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Abstract
The Papillomaviridae family comprises a large number of genetically heteroge-
neous papillomaviruses (PVs) that are the causative agents of benign lesions or 
cancer in humans and a wide range of animal species. Early research in animal 
PV systems has disclosed several important characteristics of PVs and led to the 
recognition of human papillomaviruses (HPVs) as carcinogenic viruses in 1995. 
One of the most crucial findings in animals was that in vitro generated PV major 
capsid proteins spontaneously self-assemble to empty viral capsids termed virus- 
like particles (VLPs) that are safe and highly immunogenic. This discovery 
paved the way for the establishment and commercial release of highly effective 
polyvalent VLP-based vaccines for the prevention of HPV-induced tumour dis-
ease in humans. In addition, it encouraged veterinary scientists to work on the 
establishment of analogous, VLP-based vaccines for the protection of horses and 
other equids from common PV-induced cutaneous and mucosal tumours that is 
bovine PV type 1/2 (BPV1/2)-associated sarcoids and equine PV type 2 (EcPV2)-
induced squamous cell carcinomas (SCCs). So far, BPV1 and EcPV2 VLPs were 
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shown to be safe and highly immunogenic in horses. Furthermore, immunisation 
of horses with BPV1 VLPs conferred complete protection from experimental 
BPV1 infection and associated pseudo-sarcoid formation and also elicited cross 
protection from BPV2 infection. Similarly, the protective potential of EcPV2 
VLPs against experimental infection with EcPV2 pseudo-virions was shown in a 
murine model. Taken together, these findings indicate that BPV1 and EcPV2 
VLPs are safe and highly effective in protecting equids from PV-induced sar-
coids and SCCs.

10.1  Introduction

The Papillomaviridae family comprises a large number of human and animal 
viruses that are characterised by considerable genetic diversity yet adhere to 
common biological principles. Papillomaviruses (PVs) are relatively small non- 
enveloped viruses that consist of an icosahedral capsid harbouring a circular 
double-stranded DNA genome of up to 8 kbp in length. The capsid is composed 
of 72 L1 protein pentamers commonly termed capsomeres and 12 L2 protein 
monomers (Howley and Lowy 2001). The viral genome can be grossly divided 
into an early (E) and a late (L) coding region and a non-coding long control 
region (LCR). The early region codes for regulatory (E1, E2, E4) and transform-
ing proteins (E5, E6 and E7), which are expressed early in the viral life cycle. 
The late region contains two genes encoding the major L1 and the minor L2 
capsid proteins, which are not expressed until viral genome amplification has 
been completed. The LCR is essential in providing cis-responsive elements that 
are required for replication and transcription of the viral genome (Campo 2006b; 
Doorbar 2005).

PV virions cannot actively penetrate the skin or mucosa of their host. They gain 
access to basal epidermal cells through micro-abrasions. These stem cells provide 
the appropriate primary surface and secondary receptor molecules for virion attach-
ment and uptake. There is evidence for surface heparan sulphate proteoglycans 
(HSPG) representing initial PV attachment sites (Giroglou et al. 2001; Joyce et al. 
1999). Subsequent PV endocytosis possibly involves clathrin- and caveolin- 
mediated mechanisms (Day et al. 2003) and/or may necessitate the presence of 
tetraspanin- enriched microdomains (TEMs) (Spoden et al. 2008). The productive 
PV life cycle is described as being tightly linked to the differentiation process of 
keratinocytes. Following initial infection of basal cells, the early viral genes are 
expressed in the basal and suprabasal epithelial layers. The replication of the viral 
genome occurs in the differentiating cells of the spinous and the granular layers 
(Chow and Broker 2006). The late capsid genes are expressed in the final squamous 
layer, where new infectious virions are assembled and released via disintegration 
and shedding of dead squames (Graham 2006). Interestingly, PV virions are highly 
resistant to desiccation, thus opening the possibility of indirect transmission via 
fomites (Roden et al. 1997).
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10.2  Human Papillomavirus-Induced Cancer Disease 
and Effective Prevention

An aetiological association of PV infection with tumour development was first 
established in rabbits (Shope and Hurst 1933). The observation that inoculation of 
cottontail and domestic rabbits with infectious wart extract induced papillomas that 
sometimes progressed to squamous cell carcinoma (SCC) led to cottontail rabbit 
papillomavirus (CRPV) becoming the first model for the study of PV infection- 
associated carcinogenesis (Rous and Beard 1935).

