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Abstract. We propose a framework to solve falsification problems of
conditional safety properties—specifications such that “a safety property
ϕsafe holds whenever an antecedent condition ϕcond holds.” In the outline,
our framework follows the existing one based on robust semantics and
numerical optimization. That is, we search for a counterexample input
by iterating the following procedure: (1) pick up an input; (2) test how
robustly the specification is satisfied under the current input; and (3)
pick up a new input again hopefully with a smaller robustness. In falsifi-
cation of conditional safety properties, one of the problems of the exist-
ing algorithm is the following: we sometimes iteratively pick up inputs
that do not satisfy the antecedent condition ϕcond, and the correspond-
ing tests become less informative. To overcome this problem, we employ
Gaussian process regression—one of the model estimation techniques—
and estimate the region of the input search space in which the antecedent
condition ϕcond holds with high probability.

1 Introduction

1.1 Falsification

In design of Cyber-Physical Systems (CPSs), the importance of quality assur-
ance of these systems is ever-rising, thus employing model-based development
(MBD)—making virtual models (e.g. Simulink/Stateflow blocks) of products,
and on these models, verifying properties by mathematical methodologies—has
become standard. However, currently at least, the complexity of these virtual
models in industry are overwhelm the scalability of the state-of-art formal veri-
fication methodologies.

Under such current situation, falsification is gathering attention as a viable
approach to quality assurance [2,6,9,11]. The falsification problem is formulated
as follows.

– Given: a system model M with its input domain D, and a specification ϕ
– Return: a counterexample input x ∈ D such that its corresponding output

M(x) violates the specification ϕ (if such an input exists).

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 439–446, 2016.
DOI: 10.1007/978-3-319-46982-9 27



440 T. Akazaki

Through solving the above falsification problem, we expect to obtain the follow-
ing insights: (1): we detect errors in which the system violates the specification
ϕ; and (2): in case that such an error could not be found, we would say “the
violation of the specification ϕ unlikely happens.”

1.2 Robustness Guided Falsification

As a formal expression of real-time specification on CPSs, metric interval tem-
poral logic (MITL) [1], and its adaptation signal temporal logic (STL) [12]
are actively studied. For these specifications, one common class of algorithms to
solve falsification is robustness guided falsification [2,6]. Here, one technical core
of these algorithms is employing robust semantics [7,8] on these logics. In robust
semantics, in contrast to conventional Boolean semantics, a truth value takes a
quantitative one �M(x), ϕ� ∈ R such that it is greater than 0 if the formula ϕ is
satisfied, and its magnitude denotes “how robustly the current output M(x) sat-
isfies ϕ.” With this robust semantics, we could attribute falsification problems to
numerical optimization problems, that is, we search for a counterexample input
x ∈ D by iterating the following steps (for t = 1 . . . N).

1. Pick an input xt ∈ D (in stochastic manner.)
2. Compute the output M(xt) by numerical simulation (e.g. sim function on

Simulink)
3. Check the robustness �M(xt), ϕ�
4. If the robustness is less equal than 0, then return xt. Otherwise pick a new

input xt+1 hopefully with which the robustness becomes smaller.

In industrial practice, a system model M is often huge and complex, hence
among the above four steps, the second one, numerical simulation step tends to
be the most costly in time—it sometimes takes several tens of seconds for each
simulation. Therefore, reducing the number of iterations in minimization of the
robustness �M(xt), ϕ� is essential. To this end, application of various numerical
optimization algorithms (e.g. Simulated Annealing [2], Cross-entropy method
[14], and so on) is actively studied.

In this paper, as one of the powerful numerical optimization algorithms,
we mainly employ Gaussian process upper confidence bound (GPU-CB) [15,
16]. Actually, applying GP-UCB and other Gaussian process regression based
optimization techniques for falsification of temporal logic properties is actively
studied. [3–5] We give further illustration of GP-UCB in Sect. 3.

1.3 Our Motivation: Falsification of Conditional Safety Property

In this paper, as a class of specifications to be falsified, we have an eye on
conditional safety properties—common class of specifications in development of
CPSs.

