
Yliès Falcone
César Sánchez (Eds.)

 123

LN
CS

 1
00

12

16th International Conference, RV 2016
Madrid, Spain, September 23–30, 2016
Proceedings

Runtime Verification

Lecture Notes in Computer Science 10012

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Yliès Falcone • César Sánchez (Eds.)

Runtime Verification
16th International Conference, RV 2016
Madrid, Spain, September 23–30, 2016
Proceedings

123

Editors
Yliès Falcone
Université Grenoble Alpes, Inria
Grenoble
France

César Sánchez
IMDEA Software Institute
Madrid
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46981-2 ISBN 978-3-319-46982-9 (eBook)
DOI 10.1007/978-3-319-46982-9

Library of Congress Control Number: 2016952525

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 16th International Conference on Runtime
Verification (RV 2016), which was held September 23–30, 2016, at La Residencia de
Estudiantes of the Spanish Council for Scientific Research (CSIC) in Madrid, Spain.

During the first half of the twentieth century, La Residencia was a prestigious
cultural institution that helped foster and create the intellectual environment for young
thinkers, writers, and artists. It was one of the most vibrant and successful experiences
of scientific and artistic creation and exchange of interwar Europe. Some of the
brightest minds of the time, like Albert Einsten, Marie Curie, and Salvador Dali, visited
La Residencia in this early epoch. In the last few years there has been a very intense
attempt to recover the memory of La Residencia and its founding principles, and to
promote new cultural and scientific activities based on the spirit of cooperation and
sharing of knowledge. We hope that the attendees of RV 2016 enjoyed this unique
venue.

The RV conference is concerned with all aspects of monitoring and analysis of
hardware, sotfware, and more general system executions. Runtime verification tech-
niques are lightweight techniques to asses correctness, reliability, and robustness; these
techniques are significantly more powerful and versatile than conventional testing, and
more practical than exhaustive formal verification.

RV started in 2001 as an annual workshop and turned into an annual conference in
2010. The proceedings from 2001 to 2005 were published in the Electronic Notes in
Theoretical Computer Science. Since 2006, the RV proceedings have been published in
Springer’s Lecture Notes in Computer Science. The previous five editions of the RV
conference took place in San Francisco, USA (2011), Istanbul, Turkey (2012), Rennes,
France (2013), Toronto, Canada (2014), and Vienna, Austria (2015).

RV 2016 received 72 submissions, 49 of which were regular papers, ten short
papers, six regular tool papers, two tool demonstration papers, and five tutorial pro-
posals. Most papers were reviewed by four reviewers. The Program Committee
accepted 18 regular papers, four short papers, three regular tool papers, two tool
demonstration papers, and the five submitted tutorials.

The evaluation and selection process involved thorough discussions among the
members of the Program Committee and external reviewers through the EasyChair
conference manager, before reaching a consensus on the final decisions.

This year, the RV conference also included the organization of The First Interna-
tional Summer School on Runtime Verification, co-organized and sponsored by
EU COST Action IC1402 “ArVi: Runtime Verification Beyond Monitoring.” Addi-
tionally, the Third International Competition on Runtime Verification, also sponsored
by EU COST Action IC1402, was colocated with RV 2016.

The conference program included the presentation of the peer-reviewed papers and
tool demonstrations, tutorials, and invited keynote speeches. The conference program
spanned over four rich days (see http://rv2016.imag.fr).

http://rv2016.imag.fr

We are pleased to have hosted three top invited speakers:

– Gul Agha, Professor of Computer Science at the University of Illinois at
Urbana-Champaign, talked about how to build dependable concurrent systems
through probabilistic inference, predictive monitoring, and self-adaptation.

– Oded Maler, Research Director of CNRS at Verimag, talked about how to monitor
qualitative and quantitative properties, in real and virtual executions of systems, in
the online and offline approaches of runtime verification.

– Fred B. Schneider, Professor of Computer Science and Chair of Cornell’s CS
Department, talked about tag specification languages for policy enforcement.

The conference included the following five tutorials:

– Doron Peled presented a tutorial on “Using Genetic Programming for Software
Reliability”

– Nikolaï Kosmatov and Julien Signoles presented a tutorial on “Frama-C, a Col-
laborative Framework for C Code Verification”

– Philip Daian, Dwight Guth, Chris Hathhorn, Yilong Li, Edgar Pek, Manasvi Sax-
ena, Traian Florin Serbanuta, and Grigore Rosu presented a tutorial on “Runtime
Verification at Work”

– Sylvain Hallé presented a tutorial on “When RV Meets CEP”
– Borzoo Bonakdarpour and Bernd Finkbeiner presented a tutorial on “Runtime

Verification for HyperLTL”

We would like to thank the authors of all submitted papers, the members of the
Program Committee, and the external reviewers for their exhaustive task of reviewing
and evaluating all submitted papers. We would like to thank Christian Colombo for
co-organizing the Summer School and Sylvain Hallé and Giles Reger for co-organizing
the third edition of the competition on Runtime Verification (CRV 2016).

We would also like to thank Universidad Carlos III and the IMDEA Software
Institute for their administrative support and their generous monetary contribution to
the conference, the Laboratoire d’Informatique de Grenoble for its IT support, and La
Residencia for sharing their facilities to hold the conference at reduced prices. We
highly appreciate EasyChair for its system to manage submissions. Finally, we would
like to extend our special thanks to the chair of the Steering Committee, Klaus
Havelund, for his support during the organization of RV 2016.

August 2016 Yliès Falcone
César Sánchez

VI Preface

Organization

Program Chairs

Yliès Falcone Université Grenoble Alpes, Inria, Grenoble, France
César Sánchez IMDEA Software Institute, Madrid, Spain

Tool Track Chair

Klaus Havelund Nasa Jet Propulsion Laboratory, USA

Tool Committee

Steven Arzt EC Spride, Germany
Howard Barringer The University of Manchester, UK
Ezio Bartocci TU Wien, Austria
Martin Leucker University of Lübeck, Germany
Gordon Pace University of Malta, Malta
Giles Reger The University of Manchester, UK
Julien Signoles CEA, France
Oleg Sokolsky University of Pennsylvania, USA
Bernhard Steffen University of Dortmund, Germany
Nikolai Tillmann Microsoft Research, USA
Eugen Zalinescu ETH Zurich, Switzerland

CRV’16 Chairs

Yliès Falcone Université Grenoble Alpes, Inria, France
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Giles Reger University of Manchester, Manchester, UK

Local Organization Chair

Juan Tapiador Universidad Carlos III de Madrid, Madrid, Spain

Program Committee

Erika Abraham RWTH Aachen University, Germany
Steven Artz EC SPRIDE
Howard Barringer The University of Manchester, UK
Ezio Bartocci TU Wien, Austria
Andreas Bauer NICTA and Australian National University, Australia

Saddek Bensalem VERIMAG, France
Eric Bodden Fraunhofer SIT and Technische Universität Darmstadt,

Germany
Borzoo Bonakdarpour McMaster University, Canada
Laura Bozzelli Technical University of Madrid (UPM), Spain
Juan Caballero IMDEA Software Institute, Spain
Wei-Ngan Chin National University of Singapore, Singapore
Christian Colombo University of Malta, Malta
Jyotirmoy Deshmukh Toyota Technical Center
Alexandre Donzé UC Berkeley, USA
Ylies Falcone University Grenoble Alpes, Inria, Laboratoire

d’Informatique de Grenoble, France
Bernd Finkbeiner Saarland University, Germany
Adrian Francalanza University of Malta, Malta
Vijay Garg University of Texas at Austin, USA
Patrice Godefroid Microsoft Research
Susanne Graf Joseph Fourier University/CNRS/VERIMAG, France
Radu Grosu Vienna University of Technology, Austria
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Joxan Jaffar National University of Singapore, Singapore
Thierry Jéron Inria Rennes - Bretagne Atlantique, France
Johannes Kinder Royal Holloway, University of London, UK
Felix Klaedtke NEC Europe Ltd.
Kim Larsen Aalborg University, Denmark
Axel Legay IRISA/Inria, Rennes, France
Martin Leucker University of Lübeck, Germany
Benjamin Livshits Microsoft Research
Joao Lourenço Universidade Nova de Lisboa, Portugal
Rupak Majumdar MPI-SWS
Oded Maler CNRS-VERIMAG, France
Leonardo Mariani University of Milano-Bicocca, Italy
David Naumann Stevens Institute of Technology, USA
Gordon Pace University of Malta, Malta
Doron Peled Bar-Ilan University
Lee Pike Galois, Inc.
Giles Reger University of Manchester, UK
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Gwen Salaün Grenoble Alpes University, Inria, France
Cesar Sanchez IMDEA Software Institute, Spain
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Gerardo Schneider Chalmers University of Gothenburg, Sweden
Julien Signoles CEA LIST
Scott Smolka Stony Brook University, USA
Oleg Sokolsky University of Pennsylvania, USA

VIII Organization

Bernhard Steffen University of Dortmund, Germany
Scott Stoller Stony Brook University, USA
Volker Stolz University of Oslo, Norway
Jun Sun Singapore University of Technology and Design,

Singapore
Juan Tapiador Universidad Carlos III de Madrid, Spain
Serdar Tasiran Koc University, Turkey
Nikolai Tillman Microsoft Research
Michael Whalen University of Minnesota, USA
Eugen Zalinescu Technical University of Munich, Germany
Lenore Zuck University of Illinois in Chicago, USA

Additional Reviewers

Assaf, Mounir
Azzopardi, Shaun
Bertrand, Nathalie
Dabaghchian, Maryam
Daian, Philip
Decker, Normann
Della Monica, Dario
Duan, Lian
Duc Hiep, Chu
Evrard, Hugues
Faymonville, Peter
Gossen, Frederik
Hedin, Daniel
Jaksic, Stefan
Khoury, Raphael
Komp, John
Kopetzki, Dawid

Kuester, Jan-Christoph
Le, Ton-Chanh
Lee, Benedict
Li, Yilong
Matar, Hassan Salehe
Maubert, Bastien
Mens, Irini-Eleftheria
Mikučionis, Marius
Mohammad Hasani,

Ramin
Mutlu, Erdal
Neubauer, Johannes
Quilbeuf, Jean
Ratasich, Denise
Rodionova, Alena
Ruething, Oliver
Scheffel, Torben

Schmitz, Malte
Selyunin, Konstantin
Serwe, Wendelin
Siddique, Umair
Sirjani, Marjan
Srivastav, Abhinav
Tan, Tian Huat
Tekle, Tuncay
Torfah, Hazem
Traonouez, Louis-Marie
Ulus, Dogan
Vorobyov, Kostyantyn
Walulya, Ivan
Yong, Chang
Zadok, Erez
Zhang, Yi

Organization IX

Invited Papers

Building Dependable Concurrent Systems
Through Probabilistic Inference, Predictive
Monitoring and Self-adaptation (Abstract)

Gul Agha

University of Illinois at Urbana-Champaign, Champaign, USA
http://osl.cs.illinois.edu

Abstract. The infeasibility of statically verifying complex software is well
established; in concurrent systems, the difficulty is compounded by nondeter-
minism and the possibility of ‘Heisenbugs’. Using runtime verification, one can
not only monitor a concurrent system to check if it has violated a specification,
but potentially predict future violations. However, a key challenge for runtime
verification is that specifications are often incomplete. I will argue that the safety
of concurrent systems could be improved by observing patterns of interaction
and using probabilistic inference to capture intended coordination behavior.
Actors reflecting on their choreography this way would enable deployed systems
to continually improve their specifications. Mechanisms to dynamically add
monitors and enforce coordination constraints during execution would then
facilitate self-adaptation in concurrent systems. I will conclude by suggesting a
program of research to extend runtime verification so systems an evolve
robustness through such self-adaptation.

Acknowledgements. The work on this paper has been supported in part by Air Force
Research Laboratory and the Air Force Office of Scientific Research under agreement
number FA8750-11-2-0084, and by National Science Foundation under grant number
CCF-1438982 and NSF CCF 16-17401.

References

1. Astley, M., Sturman, D.C., Agha,G.: Customizable middleware for modular distributed
software. Communun. ACM, 44(5), 99–107 (2001)

2. Donkervoet, B., Agha, G.: Reflecting on aspect-oriented programming, metaprogramming,
and adaptive distributed monitoring. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever,
W.P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 246–265. Springer, Heidelberg (2007)

3. Frolund, S., Agha, G.: A language framework for multi-object coordination. In: Nierstrasz, O.
(ed.) ECOOP 1993. LNCS, vol. 707, pp. 346–360. Springer, Heidelberg (1993)

4. Sen, K., Rosu, G., Agha, G.: Online efficient predictive safety analysis of multi-threaded
programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 123–138.
Springer, Heidelberg (2004)

http://osl.cs.illinois.edu

5. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of safety in
distributed systems. In: Finkelstein, A., Estublier, J., Rosenblum, D.S. (eds.) ICSE 2004,
Edinburgh, United Kingdom, 23–28 May 2004, pp. 418–427. IEEE Computer Society (2004)

6. Sturman, D.C., Agha, G.: A protocol description language for customizing semantics. In: 13th
Symposium on Reliable Distributed Systems (SRDS 1994), Dana Point, California, 25–27
October 1994, pp. 148–157. ACM (1994)

XIV G. Agha

Why Tags Could be It?
Keynote Lecture
Extended Abstract

Fred B. Schneider

Department of Computer Science, Cornell University, Ithaca,
New York, 14853, USA
fbs@cs.cornell.edu

Abstract. Reference monitors embody specifications about permitted and pro-
hibited operation invocations. That limits what policies they can enforce. Those
limitations have prompted us to explore alternative approaches to policy
enforcement—specifically, expressive classes of labels that give permitted and
prohibited uses for a piece of information. These reactive information flow
(RIF) labels will be described, along with means for static and run-time veri-
fication of programs that process such labelled data. Use of RIF labels for
specifying use-based privacy also will be discussed.

1 Introduction

Security policies can be enforced by defining guards on operations or by associating
labels with values, as follows.

– A guard on an operation Op is checked each time Op is invoked; the guard blocks
any invocation that would not comply with the policy.

– A security label on a value or variable V is checked before V is read or written; the
access is blocked when it is inconsistent with what the security label allows.

Today’s systems tend to be built in terms of guards on operations rather than in
terms of security labels on values. This is unfortunate, because security labels specify
and provide end-to-end guarantees about information use, whereas guards on opera-
tions do not.

For example, consider a system that creates and maintains a replica F′ of some file
F. A guard that prevented principal Alice from invoking a read operation naming F is
not obliged to prevent Alice from invoking a read operation naming F′. But an
end-to-end guarantee that stipulates Alice not read the contents in F would have to

Joint work with Cornell Ph.D. students Elisavet Kozyri and Eleanor Birrell.
F.B. Schneider—Supported in part by AFOSR grant F9550-16-0250 and grants from Microsoft. The
views and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or implied, of these
organizations or the U.S. Government.

prevent attempts by Alice to learn the contents of F′ or other values derived directly or
indirectly from the contents in F. In addition, security tags can afford providers of
information with flexibility to choose security policies after a system has been devel-
oped, deployed, or put into operation. Policy now accompanies a system’s inputs
instead of being fixed in the code.

2 Reactive Information Flow Specifications

The prevalence today of guards over security labels is not surprising, given limitations
in the expressive power of currently available classes of security labels. To help
overcome those limitations, we have been developing a new class of security labels:
reactive information flow (RIF) specifications. Informally, a RIF specification for a
value V gives

(i) allowed uses for V, and
(ii) the RIF specification for any value that might be directly or indirectly derived

from V.

RIF specifications thus give allowed uses for the value produced by evaluating a
function, where those restrictions may differ from the allowed uses for inputs to that
evaluation. For instance, using RIF specifications as labels, the output of an encryption
function can be public even though is inputs (plaintext and a key) are secret. In general,
RIF specifications support reclassifiers that increase restrictions, decrease restrictions,
or associate incomparable restrictions.

Various carriers can be instantiated to embody RIF specifications. A carrier must
accept a language of reclassifiers, and it must associate a set of restrictions with each
word in that language. Carriers for which language-inclusion is decidable are a good
choice when we wish to treat RIF specifications as types, since the resulting type
system will be statically checkable. To date, we have experience with two classes of
(decidable) carriers.

– Finite state automata suffice for many common security needs. Here, each
automaton state gives a set of use restrictions; reclassifiers label transitions between
automaton states, with the successor automaton state giving the new set of use
restrictions for a derived value.

– A simple form of push-down automata suffice for handling confidentiality when
encryption and decryption are used to transform values (typically from secret to
public and back). Encryption pushes a key onto the stack; decryption causes pop if
the key being provided matches the key contained in top entry on the stack (and
otherwise the decryption causes a push).

Type systems have been formulated for both kinds of carriers, where type correctness
ensures that certain non-interference properties are satisfied. The conservative nature of
type checking, however, is now leading us to contemplate run-time monitors for programs
having RIF specifications as labels for values and variables. We also have been exploring
practical aspects of using RIF specifications. For this, the information-flow type system in
the JIF programming language has been replaced by a RIF type system based on

XVI F.B. Schneider

finite-state automata. Prototype applications that we programmed in this JRIF language
have given us experience with defining RIF specifications.

3 What RIF Tags May Restrict

Security labels traditionally have been interpreted as characterizing sets of principals.
For confidentiality, a label specifies principals that are allowed to read a value (or any
value derived); for integrity, a label describes principals that must be trusted for the
labeled value to be trusted (which implies that the label defines a set of principals that
may update the labeled value).

In practice, other forms of use restrictions are important too. In use-based security,
pieces of information are labeled—actually or notionally—with tags that specify use
restrictions, and principals who hold or process such pieces of information are obliged
to comply with those restrictions. Use restrictions may come from those who submit or
control the information, systems that process the information, and/or regulations
imposed by the jurisdiction in which a system is located, the data originates, or its
owners reside.

Use-based security can be quite general if we are given an expressive enough
language for specifying the use restrictions. By choosing a suitable language, for
example, we can support the various definitions of privacy that are being discussed,
now that the failings of classical “notice and consent” have become apparent. We can
also support regimes where data collection and use are limited by legislative authorities
that specify when and how data may used, combined, how long it must be saved, etc.

RIF specifications seem well suited for defining restrictions for use-based security.
Here, restrictions are not limited to being sets of principals; the restrictions instead can
be permissions, prohibitions, and/or obligations for invoking arbitrary classes of
operations. Reclassifiers, as before, allow derived values to be subject to different use
restrictions. This capability, for example, would enable a RIF specification to assert that
an individual’s value must be kept confidential, but any derived value produced by
statistical aggregation is public.

4 Enforcement

Formal verification, automated analysis, and run-time monitoring all are time-honored
methods to ensure that a program will satisfy some property of interest. The trade-offs
between expressiveness, conservatism, and automation are likely to be the same for
RIF specifications as has been found for other classes of program properties. In con-
nection with privacy, however, audit, with deterrence through accountability is sensi-
ble. So instead of preventing violations, a system detects violations and recovers.
Prevention is not necessary, here.