Experimental research in rabbits, cattle and dogs disclosed several fundamental 
characteristics of PVs, most notably their species specificity and their pronounced 
tropism for defined cellular environments, i.e. cutaneous or mucosal keratinocytes 
and, for some types, fibroblasts (Lowy 2010). Consequently, human papillomavirus 
(HPV) research had to rely on animal infection models for many decades (Campo 
2002). This comparative approach brought together scientists from various fields of 
human and veterinary medicine. Investigations on CRPV, bovine papillomavirus 
types 1 and 4 (BPV1, BPV4) and canine oral papillomavirus (COPV) led to impor-
tant insights into PV biology and pathogenicity (Campo 2002), thus paving the way 
for the official recognition of HPVs as carcinogenic viruses (IARC 1995).

Molecular biological methods and powerful in vitro and small animal systems 
established during the past 30 years led to a shift from animal PV to direct HPV 
research. To date, more than 200 HPV types have been identified. From these, about 
15 types are carcinogenic and thus classified as high-risk (hr) HPV types. There is 
evidence for almost all diagnosed cervical cancers, 90 % of anal cancers, up to 50 % 
of genital tumours and 22 % of head and neck squamous cell carcinomas (HNSCC) 
being caused by hrHPV types (Dayyani et al. 2010; zur Hausen 1996, 2000, 2009). 
HPV oncoproteins E6 and E7 have been recognised as essential factors in HPV- 
induced carcinogenesis. Malignant transformation of infected epidermal cells is 
achieved by complex interactions of these oncoproteins with cellular factors 
involved in cell cycle regulation (Feller et al. 2010a, b). E5 has been shown to be 
likewise transforming and to downregulate major histocompatibility complex 
(MHC) class I cell surface expression, thus helping the virus to escape from immune 
surveillance and establish infection (Ashrafi et al. 2006). In conjunction with other 
carcinogenic factors such as UV-radiation, infection by cutaneous beta-HPV types 
may indirectly contribute to the development of cutaneous SCCs (Schiller and Buck 
2011; Zur Hausen 1996, 2000, 2009).

One of the most crucial findings in animal PV models was that in vitro generated 
L1 capsid proteins spontaneously self-assemble into empty capsids termed virus- 
like particles (VLPs). The latter are morphologically and immunologically almost 
indistinguishable from wild-type virions in that they display conformation- 
dependent neutralisation epitopes and are able to induce high titres of type-restricted 
neutralising antibodies (Kirnbauer et al. 1992). Challenge studies conducted in rab-
bits and cows revealed that immunisation with homologous (i.e. CRPV and BPV4) 
but not heterologous VLPs conferred protection from experimental infection 
(Breitburd et al. 1995; Kirnbauer et al. 1996). Similarly, immunisation with COPV 
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VLPs induced protection from experimental COPV infection in dogs (Suzich et al. 
1995). These and similar findings (Rose et al. 1993; Zhou et al. 1991) ultimately led 
to the establishment and commercial release of highly effective polyvalent VLP- 
based vaccines for the prevention of HPV-induced tumour disease in humans 
(Angioli et al. 2016; Villa et al. 2005).

