and Protz 1980; Guindon et al. 1984;
Baghdadi et al. 2009), and C- and L- and P-Band (Chen et al. 1996; Ferrazzoli et al.
1997, 1999; Hill et al. 2005; Hoekman et al. 2011).

Engineering advances have meant that current SAR sensors can now provide data
at multiple polarizations (in some cases fully polarimetric) and multiple incident
angles. Studies have also used multi-frequency airborne or scatterometer sensors,
or combined data from satellites operating at different frequencies, to demonstrate
the importance of multiple frequencies for crop separation. Yet even with these
multi-polarization and multi-frequency data, the temporal domain remains critical
to successfully separate crop types (Skriver et al. 2011). Thus when multi-temporal
data are available at multiple SAR configurations, crop classification is successful.
As an example, McNairn and Shang (2014) report that when a multi-temporal C-
Band data set with all linear polarizations (HH, VV, HV/VH) is available, high
overall accuracies are achievable. Depending on the crop mix, accuracies of 85.5 %
(more complex cropping system) to 90 % (simple mix of corn, soybeans, wheat, and
pasture) are reached.

15.3.3 Full and Compact Polarimetry for Crop Classification

As described in Sect. 15.2.2 when a SAR sensor operates in a full polarimetric
mode, the intensities of all four mutually coherent channels (HH, VV, HV, VH)
are recorded as well as the phase information between orthogonal polarizations
(also referred to as quadrature polarization (QP) sensors). Some improvement
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in accuracies has been reported when decomposition parameters generated from
these polarimetric data are used in a classification. McNairn et al. (2009a) used
polarimetric L-Band data from ALOS PALSAR to demonstrate that overall accu-
racies improved by 4–7 % when decomposition parameters (from Cloude-Pottier,
Freeman-Durden or Krogager) were used instead of the four linear intensity
channels (HH, VV, VH/HV). Although all crops fell within the same class of
scatterers, differences in the relative contributions of scattering mechanisms among
the crops was observed and the authors attributed this to the improved classification.

These results were repeated when McNairn and Shang (2014) examined decom-
positions (Cloude-Pottier and Freeman-Durden) applied to C-Band RADARSAT-2
data. However increases in overall accuracies were smaller at this frequency.
This research found that when overall accuracy using all linear polarizations
is high (90 %), gains are minor (1–2 % when using the Cloude-Pottier entropy,
alpha and anisotropy; 1–3 % when using the Freeman-Durden surface, volume and
double-bounce scattering). Nevertheless, decomposition parameters will improve
accuracies when the linear polarizations are unable to reach accuracies above 90 %.

In order to acquire the full scattering matrix, polarimetric sensors must double
their Pulse Repetition Frequency (PRF) which immediately reduces the swath
coverage by half (Charbonneau et al. 2010). Consequently, polarimetric acquisitions
can be problematic if the intent is to use this mode for regional or national mapping.
With compact polarimetry (CP) only one polarization is transmitted, and two orthog-
onal polarizations are received with the relative phase between the two received
polarizations retained (Raney 2006). A CP SAR accesses the 2�2 covariance matrix
of the backscattered field and thus contains less information than full polarimetric
(QP) data (Charbonneau et al. 2010). However the main advantage of CP is that
this mode does not force a reduction in swath. The RADARSAT-Constellation will
implement a CP mode in a hybrid-polarity (CL) configuration where H and V will
be transmitted simultaneously and 90ı out of phase (circular polarization) and dual
linearly polarizations will be received (Charbonneau et al. 2010).

To prepare to exploit this CP-CL mode for crop classification, full polarimetric
RADARSAT-2 data have been used to simulate CP data. Results from the decompo-
sitions of the full polarimetric data (QP) and the Stokes vector parameters from CP
have been compared. McNairn and Shang (2014) assessed QP decompositions and
the four Stokes vector parameters from CP against the four linear intensity channels
(HH, VV, VH, HV) for classification accuracy. The comparisons were carried out for
three cropping systems. When the linear polarizations produced accurate (85–90 %)
end of season classifications, the QP decompositions provided only small gains (1–
2 % increase using Cloude-Pottier; 1–3 % increase using Freeman-Durden). With
inputs from the Freeman-Durden decomposition classifications reached accuracies
of 87–91 %. The Stokes vectors from CP produced similar results to the QP
classifications. This confirmed early results reported in Charbonneau et al. (2010)
for a simple cropping mix where late season results using the Stokes vectors were
similar to QP decomposition results. In this case, using the Stokes vector parameters
synthesized from four C-Band RADARSAT-2 images, end of season classification
reached 91 % with individual crop classification accuracies ranging from 81 to
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96 %. Both studies (McNairn and Shang 2014; Charbonneau et al. 2010) reported
improvement in mid-season classifications using the Stokes vector parameters or QP
decompositions, relative to results using the four linear polarizations. By mid-July
classification accuracies for canola were 70 % (QP), 80 % for small grains (QP),
80 % for corn (QP or CP), 93 % for wheat (QP or CP) and 80 % for soybeans (CP).

CP is a relatively new concept in land applications and these results are con-
sidered preliminary. Although more research is needed, results to date indicate that
both QP and CP hold promise for early, mid- and end-of-season crop classification.

15.3.4 Case Studies – The Successful Application of SAR
for Crop Classification

Monitoring Rice Acreages Rice is a staple food for many providing between 30 and
70 % of the daily calories for half the world’s population (Chen and McNairn 2006).
In China, rice accounts for about 42 % of the nation’s food production (Pei et al.
2011). Consequently, disruptions in rice production can seriously impact global food
security. For this important commodity forecasting supply is critical.

Many studies have documented success in mapping rice paddies and monitoring
rice growth using SAR. Backscatter increases significantly during a short period
of vegetation growth, although large spatial variations in rice crop growth occur
due to shifts in the crop calendar. Many studies have demonstrated sensitivity of
multi-temporal C-Band backscatter to the phenology of rice growth, including Le
Toan et al. (1997) who used ERS-1 (C-VV), Ribbes (1999) as well as Shao et
al. (2001) who used RADARSAT-1 (C-HH), Chen et al. (2007) who used ASAR
(HH and HV), Yang et al. (2008) who used ASAR (VV and HH) and Zhang et
al. (2009) who used ALOS PALSAR. Classification accuracies of rice paddies
have typically been reported well above 90 % (Shao et al. 2001; Li et al. 2003).
Choudhury and Chakraborty (2006) used multi-temporal RADARSAT-1 ScanSAR
data and a knowledge-based decision rule classifier to achieve 98 % accuracy. Chen
and McNairn (2006) used multi-temporal RADARSAT-1 fine mode data to identify
hectares (ha) of rice paddies in a region of the Philippines. A minimum mapping
accuracy of 96 % was achieved. The authors then used C-HH backscatter from
RADARSAT-1 to predict rice yield (kg/ha) to an accuracy of 94 %. Timing of rice
planting was also mapped.

The legacy of C-Band sensors has meant a focus on this frequency although
more recent research has evaluated space-borne X-Band for rice monitoring. In a
study in southern China TerraSAR-X dual-polarized (VV, VH) data were used to
map rice acreage, as well as to estimate changes in rice acreage between two years
(2008 and 2009) (Pei et al. 2011). Using each individual TerraSAR-X image for each
year, rice paddies were classified to a 95.6 % accuracy. Combining these 2 years of
data, the change in acreages of rice was estimated to an overall accuracy of 99.0 %
(Fig. 15.1). The study reported that almost 15 000 ha of rice was under cultivation
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Fig. 15.1 Changes in acreages of late rice between the 2008 and 2009 seasons (Xuwen, China).
Paddies planted in rice in 2008 but not 2009 are mapped in red; those planted in rice in 2009 but
not 2008 are mapped in green. Land planted in rice both years appears in dark grey. Non-rice fields
are identified in light grey (Taken from Pei et al. 2011)

in the Xuwen study site and that about 10 % of this land experienced change (rice to
non-rice or non-rice to rice). Experts speculated that rice acreage change in this area
was driven mainly by market demand as prices of other cash crops such as peanut
and watermelon were high spurring some farmers to drain rice paddies to plant cash
crops (Pei et al 2011). These annual fluctuations in rice production were deemed
significant as they impact local and regional food security.

Operational End-of-Season Crop Mapping In one of the few examples of opera-
tional crop mapping with SAR data, Agriculture and Agri-Food Canada (AAFC)
uses RADARSAT-2 and optical data to classify crops for all of Canada (Fig. 15.2)
(Fisette et al. 2013). This inventory is delivered every year and supports policy
and market development as well as program delivery. In 2011, Canadian Federal
and Provincial governments paid out more than $420 M (CDN) to offset the
impacts of climate related disasters, much of which was due to excessive soil
moisture preventing farmers from seeding their fields. The AAFC crop inventory
mapped the location of unseeded fields and was used to calculate the number of
hectares affected. Acreage estimates from this satellite-derived map fell within 3 %
of independent Provincial estimates (Fisette et al. 2013).
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Fig. 15.2 The 2012 crop inventory for Canada. The map is created by classifying both optical
and RADARSAT-2 satellite data. Image provided by Agriculture and Agri-Food Canada, Earth
Observation Service

To produce this national crop map, data from optical satellites are integrated with
C-Band data from RADARSAT-2. In 2013, the total number of scenes used included
1200 RADARSAT-2 scenes and 800 Landsat-8 images (Fisette et al. 2013). The
project tasks dual-polarization (VV, VH) ScanSAR mode (300 km swath and 50 m
resolution) over western Canada where fields are large and Wide mode (150 km
swath and 30 m) over the rest of the country. Little is required to pre-process the
SAR imagery other than ortho-rectification and speckle filtering. A Tasseled Cap
transformation is applied to the Landsat data to reduce data processing. This is
followed by semi-automated cloud and shadow masking.

Crops are classified using a supervised Decision Tree classifier, although a
Random Forest classifier is being evaluated to improve processing time and
accuracies (Fisette et al. 2013). Under agreements with crop insurance agencies
AAFC accesses insurance data to train the classifier and validate the map product.
For provinces where insurance data are unavailable, ground-truth information is
collected by field crews. The inventory is able to consistently deliver a crop
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inventory that meets the overall target accuracy of at least 85 % with a final
product at a spatial resolution of 30 m (Fisette et al. 2013). Results from this
operational project confirm the research leading to the implementation of the
inventory (McNairn et al. 2009b); that integration of SAR can increase accuracies
over the use of optical data alone. Here the addition of the RADARSAT-2 data has
increased overall accuracies by up to 16 % (Fisette et al. 2013).

Early Season Crop Identification Forecasting in-season production means that crop
acreage products must be delivered early in the season. Updates are required if
multiple cropping occurs within a season or to improve the accuracy of early
season acreage estimates. Considering the discussion in Sect. 15.3.1 where it was
suggested that the highest accuracies are achieved when a classification uses SAR
data collected at periods of peak biomass, delivery of early season products from
this technology may be a challenge. Most studies in the literature have strived to
maximize accuracies using all available data.

To evaluate the potential of SAR to deliver early season crop classification,
McNairn et al. (2014a) used a supervised decision tree classifier with TerraSAR-X
(VV, VH) and RADARSAT-2 (HH, VV, HV/VH). The cropping mix was relatively
simple, with only three main crops present (corn, soybeans and hay-pasture). Either
the C-Band or X-Band data were capable of delivering highly accurate maps of
corn and soybeans at the end of the growing season. Accuracies far exceeded
90 % (Fig. 15.3). Of particular interest was the finding that with three early season
TerraSAR-X images corn could be accurately identified by the end of June, a
mere 6 weeks after planting and at a V6 vegetative growth stage (where the
6th leaf collar is visible). Identification this early in the season would assist in
forecasting corn production. Soybeans required additional acquisitions given the
variance in planting densities and planting dates in this region. In this case, accurate
soybean classification required TerraSAR-X images until early August when seed
development was beginning (R5 reproductive stage).

15.4 Monitoring Crop Condition with SAR

Production forecasting requires not only estimates of acreages planted (calculated
from image classifications, for example) but also estimates of how productive crops
appear to be. Different strategies have been adopted to estimate crop productivity
from satellite data. A great deal of research has been undertaken to develop
vegetation indices (primarily from optical sensors) and to use these as indicators
of crop productivity (Becker-Reshef et al. 2010; Claverie et al. 2012; Gitelson
2004, 2011). Specifically, indices like the Normalized Difference Vegetation Index
(NDVI) are tracked over the growing season and temporal changes in the index are
compared to historical “normal” responses for the region. When indices are at or
above “normals” crop production is expected to be on track. If these indices fall
below historical norms, shortfalls in production might be expected. When coupled
with knowledge of acreages, these provide estimates of total production.
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Fig. 15.3 An end-of-season classification map derived from TerraSAR-X (overall accuracy of
97.2 %) (Taken from McNairn et al. 2014a)

Alternatively, satellite response can be used to estimate crop properties which
are chemically and biophysically related to crop yield. These properties include for
example, biomass, height, leaf area, canopy water content, chorophyll and nitrogen
content. The leaf area index (LAI) is linked to crop productivity and is a critical
variable in many crop growth models. Optical remote sensing data have been used
to estimate LAI and to calibrate these models (Baret and Guyot 1991; Chen and
Cihlar 1996; Brown et al. 2000). Jégo et al. (2012) demonstrated that LAI estimates
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from optical data, when assimilated into the Simulateur mulTIdiscplinaire pour les
Cultures Standard (STICS) crop growth model, significantly improved yield and
biomass prediction. However, knowledge of LAI variation during the entire crop
cycle is essential for modelling crop growth and estimating crop yield (Clevers
and van Leeuwen 1996). Interference by clouds often creates gaps in optical time
series data. These gaps are problematic especially if they occur in the early season
when biomass accumulation is greatest. With these challenges SAR data might be
considered an option to fill these gaps, especially since microwaves respond to crop
structure and thus the intensity and characteristics of scattering could be indicative
of canopy biomass, height, LAI or water content.

Regardless of the approach taken, frequent multi-temporal acquisitions are
needed to monitor crop condition and changes in these conditions through the entire
cropping season. In addition to frequent temporal monitoring, estimates of these
properties must be linked with both crop phenology and meteorological conditions,
especially since vulnerability of crop growth detractants (disease, fungus) is depen-
dent upon crop phenology (McNairn et al. 2014b).

15.4.1 Temporal Trends in SAR Response and Sensitivity
of SAR to Crop Phenology

Although NDVI is perhaps the most widely recognized optically-based vegetation
index, other indices can be linked with crop condition, and offer some advantages
over NDVI. The Soil Adjusted Vegetation Index (SAVI) is of interest for multi-
temporal monitoring of crop condition as this index is linked directly with LAI
(Huete 1988 and Choudhury et al. 1994). SAVI has an advantage over other optical
indices like NDVI since SAVI minimizes soil effects. When Freeman-Durden
decomposition parameters (derived from RADARSAT-2) are compared with SAVI
index values (derived from RapidEye), a similar temporal trend in response is
observed (Fig. 15.4). Here volume (corn, canola and soybeans) and double-bounce
(wheat) scattering derived from RADARSAT-2 increase after crop emergence
during vegetative growth stages as crops accumulate leaf area and biomass. Peaks
in scattering response are observed in mid-season, near coincident with when SAVI
reaches its maximum. Both SAVI and scattering responses decline during the period
of senescence, reaching a minimum at the point of harvest. This suggests that
volume and double-bounce scattering are responsive to crop development over time,
and that the use of these scattering parameters could be considered to temporally
track crop condition in an approach similar to optical indices. Further research is
needed, particularly since responses appear to be crop type specific.

A Radar Vegetation Index (RVI) was proposed by Kim and van Zyl (2009)
for monitoring the vegetation growth using SAR. For natural targets RVI ranges
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Fig. 15.4 Soil Adjusted Vegetation Index (SAVI) plotted with Freeman-Durden decompositions
for canola (VS volume scattering) and wheat (DS double-bounce scattering) derived from C-Band
RADARSAT-2. Responses are graphed from crop emergence (May) to senescence and harvest
(August)

from 0 to 1 with values close to zero typical of smooth un-vegetated fields. As the
vegetation canopy increases, scattering increases as does RVI. RVI is defined as:

RVI D
8� ı

hv

� ı
hh C 2� ı

hv C � ı
vv

(15.1)

where ¢o is SAR intensity for each transmit (h or v) and receive (h or v) polarization.
RVI derived from RADARSAT-2 is statistically correlated with plant height and
plant area index (PAI) (Shang et al. 2013, 2014) and biomass (Wiseman et al.
2014). However, other SAR parameters that respond to volume scattering provide
higher correlations. The RVI incorporates the linear co-polarizations which are
less sensitive to volume scattering. In the case of HH, backscatter responses are
largely created by single scattering events as would occur from direct soil interaction
early in the growing season. The inclusion of these “less vegetation sensitive”
polarizations in the RVI may explain these lower correlations.

Moran et al. (2012) confirmed that HV intensity at C-Band (from RADARSAT-
2) is effective for temporally monitoring crop conditions. As well, these authors
suggested that this cross-polarized backscatter could be used to track growth stages
for grain (jointing and heading) and corn (leaf development and reproduction).
Liu et al. (2013) studied the feasibility of monitoring crop growth based on a
trend analysis of three basic scattering mechanisms using multi-year (2008–2010)
RADARSAT-2 polarimetric data. In this case surface, double-bounce and volume
scattering were generated using the Pauli decomposition. The temporal evaluation
of the intensity of the scattering mechanisms generally tracked the measured LAI
as well as phenology growth stage for wheat, corn and soybeans. Inoue et al. (2002)
found that higher frequency X-Band backscatter was sensitive enough to detect thin
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rice seedlings just after transplanting. Finally, Wiseman et al. (2014) reported that
for spring wheat HV backscatter, volume scattering and pedestal height were able
to detect when wheat entered the milking stage which could prove useful as an
indicator for the timing of spring wheat harvest.

McNairn et al. (2014b) looked specifically at X- and C-Band responses for
identifying the growth stage of canola. Canola is susceptible to a range of diseases
which can impact yields. This crop is most vulnerable to fungal infection at
flowering and insect infestation at the pod stage. If soil moisture is high at flowering,
risk of fungal infection increases and yields can be reduced by as much as 50 %.
This study found that X- and C-Band cross-polarization ratios (VV/VH) are high
in the weeks following crop emergence due to the dominance of surface scattering
from the soil. As canola leaves develop, volume scattering increases as does this
ratio. A significant drop in this ratio (below 5 at X-Band and below 4 at C-Band)
was observed when the canola flowered – a change in phenology of interest in
monitoring for fungal infection. After flowering as the crop transitions to seed
development, thick volumes of canola pods create significant multiple scattering
increasing VH backscatter, with a further decline in the ratio observed. The decrease
in the ratio at seed development was more pronounced at X-Band than C-Band,
likely due to the small pods structures which are more closely aligned (in dimension)
with X-Band wavelengths. At C-Band, the volume to surface ratio appeared to
be more sensitive to pod development than the VV/VH ratio. Alpha angle from
RADARSAT-2 was also interesting as the angle increased as scattering transitioned
from surface to volume scattering.

15.4.2 Sensitivity of SAR to Crop Bio-physical Properties

15.4.2.1 Leaf Area Index

As far back as 1984, Ulaby et al. reported strong correlations between the LAI of
corn and Ku-VV backscatter (up to an LAI of two, an R2 of 0.9 was reported). Paris
(1986) reported equally strong correlations at this high frequency (K-VV and K-
HH) when examining LAI of corn. In the Ulaby study, only weak correlations were
reported for wheat. Using lower frequency C-HH and C-VV backscatter, Ferrazzoli
et al. (1992) also reported increases in backscatter with LAI. However as Ulaby
et al. (1984) found, eventually the signal saturated becoming insensitive to further
increases in LAI above a leaf area of 2–3. In a more recent study by Jiao et al. (2011)
and using C-Band RADARSAT-2, sensitivity was lost above an LAI of three. Ulaby
et al. (1984) explained that during the early stages of crop growth when LAI is less
than 0.5, backscatter is dominated by soil moisture contributions. Leaf contributions
dominate during periods of peak crop growth, but in the later stages just prior to
harvest (LAI < 0.5), backscatter is dominated by soil and stalk contributions for
corn, and by soil and head contributions from wheat. Jiao concurred and using the
Water Cloud Model (WCM) found that at early growth stages (LAI less than one)
soil moisture still had a significant contribution to scattering from corn and soybean
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Fig. 15.5 Pauli volume scattering plotted with LAI for corn (left) and soybeans (right). Results
are from 3 years of RADARSAT-2 data (2008, 2009 and 2010) collected in different fine quad
(FQ) modes. Graphs taken from Liu et al. (2013)

fields. However, as the canopy developed and LAI increased to above one, scattering
of C-Band microwaves was only minimally affected by soil moisture. After LAI
reached three, 90 % of the scattering originated from the canopy.

Even though the evidence indicates that sensitivity is lost at higher LAI, SAR
is sensitive to changes in LAI in the critical early growth stages. Additional
studies have found strong correlations between SAR response and LAI for cotton
(Maity et al. 2004 using C-Band), soybeans (Prasad 2011 using X-Band), corn
and soybeans (Jiao et al. 2011 using C-Band) and wheat (McNairn et al. 2012
using C-Band). Liu et al. (2013) found that the RADARSAT-2 generated Pauli
decomposition parameters generally tracked LAI development through the growing
season (Fig. 15.5). Kim et al. (2013) monitored soybean growth over the season
using data collected by an L-, C-, and X-band scatterometer. Although these results
confirmed sensitivity to LAI, contrary to other studies, the authors reported that
among the different frequencies and polarizations, L-band HH backscatter was most
sensitive to growth changes and provided the highest correlation with LAI (as well
as vegetation water content).

Jiao et al. (2011) and McNairn et al. (2012) correlated RADARSAT-2 SAR
parameters to LAI for corn, soybeans and wheat. As previously observed, SAR
parameters indicative of the intensity and characteristics of volume scattering
(HV intensity, pedestal height, the Freeman-Durden volume scattering parameter
and entropy) were strongly statistically correlated with LAI. Next, these authors
parameterized with WCM using SAR responses, LAI and ancillary inputs of soil
moisture. The WCM proved to adequately simulate SAR responses as the canopy
developed and LAI increased, demonstrating the potential of polarimetric SAR data
for monitoring indicators of crop productivity. The degree of model fit varied. For
corn the fit (R2) of LAI to these parameters ranged from 0.92 to 0.95 and for
soybeans, 0.76–0.86. For wheat, entropy was selected with a goodness of fit statistic
of 0.70. In McNairn et al. (2012) a Look Up Table was then used to invert the WCM
and produce a map of LAI from RADARSAT-2 entropy.
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15.4.2.2 Canopy Biomass

In addition to LAI, above ground dry biomass is a strong indicator of crop
productivity (Liu et al. 2010) and thus monitoring dry biomass is of interest for yield
forecasting. As might be expected, most researchers found HV intensity backscatter
correlated with vegetation biomass (Paloscia 2002), although the sensitivity was
crop type dependent. C-HV backscatter has proven correlated with dry biomass
for corn, canola and soybeans (Ferrazzoli et al. 1999). However in an early study
Ferrazzoli et al. (1997) reported strong correlations (R2 of 0.75) between biomass
and C-HV backscatter for smaller biomass crops like colza, wheat and alfalfa, but
weak correlations (R2 of 0.31) for corn, sunflower and sorghum, speculating that
less weaker results were due to the signal saturation at C-Band. Mattia et al. (2003)
used a simulated C-Band HH/VV channel to correlate response to wheat biomass,
with an overall correlation of 0.87 reported.