Why Tags Could be It? XVII

Contents

Invited Paper

Some Thoughts on Runtime Verification . 3
Oded Maler

Satellite Events Papers

First International Summer School on Runtime Verification:
As Part of the ArVi COST Action 1402 . 17

Christian Colombo and Yliès Falcone

Third International Competition on Runtime Verification: CRV 2016 21
Giles Reger, Sylvain Hallé, and Yliès Falcone

Tutorial Papers

Runtime Verification for HyperLTL . 41
Borzoo Bonakdarpour and Bernd Finkbeiner

Runtime Verification at Work: A Tutorial . 46
Philip Daian, Dwight Guth, Chris Hathhorn, Yilong Li, Edgar Pek,
Manasvi Saxena, Traian Florin Şerbănuţă, and Grigore Roşu

When RV Meets CEP . 68
Sylvain Hallé

Frama-C, A Collaborative Framework for C Code Verification:
Tutorial Synopsis . 92

Nikolai Kosmatov and Julien Signoles

Using Genetic Programming for Software Reliability 116
Doron Peled

Regular Papers

Predicting Space Requirements for a Stream Monitor
Specification Language . 135

David M. Cerna, Wolfgang Schreiner, and Temur Kutsia

A Stream-Based Specification Language for Network Monitoring 152
Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer,
and Hazem Torfah

http://dx.doi.org/10.1007/978-3-319-46982-9_1
http://dx.doi.org/10.1007/978-3-319-46982-9_2
http://dx.doi.org/10.1007/978-3-319-46982-9_2
http://dx.doi.org/10.1007/978-3-319-46982-9_3
http://dx.doi.org/10.1007/978-3-319-46982-9_4
http://dx.doi.org/10.1007/978-3-319-46982-9_5
http://dx.doi.org/10.1007/978-3-319-46982-9_6
http://dx.doi.org/10.1007/978-3-319-46982-9_7
http://dx.doi.org/10.1007/978-3-319-46982-9_7
http://dx.doi.org/10.1007/978-3-319-46982-9_8
http://dx.doi.org/10.1007/978-3-319-46982-9_9
http://dx.doi.org/10.1007/978-3-319-46982-9_9
http://dx.doi.org/10.1007/978-3-319-46982-9_10

On the Complexity of Monitoring Orchids Signatures 169
Jean Goubault-Larrecq and Jean-Philippe Lachance

Input Attribution for Statistical Model Checking Using Logistic Regression . . . 185
Jeffery P. Hansen, Sagar Chaki, Scott Hissam, James Edmondson,
Gabriel A. Moreno, and David Kyle

Quantitative Monitoring of STL with Edit Distance 201
Stefan Jakšić, Ezio Bartocci, Radu Grosu, and Dejan Ničković

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 219
Omar Javed, Yudi Zheng, Andrea Rosà, Haiyang Sun,
and Walter Binder

nfer – A Notation and System for Inferring Event Stream Abstractions 235
Sean Kauffman, Klaus Havelund, and Rajeev Joshi

Accelerated Runtime Verification of LTL Specifications
with Counting Semantics . 251

Ramy Medhat, Borzoo Bonakdarpour, Sebastian Fischmeister,
and Yogi Joshi

Non-intrusive Runtime Monitoring Through Power Consumption:
A Signals and System Analysis Approach to Reconstruct the Trace. 268

Carlos Moreno and Sebastian Fischmeister

An Automata-Based Approach to Evolving Privacy Policies
for Social Networks. 285

Raúl Pardo, Christian Colombo, Gordon J. Pace,
and Gerardo Schneider

TrackOS: A Security-Aware Real-Time Operating System 302
Lee Pike, Pat Hickey, Trevor Elliott, Eric Mertens, and Aaron Tomb

Leveraging DTrace for Runtime Verification . 318
Carl Martin Rosenberg, Martin Steffen, and Volker Stolz

Finite-Trace Linear Temporal Logic: Coinductive Completeness 333
Grigore Roşu

Wireless Protocol Validation Under Uncertainty . 351
Jinghao Shi, Shuvendu K. Lahiri, Ranveer Chandra,
and Geoffrey Challen

Dynamic Determinacy Race Detection for Task Parallelism with Futures 368
Rishi Surendran and Vivek Sarkar

XX Contents

http://dx.doi.org/10.1007/978-3-319-46982-9_11
http://dx.doi.org/10.1007/978-3-319-46982-9_12
http://dx.doi.org/10.1007/978-3-319-46982-9_13
http://dx.doi.org/10.1007/978-3-319-46982-9_14
http://dx.doi.org/10.1007/978-3-319-46982-9_15
http://dx.doi.org/10.1007/978-3-319-46982-9_16
http://dx.doi.org/10.1007/978-3-319-46982-9_16
http://dx.doi.org/10.1007/978-3-319-46982-9_17
http://dx.doi.org/10.1007/978-3-319-46982-9_17
http://dx.doi.org/10.1007/978-3-319-46982-9_18
http://dx.doi.org/10.1007/978-3-319-46982-9_18
http://dx.doi.org/10.1007/978-3-319-46982-9_19
http://dx.doi.org/10.1007/978-3-319-46982-9_20
http://dx.doi.org/10.1007/978-3-319-46982-9_21
http://dx.doi.org/10.1007/978-3-319-46982-9_22
http://dx.doi.org/10.1007/978-3-319-46982-9_23

Runtime Monitoring for Concurrent Systems . 386
Yoriyuki Yamagata, Cyrille Artho, Masami Hagiya, Jun Inoue, Lei Ma,
Yoshinori Tanabe, and Mitsuharu Yamamoto

Decision-Theoretic Monitoring of Cyber-Physical Systems 404
Andrey Yavolovsky, Miloš Žefran, and A. Prasad Sistla

Precision, Recall, and Sensitivity of Monitoring Partially Synchronous
Distributed Systems. 420

Sorrachai Yingchareonthawornchai, Duong N. Nguyen,
Vidhya Tekken Valapil, Sandeep S. Kulkarni, and Murat Demirbas

Short Papers

Falsification of Conditional Safety Properties for Cyber-Physical Systems
with Gaussian Process Regression . 439

Takumi Akazaki

Reactive Property Monitoring of Hybrid Systems with Aggregation. 447
Nicolas Rapin

Integration of Runtime Verification into Metamodeling for Simulation
and Code Generation (Position Paper) . 454

Fernando Macias, Torben Scheffel, Malte Schmitz, and Rui Wang

Applying Runtime Monitoring for Automotive Electronic Development 462
Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu

Regular Tool Papers

A Monitoring Tool for a Branching-Time Logic . 473
Duncan Paul Attard and Adrian Francalanza

SMEDL: Combining Synchronous and Asynchronous Monitoring 482
Teng Zhang, Peter Gebhard, and Oleg Sokolsky

Tool Exhibition Papers

Runtime Visualization and Verification in JIVE . 493
Lukasz Ziarek, Bharat Jayaraman, Demian Lessa, and J. Swaminathan

An Overview of MARQ . 498
Giles Reger

Runtime Analysis with R2U2: A Tool Exhibition Report 504
Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier

Author Index . 511

Contents XXI

http://dx.doi.org/10.1007/978-3-319-46982-9_24
http://dx.doi.org/10.1007/978-3-319-46982-9_25
http://dx.doi.org/10.1007/978-3-319-46982-9_26
http://dx.doi.org/10.1007/978-3-319-46982-9_26
http://dx.doi.org/10.1007/978-3-319-46982-9_27
http://dx.doi.org/10.1007/978-3-319-46982-9_27
http://dx.doi.org/10.1007/978-3-319-46982-9_28
http://dx.doi.org/10.1007/978-3-319-46982-9_29
http://dx.doi.org/10.1007/978-3-319-46982-9_29
http://dx.doi.org/10.1007/978-3-319-46982-9_30
http://dx.doi.org/10.1007/978-3-319-46982-9_31
http://dx.doi.org/10.1007/978-3-319-46982-9_32
http://dx.doi.org/10.1007/978-3-319-46982-9_33
http://dx.doi.org/10.1007/978-3-319-46982-9_34
http://dx.doi.org/10.1007/978-3-319-46982-9_35

Invited Paper

Some Thoughts on Runtime Verification

Oded Maler(B)

VERIMAG, CNRS and the University of Grenoble Alpes (UGA),
Bat. IMAG, 700 av. Centrale, 38041 St Martin d’heres, France

oded.maler@imag.fr

Abstract. Some reflections on verification and runtime verification in
general and of cyber-physical systems in particular.

1 Introduction

I was probably invited to present in this forum because of my work on checking
simulation traces of cyber-physical (hybrid, mixed-signal) systems against speci-
fications expressed using formalisms such as signal temporal logic [25] and timed
regular expressions [2]. I will use the opportunity to discuss, in addition, some
other issues that come to my mind in the context of runtime verification. I start
in Sect. 2 with a reflection on the nature of words and then discuss some poten-
tial meanings of runtime verification as distinct from just verification. Section 3
describes one interpretation, the activity of monitoring simulation traces against
formally defined properties. Section 4 discusses runtime verification interpreted
as verification of something closer to the implementation. Section 5 is devoted to
monitoring real working systems during their execution, an activity that differs
in many aspects from monitoring during design and development time. Finally,
Sect. 6 speaks briefly about robust satisfaction and the relation between proper-
ties and other quantitative performance measures traditionally applied to signals.
The topics of Sects. 4 and 5 are outside my domain of expertise so what I write
there is based on common sense and speculation. I am sure many of these issues
have been studied by researchers in this community and I apologize in advance
for not having the time and resources to make a comprehensive study of relevant
work before writing this document.

2 Words Speak Louder Than They Should

Robert Anton Wilson, an overly-illuminated writer [32] and thinker [39], objected
rather strongly to the usage of the word is based on some very reasonable
grounds. Words are just tools, they do not have intrinsic absolute meaning and
it is silly (but common) to argue about the true meaning of a word. The mean-
ing depends on context and background and can differ from one occasion to the
other, from one speaker or community to another and in general it shifts with
time. One important aspect in studying word meanings is to consider the back-
ground against which they came to being, the specific additional distinctions
and refinements of existing concepts they came to express.
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-46982-9 1

4 O. Maler

As a concrete example consider the term reactive systems coined by Harel
and Pnueli in a classical paper [14], published in 1985 some time before the emer-
gence of CAV-style academic verification. Reactive systems are defined there as
systems that maintain an ongoing interaction with their external environment.
This should be understood against the background of classical computability
(and complexity) theory, dealing with non-reactive (transformational) programs
that map static inputs to static outputs without being in time, without inter-
acting with the external world during computation (see some old ramblings of
mine in [18]). The concept was useful in separating protocol verification (at least
for some time) from other approaches to program verification.

In contrast, the term “reactive” does not have much meaning in control
theory because all control systems are supposed to be reactive by definition.1

The same holds, of course, for living systems, and those who preach reactive
systems to biologists are, in fact, preaching for the introduction of discrete states
and transitions into a modeling domain often dominated by continuous applied
mathematics. In other contexts such as cognitive psychology, the word reactive
might indicate a simple behavioral stimulus/response model, mathematically
much narrower than the transducer model underlying the reactive systems of [14].

Coming to think of the possible meanings of runtime verification one has to
think about what is particularly added by the runtime qualifier to the general
background of the meaning of verification, which by itself is rather pluralis-
tic. Verification can mean one thing to a practitioner (and this may depend on
the type of software, hardware or physware development being practiced) and
another thing to theoreticians of various degrees of practical inspiration, aspi-
ration and pretention. I once received a book called The verification Cookbook
from an EDA company and I did not find there anything remotely similar to
concepts studied in most of CAV papers. Thus said, let me try to lay down the
implicit semantics of verification I have been carrying in my head over the years.
Needless to say after all this introduction, no claim is made for this semantics
to be more truthful than any other.

So my version of verification, the algorithmic genre following [3,29], goes like
this [19]. You have a system which is open (reactive), and each of its dynamic
inputs may induce a different behavior. Behaviors are viewed as trajectories
(runs, paths) in the state-space, which used traditionally to be that of a large
state-exploded automaton. You want somehow to ensure correctness of the tra-
jectories induced by all admissible inputs. Correctness of a run typically means
the occurrence or non-occurrence of certain temporal patterns, expressible in a
declarative language (temporal logic, regular expressions) or hacked manually
into property observers composed with the system.

1 Speaking about control, “reachability” (and to some extent “controllability”) used
not long ago to denote some very precise technical term in the Kalmanistic theory of
linear systems before some barbarians came and kidnapped its meaning. As a punish-
ment we have sometime to hear colleagues from others disciplines abuse theoretical
computer science sacred terms such as decidability or models of computation.

Some Thoughts on Runtime Verification 5

Rather than enumerating all inputs up to a certain length and simulating in a
black box fashion, formal verification does two things. First, by having access to
the automaton model of the system, the verification algorithm can follow paths
in the transition graph rather than trying to cover them by a blind selection
of inputs. This yields an important complexity improvement [19]. Then, some
systems are sufficiently small so that modern computers can explore all their
paths within a reasonable time. Otherwise, an attempt is made to reason about
all the behaviors in a more holistic manner. One direction is to try to prove
something about all behaviors in a deductive/analytical way, a topic I will not
touch here. Alternatively, one can do a kind of set-based breadth-first simulation,
which came to be known as symbolic model checking [26], where symbolic means
that logical formulae are used to describe the set of reachable states at successive
time points.

Remark: In fact, the term model-checking is another example of a word shared
by different meanings. Today, people from outside verification to whom the con-
cept is presented, biologists for instance, probably take it to mean checking
whether your model of some physical phenomenon makes sense, for example,
whether it admits some counter-intuitive behaviors not supported by experi-
ments, whether it is robust under parameter variations and so forth. So model
is understood as the common concept of a mathematical model of something
in the real world. This is not the original meaning of model as used in model
checking, which is a purely technical logical concept stating that a given math-
ematical structure is a model of a system of logical axioms - there is a whole
branch of logic called model theory, which studies the relation between these two
classes of mathematical objects. Model checking was initially used in verification
to contrast it with deductive (proof theoretic) methods of reasoning [13]. The
story for LTL (linear-time temporal logic) goes like this: a given sequence w
is a model of a temporal logic formula ϕ if w satisfies ϕ. Thus verification by
model checking means to check whether all possible runs are models of ϕ. For
branching-time logics like CTL, what is checked is whether the whole transition
system (Kripke structure in modal logic parlance), viewed as a generator of a
branching structure, is a model of the formula.

Other implicit assumptions in my story are the following.

1. The verification process takes place mostly during the design and development
phase before we unleash the system to go wild in the streets and do what it
is supposed to do;

2. In many cases, verification is done on a model of the system which is a kind of
an automaton which abstracts away from data (rather than control) variables
as well as some particular implementation details, including the programming
language and execution platform. The more abstract this mathematical model
is, that is, closer to an automaton/graph, the easier it is to reason about its
behaviors in a global manner. Nevertheless, some syntactics is required to
express the automaton for the purpose of verification and some connection
with the program that realizes it should be eventually made;

6 O. Maler

3. The properties against which behaviors are evaluated have been traditionally
qualitative, providing a yes/no answer concerning property satisfaction.

In the following I will contemplate on various interpretations of runtime ver-
ification by perturbing some of the abovementioned implicit assumptions. I will
also discuss the adaptation of runtime verification techniques (and verification in
general) to cyber-physical systems. In particular, I will touch upon the following
topics:

1. Runtime verification viewed as good old simulation/testing without coverage
guarantees but augmented with formal specifications;

2. Runtime verification viewed as getting closer to the real implemented artifact,
further away from the abstract model;

3. Runtime indicating that we leave design/reflection time and get involved in
the detection of patterns in real time while the system is up and running;

4. The quantitative semantics of temporal properties and the fusion of properties
and assertions with other performance measures used by engineers to evaluate
signals and systems.

3 Runtime Verification as Simulation Plus Formal
Specification

This used to be my favorite interpretation that we exported successfully to the
continuous and hybrid domain [22]. Verification is a glorious activity but it
does not scale beyond certain system complexity and people will always resort
to simulation, with or without renaming it as statistical model checking. We
also separate concerns and say that coverage and exhaustiveness is someone
else’s responsibility. So what remains is plain simulation with the additional
twist that the simulation trace is checked against formal properties specified in
some rigorous and unambiguous formalism. It can still be debated whether some
engineers’ reluctance to use such clean declarative languages is a bug or a feature
of their way of thinking. It is related, I think, to the issue of whether you want to
use the same language for implementation and specification, or rather have two
distinct languages. Maybe it is easier for a developer to build a property checker
as a Simulink block or a piece of C code than to learn yet another language.

According to the automata-theoretic approach to verification [38], exhaustive
verification corresponds to an inclusion problem between two formal languages:2

the set of behaviors produced by the system and the set of behaviors defined
by the property. For checking a single behavior, the problem simplifies into a
membership problem: does a given behavior belong to the language defined by
the property? Unlike verification, this activity, that we call monitoring from now
on, does not require a respectable mathematical model and can work with any

2 The term formal language provides yet another opportunity for terminological con-
fusion. In theoretical computer science a formal language is nothing but a set of
sequences, something very semantic in our context.

Some Thoughts on Runtime Verification 7

black box that generates simulation traces. In fact, monitoring is agnostic about
the origin of those traces, which could be as well recordings of a real system.
The complexity of the system, which is a critical limiting factor in exhaustive
verification, influences only the simulation time and the number of simulations
needed to properly cover its behaviors, but this is, as we said, not our problem.

In the context of digital hardware, monitoring is called dynamic verification
against assertions while the term static or formal verification is used for model
checking. Motivated initially by analog and mixed-signal circuits, we extended
this idea3 to continuous and hybrid systems [22,25,27] by introducing signal
temporal logic (STL), which adds numerical predicates over real-valued variables
on top of the dense time4 metric temporal logic (MTL) [17]. We provided a simple
efficient algorithm for checking satisfaction/membership for the future fragment
of STL by backward interval marking. This procedure can, in principle, liberate
users from the tedious task of classifying simulation traces manually by visual
inspection or by writing programs for that purpose.

4 Runtime as More Real

Another interpretation of runtime is literally, while a program is running. This
means that in contrast with the abstract automaton model, we deal here with
something closer to the implementation: either we have generated real code from
the abstract model or there was no such an abstract model to begin with. Soft-
ware is a peculiar engineering artifact, closer in its very nature to its abstract
model more than any physical system can be: compare the gap between an
engine model and a real physical engine with the tiny gap between a model of a
controller and its software implementation. For this reason, software developers
may tend to skip what they perceive as a redundant modeling stage.

Cyber-physical systems admit heterogeneous components including the exter-
nal environment which is modeled but not implemented, and the designed arti-
fact itself which includes physical components, a hardware platform and soft-
ware. In the development of such systems there is a multi-dimensional spectrum
between abstract models and real systems, both in the implemented and unim-
plemented parts. This is attested by the existence of several kinds of testing,
each using a different manifestations of the controller, the external environment
and their interconnection. For example, hardware-in-the-loop simulation indi-
cates that the real implemented controller, running on its execution platform
is being tested. Model-in-the-loop testing, to take another example, means that

3 I am indebted to a discussion with Yaron Wolfsthal before starting this project, in
which he explained to me the workings of the FOCS property checker developed at
IBM for discrete/digital systems.

4 The advantage of dense time as used in MTL or in timed automata is in not com-
mitting to a fixed time step such as the clock tick in digital circuits. Otherwise, the
major advantage of timed logics and automata is not in density but in the ability
to reason about time arithmetically rather than by counting ticks. More opinions on
timed systems can be found in [21].

8 O. Maler

the input to the implemented controller comes from a simulator, in contrast with
more realistic settings where these inputs come from sensors or, at least, through
real physical wires.

To perform verification while the program is running, the program should be
properly instrumented to export the evolving values of the variables appearing
in the property, thus producing traces that can be checked by your favorite
property checker. Since we are talking about a real imperative program, not an
interpreter of an automaton structure, only single runs (rather than set-based
runs) can be naturally produced. This activity can still take place during the
development phase (design, integration tests) but as will be discussed next, it
can be applied to a working system.

5 Monitoring During the System’s Lifetime

The most radical departure from classical verification is obtained by interpreting
runtime as meaning that we monitor real systems during their normal (and
abnormal) execution. Many such systems come to mind at different scales of
space and time: nuclear reactors, highway and network traffic, air conditioning
systems, industrial plants, medical devices, corporate information systems and
anything that generates signals and time series.

A monitoring process that is simultaneous with the ongoing behavior of the
system suggests new opportunities such as detecting important events and pat-
terns, almost as soon as they happen, and reacting to them, either by alerting
a human operator or by triggering some automatic action. Well, calling these
opportunities “new” is appropriate only in the verification context: such moni-
tors exist in low-tech ever since the industrial, or at least the electrical revolution.
Just consider indicators in your car control panel for speed, temperature or fuel
level and more modern features like alarming the driver while getting too close
to other cars or activating the airbag upon detecting a collision.

This type of application deviates, as I attempt to show, from the standard
story of verification and requires rethinking of what it is the thing that we
want to specify (and monitor) using our favorite formalism. To understand what
I probably mean let me introduce a naive straw man, a true believer in the
verification myth. According to him, if ϕ is the (precise) system’s specifications,
characterizing exactly the acceptable behaviors, the most natural thing is to tell
the monitor to watch for ¬ϕ and cry out loud when it occurs. But on a second
thought, our straw man will add, this will not happen anyway if we verified the
system and showed that all its behaviors satisfy ϕ. Or if you want a control
version of the myth, this will not happen if the controller has been designed
correctly.

To understand what is wrong here, let us first see why verification of cyber-
physical systems is different, hard and, in some sense, almost an oxymoron (some
related observations and discussions concerning the rigorous design of systems,
as opposed to programs, appear in [33,34]). The verification story is based on
the following three premises:

Some Thoughts on Runtime Verification 9

1. You have a (very) faithful model of the system under verification;
2. You have formal requirements that indeed trace the boundary between accept-

able and unacceptable behaviors;
3. The system is sufficiently small so that formal verification is computationally

feasible.

The range of systems for which (1) and (2) above hold is very narrow in the cyber-
physical world. It is fair to say that it is restricted to some hardware and software
components, analyzed for their so called functional properties, those that care
only about their purely computational properties, not involving physical aspects
and interactions such as power consumption or timing.5 Software is very peculiar
in admitting a chain of faithful semantics-preserving models, going all the way
from programs in a high-level language down to gates and transistors. Nothing
like this exists in the physical world where models are understood to be just
useful approximations.6

The same holds for specifications: you can certainly write down a complete
set of properties that will characterize the valid behaviors of, say, a chip realizing
some hardware protocol, verify it on an exact model and expect that the real
chip will indeed work continuously without problems as long as the underlying
physical assumptions hold. For systems with physical functionalities, there is
typically never a comprehensive list of requirements that holds globally over the
whole state-space. In fact, such a global state-space (the one-world semantics of
[37]) by itself is not part of the conceptual map of most engineers. For physical
systems there are domain-specific intuitions about the shape of certain response
curves, the values of some quantitative measures, and so on, but you never have
an explicit formalized partition of all behaviors in the huge cyber-physical state-
space into good and bad behaviors. Airplanes fly, nevertheless, most of the time.7

So we want to use some specification formalism to express observable condi-
tions and temporal patterns that will trigger some responses:

if some pattern is observed then do the right thing. (1)

The entity that does the right thing can be a human operator and in that case
the role of monitoring is just to create an alarm and bring the situation to her
attention. If the reaction is automatic, this is yet another instance of a feedback
5 No program, no matter how thoroughly verified, will produce the correct result if

you hit the computer with a hammer or just unplug it from power.
6 This fact renders our early heroic CS efforts to prove decidability results on hybrid

systems somewhat misguided, at least from an applicative point of view. In one of
the early hybrid systems meetings I organized in Grenoble in the 90s, Paul Caspi
presented a cartoon of a dialog between a control engineer, saying: it is trivial and a
theoretical computer scientist responding: it is undecidable!. But the noble activity
of doing math for its own sake is common in all academic engineering domains,
control included.

7 Kurt Vonnegut’s quote Tiger got to hunt, bird got to fly; Man got to sit and wonder
‘why, why, why?’ can be rephrased as Governors govern and airplanes fly; It takes
a computer scientist to wonder why.