10.3  Papillomavirus-Induced Tumours in Horses and Other 
Equids

10.3.1  Sarcoids

In cattle, bovine papillomaviruses of types 1 and 2 (BPV1; BPV2) are the causative 
agents of benign warts that usually regress spontaneously. Infection is productive, 
with cow warts harbouring millions of infectious particles (Campo 2006a). As the 
rare example of a cross-species infection, BPV1/2 can also infect equids, e.g. horses, 
donkeys, mules and zebras, and lead to the development of usually persistent, 
locally aggressive skin tumours termed sarcoids (Chambers et al. 2003a). The latter 
constitute the most commonly encountered tumour disease in horses, with a mor-
bidity of 5.8 % in the UK (Ireland et al. 2013). Sarcoids are typically diagnosed in 
young adult individuals with a peak incidence at the age of seven. Depending on 
their gross appearance, sarcoids are classified as occult, verrucose (Fig. 10.1a), nod-
ular, fibroblastic (Fig. 10.1b), mixed or malevolent (Knottenbelt 2005). Disease 
may present as single tumour or multiple lesions of various types at different sites 
of the body. Sarcoids have a high propensity to progress to a more severe and mul-
tiple form of disease, especially upon accidental or iatrogenic trauma, i.e. ineffec-
tive therapy (Hainisch and Brandt 2015). Disease may also impair the use of affected 
animals, entail considerable treatment costs and pronouncedly decrease the resale 
value of affected animals. As a consequence, sarcoids are the number one skin- 
related cause for euthanasia (Scott and Miller 2003a). Taking into consideration the 
high prevalence of the disease, the lack of universally effective therapeutic 
approaches and the fact that sarcoids affect relatively young horses, it is clear that 
equine sarcoids also have an important negative impact on the horse industry.

First evidence for an aetiological association of BPV1/2 with equine sarcoid 
disease has been obtained by inoculation experiments. In 1937, Montpellier et al. 
(Montpellier et al. 1937) reported the successful auto-transmission of sarcoids in a 
mule. In 1951 and 1969, two research groups succeeded in inducing sarcoid-like 
lesions by intradermal injection of horses with cow wart extract. Experimental 
lesions were morphologically and histologically indistinguishable from naturally 
acquired sarcoids, yet regressed spontaneously (Olson and Cook 1951; Ragland and 
Spencer 1969). Importantly, Voss was able to induce persistent sarcoids by inocula-
tion of scarified skin with sarcoid extract, but not by intradermal injection of this 
inoculum (Voss 1969). The suspected causative involvement of BPV1/2 in sarcoid 
pathogenesis was further supported by in situ hybridization (ISH) experiments 
revealing the presence of viral DNA in the nuclei of tumour fibroblasts (Lancaster 

S. Brandt and E. Hainisch



155

et al. 1979). However, ISH failed to demonstrate BPV1/2 DNA in sarcoid epider-
mis, and no virion has been detected by electron microscopy at that time. 
Accordingly, BPV1/2 infection was assumed to be abortive in equids, with virus 
exclusively residing in sarcoid fibroblasts in an episomal form (Amtmann et al. 
1980; Lancaster 1981). These experiments were the first in a long row of investiga-
tions leading to the recognition of BPV1 and BPV2 as the major causative agents of 
equine sarcoids along with trauma (Chambers et al. 2003a; Hainisch and Brandt 
2015; Nasir and Reid 2006; Nasir and Brandt 2013).

With the advent of modern molecular biological and immunological methods, 
many important aspects of BPV1/2 infection in equids and associated tumour 
development have been elucidated (Hainisch and Brandt 2015; Nasir and Brandt 
2013). However, it is still unclear how BPV1/2 is transmitted to equids. Infection 

a

b

c

Fig. 10.1 Sarcoids in 
equine species: low- to 
high-grade lesions. (a) 
Sarcoids on the inside of 
the thigh of a horse. 
Example of low-grade 
lesions. Several sarcoids 
are present. The lesions are 
characterised by a 
hyperkeratotic, verrucose 
centre and a surrounding 
area of alopecia with 
mildly thickened skin; (b) 
example of a high-grade 
lesion in a donkey: 
fibroblastic sarcoid on the 
prepuce; (c) SCC on the 
penile glans of an aged 
gelding. The picture was 
taken immediately before 
surgery to amputate the 
distal 15 cm of the penis