Wiseman et al. (2014) closely examined correlations between C-Band response
and dry biomass, and offered other explanations related to changes in crop phenol-
ogy and thus canopy structure. In this 6 week study, responses of RADARSAT-2
to dry biomass were assessed for corn, canola, soybeans and wheat. SAR response
increased more rapidly earlier in the season as biomass accumulation accelerated,
leading to stronger correlations with non-linear (logarithmic) statistical models.
For corn and canola, the strongest correlations with dry biomass were observed
for entropy (R-values of 0.81 for corn and 0.84 for canola), suggesting that early
in the season accumulations of biomass increased randomness in scattering within
these canopies. For soybeans, the linear cross-polarized backscatter (HV) was most
sensitive to increases in biomass (R-value of 0.81). For spring wheat, correlations
were weak and these results were attributed to the late start of RADARSAT-2
acquisitions. Mid to late season, crop development was more focused on seed and
fruit development and during these periods, a reduced rate of increase in SAR
response was observed. It is at this point of crop development where SAR returns
became more responsive to changes in growth stage rather than biomass (mostly leaf
and stem) accumulation. This sensitivity to changes in structure due to phenology
may partially explain reduced sensitivity of SAR to biomass from mid to late season.
For canola C-HV backscatter reacted to flowering and ripening. For wheat HV
backscatter, volume scattering and pedestal height changed as this crop entered its
milking and dough stages.

15.4.2.3 Crop Height

Shang et al. (2013, 2014) illustrated that crop height for wheat is strongly cor-
related with both crop phenology and plant area index. Given this relationship,
the authors explored sensitivity of RADARSAT-2 responses to wheat height and
reported significant correlations (R2) of 0.83 and 0.87 using both the HH and
HV polarizations. The C-Band alpha angle gave even stronger correlations (R2 of
0.93). This confirmed earlier results where McNairn et al. (2002) established that
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crop height was significantly correlated with C-HH (RADARSAT-1) backscatter.
In McNairn et al. (2002) height, biomass and LAI were used together to in a
multi-variate statistical model to more fully characterize the crop canopy. With
this multi-variate model as much as 85 % of the variance in C-HH backscatter was
explained. Results were crop type dependent with the best RADARSAT-1 results
from lower biomass wheat and potato crops. C-HH backscatter was insensitive to
variations in corn growth. However using RADARSAT-2 C-HV backscatter, Shang
et al. (2014) demonstrated good sensitivity to corn crop height and PAI, with R2

values of 0.88 and 0.92 respectively. This sensitivity to crop height also explained
variances in RADARSAT-2 responses among corn fields in a study completed by
Wiseman et al. (2014).

15.5 Summary

A growing global population and a changing environment are placing increased
pressure on the agriculture sector to continue to meet requirements of food supply.
Early indications of imbalances in regional and global supplies can assist in
managing these inequities to avoid crises in food security. Earth observing satellites
provide one source of data to map acreages planted and crop growth, and to monitor
changes in production over space and time. Although optical sensors have been used
extensively for this purpose, poor atmospheric conditions can lead to gaps in data
needed for ongoing monitoring. Synthetic Aperture Radar (SAR) sensors provide a
reliable source of data, yet the interaction of active microwaves with crop canopies
is complex.

Since the launch of the European Remote Sensing Satellite 1 (ERS-1) in
1991 and the Japanese Earth Resources Satellite 1 (JERS-1) in 1992 advances
in SAR applications research have been significant. Today users have access to
data from many more SAR satellites which operate at different frequencies (X-,
C- and L-Band), varying incident angles and are either polarization-diverse or
polarimetric-capable. SAR can accurately identifying crops, map crop acreages
and identify acreage change. Yet as with optical sensors multi-temporal data is
critical to successful classification. In addition higher accuracies are observed
when multi-frequency SAR data are combined; research using quad-polarimetry or
compact polarimetry SAR modes has proven that classification benefits from higher
polarization diversity. Estimates of crop production also require data on crop growth.
Here findings from scientists using different SAR sensors and cropping mixes have
been consistent. Radar parameters which are responsive to canopy volume scattering
(for example HV backscatter, entropy, volume scattering) are sensitive to canopy
biophysical parameters including Leaf Area Index, biomass and height. These crop
biophysical parameters can be used either directly or through assimilation into yield
models to estimate crop productivity and when combined with crop maps, provide
an estimate of total production.
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The potential of SAR satellites to support national, regional and global crop
monitoring is clear. Increased access to advanced SAR sensors, in conjunction with
open data access, will foster wider use of this technology. This coming together
of research and engineering sets the stage for a greater role for radar satellites
in monitoring agricultural production and it is expected that as this technology
accelerates, the contribution of SAR in creating knowledge on crop production will
increase.
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Chapter 16
An Approach for Determining Relationships
Between Disturbance and Habitat Selection
Using Bi-weekly Synthetic Images
and Telemetry Data

Nicholas D. A. Brown, Trisalyn Nelson, Michael A. Wulder,
Nicholas C. Coops, Thomas Hilker, Christopher W. Bater, Rachel Gaulton,
and Gordon B. Stenhouse

Abstract Ecological studies can be limited by the mismatch in spatial-temporal
scales between wildlife GPS telemetry data, collected sub-hourly, and the large-area
maps used to identify disturbances, generally updated annually. Recent advance-
ments in remote sensing, data fusion modeling, mapping, and change detec-
tion approaches offer environmental data products representing every 16-day
period through the growing season. Here we highlight opportunities and chal-
lenges for integrating wildlife location data with high spatial and temporal res-
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olution landscape disturbance data sets, available from remotely sensed imagery.
We integrated 16-day outputs from the Spatial Temporal Adaptive Algorithm for
mapping Reflectance Change (STAARCH) disturbance maps with grizzly bear
(Ursus arctos) telemetry data. Our results indicate that males and females avoided
same-year disturbances, while male bears were most likely to avoid recently
disturbed areas in summer. When intra-year (disturbances mapped at a 16-day time-
step) analysis of disturbance was compared to traditional annual time-step analysis,
annual aggregation of disturbance data resulted in an increase in the observed
selection of same-year disturbed habitat, although change was not statistically
significant (’ 0.05). We caution the use of low-temporal resolution disturbance
data to evaluate short-term impacts on wildlife and highlight the need for further
development of probabilistic- and model-based techniques for overcoming spatial-
temporal differences between datasets.

16.1 Introduction

Capture of forest disturbance is a critical source of information for landscape
management. Traditionally, forest disturbance inventories are completed through
field work or by aerial surveys at 5- to 10-year time intervals and are operationally
costly and time consuming to implement over large areas. Alternatively, disturbance
records may be obtained from forest managers (Nielsen et al. 2004a) or government
agencies (Koehler et al. 2007); however, spatial coverage can be limited and
accuracy and consistency variable when data are collected by multiple agencies
for different uses. Satellite data are often also used by forest managers to provide
information regarding disturbance within an inventory cycle (Masek et al. 2008).
These inventory and disturbance datasets have become valuable in understanding
interactions between wildlife and their environment.

Availability of satellite imagery has allowed large-area mapping of landscape
disturbance (Zhang et al. 2002; Healey et al. 2005; He et al. 2009; Asner 2013). For
instance, the Landsat series, first launched in 1972, has emerged as one of the most
useful satellite datasets for mapping large-area disturbance due to its long temporal
record (Wulder et al. 2008, 2011), relevant spectral bands for vegetation mapping,
and affordability (Cohen and Goward 2004; Wulder et al. 2004). Landsat has
been used extensively by geographers, ecologists, and managers to map landscape
disturbance and vegetation change (Cohen and Goward 2004; Gu and Wylie 2010;
Huang et al. 2010). Traditionally, large-area maps of disturbance tended to be
representative of annual, or longer, time-steps (Masek et al. 2008; Cohen et al.
2010). In contrast, wildlife data, which are increasingly collected using GPS-based
telemetry systems, are commonly generated with much greater frequency; wildlife
locations are often now recorded on an hourly basis (Johnson et al. 2002; Sunde
et al. 2009; Boyce et al. 2010). The temporal discrepancy between environmental
and wildlife data has been identified as a limitation when using global positioning
system (GPS) technology in ecological studies (Hebblewhite and Haydon 2010).

The opening of the Landsat archive in 2008 to provide free access to analysis-
ready imagery (Woodcock et al. 2008) has enabled implementation of applications



16 An Approach for Determining Relationships Between Disturbance. . . 343

that would not have previously been practical due to image costs (Wulder et al.
2012). Notwithstanding the free and open access to all available Landsat imagery,
there is a maximum possible revisit of 16 days for image acquisition. When
combining the temporal revisit with the limited number of images that can be
collected on any given day, for a given path/row location there is variability in the
frequency of acquisition both within and between years.

The Spatial Temporal Adaptive Algorithm for mapping Reflectance Change
(STAARCH) is a data fusion model that allows for the creation of high spatial and
temporal resolution disturbance maps (Hilker et al. 2009). STAARCH integrates
Landsat and Moderate Resolution Imaging Spectrometer (MODIS) imagery to
enable mapping of disturbance at high spatial and temporal resolution. MODIS,
with a repeat cycle of one (towards the poles) or two days (near the equator), is
designed to provide near continuous monitoring of biophysical parameters (Justice
et al. 1998; Huete et al. 2002) at spatial resolutions from 250 to 1000 m, depending
on the spectral channel. A time series of MODIS images can be aggregated through
compositing daily observations in order to reduce cloud contamination (Vermote
et al. 1997; Hilker et al. 2009). The synthetic STAARCH product takes advantage
of the high spatial resolution of Landsat and high temporal resolution of MODIS
composite images to provide disturbance maps with a 16-day return interval and
30-m spatial resolution (Hilker et al. 2009; Gaulton et al. 2011).

In this chapter we examine the opportunities and challenges of integrating new
high spatial and temporal resolution disturbances maps with detailed wildlife GPS
data. As a case study, we integrated STAARCH disturbance maps with grizzly bear
(Ursus arctos) telemetry data from Alberta, Canada. Using a 16-day time-step, we
assessed the impact of disturbance presence and timing on spatial patterns of grizzly
bear habitat selection by statistically comparing observed frequency of disturbance
selection to a null hypothesis that, within available habitat, disturbances are selected
randomly regardless of time since disturbance. Results from the analysis using the
disturbance products with a 16-day time-step are compared with those obtained
when using a single annual disturbance layer.

16.2 Study Area

The 14,000 km2 study area is located in the foothills of the Rocky Mountains north
of the town of Grand Cache, Alberta, Canada (Fig. 16.1). Terrain heights range
from 600 m above sea level in the northeast to 2400 m in the Rocky Mountains
towards the southwest of the study area. The landscape is characterized largely by
forest cover, with forest disturbance and land use determined primarily by resource
extraction industries, including forestry, mining and oil and gas (Schneider et al.
2003), with the exception of a small area in the southwest that intersects the Kakwa-
Wilmore Interprovincial Park. Forests within our study area have been managed for
resource extraction for over 50 years with a substantial increase since the 1980s
(White et al. 2011). Given fire suppression, resource extraction and related activities
are the dominant landscape disturbance, with most disturbances arising from the
forest industry and oil and gas exploration (Schneider 2002). Approximately 76 %
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Fig. 16.1 Study area in west central Alberta, Canada

of the forested land base in the Kakwa Region is managed for timber harvesting.
Forestry activities have created a patchwork of forest harvests as well as roads. The
growing oil and gas industry has also led to new roads as well as pipelines and well
sites. The longevity of the disturbances from resource extraction activities varies.
Forest harvests will undergo vegetation succession and provide food resources for
wildlife (Stewart et al. 2013). Roads that are not deactivated, pipelines, and active
well sites are more permanent.

16.3 Data and Methods

16.3.1 STAARCH-Derived Disturbance

The STAARCH algorithm requires a minimum of two Landsat images to mark the
beginning and end of the time period of interest (Hilker et al. 2009). The STAARCH
algorithm captures disturbance using a Tassled Cap transformation of the Landsat
observations, yielding a disturbance index (DI) value (described in Healey et al.
2005). A change mask is generated by thresholding consecutive DI values of
a given pixel. Changes detected in the Landsat imagery are then dated using
marked deviations through a time series analysis of a modified disturbance index
calculated from the MODIS imagery. The STAARCH process requires MODIS
8-day composite images to create a suite of high temporal resolution disturbance
indices (Zhang et al. 2002) for the time period between the first and last Landsat
images. Changes in DI values for the Landsat change mask are then matched to the
dates of disturbance obtained from the MODIS imagery. Preliminary results indicate
that 87 and 89 % disturbances are assigned correct dates (Hilker et al. 2009) when
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validated against a manually verified, remotely sensed disturbance inventory (Linke
et al. 2009). More recent work has reported overall accuracies of 62 %, with the
lower value being attributed to a larger study area, smaller disturbance sizes, and an
increased time period (Gaulton et al. 2011).

Previous research has demonstrated the Tasseled Cap Transformation (TCT)
of spectral image data as a tool for effective mapping of land cover change and
disturbance (Healey et al. 2005; Masek et al. 2008). The accuracy and applicability
of STAARCH as a disturbance detection technique has been assessed in this study
area. Using many of the same Landsat scenes as applied to this study, Hilker
et al. (2009) found STAARCH had an accuracy rate for correctly identifying
disturbances in the correct year of 87 %, 87 % and 89 % in 2002, 2003, and 2005
respectively, based on a disturbance mapping dataset derived independently from
aerial photography. The spatial accuracy of the detection area itself was 93 % when
compared to the validation dataset. Areas where the algorithm had poorer accuracy
were wetter sites, and as a result, disturbances within flood plains and bogs, may be
more poorly represented.

An example of STAARCH disturbance mapping is shown in Fig. 16.2. Distur-
bance is defined as any event that increases the disturbance index of a previously

Fig. 16.2 Sample of map of disturbance created using the STAARCH algorithm. Also shown is a
Tasseled-Cap-based disturbance index. Bright pixels indicate areas of greater disturbance
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forested region as assessed by the STAARCH algorithm. Disturbances in this region
are predominantly, if not exclusively, anthropogenic including forest harvests,
wellsites, and roads. Disturbance mapping was conducted using a 16-day return
interval and extended from September 2001 to June 2008. The modal disturbance
patch size is 1.08 ha (Gaulton et al. 2011).

16.3.2 Telemetry Points

Grizzly bear telemetry data were collected using GPS radio collars attached to 40
adult (age 5C) bears. The locations of 23 male and 17 female bears were obtained
between May 2005 and December 2009. The GPS collars were programmed to
record a location each hour during the non-denning period (April–November),
however actual recorded locations varied with individual collars. Individual bears
were tracked for between one and three years. Only bears with high sampling
frequencies (�10 GPS fixes/day) and �500 telemetry point locations were included,
resulting in 23 total bears, 12 females and 11 males. The spatial distribution of trap
locations are shown in Fig. 16.1 and the number of traps varied annually between
10 and 22.

16.3.3 Data Integration

To integrate bear telemetry data with the 16-day temporal resolution STAARCH
disturbance data, we evaluated the spatial-temporal overlap between the two data
sets. First, telemetry data were aggregated to represent 16-day periods to correspond
with the STAARCH time intervals. For each 16-day period, the number of grizzly
bear collar locations intersecting disturbance polygons was quantified, and the total
disturbed area recorded by STAARCH calculated.

16.4 Grizzly Bear Response to Disturbance

We compared the observed habitat selection, recorded in the telemetry data, to
expected habitat selection, based on a model to randomize telemetry data within
available habitat.

16.4.1 Observed Selection

Many aspects of grizzly bear biology, such as diet and behaviour, change seasonally
(Nielsen et al. 2004a, c; Munro et al. 2006), which in turn affects the spatial pattern
of habitat selection (Nielsen et al. 2004a). To account for seasonal variability,
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disturbance and telemetry data were subdivided into: spring (den emergence to
June 25), summer (June 26 to August 15) and autumn (August 16 to denning)
(Nielsen et al. 2006; Smulders et al. 2012).

For each telemetry point, the nearest forest disturbance polygon was identified.
Due to the availability of unique, high spatial and temporal resolution disturbance
data it was possible to only consider disturbances that occurred prior to when a bear
was observed when calculating nearest disturbance. Grizzly bear telemetry locations
that were farther than 500 m from any disturbance were excluded from analysis.
A 500 m threshold has been used previously in relating landscape disturbance to
grizzly bear habitat selection (Berland et al. 2008). For each disturbance, by year,
observed selection was quantified as the number of telemetry points nearest to
a disturbance. Since the number of telemetry points and the sampling frequency
associated with each bear was different, results were normalized by dividing the
number of telemetry points associated with a particular disturbance age by the total
number of telemetry points within that season.

16.4.2 Expected Selection

Observed patterns of disturbance selection were statistically compared to an
expected pattern. The expected pattern or null model was that bears did not select
for disturbances based on disturbance age (Smulders et al. 2010). We generated
a frequency distribution of expected selection by randomizing the observed of
telemetry locations within available habitat. Available habitat was defined using
minimum convex polygons (MCP) that were created for each of the grizzly bears.
The MCP is the smallest convex area that contains all data points (Mohr 1947)
and represents the outer limit of observed habitat used by bears sampled through
telemetry data collection. Ninety-nine randomizations were generated, and for each
randomization the number of random telemetry points nearest to a disturbance was
quantified, generating a null model for statistical comparison. Statistical results were
grouped by disturbance age and presented using box plots. We defined disturbance
age as the difference between the year a grizzly bear’s location was recorded and the
year a disturbance occurred. Disturbance age, or time since disturbance, indicates
how much time has elapsed between initial disturbance and subsequent selection.
The disturbance age is an indicator of forest successional stage and reflects food
availability (Nielsen et al. 2004c).

16.4.3 Temporal Resolution of Disturbance Data

To assess the impact of the temporal resolution of disturbance data on research
findings, we reprocessed the data for same-year disturbance with disturbance
dates aggregated to an annual resolution. The effect of the temporal resolution
of disturbance data on observed patterns of habitat selection was quantified by
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comparing the resulting annual frequency-of-selection distributions to the 16-
day resolution frequency-of-selection distributions using a Komologorov-Smirnov
test.

16.5 Results

16.5.1 Data Integration

In Fig. 16.3 we show the total disturbed area and total number of telemetry points
that fall within disturbance polygons for each 16-day time step. In this figure we
are quantifying general correspondence between all the harvest areas and telemetry
data. Generally, an increase in the total disturbed area corresponds to a larger
number of telemetry points within the disturbances. The number of points within the
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disturbance polygons is small relative to habitat usage; for any given time interval,
the total number of points within a STAARCH forest disturbance polygon represents
less than 0.005 % of the total number of points. Similarly, the total disturbed area for
any one time interval is small (5.52 km2) compared to the study area (14,000 km2).

16.5.2 Grizzly Bear Response to Disturbance

Figures 16.4 and 16.5 show the preferential selection of disturbed habitat through
time for female and male bears, respectively. For most disturbance ages, selection
was highly variable, as evidenced by the large interquartile ranges. Variability

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 3 4 5 6 7
Time since disturbance (yr) Time since disturbance (yr) Time since disturbance (yr)

F
re

qu
en

cy
 o

f u
se

 r
el

at
iv

e 
to

 to
ta

l d
is

tu
rb

ed
 a

re
a

F
re

qu
en

cy
 o

f u
se

 r
el

at
iv

e 
to

 to
ta

l d
is

tu
rb

ed
 a

re
a

F
re

qu
en

cy
 o

f u
se

 r
el

at
iv

e 
to

 to
ta

l d
is

tu
rb

ed
 a

re
a

-0
.5

0.
0

0.
5

-0
.5

0.
0

0.
5

-0
.5

0.
0

0.
5

Spring (female) Summer (demale) Autumn (female)

Fig. 16.4 Results for female bears grouped by season. Positive values represent selection of
disturbed habitat. Negative values represent avoidance of disturbed habitat. Horizontal line at 0.0
signifies proportional selection of disturbance exactly equal to proportional disturbed area for a
given year. Analysis includes 12 female bears and 53,139 telemetry locations



350 N.D.A. Brown et al.

F
re

qu
en

cy
 o

f u
se

 r
el

at
iv

e 
to

 to
ta

l d
is

tu
rb

ed
 a

re
a

F
re

qu
en

cy
 o

f u
se

 r
el

at
iv

e 
to

 to
ta

l d
is

tu
rb

ed
 a

re
a

F
re

qu
en

cy
 o

f u
se

 r
el

at
iv

e 
to

 to
ta

l d
is

tu
rb

ed
 a

re
a

Spring (male) Summer (male) Autumn (male)

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

-0
.5

0.
0

0.
5

-0
.5

0.
0

0.
5

-0
.5

0.
0

0.
5

Time since disturbance Time since disturbance Time since disturbance 

Fig. 16.5 Results for male bears grouped by season. Positive values represent selection of
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signifies proportional selection of disturbance exactly equal to proportional disturbed area for a
given year. Analysis includes 11 female bears and 46,732 telemetry locations

in selection of disturbance appeared to decline in the seventh and eighth years
following disturbance, but this is likely a spurious finding resulting from smaller
sample sizes (three bears as opposed to 12 or more bears).

In all seasons female bears exhibited avoidance of same-year disturbance and
showed reduced selection of one- and two-year-old disturbances (Fig. 16.4). In
spring, selection increased for older disturbances, with three- and four-year-old
disturbances exhibiting mixed responses, and five- and six-year-old disturbances
slight preferential selection. In summer, variability in selection generally increased
with disturbance age up to five year old disturbances. In autumn, variability in
selection increased for one-, two-, and three-year-old disturbances, and decreased
for four- and five-year-old disturbances, which were generally avoided.
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Table 16.1 Mean relative frequency of use for same-year disturbance. Negative values signify
avoidance, whereas positive values signify preferential use. Data are presented here for 16-day
STAARCH disturbance, as well as for down-sampled annual disturbance data. In every case, down-
sampling of disturbance data to an annual resolution results in an increase in use

Spring Summer Autumn
16-day Annual 16-day Annual 16-day Annual

Female �0.0625 �0.0196 �0.0409 �0.0332 �0.0276 �0.0212
Male �0.127 �0.0403 �0.147 �0.134 0.0463 0.0573

In spring and summer, male bears exhibited slight avoidance of same-year dis-
turbance (Fig. 16.5). During spring, selection of disturbed habitat increased slightly
for one- to four-year-old disturbances, and decreased slightly for disturbances older
than 5 years. For male bears in summer, older disturbances were selected more
frequently than younger ones. Males in autumn were the only instance of male bears
selecting for same-year disturbance. Selection of disturbance decreased for one- to
four-year-old disturbance, with a minimum for 4-year-old disturbances, and then
increased again for disturbances older than 5 years.

16.5.3 Temporal Resolution of Disturbance Data

In all cases, aggregating disturbance data to a yearly resolution resulted in an
increase in the observed selection of same-year disturbed habitat. The difference in
results was most pronounced for male bears in spring, though it was not statistically
significant at the 5 % confidence interval for any of the categories (Table 16.1).
Seasonal variation in the strength of trends could be due to the timing of den
emergence. The sampling in spring may be less consistent as bears will emerge
on different dates depending on snow pack and inter-annual variation. The summer
signal may be slightly less biased by sampling.

16.6 Discussion

Our aim was to highlight opportunities and challenges of integrating high temporal
resolution disturbance and telemetry data sets using a grizzly bear case study.
One of the opportunities afforded by the availability of fine temporal resolution
disturbance data is that the grizzly bear response to disturbance can be assessed
intra-annually. Though remote sensing data have been used to investigate wildlife
disturbances (e.g., Ndegwa and Murayama 2009), when disturbance data are
represented annually it is not be possible to determine when within the year a
given disturbance occurred on the landscape. The ability to determine when, to the
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nearest 16-day interval, a given disturbance occurred is an important contribution of
synthetic remote sensing products such as STAARCH in support of ecological and
habitat studies.