10 O. Maler

control loop with actions based on observations, more appropriate for high-level
supervisory control where discrete decisions are to be taken. Without giving a
precise definition of hierarchical control, think of lower-levels controlling, say,
torques and velocities in car engines or robots, essentially continuous processes
and quantities, while higher levels decide whether to go right or left upon detect-
ing an obstacle or whether to cancel the trip after observing traffic jams or fuel
shortage.

Remark: Is there a particular advantage in using the format of (1) compared to
standard controllers? Controllers with state variables and memory can encode
in their state some abstraction of the input history that will influence their
reaction. This is clearly visible for discrete-event systems where automaton states
represent equivalence classes of input histories. This holds true, in principle, also
for continuous controllers where you can integrate over the input signal but this
is a very weak form of pattern detection. In fact, property monitors for logics
such as STL are equivalent to some kind of timed automata over continuous
signals that can be transformed into controllers by adding actions.

If we want to react, the patterns that we specify need not be the negations
of complete properties but, sometimes, prefixes of those. For example, if the
specification is that x(t) should always remain below c, we should raise a flag
when x gets alarmingly close to c and try to steer the system in the opposite
direction in order to enforce the property (see [11] for a discussion of enforcing
specifications in the discrete context). Likewise, if the specification says that
every request is granted within some time-bound d, a useful monitoring systems
will detect customers that already wait for some d′ < d time while there is a
chance to serve them before the deadline.8

Monitoring simulation traces can be done by offline procedures that wait for
the end of the simulation and then may go through the trace back and forth
in both directions. For monitoring real systems we should focus on online pro-
cedures that do not wait until the end of the trace (which is anyway a shaky
concept for real reactive systems) to start the analysis. This is technically unfor-
tunate for the future fragment of temporal logic which is by definition acausal,
with satisfaction at time t typically defined based on values at time t′ > t. This
point of view is captured nicely by temporal testers [16,28] which are acausal
transducers that provide for a compositional translation of temporal logic to
automata (and timed temporal logic to timed automata [23]). Past LTL, which
can express only safety properties, is causal and can report violation of a prop-
erty by a prefix of the behavior as soon as it happens.

The traditional use of future temporal logic in verification is based on infinite
behaviors whose time domain is [0,∞). A lot of effort, for example [9], was

8 Are all the things that we want to monitor restricted to prefixes of behaviors that
lead to a violation of the specifications? I do not have an answer at this moment
and it probably depends also on whether we are in the hard (safety critical) or
soft (quality of service) domain. It is also related to whether numerical quantities
are involved: the car fuel indicator shows continuously the value of a real-valued
variable and, in addition, emits a warning when it crosses a threshold.

Some Thoughts on Runtime Verification 11

invested in order to define a finitary semantics, appropriate for the very nature
of monitoring. One may argue that unbounded liveness is not a useful notion
for monitoring and we can do with bounded-response properties whose degree of
acausality and non-determinism is bounded [24]. Traditionally, properties used
in verification are supposed to hold from time zero and be satisfied or violated
(accepted or rejected) by the whole behavior or its prefix. For runtime monitoring
it might be more appropriate to use the more general pattern matching concept
that speaks of segments of the behavior, starting and ending at arbitrary points
in time. Regular expressions seem to be more appropriate for this purpose and we
have recently developed offline [35] and online [36] pattern matching algorithms
for timed regular expressions [2] over Boolean signals.

6 From Quality to Quantity

Properties and assertions are functions that map behaviors (sequences, signals)
into {0, 1} according to satisfaction or violation. In many contexts, especially
in the cyber-physical world, we would like to have a more refined quantitative
answer: not only whether the property has been satisfied or violated by the
behavior, but also how robust the answer was [6,7,10,30]. For example, if we
have a behavior which satisfies the requirement that x(t) is always smaller than
c, the distance between the maximal value of x and c will tell us the robustness
of the satisfaction, how close far we were from violation. Likewise, in a behavior
w where some response has missed a deadline d, the distance between d and the
maximal response time occurring in w will tell us the severity of the violation
and whether it can be fixed by relaxing the specification using some d′ > d
which is still acceptable. For a given property ϕ and signal w, the quantitative
(robustness) semantics returns a value ρ = ρ(ϕ,w) having the following two
important properties:

1. The robustness ρ is positive iff w satisifies ϕ;
2. The ϕ-satisfaction of any signal w′, whose pointwise distance from w is smaller

than ρ, is equal to that of w.

This semantics gives more information and moreover it opens new possibilities in
the search for bad behaviors, also known as bug hunting or falsification, which
is a very active domain in the verification of cyber-physical system. The idea
is that the robustness value can be used by an optimization/search procedure
that explores the space of system trajectories (and the input signals that induce
them) trying the minimize the robustness value until a violating behavior is
found, see for example [1,5,8,15,31].

Despite these advantages, the robustness semantics still suffers from the
expressive limitations of traditional logic and its orientation toward extreme-case
reasoning. The quantitative semantics of STL, as defined in [6,7], is obtained
from the standard qualitative semantics by replacing Boolean values such as
x < c by numbers like c − x and then replacing ∨, ∧ and ¬ by min, max and −.
Thus the robustness value is still determined by the worst value in the signal,

12 O. Maler

regardless of whether the signal spent a lot of time near that value or just had
a short spike, while being at much lower values most of the time.

Many other types of quantitative measures have been traditionally applied
to signals. They are based on summation/averaging, noise filtering, applying
frequency-domain transforms and many other functions that extract from the
signal the performance measures appropriate for the application in question. In
this context, one can view STL and similar formalisms as yet another family
of performance measures which excels in extracting certain features of the sig-
nal such as the sequencing of threshold crossings and other events over time,
including the temporal distances between them, while being weak in terms of
other features. An early attempt to combine properties and quantitative mea-
sures into a single framework is reported in [4] for discrete time. A more recent
one is described in [12] where pattern matching techniques are used to define
segments of the signal where standard measurements (average, extremum) are
to be applied. Combining properties and measures into a unified declarative lan-
guage might help in further proliferation of verification ideas [20] into the real
cyber-physical world.

Acknowledgment. This text benefitted from feedback given by Eugene Asarin, Jyo
Deshmukh, Jim Kapinski, Dejan Nickovic, Joseph Sifakis and Dogan Ulus.

References

1. Annapureddy, Y., Liu, C., Fainekos, G.E., Sankaranarayanan, S., S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: TACAS, pp. 254–257 (2011)

2. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

4. d’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z., Lola: Runtime monitoring of synchronous
systems. In: TIME, pp. 166–174 (2005)

5. Deshmukh, J., Jin, X., Kapinski, J., Maler, O.: Stochastic local search for fal-
sification of hybrid systems. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA
2015. LNCS, vol. 9364, pp. 500–517. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-24953-7 35

6. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 19

7. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15297-9 9

8. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17

http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-319-24953-7_35
http://dx.doi.org/10.1007/978-3-319-24953-7_35
http://dx.doi.org/10.1007/978-3-642-39799-8_19
http://dx.doi.org/10.1007/978-3-642-15297-9_9
http://dx.doi.org/10.1007/978-3-642-14295-6_17

Some Thoughts on Runtime Verification 13

9. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45069-6 3

10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)

11. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N.
(eds.) RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16612-9 9

12. Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 322–337.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21668-3 19

13. Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: a manifesto. Artif.
Intell. Math. Theory Comput. 212, 151–176 (1991)

14. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt,
K.R. (ed.) Logics and Models of Concurrent Systems, pp. 477–498. Springer,
Heidelberg (1985)

15. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. In: HSCC (2013)

16. Kesten, Y., Pnueli, A.: A compositional approach to CTL∗ verification. Theoretical
Computer Science 331(2–3), 397–428 (2005)

17. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

18. Maler, O.: Hybrid systems and real-world computations (1992)
19. Maler, O.: Control from computer science. Ann. Rev. Control 26(2), 175–187

(2002)
20. Maler, O.: Amir Pnueli and the dawn of hybrid systems. In: HSCC, pp. 293–295.

ACM (2010)
21. Maler, O.: The unmet challenge of timed systems. In: From Programs to Systems

(2014)
22. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:

Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3 12

23. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). doi:10.1007/11867340 20

24. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-
response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 95–107. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3 12

25. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.)
Pillars of Computer Science. LNCS, pp. 475–505. Springer, Heidelberg (2008)

26. McMillan, K.L.: Symbolic Model Checking. Kluwer, Berlin (1993)
27. Nickovic, D.: Checking timed, hybrid properties: theory and applications. Ph.D.

thesis, Université Joseph Fourier, Grenoble, France (2008)
28. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,

H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69850-0 11

http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1007/978-3-540-45069-6_3
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-642-16612-9_9
http://dx.doi.org/10.1007/978-3-319-21668-3_19
http://dx.doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1007/11867340_20
http://dx.doi.org/10.1007/978-3-540-73368-3_12
http://dx.doi.org/10.1007/978-3-540-69850-0_11

14 O. Maler

29. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems
in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming
1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). doi:10.1007/
3-540-11494-7 22

30. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for
robustness analysis with applications to synthetic gene networks. Bioinformatics
25(12), 169–78 (2009)

31. Sankaranarayanan, S., Fainekos, G.E.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: HSCC (2012)

32. Shea, R., Wilson, R.A.: The Illuminatus! Trilogy. Dell Publishing, New York (1984)
33. Sifakis, J.: Rigorous system design. Found. Trends Electron. Des. Autom. 6(4),

293–362 (2012)
34. Sifakis, J.: System design automation: challenges and limitations. Proc. IEEE

103(11), 2093–2103 (2015)
35. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,

A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-10512-3 16

36. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 736–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 47

37. Varaiya, P.: A question about hierarchical systems. In: Djaferis, T.E., Schick, I.C.
(eds.) System Theory, pp. 313–324. Springer, Heidelberg (2000)

38. Moshe, Y.: Vardi and Pierre Wolper. an automata-theoretic approach to automatic
program verification. In: LICS (1986)

39. Wilson, R.A.: Quantum Psychology: How Brain Software Programs You & Your
World. New Falcon Publication, New York (1990)

http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/978-3-319-10512-3_16
http://dx.doi.org/10.1007/978-3-662-49674-9_47

Satellite Events Papers

First International Summer School
on Runtime Verification

As Part of the ArVi COST Action 1402

Christian Colombo1 and Yliès Falcone2(B)

1 University of Malta, Msida, Malta
christian.colombo@um.edu.mt

2 Univ. Grenoble-Alpes, Inria, LIG, 38000 Grenoble, France
ylies.falcone@imag.fr

Abstract. This paper briefly reports on the first international summer
school on Runtime Verification: Branches of practical topics rooted in
theory, co-organized and sponsored by COST Action IC1402 ArVi which
was held September 23–25, Madrid, Spain as part of the 16th interna-
tional conference on Runtime Verification (RV 2016).

Runtime Verification [1–5] is an umbrella term usually denoting the languages,
techniques, and tools related to the verification of system executions against
formally-specified behavioral properties. This field of research has been mainly
represented by the Runtime Verification (RV) conference1 which was held yearly
for the last 16 years. As the field is growing and the techniques are becoming
more and more mature, there is a pressing need in the community for documen-
tation and lecture material to help students and practitioners entering the field,
in spite of the existing (incomplete) tutorials and short overviews of the field.
We foresee the organization of this summer school as one of the steps towards
achieving this goal. By organizing the summer school, we wanted to build a
short theoretical and practical program allowing to give in 3 days the necessary
introductory knowledge to a practitioner or student entering the field.

Objectives. As the name of the summer school suggests, the summer school aimed
to provide a balance of theory and practice: In the theoretical aspect, while all
the core concepts were covered, participants were also exposed to cutting edge
advances in the field. At the same time, the summer school was very hands-on
and students followed up with practical work in the evenings so that by the
end of the summer school, participants had created their own basic runtime
verification tool.

For PhD students and researchers entering the field of RV, the school was
a great opportunity to get to know other people working in the area, to meet
distinguished scholars, and to establish contacts that may lead to research col-
laborations in the future. For people coming from industry, the school provided

1 See http://runtime-verification.org.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 17–20, 2016.
DOI: 10.1007/978-3-319-46982-9 2

http://runtime-verification.org

18 C. Colombo and Y. Falcone

an exposition of the major challenges as well as possible solutions to the appli-
cation of RV in industry, an exposition to the major tools, as well as the basics
of RV tool-building.

Lecturers. The following researchers lectured at the summer school:

– Prof. Wolfgang Ahrendt, Chalmers University of Technology and University
of Gothenburg (Sweden).

– Prof. Ezio Bartocci, TU Wien (Austria).
– Prof. Borzoo Bonakdarpour, University of MacMaster (Canada).
– Dr. Marius Bozga, CNRS, Vérimag (France).
– Dr. Christian Colombo, University of Malta (Malta).
– Dr. Yliès Falcone, University of Grenoble (France).
– Dr. Adrian Francalanza, University of Malta (Malta).
– Dr. Klaus Havelund, NASA Jet Propulsion Laboratory (USA).
– Prof. Martin Leucker, University of Lübeck (Germany).
– Prof. Joao Lourenço, Universidade Nova de Lisboa (Portugal).
– Dr. Dejan Nickovic, Austrian Institute of Technology (Austria).
– Prof. Gordon Pace, University of Malta (Malta).
– Dr. Giles Reger, University of Manchester (UK).

Program Overview. The Summer School was organised over three days with
a series of lectures from international experts during the day and a follow up
practical session in the evening to enable the participants to incorporate the
covered knowledge into their tool (see Tables 1, 2 and 3). The first day covered
the fundamentals of runtime verification: starting with the basic concept of what
is runtime verification, moving on to instrumentation techniques, and property
specification languages. The second day covered the major practical aspects of
runtime verification: handling data through monitor parametrisation, monitor-
ing concurrency errors, and performance issues of monitors. The second day
ended with a session on RV tools, giving the participants time to try tools and

Table 1. Programme overview - Day 1 - 23rd September

Time Topic Lecturer

09:00 09:45 RV overview, RV vs other verification techniques Y. Falcone

09:45 10:30 Summer school Overview and manual monitoring

11:00 11:45 Monitoring with AOP G. Pace

11:45 12:30 Towards monitoring specification languages

14:00 14:45 Monitoring LTL specifications M. Leucker

14:45 15:30 Monitorability

16:00 16:45 Hands on C. Colombo

16:45 17:30

18:00 Optional further assistance with hands on

First International Summer School on Runtime Verification 19

Table 2. Programme overview - Day 2 - 24th September

Time Topic Lecturer

09:00 09:45 Handling data in user-provided specifications K. Havelund

09:45 10:30

11:00 11:45 Monitoring concurrency errors: deadlocks, atomicity violations, and data races J. Lourenco

11:45 12:30

14:00 14:45 Performance issues and optimizations G. Reger

14:45 15:30

16:00 16:45 Hands on C. Colombo

16:45 17:30

18:00 Optional further assistance with hands on

Table 3. Programme overview - Day 3 - 25th September

Time Topic Lecturer

09:00 09:45 Design and Monitoring of Component-Based Systems M. Bozga

09:45 10:30 Distributed monitoring & monitoring distributed systems B. Bonakdarpour

11:00 11:45 Time-Triggered monitoring

11:45 12:30 From Monitoring quantitative properties to testing D. Nickovic

14:00 14:45 Combined Static and Runtime Verification W. Ahrendt

14:45 15:30 Bytecode manipulation for Runtime Verification W. Binder

16:00 16:45 Runtime enforcement Y. Falcone

16:45 17:30 A Theory of Monitors A. Francalenza

interact with their creators. Finally, the third day covered advanced and cutting-
edge research in the field with topics ranging from runtime enforcement to the
combination of static and dynamic analysis, and from monitoring of distributed
and transaction-based systems to low-level hardware monitoring.

Acknowledgment. We would like to warmly thank all the researchers for their lec-
tures and all the participants to the summer school. We hope that the summer school
will be continued in the future by becoming a regular event.

This summer school is based upon work from COST Action ARVI IC1402, sup-
ported by COST (European Cooperation in Science and Technology). The organizers
are grateful to the COST association for sponsoring the summer school.

References

1. Colin, S., Mariani, L.: Run-time verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005). doi:10.1007/11498490 24

2. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy,
M., Peled, D.A., Kalus, G. (eds.) Engineering Dependable Software Systems, NATO
Science for Peace and Security Series, D: Information and Communication Security,
vol. 34, pp. 141–175. IOS Press (2013)

http://dx.doi.org/10.1007/11498490_24

20 C. Colombo and Y. Falcone

3. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 374–383. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-69149-5 40

4. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Programm. 78(5), 293–303 (2008)

5. Sokolsky, O., Havelund, K., Lee, I.: Introduction to the special section on runtime
verification. STTT 14(3), 243–247 (2012)

http://dx.doi.org/10.1007/978-3-540-69149-5_40
http://dx.doi.org/10.1007/978-3-540-69149-5_40

Third International Competition
on Runtime Verification

CRV 2016

Giles Reger1(B), Sylvain Hallé2, and Yliès Falcone3

1 University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

2 Université du Québec à Chicoutimi, Saguenay, Canada
shalle@acm.org

3 Univ. Grenoble Alpes, Inria, LIG, 38000 Grenoble, France
ylies.falcone@imag.fr

Abstract. We report on the Third International Competition on Run-
time Verification (CRV-2016). The competition was held as a satel-
lite event of the 16th International Conference on Runtime Verification
(RV’16). The competition consisted of two tracks: offline monitoring of
traces and online monitoring of Java programs. The intention was to
also include a track on online monitoring of C programs but there were
too few participants to proceed with this track. This report describes
the format of the competition, the participating teams, the submitted
benchmarks and the results. We also describe our experiences with trans-
forming trace formats from other tools into the standard format required
by the competition and report on feedback gathered from current and
past participants and use this to make suggestions for the future of the
competition.

1 Introduction

Runtime Verification (RV) [8,13] is a lightweight yet powerful formal
specification-based technique for offline analysis (e.g., for testing) as well as run-
time monitoring of system. RV is based on extracting information from a running
system and checking if the observed behavior satisfies or violates the properties
of interest. During the last decade, many important tools and techniques have
been developed and successfully employed. However, it has been observed that
there is a general lack of standard benchmark suites and evaluation methods
for comparing different aspects of existing tools and techniques. For this reason,
and inspired by the success of similar events in other areas of computer-aided
verification (e.g., SV-COMP, SAT, SMT, CASC), the First International Com-
petition on Software for Runtime Verification (CSRV-2014) was established [2].
See [3] for a more in-depth discussion of this first iteration where all submitted
properties are presented and the results discussed. Additionally, [11] presents a
study discussing how the properties from the competition could be written in
two different specification languages. The first iteration of the competition was

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 21–37, 2016.
DOI: 10.1007/978-3-319-46982-9 3

22 G. Reger et al.

followed by the second competition the following year which kept the same for-
mat but made some minor adjustments based on lessons learnt in the previous
year (see [9]).

This is the third edition of the competition and the general aims remain the
same:

– To stimulate the development of new efficient and practical runtime verifica-
tion tools and the maintenance of the already developed ones.

– To produce benchmark suites for runtime verification tools, by sharing case
studies and programs that researchers and developers can use in the future to
test and to validate their prototypes.

– To discuss the metrics employed for comparing the tools.
– To compare different aspects of the tools running with different benchmarks

and evaluating them using different criteria.
– To enhance the visibility of presented tools among different communities

(verification, software engineering, distributed computing and cyber security)
involved in monitoring.

CRV-2016 was held between May and August 2016 with the results presented in
September 2016 in Madrid, Spain, as a satellite event of the 16th International
Conference on Runtime Verification (RV’16).

Changes. The competition is broadly similar to the previous iteration [9]. The
biggest change is that there were not enough participants to run the C track
(see Sect. 7). The other changes were designed to make the competition run
more smoothly: the number of benchmarks was reduced and an additional stage
was introduced to ensure that benchmarks were clarified fully.

Report Structure. We begin by discussing the format of the competition (Sect. 2).
We then present and briefly describe the participants to each track (Sect. 3),
followed by an overview of the benchmarks submitted in each track (Sect. 4).
The results of the competition are then presented (Sect. 5). This is followed by
some reflections on the trace format used in the offline track (Sect. 6). Finally,
we reflect on the challenges faced and give recommendations to future editions
of the competition (Sect. 7) before making some concluding remarks (Sect. 8).

2 Format of the Competition

The format of the competition was broadly similar to that of the previous year
(see [9]). The competition website contains a document outlining the full rules
of the competition1, which was distributed to participants before the start of the
competition. This section summarises the key points from this document.

1 http://crv.liflab.ca/CRV2016.pdf.

http://crv.liflab.ca/CRV2016.pdf

Third International Competition on Runtime Verification CRV 2016 23

2.1 Tracks

As in previous years, the competition was originally meant to consist of three
tracks with each track being treated slightly different in each phase. Here we
give a brief overview of the general scope of what is covered by the competition
and then the idea behind each track.

General Scope. There are many activities that could fall under the umbrella
term of runtime verification. Here we describe and defend the current scope of
the competition. Note that we (the general competition community) are open to
suggestions for future iterations.

The general activity we consider is that of taking a trace τ and a specification
ψ and answering the question whether τ satisfies/is a model for/is accepted by
ψ. In some cases the trace τ is taken as a stand-alone artefact and in other cases
it is being generated as a program is running. We restrict our attention to linear
traces (i.e. we do not consider concurrency) and require programs that generate
such traces to be (broadly) deterministic.

Note that our formulation precludes the other, related, activity of finding
multiple matches between the trace and specification describing failure. In all
cases it is sufficient to report failure as soon as it is detected. On a similar
note, we do not restrict ourselves to safety properties, but (for obvious reasons)
require all specification languages to have an interpretation on finite traces (i.e.
one could have bounded liveness).