Whenever a model satisfies an antecedent condition ϕcond, then at that
time, the model also satisfies a safety property ϕsafe.
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With this class of formulas, we could express various requirements of behavior of
the system under various specific conditions. Hence, for a given system, verifying
conditional safety property is as important as for safety property.

On STL, we usually encode such a condition into a STL formula in the form
of �I(¬ϕcond ∨ϕsafe). Note that, in conventional Boolean semantics, the formula
is equivalent to �I(ϕcond → ϕsafe). In robustness guided falsification, we search
for a counterexample by minimizing the robustness of the formula ¬ϕcond and
ϕsafe simultaneously.

However there exists the following gap between this straightforward attribu-
tion to the numerical optimization and what we expect to obtain through the
falsification: if we write down a conditional safety property, we would like to
say something meaningful about dynamics of the model when the antecedent
condition ϕcond holds; but in the iteration of simulation, we could not guaran-
tee that enough number of behavior are observed in which the system satisfies
the antecedent condition ϕcond. From this point of view, we would expect an
optimization algorithm that solves conditional safety property

– with as small as number of iteration to find a counterexample x ∈ D; and
– with picking up enough number of inputs xj1 . . . xjn that steers the whole

model to satisfy the antecedent condition ϕcond.

To this end, we propose a novel algorithm to pick up a suitable input in each
step of the iteration with satisfying the above twofold requirements. A technical
highlight is that, with Gaussian process regression, we estimate the function
F ∗ : x �→ �M(x), �I¬ϕcond�, and obtaining the input subspace D′ ⊂ D such
that, for any input x ∈ D′, the output M(x) satisfies the antecedent condition
ϕcond with high probability.

Related Work. The difficulty of the falsification is to observe the rare event (here,
conditional safety property is false). Our technique is based on the following
idea: we consider a superset-event that happens much likely than the original
one (ϕcond holds), and from the input space, we “prune” the region in which the
superset-event does not happen. This idea is common with importance sampling.
Actually, our Proposition 2.4 is an instance of decomposition in Sect. 4.1 in [10].

While importance sampling explores the input by stochastic sampling,
GP-UCB deterministically chooses the next input, hence combining these two
optimization algorithms are not straightforward. One of our contributions is
that we realize the above “pruning” in GP-UCB style optimization by employ-
ing regression.

2 Signal Temporal Logic (STL)

Definition 2.1 (syntax). Let Var be a set of variables. The set of STL for-
mulas are inductively defined as follows.

ϕ ::= f(v1, . . . , vn) > 0 | ⊥ | � | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ
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where f is an n-ary function f : Rn → R∪{−∞,∞}, v1, . . . , vx ∈ Var, and I is a
closed non-singular interval in R≥0, i.e. I = [a, b] or [a,∞) where a < b and a ∈ R.
We also define the following derived operators, as usual: ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2),
ϕ1 RI ϕ2 ≡ ¬(¬ϕ1 UI ¬ϕ2), ♦Iϕ ≡ � UI ϕ, and �Iϕ ≡ ⊥ RI ϕ.

Definition 2.2 (robust semantics of STL). Let σ : R≥0 → R
Var be a signal

and ϕ be an STL formula. We define the robustness �σ, ϕ� ∈ R≥0 ∪ {−∞,∞}
inductively as follows. Here 
 and � denote infimums and supremums of real
numbers, respectively.

�σ, f(v1, · · · , vn) > 0� � f
(
σ(0)(v1), · · · , σ(0)(vn)

)

�σ, ⊥� � −∞ �σ, �� � ∞
�σ, ¬ϕ� � −�σ, ϕ� �σ, ϕ1 ∨ ϕ2� � �σ, ϕ1� � �σ, ϕ2�

�σ, ϕ1 UI ϕ2� �
⊔

t∈I

(�σt, ϕ2� 

�

t′∈[0,t)

�σt′
, ϕ1�)

Notation 2.3. Let f : Rn → R ∪ {−∞,∞}. We define the Boolean abstraction
of f as the function f : Rn → B] such that as f(v) = � if f(v) > 0, otherwise
f(v) = ⊥. Similarly, for an STL formula ϕ, we denote by ϕ the formula which
is obtained by replacing all atomic functions f occurs in ϕ with the Boolean
abstraction f . We see that �σ, ϕ� > 0 implies �σ, ϕ� > 0.