A limitation when integrating fine temporal wildlife and disturbance data sets
is the often insufficient spatial-temporal overlap between the animal GPS locations
and mapped forest disturbance. In some cases, when there was little disturbance
proximal to a bear’s location, it was impossible to ascertain how selection of
disturbance changed on a same-year basis because the bear would pass through the
disturbed area only once in the entire year. Another difficulty associated with data
integration is that, assuming negligible error, disturbance data represent all disturbed
locations. However, as a consequence of the discrete sampling through time and the
practical reality of collaring a sample of individuals, telemetry points necessarily
represent a sample of selected wildlife locations (Wells et al. 2011). While the
remote sensing-derived disturbance data represent the statistical population of
events, the wildlife data represent a sample that is relatively sparse.

Artificially downgrading the temporal resolution of the disturbance data from
16 days to one year led to results that overrepresented the selection of disturbances.
When disturbance is represented annually, the nearest disturbance that occurred at
any time within the year would be selected. This may be problematic if the distur-
bance actually occurred after the grizzly bear utilized a specific location. Although
the changes in selection results were not statistically significant, this may not always
be the case, particularly in areas that are undergoing high levels of anthropogenic
activity. Implications for wildlife management include misinterpretation of wildlife
response to recently disturbed habitat. In cases where disturbance results in a loss of
usable habitat and subsequent animal avoidance, selection of annually aggregated
disturbance data could result in a failure to recognize the full impact of habitat loss.

Our results indicated that both male and female bears may be avoiding same-
year disturbances, though the trend is stronger for females. Forest harvests are well
documented to be attractors to bears to do the availability of food (Nielsen et al.
2004a). However, the establishment of berries will take at least a year. The noise and
activity of humans during the year of harvesting may well be a deterrent to bears.
The behavioural response of male bears to disturbance age is clearest in summer,
where selection of disturbances increased markedly with age of disturbance. It
is common to see differences in male and female patterns of habitat selection
(Bourbonnais et al. 2013). The summer availability of bears likely explains the
seasonal variation and related research has found that the spatial-temporal pattern
of habitat selection, in female grizzly bears, has the strongest signal in summer
(Smulders et al. 2012). Although sample size was insufficient to assess the impacts
of offspring status on female patterns of habitat selection, we expect selection of
disturbance to vary with presence and age of offspring and differences between
summer and autumn responses to disturbance age may be partly associated with
offspring (Smulders et al. 2012).

It is possible that recent disturbances have insufficient over- and mid-storey
vegetation for visual cover and must mature before providing beneficial food
resources (Ndegwa and Murayama 2009). During summer, a large part of the bears’
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diet is comprised of forbs such as Trifolium and Equisetum spp. (Munro et al.
2006), both of which are more common in forest harvests than in mature forests
(Nielsen et al. 2004b). However, immediately following forest disturbance, the
abundance of forbs is likely reduced, and gradually increases for older disturbances
before reaching a maximum abundance. In the case of locations subject to forest
harvesting, subsequent successional developments mean that increasing age is
positively correlated with increasing food availability (Nielsen et al. 2004c).

The consistently low selection of same-year disturbance, even when compared
to one-year-old disturbance, suggests that the increased human activity associated
with active forest disturbance may also discourage selection. Avoidance of human
activity by grizzly bears is consistent with a recent study that found grizzly bears
avoided habitat with active wellsites, but not habitat with inactive wellsites (Laberee
et al. 2014). Given that 90 % of recorded grizzly bear deaths are found within
500 m of a road or 200 m of a trail (Benn and Herrero 2002), avoiding areas
with human activity may reduce mortality (Nielsen et al. 2004b). The avoidance
of young disturbances by grizzly bears may be a mechanism for avoiding human
interaction (Graham et al. 2010). Although the food resources near roads provide
important food for bears, the increased interaction with people leads to increased
risk of mortality (Nielsen et al. 2004c; Benn and Herrero 2002).

16.7 Outlook

The integration of remote sensing and telemetry data is in its infancy and there are
many future developments both in terms of the methods that need to be developed
and the biological research questions that can be addressed. At present, improved
approaches to integrating the disparate space-time scales of remote sensing and
wildlife telemetry data are required. While wildlife habitat selection research
often focuses on relatively large areas, unique insights are anticipated through the
integration of high spatial resolution remote sensing data, sub-meter optical imagery
and/or lidar, with high resolution telemetry data sets (e.g., Loarie et al. 2013). Rather
than characterizing the interaction over large areas, examination of patterns between
movement and habitat use in smaller exemplar areas may reveal trends that can then
be scaled up using appropriate remotely sensed data products that represent habitat
over large areas. Long time series remotely sensed data, especially that from the
Landsat program, can provide informative baseline data as well as capture trends
over time (White et al. 2011) that, in turn, can be integrated with telemetry data
sets. There is also much potential to integrate remotely sensed data into movement
research by developing approaches to interpolate, condition, and inform movement
based on habitat conditions (Long and Nelson 2013).

While here we highlight the integration of telemetry and remotely sensed there is
additional potential for these data types over a wide range of hypothesis generating
and confirming research topics. For example, we can assess impacts of new roads
on wildlife habitat selection, quantify how long after large machines leave an area it
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takes for wildlife to return, or to determine the influence of road closures on wildlife
movement. Many of these research questions will benefit from data collection
programs that have suitable overlap between telemetry data and landscape change.

16.8 Conclusions

An advantage when using disturbance products derived from remote sensing is the
ability to synoptically and repeatedly map large areas. Using novel data processing
to blend data with high temporal frequency with other imagery with fine spatial
characterization provides for unique and otherwise unavailable data products.
Through creating and applying data blending methods, such as offered by the
STAARCH algorithm, high spatial and temporal resolution mapping of landscape
change is afforded. These spatial tools may be most valuable for investigations
covering large areas with needs for distance information within, as well as, between
years. To act as an example of such an application, we demonstrated the use of
high spatial and temporal resolution disturbance mapping products to provide a
critical linkage disturbance and the GPS-based wildlife telemetry data. The new
approaches and techniques presented here are useful in long-term monitoring efforts
where it is important to determine species at risk population trends in conjunction
with landscape change. However, probabilistic and model-based techniques must
be developed and tested to enable differences in scale and limited overlap to be
accounted for when investigating research questions. Research using low-temporal
resolution disturbance data may generate results that misrepresent selection of
disturbed habitat since same-year disturbances that occur before a GPS location
is recorded are not differentiated from those occurring after the location is recorded.
The preliminary findings of our case study suggest further investigation into the
short term impacts of disturbance on habitat selection may be warranted. The com-
plexity of interactions between bears, their habitat, and co-occurring disturbances is
reiterated in our findings.
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Chapter 17
Multitemporal Remote Sensing for Inland Water
Bodies and Wetland Monitoring

Yeqiao Wang, Shuhua Qi, and Jian Xu

Abstract Remote sensing is critically important in monitoring inland water and
wetlands for protecting the related environments and ecosystems. This chapter
summarizes remote sensing applications in water and wetland monitoring, in
particular in the subject areas of monitoring water quality, water surface areas
and water fluctuation in wetland areas. The chapter then introduces two cases of
monitoring studies in the Poyang Lake, the largest fresh water lake in China, in
terms of monitoring of fluctuation and variation of water surface areas using MODIS
data product, and monitoring of variation of natural wetlands corresponding to the
changing water levels of Poyang Lake using Landsat data.

17.1 Introduction

Inland water bodies and wetlands are essential nature resources for human beings
in terms of providing multiple ecosystem services (Costanza et al. 1998). However,
inland lakes, rivers and wetlands are threatened by many environmental problems
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caused by various natural and anthropogenic factors, such as eutrophication, other
organic and inorganic pollution, acidification, spread of invasive species and climate
change. Therefore, monitoring of inland water and wetland are critically important
for the protection of related environments and ecosystems (Wang 2012). Remote
sensing science and technologies, with the ability of covering large spatial areas at
frequent temporal intervals, have been broadly applied in monitoring of inland and
coastal waters and wetlands (Wang 2009). In particular, remote sensing is the most
effective in monitoring of water and wetland environments with significant dynamic
fluctuation and inundation hydrological patterns.

17.1.1 Monitoring of Water Quality

Water with different constituents has different spectral characteristics. Spectral
reflectance of water body in visible spectrum provides effective information on
optically significant materials present in water (Le et al. 2011), which makes it
possible to use remote sensing techniques to monitor water quality.

With research development in understanding of inland water spectral characteris-
tics, improvement of inversion algorithms and new sensor technology, the accuracy
of remote sensing monitoring of inland water quality has been continuously
improved (Palmer et al. 2015a; Ogashawara and Moreno-Madriñán 2014; Jaelani
et al. 2015; Matthews and Odermatt 2015; Wu et al. 2014). In general, the techniques
in retrieval of chlorophyll-a (Chl-a) and total suspended solids (TSS) are relatively
mature in practical remote sensing applications of inland water bodies (Kutser et al.
1995; Le et al. 2011; Yu et al. 2012; Palmer et al. 2015a; Guo et al. 2015). Also, the
retrieval of colored dissolved organic matter (CDOM) in inland water has gained
attentions (Kutser et al. 2005; Kutser 2012; Jiang et al. 2014b). Other studies about
indicators of remote sensing of water quality have been developed and reported,
such as monitoring of dissolved organic carbon (DOC) (Kutser et al. 2015),
particulate organic carbon (POC) (Duan et al. 2014), water surface temperature
(Korosov et al. 2007), water transparency (Kutser et al. 1995), phycocyanin (PC)
(Song et al. 2013), total nitrogen and total phosphorus (Kutser et al. 1995).

Applications of multitemporal remote sensing in monitoring of inland water
quality have been reported. For example, a study of monitoring of a massive blue-
green algae bloom in Taihu Lake of China presented an analysis with contrasting
of Chl-a concentrations between the days before and after throughout the event
(Wang and Shi 2008). Moderate Resolution Imaging Spectroradiometer (MODIS-
Aqua) data were used to monitor seasonal and interannual variabilities and spatial
distributions of water properties in Taihu Lake as well (Wang et al. 2011). Recently,
10 years (2002–2012) of Medium Resolution Imaging Spectrometer (MERIS) data
over South Africa was employed to study the 50 largest standing water bodies in
South Africa to obtain the time series of Chl-a, cyanobacteria and surface scum area
coverage (Matthews 2014). Long-term distribution patterns of Chl-a concentration
were also analyzed using MERIS full-resolution scenes of 10-year period for
the Poyang Lake, the largest freshwater lake of China (Feng et al. 2014). Chl-a
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concentration mapping using MERIS data has been used to evaluate spatiotemporal
dynamics of bloom event for Lake Balaton (Palmer et al. 2015b). Study also reported
temporal and spatial distributions of total suspended solids in the Poyang Lake using
MODIS medium-resolution (250 m) data from 2000 to 2010 (Feng et al. 2012a).
Shi et al. (2015) integrated MODIS-Aqua medium-resolution (250 m) data gathered
from 2003 to 2013 and in situ data collected from a number of cruise surveys to
estimate the concentrations of total suspended matter in Taihu Lake. Kutser (2012)
evaluated suitability of Landsat archive for mapping CDOM changes in Swedish
lakes over the last 30 years. Multitemporal remote sensing of inland water can
provide immediate and accessible information in monitoring of concentrations of
water constituents, which is critically important for establishing an early warning
system for emergency management and governance of natural resources.

17.1.2 Monitoring of Water Area

Dramatic changes in the size and morphology of inland water, such as lakes and
reservoirs, have occurred around the world in recent decades. For instance, lakes
in arid regions have shrunk or vanished due to changes in precipitation/evaporation
conditions (Awange et al. 2008). On the other hand, ice melting from mountain
glaciers caused significant changes of lakes in the Tibet Plateau, Arctic coastal
plain, and Western Siberia in recent decades (Kropácek et al. 2012; Yang and Lu
2014; Sheng and Li 2011; Wang et al. 2012; Smith et al. 2012). There are lakes,
such as Poyang Lake in China, that have significant large and rapid water level
variations controlled by monsoon climate and the hydrological conditions, which
brings increasingly severe floods or droughts.

Remote sensing is extremely effective for monitoring of dynamics of areas of
water surface. Landsat images have been used to monitor water environments (Plug
et al. 2008; Ma et al. 2010). MODIS data have been used to study the short- and
long-term characteristics of Poyang Lake inundation (Feng et al. 2012b) and the
regional differences of water inundation duration in different geographic regions
(Wu and Liu 2015). Meanwhile, satellite radar altimeter data have been used to
monitor the water level and water area (e.g., Jarihani et al. 2013; Liao et al.
2014). Recently, new Sentinel-1 data were evaluated for monitoring of reservoirs
(Amitrano et al. 2014). The monitoring results are valuable for hydrological safety
and provide information for preparation and precautions against extreme harmful
hydrological events.

17.1.3 Monitoring of Water Fluctuation in Wetland Areas

Wetland degradation has aroused widespread concerns. Monitor of water fluctuation
in wetland areas is among important practices for conservation and management of
wetland resources. Landsat and SPOT images are among major data sources that
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have been used in monitoring of water fluctuations in wetland areas. Multi-temporal
data are very effective in extraction of wetland information when combined with
elevation and topography data (Ozesmi and Bauer 2002).

Early research employed Landsat and SPOT HRV multispectral data to evaluate
aquatic macrophyte changes within the Florida Everglades (Jensen et al. 1995).
Gong et al. (2010) identified changed areas in China’s wetland between 1990 and
2000 and analyzed potential uncertainties in the wetland change mapping based
on Landsat data acquired around 1990 and 2000. Landsat data have been used on
Poyang Lake of China for monitoring of water inundation of wetland (Hui et al.
2008), and for monitoring of suitable habitat for Siberian cranes (Jiang et al. 2014a).

17.2 Multitemporal Remote Sensing of Poyang Lake, China

Poyang Lake is situated at the lower Yangtze River basin and it is the largest fresh
water lake in China. Poyang Lake is fed by tributaries of five rivers of Gan, Fu,
Xin, Rao and Xiu and it is connected and exchange water with Yangtze River
through lake mouth in the north (Fig. 17.1). As controlled by water from the five
tributary rivers as well as the Yangtze River, the Lake’s highly dynamic and seasonal
variations in water level present a unique landscape of fresh water lake-wetland
ecosystem. The variation of the size of the lake is illustrated as an ocean when
flooded during the wet season and as a line of river when withered during the dry
season. The Poyang Lake wetland is a key habitat site for wintering migratory birds
with global importance. The lake plays an irreplaceable role for flood control, river
shipping, city water supply and conservation of biological diversity of middle and
lower reaches of Yangtze River (Gao et al. 2014).

Poyang Lake is affected by subtropical monsoon climate with a mean annual
precipitation of 1632 mm (Xu and Qin 1998), about 60 % of the annual rainfall
happened in flood season during April to August within the Poyang Lake watershed.
It was estimated that approximately 1.43 � 107 tons of sediments with nutritive
materials were carried from the five tributary rivers and deposit in the floodplain
each year. The sediment loaded by water discharge was deposit and formed fertile
deltas. Lake sediment is important for a biologically productive lake-wetland system
such as the Poyang Lake wetland. There are about 102 vegetation species of aquatic
vascular plants and freshwater organisms presented in the fertile floodplain. Poyang
Lake wetland was first selected as the protected area under the international Ramsar
Convention in China because of its biological productivity, species richness and
being a critical wintering habitat for rare and endangered migratory bird species
such as the Siberian crane (Grus leucogeranus). The lake area has a long history of
agricultural and fishery practices. The lake and associated wetlands support a high
population densities of about 400–800 persons/km2 (Shankman et al. 2006).

The area and shape of Poyang Lake were affected by natural deposition and ero-
sion in the past decades. Increased human population and economic growth induced
activities such as sand mining (Feng et al. 2011), reclamation for agriculture,
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Fig. 17.1 Location of Poyang Lake

fishery, aquaculture and settlements (Qi et al. 2009; Min 1999), which also affected
areas and surrounding landscape of the lake. It is estimated that area of Poyang
Lake was reduced from 5160 km2 in 1954 to 3860 km2 in 1998 (Shankman and
Liang 2003). Reclaiming farmland was the most significant activity changing the
morphology of Poyang Lake dramatically before 1998. However sand dredging in
the Poyang Lake water system was intensified since 2001 because of the demand
of raw materials in the rapid urbanization in the lower Yangtze River valley, as
well as that sand dredging was banned in the Yangtze River in 2000. Lured by
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high profits, sand dredging business developed quickly with hundreds of large sand
vessels assembled and operated in the Poyang Lake water system. Poyang Lake has
attracted wide attention of the international and scientific communities (Jiao 2009;
Yésou et al. 2011; Dronova et al. 2011; Zhang et al. 2014). We report two case
studies in monitoring of water and wetland of Poyang Lake, respectively, in the
follow sections.

17.2.1 Monitoring of Inundation Areas Using MODIS Data

The Poyang Lake experiences the most significant flood and drought rotation each
year. The inundation with dynamics of water levels occurs in both short term on
weekly and monthly basis and in long term with annual variations. In monitoring of
inundation, time series MODIS data were employed.

17.2.1.1 Data Acquisition

The 8-day MODIS Surface Reflectance data (MOD09Q1) collected between 2000
and 2014 were obtained from an open source (https://ladsweb.nascom.nasa.gov/
data.html). There are 46 scenes of MOD09Q1 images during every year, i.e., every
8 days to cover one image. Due to the missing of six scenes in 2000 and one
scene in 2001, a total of 683 scenes of MOD09Q1 images were acquired between
2000 and 2014. MOD09Q1 contains 3 data layers, surface reflectance for band 1
(620–670 nm), surface reflectance for band 2 (841–876 nm) and surface reflectance
quality control flags, all with 250 m spatial resolution.

17.2.1.2 Data Processing and Result

All the collected MODIS images were resampled using nearest neighbor method,
and geometrically rectified to WGS84 datum with Universal Transverse Mercator
(UTM) coordinate system. Then all the images were clipped by the boundary of the
Poyang Lake using mask calculation. The water surface areas were extracted from
other features using the normalized difference vegetation index (NDVI) threshold:

NDVI D
.NIR � VIS/

.NIR C VIS/
(18.1)

Where, VIS and NIR stand for the spectral reflectance measurements acquired in the
visible (red) and near-infrared regions, respectively. Normally, the value of NDVI
for water is less than 0. However due to the existence of large amount of aquatic
vegetation in Poyang Lake, which affects the absorption, reflection and transmission
of visible and near-infrared spectrum on water surface. A modified NDVI threshold
of less than 0.1 was applied to extract the water surface areas. For those MOD09Q1

https://ladsweb.nascom.nasa.gov/%20data.html
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Fig. 17.2 Variation of inundation areas in Poyang Lake during each year between 2000 and 2014

images that have thick cloud covers, MODIS09Q1 images acquired in similar
date were applied instead. At last, the extracted water surface images were added
together for each year to obtain the inundation variation of water surface areas
in Poyang Lake between 2000 and 2014 (Fig. 17.2). According to the extents of
inundation areas, the maximum flooding time lake area was about 3400 km2, while
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Fig. 17.3 The inundation area of Poyang Lake at different lake water level

Table 17.1 Annual maximum and minimum inundation area of Poyang Lake during 2000–2014

Year
Annual maximum
inundation area (Km2)

Annual minimum
inundation area (Km2)

Annual maximum
Water level (m)

Annual minimum
Water level (m)

2000 3363.44 1068.00 16.23 7.11
2001 2650.50 1183.38 15.14 7.67
2002 3396.88 941.94 18.36 6.51
2003 3241.31 799.38 17.49 6.07
2004 2526.44 614.75 15.53 5.23
2005 3104.50 1045.38 17.15 6.37
2006 2915.75 617.69 14.82 5.91
2007 3045.63 623.81 16.59 5.40
2008 2399.44 560.94 15.78 5.48
2009 2137.13 472.25 15.27 5.60
2010 2881.31 526.25 18.38 5.85
2011 2457.69 512.19 15.50 6.22
2012 2905.13 556.69 17.75 5.90
2013 2280.31 585 15.06 5.54
2014 3040.56 616.81 16.70 5.41

the minimum inundate area of the lake was only about 470 km2. The largest annual
variability ratio between maximum and minimum water surface areas was 5.48 that
occurred in year 2010. Together with water level records measured at a gauging
station on the lake, a strong correlation existed between inundation areas and water
levels (Fig. 17.3). A decreased trend is evident between maximum and minimum
water levels since 2000 (Table 17.1).
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17.2.2 Monitoring of Wetland Fluctuation Using Landsat Data

Poyang Lake wetlands provide wintering habitats for most of the estimated existing
population of Siberian cranes. Hydrological regime of Poyang Lake is a dominant
factor controlling the quality of the habitats. However the hydrological process in
Poyang Lake wetland has been changing especially in recent decades due to human
activities. Abnormal low water level in Poyang Lake occurred more frequently in
autumns and winters in recent 10 years. In this case study, the fluctuation of Poyang
Lake wetland areas in different water levels were extracted based on multitemporal
Landsat images.

17.2.2.1 Data Selection

Twelve scenes of Landsat images (path 121/Row 40) with no or little cloud cover
were selected (Table 17.2). Among those images, 10 scenes were acquired from
October to March in different years, reflected different water levels with about 1 m
interval. The images were select to evaluate habitat vulnerability to water levels
with analysis on landscape configuration by land-cover types derived from imagery
classification process. The image acquired in 5 July 2000 corresponded to the time
that the lake water level was 15.6 m above a mean sea level. This image was selected
as a surrogate of the water level controlled at 15.5 m as the proposed hydrologic
engineering project of Poyang Lake Dam for analyzing the effects of water variation
to wetland landscape. The image acquired in 8 July 1998 corresponded to the time
that the lake water level was 19.6 m above a mean sea level. This image was used
only for defining the boundary of the natural wetland areas of the Poyang Lake.

Table 17.2 Landsat TM/ETMC images and water level in Xingzi gauging station

No.
Date of imagery acquisition
(DD-MM-YYYY) Satellite/Sensor Water level (m)

Purpose of usage
in this study

1 15 February 2004 Landsat 5/TM 5.3 a

2 6 January 2007 Landsat 5/TM 5.9 a

3 15 December 2004 Landsat 5/TM 7.1 a

4 27 January 2000 Landsat 7/ETMC 7.9 a

5 10 December 1999 Landsat 7/ETMC 8.8 a

6 5 March 2005 Landsat 5/TM 10.1 a

7 16 November 1999 Landsat 5/TM 11.1 a, b

8 2 November 1994 Landsat 5/TM 12.1 a

9 5 October 2007 Landsat 5/TM 13.0 a

10 9 October 2000 Landsat 7/ETMC 14.2 a

11 5 July 2000 Landsat 7/ETMC 15.6 a

12 8 July 1998 Landsat 5/TM 19.6 c

Note: a – land-cover classification, b – defining the boundary of inner-lakes of the Poyang Lake,
c – defining the boundary of natural wetlands of the Poyang Lake
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Fig. 17.4 The technological process of land-cover classification

17.2.2.2 Data Processing and Result

All Landsat images were geometrically rectified to WGS84 datum with UTM
coordinate system and orthorectified using a digital elevation model (DEM). Eleven
scenes of Landsat images were used to map six land-cover categories including deep
water, shallow water, soft mudflat, hard soil, grassland and sand (Fig. 17.4).

Unsupervised classification by ISODATA algorithm was used to produce 10
clusters of pixels with corresponding spectral similarities. At first, the spectral
clusters were recoded and labeled as four land-cover categories of water surface,
sand, bare soil and grassland with visual interpretation. Unsupervised classification
was applied again on pixels of water surface and bare soil categories, respectively.
The water surface was then divided into deep and shallow water areas according to
visual interpretation and estimation of water depth. Bare soil was divided into hard
soil and soft mudflat by referencing to visual interpretation and NDWI threshold:

NDWI D
.r2 � r5/

.r2C r5/
(18.2)
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Fig. 17.5 Land-cover maps of Poyang Lake natural wetland in different water levels

where r2 and r5 refer to the at-sensor reflectance for Landsat TM/ETMC band 2
and band 5, respectively. According to the GPS-guided field sampling, the NDWI
threshold (D0.65) was applied to distinguish the categories of hard soil and soft
mudflat. Additionally, the burned grassland area was also classified as hard soil
because the post-fire grassland area was deprived of habitat function with drier soil
for the year.