The Offline Track. This covers the scenario where the trace is collected, stored
in a log file, and then processed offline. We define three acceptable formats for
traces (log files) to be used in benchmarks. In previous years benchmarks in this
track have focussed on parametric, or data-carrying, events. Note that this track
does not (currently) support notions of time other than as data.

The Online Java Track. This covers a scenario where a Java program is
instrumented to produce events that should be handled by a monitor. In the
past the majority of instrumentation was carried out via AspectJ. We would like
to standardise this where possible. Therefore, benchmark submissions will be
required to include AspectJ instrumentation (again, where possible). Entrants
may use alternative instrumentation techniques in their submissions but we ask
that they justify this.

The Online C Track. This covers a scenario where a C program is run and it
is asked whether a specification of that run holds. Starting this year, the C track
will consist of two sub-tracks, although this is mainly for organisational reasons
and we encourage entrants to participate in both sub-tracks. These are:

1. Generic Specification. The C version of the Java track where some instru-
mentation should abstract the program as a sequence of events to be passed
to a monitor. Instrumentation can be automatic or manual.

24 G. Reger et al.

2. Implicit Specification. This covers implicit properties (such as memory-
safety and out of bounds array access). Such properties might typically be
taken from a standardisation of C rather than formulated in a separate spec-
ification language. In this case the trace may also be implicit (although we
note that it theoretically exists).

We note that this track did not run due to lack of participants.

2.2 Phases

The competition was divided into five phases as follows:

1. Registration collected information about entrants.
2. Benchmark Phase In this phase, entrants submitted benchmarks to be

considered for inclusion in the competition.
3. Clarification Phase The benchmarks resulting from the previous phase

were made available to entrants. This phase gave entrants an opportunity
to seek clarifications from the authors of each benchmark. Only benchmarks
that had all clarifications dealt with by the end of this phase were eligible for
the next phase.

4. Monitor Phase In this phase entrants were asked to produce monitors for
the eligible benchmarks. As described later, these had to be runnable via a
script on a Linux system (therefore the tool had to be installable on such a
system).

5. Evaluation Phase Submissions from the previous phase were collected and
executed, with relevant data collected to compute scores as described later.
Entrants were given an opportunity to test their submissions on the evaluation
system. The output produced during evaluation will be made available after
the competition.

Note that it was not necessary to participate in the Benchmark Phase,
although not doing so would likely be disadvantageous. However, all entrants
were required to take part in the remaining three phases, including the Clarifi-
cation Phase.

2.3 Timeline

The competition was announced in relevant mailing lists in May 2016. This was
much later than in previous years. This could have had an impact on the number
of participants. Previous participants and tool developers known to the organ-
isers were contacted directly. Potential participants were requested to declare
their intent to participate in the competition using an online form collecting
basic information about the participating tools.

Third International Competition on Runtime Verification CRV 2016 25

The planned timeline was as follows:

Event Starts Ends (Deadline)

Registration May 1st June 5th

Benchmark submission May 1st May 29th

Clarifications June 5th June 12th

Monitor submission June 19th July 10th

Results August 1st

Extensions were given for each deadline with the final submission deadline
being the 22nd July.

2.4 Benchmark Submission Format

Benchmark submissions consisted of three parts:

1. The Metadata. Every benchmark requires a name, a description and a
domain category.

2. The Property. This is a description of the property being monitored and
should take the same form for all tracks (with the exception of the Implicit
Specification C subtrack as described in the full rules document).

3. The Trace Part. This describes what the events to be monitored are and
is necessarily track-specific. More details are given below.

We now review the last two parts below. The textual information about proper-
ties was uploaded to the competition wiki2 and supporting files were uploaded to
the competition server. Each team could submit up to three benchmarks. This is
a reduction on previous years to reduce the workload for participants; we discuss
the impact of this later.

Describing Properties. The information about a submitted property was format-
ted as follows:

1. An informal description. This should include the context of the property, the
relevant events (their names and parameters, if any), and the ordering con-
straints between events that form the property. Moreover, any assumptions
being made should have been reported.

2. Demonstration traces. At least 6 examples traces (3 that should be accepted,
3 rejected) should be provided. Traces can be given in an abstract form e.g.
a(1).b(2) and should be explained in terms of the abstract property, not the
formal description. The provided traces should ideally highlight edge cases.

2 http://crv.liflab.ca/wiki.

http://crv.liflab.ca/wiki

26 G. Reger et al.

3. A formal description. This should include resonable detail describing the
specification written in a well-defined and documented specification language.

Optionally we encouraged participants to also describe the property in a stan-
dard form of first-order linear temporal logic but few participants did this (see
later discussions).

Describing Traces. The trace formats fixed in the last iteration of the compe-
tition [9] have been kept. Traces could be in standardised CSV, XML or JSON
formats. However, in XML and JSON no nesting of data values is supported.
Along with the trace files, a benchmark should also include (i) an explanation
of how concrete events in the trace relate to abstract events in the property, and
(ii) additional statistics about the number of events in the trace.

Describing Programs. For programs, it was required that a benchmark includes
the uninstrumented source files, two scripts compile.sh and run.sh to compile
and run the program, and instrumentation information. For the Java track, we
preferred instrumentation in the form of an AspectJ file. If it was not obvious,
the relation between instrumentation and property should have been explained.
Additionally, participants were encouraged to provide the facility to produce a
trace file (in the above formats) from the program.

2.5 Monitor Submission Format

Once teams had written monitors for the benchmarks they wished to partici-
pate on they could upload these to the server and test that they worked in the
competition environment (after installing their tool and all necessary libraries
on the server).

Tools were required to give standardised outputs in the form of a status line.
Monitors should output the verdict by printing a status line of the following
form:

– STATUS: Satisfied if the property is satisfied,
– STATUS: Violated if the property is violated,
– STATUS: TimeOut if the status is not detected within the time limit,
– STATUS: GaveUp if the monitor fails to find the verdict for any reason.

If no status line is printed, it was assumed that the status is TimeOut.
For online tracks participants needed to provide a setup.sh script to pre-

pare the benchmark, typically this performs automated instrumentation, and a
run.sh script to run the benchmark, typically this will be the same as in the
original submission (perhaps with additional inclusion of some libraries). For the
offline track, a single script was required that took two inputs: (i) the name of
the benchmark and (ii) the name of the trace file.

Third International Competition on Runtime Verification CRV 2016 27

2.6 Scoring

The scoring remains the same as for the previous two iterations of the competi-
tion (see [2]). Each submission is awarded three scores for correctness, running
time and memory utilisation. The correctness score is negative if there is an
error e.g. an incorrect verdict. The scores for running time and memory util-
isation are computed by distributing a fixed number of points per benchmark
between the competing tools in proportion to their performance. For example, if
tool A runs in 10 seconds and tool B runs in 40 seconds and there are 10 points
to be awarded team A would get 8 points and team B would get 2 points for
that benchmark.

3 Participating Teams

In this section, for each track, we report on the teams and tools that participated
in CRV-2016. Tables 1 and 2 give a summary of the teams participating in the
Java and Offline tracks respectively. In the following of this section, we provide
a short overview of the tools involved in the competition. We note that the E-
ACSL tool [7] from CEA LIST, France entered the C track but was the only
tool to do so.

CRL. In the framework of Complex Event Processing, CRL [14] is a C++ library
which allows for the analysis of complex event flows to recognise predetermined
searched-for behaviours. These behaviours are defined as specific arrangements
of events using a behaviour description language called the Chronicle Language.
The recognition process has been completely formalised through a set semantics
and the algorithms of CRL directly correspond to the mathematical definitions.
CRL is available online3.

Table 1. Tools participating in online monitoring of Java programs track.

Tool Ref. Contact person Affiliation

Larva [5] Shaun Azzopardi University of Malta, Malta

MarQ [16] Giles Reger University of Manchester, UK

Mufin [6] Torben Scheffel University of Lübeck, Germany

Table 2. Tools participating in the offline monitoring track.

Tool Ref. Contact person Affiliation

BeepBeep 3 [10] Sylvain Hallé Université du Québec à Chicoutimi, Canada

CRL [14] Ariane Piel ONERA, France

MarQ [16] Giles Reger University of Manchester, UK

3 http://chroniclerecognitionlibrary.github.io/crl/o.html.

http://chroniclerecognitionlibrary.github.io/crl/o.html

28 G. Reger et al.

BeepBeep 3 is a general purpose event stream processor that attempts to rec-
oncile the capabilities of Runtime Verification and Complex Event Processing
under a common framework [10]. In addition to Boolean properties used in mon-
itoring, BeepBeep can compute queries that involve complex manipulations of
event data and produce output traces of any type. BeepBeep 3 is under active
development, and is available online4.

Larva is a Java tool [5] aimed specifically for monitoring Java systems with a
specification language targeting business level logic rather than low level prop-
erties. The tool takes a specification in the form of a text file, generating the
necessary code in Java and AspectJ which verifies that the properties in the
script are being adhered to during the execution of the system. Its specification
language (DATEs [4]) is a flavour of automata enriched with stopwatches. Larva
is available online5.

MarQ (Monitoring at runtime with QEA) [16] monitors specifications written as
Quantified Event Automata [1,15] (QEA). QEA is based on the notion of trace-
slicing, extended with existential quantification and free variables. For online
monitoring it relies on AspectJ. For offline monitoring of traces it provides a
library of translator objects that allow the user to define the interface between
the alphabets of the specification and trace. MarQ is available online6.

Mufin (Monitoring with Union-Find) [6] is a framework for monitoring Java
programs. (Finite or infinite) monitors are defined using a simple API that allows
to manage multiple instances of monitors. Internally Mufin uses hash-tables
and union-find-structures as well as additional fields injected into application
classes to lookup these monitor instances efficiently. The main aim of Mufin is
to monitor properties involving large numbers of objects efficiently. Mufin will
hopefully be available online soon7.

4 Benchmarks

We give a brief overview of the benchmarks submitted to each track.

4.1 Offline Track

There were 6 benchmarks submitted to the Offline track by 2 teams - MarQ
and BeepBeep 3. An additional benchmark was submitted by CRL but this
team withdrew. The three benchmarks from MarQ (taken from [1,15]) were

1. AuctionBidding. Items placed for auction should only be listed for the pre-
scribed period, all bids should be strictly increasing and should be sold for
no less than the reserve price.

4 https://liflab.github.io/beepbeep-3.
5 http://www.cs.um.edu.mt/svrg/Tools/LARVA/.
6 https://github.com/selig/qea.
7 http://www.isp.uni-luebeck.de/mufin.

https://liflab.github.io/beepbeep-3
http://www.cs.um.edu.mt/svrg/Tools/LARVA/
https://github.com/selig/qea
http://www.isp.uni-luebeck.de/mufin

Third International Competition on Runtime Verification CRV 2016 29

2. CandidateSelection. For every voter there must exist a party that the voter
is a member of, and the voter must rank all candidates for that party

3. SQLInjection. Every string derived from an input string must be sanitised
before being used.

All three benchmarks appeared in last year’s competition. The three benchmarks
were designed to demonstrate the different ways data can be used within the
specification language.

The three benchmarks from BeepBeep 3 where taken from a case study on
applying runtime verfication to bug finding in video games [18]. The properties
are therefore all about the interaction of Pingu characters within the game:

1. PinguCreation. From one event to the next, Pingus can only disappear from
the game field; no Pingu can be created mid-game.

2. EndlessBashing. Every Basher must become a Walker when it stops bashing.
3. TurnAround. A Walker encountering a Blocker must turn around and keep

on walking.

Traces for the benchmarks were generated by Pingu Generator8. These traces
do not immediately conform to the competition format and we describe how
they were translated in Sect. 6. As this was a new tool to the competition all
benchmarks were new.

4.2 Java Track

There were 9 benchmarks submitted to the Java track by 3 teams - Larva,
MarQ, and Mufin. All three teams used AspectJ as an instrumentation tool,
allowing for easy reuse of instrumentation code.

The three benchmarks from Larva were

1. GreyListing. Once greylisted, a user must perform at least three incoming
transfers before being whitelisted.

2. ReconcileAccounts. The administrator must reconcile accounts after every
1000 attempted external money transfers or after an aggregate total of one
million dollars in attempted external transfers.

3. Logging. Logging can only be made to an active session (i.e. between a login
and a logout).

The first two benchmarks appeared in the first iteration of the competition
(although the monitored programs have been extended to present a more chal-
lenging workload at the request of the competition organisers).

The three benchmarks from MarQ (taken from [1,15]) were

1. PublisherSubscriber. For every publisher, there exists a subscriber that
acknowledges every message sent by that publisher.

8 https://bitbucket.org/sylvainhalle/pingu-generator.

https://bitbucket.org/sylvainhalle/pingu-generator

30 G. Reger et al.

2. AnnonyingFriend. Person A should not contact person B on at least three
different social networking sites without any response from person B. There
should not be 10 or more such messages across any number of sites.

3. ResourceLifecycle. Managed resources must obey their lifecycle e.g. not
granted without first being requested nor released without first being granted.

The third benchmark appeared in last year’s competition; the first two are new.
The first two benchmarks were designed to demonstrate complex quantifier usage
as they alternate universal and existential quantification.

The three benchmarks from Mufin (also described in [6]) were

1. Tree. There is a tree of communicating nodes. The property is about com-
munication between the nodes. For example, whenever a node receives a
sendCritical message all descendent nodes must have received a reset mes-
sage since the last send message.

2. Multiplexer. Clients attached to an inactive channel should not be used.
3. Toggle. A work piece may only be processed when it is not the same mode as

its creating device.

All three benchmarks appeared in last year’s competition. Each benchmark was
designed to stress a certain element of the algorithm. Tree presents a scenario
where the number of objects is not known in advance with complex relationships
between objects. Multiplexer presents a scenario with many control states. Toggle
includes global actions affecting all data values.

5 Results

For the first time the competition has been completed in time for the results
to be included in the Runtime Verification conference proceedings rather than
being announced for the first time at the conference (or in some cases shortly
after). In this section, we report on the results and give some brief analysis.

5.1 Detailed Results

Tables 3 and 4 give the detailed results from the Offline and Java tracks respec-
tively. The tables detail the running times and memory utilisation for each sub-
mission. The scores for each submission are then given. Negative correctness
scores can be given for an incorrect result or error (which does not happen here)
or for failing to give a result within the given resources (here we use TO to
indicate time out, in this case 10 hours, and OM to indicate out of memory).

From Table 3 we see that MarQ failed to find a solution for its own Can-
didateSelection benchmark. On inspection it was found that MarQ required
more than the 8GB of memory available on the competition machine. MarQ
performed better than BeepBeep 3 in terms of running time in all cases. This
is not very surprising given the low-level specification language used by MarQ.
We note that the trace files being used for the two tools for the last three

Third International Competition on Runtime Verification CRV 2016 31

Table 3. Detailed results for offline track

Benchmark Tool Time (seconds) Memory (MB) Scores

Correctness Time Memory

AuctionBidding BeepBeep 3 36, 731.04 1,792 10 0.035 5.66

MarQ 132.01 2,337 10 9.96 4.34

CandidateSelection BeepBeep 3 6, 362.8 1,320 10 10 10

MarQ − OM -5 0 0

SQLInjection BeepBeep 3 87.62 1,991 10 1.70 3.83

MarQ 18.03 1,235 10 8.29 6.17

PinguCreation BeepBeep 3 16.94 1,146 10 0.70 0.59

MarQ 1.29 72 10 9.29 9.41

EndlessBashing BeepBeep 3 116.95 1,473 10 0.26 1.03

MarQ 3.08 168 10 9.74 8.97

TurnAround BeepBeep 3 44.08 1,501 10 1.71 2.40

MarQ 9.1 475 10 8.29 7.60

Table 4. Detailed results for Java track

Benchmark Tool Time (seconds) Memory (MB) Scores

Correctness Time Memory

GreyListing Larva 562.1 140 10 0.15 1.89

MarQ 15.43 72 10 5.37 3.67

Mufin 18.48 59 10 4.48 4.45

ReoncileAccounts Larva 7.06 90 10 2.7 2.45

MarQ 4.8 73 10 3.97 2.99

Mufin 5.73 48 10 3.32 4.56

Logging Larva 7691.68 181 10 0.07 2.49

MarQ 104.62 129 10 5.68 3.49

Mufin 140.23 112 10 4.24 4.01

PublisherSubscriber Larva 0.44 46 10 6.22 4.62

MarQ 4.86 335 10 0.56 0.63

Mufin 0.85 45 10 3.22 4.73

AnnoyingFriend Larva 51.63 836 10 1.73 2.04

MarQ 26.35 718 10 3.40 2.37

Mufin 18.38 304 10 4.87 5.59

ResourceLifecycle Larva TO - -5 0 0

MarQ 282.87 752 10 0.85 2.69

Mufin 26.35 276 10 9.15 7.31

Tree Larva TO - -5 0 0

MarQ - - 0 0 0

Mufin 32.34 775 10 10 10

Multiplexer Larva TO - -5 0 0

MarQ 105.54 1703 10 0.38 1.06

Mufin 4.23 201 10 9.61 8.94

Toggle Larva 22,393.54 159 10 0.00 1.864

MarQ 186.12 733 10 0.03 0.40

Mufin 0.52 38 10 9.97 7.73

32 G. Reger et al.

Table 5. Total scores

Team Submissions Correctness Time Memory Total Average

Offline track

BeepBeep 3 6 60 14.42 25.51 97.93 16.32

MarQ 6 45 45.58 36.49 127.07 21.18

Java Track

Larva 9 45 10.88 15.36 71.24 7.96

MarQ 8 80 20.25 17.30 117.65 14.71

Mufin 9 90 58.87 57.34 206.21 22.91

benchmarks were not the same as MarQ first translated the trace files into the
competition-compliant CSV format. This translation time is not included in the
results.

The results of the Java track given in Table 4 are less obvious. We have four
cases where Larva failed to complete monitoring within the time limit. There
was also one case where MarQ chose not to compete on a benchmark. According
to the tool developer this was due to the complexity of the benchmark making
it time-consuming to translate and debug. In general, Mufin had significantly
lower running times. Both Larva and MarQ struggled due to garbage collec-
tion. Larva is not optimised for memory leaks of this kind and MarQ switched
off one of its optimisations prior to the competition due to a bug.

5.2 Scores and Winners

Table 5 gives the total scores for each tool in each track. This gives MarQ as
the winner of the Offline track and Mufin as the winner of the Java track. In
previous years it has been the case that the ranking of average scores has not
agreed with the ranking of total scores as some tools decided to only compete
on a subset of the benchmarks they were suited to. This was not the case this
year, with the average score and total score rankings being the same.

6 Discussion of Trace Formats

In this section we will briefly discuss some observations about the trace formats
introduced for the Offline track. Throughout different iterations of the competi-
tion, tools have either been developed around the advertised competition trace
formats or chosen to translate their existing format into one of the competition
ones. There is a growing interest in the best way to capture traces [12] and we
briefly discuss three cases where other traces have needed to be translated.

MonPoly. In the first iteration of the competition the MonPoly tool already
had a native trace format that they translated into the CSV format of the compe-
tition. The main issue that needed to be overcome was that MonPoly supports

Third International Competition on Runtime Verification CRV 2016 33

multiple events per time step i.e. an event is a set of labelled observations. The
translation necessarily introduced an additional time step field and arbitrarily
ordered events coming from the same time step.

BeepBeep 3. The trace files submitted by BeepBeep 3 this year did not con-
form to the XML requirements of the competition as they included nested data
structures. A single event consisted of a variable number of character objects,
each describing a different Pingu character. To translate this into the CSV for-
mat, the organisers introduced an event per character object, with the other
metadata being copied between these new events. This led to additional orderings
that did not occur in the original trace as a timestamp parameter was required
to differentiate between characters occurring in different original events.

CRL. The benchmark submitted by CRL this year did not follow the required
format. It consisted of separate files giving different parts of the overall behav-
iour. As the traces were related by timestamps it was relatively straightforward
to merge the traces into a single trace file. However, the idea that different
behaviour is recorded separately and then merged is reasonable. In this case,
there was one trace file for inter-aircraft communication and one trace file per
aircraft giving position information.

Discussion. These observations suggest that the trace format should be extended
to allow either more complex structures as data values in events or the notion
of multiple events occurring unordered at a single point in time. In both of
the affected cases above, flattening the events led to more complex specifications
that needed to deal with the arbitrary ordering of events that should be observed
at the same point. Additionally, the last example suggests supporting traces in
multiple files may be useful.

7 Feedback and Reflection

As part of preparing this report we contacted all participants in this and the two
previous competitions and asked a number of questions about their experiences.
More broadly we asked for general thoughts on the design and future of the
competition. Here we summarise the result of this feedback, along with some
thoughts of our own, organised around challenge areas.

7.1 Engagement and the Missing C Track

In the first year of the competition, 17 teams registered their interest and 10
teams submitted something. In the second year, 14 teams registered their interest
and 7 teams submitted something. This year, 8 teams registered their interest
and 5 submitted something.

Last year we identified the fact that entering the competition was a lot of work
so this year we reduced the number of benchmarks. However, as one participant
pointed out, this has drawbacks as there is more scope for over-fitting. The
notion of a benchmark repository (discussed below) could sidestep this issue.

34 G. Reger et al.

The main reason past participants gave for not re-entering was that they did
not foresee any new insights coming from entering. One participant said “We did
not expect any new insights about the performance of our tool, since no major
changes to our tool were made”. Another made a suggestion “I suggest to have
such a competition every second year. I am not sure if there are many changes
and improvements to too many tools within a year.”. This seems like a reasonable
suggestion and we discuss this idea further below.

