
Runtime Verification for HyperLTL

Borzoo Bonakdarpour1(B) and Bernd Finkbeiner2

1 McMaster University, Hamilton, Canada
borzoo@mcmaster.ca

2 Saarland University, Saarbrücken, Germany
finkbeiner@cs.uni-saarland.de

Abstract. Information flow security often involves reasoning about mul-
tiple execution traces. This subtlety stems from the fact that an intruder
may gain knowledge about the system through observing and comparing
several executions. The monitoring of such properties of sets of traces,
also known as hyperproperties, is a challenge for runtime verification,
because most monitoring techniques are limited to the analysis of a
single trace. In this tutorial, we discuss this challenge with respect to
HyperLTL, a temporal logic for the specification of hyperproperties.

1 Security Policies and Hyperproperties

Runtime verification (RV) is traditionally concerned with the monitoring of trace
properties such as those expressed in linear-time temporal logic (LTL). Observing
a growing prefix of a trace, we determine if the trace belongs to the set of traces
that is characterized as correct by the specification.

Information flow security policies usually do not fit this pattern, because
they express a relation between multiple traces. Noninterference, for example,
requires that two traces that may differ in their high-security inputs, but have
the same low-security inputs, must have the same low-security outputs. Such
properties are therefore not properties of individual traces, but properties of
sets of traces, also known as hyperproperties. This is not a matter of linear vs.
branching time, as noninterference cannot even be expressed in branching-time
temporal logics, such as CTL, CTL∗ or the modal μ-calculus [2,11]; the challenge,
rather, is that information flow properties can be considered as properties on a
system that results from the parallel composition of multiple copies of the original
system [4,18].

Clarkson and Schneider proposed the notion of hyperproperties to account
for properties that relate multiple executions of a system [7]. They showed that
the class of hyperproperties comprises many of the properties proposed in the
literature. A hyperproperty H is defined as a set of sets of executions traces,
and a system is defined to satisfy H, if its set of execution traces is an element
of H. Noninterference between an input h and an output o is, for example, the
hyperproperty consisting of all sets of traces, in which all traces that only differ
in h have the same output o at all times.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 41–45, 2016.
DOI: 10.1007/978-3-319-46982-9 4

42 B. Bonakdarpour and B. Finkbeiner

2 HyperLTL

Since hyperproperties cannot be expressed in the classic temporal logics like LTL
or CTL∗, several extensions of the temporal logics have been proposed. Balliu
et al. encoded several standard information flow policies in epistemic tempo-
ral logics [3], which allows us to specify properties in terms of the knowledge
of agents. Another temporal logic that is sufficiently expressive to encode cer-
tain information flow policies is SecLTL, which specifies how information flow
requirements change over time and in response to events in the system [8]. We
focus here on the temporal logic HyperLTL [6,12], which adds explicit and simul-
taneous quantification over multiple traces to LTL. Compared to previous log-
ical frameworks, HyperLTL significantly extends the range of security policies
under consideration, including complex information-flow properties like general-
ized noninterference, declassification, and quantitative noninterference.

Let AP be a set of atomic propositions, and let V be a set of trace variables.
The syntax of HyperLTL is given by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ Uϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. Note that
atomic propositions are indexed by trace variables. The quantification over traces
makes it possible to express properties like “on all traces ψ must hold”, which
is expressed by ∀π. ψ. Dually, one can express that “there exists a trace such
that ψ holds”, which is denoted by ∃π. ψ. We use the usual derived Boolean
connectives. The derived temporal operators , , and W are defined as for
LTL: ϕ ≡ trueUϕ, ϕ ≡ ¬ ¬ϕ, and ϕ1 Wϕ2 ≡ (ϕ1Uϕ2) ∨ ϕ1. We call
a HyperLTL formula ψ (quantifier) alternation-free iff the quantifier prefix only
consists of either only universal or only existential quantifiers.

It has been shown that many hyperproperties of interest can be expressed
in HyperLTL [6,12,16]. For many properties, it in fact suffices to use the
alternation-free fragment of HyperLTL. The following are two typical examples:

– Observational determinism [19] requires that every pair of traces with the
same initial low observation remain indistinguishable for low users. That is,
the program appears to be deterministic to low-security users. Observational
determinism can be expressed in HyperLTL as follows:

∀π.∀π′. (lowInπ ⇔ lowInπ′) ⇒ (lowOutπ ⇔ lowOutπ′),

where lowIn and LowOut are atomic propositions representing the low-security
inputs and outputs, respectively.

– Shamir’s secret sharing scheme [17] is the following policy: A system stores a
secret by splitting it into k shares. The requirement is that not all of the k
shares are revealed:

∀π1∀πk. ((¬sr1π1
∧ · · · ∧ ¬sr1πk

) ∨ . . . ∨ (¬srk
π1

∧ · · · ∧ ¬srk
πk

)),

Runtime Verification for HyperLTL 43

where the atomic proposition sr i, i ∈ [1, k], means that share i of the secret
has been revealed.

The satisfiability problem of HyperLTL formulas is in general undecidable,
but decidable for the fragment without quantifier alternations and for the ∃∗∀∗-
fragment. Since, in practice, many HyperLTL specifications only contain uni-
versal quantifiers, this means that the satisfiability, implication, and equivalence
of such specifications can be checked automatically [10]. The model checking
problem of HyperLTL formulas over finite-state Kripke structures is decidable
for the full logic, and has, in fact, the same complexity (PSPACE-complete) as
standard LTL model checking for the alternation-free fragment. MCHyper is an
efficient tool implementation for hardware model checking against alternation-
free HyperLTL formulas [12]. Beyond finite-state systems, it was recently shown
that a first-order extension of HyperLTL can be checked automatically over
workflows with arbitrarily many agents [13].