The land cover types of natural wetlands of the Poyang Lake were extracted
from 11 Landsat scenes and illustrated as Fig. 17.5. Considering that the Landsat
imagery acquired 15th December 2004 was coincident with lake water level of
7.1 m, which is very close to the water level of 7.06 m of our third field survey
day, the land cover map derived from classification of 15th December 2004 image
was assessed by 126 GPS-guided samplings sites during the field survey. According



368 Y. Wang et al.

Table 17.3 Error matrix and classification accuracy assessment

G S HS SM SW DW Row total

G 35 0 0 0 0 0 35
S 0 12 0 0 0 0 12
HS 0 0 17 3 0 0 20
SM 0 0 2 12 1 0 15
SW 0 0 0 3 23 2 28
DW 0 0 0 0 0 16 16
Column total 35 12 19 18 24 18 126

Overall accuracy D 115/126 D 91 %, kappa D 0.89
G Grassland, S Sand, HS Hard soil, SM Soft mudflat, SW Shallow water, DW Deep water

Table 17.4 Area of potential suitable habitat for Siberian cranes with different water level in
Poyang Lake wetland (km2)

WL SW SM G DW HS S

5.3 m 182.09 599.9 1510.62 414.72 451.35 147.34
5.9 m 229.39 547.81 1525.51 509.6 444.37 49.34
7.1 m 301.34 446.04 1262.75 735.72 392.33 167.84
7.9 m 230.52 658.38 1247.46 887.17 232.56 49.93
8.8 m 399.6 538.43 1068.4 779.38 340.23 179.98
10.1 m 291.03 246.24 1179.26 1400.1 85.04 104.35
11.1 m 397.93 257.37 1100.23 1341.56 152.63 56.3
12.1 m 404.35 186.7 908.11 1489.84 82.77 234.25
13 m 359.35 210.45 664.76 1866.13 25.71 179.62
14.2 m 246.76 87.05 418.24 2389.01 22.8 142.16
15.6 m 241.34 91.71 197.48 2660.32 18.4 96.77

WL Water level, SW Shallow water, SM Soft mudflat, G Grassland, DW Deep water, HS Hard soil,
S Sand

to the error matrix (Table 17.3), all reference sites for grassland and sand types were
classified correctly, but confusions existed between shallow and deep water, and
soft mudflat and hard soil categories. Accuracy assessment results indicate of 91 %
overall accuracy and 0.89 kappa coefficient for the land cover map of 2004. It was
conclude that the total area of glassland, soft mudflat and shallow water areas that
could be used as habitat for migrate birds in Poyang Lake was decreased with water
level increasing (Table 17.4).

17.3 Conclusion Remarks

As the largest freshwater lake in China with the greatest variation in water level
and inundation extent, multitemporal remote sensing plays a key role in monitoring
of water quantity and quality, as well as the associate wetlands as critical habitats
of a global significance in biodiversity conservation. Time-series MODIS data
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products were very effective to capture the change of water surface areas due to
the hydrologically sensitive nature of the Poyang Lake. MODIS data reveal that
the largest annual variability ratio between 2000 and 2014 and between maximum
and minimum water surface areas was 5.48 which occurred in year 2010. Together
with water level records measured at a gauging station on the lake, a strong
correlation existed between inundation areas and water levels. A decreased trend
is evident between maximum and minimum water levels since 2000. On the other
hand, finer spatial resolution multitemporal Landsat data are much appreciated for
monitoring of the wetlands that are routinely affected by the dynamics of water
levels of the Poyang Lake. Landsat data reveal that the total areas of suitable habitats
for migrate birds in Poyang Lake, i.e., glassland, soft mudflat and shallow water
areas, were decreased as water level increased. This may provide an important
piece of information about the hydrological effects on key habitats conditions of
the key migratory birds for planning and management actions in conservation of
biodiversity of the Poyang Lake region. The data process and analysis approaches
are applicable to most of the situations for monitoring of the changing environment,
in particular, for the subjects of inland water and wetland monitoring.
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Chapter 18
Global Land Surface Water Mapping
and Analysis at 30 m Spatial Resolution for
Years 2000 and 2010

Xin Cao, Jun Chen, Anping Liao, Lijun Chen, and Jin Chen

Abstract Land surface water (LSW), one of the important components of land
cover, is indispensable and important basic information for climate change studies,
ecological environmental assessment, macro-control analysis, etc. In 2010 China
launched a global land cover (GLC) mapping project, the aim of which was to
produce a 30 m GLC data product (GlobeLand30) with 10 classes for years 2000
and 2010. This chapter describes an overall study on LSW in the project. Through
collection and processing of Landsat TM/ETMC, China’s HJ-1 satellite imagery
and other remotely sensed data, the program achieves an effective overlay of global
multi-spectral images at 30 m resolution for two base years, namely, 2000 and
2010. The water information was extracted in an elaborate way by combining a
simple operation of pixel-based classification with a comprehensive utilization of
various rules and knowledge through object-oriented classification, and finally the
classification results were further optimized and improved by the human-computer
interaction, thus realizing high-resolution remote sensing mapping of global water.
The completed global LSW data results, including GlobeLand30-Water 2000 and
GlobeLand30-Water 2010, are classification results featuring the highest resolution
on a global scale, and the overall accuracy of self-assessment is 96 %. Based on
the GlobeLand30-Water 2000/2010 products, this research analyzed the spatial
distribution pattern and temporal fluctuation of land surface water at global scale.
The GlobeLand30-Water products were corrected for the temporal inconsistency of
the original remotely sensed data using MODIS time-series data, and then indices
such as water area, water ration and coefficient of spatial variation were calculated
for further analysis. Results show that the total water area of land surface is about
3.68 million km2 (2010), and occupies 2.73 % of land area. The GlobeLand30-
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Water products and their statistics provide fundamental information for analyzing
the spatial distribution and temporal fluctuation of land surface water and diagnosing
the global ecosystem and environment.

18.1 Introduction

Land surface water (LSW) is the aggregation of liquid water on land surfaces,
existing as rivers, lakes, reservoirs, seasonal water, and so on. LSW is the main
source of fresh water for production and life in many regions and one of most
important resources for human subsistence and development, while accounting for
only 0.3 % of all fresh water and less than 0.01 % of all global water. LSW is
one of the main components of global water recycle. LSW’s spatial distribution
reflects the storage and usage status of water resources on land surface (Foley et
al. 2005; Oki and Kanae 2006), while its fluctuation or change implies influence
on water movement, chemical matter migration and ecosystem sustainability by
climatic change, land surface processes, and human activity (Vörösmarty et al.
2000; Prigent et al. 2012). Overall understanding of the spatial distribution and
fluctuation of global LSW by remote sensing is thus important for monitoring the
global ecological environment.

Up to now, six sets of global land cover (GLC) data containing a land surface
water class have been developed, including four sets of global 1 km land cover
data developed by the U.S. Geological Survey (USGS) (Loveland et al. 2000),
the University of Maryland (UMD) (Hansen et al. 2000), Boston University
(BU) (Friedl et al. 2002), and the Joint Research Center (JRC) of the European
Commission (Fritz et al. 2003). The European Space Agency (ESA) completed
GLC data (GLOBCOVER) at 300 m resolution for 2005 and 2009 through global
cooperation. In terms of global land surface water extraction, Boston University has
extracted LSW mask raster data at 1 km resolution by using MODIS imagery, and
river systems are in obviously discontinuous distribution (Friedl et al. 2002). The
global lake wetland database (GLWD) generated by World Wildlife Fund (WWF)
and University of Kassel through MGLD, DCW and other databases show the
distribution of global water (Lehner and Doell 2004) roughly. In recent years, some
international organizations and research institutions have begun to study and extract
global LSW data with higher spatial resolution. For example, NASA-JPL generated
global LSW vector data (SWBD2005) by use of SRTM data with 90 m grid interval
in 2005, but the data cannot cover the global scale due to the limited scope of SRTM
data; the University of Maryland, on the basis of SWBD2005 data, generated global
250 m LSW mask raster data (Carroll et al. 2009) using interpretation results of
250 m MODIS imagery in 2005.

At higher spatial resolutions, some researchers focus mainly on classification
algorithms for water extraction (Xu 2006; Sheng et al. 2008; Michishita et al.
2012). Currently, the main classification algorithms for water extraction from 30 m
spatial resolution remote sensing imagery include: (1) the single-band threshold



18 Global Land Surface Water Mapping and Analysis at 30 m Spatial. . . 375

method, extracting water (Rundquist et al. 1987; Work and Gilmer 1976) by setting a
threshold value based on the water’s spectral feature of strong absorption in the near-
infrared band (NIR); (2) the water index method, establishing water indexes mainly
through the green band, NIR, middle-infrared band (MIR), and other characteristic
bands, including the simple ratio index (Jordan 1969), NDWI index (McFeeters
1996), MNDWI index (Xu 2005, 2006), etc. and an extracting index by setting a
threshold value; (3) a classification method based on statistics and machine learning,
including non-ISODATA (Sivanpillai and Miller 2010) supervised classification,
maximum likelihood method supervised classification (Sheng et al. 2008), etc.;
(4) a prior information-based decision tree classification method, for instance,
extracting various types of water (Cao et al. 2005; Xu and Chen 2008) by setting a
discrimination function for a characteristic band, index or auxiliary information and
removing shadow (Sun et al. 2012) based on the distribution of 99.2 % of water in
the area (Niu et al. 2009) with slope less than 8ı; and (5) an object-oriented method
based on spatially continuous distribution of water objects (Blaschke 2010; Luo et
al. 2009) or considering compactness, smoothness and connectivity of the targets
(Frohn et al. 2005; Van der Werff and Van der Meer 2008).

Most of these water extraction methods can achieve a sound classification
effect only in specific image conditions or some areas; however, it is difficult for
mechanical application of any method to generate sound classification results on the
global scale in case of global multi-source classification of basic imagery as well
as complex and diverse spectral features and geometric shapes of water. With the
support of the National High Technology Research and Development Program (the
863 Program) of China, the work of finer resolution mapping of GLC by remote
sensing was the first to carry out (Chen et al. 2015), and produced LSW datasets
(GlobeLand30-Water) at 30 m spatial resolution for the years 2000 and 2010
(GlobeLand30-Water 2000 and GlobeLand30-Water 2010). This paper introduces
the mapping method for GlobeLand30-Water products, and the spatial distribution
and fluctuation of LSW on a global scale.

18.2 Data and Pre-processing

1. Collection and processing of 30 m images

The remote sensing image data adopted for 30 m global water remote sensing
mapping in 2000 and 2010 are mainly Landsat TM/ETMC images, while China’s
HJ-1 satellite images are used as supplements for areas not covered by the 2010
Landsat images. All Landsat TM/ETMC images are downloaded from EROS
Data Center and are of L1T processing level. The error in registration of Landsat
TM/ETMC images of the two periods upon inspection and repeated rectification
is less than 1 pixel, whereas that in registration between Landsat TM/ETMC and
HJ-1 remote sensing images is less than 1.5 pixels. For 2010 ETMC SLC-off data,
the interpolation methods proposed by Chen et al. (2011) were used to process the
missing data.
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Effective overlay of global 30 m classified images for the two periods is achieved
through optimization and processing. In total, there were 10,270 Landsat TM and
ETMC images in 2000 and 9907 Landsat TM and ETM images and 2640 HJ-1
images in 2010.

2. Reference data

To improve water interpretation accuracy, many reference datasets were col-
lected, such as a global 1:1,000,000 fundamental geographic base map database
(rivers and lakes), 4 sets of global 1 km land cover products, 2 sets of global 300 m
resolution land cover products, global 250 m LSW mask raster data, global 90 m
SRTM and 30 m ASTER GDEM, and global lake wetland data. In addition, 30 m
resolution land cover data were also collected in some areas, such as Europe’s CLC
(Corine Land Cover), NLCD (National Land Cover Dataset) of USGS, China’s
Land Use Data, etc. Other data used in this research include: (1) MODIS 8 day
composite of surface reflectance product (MOD09A1) at 500 m spatial resolution,
and (2) vector data of Köppen climate zone (13 one-level climate zones) for
analyzing water area and water ratio of global and continental LSW.

18.3 Global 30 m LSW Mapping Methods

To improve water extraction accuracy and reduce workload, a detailed work process
was developed with three aspects, namely, pixel extraction, object filtration, and
human-computer interaction editing, so that the water extraction process benefits
from integration of multiple classification methods and implementation of strict
quality control over all links. Based on the analysis and comparison of different
automatic classification algorithms for remote sensing extraction of water, three
pixel-based automatic classification methods, namely, supervised classification,
prior information-based decision tree extraction, and maximum likelihood mask
extraction, are performed using spectral features (pure water, sediment-containing
turbid water, and eutrophic water) and spatial-temporal features (geometric shapes
and phase difference) of water in different areas worldwide, and the methods are
used for classified water extraction in global water remote sensing mapping. As
for the results of automatic classification, polygons are filtered by using segmented
objects produced using eCognition software to remove finely-broken polygons,
eliminate the salt and pepper effect, and obtain object-based water classification
results. Meanwhile, knowledge rules are used to rapidly locate polygons that may
have quality problems, to facilitate manual verification and processing. A convenient
human-computer interaction environment is established to conduct inspection and
editing for object-based water classification results image by image, including
inspection of polygons one by one, coordination of polygons, classified edge
matching, etc. to obtain high-accuracy water classification results. Refer to Fig. 18.1
for the process and method.
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Fig. 18.1 Diagram of global water extraction methods

18.3.1 Pixel-Based Water Remote Sensing Extraction

Given spectral, scale and phase differences and other problems of global LSW
extraction, and based on existing water remote sensing extraction algorithms, some
integrated extraction methods such as prior information-based decision tree water
extraction, maximum likelihood mask water extraction, and training sample-based
supervised classification are formulated through the study and are recommended
for automatic water extraction. Technicians can select and apply this method with
maximum efficiency and the highest accuracy according to actual situations such as
water distribution, water features, etc. on the classified image.

1. Prior information-based decision tree water extraction method

Various types of water are extracted (Sun et al. 2012) respectively through the
decision tree method, e.g., using indexes, setting threshold values and slope filtration
from the point of spectral difference and according to form features of a water
reflectance curve. First, pure water can be extracted by setting band 2 to be greater
than band 5 and less than a threshold value based on the feature that reflectance of
pure water in TM/ETMC images decreases with increase of wavelength. Secondly,
eutrophic water can be extracted by setting the maximum reflectance to be in band
4 and less than a certain threshold value according to the feature that the maximum
wave spectral reflectance of eutrophic water is in band 4 and much less than that of
vegetation. NDVI can be used to further optimize the result to avoid being confused
with rice paddy fields. Finally, sediment-containing turbid water can be extracted
by setting the maximum reflectance to be in band 5 and less than a certain value
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according to the feature that the maximum reflectance of the sediment-containing
turbid water is in band 5 and much less than that of bare soil or settlement areas.

2. Maximum likelihood mask method based on spectrum relationship and
tasseled cap transformation humidity component

In case of complex types of regional ground objects, the optimal space mask (Wu
et al. 2008) of extracted water is established by use of the spectrum relationship
((band 2 C band 3) – (band 4 C band 5)) and the tasseled cap transformation
humidity component TCW to compensate for the disadvantage that the information
of tributaries of river systems and small water cannot be extracted accurately.
The enhanced image threshold method of (band 2 C band 3) – (band 4 C band
5) > threshold value t1 provides good water extraction in farmland, forest land and
mountains, and the enhanced image threshold method of tasseled cap transformation
humidity component TCW > threshold value t2 provides good water extraction
for building residents. The mask rule is used to acquire the optimal space mask
to extract information about all water and some ground objects, and then the
maximum likelihood method is used to extract water information exactly. The
method reduces the ratio of extracting other ground objects mistakenly and thus
ensures the information of tributaries and small water bodies can be extracted
properly.

18.3.2 Object-Oriented Polygon Processing

Being subject to algorithm, sample, image, and many other factors, water clas-
sification results obtained through automatic pixel-based classification are of low
accuracy generally, and there are problems such as polygon breaking, serious salt
and pepper effect, etc. The second processing step of water remote sensing mapping
is object-oriented processing of water classification results. Each basic image used
for classification is segmented at three scales (15, 20, and 30) using the eCognition
software, which generates segmented object results on the three scales. The scale
segmentation result best matching water is selected from segmented objects of each
image at multiple scales and will be used for automatic polygon filtration of pixel
classification result, thus obtaining object-based water classification results of each
image while reducing finely-broken polygons and eliminating the salt and pepper
effect. The process is shown in Fig. 18.2.

After object-based water classification results of each image are obtained, a
corresponding rule can be established by use of relevant knowledge to filter out
water objects and search for polygons that may be mistakenly classified as water,
which will be marked for manual verification. Main methods are as follows:

1. Using DEM data to search for mistakenly extracted polygons due to shadow.
Based on global DEM data, calculate the area with slope greater than 8ı,
filter water classification objects of each period through slope information
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Fig. 18.2 Diagram of water extraction process based on segmented objects

aiming at mistaken extraction of water and shadow due to spectrum consistency,
to identify areas with mountain shadows easily confused (Niu et al. 2009),
and conduct verification and correction through human-computer interaction to
reduce mistaken classification of water.

2. Analysis of area with water data inconsistent in the two periods. Acquire the
area with classification results inconsistent in the two periods through a spatial
operation of water results of the two periods, mark the area with size greater than
certain threshold value, and then develop a key manual examination on them in
later period.

3. Data statistics and analysis. Count dimensions in the two periods by county
(region), compare them with each other or with official document data, and verify
and analyze exceptional situations (if any).

18.3.3 Editing Based on Human-Computer Interaction

To ensure consistency of global water extraction in scales and spaces, editing
and processing based on human-computer interaction are conducted for results
of classified water extraction in accordance with unified mapping standards to
address problems such as seasonal water, type confusion, distinction between inland
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water and sea water, non-matching of edge of classified image, etc., to reduce
omission and commission errors in classification of water information and maximize
extraction accuracy. In addition to the check and modification of “defective”
polygons one by one found through knowledge rules, classification results will also
be processed according to the unified scale standard, while many quality control
methods will be adopted for cross-checking to verify the correctness of water
extraction.

18.4 Methods for Global LSW Analysis

This paper comprehensively analyzes the spatial distribution patterns and dynamic
change characteristics of LSW by calculating indicators like water area, water ratio,
and the spatial variability index.

18.4.1 Water Ratio and Spatial Variability Index

In order to better characterize the spatial distribution of LSW, this paper selects a
0.1 � 0.1 degree grid as the basic statistical unit and defines the water ratio (R) and
the spatial variability index (V) as follows:

R D AW=AL (18.1)

V D Std.R/=mean.R/ (18.2)

where AW is the water area within the basic statistical unit, AL is the corresponding
land surface area, Std(R) is the standard deviation of the water rate within the
statistical unit, and mean(R) is the average of water ratio. The greater the spatial
variability index, the more uneven the water distribution in space; the lower the
index, the more uniform the water distribution in space. Therefore, it can reflect or
characterize the non-uniformity of LSW’s spatial distribution.

18.4.2 Temporal Correction for Water Area Counting

How to keep temporal consistency has long been regarded as a difficult task for
mapping 30 m global land cover. The acquisition dates of most images used for the
two GlobeLand30-Water products range from April to September, while a small
number of imageries range from January to March and October to December.
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Considering that each interpreted water result reflects the water distribution status
at a specific time and cannot be directly used for spatio-temporal pattern analysis
due to seasonal fluctuation of LSW, we proposed a method to correct temporal
information for GlobeLand30-Water products on the basis of MODIS time series
data. The Köppen climate zones were taken as the basic unit (Peel et al. 2007);
within each unit we captured the seasonal characteristics of water area using MODIS
images and then corrected the area of GlobeLand30-Water products according to the
average annual water area. The water area at each date (AD) and the average annual
water area (Am) based on MODIS images were counted for each climate zone. Thus
the correction coefficient (kD) at each date for each climate zone was calculated as
the ratio of average annual water area (Am) and water area at each date (AD):

kD D Am=AD (18.3)

Then the corresponding correction coefficient can bec determined to correct the
water area to the average annual water area based on the acquiring date and location
of each of the 30 m images:

AH 0

D D AH
D � kD (18.4)

Where D is the acquisition date of the 30 m imagery, AH
D is the water area at date

D based on the 30 m imagery, and AH
D’ is the corrected water area to the average

annual level.
We designed a Clustering by Eigen Space Transformation (CBEST) algorithm

to extract water area using MODIS time series data rapidly and accurately. First,
the multi-bands data were converted to the principal components space. The Eigen
values derived from the principal component analysis were used to segment the
whole space into spatial units. Then the original data were replaced with the
number and mean value in each spatial unit. Finally a K-means cluster algorithm
was employed based on spatial unit. Compared with the traditional K-means
algorithm, the CBEST algorithm only traverses the feature space units, and thus
greatly improves the clustering efficiency. A two-level CBEST clustering method
was implemented to further improve the computational efficiency. The first level
clusters each MODIS image by 100 classes. The second level clusters the centers
of spectral clusters derived from the first level with the same number of classes.
According to the mapping relationship between the two clusters, the pixel values of
the imagery were assigned to spectral cluster terminals. Finally, the corresponding
spectral cluster of water bodies was extracted from the spectral cluster termi-
nals by interactive interpretation, and the time-series water results were thereby
achieved.

To assess the accuracy of water results based on MODIS, 245 images covering
water bodies from the years 2000 and 2010 were selected. The water area based
on GlobeLand30-Water products was compared with that based on MODIS images
from the same date. Figure 18.3 shows a high correlation relationship between these
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Fig. 18.3 Comparison between the water areas based on MODIS and GlobeLand30-Water

two results. The water areas based on MODIS were underestimated, which means
some omissions exist for MODIS’ results. However, the small omission errors have
no influence on the relative relationship between different seasonal water areas.
Therefore, it can be concluded that the water areas based on MODIS can be used to
correct those based on GlobeLand30-Water products.

18.5 Global LSW Mapping Results and Validation

Figure 18.4 shows the global LSW mapping results for 2010, i.e. GlobeLand30-
Water 2010 product. The accuracy assessment of the GlobeLand30-Water products
was conducted by independent institutes. Samples for inspection comprise two
parts: one consists of polygon samples selected from 30 m resolution images; the
other consists of point samples acquired from the field survey. A method of stratified
random sampling is adopted to acquire the spatial distribution of samples for
inspection, and then specialists familiar with this area and with experience in visual
interpretation will judge one by one based on the classified image, a high-resolution
image (Google Earth, etc.), field observation data, etc., and finally establish datasets
of samples for inspection for 2000 and 2010.