Whilst most participants were positive about the relevance of the competition
the same participants expressed disappointment in the impact of the competition
so far. One reason for this is the lack of engagement: “even for the first compe-
tition, I was disappointed that only a few teams participated”. Another pointed
out that we have not taken full advantage of the process: “I was hoping for a
more sustainable report of the competition and its results.”. Lastly, due to logistic
issues, the results from last years competition were only announced on a website
some time after the announcement at the conference leading one participant to
comment “If winners are not announced, why participate?”, a reasonable point.

Finally, it is disappointing that the C track is missing this year due to lack
of participants. As mentioned earlier, we aimed to appeal to a wider range of
tools by introducing the notion of implicit specifications and we received positive
feedback on this from the one participant. However, it seems that the competition
still lacks appeal to such tools.

7.2 A Benchmark Repository

The intention of the first competition organisers was for benchmarks to be reused
from year to year. However, this has proved difficult for two main reasons. Firstly,
a lack of common specification language means much of the effort in dealing
with benchmarks involves translating properties from one specification language
to another, we discuss this more later. Secondly, without a common format for
capturing benchmarks it is not clear that we have captured enough information
to fully describe the benchmark. This is an issue we have attempted to address by
the addition of demonstration traces and clarification requests. But benchmarks
still contain ambiguities and unwritten assumptions.

If these issues can be overcome then the development of an independent
benchmark repository has clear benefits as resource for the community beyond
the competition. Indeed, this is a continued aim of the COST Action associated
with the competition.

This idea is supported by our feedback with one participant suggesting this
approach, adding that benchmarks could be slightly mutated for use in the com-
petition to avoid over-fitting. Another participant stated that “creating bench-
marks is the costly part of the competition” suggesting that the perceived need
to submit benchmarks is a barrier to entry. It was also pointed out that re-using
benchmarks can be used to analyse a tools evolution. Finally, one participant
expressed a wish for benchmarks to be released at the point the competition is
announced to make the amount of work required clear from the beginning. This
would require an independent benchmark repository.

Third International Competition on Runtime Verification CRV 2016 35

7.3 A Common Specification Language

It is clear that without a common specification language the competition will
continue to involve a lot of hard work. In the feedback, participants spoke of
days spent translating specifications by hand and one spoke of this as a reason
not to enter the competition again.

The main suggestion for a common specification language is first-order LTL.
We encouraged benchmarks in such a language this year but this was seen as too
much additional effort by participants. One issue is that there exist a number of
variants of first-order LTL in the community and it is not clear if one of these
should be used or a new language developed. Once a language has been selected
then each tool developer needs to consider how the selected language relates
to their specification language. Whilst there has been some work on relating
different specification languages for runtime verification [17] we see this as a
different hurdle for participants and it is not clear which is more significant.

7.4 Achieving Better Coverage

One criticism of the competition from two participants was the lack of coverage.
Currently a single trace is used for evaluation. There is therefore no guarantee
that the submitted monitor implements the property correctly beyond the single
known trace. The suggestion here is to have multiple traces or workloads per
benchmark with some being seen and others unseen. This allows the competition
to check the completeness of the submitted monitor as well as the efficiency of
the monitoring tool.

7.5 Beyond (or Ignoring) Performance

It has been suggested that holding the current version of the competition every
year is not useful. The suggestion is to hold different styles of competition in
years where the current style is not run. The question is then what such a
competition should look like. One comment that came from the feedback is
that a concentration on performance leads to a style of research that does not
necessarily lead to usable tools. Below we list some suggestions for alternative
focuses.

Different monitoring scenarios. One participant suggested a scenario where sev-
eral properties are checked for a single trace. Another suggestion would be to
detect multiple violations of a single safety property or explain violations.

Hardware. The previous point was about keeping the setting but changing the
problem. Another approach would be to consider a different setting. Whilst most
research on hardware monitoring is difficult to compare, setting a challenging
problem to be solved in plenty of time may lead to new research on solving an
interesting problem.

36 G. Reger et al.

Concurrency. Currently the issue of monitoring distributed or concurrent sys-
tems has not played a large part in the competition. An iteration of the compe-
tition focussing on this issue could encourage more focussed research.

Usability. It is often mentioned that usability of tools and specification languages
is a large barrier for uptake of formal methods tools. It is not immediately clear
how usability could be measured objectively. One suggestion would be to have
a showcase rather than a competition. One participant suggested the use of the
summer school to carry out such a study. This is an interesting idea although
complex logistically.

8 Concluding Remarks

This report described the Third Competition on Runtime Verification. The
organisation of the competition was reviewed along with the competing teams.
The results have been announced and some reflections on the structure and
organisation of the competition have been given.

Acknowledgment. Thanks to Klaus Havelund, Julien Signoles, Torben Scheffel,
Domenico Bianculli, Daniel Thoma and Felix Klaedtke for providing the feedback dis-
cussed in Sect. 7. The Laboratoire d’informatique formelle from Université du Québec
à Chicoutimi lent the server for hosting the wiki and running the benchmarks. This
article is based upon work from COST Action ARVI IC1402, supported by COST
(European Cooperation in Science and Technology).

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9

2. Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition
on software for runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.)
RV 2014. LNCS, vol. 8734, pp. 1–9. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11164-3 1

3. Bartocci, E., Bonakdarpour, B., Falcone, Y., Colombo, C., Decker, N., Klaedtke, F.,
Havelund, K., Joshi, Y., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D.,
Zalinescu, E., Zhang, Y.: First international competition on runtime verification.
Int. J. Softw. Tools Technol. Trans. (STTT) (submitted)

4. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03240-0 13

5. Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-time Java
programs (tool paper). In: Proceedings of the 2009 Seventh IEEE International
Conference on Software Engineering and Formal Methods, SEFM 2009, pp. 33–37,
2009. IEEE Computer Society, Washington (2009)

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-319-11164-3_1
http://dx.doi.org/10.1007/978-3-319-11164-3_1
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-03240-0_13

Third International Competition on Runtime Verification CRV 2016 37

6. Decker, N., Harder, J., Scheffel, T., Schmitz, M., Thoma, D.: Runtime moni-
toring with union-find structures. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 868–884. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 54

7. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for sta-
tic, dynamic analysis of cprograms. In: Proceedings of SAC 2013: The 28th Annual
ACM Symposium on Applied Computing, pp. 1230–1235. ACM (2013)

8. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtimeverification. In: Broy,
M., Peled, D. (eds.) SummerSchool Marktoberdorf 2012 - Engineering Dependable
Software Systems. IOS Press (2013) (to appear)

9. Falcone, Y., Ničković, D., Reger, G., Thoma, D.: Second international competition
on runtime verification. In: Bartocci, E., Majumdar, R. (eds.) Runtime Verification.
LNCS, vol. 9333, pp. 405–422. Springer, Cham (2015)

10. Hallé, S.: When RV meets CEP. In: Falcone, Y., Sanchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 68–91. Springer, Heidelberg (2016)

11. Havelund, K., Reger, G.: Specification of parametric monitors. In: Drechsler, R.,
Kühne, U. (eds.) Formal Modeling, Verification of Cyber-Physical Systems, pp.
151–189. Springer, Heidelberg (2015)

12. Havelund, K., Reger, G.: What is a trace? a run time verification perspective.
In: 7th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2016) (accepted)

13. Leucker, M., Schallhart, C.: A brief account of run time verification. J. Logic
Algebr. Programm. 78(5), 293–303 (2008)

14. Piel, A.: Reconnaissance de comportements complexes partraitement en ligne de
flux d’événements. (Online event flowprocessing for complex behaviour recogni-
tion). Ph.D. thesis, Paris 13 University, Villetaneuse, Saint-Denis, Bobigny, France
(2014)

15. Reger, G.: Automata based monitoring and mining of execution traces. Ph.D.
thesis, University of Manchester (2014)

16. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 55

17. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace
slicing. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 216–
232. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23820-3 14

18. Varvaressos, S., Lavoie, K., Massé, A.B., Gaboury, S.,Hallé, S.: Automated bug
finding in video games: a case study for runtime monitoring. In: Proceedings of
the 2014 IEEE International Conference on Software Testing, Verification, and
Validation, ICST 2014, pp. 143–152. IEEE Computer Society, Washington (2014)

http://dx.doi.org/10.1007/978-3-662-49674-9_54
http://dx.doi.org/10.1007/978-3-662-49674-9_54
http://dx.doi.org/10.1007/978-3-662-46681-0_55
http://dx.doi.org/10.1007/978-3-319-23820-3_14

Tutorial Papers

Runtime Verification for HyperLTL

Borzoo Bonakdarpour1(B) and Bernd Finkbeiner2

1 McMaster University, Hamilton, Canada
borzoo@mcmaster.ca

2 Saarland University, Saarbrücken, Germany
finkbeiner@cs.uni-saarland.de

Abstract. Information flow security often involves reasoning about mul-
tiple execution traces. This subtlety stems from the fact that an intruder
may gain knowledge about the system through observing and comparing
several executions. The monitoring of such properties of sets of traces,
also known as hyperproperties, is a challenge for runtime verification,
because most monitoring techniques are limited to the analysis of a
single trace. In this tutorial, we discuss this challenge with respect to
HyperLTL, a temporal logic for the specification of hyperproperties.

1 Security Policies and Hyperproperties

Runtime verification (RV) is traditionally concerned with the monitoring of trace
properties such as those expressed in linear-time temporal logic (LTL). Observing
a growing prefix of a trace, we determine if the trace belongs to the set of traces
that is characterized as correct by the specification.

Information flow security policies usually do not fit this pattern, because
they express a relation between multiple traces. Noninterference, for example,
requires that two traces that may differ in their high-security inputs, but have
the same low-security inputs, must have the same low-security outputs. Such
properties are therefore not properties of individual traces, but properties of
sets of traces, also known as hyperproperties. This is not a matter of linear vs.
branching time, as noninterference cannot even be expressed in branching-time
temporal logics, such as CTL, CTL∗ or the modal μ-calculus [2,11]; the challenge,
rather, is that information flow properties can be considered as properties on a
system that results from the parallel composition of multiple copies of the original
system [4,18].

Clarkson and Schneider proposed the notion of hyperproperties to account
for properties that relate multiple executions of a system [7]. They showed that
the class of hyperproperties comprises many of the properties proposed in the
literature. A hyperproperty H is defined as a set of sets of executions traces,
and a system is defined to satisfy H, if its set of execution traces is an element
of H. Noninterference between an input h and an output o is, for example, the
hyperproperty consisting of all sets of traces, in which all traces that only differ
in h have the same output o at all times.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 41–45, 2016.
DOI: 10.1007/978-3-319-46982-9 4

42 B. Bonakdarpour and B. Finkbeiner

2 HyperLTL

Since hyperproperties cannot be expressed in the classic temporal logics like LTL
or CTL∗, several extensions of the temporal logics have been proposed. Balliu
et al. encoded several standard information flow policies in epistemic tempo-
ral logics [3], which allows us to specify properties in terms of the knowledge
of agents. Another temporal logic that is sufficiently expressive to encode cer-
tain information flow policies is SecLTL, which specifies how information flow
requirements change over time and in response to events in the system [8]. We
focus here on the temporal logic HyperLTL [6,12], which adds explicit and simul-
taneous quantification over multiple traces to LTL. Compared to previous log-
ical frameworks, HyperLTL significantly extends the range of security policies
under consideration, including complex information-flow properties like general-
ized noninterference, declassification, and quantitative noninterference.

Let AP be a set of atomic propositions, and let V be a set of trace variables.
The syntax of HyperLTL is given by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕUϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. Note that
atomic propositions are indexed by trace variables. The quantification over traces
makes it possible to express properties like “on all traces ψ must hold”, which
is expressed by ∀π. ψ. Dually, one can express that “there exists a trace such
that ψ holds”, which is denoted by ∃π. ψ. We use the usual derived Boolean
connectives. The derived temporal operators , , and W are defined as for
LTL: ϕ ≡ trueUϕ, ϕ ≡ ¬ ¬ϕ, and ϕ1 Wϕ2 ≡ (ϕ1Uϕ2) ∨ ϕ1. We call
a HyperLTL formula ψ (quantifier) alternation-free iff the quantifier prefix only
consists of either only universal or only existential quantifiers.

It has been shown that many hyperproperties of interest can be expressed
in HyperLTL [6,12,16]. For many properties, it in fact suffices to use the
alternation-free fragment of HyperLTL. The following are two typical examples:

– Observational determinism [19] requires that every pair of traces with the
same initial low observation remain indistinguishable for low users. That is,
the program appears to be deterministic to low-security users. Observational
determinism can be expressed in HyperLTL as follows:

∀π.∀π′. (lowInπ ⇔ lowInπ′) ⇒ (lowOutπ ⇔ lowOutπ′),

where lowIn and LowOut are atomic propositions representing the low-security
inputs and outputs, respectively.

– Shamir’s secret sharing scheme [17] is the following policy: A system stores a
secret by splitting it into k shares. The requirement is that not all of the k
shares are revealed:

∀π1∀πk. ((¬sr1π1
∧ · · · ∧ ¬sr1πk

) ∨ . . . ∨ (¬srk
π1

∧ · · · ∧ ¬srk
πk

)),

Runtime Verification for HyperLTL 43

where the atomic proposition sr i, i ∈ [1, k], means that share i of the secret
has been revealed.

The satisfiability problem of HyperLTL formulas is in general undecidable,
but decidable for the fragment without quantifier alternations and for the ∃∗∀∗-
fragment. Since, in practice, many HyperLTL specifications only contain uni-
versal quantifiers, this means that the satisfiability, implication, and equivalence
of such specifications can be checked automatically [10]. The model checking
problem of HyperLTL formulas over finite-state Kripke structures is decidable
for the full logic, and has, in fact, the same complexity (PSPACE-complete) as
standard LTL model checking for the alternation-free fragment. MCHyper is an
efficient tool implementation for hardware model checking against alternation-
free HyperLTL formulas [12]. Beyond finite-state systems, it was recently shown
that a first-order extension of HyperLTL can be checked automatically over
workflows with arbitrarily many agents [13].

3 Runtime Verification for HyperLTL

For runtime verification, it is necessary to define finite-trace semantics for Hyper-
LTL. Analogously to the three-valued semantics of LTL [5], such a finite-trace
semantics for HyperLTL can be defined based on the truth values B3 = {
,⊥, ?}.
In this semantics, “?” means that for the given formula ϕ and the current set
M of finite execution traces at run time, it is not possible to tell whether M
satisfies or violates ϕ; i.e., both cases are possible in this or future extensions
and/or executions.

Let M be a finite set of finite traces. The truth value of a closed HyperLTL
formula ϕ with respect to M , denoted by [M |= ϕ], is an element of the set
B3 = {
,⊥, ?}, and is defined as follows:

[M |= ϕ] =

⎧
⎪⎨

⎪⎩

� if ∀ sets T of infinite traces with M ≤ T, T satisfies ϕ

⊥ if ∀ sets T of infinite traces with M ≤ T, T does not satisfy ϕ

? otherwise,

where ≤ is a prefix relation on sets of traces defined as follows. Let u be a finite
trace and v be a finite or infinite trace. We denote the concatenation of u and v
by σ = uv. Also, u ≤ σ denotes the fact that u is a prefix of σ. If U is a set of
finite traces and V is a finite or infinite set of traces, then U ≤ V is defined as
U ≤ V ≡ ∀u ∈ U. (∃v ∈ V. u ≤ v). Note that V may contain traces that have
no prefix in U .

Pnueli and Zaks [15] characterize an Ltl formula ϕ as monitorable for a finite
trace u, if u can be extended to one that can be evaluated with respect to ϕ at
run time. For example, the Ltl formula p is not monitorable, since there is
no way to tell at run time whether or not p will be visited infinitely often in the
future. By contrast, safety (e.g., p) and co-safety (e.g., p) LTL formulas are
monitorable. We can extend the concept of LTL-monitorability to HyperLTL

44 B. Bonakdarpour and B. Finkbeiner

by requiring that every finite set U of finite traces can be extended to a finite
set V of finite traces such that every trace in U is the prefix of some trace in
V and that V evaluates to
 or ⊥. It is easy to see that an alternation-free
HyperLTL formula with monitorable inner LTL subformula is also monitorable.
For example, observational determinism and Shamir’s secret sharing scheme are
both monitorable. Note, however, that only violations of such formulas can be
detected at run time (detecting their satisfaction requires examining all traces
of the system under inspection, which is a model checking problem).

A monitor for a HyperLTL formula must match the observed traces with the
quantifiers of the HyperLTL formula and ensure that the inner LTL subformula is
satisfied on the combined trace. For alternation-free HyperLTL formulas, this can
be done by creating a monitor automaton for the LTL subformulas that are inter-
trace independent, then progressing inter-trace dependent subformulas for each
observed trace, and finally building a monitor automaton for each progressed
formula [1]. This approach has proven successful on complex data sets, such as
the GPS location data of 21 users taken over a period of eight weeks in the region
of Seattle, USA. However, there is clear potential for further optimization, for
example, by analyzing the observed execution trace in relation to an abstract
model of the system at run time (cf. [9]). Another important line of work is the
extension of the approach to a distributed monitoring framework (cf. [14]).

Acknowledgment. This work was partially supported by the German Research Foun-
dation (DFG) in the Collaborative Research Center 1223 and by Canada NSERC Dis-
covery Grant 418396-2012 and NSERC Strategic Grants 430575-2012 and 463324-2014.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in hyperltl. In: Proceedings of the 29th IEEE Computer Security Foundations
Symposium (CSF) (2016, to appear)

2. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 107–118. Springer, Heidelberg (2006). doi:10.1007/11787006 10

3. Balliu, M., Dam, M., Guernic, G.L.: Epistemic temporal logic for information flow
security. In: Proceedings of the 2011 Workshop on Programming Languages and
Analysis for Security, PLAS 2011, San Jose, CA, p. 6, June 2011

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: CSFW, pp. 100–114 (2004)

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

6. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54792-8 15

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6),
1157–1210 (2010)

http://dx.doi.org/10.1007/11787006_10
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15

Runtime Verification for HyperLTL 45

8. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27940-9 12

9. Dimitrova, R., Finkbeiner, B., Rabe, M.N.: Monitoring temporal information flow.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 342–357.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34026-0 26

10. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of the CON-
CUR 2016 (2016)

11. Finkbeiner, B., Rabe, M.N.: The linear-hyper-branching spectrum of temporal log-
ics. IT Inform. Technol. 56(6), 273–279 (2014)

12. Finkbeiner, B., Rabe, M.N., Sanchez, C.: Algorithms for model checking HyperLTL
and HyperCTL*. In: Proceedings CAV 2015 (2015)

13. Finkbeiner, B., Seidl, H., Müller, C.: Specifying and verifying secrecy in workflows
with arbitrarily many agents. In: Proceedings of the ATVA 2016 (2016)

14. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 494–503 (2015)

15. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). doi:10.1007/11813040 38

16. Rabe, M.N.: A Temporal Logic Approach to Information-flow Control. Ph.D. the-
sis, Saarland University (2016)

17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
18. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,

C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). doi:10.1007/11547662 24

19. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent pro-
gram security. In: Proceedings IEEE Computer Security Foundations Workshop,
pp. 29–43, June 2003

http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-27940-9_12
http://dx.doi.org/10.1007/978-3-642-34026-0_26
http://dx.doi.org/10.1007/11813040_38
http://dx.doi.org/10.1007/11547662_24

Runtime Verification at Work: A Tutorial

Philip Daian, Dwight Guth, Chris Hathhorn(B), Yilong Li, Edgar Pek,
Manasvi Saxena, Traian Florin Şerbănuţă, and Grigore Roşu

Runtime Verification Inc., University of Illinois at Urbana-Champaign,
Champaign, USA

chris.hathhorn@runtimeverification.com

Abstract. We present a suite of runtime verification tools developed by
Runtime Verification Inc.: RV-Match, RV-Predict, and RV-Monitor.
RV-Match is a tool for checking C programs for undefined behavior
and other common programmer mistakes. It is extracted from the most
complete formal semantics of the C11 language and beats many similar
tools in its ability to catch a broad range of undesirable behaviors. RV-
Predict is a dynamic data race detector for Java and C/C++ programs.
It is perhaps the only tool that is both sound and maximal: it only reports
real races and it can find all races that can be found by any other sound
data race detector analyzing the same execution trace. RV-Monitor is
a runtime monitoring tool that checks and enforces safety and security
properties during program execution. Our tools focus on reporting no
false positives and are free for non-commercial use.

1 Introduction

Runtime verification is an analysis and execution approach based on extracting
information from a running system and using it to detect, and possibly react to,
observed behaviors satisfying or violating certain properties. In this session, we
present the practical applications of runtime verification technology that we are
currently exploring.

Runtime verification avoids the complexity of traditional formal verification
techniques (like model checking and theorem proving) by analyzing only one or a
few execution traces and working directly with the actual system. Thus, runtime
verification scales up relatively well and gives more confidence in the results
of the analysis because it avoids the tedious and error-prone step of formally
modeling the system (at the expense of reduced coverage). Moreover, through
its reflective capabilities, runtime verification can be made an integral part of
the target system, monitoring and guiding its execution during deployment.

We present three instantiations of the runtime verification approach: (1) RV-
Match, a dynamic analysis tool for finding a wide range of flaws in C programs,
(2) RV-Predict, a dynamic data race detector for Java and C, and (3) RV-
Monitor, a runtime monitoring framework for checking and enforcing properties
of Java and C programs.1

1 See https://runtimeverification.com/ for an overview of our tools and company.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 46–67, 2016.
DOI: 10.1007/978-3-319-46982-9 5

https://runtimeverification.com/

Runtime Verification at Work: A Tutorial 47

2 RV-MATCH

RV-Match is a tool for checking C programs for undefined behavior and other
common programmer mistakes. It is extracted from the most complete formal
semantics of the C11 language. Previous versions of this tool were used primarily
for testing the correctness of the semantics, but we have improved it into a tool
for doing practical analysis of real C programs. It beats many similar tools in
its ability to catch a broad range of undesirable behaviors. We demonstrate this
below with comparisons based on a third-party benchmark.