10 Prophylactic Vaccination Against Papillomavirus-Induced Tumour Disease



156

is still thought to be abortive, with sarcoid-affected animals thus representing a 
dead-end host. As a consequence, it has been assumed that infection is directly 
acquired from cow wart-affected bovines or, indirectly, from contaminated fomites 
or may be achieved by infected cells without the need of infectious virions (Bogaert 
et al. 2005; Chambers et al. 2003a). Contaminated fomites may include trees and 
fence posts on which horses scratch their body or tack and grooming kits. BPV1/2 
DNA has also been found in insects caught in the vicinity of sarcoid-affected 
equids (stable flies, horse flies), leading to the theory that insect vectors may have 
a role in BPV1/2 transmission (Finlay et al. 2009; Kemp-Symonds 2000). This 
concept is substantiated by the fact that sarcoids often develop at insect-infested 
sites of the body such as the belly, the groin and the external genitals (Hainisch and 
Brandt 2015).

There are several lines of evidence that refute the theories of an abortive BPV1/2 
infection in equids and the transmission of infection without virion. First, it has 
been demonstrated that intracranial injection of hamsters with BPV1 virion resulted 
in the development of sarcoid-like intracranial and cutaneous lesions, whereas 
injection of heat-denatured virion had no apparent effect (Robl et al. 1972). In anal-
ogy, intradermal inoculation of foals with BPV1 virion led to the formation of 
pseudo-sarcoids, whilst inoculation with naked BPV1 genome or primary sarcoid 
fibroblasts containing viral episomes produced no overt skin malignancies (Hainisch 
et al. 2012; Hartl et al. 2011). Gobeil et al. (2007) have likewise demonstrated that 
sarcoids are not inducible by an infectious cell line. Second, BPV1 L1 mRNA and 
capsid protein were shown to be intralesionally expressed (Brandt et al. 2011; Nasir 
and Reid 1999). Given that PV L1 expression and subsequent virion assembly is 
confined to the upper epidermal layer, this finding indicates that, contrary to previ-
ously reported data, BPV1 infection may also involve equine epidermis and be pro-
ductive in this skin layer. Indeed, analysis of micro-dissected sarcoid epidermis 
revealed the presence of viral DNA and L1 protein in a subset of tumour samples 
(Bogaert et al. 2010; Brandt et al. 2011). Using an approach that combines an anti-
body capture step for selective virion isolation with highly sensitive BPV1/2 PCR, 
presence of L1 capsomeres in a complex with viral genome was shown for about 
58 % of tested sarcoids with maximum concentrations of 125 complexes per 50 μl 
of cell-free sarcoid extract (Brandt et al. 2008). In accordance with this observation, 
Wilson et al. have visualised BPV1 virions in sarcoid sections by transmission elec-
tron microscopy (TEM) (Wilson et al. 2013). These laboratory findings are corrobo-
rated by a field study where co-stabling of sarcoid affected with healthy donkeys 
resulted in the latter developing sarcoids (Nasir and Campo 2008). In addition, sar-
coids of donkeys and horses were shown to contain equid-specific variants of BPV1 
that are not found in bovine warts (Brandt et al. 2008; Chambers et al. 2003b; Nasir 
et al. 2007; Trewby et al. 2014). Taken together, it appears more realistic that intact 
virions are needed for initial infection of equids, which is also productive, at least in 
some equids and/or at some stages of sarcoid disease.