The accuracy assessment result of the global LSW product is obtained through
calculation that provides accuracy self-assessment results for five global working
areas. The numbers of global water samples for 2000 and 2010 are 10,237 and 9597
respectively, and the average overall accuracy is 96.51 % and 96.48 % respectively.
Table 18.1 shows the numbers of validation samples and overall accuracy. There
we can see that water remote sensing products in Europe, America, and Oceania
have the highest accuracy, followed by Northeast Asia and Central Asia, and then
by Africa, Southeast Asia and West Asia. Table 18.1 indicates that the lowest overall
accuracy is higher than 92 % for Southeast Asia and West Asia.
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Fig. 18.4 Distribution map of global land surface water in the year 2010

Table 18.1 Global water accuracy self-assessment

Water in 2000 Water in 2010

Region Number of samples
Overall
accuracy (%) Number of samples

Overall
accuracy (%)

Northeast and
Central Asia

2003 96.00 2040 97.00

Southeast and
West Asia

725 93.20 697 92.70

Europe 1210 99.66 1200 98.75
Africa 2745 93.60 2745 93.70
America 1215 98.00 1215 98.00
Oceania 2339 98.60 1700 98.60
Global overall 10,237 96.51 9597 96.48

18.6 Global LSW Statistics and Analysis

18.6.1 Overall Statistics

Further statistics show that global LSW distributes unevenly. The proportions of
LSW areas of all continents in 2010 are as follows: North America (41.62 %), Asia
(33.80 %), Europe (8.59 %), Africa (7.40 %), South America (7.28 %), and Oceania
(1.31 %). Sorted by water ratio, the descending order is North America, Europe,
Asia, South America, Africa, and Oceania (Table 18.2). In terms of spatial variabil-
ity index, the descending order is Africa, Oceania, South America, Asia, Europe,
and North America (Table 18.2). It shows that the spatial distribution of LSW in
North America is relatively uniform and that in Africa it is most concentrated with
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Table 18.2 Land surface water area and water ratio statistics for continents in year 2010

Water area
(�106 km2)

Proportion to the
global LSW area (%) Water ratio (%)

Spatial
variability index

Global 3.6767 100.00 2.73 3.42
Asia 1.2428 33.80 2.79 3.71
Europe 0.3159 8.59 3.22 2.90
Africa 0.2719 7.40 0.91 8.09
North America 1.5302 41.62 6.28 2.29
South America 0.2678 7.28 1.51 4.51
Oceania 0.0482 1.31 0.57 6.64
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Fig. 18.5 Top 10 countries with largest water areas and their water ratios in 2010

the greatest spatial discrepancy. The spatial distribution differences of LSW have
some influence on water resources and the ecological environment.

According to national statistics, the top 10 countries with the largest LSW areas
in 2010 are Canada, Russia, the United States, China, Brazil, Kazakhstan, Tanzania,
Argentina, Sweden, and Finland. In these countries, the water ratio of Canada is the
highest, and those of China and Argentina are the lowest (Fig. 18.5). The value of
water ratio can partially reflect the situation of water deficit for a country.

18.6.2 Spatial Distribution Patters of Land Surface Water

Figure 18.6 shows the global water ratio in 2010 and the curves of water area
and water ratio along longitude and latitude. Latitudinally, the LSW area of the
Northern Hemisphere accounts for 86.73 % of the world, and its water ratio is
3.18 %. LSW between the latitudes of 30ıN and 75ıN occupies 91.08 % of the
Northern Hemisphere’s water area. Many large water bodies, such as the Caspian
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Fig. 18.6 Global water ratio map with water area and water ratio along latitude and longitude in
2010

Sea, the Aral Sea, and the Great Lakes, are distributed between 40ıN and 50ıN.
The LSW area of the Southern Hemisphere is only 13.27 % of the world’s total
water area, and its water ratio is 1.41 %. The tropical region from the equator to
15ıS occupies 59.91 % of the Southern Hemisphere’s water area, and the water rate
in this region is 1.97 %.

From the aspect of longitude, the water areas of the Eastern and Western
Hemispheres are roughly equal, and LSW is distributed relatively uniformly in
the Eastern Hemisphere. In the Western Hemisphere, LSW mainly gathers between
60ıW and 140ıW.

Compared with the water area results from some existing land cover or water
products (Table 18.3), there are remarkable differences due to the use of different
data sources, year/time, spatial resolution, classification systems, and classification
methods. The results show that the global LSW areas range from 3.03 to 4.57 mil-
lion km2. Overall, GlobeLand30-Water products and other products have a high
consistency (Fig. 18.7) from the distribution trend along latitude, and the advantage
of its finer spatial resolution makes the result more accurate.

18.6.3 Land Surface Water Fluctuation Between 2000
and 2010

The total area of global LSW is 3,741,900 km2 and the water ratio is 2.78 %
in 2000, whereas in 2010 these are 3,676,700 km2 and 2.73 %, respectively. The
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Table 18.3 Water areas of existing global land cover or water products (unit: 106 km2)

GLC2000 GlobCover2005 GlobCover2009 UMD-1 km USGS-1 km GLWD

Global 3.64 3.26 3.05 4.57 3.49 3.03
Asia 1.14 1.09 1.02 1.66 1.18 0.99
Europe 0.28 0.26 0.23 0.44 0.35 0.23
Africa 0.31 0.31 0.30 0.48 0.36 0.31
North America 1.53 1.22 1.13 1.39 1.20 1.21
South America 0.27 0.27 0.26 0.36 0.34 0.26
Oceania 0.11 0.11 0.10 0.24 0.07 0.02
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Fig. 18.7 Water area distributions along latitude of existing global land cover products

Table 18.4 Land surface water area and water ratio for 2000 and 2010

Water area
in 2000
(106 km2)

Water ratio
in 2000 (%)

Water area in
2010
(106 km2)

Water ratio
in 2010 (%)

Difference
(103 km2)

Relative
variation (%)

Global 3.74 2.78 3.68 2.73 �65.2 �1.77
Asia 1.25 2.81 1.24 2.79 �7.2 �0.58
Europe 0.33 3.32 0.32 3.22 �9.9 �3.12
Africa 0.29 0.96 0.27 0.91 �14.2 �5.22
North
America

1.53 6.29 1.53 6.28 �2.1 �0.14

South
America

0.29 1.62 0.27 1.51 �20.1 �7.49

Oceania 0.06 0.71 0.05 0.57 �11.6 �24.06

overall change of LSW between 2000 and 2010 is small, while the fluctuations for
continents are significantly differentiated (Table 18.4). The LSW area fluctuation
of Oceania is the largest one among all the continents, and the relative variation
is �24.06 %; the relative variations of South America, Africa, and Europe are
�7.49 %, �5.22 %, and �3.12 %, respectively. The LSW areas in Asia and North
America fluctuate least with variations of �0.58 % and �0.14 %. Figure 18.8 shows
the spatial pattern of LSW fluctuation between 2000 and 2010.
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Fig. 18.8 The spatial pattern of land surface water fluctuation between 2000 and 2010

18.7 Conclusions and Discussion

Effective overlay of images for two periods is achieved through geometric and
atmospheric rectification to image data, ETMC band data interpolation and other
processing with preference given to Landsat TM/ETMC, HJ-1 and other images
with 30 m spatial resolution. Pixel-based integrated water extraction methods such
as a prior information-based decision tree, maximum likelihood mask, etc. are used
to acquire a water pixel classification result of each image rapidly. Segmented object
results of different scales generated by eCognition software are used to filter pixel
classification results and to form object-based water classification polygons for
each image. Different knowledge rule sets are established to check classification
polygons, and human-computer interaction is adopted for verification and editing,
thus ensuring the correctness of water classification results and consistency of scales
and standards. The completed global LSW datasets (GlobeLand30-Water 2000 and
GlobeLand30-Water 2010) for the two periods have the highest available resolution
on a global scale, and the average overall accuracy is 96 % based on accuracy
self-assessment analysis. Based on 30 m resolution remote sensing image data and
supplemented by 500 m resolution MODIS image data, two datasets of global land
surface water (GlobeLand30-Water 2000/2010) were produced, and then statistics
data of water area and water ratio were calculated. These data provide fundamental
information for analyzing spatial distribution of global LSW, revealing the regional
discrepancies, and its temporal fluctuation pattern.

Due to the dynamic nature of LSW, the water areas derived from remote sensing
data only represent a specific temporal characterization of LSW, and cannot directly
reflect the amount of water resources. The differences between LSW products
of 2000 and 2010 can reflect only the variations of the climatic conditions and
processes of the water cycle for these separate years. The trend analysis of LSW
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change requires continuous and long time series data products. Therefore, further
research should involve a sequence of measurements of LSW with high spatial
resolution, and analyses of the effects and causes of LSW changes with regard to
global warming, land use change and human activities in hotspot areas.
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Chapter 19
Multitemporal Remote Sensing of Coastal
Waters

Susanne Kratzer, Krista Alikas, Therese Harvey,
José María Beltrán-Abaunza, Evgeny Morozov, Sélima Ben Mustapha, and
Samantha Lavender

Abstract In this chapter we address some of the recent developments in marine
coastal remote sensing with regards to the evaluation of water quality from space
using multi-temporal data. Most chapters in this book are devoted to terrestrial appli-
cations, whereas aquatic remote sensing requires a completely different approach
in terms of mission and sensor design as well as data analysis and processing.
Therefore, the first section is a general introduction to marine remote sensing. Then
we report recent results from remote sensing of the Baltic Sea, which is optically
dominated by the absorption of light by coloured dissolved organic matter (CDOM),
and during summer months, by high standing stocks of filamentous cyanobacteria.
Results both from basin-wide as well as coastal applications in the north-western
Baltic Sea are presented. In next section we report results from the Bay of Biscay in
the north-eastern Atlantic Ocean west of France, which is an area highly influenced
by river discharge and dinoflagellate blooms, and the subsequent section is about
a coastal area in the eastern Beaufort Sea in the Arctic that’s influenced by a pool

S. Kratzer (�) • T. Harvey • J.M. Beltrán-Abaunza
Department of Ecology, Environment and Plant Sciences, Stockholm University,
10691 Stockholm, Sweden
e-mail: Susanne.Kratzer@su.se

K. Alikas
Department of Remote Sensing, Tartu Observatory, 61602 Tartumaa, Estonia

E. Morozov
Department of Ecology, Environment and Plant Sciences, Stockholm University,
10691 Stockholm, Sweden

NIERSC, 14th Line 7, Office 49, Vasilievsky Island, 199034 St. Petersburg, Russia

S.B. Mustapha
Department of Ecology, Environment and Plant Sciences, Stockholm University,
10691 Stockholm, Sweden

Institut Maurice-Lamontagne, Peches et Océans Canada, C.P.1000, Mont-Joli, Québec,
G5H 3Z4, Canada

S. Lavender
Pixalytics Ltd, 1 Davy Road, Plymouth Science Park, Plymouth, Devon, PL6 8BX, UK

© Springer International Publishing AG 2016
Y. Ban (ed.), Multitemporal Remote Sensing, Remote Sensing
and Digital Image Processing 20, DOI 10.1007/978-3-319-47037-5_19

391

mailto:Susanne.Kratzer@su.se


392 S. Kratzer et al.

of CDOM. In all sections we discuss the relevance of regional remote sensing for
ecological analysis and coastal management. The chapter concludes with a synthesis
on merging of satellite data from different ocean colour missions and the limitations
for coastal applications are discussed.

Abbreviations

Acronym Explanation
AVHRR: Advanced Very High Resolution Radiometer (NOAA)
Case-1 waters Waters that are optically dominated by water itself and by Chl-a

(and correlated CDOM)
Case-2 waters Waters that are also optically significantly influenced by SPM

and/or CDOM (besides water and Chl-a)
Chl-a Chlorophyll-a
Chl-b Chlorophyll-b
CDOM Chromophoric or Coloured Dissolved Organic Matter
CZCS Coastal Zone Colour Scanner (NASA)
DIN Dissolved Inorganic Nitrogen
DIP Dissolved Inorganic Phosphorus
EC European Commission
ENVISAT European ENVIronmental SATellite (ESA)
ESA European Space Agency
EU European Union
FR Full resolution
FUB Freie Universität Berlin
GMES Global Monitoring of Environment and Security
GSM Global System for Mobile communications
HELCOM HELsinki COMmission
ICOL Improved Contrast between Ocean and Land processor
IOPs Inherent Optical Properties
MCI Maximum Chlorophyll Index
MERIS MEdium Resolution Imaging Spectrometer (ESA)
MLAC Merged Local Area Coverage
MODIS MODerate Imaging Spectroradiometer (NASA)
NASA National Aeronautics and Space Administration
NIR Near-InfraRed
NOAA National Oceanic and Atmospheric Administration
NPP Net Primary Production
NSIDC National Snow and Ice Data Center
OC Ocean Colour
OLCI Ocean and Land Colour Instrument (ESA)
RGB Red Green Blue
RR Reduced resolution
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SeaDAS SeaWiFS Data Analysis Software
SeaWiFS Sea-viewing Wide Field-of-view Sensor (NASA)
SPM Suspended Particulate Matter
SST Sea Surface Temperature
TOA Top-of-Atmosphere
TSM Total Suspended Matter
VIS Visible
WFD Water Framework Directive 2000/60/EC
MSFD Marine Strategy Framework Directive 2008/56/EC

Optical coefficients
a Absorption coefficient
b Scattering coefficient
bb Backward scattering coefficient
bf Forward scattering coefficient
G440 Absorption coefficient of CDOM
I Radiance
E Irradiance
Ed Downwelling Irradiance
Kd Diffuse attenuation coefficient of downwelling irradiance
Rrs Remote Sensing Reflectance

19.1 Introduction

Before satellite ocean colour remote sensing techniques were available, mea-
surements of water quality parameters derived from seawater optical properties
were spatially isolated and infrequent, being available primarily from ships and
moorings, with a few airborne campaigns. With the new space imagery the full
dynamics of algal blooms and river plumes were suddenly revealed, and a new
understanding of ocean currents and dynamics was fostered in an unprecedented
way (Whitehouse and Hutt 2006). The first ocean colour (OC) sensor launched was
the Coastal Zone Color Sensor (CZCS) developed by NASA. It was launched on
the Nimbus-7 satellite and operational from 1978 to 1986 (McClain 2009). CZCS
was very speculative and a proof-of-concept mission for studying phytoplankton
from space, but worked well for open ocean applications and provided the first
estimates of global ocean productivity (Behrenfeld and Falkowski 1997). However,
it did not have the required spectral and spatial resolution to deal with the
complexity of coastal waters, nor could it sufficiently correct for atmospheric
effects. The main operational OC missions to date have been NASA’s ‘Sea-viewing
Wide Field-of-view Sensor ‘SeaWiFS (1997–2010), and the ‘MODerate Imaging
Spectroradiometer’ MODIS (since 1999) and ESA’s ‘Medium Resolution Imaging
Spectrometer’ MERIS (2002–2012). MERIS deserves a special mention as it was
the first sensor especially designed for coastal applications (Doerffer et al. 1999). It
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ceased working in March 2012 and has been replaced by the Ocean and Land Colour
Instrument (OLCI) on Sentinel-3 on 16 February 2016 as part of the Copernicus
mission (Donlon et al. 2012).

Difference Between Terrestrial and Ocean Colour Remote Sensing Before dis-
cussing the optical properties of marine waters, we will first have a closer look at
the difference between terrestrial and OC remote sensing data in terms of spatial,
spectral and temporal resolution. The main difference between the terrestrial and
marine biota is that the sea is highly dynamic as marine algae are suspended in
the water and so move with the currents (advection), whereas plants do not change
location and so their growth and decay can be monitored by examining the temporal
variability of each individual pixel. Vegetation growth and the change in tree and leaf
cover happen generally over a span of weeks or months (10-100 d) rather than within
a few days (IOCCG 2000). The life cycle of algal blooms is much shorter than that
of typical terrestrial plants, and requires suitable hydrodynamic conditions to deliver
the nutrients and solar radiation needed for phytoplankton growth. An algal bloom,
can develop within a few days, and disappear again within a week (Sect. 19.2.4).
This is important in terms of the required temporal resolution (frequency) of remote
sensing data: in terrestrial remote sensing the development can focus on attaining
the best possible spatial resolution. Nowadays, the spatial resolution of terrestrial
remote sensing data is in the range of about 2–30 m, whereas in OC remote sensing
one needs to focus on developing satellite systems with a good temporal resolution
as phytoplankton dynamics in the coastal zone can change on a daily or even diurnal
basis. Some dinoflagellates, for example, are known to migrate up and down the
water column dependent on the light and food availability which may have a drastic
effect on the chlorophyll-a (Chl-a) concentration in the upper water layers that are
sensed by OC remote sensing. Phytoplankton are also known to exhibit a diurnal
change in photosynthetic production, dependent on the change in solar radiation
during the day which is at its maximum values during mid-day. In areas of high tidal
influence, the physical dynamics in bays and estuaries can also change drastically
within 4–6 h.

Trade-Off Between Spatial and Temporal Resolution In order to get a good spatial
resolution, and hence retrieve pixels of a smaller size, higher resolution sensors have
a narrower swath width, which means they can only cover a smaller area of the Earth
when revolving around the Earth. It therefore requires the accumulation of many
more orbits, over subsequent days, to build up a complete global picture, leading to
revisit intervals of many days and thus to a lower temporal resolution. The revisit
time of Landsat (30 m spatial resolution) is about 16 days for Landsat Thematic
Mapper (TM) and Landsat Enhanced Thematic Mapper (ETMC), whereas OC
sensors are designed and launched in such a way that they have a better temporal
resolution i.e. the repeat time is optimised with a wider swath so that they cover
a given location on the Earth over 1–3 days in order to capture the dynamics
of phytoplankton production, coastal currents and river plumes, but this in turn
increases the pixel size, leading to a lower spatial resolution. For OC missions the
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standard pixel size is about 1000 m for open ocean applications (e.g. SeaWiFS and
most MODIS channels), whereas in coastal water applications 250–300 m has been
the highest spatial resolution. MODIS generally has 1 km resolution for its ocean
colour bands and several terrestrial channels, plus a 250 m panchromatic channel,
and it is also possible to retrieve 250 m resolution for the OC bands with a statistical
method called ‘pan sharpening’. MERIS data has 300 m resolution, the so-called
full resolution (FR), in all 15 programmable bands, but over the open ocean the full
resolution was reduced in order to provide 1.2 km Reduced Resolution (RR) data.
The Korean Geostationary Ocean Color Imager (GOCI), the first of its kind, has a
spatial resolution of about 500 m over the Korean Sea.

Figure 19.1 shows RGB composites of a MERIS RR image (Fig. 19.1a) and a
MERIS FR image (Fig. 19.1b) compared to a Landsat 5 TM image (Fig. 19.1c).
One can clearly see that the 30 m resolution of Landsat is much more appropriate to
resolve coastal morphology and to visualize coastal dynamics; the coastline is much
clearer and the sediment plumes are much more detailed. However, the spectral

Fig. 19.1 Comparison of top-of-atmosphere (a) MERIS Reduced Resolution Image, (b) MERIS
Full Resolution Image and (c) Landsat 5 TM image all acquired at the start of July 2006 over
the Zeeland area of the Netherlands coast; images are in their provided projections, which is the
satellite projection for the MERIS data and UTM for the Landsat data, with the geographical area
shown being around 250 km in width. (d) is the MERIS Data corrected to bottom-of-atmosphere
remote sensing reflectance using the NASA SeaDAS processor. Courtesy of ESA and the U.S.
Geological Survey
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bands for the Landsat missions were chosen with land rather than OC applications
in mind, so above the sea it is primarily used to derive information on Suspended
Particulate Matter (SPM) as it does not have the required spectral resolution of
OC sensors (meaning that the bands in the visible are too broad and too few in
numbers); however, Chl-a has been mapped with Landsat when present in high
concentrations (e.g. Nazeer and Nichol 2015). Figure 19.1d shows atmospherically
corrected MERIS FR data, which is the first step in deriving quantitative information
as described later in this section.

In addition to Landsat, sensors such as the Compact High Resolution Imaging
Spectrometer (CHRIS/PROBA) have also been used for coastal OC remote sensing
(spatial resolution of approximately 18 m) although they were primarily designed
for terrestrial applications. In summary, it may be stated that in terrestrial remote
sensing it is possible to concentrate effort and technical development on achieving a
better spatial resolution, whereas in OC remote sensing a good temporal resolution
is mandatory.

Spectral Resolution Besides the difference in requirements for spatial and temporal
resolution, there is also a difference in the requirements for spectral resolution
and signal-to-noise ratio (SNR) within these bands. In terrestrial remote sensing
the bands of multi-spectral sensors tend to be rather broad (30–70 nm), whereas
the bands in OC remote sensing should not be broader than 10 nm and tend to
be much greater in numbers to capture subtle spectral features (IOCCG 2000).
The number of bands is important for the number of water quality parameters
that can be retrieved from the reflectance signature e.g. when developing band
ratio algorithms to derive various geophysical products. It must be stated, however,
that there is a trend towards hyperspectral remote sensing (e.g. Hyperion and the
underlying instrument for MERIS and CHRIS/PROBA), although capturing and
downloading hyperspectral data is an operational constraint in terms of the mission
cost-efficiency.

Difference in Data Analysis and Processing As well as differences in sensor
and mission design, there is also a major difference in how the data is processed
(Sathyendranath 2000). In terrestrial remote sensing, clustering and classification
are some of the methods used to derive information about different vegetation and
land use types as well as soil cover. In OC remote sensing the main methods
used to derive information about water quality are regression type empirical and
semi-empirical algorithms plus inversion techniques such as neural networks (NN)
that are more popular in coastal waters because of their optical complexity. These
techniques are used to derive the main bio-geophysical products: Chl-a, SPM
and CDOM that is sometimes also referred to as yellow substance (YS). This is
possible because of the specific scattering and absorption properties of each optical
constituent, with the reflectance of the sea (the colour of the sea) determined by a
ratio between spectral absorption and backscatter.

In OC remote sensing, classification is mostly used to develop flags for those
pixels that clearly differ from the spectral signature of a water pixel, so that
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these pixels can be masked out (or flagged), and subsequently are not used in the
processing of water pixels. Examples include the high reflectances from ice and
clouds as well as land. It must be stated, however, that information about coastal
soil and vegetation type is still interesting for coastal zone management and for
coastal water optics, e.g. large expanses of bare soil lead to higher erosion, which
may cause an increase in the run-off and therefore SPM. Wetlands, marshland and
bog areas tend to be high in humic substance, and so the run-off may cause an
increase in CDOM. Forests may act as a buffer area and reduce coastal run-off, and
also have a lower impact on the land adjacency effect. ‘Adjacency effects’ can be
described as blurring that occurs in pixels in close proximity to the coast. Land is
usually more reflective than water, and an imager that measures above water close
to the coastline may also receive scattered light that originated from the nearby land
pixels.

Dynamic Range Another important requirement for OC sensors in coastal waters
is that they must have a wide dynamic range to sense both the low reflectance from
relatively dark water bodies as well as the high reflectance from waters that are laden
with high concentrations of inorganic SPM. This means that they must achieve a
high SNR even where the reflectance from water bodies is low i.e. 5–10 %, while not
saturating at very high reflectances. Most of the top-of-the-atmosphere (TOA) signal
over water surfaces originates from atmospheric processes such as gas and aerosol
scattering. Atmospheric correction is therefore a critical step in the processing of
OC data.