2.1 Background: RV-MATCH

The K semantic framework2 is a program analysis environment based on term
rewriting [1]. Users define the formal semantics of a target programming lan-
guage and the K framework provides a series of formal analysis tools specialized
for that language, such as a symbolic execution engine, a semantic debugger, a
systematic checker for undesired behaviors (model checker), and even a fully-
fledged deductive program verifier. Our tool, RV-Match, is based on the K

framework instantiated with the publicly-available C11 semantics3 [8,9], a rig-
orous formalization of the current ISO C11 standard [15]. We have specially
optimized RV-Match for the execution and detection of errors in C programs.

Unlike modern optimizing compilers, which have a goal to produce binaries
that are as small and as fast as possible at the expense of compiling programs
that may be semantically incorrect, RV-Match instead aims at mathemati-
cally rigorous dynamic checking of programs for strict conformance with the
ISO C11 standard. A strictly-conforming program is one that does not rely on
implementation-specific behaviors and is free of the most notorious feature of the
C language, undefined behavior. Undefined behaviors are semantic holes left by
the standard for implementations to fill in. They are the source of many subtle
bugs and security issues [13].

2.2 Running RV-MATCH

Users interface with RV-Match through the rv-match executable, which
behaves as a drop-in replacement for compilers like gcc and clang. Consider
a file undef.c with contents:

�

�

�

�

int main(void) {
int a;

&a+2;

}

We compile the program with rv-match just as we would with gcc or clang.
This produces an executable named a.out by default, which should behave just
2 See http://kframework.org for details.
3 Available at https://github.com/kframework/c-semantics.

http://kframework.org
https://github.com/kframework/c-semantics

48 P. Daian et al.

as an executable produced by another compiler—for strictly-conforming, valid
programs. For undefined or invalid programs, however, rv-match reports errors
and exits if it cannot recover:

�

�

�

�

$ rv-match undef.c

$./a.out

Error: UB-CEA1

Description: A pointer (or array subscript) outside the

bounds of an object.

Type: Undefined behavior.

See also: C11 sec. 6.5.6:8, J.2:1 item 46

at main(undef.c:2)

In addition to location information and a stack trace, RV-Match also cites
relevant sections of the standard [15].

2.3 Finding Undefined Behavior in C Using RV-MATCH

Below, we describe several examples demonstrating RV-Match’s capabilities
for detecting undefined behavior. Note that these examples cover only a small
subset of the errors which RV-Match detects.

Unsequenced side effects. Consider a simple program:
�

�

�

�

int main(void) {
int x = 0;

return (x = 1) + (x = 2);

}

Compiled with clang, this program returns 3. With gcc, however, it returns 4,
because gcc chooses to sequence both assignments before the addition expres-
sion. In general, compilers are allowed to introduce optimizations as long as
they do not affect the behavior of well-defined programs. However, since this
program is undefined, such optimizations can have unexpected consequences.
When compiled with rv-match, we get the following output after running the
program:

�

�

�

�

Error: UB-EIO8

Description: Unsequenced side effect on scalar object

with side effect of same object.

Type: Undefined behavior.

See also: C11 sec. 6.5:2, J.2:1 item 35

at main(1-unsequenced-side-effect.c:3)

Buffer Overflows. Perhaps the most notorious errors in C programs are buffer
overflows. RV-Match is capable of detecting all varieties of buffer overflows.4

4 See 2-buffer-overflow.c from the examples/demo directory of the c-semantics

repository at https://github.com/kframework/c-semantics for examples of several
varieties.

https://github.com/kframework/c-semantics

Runtime Verification at Work: A Tutorial 49

As a more subtle example, consider an overflow within the subobjects of an
aggregate type (in this case, a struct of an array followed by an integer):

�

�

�

�

struct foo { char buffer[32]; int secret; };
int idx = 0;

void setIdx() { idx = 32; }
int main(void) {

setIdx();

struct foo x = {0};
x.secret = 5;

return x.buffer[idx];

}

We can safely assume the struct is laid out sequentially in memory, yet access
to the 32nd index of this array is still undefined behavior. Tools like valgrind
usually do not catch this sort of issue because the accesses will be to valid
addresses for other pieces of the aggregate. But it is still undefined behavior.
gcc compiles the program and execution leads to a leak of the secret integer.
RV-Match, however, will detect the flaw:

�

�

�

�

Error: UB-CER4

Description: Dereferencing a pointer past the end of an

array.

Type: Undefined behavior.

See also: C11 sec. 6.5.6:8, J.2:1 item 47

at main(3-array-in-struct.c:16)

RV-Match reports more than 150 varieties of error, like UB-CER4 above,
most of which concern undefined behavior.5

Implementation-Defined Behavior. RV-Match is also able to detect errors
related to implementation-defined behavior, which the C standard defines as
unspecified behavior where each implementation documents how the choice is
made. rv-match can be instantiated with different profiles corresponding to dif-
ferent implementation choices (use rv-match -v for existing choices). An exam-
ple of implementation-defined behavior is the conversion to a type that cannot
store a specified value, thus triggering a loss of precision.

More examples of undefined behavior and the features of RV-Match are
described in the “Running Examples” section of the RV-Match documenta-
tion [11].

2.4 Evaluation

Of course, there is no shortage of tools for analyzing C programs. To evaluate the
strengths of our tool, we compare RV-Match against some popular C analyzers

5 For a list of the errors and example programs demonstrating them, see https://
github.com/kframework/c-semantics/blob/master/examples/error-codes.

https://github.com/kframework/c-semantics/blob/master/examples/error-codes
https://github.com/kframework/c-semantics/blob/master/examples/error-codes

50 P. Daian et al.

on a benchmark from Toyota ITC. We also briefly mention our experience with
running our tool on the SV-COMP benchmark. The other tools we consider are
listed below:

– GrammaTech CodeSonar is a static analysis tool for identifying “bugs that can
result in system crashes, unexpected behavior, and security breaches” [10].

– MathWorks Polyspace Bug Finder is a static analyzer for identifying “runtime
errors, concurrency issues, security vulnerabilities, and other defects in C and
C++ embedded software” [22].

– MathWorks Polyspace Code Prover is a tool based on abstract interpreta-
tion that “proves the absence of overflow, divide-by-zero, out-of-bounds array
access, and certain other runtime errors in C and C++ source code” [23].

– Clang UBSan, TSan, MSan, and ASan (version 3.7.1) are all clang modules
for instrumenting compiled binaries with various mechanisms for detecting
undefined behavior, data races, uninitialized reads, and various memory issues,
respectively [6].

– Valgrind Memcheck and Helgrind (version 3.10.1, GCC version 4.8.4) are
tools for instrumenting binaries for the detection of several memory and
thread-related issues (illegal reads/writes, use of uninitialized or unaddressable
values, deadlocks, data races, etc.) [24].

– The CompCert C interpreter (version 2.6) uses an approach similar to our
own. It executes programs according to the semantics used by the CompCert
compiler [4] and reports undefined behavior.

– Frama-C Value Analysis (version sodium-20150201), like Code Prover, is a
tool based on static analysis and abstract interpretation for catching several
forms of undefinedness [5].

The Toyota ITC Benchmark [25]. This publicly-available6 benchmark consists of
1,276 tests, half with planted defects meant to evaluate the defect rate capability
of analysis tools and the other half without defects meant to evaluate the false
positive rate. The tests are grouped in nine categories: static memory, dynamic
memory, stack-related, numerical, resource management, pointer-related, con-
currency, inappropriate code, and miscellaneous.

We evaluated RV-Match along with the tools mentioned above on this
benchmark. Our results appear in Fig. 1 and the tools we used for our evaluation
are available online.7 Following the method of Shiraishi, Mohan, and Marimuthu
[25], we report the value of three metrics: DR is the detection rate, the percent-
age of tests containing errors where the error was detected; FPR = 100 − FPR,
where FPR is the false positive rate; and PM is a productivity metric, where
PM =

√
DR × FPR, the geometric mean of DR and FPR.

Interestingly, and similar to our experience with the SV-COMP benchmark
mentioned below, the use of RV-Match on the Toyota ITC benchmark detected
a number of flaws in the benchmark itself, both in the form of undefined behavior
6 See https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark.
7 For tools and instructions on reproducing these results, see https://github.com/

runtimeverification/evaluation/tree/master/toyota-itc-benchmark.

https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark
https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark
https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark

Runtime Verification at Work: A Tutorial 51

that was not intended, and in the form of tests that were intended to contain
a defect but were actually correct. Our fixes for these issues were accepted by
the Toyota ITC authors and we used the fixed version of the benchmark in
our experiments. Unfortunately, we do not have access to the MathWorks and
GrammaTech static analysis tools, so in Fig. 1 we have reproduced the results
reported in [25]. Thus, it is possible that the metrics scored for the other tools
may be off by some amount.

The SV-COMP Benchmark Suite. This consist of a large number of C programs
used as verification tasks during the International Competition on Software Ver-
ification (SV-COMP) [3]. We analyzed 1346 programs classified as correct with
RV-Match and observed that 188 (14 %) of the programs exhibited undefined
behavior. Issues ranged from using uninitialized values in expressions, potentially
invalid conversions, incompatible declarations, to more subtle strict aliasing vio-
lations. Our detailed results are available online.8

3 RV-PREDICT

RV-Predict is a dynamic data race detector for Java and C/C++ programs.
RV-Predict is perhaps the only tool that is both sound and maximal: it only
reports real races and it can find all races that can be found by any other sound
data race detector analyzing the same execution trace. We have evaluated our
tool on a set of real Java programs and we have been able to find a large number
of previously unknown data race violations. We report a case study on testing
Tomcat, a widely used Java application server, using RV-Predict. Moreover,
we have obtained encouraging results after evaluating RV-Predict on a smaller
class of C programs. The more mature Java version can perform both online (i.e.,
data races detection as the program runs) and offline (i.e. data race detection
after the program is run and traces are collected) analysis. The C/C++ version
is a prototype and can only perform offline data race detection.

3.1 Background: RV-PREDICT

RV-Predict is based on an important theoretical result by Şerbănuţă, Chen,
and Roşu [2]: given an execution trace, it is possible to build a maximal and
sound causal model for concurrent computations. This model has the property
that it consists of all traces that any program capable of generating the original
trace can also generate.

Moreover, based on the results of Huang, Meredith, and Roşu [14], RV-
Predict implements a technique that provides a provably higher detection
capability than the state-of-the-art techniques. A crucial insight behind this
technique is the inclusion of abstracted control flow information in the execu-
tion model, which expands the space of the causal model provided by classical
8 Detailed SV-COMP benchmark results are available at https://github.com/

runtimeverification/evaluation/tree/master/svcomp-benchmark.

https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark
https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark

52 P. Daian et al.

Fig. 1. Comparison of tools on the 1,276 tests of the ITC benchmark. The numbers for
the GrammaTech and MathWorks tools come from Shiraishi, Mohan, and Marimuthu
[25]. Blue indicates the best score in a category for a particular metric, while orange
emphasizes the weighted average of the productivity metric for each tool. DR, FPR,
and PM are, respectively, the detection rate, 100 − FPR (the complement of the false
positive rate), and the productivity metric. The final average is weighted by the number
of tests in each category. Italics and a dash indicate categories for which a tool has no
support. (Color figure online)

happens-before or causally-precedes race detection techniques. We encode the
control flow and a minimal set of feasibility constraints in first-order logic, thus
reducing the race detection problem to a constraint satisfaction problem, which
can be efficiently solved by SMT solvers.

Runtime Verification at Work: A Tutorial 53

3.2 Running RV-PREDICT

The Java Version. RV-Predict can be run both from the command line, as a
drop-in replacement for the java command, and as an agent, to ease integration
with IDEs and build management tools like Maven. For more details, please refer
to the “Running RV-Predict” section of the documentation [19].

The C/C++ Version. Running RV-Predict for C/C++ involves two steps. In
the first step, we create an instrumented version of the multithreaded C/C++
program. In the second step, RV-Predict’s backend performs offline data race
predictive analysis based on the principles described in the background section.
Concretely, given a C program file.c, the two steps are shown below:

�

�

�

�

$ rv-predict-c-compile file.c

$ rv-predict-execute ./a.out

3.3 Detecting Common Data-Race Patterns Using RV-PREDICT

Data races are common concurrency bugs in multithreaded programs. A data
race can be defined as two threads accessing a shared memory location con-
currently and at least one of the accesses is a write. Data races are notoriously
difficult to find and reproduce because they often happen under very specific cir-
cumstances. They usually manifest as intermittent or non-deterministic failures
during testing. And when failures do occur, they typically produce mysterious
error messages, far from the root cause of the data race.

Despite all of the work on solving this problem, it remains a challenge in prac-
tice to detect data races effectively and efficiently. In this section, we summarize
common classes of data races and show how to detect them with RV-Predict.
The examples described below can be found in the RV-Predict distribution.

A Simple Data Race. The simplest data race is also the most frequent in prac-
tice: two threads access a shared variable without synchronization. In Java, a
shared variable is either a field (instance or static) or an array element. See JLS
Sect. 17.4.1 for the precise definition. For example:

�

�

�

�

public class SimpleRace {
static int sharedVar;

public static void main(String[] args) {
new ThreadRunner() {

@Override public void thread1() {sharedVar++;}
@Override public void thread2() {sharedVar++;}

};
}

}

54 P. Daian et al.

The access to sharedVar is not synchronized. Note that the ThreadRunner class
(see the simple race description on our blog [18]) is a utility class containing
boilerplate code that instantiates two threads with the defined tasks (it will be
used throughout this section to simplify descriptions).

RV-Predict detects this race and the report it generates is below. For read-
ability, the code above only shows the core of the problem, and so the lines in
the report do not match line numbers in the code above.
�

�

�

�

Data race on field examples.SimpleRace.sharedVar: {{{
Concurrent write in thread T10 (locks held: {})

----> at examples.SimpleRace$1.thread1(SimpleRace.java:11)

at examples.ThreadRunner$1.run(ThreadRunner.java:17)

T10 is created by T1

at examples.ThreadRunner.<init>(ThreadRunner.java:26)

Concurrent read in thread T11 (locks held: {})
----> at examples.SimpleRace$1.thread2(SimpleRace.java:16)

at examples.ThreadRunner$2.run(ThreadRunner.java:23)

T11 is created by T1

at examples.ThreadRunner.<init>(ThreadRunner.java:27)

}}}

Although this particular data race might be easy to spot through code review,
similar instances buried deep in thousands of lines of code can be very hard to
discover. As shown above, RV-Predict can make detection of such bugs simple
because it provides the precise location where conflicting memory accesses occur,
the stack traces of the two threads involved in the race, the point of thread
creation, and the locks held by each thread.

Even while developing RV-Predict, we were able to find a variation of this
bug in our own RV-Match code base. Specifically, there was an intermittently
occurring null pointer exception in the parser implementation. A (still) standard
approach for debugging such issues relies on reproducing the bug and attempting
to track the behavior backward to the root of the issue. Such an approach can
be tedious and time consuming—RV-Predict, by contrast, finds these issues
with minimal effort (for the story on our experience of using RV-Predict to
debug RV-Match, see our blog [12]).

Using a Non-thread-Safe Class Without Synchronization. This class of bugs
occurs if a developer assumes that the class being used is thread-safe. In fact
many classes are not designed to be used in a multithreaded environment, e.g.,
java.util.ArrayList, java.util.HashMap, and many other classes in the Java
Collections Framework, so unwarranted thread-safety assumptions can easily
creep into the code. Consider this example:

Runtime Verification at Work: A Tutorial 55

�

�

�

�

import java.util.ArrayList;

import java.util.List;

public class RaceOnArrayList {
static List<Integer> list = new ArrayList<>();

public static void main(String[] args) {
new ThreadRunner() {

LX: @Override public void thread1() {list.add(0);}
LY: @Override public void thread2() {list.add(1);}

};
}

}

Both threads are trying to add an element to the ArrayList. However, since
the underlying data structure is not thread-safe, and the client code does not
perform synchronization, there exists a data race.

Simply running this example will occasionally trigger an exception, indicating
that something went wrong, but there is no guarantee this bug will appear during
testing. Below is the shortened output from RV-Predict (exact values of line
numbers are replaced with symbolic values LX and LY):
�

�

�

�

Data race on field java.util.ArrayList.$state: {{{
Concurrent read in thread T10 (locks held: {})

----> at examples.RaceOnArrayList$1.thread1(RaceOnArrayList.java:LX)

...

Concurrent write in thread T11 (locks held: {})
----> at examples.RaceOnArrayList$1.thread2(RaceOnArrayList.java:LY)

...

}}}

Notice that RV-Predict reports the race on the symbolic field $state, rather
than the field inside the class ArrayList where the race actually occurs. This
is by design: RV-Predict’s error messages abstract away from the low-level
implementation details of the Java class library to make identifying the root
cause of a data race easier.

A more complex example violates rule LCK04-J from the CERT Oracle Cod-
ing Standard for Java: “Do not synchronize on a collection view if the backing
collection is accessible.” The CERT standard continues:

Any class that uses a collection view rather than the backing collection as
the lock object may end up with two distinct locking strategies. When the
backing collection is accessible to multiple threads, the class that locked
on the collection view has violated the thread-safety properties and is
unsafe. Consequently, programs that both require synchronization while
iterating over collection views and have accessible backing collections must
synchronize on the backing collection; synchronization on the view is a
violation of this rule [20].

56 P. Daian et al.

In the example below, map is an already synchronized map backed by a
HashMap. When the first thread inserts a key-value pair into the map, the sec-
ond thread acquires the monitor of keySet and iterates over the key set of the
map. This is a direct violation of LCK04-J: thread 2 incorrectly synchronizes on
keySet instead of map.

�

�

�

�

public class RaceOnSynchronizedMap {
static Map<Integer, Integer> map =

Collections.synchronizedMap(new HashMap<>());

public static void main(String[] args) {
new ThreadRunner() {

LX: @Override public void thread1() {
map.put(1, 1);

}
@Override public void thread2() {

Set<Integer> keySet = map.keySet();

LY: synchronized (keySet) {
LY’: for (int k : keySet)

System.out.println("key =" + k);

}
}

};
}

}

Thankfully, RV-Predict reports the race condition and reveals the underlying
reason—two threads are holding different monitors:
�

�

�

�

Data race on field java.util.HashMap. $state: {{{
Concurrent write in thread T10 (locks held: {Monitor@722c41f4})

----> at examples.RaceOnSynchronizedMap$1.thread1(

RaceOnSynchronizedMap.java:LX)

- locked Monitor@722c41f4 at

examples.RaceOnSynchronizedMap$1.thread1

(RaceOnSynchronizedMap.java:LX)

...

Concurrent read in thread T11 (locks held: {Monitor@1f72ae1d})
----> at examples.RaceOnSynchronizedMap$1.thread2(

RaceOnSynchronizedMap.java:LY’)

- locked Monitor@1f72ae1d at

examples.RaceOnSynchronizedMap$1.thread2

(RaceOnSynchronizedMap.java:LY)

...

}}}

Runtime Verification at Work: A Tutorial 57

Broken Spinning Loop. Often, we want to synchronize multiple threads based
on some condition. We might achieve this by using a while loop to block until
the condition becomes satisfied. For example:

�

�

�

�

public class BrokenSpinningLoop {
static int sharedVar;

static boolean condition = false;

public static void main(String[] args) {
new ThreadRunner() {

@Override public void thread1() {
sharedVar = 1;

condition = true;

}
@Override public void thread2() {

while (!condition) Thread.yield();

if (sharedVar != 1)

throw new RuntimeException(

"How is this possible!?");

}
};

}
}

How can this program ever throw the RuntimeException? The data race on
condition might be obvious, but it appears to be innocuous. The exception
should be impossible regardless of how accesses to condition are ordered.

Nonetheless, the exception can, in fact, be raised, because thread 2, after
passing the while loop, might still read 0 instead of 1 from sharedVar. This
can be due to several reasons, such as reordering and caching. In fact, the Java
memory model allows such counter-intuitive behavior to happen when the pro-
gram contains any data races at all. In one instance, this type of bug directly
caused a loss of $12 million worth of lab equipment [26].

More examples of data race patterns that RV-Predict detects can be found
on our website [18].

3.4 The RV-PREDICT Backend: Prediction Power vs. Efficiency

By default, RV-Predict attempts to strike a good balance between efficiency
and prediction power. Nevertheless, while the default settings were engineered
to work for most common cases, there might be cases where user input could
improve the prediction process. We provide several options for advanced users
to tune RV-Predict:

1. Window size. For efficiency reasons, RV-Predict splits the execution trace
into segments (called windows) of a specified size. The default window size is
1000. Users can alter this size using the --window option, with the intuition
that a larger size provides better coverage at the expense of increasing the
analysis time.

58 P. Daian et al.

2. Excluding packages. To allow better control over the efficiency, RV-Predict
provides the option --exclude to remove certain packages from logging. This
option takes a list of package pattern prefixes separated by commas and
excludes from logging any class matched by one of the patterns. The patterns
can use * to match any sequence of characters. Moreover, * is automatically
assumed at the end of each pattern (to make sure inner classes are excluded
together with their parent). Note that excluding packages might affect preci-
sion, as events from non-logged packages might prevent certain race conditions
from occurring.

3. Including packages. For more flexibility in selecting which packages to include
and exclude, RV-Predict also provides the --include option, which is sim-
ilar to the --exclude option (it accepts a comma separated list of package
patterns), but opposite in effect.