In humans, many years can elapse between initial HPV infection and associated 
tumour development (Bosch et al. 2006). In equids, the time span between initial 
infection and sarcoid development appears to be relatively short, since BPV1/2 
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DNA is commonly detected in lesions, intact skin and peripheral blood mononu-
clear cells (PBMC) of sarcoid-bearing animals, but usually not in sarcoid-free indi-
viduals (Carr et al. 2001; Chambers et al. 2003a; Nasir and Brandt 2013). The high 
incidence of disease especially in younger horses further supports the assumption of 
a relatively short incubation period (Scott and Miller 2003a). Although cases of 
spontaneous tumour regression have been reported, sarcoids are usually persistent 
tumours because equids are unable to mount a measurable immune response upon 
natural BPV1/2 infection. The mechanisms underlying BPV1/2 immune escape are 
not yet understood. However, the E5 protein may provide a direct way of immune 
evasion by downregulation of MHC I, which in turn compromises viral antigen 
presentation by this complex to immune cells (Marchetti et al. 2009).

10.3.2  Squamous Cell Carcinoma

Squamous cell carcinomas (SCCs) represent the most common malignant epithelial 
tumour in equids (Scott and Miller 2003b). They can develop anywhere on the skin, 
yet predominate at mucocutaneous transitions, i.e. the ocular region and external 
genitalia (Scott and Miller 2003b; Sundberg et al. 1977). Given the invasiveness of 
SCCs, surgical excision is the current therapy of choice. In severe cases, this may 
necessitate the exenteration of affected eyes or the en bloc resection of affected 
external genitalia, which in turn may lead to postsurgical complications and eutha-
nasia of the equid patient (Mair et al. 2000; van den Top et al. 2008).

Genital SCCs (gSCCs) account for 50–85 % of all genital tumours in hospital 
populations. The typical patient is a gelding older than 15 years. Lesions initially 
present as papillomatous plaques or papillomas on the penile glans or shaft. When 
left untreated, lesions progress to carcinoma in situ and SCC (Fig. 10.1c) that metas-
tasises in about 12–15 % of cases. SCCs can spread through contact to the prepuce 
or via lymphatics to local lymph nodes and the abdomen and in rare cases to the 
vertebral bodies and lungs. Mares can be likewise affected, with disease mostly 
involving the clitoris or vulva (Scott and Miller 2003b; van den Top et al. 2008).

Over the past decade, evidence for an active involvement of papillomavirus 
infection in the development of equine SCCs has substantially increased. A novel 
PV termed equine papillomavirus type 2 (EcPV2) was identified from a case of 
genital SCC and its genome fully characterised (Scase et al. 2010). Subsequent 
screening of a series of genital and ocular SCCs/SCC precursor lesions (plaque, 
papilloma, carcinoma in situ) revealed the consistent presence of EcPV2 DNA and 
mRNA in the genital lesions, whilst SCCs of the nictitating membrane and conjunc-
tiva scored negative for EcPV2 (Kainzbauer et al. 2012; Scase et al. 2010; Sykora 
et al. 2012). Screening of ocular and genital swabs as well as milk and semen from 
apparently healthy horses resulted in an EcPV2 DNA detection rate of 2.6 % (Sykora 
et al. 2012). Consistent presence of EcPV2 in genital SCC and the low incidence of 
infection in tumour-free individuals were confirmed by several independent studies 
(Bogaert et al. 2012; Fischer et al. 2014; Knight et al. 2013; Lange et al. 2013a). 
Taken together, this body of evidence indicates that EcPV2 infection is causally 
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associated with the development of genital plaques, papillomas, carcinoma in situ 
and SCC. EcPV2 DNA was also detected in a subset of equine oropharyngeal SCCs 
and ocular SCC metastases (Kainzbauer et al. 2012; Knight et al. 2013). The signifi-
cance of these findings is subject to current investigations. Since the discovery of 
EcPV2 in 2010, five novel EcPV types termed EcPV3–7 have been identified from 
genital (EcPV4) and aural plaques (EcPV5–6) and penile lesions (EcPV3, 7). 
However, an aetiological association of these EcPV types with tumour disease 
remains to be established (Lange et al. 2013b; van den Top et al. 2015).