Optical in-Water Constituents As previously mentioned, the reason why we
can sense optical water constituents is because of their specific absorption and
scattering properties. Pure water absorbs at long wavelengths, in the red part of
the electromagnetic spectrum, and the backscatter of water increases towards the
blue wavelengths. Therefore, water with little or no other constituents appears
blue. As the Chl-a concentration increases the water becomes greener and SPM
often causes red/brown water. These constituents play a substantial role in the
biogeochemistry of natural waters and are important for their optical properties.
They all have specific spectral absorption properties, which have an effect on
the reflectance signature, i.e. on the colour of the sea. The derived OC data
products are called Level 2 (L2) products whereas the directly measured TOA
signal is a Level 1 (L1) product. The key product for oceanographic studies
and coastal management is Chl-a as it can give a good indication of changes
in phytoplankton biomass and eutrophication (Sects. 19.2.4 and 19.3). Besides
Chl-a one can also derive the Maximum Chlorophyll Index (MCI) (Sect. 19.2.1)
the SPM concentration, which is a measure of the turbidity of the water, as
well as the absorption coefficient of CDOM, g440 (Kirk 2011). Further important
remote sensing products for management are Sea Surface Temperature (SST);
(Sect. 19.2.1), the spectral diffuse attenuation coefficient, Kd490 (Sects. 19.2.2 and
19.2.4), Secchi depth (Sect. 19.2.4), and the distribution of harmful algal blooms
(Sects. 19.2.3, 19.3, 19.4), all of which give important information about water
quality.
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Limitations Besides the limitation in spatial resolution there are several other
restrictions for OC remote sensing. One is the above-mentioned blurring of pixels
due to the adjacency effect. Adjacency has been quite a problem for coastal and
inland water remote sensing, but in recent years significant progress has been made
in correcting such effects. For example, the Improved Contrast between Ocean and
Land (ICOL) processor (Santer and Schmechtig 2010) has been shown to correct
for adjacency effects both in lake waters (Guanter et al. 2010) and the Baltic Sea
(Kratzer and Vinterhav 2010). Another way to correct for adjacency is the SIMilarity
Environment Correction (SIMEC), an algorithm first proposed by Sterckx et al.
(2011, 2015) for the correction of high resolution airborne remote sensing data in
the North Sea. SIMEC estimates the contribution of the background radiance in
correspondence with the Near-InfraRed (NIR) similarity spectrum (Ruddick et al.
2006) and has also been shown to correct well for adjacency effects in coastal and
in-land waters. Another limitation worth mentioning is the effect of cloud cover as
visible and NIR light is not able to penetrate through clouds. Although operational
OC imagers usually have a temporal resolution of about 1–3 days, about 50 % of the
scenes in the Baltic Sea region will be covered by cloud during May-July (Isemer
and Rozwadowska 1999), and in the Northern Atlantic it may even be up to 70 %
during summer. Additionally, the registration of images at high latitudes is limited
to March-October for the Baltic Sea, and only from April-September in the Arctic
Ocean; in winter months the solar radiation at low sun angles is too low for passive
remote sensing, and understandably the ice cover is also an obstacle to OC remote
sensing. Despite the high cloud cover over the Baltic Sea, Harvey et al. (2015) could
show that MERIS data still has a better temporal resolution than the data measured
in situ by the coastal monitoring program in the Himmerfjärden area; one of the
most monitored areas in the world. Combined with the good spatial resolution this
makes MERIS data a very powerful and cost-effective tool for monitoring of algal
blooms.

Sea Surface Temperature Very often analysis of spatial and temporal variations
of OC variables/products is facilitated by availability of other oceanographic data.
Algorithms for determination of such a key parameter as SST are worth mentioning.
Satellite-derived SST products are based on measurements of the infrared radiance
emitted from the sea surface which in turn depends on the water surface temperature
and emissivity. To avoid the interference of the atmosphere, the NOAA and
NASA SST retrieval algorithms (the so-called split-window algorithms) sense the
brightness temperature at the two wavelengths with different sensitivity to water
vapour: 11 �m (T11) and 12 �m (T12). This allows to retrieve SST accurately in
different atmospheric conditions. The most general expression for such algorithm
may be formulated as: SST D f (T11, T11-T12); (Robinson 2004). In the following
sections we show examples of how time series data derived from satellite can
improve our understanding of phytoplankton bloom development and ecology in
coastal waters. The areas of investigation are the Himmerfjärden bay in the Baltic
Sea, the Bay of Biscay and the Beaufort Sea, all shown in Fig. 19.2.
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Fig. 19.2 Areas of investigation

19.2 Remote Sensing of the Baltic Sea

The Baltic Sea, a semi-enclosed brackish sea, is situated in the north-eastern part of
Europe, and is surrounded by Scandinavia in the north, the Baltic countries in the
east and by the Polish and German coast in the south (Fig. 19.2). The Baltic Sea has
a salinity gradient ranging from 0 to 3 in the north to about 18–26 in the southwest,
with a mean salinity of around 7. The low salinity is caused by: the topography
with sills separating shallow basins and the narrow Danish Straits, which leads
to a restricted water exchange with the North Sea and a low water turnover rate;
and a high freshwater input from large rivers (Leppäranta and Myrberg 2009). The
drainage basin is about four times larger than the Baltic Sea itself, and the catchment
area covers 14 countries, nine of which border the sea. About 85 million people live
in the drainage basin and 40 million of these inhabit the coastal areas and big cities
along the coast, which leads to high anthropogenic stress for the marine ecosystem
and environmental problems, like eutrophication (HELCOM 2007; Leppäranta and
Myrberg 2009). The main optical constituent in the Baltic Sea is CDOM (Ferrari and
Dowell 1998). The high CDOM content (like the salinity) is linked to the restricted
water exchange, the freshwater input and land use with large forested and peat land
areas.
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19.2.1 Mapping Cyanobacteria Blooms in the Baltic Sea Using
the Maximum Chlorophyll Index (MCI)

The main bloom-forming filamentous cyanobacteria are the toxic Nodularia spumi-
gena and non-toxic Aphanizomenon sp in the open areas of Baltic Sea, and
potentially toxic Anabaena spp in coastal areas. The development of blooms is
favoured by Phosphorus (P)-rich water and, especially for N. Spumigena, by calm
and warm weather. Filamentous cyanobacteria blooms can occur from July to
September, and have a patchy spatial and temporal distribution.

Data and Methods Mapping extreme conditions, such as intense cyanobacteria
surface blooms, by OC remote sensing data requires alternative approaches to the
standard neural network approaches that have been used for atmospheric correction
and bio-optical models. Especially towards the end of a surface accumulation, the
cyanobacteria tend to break the water surface and therefore change the surface
optical properties to appear more like those of vegetation on land, which can be
identified using a red-edge ratio. During such events (Chl-a > 30 �g L�1), the
combination of Chl-a absorption and scatter can be clearly detected in the radiance
spectrum (Gower et al. 2008) and algorithms can be applied to extract the parameters
directly from L1 TOA data. The MCI has been developed by Gower et al. (2008),
which considers a peak at 709 nm in the radiance spectrum that has been associated
with high levels of Chl-a (above 30 �g L�1). It has been shown that parameters
like Chl-a, phytoplankton biomass and cyanobacteria biomass could be extracted
via MCI during cyanobacteria blooms (Binding et al. 2011, Alikas et al. 2010). As
the MCI spectral index is applicable both to L1 and L2 data, atmospheric correction
is not required.

Spatial Distributions of Phytoplankton Blooms in the Baltic Sea The MCI
equation was applied to MERIS RR L1 images to estimate the intensity and
frequency of surface accumulations in the Baltic Sea during the period 2002–2009
(Fig. 19.3). The monthly composites for July and August were calculated based on
the maximum value of MCI for each pixel. MCI composites reveal high variability
in surface accumulations between years. The most intense blooms usually develop
in the central part of the Baltic Sea in July, and were most pronounced in 2003
and 2005 when high SST in July initiated intense, large surface accumulations in
the central Baltic Sea. However, the locations and intensity of blooms can vary
from year to year. For example, in 2006, July was the warmest month (similar to
2005) in the southern and western Baltic Sea (max values 23–25 ıC, Fig. 19.4)
where the most intense blooms developed. However in August, the most intense
bloom was located in the Gulf of Bothnia where monthly mean SST reached the
maximum values of that year. Note that cyanobacteria blooms are rather rare in
the Gulf of Bothnia as these waters are P limited. The mean temperature in the
central Baltic Sea for July 2006 was lower than the average for that month from
2002–2009 (Fig. 19.4). The patterns of SST (Siegel and Gerth 2013 and references
therein) in 2006 correlate well with the bloom locations depicted by MCI; the
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Fig. 19.3 Maximum Chlorophyll Index applied on the MERIS RR L1 data over the Baltic Sea

surface blooms were dominating in the central and southern part in July and in
the northern part in August. SST was below the long-term mean in 2004 and 2007
and therefore the conditions were not suitable for intense bloom development. The
surface accumulations of cyanobacteria blooms in the Baltic Sea, as derived by
MCI, were compared with a method developed by Kahru et al. (2007) that was
applied to MODIS L2 data by SMHI (Öberg 2013). Both methods give similar
bloom patterns for the surface accumulations, demonstrating the capability of OC
remote sensing methods to monitor the development and the spatial distribution of
the blooms.

19.2.2 Mapping Changes in Water Transparency in the Central
Baltic Sea

Remote sensing estimates of transparency plays an important role in describing the
spatial and temporal variation of under-water light conditions that have a direct
effect on water quality and on primary production. In optical oceanography the
attenuation of light in the water column is commonly described by the diffuse
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Fig. 19.4 Anomalies of the monthly mean SST temperature of the Baltic Sea (long term means
1990–2004). Adopted from Siegel and Gerth (2013) and references therein

attenuation coefficient of downwelling irradiance, Kd(œ). Austin and Petzold (1981)
first developed an empirical band ratio algorithm, which used the blue-to-green
ratio of water-leaving radiances to derive Kd(490) over optical Case-1 waters.
Over optically-complex waters, a shift towards longer wavelengths is required since
the ratio Rrs(490)/Rrs(555) reaches an asymptotic value with increasing absorption
and loses its sensitivity at high Kd(490) values, resulting in an underestimation of
Kd(490) over turbid inland and coastal waters (Wang et al. 2009). It has been demon-
strated (Alikas et al. 2015), that the combined algorithm based on Rrs(490)/Rrs(709)
and Rrs(560)/Rrs(709) is very robust for retrieving Kd(490) values over a wide
range of all three main optical in-water constituents: Chl-a, Total Suspended Matter
(TSM) and CDOM. The Kd(490) algorithm was applied to the monthly means from
May until September, and to MERIS FR data for 2005 (Fig. 19.5). The spatial
distribution of Kd(490) in the Baltic Sea was well described - indicating lowest
transparency in the open Baltic Sea in July during the occurrence of cyanobacteria
blooms, and also a decreased transparency in coastal areas, presumably due to an
increase in both CDOM and TSM (Kratzer and Tett 2009). Therefore, this study
demonstrates that Kd(490) is a reliable measure of water transparency from space,
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Fig. 19.5 MERIS-derived monthly means (from May to September) of Kd(490) in Nordic lakes
and the Baltic Sea in 2005

and using the combined algorithm it is possible to derive more reliable and basin-
wide products from satellite data over coastal and open sea waters as well as inland
waters.

19.2.3 Remote Sensing of Algal Blooms in Himmerfjärden
Bay, North-Western Baltic Proper, Sweden

In this section we report results from a remote sensing study of Himmerfjärden bay
which is situated about 60 km south of Stockholm at 58.42–59.20 N 16.22–8.70 E
in the north-western part of the Baltic proper (Fig. 19.2). The bay and surrounding
area have been investigated intensely since the 1970s; the ship-based monitoring
program in this area is unique with an unusually high sampling frequency. A MERIS
time series was used to visualize the natural spatial and temporal dynamics of
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algal blooms, river outflows and seasonal variations in the region (Harvey et al.
2015). The Chl-a retrieval was based on a neural network (NN) approach adapted
to coastal waters and developed by the Free University Berlin, FUB (Schroeder
et al. 2007a, b). Before deriving the Chl-a concentrations, the data was corrected for
adjacency using ICOL (Santer and Schmechtig 2010) and applied to the MERIS
TOA radiances (Kratzer and Vinterhav 2010). The MERIS images were mostly
cloud-free and had been geometrically corrected, and screened for low sun angle,
failed atmospheric corrections as well as high sun glint (Harvey et al. 2015). The
in situ Chl-a data were all sampled and analysed spectrophotometrically by the
monitoring group at the Department of Ecology, Environment and Plant Sciences,
Stockholm University. For the comparison between satellite retrieved and in situ
measured Chl-a concentrations, an average of a 3 � 3 pixel-matrix around each
in situ monitoring station in the MERIS scene was used for every station and
date.

Figure 19.6 shows a time series of MERIS-derived Chl-a images from April
to September 2010. The spatial patterns and terrestrial influence close to land can
easily be followed on all images due to the observed changes in Chl-a concentration
as a response to nutrient input, e.g. in the Nyköping coastal bay area marked as
“Ny” on the image from 19 April 2010. Furthermore, the synoptic view makes
it possible to follow the spring bloom that occurs during April and May, as well
as the development and retreat of several summer blooms during July, August
and September. The spatial patterns and the extent of the blooms are clearly
visible. Figure 19.7 displays a synoptic view of the development of a cyanobacteria
bloom with surface accumulations during July 2008. Remote sensing makes it
possible to capture and study the change over time, the spatial coverage and the
variable distribution of the Chl-a concentrations within the bloom (Kahru et al.
2007: Ruddick et al. 2008; Harvey et al. 2015). In Harvey et al. (2015) it was
also demonstrated that OC time series data have a good agreement with in situ
measurements and that both the temporal and spatial resolutions increase when
adding satellite measurements; more data leads to an improved assessment of algal
blooms i.e. both the timing of the blooms as well as extent (e.g. Kahru et al.
2007). Ship sampling is time consuming and expensive, thus restricting the possible
number of stations and samples collected. In one example, the satellite data revealed
blooms that the conventional monitoring obviously missed out (Harvey et al. 2015).
Figure 19.8 shows a time series of MERIS and in situ Chl-a concentrations for
the productive season (April-Sep) in 2010 from two monitoring stations in the
Himmerfjärden bay. The spring bloom in April, typically for the area, is well
described by both methods. Both the concentrations and the variability are higher at
station H4. Harvey et al. (2015) also showed no difference between monthly means
of Chl-a concentrations between the methods. The two sets of MERIS image time
series data illustrate the increased information gained from remote sensing, thus
demonstrating the effectiveness of using of OC data together with conventional
methods when monitoring coastal zones; it is possible to follow the spatial and
temporal changes in a more comprehensive way.
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Fig. 19.6 MERIS images of chlorophyll-a concentrations for the productive season between
April and September 2010 acquired from the archipelago south of Stockholm, Sweden. The
Himmerfjärden bay (Hf ) and Nyköping coastal area (Ny) are marked with arrows on the first
image (2010-04-19). The river inflow and its effects on the chlorophyll-a during the both the spring
bloom and summer blooms are clearly shown. MERIS data with courtesy from the European Space
Agency (ESA) and Petra Philipson

The benefits of the improved amounts of data and spatial coverage as well
as its cost effectiveness is important both for monitoring and management
(e.g. Kahru et al. 2007; Kratzer et al. 2014). Satellite data can substantially increase
the amount of data available for water quality classifications within the water quality
directives and legislations, e.g. European Union’s (EU) Water Framework Directive
2000/60/EC (WFD) and Marine Strategy Framework Directive 2008/56/EC
(MSFD) from the European Commission (EC), the OSPAR Convention and the
HELCOM’s (HELsinki COMmission) Baltic Sea Action Plan (CEC 2000, 2008;
OSPAR Commission 1992; HELCOM 2007).
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Fig. 19.7 Time series over Himmerfjärden bay (Hf ) (Sweden) and adjacent areas derived from
MERIS data (300 m resolution) during the summer of 2008. The images show the concentrations
of chlorophyll-a (�g l-1) on the 23rd, 24th, 28th, 30th and 31st of July 2008. This time series
illustrates the dynamics and development of a cyanobacteria bloom, and how important it is to
get a spatial coverage to capture the development and the spatial extent of the blooms. Map ©
Lantmäteriet, Gävle 2010, permission I 2010/0053. MERIS data with courtesy from the European
Space Agency (ESA), Harvey et al. (2015)

Fig. 19.8 Time series of chlorophyll-a (�g l�1) from April to September 2010 for 2 monitoring
stations, H4 (head of HF bay) and B1 (situated just outside the bay). The solid line is MERIS
derived data and the dashed line represents in situ data. Adapted from Harvey et al. (2015)
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19.2.4 Mapping the Spatial-Temporal Distribution of Secchi
Depth and the Diffuse Attenuation Coefficient Kd(PAR)
in Himmerfjärden Bay

19.2.4.1 Background

The euphotic depth, Zeu, is the upper, illuminated part of the water column. It is
the layer in which photosynthesis can take place, and where photosynthesis exceeds
heterotrophic consumption (Tett 1990). Physically, it is defined as the depth at which
the irradiance has reached 1 % of its surface value. Assuming the diffuse attenuation
of light, Kd (z), to be approximately constant with depth, the euphotic zone can thus
be derived by the following equation:

Zeu D 4:6  Kd.PAR/�1 (19.1)

(Kirk 2011), where PAR stands for photosynthetically active radiation, which is
the visible part of the spectrum that can be used for photosynthesis. An easy
method to measure how light penetrates with depth in the water column is by using
a Secchi disk. Usually, a white disk of 30 cm diameter is lowered into the water
column. The depth at which the Secchi disk disappears from the viewer’s vision,
is known as Secchi depth. Although it is a rather common measurement of water
clarity (transparency), Secchi depth is qualitative in nature rather than quantitative
(Preisendorfer 1986). Secchi depth is inversely correlated to the diffuse attenuation
coefficient of light, Kd(PAR) depth (Kirk 2011). Kd(PAR) can also be related to
the spectral diffused attenuation coefficient, Kd(490), e.g. via a regression analysis.
Kratzer et al. (2003) found that the relationship between the two parameters in the
NW Baltic Sea can be described as:

Kd.PAR/ D Kd.490/  1:48�1 (19.2)

This relationship was based on a rather restricted number of data points (n D 17).
Pierson et al 2008 showed that the relationship can also be described as a logarithmic
function:

Kd.PAR/ D 0:668  Kd.490/
0:676 (19.3)

The regression model in Eq. 19.3 was based on a semi-empirical Baltic Sea
model that simulated 500 matching data points for both variables. Kratzer et al.
(2008), showed how to derive Secchi depth and the spectral diffuse attenuation
coefficient, Kd(490), from MERIS data using empirical regression models based
on Secchi depth and Kd(490) data, respectively, and the matching reflectance
ratio of MERIS band 3 (490 nm) and band 6 (620 nm) derived from in-water
radiometric measurements. For the present study we derived local algorithms for
Secchi depth and for Kd(PAR) from a much larger optical data base measured in
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Fig. 19.9 Water bodies in
Himmerfjärden bay according
to the Swedish Hydrological
and Meteorology Institute
(SMHI). Selected water
bodies showed an optical
gradient from the inner bay
(water body 7), outer bay
(water body 9) to the open sea
adjacent to the bay (water
body 20)

the Himmerfjärden area during 2000–2012 (n D 97). These local algorithms were
then applied to the whole MERIS archive (2002–2012), covering Himmerfjärden
and adjacent areas (Fig. 19.9) in order to map the temporal and spatial variability in
water quality.

19.2.4.2 Algorithm Development from Optical, in-Water Measurements

During the optical campaigns, Secchi depth, Kd(490) and the main three optical
components, Chl-a, SPM and CDOM were measured. The reflectance at different
channels was derived from radiometric measurements (TACCS, Satlantic; Kratzer
et al 2008; Zibordi et al 2012). Next, the optical data base from 2000 to 2012
was used to derive new local Secchi depth and Kd(490) algorithms by regressing
each parameter against various reflectance ratios measured by the TACCS. As in the
previous study (Kratzer et al. 2008) it was found, that the MERIS reflectance band 3
(490 nm) and band 6 (620 nm) provided the best results for retrieving Secchi depth
from in water reflectance data. The algorithms that explained most of the variance
were:

Secchi depth D exp



1:36 � In

�490

�620

�

C 1:03

�

n D 97; r2 D 0:75 (19.4)

Kd.490/ D exp



�1:17 � In

�490

�620

�

� 0:29

�

n D 97; r2 D 0:80 (19.5)
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Where �490 and �620 are the MERIS band 3 and band 6, respectively. Equa-
tions 19.4 and 19.5 were then applied to MERIS data to derive Secchi depth and
Kd(490), respectively. Kd(PAR) was then derived in a second step from MERIS
Kd(490) data using Eq. 19.3.

19.2.4.3 Satellite Data Processing

The MERIS dataset was provided by the CoastColour project (http://www.
coastcolour.org). This dataset is an enhanced Level 1B (L1B) dataset, so-called
Level 1P products (CCL1P, version 1.6.3). The main differences of CCL1P
compared to the standard MERIS L1B products (v.3) includes: an accurate
geolocation information for each pixel, radiometric correction providing similar
quality as the standard L1B products from the 3rd reprocessing, plus smile
correction and equalization of coherent noise. The CCL1P datasets also includes
an additional pixel classification step, generating a precise coastline and additional
quality flags (Ruescas et al. 2014). The CCL1P datasets were pre-processed for
corrections of land adjacency effects using the Improved Contrast between Ocean
and Land (ICOL, Santer and Schmechtig 2010). The L2 products were derived
by using the WeW Water Processor developed by the Free University of Berlin
(FUB, Schroeder et al. 2007a, b). Quality datasets were produced by masking
out pixels based on CoastColour flags (i.e. flags indicating land and coastline,
cloud and potential cloud pixels, snow and ice, and risk of sun glint) and FUB
processor specific quality flags (i.e. general mask and flags indicating in the input
and output products were within the training range); see Beltrán-Abaunza et al.
(2016) for full details on processing and quality control. Weekly composites of
averaged values of the L2 products, were spatially aggregated by using water
bodies polygons defined by the Swedish Meteorological and Hydrological Institute
(SMHI) (Fig. 19.9). A requirement for spatial aggregation was that a minimum
of 25 quality pixels should be included per water body to describe their weekly
statistics. Here, Hovmöller diagrams of MERIS-derived Secchi depth and the diffuse
attenuation coefficient showed how the temporal and spatial distributions of water
transparency can be aggregated to analyse an optical gradient from the inner bay
(water body 7), the outer bay (water body 9), and towards the open sea (water
body 20).

The spatial and temporal resolution of the MERIS archive can be used to comple-
ment in situ data, and so improve our understanding of light availability in the water
column. The satellite data has an improved temporal and spatial resolution when
compared to in situ monitoring data (Harvey et al. 2015; Beltrán-Abaunza et al.
2016). The coastal monitoring in Himmerfjärden is usually undertaken 2-weekly,
and in weekly cycles during phytoplankton blooms. The results shown in Figs. 19.10
and 19.11 represent the full MERIS datasets available for Himmerfjärden. It is
notable from these figures that it is possible to produce quality datasets as early

http://www.coastcolour.org
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Fig. 19.10 Hovmöller diagram of MERIS-derived Secchi depth. The squares in the Hovmöller
diagrams contain the weekly mean-aggregated value of all the valid pixels within a given water
body. Selected water bodies showed an optical gradient from the inner bay (water body 7), outer
bay (water body 9) to the open sea adjacent to the bay (water body 20) see Fig. 19.9

Fig. 19.11 Hovmöller diagrams of MERIS-derived Kd(PAR). The squares in the Hovmöller
diagrams contain the weekly mean-aggregated value of all the valid pixels within a given water
body. Selected water bodies showed an optical gradient from the inner bay (water body 7), outer
bay (water body 9) to the open sea adjacent to the bay (water body 20) see Fig. 19.9
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as week 5 (i.e. the beginning of February) in the adjacent open sea. Beltrán-
Abaunza et al. (2016) showed that through using Chl-a anomalies it is possible
to detect early phytoplankton anomalies in Himmerfjärden during February; often
related to the presence of Mesodinium rubrum, which occurs early in the year. The
Hovmöller diagrams exemplify changes in coastal water transparency and show that
light availability decreases towards the head of the bay; i.e. lower Secchi depths
(Fig. 19.10) and higher diffuse attenuation coefficients (19.11) are found in the inner
bay (water body 7). The increased light attenuation appears to trigger an increased
frequency of quality flags for the radiometry over MERIS band 3 and 6, used to
derive the algorithms, causing lower data quality when compared to the chlorophyll
product (Beltrán-Abaunza et al. 2016). Quality flags are processor dependent, and
the FUB processor used here has specialized flags for assessing the quality of
reflectance products, and uses different flags for radiometry and water products
(Schroeder et al. 2007a, b). However, the increased frequency of flagged radiometry
products does not necessarily limit the successful retrieval of water quality-products,
such as Chl-a or SPM. For example, in the study of Beltrán-Abaunza et al. (2016),
where a similar methodology was applied using FUB-derived L2 water products, the
retrieval of weekly Chl-a composites included enough information to complement
in situ datasets from the Swedish national monitoring programme.