As we see in Sect. 1.3, conditional safety properties are written as STL for-
mulas in the form of �σ, �I(¬ϕcond ∨ ϕsafe)�, and its intuitive meaning is “ϕsafe

holds whenever ϕcond is satisfied.” To enforce our algorithm in Sect. 4 to pick
inputs satisfying the antecedent conditions ϕcond, we convert the formula to the
logically equivalent one. The converted formula consists of mainly into the two
parts such that one of them stands for “the antecedent condition ϕcond is satisfied
or not.”

Proposition 2.4. For any signal σ and STL formulas ϕ1, ϕ2, the following
holds.

�σ, �I(¬ϕ1 ∨ ϕ2)� > 0 ⇐⇒ �σ, �I¬ϕ1� � �σ, �I(¬ϕ1 ∨ ϕ2)� > 0

3 Gaussian Process Upper Confidence Bound (GP-UCB)

As we mentioned in Sect. 1.3, in robustness guided falsification to minimize F ∗ :
x �→ �M, ϕ�, we pick inputs iteratively hopefully with smaller robustness value.
For this purpose, Gaussian process upper confidence bound (GP-UCB) [15,16]
is one of the powerful algorithm as we see in [3–5].

The key idea in the algorithm is that, in each iteration round t = 1, . . . , N ,
we estimate the Gaussian process [13] GP(μ, k) that most likely to generate the
points observed until round t. Here, we call two parameters μ : D → R and
k : D2 → R as the mean function and the covariance function respectively.



Falsification of Conditional Safety Properties 443

at iteration t at iteration t+ 1

Fig. 1. An intuitive illustration of GP-UCB algorithm. Each figure shows the esti-
mated Gaussian process GP(μ, k) at iteration round t and t + 1: the middle curve is a
plot of the mean function μ, and the upper and lower curve are a plot of μ + β1/2k,
μ−β1/2k. In each iteration round t, we pick the point x[t] (red point in the left figure)
that minimizes the lower curve. Once we observe the value F ∗(x[t]), the uncertainty at
x[t] becomes smaller in the next round t + 1. In general, as a confidence parameter β
we choose an increasing function to guarantee the algorithm not to get stuck in local
optima (e.g. β(t) = 2 log(ct2) for some constant c). See [15,16]) (Color figure online)

Very roughly speaking, for each x ∈ D, the value μ(x) of mean function stands
for the expected value of F ∗(x), and the value k(x, x) of co variance function at
each diagonal point does for the magnitude of uncertainty of F ∗(x).

Pseudocode for the GP-UCB algorithm is found in Algorithm1. As we see in
the code, we pick x[t] = argminx∈D μ(x)−β1/2(t)k(x, x) as the next input. Here,
the first term try to minimize the expected value F ∗(x[t]), and the second term
try to decrease uncertainty globally. In Fig. 1, we see an illustration of how the
estimated Gaussian process is updated in each iteration round of optimization.
Thus, the strategy balancing exploration and exploitation helps us to find a
minimal input with as small as number of iteration.

Algorithm 1. The GP-UCB algorithm for falsification
Hyper parameters: A confidence parameter β : N → R; Maximal number of iteration N ;
Input: Input space D; An uncertain function F : D → R to be minimized;
Output: An input x ∈ D such that F (x) ≤ 0

for t = 1 . . . N do
x[t] = argminx∈D μ(x) − β1/2(t)k(x, x); � Choose a new sample input
y[t] = F (x[t]); � Observe the corresponding output
if y[t] ≤ 0 then

return x[t];
end if
(μ, k) = regression

(
(x[1], y[1]), . . . (x[t], y[t])

)
;