3 Runtime Verification for HyperLTL

For runtime verification, it is necessary to define finite-trace semantics for Hyper-
LTL. Analogously to the three-valued semantics of LTL [5], such a finite-trace
semantics for HyperLTL can be defined based on the truth values B3 = {
,⊥, ?}.
In this semantics, “?” means that for the given formula ϕ and the current set
M of finite execution traces at run time, it is not possible to tell whether M
satisfies or violates ϕ; i.e., both cases are possible in this or future extensions
and/or executions.

Let M be a finite set of finite traces. The truth value of a closed HyperLTL
formula ϕ with respect to M , denoted by [M |= ϕ], is an element of the set
B3 = {
,⊥, ?}, and is defined as follows:

[M |= ϕ] =

⎧
⎪⎨

⎪⎩

� if ∀ sets T of infinite traces with M ≤ T, T satisfies ϕ

⊥ if ∀ sets T of infinite traces with M ≤ T, T does not satisfy ϕ

? otherwise,

where ≤ is a prefix relation on sets of traces defined as follows. Let u be a finite
trace and v be a finite or infinite trace. We denote the concatenation of u and v
by σ = uv. Also, u ≤ σ denotes the fact that u is a prefix of σ. If U is a set of
finite traces and V is a finite or infinite set of traces, then U ≤ V is defined as
U ≤ V ≡ ∀u ∈ U. (∃v ∈ V. u ≤ v). Note that V may contain traces that have
no prefix in U .

Pnueli and Zaks [15] characterize an Ltl formula ϕ as monitorable for a finite
trace u, if u can be extended to one that can be evaluated with respect to ϕ at
run time. For example, the Ltl formula p is not monitorable, since there is
no way to tell at run time whether or not p will be visited infinitely often in the
future. By contrast, safety (e.g., p) and co-safety (e.g., p) LTL formulas are
monitorable. We can extend the concept of LTL-monitorability to HyperLTL

44 B. Bonakdarpour and B. Finkbeiner

by requiring that every finite set U of finite traces can be extended to a finite
set V of finite traces such that every trace in U is the prefix of some trace in
V and that V evaluates to
 or ⊥. It is easy to see that an alternation-free
HyperLTL formula with monitorable inner LTL subformula is also monitorable.
For example, observational determinism and Shamir’s secret sharing scheme are
both monitorable. Note, however, that only violations of such formulas can be
detected at run time (detecting their satisfaction requires examining all traces
of the system under inspection, which is a model checking problem).

A monitor for a HyperLTL formula must match the observed traces with the
quantifiers of the HyperLTL formula and ensure that the inner LTL subformula is
satisfied on the combined trace. For alternation-free HyperLTL formulas, this can
be done by creating a monitor automaton for the LTL subformulas that are inter-
trace independent, then progressing inter-trace dependent subformulas for each
observed trace, and finally building a monitor automaton for each progressed
formula [1]. This approach has proven successful on complex data sets, such as
the GPS location data of 21 users taken over a period of eight weeks in the region
of Seattle, USA. However, there is clear potential for further optimization, for
example, by analyzing the observed execution trace in relation to an abstract
model of the system at run time (cf. [9]). Another important line of work is the
extension of the approach to a distributed monitoring framework (cf. [14]).

Acknowledgment. This work was partially supported by the German Research Foun-
dation (DFG) in the Collaborative Research Center 1223 and by Canada NSERC Dis-
covery Grant 418396-2012 and NSERC Strategic Grants 430575-2012 and 463324-2014.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in hyperltl. In: Proceedings of the 29th IEEE Computer Security Foundations
Symposium (CSF) (2016, to appear)

2. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 107–118. Springer, Heidelberg (2006). doi:10.1007/11787006 10

3. Balliu, M., Dam, M., Guernic, G.L.: Epistemic temporal logic for information flow
security. In: Proceedings of the 2011 Workshop on Programming Languages and
Analysis for Security, PLAS 2011, San Jose, CA, p. 6, June 2011

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: CSFW, pp. 100–114 (2004)

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

6. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6),
1157–1210 (2010)

http://dx.doi.org/10.1007/11787006_10
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15

Runtime Verification for HyperLTL 45

8. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27940-9 12

9. Dimitrova, R., Finkbeiner, B., Rabe, M.N.: Monitoring temporal information flow.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 342–357.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0 26

10. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of the CON-
CUR 2016 (2016)

11. Finkbeiner, B., Rabe, M.N.: The linear-hyper-branching spectrum of temporal log-
ics. IT Inform. Technol. 56(6), 273–279 (2014)

12. Finkbeiner, B., Rabe, M.N., Sanchez, C.: Algorithms for model checking HyperLTL
and HyperCTL*. In: Proceedings CAV 2015 (2015)

13. Finkbeiner, B., Seidl, H., Müller, C.: Specifying and verifying secrecy in workflows
with arbitrarily many agents. In: Proceedings of the ATVA 2016 (2016)

14. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 494–503 (2015)

15. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). doi:10.1007/11813040 38

16. Rabe, M.N.: A Temporal Logic Approach to Information-flow Control. Ph.D. the-
sis, Saarland University (2016)

17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
18. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,

C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). doi:10.1007/11547662 24

19. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent pro-
gram security. In: Proceedings IEEE Computer Security Foundations Workshop,
pp. 29–43, June 2003

http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-34026-0_26
http://dx.doi.org/10.1007/11813040_38
http://dx.doi.org/10.1007/11547662_24

	Runtime Verification for HyperLTL
	1 Security Policies and Hyperproperties
	2 HyperLTL
	3 Runtime Verification for HyperLTL
	References