The higher Kd(PAR) values in the inner bay, are directly correlated with the
phytoplankton dynamics in the bay. With increased Kd(PAR) values and low Secchi
depths indicate also temporal changes during the spring and summer phytoplankton
blooms. As more intensive blooms can be detected within the bay (Beltrán-Abaunza
et al. 2016), higher Secchi depth values are more frequent in the more transparent,
outer bay and towards the open sea. One can also assess inter-annual variability of
light attenuation using Hovmöller diagrams (Figs. 19.10 and 19.11). As an example,
during summer 2008, an unusual bloom of the phytoplankton species Prymnesium
polylepis was observed (Hajdu et al. 2015). This bloom caused an anomaly of light
attenuation as observed in water bodies 7 and 9 (inside Himmerfjärden bay), where
the maximum values in light attenuation shifted by more than 10 weeks from their
normal conditions, reaching their peak during June and July in 2008. Furthermore,
in 2006, industrial toxins lead to an unexpected malfunctioning of the nitrogen
treatment in the local sewage treatment plant at the head of the bay (discharging into
water body 7), leading to an increase in phytoplankton abundance (Beltrán-Abaunza
et al. 2016).

The spatial and temporal information provided here demonstrates the advantage
of using the MERIS time series to assess light availability at a coastal site. It must
be noted that this coastal site is optically-complex and highly dominated by CDOM
and also influenced by land adjacency effects. It is very unlikely that such high
quality data and information could be retrieved by using other available ocean colour
sensors, such as MODIS.



412 S. Kratzer et al.

19.3 Identification and Monitoring of Lepidodinium
Chlorophorum Harmful Blooms in the Coastal Bay
of Biscay

The Bay of Biscay is a gulf of the north-east Atlantic Ocean stretching from
the western coast of France from Brest southwards to the Spanish border, and
along the northern coast of Spain. The main anthropogenic activities in the region,
among others, include tourism, fishing and aquaculture. Thus, the ecological state
and its dynamics are of significant importance for the riparian countries. Satellite
monitoring as a component of an integrated monitoring system can offer improved
spatial and temporal coverage, as exemplified below. The gently sloping shelf zone
is an area that is subject to seasonal variations in river run-off, determining the input
of suspended minerals and nutrients as well as fresh water. The main rivers flowing
into the Bay are the Vilaine, Loire, Charente, and Gironde, and Adour.

Two major phytoplankton blooms occur annually in spring and autumn (Laven-
der et al. 2008). In spring, diatoms are dominant in the phytoplankton community at
the shelf zone. In addition the shelf zone also accommodates blooms of the harmful
green dinoflagellate Lepidodinium chlorophorum (Elbraechter and Schnepf 1996).
Unlike many other species of dinoflagellates, which generate toxic blooms, this
alga releases polysaccharides in the form of transparent colloidal biopolymers. This
enhances sedimentation, generation of colloidal mass and promotes the accumula-
tion of bacteria and viruses within the bloom, which is located predominantly in
coastal waters and bays. Although non-toxic, this alga still has a potentially harmful
effect on the ecology as it may cause anoxic conditions, especially in shallow waters.
This may cause the death of crustaceans, molluscs, and small fish (Claquin et al.
2008). Ecologists as well as fish and shellfish farmers are therefore interested in
monitoring the outbursts and spatio-temporal dynamics of this phenomenon, and
remote sensing is a cost-effective way to do this.

Data and Methods Satellite OC and SST data for 2002–2009 were obtained from
MODIS data. Up to date, in situ measurements of L. chlorophorum are very
scarce, presumably because of the high cost of effective monitoring programs. The
only available data were microscopic cell identification and counts by the ‘Institut
Français de Recherche pour l’Exploitation de la Mer’, (IFREMER; http://www.
ifremer.fr/) at two stations accounting for 47 measurements during different months
from 2001 to 2008, and from cases of intensive L. chlorophorum blooms reported
in the press. For detecting the extent of L. chlorophorum blooms, two conceptually
different techniques were applied, namely a NN and the fuzzy c-means classification
(Morozov et al. 2010, 2013). The input data needed for the network operation are
Rrsw(�) in the six MODIS visible bands, i.e. at 412, 443, 488, 531, 551, and 667 nm.
Using the available in situ data the NN was trained to invert the input spectral sub-
surface reflectance values, Rrsw (�), in the above six channels into a numerical output
characterising whether the analysed pixel belongs to a L. chlorophorum bloom or
not. Using the available in situ data the NN was trained to invert the input spectral

http://www.ifremer.fr/
http://www.ifremer.fr/
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sub-surface reflectance values, Rrsw (œ), in the above six channels into a numerical
output ranging from 0 to 1. The value 0 indicates the absence of the L. chlorophorum
bloom; 1 means that the pixel confidently belongs to the bloom. All results in
between 0 and 1 can be considered as a transition from non- blooming to blooming
areas.

The second algorithm is based on fuzzy c-means classification or clustering, i.e.
sorting objects into groups based on the likelihood of features for the objects of
one group and the divergence from other groups. An important advantage of such
algorithms is that they do not require any training i.e. in situ data to be able to
classify the pixels in the image. Fuzzy partitioning allows us to easily solve the
problem related to objects located at the interface of two clusters by attributing each
object its fractional degree of belonging (Zimmermann 2001).

In order to improve algorithm performance, an additional selection criterion was
introduced in order to dismiss pixels erroneously attributed to L. chlorophorum.
The cause of such an erroneous attribution resides in the inherent limitation of the
NN interpolation/extrapolation ability (Haykin 1998) or, else, because of noise and
errors in the training data set, and the presence of different types and numbers of
other phytoplankton species, resulting in a transitional zone between bloom and
non-bloom areas. The advantage of the unsupervised classification employing a
fuzzy logic is that it does not require any a priori information and relies exclusively
on the characteristics of the general inhomogeneity in the spatial distribution of
input data (in this case, space-borne water surface reflective characteristics in pixels
of the image). Also, the fuzzy c-means classification method easily deals with the
transitional zones between L. chlorophorum bloom and blooms of other algae.
However, areas identified with the fuzzy c-means classification are a result of
assigning all pixels in the image towards one of the two classes, and additional,
independent information is required. The additional selection criterion that can
provide this information resides in the fact that L. chlorophorum signals must have
a minimum at the 488 nm channel due to the presence of Chl-b and peridinin
pigments present in this dinoflagellate species (Matsumoto et al. 2011) which result
in increased absorption in the spectral range of 450–500 nm in comparison to other
phytoplankton species in the Bay (see Fig. 19.12a). Subsequently, spectra with a
maximum in this channel are ignored. The actual spectra obtained from remote
sensing (see Fig. 19.12b as an example) fully confirmed this assumption.

Application of both algorithms to an independent data set (which was not used for
algorithm development) shows their consistency. In order to increase the robustness
of bloom identification it is possible to use both algorithms simultaneously, which
may help to decrease incidents of false identification (Fig. 19.13).

Along with diatom-dominated phytoplankton blooms, outbursts of the harmful
alga L. chlorophorum are observed in the coastal zone of the Bay. The occurrence
frequency of L. chlorophorum blooms proves to be area-specific. As Fig. 19.14
illustrates, there are areas (river estuaries) where the blooms of this alga occur
annually; whereas in the Iroise Sea and near the Bailiwick of Guernsey the temporal
bloom pattern is remarkably different: in the latter areas, extensive blooms of
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Fig. 19.12 (a) Specific absorption coefficient of Chl-a (green line), chlorophyll-b (red line), and
peridinin (black line); (b) MODIS spectra from pixels of water areas containing L. chlorophorum
and endemic algae (dominated by diatoms), 24 September 2006, Iroise Sea

Fig. 19.13 (a) Spatial distribution of chlorophyll-a concentration (a) and the L. chlorophorum
bloom area (b) in the region of the Seine river estuary. The bloom extent identified by the NN
algorithm (black dashes) and the fuzzy c-mean algorithm (green). MODIS-Aqua data NASA

L. chlorophorum (covering 5 % or more of the respective area) occurred only in
2003, 2006, 2007, and 2008 (Guernsey) and 2006, 2007, and 2008 (Iroise Sea). The
reason for that may be the continuous supply of nutrients by rivers, and therefore, a
reduced need for L. chlorophorum to compete for nutrients with other species.

Relatively little is known about the ecology of L. chlorophorum. However, it is
not unreasonable to suppose that in conditions of restricted supply of nutrients (both
areas are not recipients of riverine waters), these algal blooms occur when they
are preceded by low-level blooms of indigenous diatoms (and hence the nutrient
depletion is not significant). In addition, this alga is not only immune to photo-
inhibition but also prefers ample illumination by sunlight (Elbraechter and Schnepf
1996). Therefore, L. chlorophorum blooms can be spurred on by conditions of
scarce cloudiness. As Fig. 19.14 illustrates for the Iroise Sea, it is indeed the
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Fig. 19.14 Localization and phenology of L. chlorophorum blooms along the coast of the Bay of
Biscay and in the areas of the Déroute Strait and the Seine River estuary. On the vertical: relative
area covered by the alga bloom in each selected domain

case: the peaks of L. chlorophorum emerge during September, August–September,
and July of the above-mentioned years when the preceding diatom abundance and
degree of cloudiness were low. However, the same Figure indicates that there are
exceptions to this regularity. This implies that some other factors may control the
growth of this phytoplankton species. SST is likely to be one of the controlling
factors, and it can also be derived from space. This assumption seems to be also
supported by Fig. 19.15. Thus, it appears that an concurrence of the above three
factors - weak preceding diatom blooms, enhanced SST, and availability of sufficient
incident light – may control the massive growth of L. chlorophorum. However, there
might be some other conditions that need to be met, which cannot be detected from
space. It must be noted that high concentrations of Chl-a concentrations in April-
May, April, and May 2006, 2007, and 2008 respectively should be explained by
spring diatom blooms, whereas autumn peaks are mostly due to L. chlorophorum
blooms.
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Fig. 19.15 A 10-day averaged time series of L. chlorophorum bloom relative area in % (black
solid) and contemporaneous variations of possible influencing parameters in the Iroise Sea: diatom
Chl-a concentration in �g l�1 (grey dashed), cloudiness in % (grey solid), and MODIS-derived
SST in ıC (black dashed)

19.4 Variability of Chlorophyll-a and Sea Surface
Temperature in the South-Eastern Beaufort Sea
(Canadian Arctic) by Remote Sensing (1998–2004)

Introduction Global warming is known to mostly affect the Arctic Ocean where
a rapid decrease in thickness and extent of sea-ice, and changes in the marine
ecosystem have recently been observed. The transition from thick multi-year ice
to a seascape increasingly dominated by thinner, first-year ice (Comiso 2011), has
brought discernible modifications to the phenology of the Arctic Ocean region, such
as earlier occurrences of the annual phytoplankton blooms (Kahru et al. 2011) and
an overall increase in ocean net primary production (NPP) (Arrigo and van Dijken
2011). The Eastern Beaufort Sea (BS) is characterized by the presence of Cape
Bathurst and flaw lead polynyas that play a major role in high latitude ecological
and biogeochemical processes. These areas are expected to have a higher biological
production than offshore waters. In this study we assess the spatial and temporal
variability of Chl-a in order to evaluate possible impacts of climate-change induced
physical processes onto phytoplankton productivity. The aim of this study is to
estimate phytoplankton biomass variability using time series of Chl-a and SST for
a 7 year time series (1998–2004).

Ocean Colour Data SeaWiFS Level 1A (L1A) Merged Local Area Coverage
(MLAC, 1.1 km resolution at nadir) data were downloaded from the NASA Ocean
Color Web site (www.oceancolor.gsfc.nasa.gov). L1A MLAC data contains raw
radiance values for each SeaWiFS band (412, 443, 490, 510, 555, 670, 765, and

http://www.oceancolor.gsfc.nasa.gov/


19 Multitemporal Remote Sensing of Coastal Waters 417

865 nm). The images were processed to L2 using the SeaWiFS Data Analysis
Software (SeaDAS version 5.2.0). We applied the NASA standard atmospheric
correction algorithm, which includes a clear water scheme for open ocean pixels
an iteration scheme for moderately turbid waters where the black pixel assumption
is violated. The Chl-a values from SeaWiFS OC data were corrected by using a
SeaWiFS-Adapted regional algorithm (Ben Mustapha et al. 2012). First, monthly
composite images of the 5 sub-areas for the 1998–2004 study period were generated.
Sub-areas (Fig. 19.2) of size 3 � 3 pixels (27 � 27 km) were then extracted to study
the spatio-temporal variability at meso-scale.

Sea Surface Temperature Data Daily mean NOAA (National Oceanic and Atmo-
spheric Administration) AVHRR (Advanced Very High Resolution Radiometer)
SST (1.1 km) were used to generate monthly mean averages for the five sub-
areas. Individual images (day and night overpasses) covering the Beaufort Sea from
145 W to 115 W and available from the Remote Sensing Laboratory, Department
of Fisheries and Oceans Canada, Maurice-Lamontagne Institute were processed and
analysed (Table 19.1). After cloud screening, SST data were computed from each
overpass using the ‘split window’ Multi-Channel SST algorithm (McClain et al.
1985). After this initial process, image data were compared to ice cover maps
generated by the National Snow and Ice Data Center (NSIDC) to eliminate false
SST in spring time when the ice surface is melting.

Results Figure 19.16 shows the climatological average values of SST and
Chl-a concentrations observed in spring (May–June) and summer (July–August-
September) from 1980 to 2004. The highest temperatures are observed in the
Mackenzie River mouth and on the Mackenzie Shelf both in spring and summer.
The Amundsen Gulf is characterized by cold waters in both seasons while Chl-a
concentration remains low, except along the south coast in summer. This region
is characterized by the presence of a persistent thermal front associated with
intermediate upwelling supporting increased phytoplankton biomass (Williams
and Carmack 2008).

In order to assess the temporal variability, SST and Chl-a were extracted in
the five sub-regions. It is noted that the availability of data is different for both
parameters. This is the result of contamination of the OC radiometric signal by
the adjacency of ice and free water mass. Therefore, there is not enough Chl-a
data available from the offshore region of the Beaufort Sea to analyse the seasonal
and inter-annual variability. Table 19.1 shows the seasonal evolution of SST where
the peak is usually reached in August. The increase in temperature between June
and July is higher than the decrease between August and September. This may be
caused by the strong solar irradiance on this region during summer. The sun warms
the surface layer faster than in autumn. The seasonal maximum of SST in August
seems not to be related to the decrease of ice cover observed over the 7 years. The
peak anomalies of this time series occurred in summer 1998, especially during July
and August (in all regions). There is a good agreement between these observations
and the air temperature measured at Sachs Harbour over the same period of time
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Fig. 19.16 (a) Time series of Chl-a (mg.m�3) and SST (ıC) in the Beaufort Sea during spring
and summer (average (1998–2004) and monthly means in (b) 1998 (c) 2002 and (d) 2004)

(Ben Mustapha 2013), indicating a strong coupling between the atmosphere and
the ocean surface. The influence of El Niño and the Arctic Oscillation seem to have
effects on the strong positive anomaly observed in 1998, by means of changing wind
patterns in the regions (Maslanik et al. 1999).

Monthly Chl-a show relatively weak seasonal variability in all sub-regions except
for the Amundsen Gulf where two phytoplankton biomass maxima are observed
in June and September, indicating a phenology different from the other regions.
The highest Chl-a concentrations were observed in the Mackenzie region (MK), the
Cape Bathurst (CB) and Franklin Bay (FB). Sachs Harbour (SH) and the Amundsen
Gulf (AG) have lower concentrations of Chl-a. However, in the Mackenzie plume
region, it is likely that the observed values are still overestimated because of CDOM
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absorption associated with fluvial freshwater. The seasonal variability observed
might therefore rather indicate the impact of river discharge than an increase in
phytoplankton production.

The results also show a strong interannual variability of Chl-a concentrations.
Positive anomalies of chlorophyll were observed in 2002 in the Amundsen Gulf, in
Franklin Bay and Cape Bathurst. In the region of Sachs Harbour, positive anomalies
of chlorophyll concentration are observed in some months of the years 2001, 2002
and 2003. It is possible that a change in the coupling between primary producers and
higher trophic levels (Tremblay et al. 2006) may explain some of the observations
during the time series.

Because of the strong stratification of the Beaufort Sea, there is only a limited
nutrient replenishment during the winter period. This limits nutrient availability for
the phytoplankton bloom. Mixing events are thus very important for the generation
of surface phytoplankton blooms during the open water period. The most important
mixing factor is the wind, used as a proxy, representative of the mixing (Ben
Mustapha 2013). During the open water season (May–October), winds show a
dominance of south-easterly winds that cause coastal upwelling along the southern
AG coast as indicated by the higher Chl-a concentrations observed in FB and
CB. The SH region always shows low Chl-a values because it is located in a
downwelling-prone area. In the AG region, it appears that wind intensity is only
rarely strong enough to generate vertical mixing. Winds in the coastal areas (SH)
blew primarily along the East-West axis. Strong winds forced the MK plume to
expand alongshore. The winds mix nutrients from deeper waters into the surface,
resulting in increased Chl-a values.

In 1998 an exceptionally early retreat of the sea ice cover occurred, followed by
an early phytoplankton bloom. 1998 was also a record year for warm air temperature
in the Arctic. Positive anomaly as high as C7 ı C in spring was observed. The
period of breakup of the sea-ice cover was the longest observed (20 weeks) during
the observation period. In 2004, the breakup of the sea ice cover occurred in the end
of May in the AG, SH, FB and in early June for the CB and MK while a complete
freeze-up occurred within 1 week in late October (Galley et al. 2008).

For all investigated areas the monthly mean Chl-a derived from remote sensing
has a high interannual variability in the timing, strength and duration of phytoplank-
ton blooms. Recent trends of earlier sea ice break-up and later sea ice formation
in the Beaufort Sea have important implications for the biological productivity in
the Cape Bathurst polynya at all trophic levels. This study provides mesoscale
information about the spatial and temporal variability of phytoplankton in five
investigated sub-areas of the Beaufort Sea. Good data coverage was during May
to early September; during the other months there was hardly any data available
due to ice cover, clouds and the low solar elevation. Monthly and seasonal average
images of Chl-a were processed over the period 1998–2004, which is the period
of availability of mesoscale resolution SeaWiFS data (1 km) over the studied area,
while the SeaWiFS data at low spatial resolution (9 km) was available until 2011.
For the study presented here, however, mesoscale resolution data was required as a
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minimum. It must be noted, however, that the recent decade (2005–2014) has seen
remarkable reduction of sea ice cover over the Arctic and might be expected to show
even stronger anomalies of SST and Chl-a than are revealed here.

19.5 Merging and Fusion of Multi-satellite Datasets
to Provide Improved Temporal Coverage

The previous regional examples showed how ocean colour remote sensing improves
our understanding of coastal zone dynamics and bloom development. There are
efforts to develop merged satellite products on a global scale. The impetus for the
merging of global ocean colour data came from the proliferation of polar-orbiting
missions and the knowledge that a single polar-orbiting mission does a rather
poor job of sampling the ocean on short time scales (IOCCG 2007). The NASA
Research, Education and Applications Solutions Network/Making Earth System
Data Records for Use in Research Environments (MEaSUREs) (Maritorena et al.
2010) and ESA GlobColour (Pinnock et al. 2007; Fanton d’Andon et al. 2008)
projects focused on combining multiple mission observations (MERIS, MODIS-
Aqua and SeaWiFS) into a single data product with better spatial and temporal
coverage than the individual missions, albeit with a lower spatial resolution. Both
projects used the Maritorena & Siegel (2005) GSM bio-optical model to retrieve
L2 products and the Level 3 (L3) products (time- or space-binned versions of the
L2 products), and are then produced as global products of varying spatial and
temporal resolutions. In MEaSUREs, e.g., L3 binned normalised water-leaving
radiance data from MERIS and MODIS were converted to 9 km resolution to match
the resolution of SeaWiFS before the merging was performed. For GlobColour,
the L3 data were processed from L2 with an output resolution of 1/24 degree
at the equator which is equivalent to 4.63 km. The ESA Ocean Colour Climate
Change Initiative (OC-CCI) project has created 4 km resolution L3 products from
L1 data processed using POLYMER (POLYnomial based algorithm applied to
MERIS; Steinmetz et al. 2011) for MERIS and the SeaDAS standard processing
for SeaWiFS and MODIS, then the remote sensing reflectance is band shifted to fit
the SeaWiFS bands before bio-optical products are derived using the algorithms in
SeaDAS (OC-CCI 2015). Figure 19.17 shows the similarities in the general Chl-
a patterns between GlobColour (CHL1 product) and OC-CCI (version 1 dataset
release NASA OC4.V6 algorithm product); lower values in the North Eastern
Atlantic Ocean and Mediterranean Sea with higher values over the continental shelf,
and especially where there is river/estuarine outflows which could represent high
Chl-a or inorganic SPM affecting the bio-optical models. The differences result
from several sources including the atmospheric correction and bio-optical models
used, and both products come with estimates of the uncertainties.

The OC-CCI product has a greater number of merged pixels, and hence lower
number of missing pixels in the L3 products, as the POLYMER atmospheric correc-
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Fig. 19.17 Merged monthly Chlorophyll-a products for April 2003 from (a) Globcolour using
the GSM bio-optical model provided as a monthly product with (b) showing the Ocean Colour
Climate Change Initiative (OC-CCI) project product where the daily products were provided and
then merged using the BEAM Visat binning module by applying simple averaging

tion can be applied within the MERIS sun glint influenced pixels. These efforts, to
globally merge ocean colour products, tend to result in products that have a relatively
coarse spatial resolution that is not adequate for coastal monitoring. Furthermore,
the algorithms used have tended to be optimised for oceanic waters, which often
lead to greater uncertainty in the coastal water quality evaluation. However, these
issues are well understood and more recently the GlobColour and OC-CCI project
activities have transitioned into the Copernicus Marine Environment Monitoring
Service products, which have improved resolutions of 1 and 2 km for regional
products. Also, OC-CCI is focusing on improving the algorithms for Case-2 waters;
the version 3 dataset with optimised bio-optical algorithms is due for release in
Spring 2016. The examples shown in Sects. 19.1 and 19.2.2, however, demonstrate
that for coastal bays and estuaries, the 1 km resolution is still sub-optimal. But these
areas are important for assessing production, as most of the production happens in
coastal waters.

Whilst globally merged products remain sub-optimal for coastal waters, alterna-
tive regional approaches should also be considered. Kahru et al. (2012) combined
over 10 000 Chl-a samples collected by various research programs in the California
Current with daily L2 satellite data (OCTS, SeaWiFS, MODIS-Aqua and MERIS)
at the highest routinely available resolution using a modification of the Gregg et al.
(2009) Empirical Satellite Radiance-In situ Data (ESRID) method to create a 15-
year locally optimised time series.

Kahru and Elmgren (2014) describe the compilation of a 35-year-long time series
(1979–2013) of cyanobacteria surface accumulations in the Baltic Sea using merged
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data from different satellite sensors. The results showed that during the 35 years
the timing of the accumulations has been shifted by approximately 20 days earlier
during the summer season.

