
Runtime Visualization and Verification in JIVE

Lukasz Ziarek1(B), Bharat Jayaraman1, Demian Lessa1, and J. Swaminathan2

1 Department of Computer Science and Engineering,
State University of New York at Buffalo, Buffalo, USA
{lziarek,bharat}@buffalo.edu, demian@lessa.org

2 Amrita Vishwa Vidyapeetham University, Coimbatore, India
swaminathanj@am.amrita.edu

Abstract. Jive is a runtime visualization system that provides (1) a
visual representation of the execution of a Java program, including UML-
style object and sequence diagrams as well as domain specific diagrams,
(2) temporal query-based analysis over program schedules, executions,
and traces, (3) finite-state automata based upon key object attributes
of interest to the user, and (4) verification of the correctness of program
execution with respect to design-time specifications. In this paper we
describe the overall Jive tool-chain and its features.

Keywords: Runtime visualization · Object · Sequence · State dia-
grams · Finite state model extraction · Runtime verification

1 Introduction and Jive Overview

We present in this paper a tool called Jive for runtime visualization and verifica-
tion of Java and real-time Java programs running on the Fiji VM [9]. Jive pro-
vides visual debugging, visual dynamic analysis through temporal queries, and
visual model synthesis and validation for object oriented programs. The toolchain
and associated tutorials and installation instructions are publicly available at:
http://www.cse.buffalo.edu/jive/. Jive is based upon a model-view-controller
architecture; the controller component interfaces with the Java Platform Debug-
ger Architecture (JPDA), an event-based debugging architecture, in order to
receive debug event notifications such as method entry and exit, field access
and modification, object creation, and instruction stepping. Jive supports two
modes of operation, an interactive mode where the user can debug while the
program is executing, and an offline mode where a program execution trace
(represented as a sequence of events) can be loaded and introspected. Jive’s
form-based queries and its reverse step/jump feature allow past program states
to be explored without restarting the program [5].

Jive has been extend to support offline analysis of real-time Java programs.
The extension is called Ji.Fi [2,3], and takes offline traces of events as input.
Unlike the vanilla version of Jive, Ji.Fi supports precise notions of time and
assumes timestamps present in events are gathered from a real-time clock. The
Ji.Fi system is agnostic to both SCJ and RTSJ, offering support for either spec-
ification’s memory model [4] and linguistic constructs. Our initial work on Ji.Fi

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 493–497, 2016.
DOI: 10.1007/978-3-319-46982-9 33

http://www.cse.buffalo.edu/jive/


494 L. Ziarek et al.

has resulted in some preliminary specialized visual representations of real-time
Java programs, specifically focusing on scoped memory, a region based memory
allocation strategy that is highly error prone. The true power of Ji.Fi lies in its
temporal query analysis engine. By leveraging precise timestamps as well as the
temporal database for storing execution events, Ji.Fi is able to detect schedule
drift of periodic tasks due to contention on shared monitors between threads
of differing priority. The Ji.Fi system does also offer a preliminary sequence
diagram that can illustrate visually contended monitors and schedule drift.

Java Path Finder (JPF) [7] is a specialized virtual machine for Java that
can simulate the nondeterminism inherent in features such as thread scheduling
and selection of random numbers. Although JPF is a very powerful tool and
incorporates several execution efficiencies, its textual output is not always easy
to follow, especially for long executions. Jive provides a visualization mechanism
for JPF’s output, which we call the scheduling tree diagram. The scheduling tree
diagram depicts the choices made (nodes) and the paths traversed by the JPF
virtual machine in order to uncover a bug. The paths of this scheduling tree are
traversed by the JPF virtual machine in a depth-first left-right manner, and the
rightmost leaf node in the search tree corresponds to a property violation. The
edges of the search tree are annotated with the JPF instructions that lead to a
choice generation. The path leading to the property violation is shown by Jive
in more detail using a SD, which summarizes at a high-level the calling sequence
leading to the violation. Thus, the three diagrams (scheduling tree, sequence,
and object) allow the user to progressively explore different levels of detail in
the execution of a concurrent Java program, and together serve as a useful tool
for understanding concurrency bugs.

2 Runtime Models: Visualization and Verification

While object and sequence diagrams are useful in clarifying different aspects
of run-time behavior, they each have some limitations. Sequence diagrams do
not have any state information while object diagrams may be too detailed and
also do not convey a sense of how the state changes over time. To remedy these
shortcomings, a state diagram is proposed as a more concise way to summarize
the evolution of execution than either the object or sequence diagram. A state
diagram is an especially appropriate visualization for the class of programs that
have a repetitive behavior, especially servers and embedded system controllers.

In order to cater to different summarizations of execution, we let the user
specify at a high level which attributes of which objects/classes are of interest.
These are referred to as key attributes and they typically are a subset of the
attributes that get modified in some loop. Given a set of key attributes and
an execution trace of Java program for a particular input, we systematically
construct a state diagram that summarizes the program behavior for that input.
Each field write event in the execution trace could potentially lead to a new
state in the diagram. Since the number of field writes is bounded by the number
of events n, the complexity of state diagram construction is O(n).



Runtime Visualization and Verification in JIVE 495

Fig. 1. (a) Jive user interface showing a fragment of sequence, object, and state dia-
grams, along with execution trace. (b) Jive model-checking view showing the states
for three dining philosophers and the result of checking EG[T1∧T2]. (c) Finite state
model extraction from a Java execution of the three philosophers, with attributes of
interest being the philosopher states. (d) Specifying predicate Abstraction in Jive. (e)
Reduced state machine after performing predicate abstraction WRT ‘p1.action = E and
p2.action = E and p3.action = E’.