3.5 Running RV-PREDICT on Tomcat

When developers are dealing with a large project using multiple kinds of synchro-
nization mechanisms, debugging becomes much more difficult and often requires
a thorough understanding of the system. But RV-Predict can help with this
task regardless of the code size of the project. As an example, we have run
RV-Predict on Tomcat, one of the most widely used Java application servers.

Integrating RV-Predict into Tomcat’s build cycle is straightforward. It
essentially boils down to assuring that the RV-Predict agent is run with the
unit tests. The only required change is in build.xml:

<jvmarg value="-javaagent:${rvPath}/rv-predict.jar=--base-log-dir log" />

Where ${rvPath} is RV-Predict’s installation path and log is the location
where RV-Predict will store its logs and results. RV-Predict runs along with
unit-tests and its inclusion introduces a runtime overhead of roughly 5x (i.e.,
from 50 min to 260 min). We performed these experiments on Tomcat 8.0.26 and
RV-Predict found almost 40 unique data races in only a few runs. All bugs
were reported to developers and fixed in the next release.9

4 RV-MONITOR

RV-Monitor is a software analysis and development framework that aims to
reduce the gap between specification and implementation by allowing them
together to form a system [21]. With RV-Monitor, runtime monitoring is sup-
ported and encouraged as a fundamental principle for building reliable software:
monitors are synthesized from specifications and integrated into the original
system to check its behavior during execution.

9 See https://goo.gl/L00hWt for a list of the bugs and http://tomcat.apache.
org/tomcat-8.0-doc/changelog.html#Tomcat 8.0.27 (markt) for the Tomcat 8.0.27
changelog.

https://goo.gl/L00hWt
http://tomcat.apache.org/tomcat-8.0-doc/changelog.html#Tomcat_8.0.27_(markt)
http://tomcat.apache.org/tomcat-8.0-doc/changelog.html#Tomcat_8.0.27_(markt)

Runtime Verification at Work: A Tutorial 59

RV-Monitor evolved from the popular JavaMOP runtime verification
framework [16] and represents an effort to create a robust, extendable frame-
work for monitoring library generation. In this section, we will show examples of
RV-Monitor compiling specifications into code, for both desktop applications
and embedded systems.

4.1 Background: RV-MONITOR

Monitoring executions of a system against expected properties plays an impor-
tant role in both the software development process (e.g., during debugging and
testing) and as a mechanism for increasing the reliability and security of deployed
systems. Monitoring a program execution generates a trace comprising events of
interest. When an execution trace validates or violates a property, the monitor
triggers actions appropriate to its purpose in the system [16]. RV-Monitor is
a parametric monitoring system, i.e., it allows the specifications of properties
that relate objects in the program, as well as global properties. Our approach
consists of two phases: in the first phase, the execution trace is sliced according
to a parameter instance, while in the second phase each slice is checked by a
monitor dedicated to the slice.

At its core, RV-Monitor allows users to specify properties that the system
should satisfy at runtime (safety or security properties, API protocols, etc.) and
then generate efficient monitoring libraries for them. The generated libraries can
then be used in two ways, either (1) manually, by calling the monitoring methods
at the desired places, or (2) automatically, by inserting calls to the monitoring
methods using instrumentation mechanisms.

When a specification is violated or validated during program execution, user-
defined actions are triggered. The triggered actions can range from logging to
runtime recovery. RV-Monitor can be considered from at least three perspec-
tives: (1) as a discipline allowing one to improve safety, reliability and depend-
ability of a system by monitoring its requirements against its implementation at
runtime; (2) as an extension of programming languages with logics (one can add
logical statements anywhere in the program, referring to past or future states);
and (3) as a lightweight formal method.

RV-Monitor takes as input one or more specification files and generates
Java classes that implement the monitoring functionality defined therein. Each
RV-Monitor specification defines a number of events, which represent abstrac-
tions of certain points in programs, e.g., a call to the hasNext() method in Java,
or closing a file. With these event abstractions in mind, a user can define one
or more properties over the events, taking the events as either atoms in logi-
cal formulae or as symbols in formal language descriptions. For example, the
user may use these events as symbols in a regular expression or as atoms in a

60 P. Daian et al.

linear temporal logic formula. In the generated Java class, each event becomes a
method that can be either called manually by a user or inserted automatically
by using some means of instrumentation, such as AspectJ.

Each specification also has a number of handlers associated with each prop-
erty that are run when the associated property matches some specific conditions.
For instance, when a regular expression pattern matches, we run a handler des-
ignated by the keyword @match, and when a linear temporal logic property is
violated, we run a handler designated by the keyword @violation. Addition-
ally, RV-Monitor is able to generate monitors that enforce a given property
by delaying threads in multithreaded programs.

4.2 Running RV-MONITOR

As mentioned above, calls to the event methods generated by RV-Monitor
can either be manually added to programs or programs can be automatically
instrumented. Note that the examples in this section and the following sections
are included as part of the RV-Monitor distribution and available online.10

The Manual Instrumentation Method. Manual calls may appear tedious at first,
but they allow for fine grain use of RV-Monitor monitors as a programming
paradigm. For example, consider the RV-Monitor HasNext.rvm property:

�

�

�

�

package rvm;

HasNext(Iterator i) {
event hasnext(Iterator i) { }
event next(Iterator i) { }
ere : (hasnext hasnext* next)*

@fail {
System.out.println(

"! hasNext() has not been called before"

+ "calling next() for an iterator");

__RESET;

}
}

Now the generated Java monitoring library (named HasNextRuntimeMonitor
after the property) will contain two methods (one for each event), with the
following signatures:

�

�

�

�

public static final void hasNextEvent(Iterator i)

public static final void nextEvent(Iterator i)

10 See https://github.com/runtimeverification/javamop/tree/master/examples.

https://github.com/runtimeverification/javamop/tree/master/examples

Runtime Verification at Work: A Tutorial 61

By calling these methods directly, we can control exactly what we wish to mon-
itor. For instance, we can add a wrapper class for Iterator that has versions
hasNext and next that call our monitoring code and only use them in places
where correctness is crucial. The class could be defined as follows:

�

�

�

�

public class SafeIterator<E>

implements java.util.Iterator<E> {
private java.util.Iterator<E> it;

public SafeIterator(java.util.Iterator it) {
this.it = it;

}
public boolean hasNext() {

rvm.HasNextRuntimeMonitor.hasnextEvent(it);

return it.hasNext();

}
public E next() {

rvm.HasNextRuntimeMonitor.nextEvent(it);

return it.next();

}
public void remove() { it.remove(); }

}

Now programs of interest can distinguish between monitored and unmonitored
iterators by simply creating SafeIterators from Iterators. For example, con-
sider the program Test.java:

�

�

�

�

public class Test {
public static void main(String[] args) {

Vector<Integer> v = new Vector<Integer>();

v.add(1); v.add(2); v.add(4); v.add(8);

Iterator it = v.iterator();

SafeIterator i = new SafeIterator(it);

int sum = 0;

if (i.hasNext()) {
sum += (Integer)i.next();

sum += (Integer)i.next();

sum += (Integer)i.next();

sum += (Integer)i.next();

}
System.out.println("sum:" + sum);

}
}

62 P. Daian et al.

Note that, to build this program, the javac and java commands require the RV-
Monitor runtime library (rv-monitor-rt.jar) and the monitor directory to
be in the CLASSPATH. This allows the use of the RV-Monitor runtime, required
by the libraries generated by the rv-monitor command. With this in mind, and
if the rvm directory contains the HasNext.rvm property and the corresponding
generated library, HasNextRuntimeMonitor.java, the commands to compile and
run the program above are as follows:

�

�

�

�

$ javac Test.java SafeIterator.java rvm/HasNextRuntimeMonitor.java

$ java Test

RV-Monitor, then, outputs the following:
�

�

�

�

! hasNext() has not been called before calling next() for an iterator

! hasNext() has not been called before calling next() for an iterator

! hasNext() has not been called before calling next() for an iterator

sum: 15

The Automated Instrumentation Method. In some use-cases, the manual inser-
tion of calls to a monitoring library can be tedious and error-prone. In these
cases, aspect-oriented programming [17] can be used to instrument large code
bases automatically. We can create an AspectJ aspect that calls monitoring
methods for all instances of next and hasNext in the program. This aspect can
be weaved throughout any program to make all uses of Iterators safe. For
example:

�

�

�

�

aspect HasNextAspect {
after(Iterator i) : call(* Iterator.hasNext())

&& target(i) {
rvm.HasNextRuntimeMonitor.hasnextEvent(i); }

after(): before(Iterator i) : call(* Iterator.next())

&& target(i) {
rvm.HasNextRuntimeMonitor.nextEvent(it); }

}

Additionally, the RV-Monitor ecosystem includes a database of over 200
real, production-quality properties specifying the correct operation of the Java
and Android APIs that may be automatically checked in Java programs using
AspectJ and RV-Monitor.11 The RV-Monitor distribution provides a pre-
compiled suite of common Java API protocol properties together in an agent
that is automatically invoked when java is replaced with rv-monitor-all in
the command line.

11 For more information, please see https://github.com/runtimeverification/property-
db.

https://github.com/runtimeverification/property-db
https://github.com/runtimeverification/property-db

Runtime Verification at Work: A Tutorial 63

4.3 Specifying and Checking Properties with RV-MONITOR

In this section, we demonstrate monitors generated by RV-Monitor from prop-
erties expressed in three different formalisms (as finite-state machines, regular
expressions, and linear temporal logic) to check Java and C/C++ programs.

The Finite-State Machine (FSM) Formalism. First, we explore how we can
leverage the FSM formalism to express the Java API property that the next
method of an iterator must not be called without a previous call to the hasNext
method. This property can be specified as shown below:

�

�

�

�

full-binding HasNext(Iterator i) {
event hasnext(Iterator i) { } // after

event next(Iterator i) { } // before

fsm :

start [

next -> unsafe

hasnext -> safe]

safe [

next -> start

hasnext -> safe]

unsafe [

next -> unsafe

hasnext -> safe]

alias match = unsafe

@match {
System.out.println(

"next called without hasNext!");

}
}

After installing RV-Monitor we can see what monitoring of this property looks
like in action:
�

�

�

�

$ cd examples/FSM/HasNext

$ rv-monitor rvm/HasNext.rvm

$ javac rvm/HasNextRuntimeMonitor.java HasNext 1/HasNext 1.java

$ java HasNext 1.HasNext 1

RV-Monitor reports that next has been called without hasNext four times in
the corresponding Java code.

The FSM Formalism: An Example in C. In addition to Java, RV-Monitor also
supports C. Below is an example of a simple property about the state of a seat
belt in a vehicle simulation:

64 P. Daian et al.

�

�

�

�

SeatBelt {
event seatBeltRemoved() {

fprintf(stderr, "Seat belt removed.");

}
event seatBeltAttached() {

fprintf(stderr, "Seat belt attached.");

}
fsm :

unsafe [seatBeltAttached -> safe]

safe [seatBeltRemoved -> unsafe]

@safe {
fprintf(stderr, "set max speed to user input.");

}
@unsafe {

fprintf(stderr, "set max speed to 10 mph.");

}
}

The Extended Regular Expression (ERE) Formalism. Consider the property
expressed as a regular expression below. This property aims to ensure there
are no writes to a file after the file is closed. As in the first example, this is a
property of the Java API that is potentially a source of many program bugs. It
can be defined as follows:

�

�

�

�

SafeFileWriter(FileWriter f) {
static int counter = 0;

int writes = 0;

event open(FileWriter f) { // after

this.writes = 0;

}
event write(FileWriter f) { // before

this.writes ++;

}
event close(FileWriter f) { } // after

ere : (open write write* close)*

@fail {
System.out.println("write after close");

__RESET;

}
@match {

System.out.println(++counter + ":" + writes);

}
}

In the previous examples of property checking, we defined properties of
invalid program executions. This example, however, defines a property repre-
senting the correct execution of a FileWriter in Java. Specifically, this property
formalizes the behavior of a file being opened, written to some number times,
and then closed. Correct execution traces for a given File object contain this

Runtime Verification at Work: A Tutorial 65

sequence of events occurring zero or more times. The above property can be
exercised on the code from the RV-Monitor distribution as shown below:

�

�

�

�

$ cd examples/ERE/SafeFileWriter

$ rv-monitor rvm/SafeFileWriter.rvm

$ javac rvm/SafeFileWriterRuntimeMonitor.java \
SafeFileWriter_1/SafeFileWriter_1.java

$ java SafeFileWriter_1.SafeFileWriter_1

The Linear Temporal Logic (LTL) Formalism. The same specification about files
mentioned above can be captured in another formalism, namely linear temporal
logic. The only difference from the last specification is that we replace the ERE
property with an LTL property:

�

�

�

�
ltl : [](write => (not close S open))

This property specifies that at a write, there should not have been in the past a
call to close, and that open must have occurred after the start. This represents
the same property as the extended regular expression property and demonstrates
the ability of RV-Match to use multiple formalisms, depending on the knowl-
edge and preferences of the property developer.

Analyzing Logs. In addition to monitoring software execution, RV-Monitor is
able to check logical properties over text-based log files. These properties can be
anything that is Turing computable, and do not require storing the entire log
files. This makes RV-Monitor ideal for in-depth analysis of large log files which
may be impractical to analyze with traditional techniques. For more details,
please see the Running Examples section of RV-Monitor documentation [7].

5 Conclusion

Whereas RV-Match is a tool for rigorously detecting all forms of undefined-
ness, RV-Predict targets the hard problem of efficiently detecting data races.
RV-Match interprets programs according to a complete operational seman-
tics, while RV-Predict is able to infer a maximal causal model of concurrent
behavior from a single real execution trace. RV-Monitor, on the other hand,
confronts the problem of software correctness from a broader perspective by
providing a framework for directly monitoring and enforcing adherence to a
specification. Together, these tools represent a rigorous yet pragmatic and user-
friendly approach to verification (eponymously) characterized by its focus on the
analysis of programs at runtime.

66 P. Daian et al.

References

1. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. In: 79.6, pp.
397–434 (2010). doi:10.1016/j.jlap.03.012

2. Şerbănuţă, T.F., Chen, F., Roşu, G.: Maximal causal models for sequentially con-
sistent systems. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp.
136–150. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35632-2 16

3. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (Report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

4. Campbell, B.: An executable semantics for CompCert C. In: Hawblitzel, C., Miller,
D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 60–75. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35308-6 8

5. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: Conference
on Source Code Analysis and Manipulation (SCAM 2009), pp. 123–124. IEEE
(2009). doi:10.1109/SCAM.2009.22

6. Clang: Clang 3.9 Documentation. http://clang.llvm.org/docs/index.html
7. Daian, P.: RV-Monitor Documentation (2015). https://runtimeverification.com/

monitor/1.3/docs/
8. Ellison, C.: A formal semantics of C with applications. Ph.D. thesis. University of

Illinois, July 2012. http://hdl.handle.net/2142/34297
9. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2012), pp. 533–544 (2012). doi:10.1145/2103656.2103719.

10. GrammaTech: CodeSonar. http://grammatech.com/products/codesonar
11. Guth, D.: RV-Match Documentation (2016). https://runtimeverification.com/

match/1.0-SNAPSHOT/docs/
12. Guth, D.: Using RV-Predict to track down race conditions (2015). https://

runtimeverification.com/blog/?p=47
13. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: 36th

Conference on Programming Language Design and Implementation (PLDI 2015)
(2015)

14. Huang, J., Meredith, Patrick O’Neil Roşu, G.: Maximal sound predictive race
detection with control flow abstraction. In: PLDI 2015. doi:10.1145/2594291.
2594315

15. ISO, IEC JTC 1, SC 22, WG 14. ISO, IEC 9899: 2011: Prog. Lang.–C. Tech. rep.
International Organization for Standardization, 2012

16. Jin, D., et al.: JavaMOP: efficient parametric runtime monitoring framework. In:
ICSE 2012, pp. 1427–1430. IEEE, June 2012. http://dx.doi.org/10.1109/ICSE.
2012.6227231

17. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). doi:10.1007/3-540-45337-7 18

18. Li, Y.: Detecting popular data races in Java using RV-Predict (2015). https://
runtimeverification.com/blog/?p=58

19. Li, Y.: RV-Predict Documentation (2015). https://runtimeverification.com/
predict/1.8.2/docs/

20. Long, F., et al.: The CERT Oracle Secure Coding Standard for Java. The SEI
Series in Software Engineering. Addison-Wesley, Upper Saddle River (2012). ISBN:
978-0-321-80395-5

http://dx.doi.org/10.1016/j.jlap.03.012
http://dx.doi.org/10.1007/978-3-642-35632-2_16
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-642-35308-6_8
http://dx.doi.org/10.1109/SCAM.2009.22
http://clang.llvm.org/docs/index.html
https://runtimeverification.com/monitor/1.3/docs/
https://runtimeverification.com/monitor/1.3/docs/
http://hdl.handle.net/2142/34297
http://dx.doi.org/10.1145/2103656.2103719.
http://grammatech.com/products/codesonar
https://runtimeverification.com/match/1.0-SNAPSHOT/docs/
https://runtimeverification.com/match/1.0-SNAPSHOT/docs/
https://runtimeverification.com/blog/?p=47
https://runtimeverification.com/blog/?p=47
http://dx.doi.org/10.1145/2594291.2594315
http://dx.doi.org/10.1145/2594291.2594315
http://dx.doi.org/10.1109/ICSE.2012.6227231
http://dx.doi.org/10.1109/ICSE.2012.6227231
http://dx.doi.org/10.1007/3-540-45337-7_18
https://runtimeverification.com/blog/?p=58
https://runtimeverification.com/blog/?p=58
https://runtimeverification.com/predict/1.8.2/docs/
https://runtimeverification.com/predict/1.8.2/docs/

Runtime Verification at Work: A Tutorial 67

21. Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F., Roşu, G.:
RV-Monitor: efficient parametric runtime verification with simultaneous properties.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 285–300.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 24

22. MathWorks. Polyspace Bug Finder. http://www.mathworks.com/products/
polyspace-bug-finder

23. MathWorks. Polyspace Code Prover. http://www.mathworks.com/products/
polyspace-code-prover

24. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic
binary instrumentation. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2007), pp. 89–100. ACM (2007). doi:10.
1145/1250734.1250746

25. Shiraishi, S., Mohan, V., Marimuthu, H.: Test suites for benchmarks of static
analysis tools. In: The 26th IEEE International Symposium on Software Reliability
Engineering (ISSRE 2015), vol. Industrial Track (2015)

26. Why does this Java program terminate despite that apparently it
shouldn’t (and didn’t)? (2013) http://stackoverflow.com/questions/16159203/
whydoes-this-java-program-terminate-despite-that-apparently-itshouldnt-and-d

http://dx.doi.org/10.1007/978-3-319-11164-3_24
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-code-prover
http://www.mathworks.com/products/polyspace-code-prover
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746
http://stackoverflow.com/questions/16159203/whydoes-this-java-program-terminate-despite-that-apparently-itshouldnt-and-d
http://stackoverflow.com/questions/16159203/whydoes-this-java-program-terminate-despite-that-apparently-itshouldnt-and-d

When RV Meets CEP

Sylvain Hallé(B)

Laboratoire d’informatique formelle, Département d’informatique et de
mathématique, Université du Québec à Chicoutimi, Chicoutimi, Canada

shalle@acm.org

Abstract. This paper is an introduction to Complex Event Process-
ing (CEP) intended for an practicioners of Runtime Verification. It first
describes typical CEP problems, popular tools and their query languages.
It then presents BeepBeep 3, an event stream processor that attempts
to bridge the gap between RV and CEP. Thanks to BeepBeep’s generic
architecture and flexible input language, queries and properties from
both fields can be efficiently processed.

1 Introduction

Information systems generate a wealth of information in the form of event traces
or logs. The analysis of these logs, either offline or in real-time, can be put to
numerous uses: computation of various metrics, detection of anomalous patterns
or presence of bugs. A possible application of log analysis is Runtime Verification
(RV). In RV, a monitor is given a formal specification of some desirable property
that a trace should fulfill. The monitor is then fed events, either directly from
the execution of some instrumented system or by reading a pre-recorded file, and
is responsible for providing a verdict, as to whether the trace satisfies or violates
the property. Runtime monitors developed in the recent past include JavaMOP
[33], J-Lo [37], LARVA [18], MarQ [35], MonPoly [10], PoET [21], PQL [32],
PTQL [25], SpoX [20], and Tracematches [13].

Classical RV problems are centered around properties that deal with the way
events are ordered. For example, the canonical “HasNext” property stipulates
that, whenever an Iterator object is used in a program, any call to its next()
method must be preceded by a call to hasNext() that returns the value true.
Consequently, the languages used by monitors to specify properties all have a
strong temporal or sequential component: this includes finite-state automata,
temporal logic, μ-calculus, and multiple variations thereof.

Perhaps less known to RV practitioners is the existence of another field of
research, called Complex Event Processing (CEP). CEP frames the question of
processing an event trace as a database problem. A trace of events is seen as a
dynamic data source, on which queries are executed to extract a result. On the
surface, it seems that RV and CEP have a lot in common, since both seek to
evaluate a result on a trace made of events, and to update that result in real
time as the trace is being consumed. Yet, they also have notable differences,

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 68–91, 2016.
DOI: 10.1007/978-3-319-46982-9 6

When RV Meets CEP 69

particularly in the nature of the properties (or queries) that are computed on
event traces.