Researchers are also combining ocean colour data with medium resolution
sensors, such as the Landsat series, to provide higher resolution coastal products
e.g. the Landsat 5 satellite acquired around 28 years of data with its TM instrument
at a spatial resolution of 30 m. Approaches have focused on using ocean colour data
to aid in the atmospheric correction of Landsat (e.g. Hu et al. 2001) or using the
Landsat infrared bands themselves.
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Chapter 20
Monitoring Long-Term Disaster
Recovery – Space and Ground Views

Tuong-Thuy Vu and Daroonwan Kamthonkiat

Abstract Remote sensing plays a crucial role in post-disaster and emergency
responses. For years, it has been a key player in providing invaluable multi-
temporal synoptic data for landuse and landcover change detection. Surprisingly,
it has not been fully exploited for monitoring long-term disaster recovery due
to the involvement of various timeframes and scales in monitoring. This chapter
reports our investigation of medium resolution satellite image use in association
with ground direct observation, socio-economic field data collection and interviews
for monitoring recovery of the tsunami-affected areas in Phanga, Thailand. Multi-
temporal landuse/landcover maps of the study area were produced via conventional
supervised classification. Socio-economic data was analyzed to obtain information
related to the recovery process on the ground. To bridge the gap between the
classified maps and the point-based socio-economic data for comparison, lan-
duse/landcover clusters presenting the aggregated level of information were used
against buffer regions around the village points. The two data sets presented a good
agreement in detection of the recovery of tourism and expansion of agricultural
activities. It was not possible to confirm whether a building was newly built but
the rehabilitation of mangrove forest could be observed. Overall, ASTER images
are sufficient to capture the large landuse/landcover changes induced by human
activities. Our study area has been in smooth recovery and some minor decrease
in population or slowdown of economic activities could not be observed from the
ASTER images. To some extent, the integration of ASTER images and ground data
proved useful in providing a clear picture of the recovery process in an area like
Phang Nga, Thailand. It would be more effective to have administrative boundaries
instead of village points and an enabled-location-awareness interview setting to
better link the spatial distribution of socio-economic data with the monitoring
context.
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20.1 Introduction

In recent decades, the world has experienced more frequently (every few years)
large-scale disasters such as the 1995 Kobe-Japan earthquake, the 1999 Kocaeli-
Turkey earthquake, the 2001 Gujarat-India earthquake, the 2003 Bourmedes-
Algeria earthquake, the 2003 Bam-Iran earthquake, the 2004 Indian Ocean earth-
quake and tsunami, the 2005 Katrina hurricane, the 2008 Sichuan-China earthquake,
the 2011 giant Tohoku earthquake and tsunami, and most recently the 2013 Haiyan
typhoon. Numerous other events such as hurricanes, wildfires, drought, and volcanic
eruptions are also occurring worldwide. The social and economic impacts of these
events continue for years from local to global scales (Huppert and Sparks 2006).
The recovery process needs to be carefully monitored, as it is a complex process
and involves various stakeholders (Brown et al. 2010).

Much research on the uses of remote sensing and geospatial technologies has
been carried out to see how they can really help in the disaster management cycle. It
has indicated that satellite remotely sensed imagery is an important data source for
disaster management at all stages including post-disaster responses (Adams et al.
2004; Eguchi et al. 2000; Vu et al. 2007; Vu and Ban 2010; Acqua and Gamba 2012),
recovery process (Hill et al. 2006), and preparedness and mitigation (Taubenbock
et al. 2008; Tralli et al. 2005; Romer et al. 2012). Their wide coverage, huge
archives and reasonable-temporal-resolution are significantly valuable in disaster
management. They are even the only data source of the hard-hit and difficult-to-
access areas at the early stage. The dissemination of such early vital information
is improving under the coordination of UN-SPIDER and the activation of the
International Charter on Space and Major Disasters. The recent use of satellite
images has mainly focused on the response phase, whereas little attention has been
paid to its use for monitoring and accessing the recovery phase (Hill et al. 2006).

Following our recent disaster response related research for the tsunami-affected
areas in Thailand (Kamthonkiat et al. 2011a, b, 2012; Vu et al. 2007; Vu 2008,
2011), we further investigate the use of medium spatial resolution ASTER imagery
in monitoring the long-term recovery of the area. A few relevant studies are
discussed in Sect. 20.2 to highlight the need for our study. Our methodology will
be described in Sect. 20.3 prior to results and discussion in Sect. 20.4. Finally,
concluding remarks and future work are presented in the Sect. 20.5.

20.2 Remote Sensing for Monitoring Disaster Recovery

A few attempts have been made to explore the usability of remote sensing
images during recovery processes. Vu (2008) introduced a recovery monitoring
system using remote sensing data on a grid-computing platform. It targeted long-
term recovery involving a huge data set; hence, grid-based large-scale database
and parallel computing were introduced as a suitable approach, which was also
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extendable to a sharing platform for continual monitoring. Focusing on remote
sensing processing and storage, it did not reveal many issues relevant to real
recovery on the ground. Romer et al. (2011) used high-resolution satellite images
to assess the recovery of different vegetation types in a tsunami-affected area.
The main work was change detection analysis and in interpreting the results, the
authors inferred some impact of human activities on vegetation recovery. Likewise,
Kamthonkiat et al. (2011a) focused more on monitoring mangrove recovery with
medium spatial resolution satellite ASTER images. This work focused more on the
usability of satellite remote sensing in monitoring the recovery process. The same
research group went a bit further to investigate overall landuse recovery of Phuket
after the 2004 tsunami disaster using ASTER images (Kamthonkiat et al. 2011b).
Damaged areas were located along the coastline and it was shown that less than
1 m resolution satellite imagery was more appropriate to detect the damage (Vu
et al. 2007), which indicates that it is hard to establish a direct link to damage
situations when using ASTER imagery in monitoring recovery. The problem of
incompatible spatial resolution was mitigated with direct ground observation. In
damage mapping and monitoring the recovery of housing areas, the suitability of
high-resolution images was illustrated (Vicini et al. 2011). In this study, some
attempts were made to develop a quantitative scale for measuring the recovery of
a building. The aforementioned studies solved the problem from the remote sensing
perspective. However, what should be measured during the recovery period remains
unclear.

Brown et al. (2010) reported the outcomes of The Recovery Project, which
aimed at identifying the indicators for measuring, monitoring and evaluating post-
disaster recovery, both in the short-term and long-term. Remote sensing was
proposed as one of the main tools together with ground observation and social
audit techniques. Measuring recovery highly depends on timeframe and scale. The
project emphasized using very high-resolution satellite images, from which detailed
changes can be detected, and recommended investigation of medium resolution
satellite imagery to achieve the measurement at a coarser scale. Similarly, the
combination of field surveys, ground interviews and remote sensing was proposed
in Bevington et al. (2011) to understand the ways of recovery in the aftermath of a
disaster.

The recovery stage is the least investigated and still poorly understood (Rubin
1985; Comerio 2005; Bevington et al. 2011) due to the various timeframes
and scales that need to be taken into account. Capturing information about the
Earth’s surface from space, remote sensing techniques would provide both synoptic
and detailed (up to half-meter spatial resolution with current satellite platforms)
land cover and land use over time. As noted above, remote sensing has been
recommended and proved to be a significant source of information to fill the gaps
across multiple spatio-temporal scales (Brown et al. 2010; Bevington et al. 2011).
To some extent, it can reveal little information about real human activities in the
area. For instance, a residential area fully occupied with new buildings (roofs) as
can be seen from a satellite image does not imply that life there is getting back to
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normal. Change detection applications of remote sensing, so far, are more to report
the biophysical changes, which comprise just one aspect of the disaster recovery
process.

Among the four periods of the recovery process, i.e. emergency relief, early
recovery, reconstruction and on-going development (Brown et al. 2010), the last
two seem less investigated due to their longer time-frames and hence have received
less attention from international organisations, authorities and media. Looking into
these periods, this study aims at further establishing the use of remote sensing in
monitoring the recovery process. Using a case study of Phang Nga, Thailand, a
tsunami-affected area, this study assessed the feasibility of using medium reso-
lution satellite images for regional monitoring in long-term recovery focusing on
human activities and environmental rehabilitation. It subsequently identified the
gap between information captured from space and socio-economic data from the
ground. Two important questions need to be addressed: “To what extent can medium
multi-spectral resolution satellite images reveal the real recovery process on the
ground?” “Is it possible to link the captured pixel-based information to ground-
based social survey information in an integrated manner?” In attempts to respond to
these questions, the study provides a few recommendations for expanding remote
sensing uses in monitoring the recovery process.

20.3 Methodology

20.3.1 Study Area

The tsunami impacted provinces in the South of Thailand are Phang Nga, Phuket,
Satun, Krabi, Ranong, and Trang. Among these, Phang Nga was the most severely
affected by the 2004 Indian Ocean tsunami (Fig. 20.1). Although the tsunami did
not strike the area instantly after the Sumatra quake due to the distance, the area
was not prepared for such a disaster and hence, the negative impact was intensified,
especially on the tourist and fishing activities, which are main contributors to the
local economy. Fishing villages are mainly located in the north of Phang Nga
whereas tourist resorts are in the central region. It would be very interesting to
observe how the area changed after such a devastating event in terms of the physical
landscape and its relationship to human life and activities.

20.3.2 Landcover/Landuse (LULC) Change Detection

Previous studies have indicated that high-resolution satellite images are suitable for
damage detection and monitoring detailed recovery at the building level. To look
into the recovery on a regional scale like the entire Phang Nga province, it would
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Fig. 20.1 Phang Nga province, Southern Thailand

Table 20.1 Descriptions of ASTER scenes used for mapping LULC changes

Acquisition date
Wavelength and spatial
resolution (m) Remarks

07 March 2003 VNIR, 15 m About 2 years before the 2004 tsunami
31 December 2004 VNIR, 15 m 5 days after the 2004 tsunami. Cloudy image,

only a fraction of mangrove area in Takua Pa
was observed.

08 February 2005 VNIR, 15 m 43 days after the 2004 tsunami
26 January 2006 VNIR, 15 m 1 year after the 2004 tsunami
6 February 2010 VNIR, 15 m 6 years after the 2004 tsunami

be unnecessarily costly to only use high-resolution satellite images. In observing
the changes over a large area, medium resolution ASTER images were acquired at
four different times including about 2 years before and three other times after the
disaster event in December 2004. As the entire study area can be only fully covered
with three scenes, in total 12 scenes were acquired as listed in Table 20.1.

The analysis of land cover and mangroves in this study was performed in
the western part of Tai Muang, Takuapa and Kuraburi districts according to the
limitation of scene area of the ASTER images presented in Fig. 20.2, which shows
the mosaicked ASTER images used for this study. Other ancillary data include:
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Fig. 20.2 Multi-temporal remote sensing data used in this study

• Landuse Map 2000 (1:50,000) and 2007 (1:25,000) of Phang Nga from the Land
Development Department (LDD), Ministry of Agriculture and cooperatives;

• Landuse (Base Map) 1999 of Phang Nga, 1:50,000 from the Pollution Control
Department, Ministry of Natural Resources and Environment;

• Landuse and road maps 2006 of Phang Nga Province, 1:50,000 from The Royal
Thai Survey Department;

• Mangrove Plantation Sites in Phang Nga, 1:50,000 from Mangrove Administra-
tive Division 2, Krabi Province, Thailand;

• Socio-economic data – Village Profile Data (survey every 2 years) and Family
Profile Data (annual survey) of Phang Nga, 2003, 2005, 2006, 2007, 2010 and
2011 from the Ministry of Interior, Thailand;

• Tsunami damage level in Phang Nga from the Department of Disaster Prevention
and Mitigation (DDPM), the Ministry of Interior, Thailand.

As illustrated in Fig. 20.3, post-classification change detection was employed
for monitoring and mapping LULC changes in the study area. The road network
in vector format was used to assist with the precise alignment of ASTER images
from different time periods. It is noted that the 2004 tsunami event also caused
the displacement of the shoreline (Kamthonkiat et al. 2012). This was also taken
into account in image-to-image registration. Intensive field surveying was conducted
to guide the supervised classification with the maximum likelihood technique, and
only greater than 75 % classification accuracy was accepted to mitigate the possible
errors propagated in change detection.
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Fig. 20.3 Change detection analysis flowchart

20.3.3 Interpretation of Life Recovery and Environmental
Rehabilitation

LULC information derived from satellite image classification provides a synoptic
view of geo-biophysical changes over a large area. Remote sensing products have
never been a sole data source in any application; careful ground truth and operators’
knowledge are required to obtain a reliable outcome. To what extent can medium
resolution satellite imagery like ASTER contribute to monitoring the recovery
process on the ground?

Based on the outcomes of the image classification, visual interpretation carefully
assessed the LULC pattern changes over time with reference to the status before
the disaster in March 2003. While the change detection in Sect. 20.3.2 provided
overall quantitative information about LULC changes, the assessment here was
a step forward. We carefully compared the classified results with ground truth
data, including direct observation and interviewing, to reveal the real recovery of
mangrove forest and to analyse changes at the village level by checking how the
recovery of human activities has been taking place.

Villages in our study areas were categorised into three different groups: North
(fishing village and agriculture), Central (tourist hotels, resorts) and South (man-
grove forest). Environmental rehabilitation was investigated for villages in the South
region whereas detailed assessment of human activities was carried out for heavily
impacted villages in the North and Central regions.

Unfortunately, socio-economic data at the village level was provided in the form
of attribute tables associated with village point shapefiles, i.e. from socio-economic
village profile data. There was an obvious gap between the presenting point-based
data and the relevant activities on the ground. Direct comparison of pixel-based
LULC information with socio-economic point-based data would not lead to any
logical findings.
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Table 20.2 Visual interpretation of recovery process

Damage level
Pre-event main
activities

Pattern changes
from ASTER

Ground
observation Remarks

Very High, High,
Moderate, Low

Fishing, Tourism,
Forest, Agriculture,
Others

e.g. LULC changes Real activities Interpreter’s
comments

To fill the gap between two data sets for a possible comparison, we summarised
(based on majority rule) the classified LULC using the clusters formed by mean-
shift clustering (Comaniciu and Meer 2002). On the other hand, a buffer with a fixed
radius of 500 m was created for an approximate estimation of LULC of a village.
Subsequently, visual interpretation was performed on the classified satellite images
using socio-economic village profile data in 2003, 2005 and 2007, ground survey
photos and fact finding via interviews in local communities. The interpretation
results were to fill in the observation table (Table 20.2) to assist the investigation.

20.4 Results and Discussion

An extensive field survey was conducted in the area. We collected ground truth
data for training and validation of the LULC classification. In addition to that,
interviews with local people provided another aspect of the real situation on the
ground for assessing the extent which ASTER can cover. On the other hand, the team
was also equipped with a Global Positioning System (GPS), topographic maps and
time series satellite images (Fig. 20.4) to confirm the displacement of Phang Nga
shorelines after the disaster and observe the environmental rehabilitation, especially
of mangrove forest areas. This information was subsequently used to validate the
classified ASTER images.

There was a steady rate of erosion in several locations in our study area after the
disaster. The inland-shifted positions of the shoreline in 2005 were about 514 m
at Pak Ko Village on Kho Khao Island, 85 m at Nam Khem Village, 652 m at
Coral Reef Point, and 64 m at Bang Khaya Village. In 2004, the positions of the
shoreline at Pak Ko Village had changed while the sand beach was swept. The series
of tsunami waves had also re-allocated the sand dune under the sea; this affected
the direction of current and thus stronger waves hit the beach as presented in the
ASTER 2005 and 2010 (Fig. 20.5). Further details were reported in Kamthonkiat et
al. 2012. The field survey also recorded the measures taken for shoreline protection
as depicted in Fig. 20.6.

As mentioned in the methodology, the accepted overall accuracy of the classifi-
cation was at least 75 %. Table 20.3 shows the referenced maps and field data used
for accuracy assessment, and the percentages of overall accuracy of each classified
image are also presented. The results of the supervised classification of ASTER in
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Fig. 20.4 Field survey – beach and shorelines in Phang Nga

Fig. 20.5 Analysis of shorelines shifting using remote sensing – Pak Ko Village on Kho Khao
Island

2003, 2005, 2006 and 2010 (concentrated on the western part of Tai Muang, Takuapa
and Kuraburi districts) presented forest, mangrove, agricultural land, built-up, bare
land, beach, water bodies and miscellaneous (Fig. 20.7).

Beach, built-up, and mangrove areas in 2003 had changed to bare soil, water
bodies and miscellaneous in 2005. One year after the event, about 50 % of beach
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Fig. 20.6 Shoreline protection

Table 20.3 Overall accuracy of image classification

Classified image Source of reference data Overall accuracy (%)

07 March 2003 Landuse 2000 (Land Development Department) 84.2
08 February 2005 Landuse 2006 (Land Development Department) 77.8
26 January 2006 Landuse 2007 (Land Development Department) 79.9
6 February 2010 Ground truth data (field survey in 2009–2010) 81.6

and built-up (resorts, hotels and shops) areas in Takua Pa, a famous tourist beach,
recovered in early 2006 while mangrove had slightly decreased. In 2010, the inland
built-up area had increased compared to the area in 2003–2006, mangrove areas
presented almost the same extent as in 2003 while forest had been turned into
agriculture and built-up.

After the 2004 Indian Ocean tsunami, a 6-year conservation and rehabilitation
program for mangrove forests in the tsunami impacted areas was established
by the Thai Government. However, information about mangrove restoration or
reforestation is limited only to the field scale. The integrated use of remote sensing
and field data enabled a regional study of the changes in mangrove areas pre- and
post-sunami and its recovery up until 2010. Classified images showed some degree
of reforestation in 2005 but the process decreased in 2006. In some locations where
the topography and soil structure had changed, only a small number of trees could
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Fig. 20.7 Classified results

survive and hence these areas might be classified as other land cover types like water
bodies and bare soil. In addition, the development of shrimp farms, urban recovery
and development for tourist activities after the tsunami also disturbed regrowth of
the mangroves in the study area, which is outside the tsunami-impacted zone.

Figure 20.8 presents the location of damaged and reforested mangrove near
Nam Khem Village, Takua Pa District. The mangrove trees were swept away by
the series of tsunami waves and became bare soil in 2004. As aforementioned, the
reforestation in 2005 did not succeed in many places, and at this location this was
due to degraded soil conditions after the waves carried up salted and sandy soil
and deposited it on top. After a few years of mangrove reforestation, the area of
mangrove has gradually increased and completely recovered in 2010 as shown in
Fig. 20.8. Monitoring of mangrove conditions in the reforested areas is therefore
crucial for understanding the progress of recovery (see Fig. 20.9).

The levels of damage were identified by field surveys and the height of wave
or inundation level; Low impact (� 2 m height of wave/inundation), Moderate (>
2 and � 5 m), High (> 5 and � 10 m) and Very High (> 10 m). Sixty-four villages
along the west coast of Phang Nga Province were listed at different damage levels:
Low (23 villages), Moderate (14 villages), High (19 villages) and Very High (8
villages) (DDPM 2006). This information was presented in map format for better
understanding the tsunami impact: location of villages and damage level as shown
in Fig. 20.10. Most of the high and very highly impacted villages were located in
Takua Pa District.
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Fig. 20.8 An impacted mangrove area and its recovery

Fig. 20.9 Monitoring of mangrove conditions in the reforested areas in Takua Pa District

The statistical data of population and hired workers in the tsunami-impacted
villages were compared using only 3 crucial periods: 2003 (pre-event), 2005
(post-event damage monitoring) and 2007 (post-event recovery monitoring). In
addition, the 2010–2011 data was used to identify recovery and assess recent status.
Overall, the population changes are depicted in connection with village location
in Fig. 20.11. It shows that the population in 2005 of the Low and Moderately
impacted villages had slightly decreased in comparison to that in 2003, but it had
significantly decreased in the High and Very Highly impacted villages. Only Nam
Khem Village has a higher population in 2005 because there were many charities
and people who moved into the area for the recovery process. In 2006–2007, most of
the impacted villages had recovered physically and in terms of population. In 2010–
2011, populations in the Low and Moderately impacted villages were significantly
increased (various from 10 to 300 %). The populations in the high and very highly
impacted villages had rarely increased while decreased populations (10–50%) were
reported for Pak Weep, Pak Jok, Nam Khem and Tab Yang villages in Takua Pa
District.

The fluctuation of the amount of hired workers pre- and post-2004 tsunami
presented the same trend as the fluctuation of population levels explained above. It



20 Monitoring Long-Term Disaster Recovery – Space and Ground Views 439

Fig. 20.10 Tsunami impact villages, classed by damage levels

was reported in 2005 that unemployment had increased especially among fishermen
and tourist related workers. In 2007 and 2010, the number of hired workers
recovered in the field of tourism and increased in the field of agriculture.
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Fig. 20.11 Tsunami impacted villages: population changes in 2003, 2005 and 2007

During the recovery, the changes in population and employment as observed
from socio-economic data and field interviews, led to some obvious LULC pattern
changes. Recovery of tourism activities and population increase resulted in (and was
also a result of) the recovery and expansion of built-up areas including beach resorts
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and housing areas. Similarly, the expansion of agricultural land could indicate more
people engaged in agricultural activities; we need further detailed analysis of socio-
economic data to reveal the ratio between hired workers and residents in the rise
of population. It was difficult to observe clearly any evidence related to fishing
activities on ASTER images. On the downside, the small decrease of population
in some villages could not be captured in classified ASTER images since it did not
induce any clear change on a coarse resolution image like ASTER.

In the aftermath of the 2004 tsunami, many international and Thai charities
provided for accommodation recovery by fixing or rebuilding new houses at the
same location and set up the inland tsunami victim villages. Based on our field
survey, accommodation recovery was observed and mapped as shown in Fig. 20.12.
We could observe the recovery of built-up areas on ASTER images but were unable
to confirm if they were newly built. This would be possible with higher resolution
imagery.

The cluster-based classified ASTER images provided an aggregated form of
LULC for comparison with socio-economic data. The point-based socio-economic
data, in its usual form, provided no spatial distribution. While LULC can reveal
the spatial distribution of consequences of human activities, there remains a big
gap between the two data sets for monitoring recovery. In this study, we simply
tried to improve the information presentation derived from the satellite image and
used unrealistic buffer zones around the village points. To better integrate them in
a more systematic manner, at least the administrative boundaries in polygon form
would be required. The socio-economic and field survey data subsequently would be
plotted against the two sets of polygons: clusters from classified ASTER images and
administrative boundaries. Moreover, direct observation and field interviews were
conducted to provide additional information about the real situation on the ground.
To be more effective, the sampling strategy needs to be taken into account so that
it enables location-awareness in the process of field data collection and subsequent
data analysis. The socio-economic figures associated with each single village point
would then be remapped together with field survey clues within the administrative
boundary of that village.

Moreover, during the survey, the understanding of tsunamis and the response
plan and reactions to unexpected tsunamis in the future were discussed with the
villagers (see Fig. 20.13). Since the tragic and catastrophic tsunami in 2004, most
of the tsunami victims and Thais had learnt about tsunamis: their source and
cause, warning signs before their occurrence, their character and attack style of
the series of waves, etc. Since 2005, a preparedness plan and tsunami facilities
(barrier, observatory and broadcasting towers, maps and signs of safety zones and
routes of evacuation, etc.,) were set up and distributed in the tsunami impacted
provinces, especially in Phang Nga and Phuket (Kamthonkiat et al. 2011b). Since
then, evacuation activities have been conducted annually.
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Fig. 20.12 Relocation of houses of tsunami-affected people/villagers based on field survey
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Fig. 20.13 Field survey – rebuilt village and interview with tsunami victims

20.5 Conclusion

In the aftermath of the 2004 Indian Ocean Tsunami, remote sensing has played
an important role in mapping impacted areas in Southern Thailand, namely: Phang
Nga, Phuket, Krabi, Satun, Ranong and Trang provinces. In this study, monitoring
the recovery of environmental rehabilitation and human activities was intensively
focused on Phang Nga using ASTER time series data (medium resolution remote
sensing) and annual field surveys.

It has been proven clearly that multi-temporal ASTER images or the like are
the right data sources for such a regional study of shoreline displacement and
mangrove rehabilitation. Interpreting the recovery of human activities faced a
tougher challenge due to incompatible data formats. To some extent, information
derived from satellite images could help to infer some big changes in human
activities in the areas such as recovery of tourism and expansion of agricultural
activities. Integration of satellite images, socio-economic data (population, and
employment in different sectors) and social survey information are helpful in
monitoring physical and living conditions(?) recovery in Phang Nga. In future
research, we propose the consideration of a sampling strategy for social interviews
and direct observation on the ground, which will help to enable a better connection
between conventional socio-economic databases and spatially distributed informa-
tion derived from satellite images.
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