� Perform Bayesian update to obtain new mean and covariance function
end for

4 Our Algorithm: GP-UCB with Domain Estimation

Now we give our algorithm for falsification of conditional safety properties with
enough number of testing in which the model satisfies the antecedent condition.
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Algorithm 2. The GP-UCB algorithm for falsification with domain estimation
Hyper parameters: A confidence parameter β : N → R and its bound βmin, βmax ∈ R; Maximal

number of iteration N ; Target hit rate R ∈ (0, 1)
Input: Input space D; Uncertain functions F, G : D → R;
Output: An input x ∈ D such that max(F (x), G(x)) ≤ 0

for t = 1 . . . N do
r = (R × N − nhit)/(N − t)

� Calculate the current objective probability r of satisfying F (x) ≤ 0

βF = min(max(
√

2erf−1(1 − 2r), βmin), βmax) where erf is the error function
D′ = {x ∈ D | μF (x) − βF kF (x, x) ≤ 0}

� Estimate a region in which F (x) ≤ 0 holds with probability r
if D′ == ∅ then

xF [t] = argminx∈D μF (x) − βF kF (x, x);
else

xG[t] = argminx∈D′ μG(x) − β1/2(t)kG(x, x);
end if � Choose a new sample input
yF [t] = F (xt);
if yF [t] ≤ 0 then

n = n + 1; xG[n] = xF [t]; yG(xG[n]);
if yG[n] ≤ 0 then

return xG[n];
end if

end if � Observe the corresponding output
(μF , kF ) = regression

(
(xF [1], yF [1]), . . . (xF [t], yF [t])

)
;

(μG, kG) = regression
(
(xG[1], yG[1]), . . . (xG[n], yG[n])

)
;

� Perform Bayesian update to obtain new mean and covariance function
end for

As we show in Proposition 2.4, falsification of the specification �I(¬ϕcond ∨ ϕsafe)
could be reduced to the following problem.

Find x such that �M(x), �I¬ϕcond� � �M(x), �I(¬ϕcond ∨ ϕsafe)� ≤ 0.

A key observation here is that, when the first part of the robustness
�M(x), �I¬ϕcond� becomes less than zero, then with this input x, the corre-
sponding behavior of the system M(x) satisfies the antecedent condition ϕcond.

Based on this observation, we propose the GP-UCB with domain estimation
algorithm. Pseudocode of the algorithm is available in Algorithm4. This algo-
rithm takes a hyper parameter R which stands for a target hit rate, that is, how
large ratio of the input x[1], ..., x[N ] steer the model to satisfy the antecedent
condition. In each iteration round of the falsification, to guarantee both fast
minimization and enough testing on which ϕcond holds, we pick the next input
by the following strategy: (1) calculate how many ratio r of the input should
make ϕcond true through the remaining iteration; (2) estimate the input sub-
domain D′ ⊂ D in which the antecedent condition ϕcond holds with probability
r; (3) from the restricted domain x ∈ D′, pick a new input x to falsify the whole
specification in the GP-UCB manner.

5 Experiments

To examine that our GP-UCB with domain estimation algorithm achieves both
fast minimization and enough testing with the antecedent condition ϕcond.

As a model of the CPSs, we choose the powertrain control verification bench-
mark [11]. This is an engine model with a controller which try to keep the air/fuel
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ratio in the exhaust gas. This model has 3-dimensional input parameters, and
the controller have mainly two modes—feedback mode and feed-forward mode.
As conditional safety specifications to falsify, we experiment with the following
STL formula ϕ. In this formula, the antecedent condition is mode = feedforward,
that is, we would like to observe behavior of the system in the feed-forward mode.

�[τ,∞)

(¬(mode = feedforward) ∨ |ratioA/F| < 0.2
)

(1)

In fact of the model, the formula (1) does not have any counterexample input,
and with the original GP-UCB algorithm, about 58 % of the input leads the
whole systems to feed-forward mode. Then, we run our GP-UCB with domain
estimation algorithm with setting the target hit rate as R = 0.8, and observe
that about 79 % of the inputs satisfy the antecedent condition.

6 Conclusion

To solve falsification of conditional safety properties with enforcing the generated
inputs to satisfy the antecedent condition, we provide an optimization algorithm
based on Gaussian process regression techniques.
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