We briefly mention some refinements that can help construct more concise
and insightful state diagrams: (1) Predicate Abstraction helps reduce the state
space by reducing the number of possible values for one or more key attributes.
(2) Range Reduction is similar to Predicate Abstraction and is applicable for a
totally-ordered set of values, e.g., integers. By grouping values in ranges, e.g.,



496 L. Ziarek et al.

less than 0, equal to 0, and greater than 0, we can reduce the state space for the
integer-valued attribute to just three values. (3) Masking some attributes allows
us to capture the fact that a key attribute was changed during execution without
regard to the value it was assigned to. (4) Merging Multiple Runs enables us to
obtain more comprehensive state diagrams, as a union of smaller of finite-state
machines.

In order to close the loop between design and execution, Jive provides a
consistency-checking capability. Jive allows the design-time state diagram to be
authored by an open-source UML tool, such as Papyrus UML (which is available
as an Eclipse plug-in), or the state diagram may be defined textually using a sim-
ple notation, referred to as JSL, for JIVE State Language. Given a design-time
state diagram, Jive can check whether the runtime state diagram is consistent
with the design by checking whether every state and every transition in the run-
time state diagram is present in the design-time diagram. Jive will highlight
states and transitions in the runtime diagram that are not present in the design,
thereby signaling a possible error in implementation. Since the runtime state dia-
gram may not exercise all possible states and transitions, the consistency check
is an ‘inclusion’ test rather than an ‘equality’ test of two state diagrams.

3 Conclusions and Future Work

In this paper we presented an overview of Jive and its extensions. We described
the latest additions to the Jive toolchain, including generation and refinement
of runtime models as well as verification and validation of those models against
design time models. The system has been developed over a number of years and
the website http://www.cse.buffalo.edu/jive is a repository of all information
about the system, including instructions for installation and usage. We provide
in Fig. 1 a few screen shots from the latest version of Jive to illustrate the
mechanism described in Sect. 2 of the main paper. For our future work we plan
to extend the runtime models and design time models to include notions of time.
This extensions, coupled with Ji.Fi will be particularly useful for validation of
real-time system designs against execution traces.

TuningFork [1] is a visual debugger for real-time systems, and much like
our Ji.Fi extension it provides basic visualizations over event streams. A num-
ber of tools for enhancing program comprehension of object-oriented programs
have appeared over the last two decades. Jinsight [8] provides dynamic views
for detecting execution bottlenecks (Histogram View), displaying execution
sequences (Execution View), showing interconnections among objects based on
pattern recognition algorithms (Reference Pattern View), and displaying profil-
ing information for method calls (Call Tree View). Shimba [10] represents traces
as scenario diagrams, extracts state machines from scenario diagrams, detects
repeated sequences of events (i.e., behavioral patterns), and compresses con-
tiguous (e.g., loops) and non-contiguous (e.g., subscenarios) sequences of events.
Ovation [6] visualizes traces as execution pattern views, a form of interaction
diagram depicting program behavior; it supports various levels of detail through
filtering, collapsing/expanding, and pattern matching.

http://www.cse.buffalo.edu/jive


Runtime Visualization and Verification in JIVE 497

References

1. Bacon, D.F., Cheng, P., Frampton, D., Pizzonia, M., Hauswirth, M., Rajan, V.T.:
Demonstration: on-line visualization and analysis of real-time systems with Tun-
ingFork. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 96–100.
Springer, Heidelberg (2006)

2. Blanton, E., Lessa, D., Arora, P., Ziarek, L., Jayaraman, B.: JIFI: visual test
and debug queries for hard real-time. Concurrency Comput. Pract. Exper. 26(14),
2456–2487 (2014)

3. Blanton, E., Lessa, D., Ziarek, L., Bharat Jayaraman, J.: Visual test and debug
queries for hard real-time. In: Proceedings of the 10th International Workshop
on Java Technologies for Real-Time and Embedded Systems. ACM, New York,
October 2012

4. Cavalcanti, A., Wellings, A., Woodcock, J.: The safety-critical Java memory model:
a formal account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 246–261. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 20

5. Czyz, J.K., Jayaraman, B.: Declarative and visual debugging in eclipse. In: Pro-
ceedings of the 2007 OOPSLA Eclipse Technology eXchange Workshop (ETX
2007), pp. 31–35. ACM, New York (2007)

6. De Pauw, W., Lorenz, D., Vlissides, J., Wegman, M.: Execution patterns in object-
oriented visualization. In: Proceedings of the 4th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS 1998), pp. 219–234, April 1998

7. Havelund, K.: Java PathFinder User Guide. NASA Ames Research, California
(1999)

8. Zheng, C.-H., Jensen, E., Mitchell, N., Ng, T.-Y., Yang, J.: Visualizing the execu-
tion of Java programs. In: Diehl, S. (ed.) Software Visualization. LNCS, vol. 2269,
pp. 151–162. Springer, Heidelberg (2002)

9. Pizlo, F., Ziarek, L., Blanton, E., Maj, P., Vitek, J.: High-level programming of
embedded hard real-time devices. In: Proceedings of the 5th European conference
on Computer systems, EuroSys 2010, pp. 69–82. ACM, New York (2010)

10. Systä, T., Koskimies, K., Müller, H.: Shimba–an environment for reverse engineer-
ing Java software systems. Softw. Pract. Exper. 31, 371–394 (2001)

http://dx.doi.org/10.1007/978-3-642-21437-0_20

	Runtime Visualization and Verification in JIVE
	1 Introduction and Jive Overview
	2 Runtime Models: Visualization and Verification
	3 Conclusions and Future Work
	References