10.4  Protecting Horses from Papillomavirus-Induced 
Tumour Disease

Depending on the location and severity of the lesions, sarcoids and SCCs are treated 
by topical application of antiviral ointments or chemotherapeutics, cryo- and radio-
therapy, total removal of the lesion by ligation or (laser) surgery or by combinations 
of these modalities. The earlier disease is diagnosed and treated, the better is the 
chance of successful therapy (Pascoe and Knottenbelt 1999). However, early detec-
tion of gSCCs and precursor lesions can be problematic, especially in geldings, 
where the development of penile lesions often remains unnoticed by the owner until 
they have progressed to massive malodorous bleeding masses, because the penis is 
usually retracted in the prepuce. At such a late stage, the prognosis is poor or hope-
less (Hainisch and Brandt 2015; Pascoe and Knottenbelt 1999).

Given that sarcoids and gSCCs constitute highly relevant diseases in equids 
and that immunisation of humans with VLP-based vaccines has proven highly 
effective in preventing HPV-induced cancers, an attempt was made to establish a 
vaccine for protection of equids from sarcoids and gSCCs. Safety and immunoge-
nicity of BPV1 L1 VLPs were assessed in a phase I dose-escalation trial, showing 
that intramuscular immunisation of horses with 50, 100 and 150 μg of BPV1 L1 
VLP in alum was well tolerated and induced high titres of neutralising antibodies 
irrespective of the dose (Hainisch et al. 2012). On the basis of inoculation experi-
ments conducted in the 1950s and 1960s (Olson and Cook 1951; Ragland and 
Spencer 1969; Voss 1969), four horses were intradermally inoculated with cow 
wart-derived BPV1 virions, naked BPV1 genome and sarcoid cells on the neck 
and then monitored (Fig. 10.2). Pseudo-sarcoids developed exclusively at sites 
inoculated with virions. Tumours became palpable 11–32 days after inoculation, 
reached maximum sizes of 2 cm in diameter and then resolved spontaneously 
within 6 months, although no neutralising anti-BPV1 serum antibodies were 
detectable throughout the trial. Interestingly, viral DNA and mRNA were not only 
detected from lesions but also from PBMCs already before lesions were first pal-
pable. Immunofluorescent staining revealed the presence of the E5 protein in 
tumour fibroblasts, but not in the apparently normal epidermis overlying the 
lesions. Taken together, intradermal inoculation of horses with BPV1 virions reli-
ably resulted in the formation of transient pseudo-sarcoids, thus constituting a 
robust challenge model (Hartl et al. 2011).
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This model was used to address the protective potential of BPV1 L1 VLPs. 
To this aim, horses were immunised with BPV1 L1 VLPs or left unvaccinated 
and then challenged intradermally with BPV1 virions (Fig. 10.2a). Whilst 

Fig. 10.2 Skin inoculation in horses with papillomaviruses. (a) Intradermal injection of cow wart 
extract in a horse. This is a robust in vivo method to test whether a papillomavirus causes infection. 
In this case the horse is inoculated with BPV1 to produce pseudo-sarcoids. Note the six sites to left 
of the needle which have already been injected. Intradermal injection results in a small wheal as 
fluid cannot readily disperse in the dermis. Subcutaneous injection does not result in wheal forma-
tion. Wheal formation is therefore a control for the proper use of the technique; (b) intradermal 
inoculation of the neck with BPV1 has resulted in the development of ten pseudo-sarcoids at all ten 
inoculation sites approximately 5 weeks after inoculation. The lesions at this point in time are at 
the peak of their growth and measure about 1 cm in diameter. Five months after inoculation, regres-
sion of all the lesions was complete in this horse
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control horses developed pseudo-sarcoids at all inoculation sites (Fig. 10.2b), 
vaccinated horses showed complete protection from tumour formation. Because 
BPV1 and BPV2 were shown to be closely related serotypes (Shafti-Keramat 
et al. 2009), horses were vaccinated or not vaccinated with a bivalent BPV1/
EcPV2 L1 VLP vaccine and then challenged with BPV2 virions. The rationale 
of this trial was to study the cross-protective potential of BPV1 L1 VLP-induced 
antibodies against BPV2 in vivo and to address the safety and immunogenicity 
of EcPV2 L1 VLPs. As anticipated, intramuscular administration of the bivalent 
vaccine was well tolerated and induced a robust antibody response that was 
however significantly lower than the response to the monovalent vaccine. As a 
conceivable consequence, vaccination resulted in incomplete protection from 
BPV2-induced pseudo-sarcoid formation. Given that extremely high virion con-
centrations were used for horse challenge, i.e. a minimum of 106 BPV2 virions 
per inoculation site, it can be speculated that BPV1 L1 VLPs as monovalent or 
component of a polyvalent vaccine will protect from natural BPV2 infection 
(Hainisch et al. 2015). Importantly, horses challenged with BPV1 more than 5 
years after immunisation with three different doses of BPV1 L1 VLPs (Hainisch 
et al. 2012) were completely protected from infection. Surprisingly, protection 
did neither correlate with the vaccine dose nor with BPV1-neutralising serum 
antibody titres which were generally low and had dropped below detection level 
in one animal (Hainisch et al. 2015). Taken together, immunisation of horses 
with BPV1 L1 VLPs was safe, induced long-lasting protection from experimen-
tal BPV1 infection and confined partial protection from BPV2 challenge 
(Hainisch et al. 2015).

Immunisation of horses with BPV1/EcPV2 L1 VLPs proved safe and immuno-
genic. Therefore efforts were made to address the prophylactic potential of EcPV2 
L1 VLPs in vivo. To this aim, rabbits were immunised with EcPV2 L1 or control 
VLPs, and then respective rabbit pre-immune or immune sera were transferred to 
mice. Subsequent intravaginal challenge of mice with EcPV2 L1 pseudo-virions 
(PsV), i.e. capsids harbouring a luciferase reporter plasmid, resulted in complete 
and exclusive protection from PsV infection in mice passively transferred with 
EcPV2 L1 VLP immune serum (Schellenbacher et al. 2015).

Provided that a causal association of EcPV2 infection with gSCCs and possibly 
SCC at other sites of the body can be conclusively demonstrated, these findings 
recommend EcPV2 L1 VLPs as prophylactic vaccine against EcPV2 infection and 
associated disease in equids.

10.5  Synopsis

Research in natural animal PV models including rabbits, dogs and cattle has chiefly 
contributed to today’s knowledge regarding the mechanisms underlying PV infec-
tion and tumour formation. It has led to the recognition of HPVs as oncogenic 
viruses and ultimately to the establishment of effective vaccines for prevention of 
HPV-induced tumour disease in humans.
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To date highly sophisticated molecular biologic and immunological methods and 
powerful in vitro and in vivo models are available for the direct study of HPV infec-
tion and associated human disease. This has led to important scientific and clinical 
insights, some of which have motivated veterinarians and virologists to attempt the 
establishment of vaccines for equid PV tumour prophylaxis and treatment. Whilst 
studies on sarcoid immunotherapy are still ongoing, a large body of evidence that 
BPV1 L1 and EcPV2 L1 VLPs constitute an effective vaccine for protection of 
equids from sarcoid and gSCC disease is available today and will be hopefully 
implemented into practice.

PV research in animals and humans, and particularly the establishment of PV 
VLPs as prophylactic vaccines, represents a good example for highly successful 
comparative research that merits to be encouraged for the benefit of the animal and 
the human patient.
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