In this paper, we explore the ties between RV and CEP. In Sect. 2, we first
define CEP, and study a few classical problems extracted from recent literature in
that field; we also highlight the similarities and differences between RV and CEP.
We then introduce BeepBeep 3, an event stream processing engine that attempts
to reconcile the two fields under a common framework. Section 3 introduces
the basic concepts of event streams, functions and processors. Section 4 then
describes the basic processors included in BeepBeep’s core engine, and Sect. 5
describes a few of its available extension packages. Finally, Sect. 6 puts it all
together, and shows examples of complex BeepBeep queries subsuming both RV
and CEP.

2 Complex Event Processing

Complex Event Processing (CEP) can be loosely defined as the task of analyz-
ing and aggregating data produced by event-driven information systems [31]. A
key feature of CEP is the possibility to correlate events from multiple sources,
occurring at multiple moments in time. Information extracted from these events
can be processed, and lead to the creation of new, “complex” events made of
that computed data. This stream of complex events can itself be used as the
source of another process, and be aggregated and correlated with other events.

2.1 Typical CEP Queries

In the same manner as RV, CEP literature has been crystallized around a set of
more or less “canonical” use cases and problems. We present a few of them in
this section. For more details and examples, the reader is referred to individual
papers on CEP software that will be described in the next section.

Snapshot Query. A recurring scenario used in CEP to illustrate the perfor-
mance of various tools is taken from the stock market [15]. One considers a
stream of stock quotes, where each event is a tuple made of a stockSymbol
attribute, the price of the stock at various moments (such as its minimumPrice
and closingPrice), and a timestamp. A first, simple type of query one can
compute over such a trace is called a snapshot query, such as the following:

Query 1. Get the closing price of MSFT for the first five trading days.

One can see how the result of that query is itself a trace of tuples, much in
the same way the relational SELECT statement on a table returns another table.
As a matter of fact, we shall see later on that in many CEP systems, queries are
written using a syntax reminiscent of SQL.

70 S. Hallé

Landmark Query. A refinement of the snapshot query is the landmark query,
which returns only events that satisfy some criterion, such as:

Query 2. Select all the days after the hundredth trading day, on which the
closing price of MSFT has been greater than $50.

This simple query highlights two important elements of CEP. First, the result
of a query must be computed monotonically: once a tuple is sent out, it cannot
be “taken back” at a later time. Second, outputting a tuple may require waiting
until more of the input trace is made available. In the worst case, MSFT may be
the last stock symbol for which the price is known on a given day, and all events
of that day must somehow be retained before knowing if they must be included
in the result or discarded.

Sliding Query. In window queries, a computation is repeatedly made on a set
of successive events. The size of that set is called the width of the window; the
width is specified as a number of events or as a time interval. A sliding query is
a particular case of window query where, after each computation, the window
moves forward into the trace and a new set of successive events is considered.
Often, the computation applied to the contents of the window is an aggregate
function, such as a sum or an average. For example:

Query 3. On every fifth trading day starting today, calculate the average
closing price of MSFT for the five most recent trading days.

Join Query. A join query involves the comparison of multiple events together.
For example:

Query 4. For the five most recent trading days starting today, select all
stocks that closed higher than MSFT on a given day.

When computing the result of such a query, a tuple is added to the output
result depending on its relationship with respect to the price of MSFT for the
same day. In most CEP systems, this is done by an operation similar to the JOIN
operator in relational databases: the input trace is joined with itself, producing
pairs of tuples (t1, t2) where t1 belongs to the first “copy” of the trace, and t2
belongs to the second. The join condition, in our example, is that timestamps
of t1 and t2 must be equal. Since traces are potentially infinite, join operations
generally require bounds of some kind to be usable in practice; for example, the
join operation may only be done on events of the last minute, or on a window
of n successive events.

Trend Query. We now move to a different field of application, that of medical
record management. In this context, events are messages expressed in a struc-
tured format called HL7 [36]. An HL7 message is composed of one or more seg-
ments, each containing a number of fields. The analysis of HL7 event traces pro-
duced by health information systems can be used, among other things, to detect

When RV Meets CEP 71

significant unexpected changes in data values that could compromise patient
safety [12]. A general rule, which can apply to any numerical field, identifies
whenever a data value starts to deviate from its current trend:

Query 5. Notify the user when two out of three successive data points lie
more than 2 standard deviations from the mean on the same side of the
mean line.

We call such a query a trend query, as it relates a field in the current event
to an aggregation function applied on the past values of that field. Although
our example query does not specify it, this aggregation can be computed over a
window, such as the past 100 events, or events of the past hour.

Slice Query. The next example is taken from Microsoft’s StreamInsight tutor-
ial [30]. The scenario describes toll booths along a road sending out TollReading
events whenever a car passes through the booth. Each event contains the TollId
of that particular booth, the LicensePlate, State, Make and Model of the car,
as well as the Toll paid by the driver. A slice query is the application of the
same computation over multiple subsets (slices) of the input trace. An exam-
ple of a slice query is the following (note that this query also incorporates the
computation of a sum over a sliding window):

Query 6. Compute the toll produced by each tool booth over three-minute
intervals, with the window advancing in one minute hops.

2.2 RV vs. CEP. . .

A variety of CEP software and theoretical frameworks have been developed over
the years, which all differ in a number of dimensions. For example, TelegraphCQ
[15] was built to fix the problem of continuous stream of data coming from
networked environments; it shares similarities with the earlier Stream system
[7]. Sase [39] was brought as a solution to meet the needs of a range of RFID-
enabled monitoring applications. On its side, Siddhi [34] focuses on the multi-
threading aspect of evaluating CEP queries. Among other popular software, we
shall also mention Borealis [6], Cayuga [14], Esper [1], StreamBase SQL [4],
StreamInsight [30], and VoltDB [5].

Pointing out the differences in each of these tools is out of the scope of
this paper. Some of them are research prototypes, while others are commercial
products with a large user base. Nearly all of them provide their own distinct
query language, whose expressiveness vastly varies from one tool to the next —
as a rule, each of them can only handle a (different) subset of the examples we
presented. Most, however, borrow syntactical elements from SQL to some extent.
For example, the following code snippet shows how Query 4 can be written using
TelegraphCQ:

72 S. Hallé

Select c2.*

FROM ClosingStockPrices as c1, ClosingStockPrices as c2

WHERE c1.stockSymbol = ‘MSFT’ and c2.stockSymbol!= ‘MSFT’ and

c2.closingPrice > c1.closingPrice and c2.timestamp = c1.timestamp

for (t = ST; t < ST + 20 ; t++){
WindowIs(c1, t − 4, t);

WindowIs(c2, t − 4, t);

}

We can identify a number of distinguishing elements between the problems
and tools of Runtime Verification and Complex Event Processing.

Query Composition. As we have discussed, CEP aims at calculating the result
of a query on a trace of events. The output of that query can itself be a sequence
of events with data-rich contents, which can be reused as the input of another
query. In contrast, a monitor evaluates a property over a trace. Intermediate
results of its computation are seldom exposed or expected to be consumable,
and its output (most often a single truth value) is not reusable as the input of
another monitor for further processing.

We believe this is one area in particular where RV would benefit from inte-
grating CEP concepts. Note that there do exist monitors whose specification
language involves more advanced data computing capabilities (numerical aggre-
gation functions, mostly), but they still compute the answer to what is funda-
mentally a yes/no question. Yet, if one sees a monitor, in the broader sense of
the term, as a diagnostics tool for discovering and understanding bugs, then it
should provide the possibility to compute results beyond a single Boolean value.

Data Transformation. As a consequence of the previous observation, it can be
noted that CEP problems feature data-rich events, over which complex trans-
formations and computations can made. For example, Query 3 computes the
average of some numerical attribute over a sliding window of events, and Query
5 compares the value of a field to the mean and standard deviation of a set of
past values for the same field. Such functionalities are considered standard for
a CEP language. Indeed, the SELECT construct provided by most CEP engines
makes it possible to produce output tuples made of attributes from multiple
input tuples, coming from potentially different input traces, combine them and
apply various built-in functions (mostly numerical).

In contrast, most monitors do support events with data fields, but only allow
basic (again, Boolean) comparisons (=, ≤, etc.) between values of these fields.
The handling of aggregation functions and other forms of computation over
event data is not a common feature in RV, and only a handful of monitors so
far support them [9,11,17,19,23].

Sequential Patterns and Quantification. Although they provide rich data manip-
ulation facilities, CEP tools are far less advanced in terms of evaluating sequential
patterns of events. In many of their input languages, the only way of correlating

When RV Meets CEP 73

an event with past or future events is through a JOIN of the trace with itself —an
expensive operation, which can only be done in restricted ways (such as by bound-
ing the window of events that are joined). In a few cases, a language offers the possi-
bility to describe primitive sequencing patterns (using a form of regular expression,
or simple “A follows B” instructions). These patterns are very restricted in their
use (for example, they do not allow negation) and, as empirical testing revealed,
costly to evaluate.

This is in sharp contrast with RV, where the sequential aspect of event traces
is central. Since the specification language of monitors is based on logic, it is
also natural to find a form of first-order quantification in many of them. This
quantification occurs in problems where some specific pattern must hold “for all
elements”. A few CEP systems allow a trace to be split into various slices, but as
a rule, no true equivalent of universal and existential quantification is supported.

2.3 . . . and Beyond

The previous observations show that RV and CEP can borrow from each other’s
strengths. However, one may imagine a generic framework that not only encom-
passes both, but also goes beyond the current limitations of the two approaches.

Event Types. Both RV and CEP systems consider a single type of event. For
example, many CEP tools, which have a strong background in databases, assume
all events to be tuples. Every tuple of a trace must have the same fixed set of
attributes, and events must differ only in the values they define for each attribute.
Moreover, these values must be scalar. A query can transform an input trace
into a different output, but the resulting trace will still be made of tuples, with
possibly different attributes.1 Monitors, on their side, handle various event types,
depending on the system: tuples, predicates, or even richer events such as XML
documents with an arbitrary nested structure. However, each monitor accepts a
single of these types, and does not produce a new feed of events as its output.

A truly generic event processing system should not presuppose that any sin-
gle type of events is appropriate for all problems. Rather, each type of event
should come with its own set of event manipulation functions (EMF) to extract
data, manipulate and create new events of that type. These functions should be
distinct from trace manipulation functions (TMF), which, in contrast, should
make very limited assumptions on the traces they manipulate. This clear sepa-
ration of EMF and TMF should make it possible to easily mix events of different
types into queries, and to write queries whose various intermediate traces may
be of multiple types. It should also help avoid the “square peg in a round hole”
problem, where one must write an overly complicated expression simply to work
around the limitations of the single available event type.

1 A few engines allow events to be user-defined objects, but these objects are accessed
through methods that return scalar values, which is tantamount.

74 S. Hallé

Query Language. A similar problem also arises with respect to the specification
(or query) language of each tool. Again, the database foundations of CEP have
led many solutions to compute everything through a tentacular SELECT state-
ment, with optional constructs attempting to account for every possible use case.
Monitors, again, have more varied specification languages, but since the output
of a monitor cannot be used as the input of another one, every problem must be
expressible in the language of a single tool to be solvable at all.

A modular event processing framework should alleviate this problem by
proposing a set of basic processing units that can be freely composed. There-
fore, rather than proposing a single, all-encompassing query language, it should
accommodate multiple query languages, along with lightweight syntactical
“glue” to allow their composition. This would allow every step of the computa-
tion to be expressed in the notation most appropriate for it.

3 The BeepBeep 3 Event Processing Engine

The observations made in the previous section motivated the design of Beep-
Beep 3, a new event stream processing engine that aims to reconcile RV and CEP
by supporting functionalities of both. As its name implies, it is the third incarna-
tion of the BeepBeep line of monitoring software. Earlier versions of BeepBeep,
which used a first-order extension of Linear Temporal Logic as their specifica-
tion language, were successfully used in the detection of compliance violations
in web services [29] and the runtime prevention of behavioural bugs in video
games [38]. BeepBeep can be used either as a Java library embedded in another
application’s source code, or as a stand-alone query interpreter running from
the command-line. Releases of BeepBeep 3 are publicly available for download
through an open source license.2

3.1 Events, Functions and Processors

Let T be an arbitrary set of elements. An event trace of type T is a sequence
e = e0e1 . . . where ei ∈ T for all i. The set of all traces of type T is denoted T

∗.
In line with the observations made previously, BeepBeep makes no assumption
whatsoever as to what an event can be. Event types can be as simple as single
characters or numbers, or as complex as matrices, XML documents, plots, logical
predicates, polynomials or any other user-defined data structure. In terms of
implementation, an event can potentially be any descendent of Java’s Object
class.

A function is an object that takes zero or more events as its input, and
produces zero or more events as its output. The arity of a function is the number
of input arguments and output values they have. For example, the addition
function + : R2 → R is the 2:1 function that receives two real numbers as its
input, and returns their sum as its output. In BeepBeep, functions are first-class

2 https://liflab.github.io/beepbeep-3.

https://liflab.github.io/beepbeep-3

When RV Meets CEP 75

objects; they all descend from an abstract ancestor named Function, which
declares a method called evaluate() so that outputs can be produced for a
given array of inputs.

A processor is an object that takes zero or more event traces, and produces
zero or more event traces as its output. The difference between a function and a
processor is important. While a function is stateless, and operates on individual
events, a processor is a stateful device: for a given input, its output may depend
on events received in the past. Processors in BeepBeep all descend from the
abstract class Processor, which provides a few common functionalities, such as
obtaining a reference to the n-th input or output, getting the type of the n-th
input or output, etc.

We shall use a notation that defines the output trace(s) of a processor in terms
of its input trace(s). Let e1, . . . , en be n input traces, and ϕ be a processor. The
expression [[e1, . . . , en : ϕ]] will denote the output trace produced by ϕ, given
these input traces. As a simple example, let us consider a processor, noted �n,
that outputs every n-th event of its input and discards the others (this process
is called decimation). This can be defined as:

[[e :�n]]i ≡ eni

Each processor instance is also associated with a context. A context is a
persistent and modifiable map that associates names to arbitrary objects. When
a processor is duplicated, its context is duplicated as well. If a processor requires
the evaluation of a function, the current context of the processor is passed to
the function. Hence the function’s arguments may contain references to names of
context elements, which are replaced with their concrete values before evaluation.
Basic processors, such as those described in Sect. 4, do not use context. However,
some special processors defined in extensions to BeepBeep’s core (the Moore
machine and the first-order quantifiers, among others) manipulate their Context
object.

3.2 Streaming, Piping and Buffering

A processor produces its output in a streaming fashion: it does not wait to
read its entire input trace before starting to produce output events. However,
a processor can require more than one input event to create an output event,
and hence may not always output something. This can be seen in the case of
the decimation processor described above. Given a trace e0e1, . . . , the processor
outputs e0 immediately after reading it. However, it does not produce any output
after consuming e1; it will only produce another output after reading n inputs.

Processors can be composed (or “piped”) together, by letting the output
of one processor be the input of another. Another important characteristic of
BeepBeep is that this piping is possible as long as the type of the first processor’s
output matches the second processor’s input type. The piping of processors can
be represented graphically, as Fig. 1 illustrates. In this case, an input trace (of
numbers) is duplicated into two copies; the first is sent as the first input of a

76 S. Hallé

Fig. 1. A simple composition of processors, represented graphically

2:1 processor labelled “+”; the second is first sent to the decimation processor,
whose output is connected to the second input of “+”. The end result is that
output event i will contain the value ei + eni.

When a processor has an arity of 2 or more, the processing of its input is done
synchronously. This means that a computation step will be performed if and only
if an event can be consumed from each input trace. This is a strong assumption;
many other CEP engines allow events to be processed asynchronously, meaning
that the output of a query may depend on what input trace produced an event
first. One can easily imagine situations where synchronous processing is not
appropriate. However, in use cases where it is suitable, assuming synchronous
processing greatly simplifies the definition and implementation of processors.
The output result is no longer sensitive to the order in which events arrive at
each input, or to the time it takes for an upstream processor to compute an
output.3

This hypothesis entails that processors must implicitly manage buffers to
store input events until a result can be computed. Consider the case of the
processor chain illustrated in Fig. 1. When e0 is made available in the input
trace, both the top and bottom branches output it immediately, and processor
“+” can compute their sum right away. When e1 is made available, the first input
of “+” receives it immediately. However, the decimation processor produces no
output for this event. Hence “+” cannot produce an output, and must keep e1 in
a queue associated to its first input. Events e2, e3, . . . will be accumulated into
that queue, until event en is made available. This time, the decimation processor
produces an output, and en arrives at the second output of “+”. Now that one
event can be consumed from each input trace, the processor can produce the
result (in this case, e0 + en) and remove an event from both input queues.

Note that while the queue for the second input becomes empty again, the
queue for the first input still contains e2, . . . en. The process continues for the
subsequent events, until e2n, at which point “+” computes e2 + e2n, and so on.
In this chain of processors, the size of the queue for the first input of “+” grows
by one event except when i is a multiple of n.

This buffering is implicit: it is absent from both the formal definition of
processors and any graphical representation of their piping. Nevertheless, the
concrete implementation of a processor must take care of these buffers in order

3 The order of arrival of events from the same input trace, obviously, is preserved.

When RV Meets CEP 77

to produce the correct output. In BeepBeep, this is done with the abstract class
SingleProcessor; descendents of this class simply need to implement a method
named compute(), which is called only when an event is ready to be consumed
at each input.

3.3 “Pull” vs. “Push” Mode

The interaction with a Processor object is done through two interfaces:
Pullable and Pushable. A Pullable object queries events on one of a proces-
sor’s outputs. For a processor with an output arity of n, there exists n distinct
pullables, namely one for each output trace. Every pullable works roughly like
classical Iterator: it is possible to check whether new output events are avail-
able (hasNext()), and get one new output event (next()). However, contrarily
to iterators, a Pullable has two versions of each method: a “soft” and a “hard”
version.

“Soft” methods make a single attempt at producing an output event. Since
processors are connected in a chain, this generally means pulling events from the
input in order to produce the output. However, if pulling the input produces no
event, no output event can be produced. In such a case, hasNext() will return
a special value (MAYBE), and pull() will return null. Soft methods can be seen
as doing “one turn of the crank” on the whole chain of processors —whether or
not this outputs something.

“Hard” methods are actually calls to soft methods until an output event is
produced: the “crank” is turned as long as necessary to produce something. This
means that one call to, e.g. pullHard() may consume more than one event from
a processor’s input. Therefore, calls to hasNextHard() never return MAYBE (only
YES or NO), and pullHard() returns null only if no event will ever be output
in the future (this occurs, for example, when pulling events from a file, and the
end of the file has been reached).

Interface Pushable is the opposite of Pullable: rather than querying events
form a processor’s output (i.e. “pulling”), it gives events to a processor’s input.
This has for effect of triggering the processor’s computation and “pushing”
results (if any) to the processor’s output. It shall be noted that in BeepBeep, any
processor can be used in both push and pull modes. In contrast, CEP systems
and runtime monitors generally support a single of these modes.

The notion of push and pull is borrowed from event-based parsing of XML
documents, where so-called “SAX” (push) parsers [3] are opposed to “StAX”
(pull) parsers [24]. XQuery engines such as XQPull [22] implement these models
to evaluate XQuery statements over XML documents. The use of such streaming
XQuery engines to evaluate temporal logic properties on event traces had already
been explored in an early form in [28].

3.4 Creating a Processor Pipe

BeepBeep provides multiple ways to create processor pipes and to fetch their
results. The first way is programmatically, using BeepBeep as a library and Java

78 S. Hallé

as the glue code for creating the processors and connecting them. For example,
the following code snippet creates the processor chain corresponding to Fig. 1.

Fork f = new Fork(2);

FunctionProcessor sum = new FunctionProcessor(Addition.instance);

CountDecimate decimate = new CountDecimate(n);

Connector.connect(fork, LEFT, sum, LEFT)

.connect(fork, RIGHT, decimate, INPUT)

.connect(decimate, OUTPUT, sum, RIGHT);

Pullable p = sum.getOutputPullable(OUTPUT);

while (p.hasNextHard() != NextStatus.NO) {

Object o = p.nextHard();

...

}

A Fork is instructed to create two copies of its input. The first (or “left”)
output of the fork is connected to the “left” input of a processor performing an
addition. The second (or “right”) output of the fork is connected to the input of
a decimation processor, which itself is connected to the “right” input of the sum
processor. One then gets a reference to sum’s (only) Pullable, and start pulling
events from that chain. The piping is done through the connect() method;
when a processor has two inputs or outputs, the symbolic names LEFT/RIGHT
and TOP/BOTTOM can be used instead of 0 and 1. The symbolic names INPUT
and OUTPUT refer to the (only) input or output of a processor, and stand for the
value 0.

Another powerful way of creating queries is by using BeepBeep’s query lan-
guage, the Event Stream Query Language (eSQL). A detailed presentation of
eSQL would require a paper of its own; it will not be discussed here due to lack
of space.

4 Built-In Processors

BeepBeep is organized along a modular architecture. The main part of BeepBeep
is called the engine, which provides the basic classes for creating processors and
functions, and contains a handful of general-purpose processors for manipulat-
ing traces. The rest of BeepBeep’s functionalities is dispersed across a number
of palettes. In the following, we describe the basic processors provided by Beep-
Beep’s engine. The next section will be devoted to processors and functions from
a handful of domain-specific palettes that have already been developed.

4.1 Function Processors

A first way to create a processor is by lifting any m : n function f into a
m : n processor. This is done by applying f successively to each tuple of input
events, producing the output events. The processor responsible for this is called
a FunctionProcessor. A first example of a function processor was shown in

When RV Meets CEP 79

Fig. 1. A function processor is created by applying the “+” (addition) function,
represented by an oval, to the left and right inputs, producing the output. Recall
that in BeepBeep, functions are first-class objects. Hence the Addition function
can be passed as an argument when instantiating the FunctionProcessor. Since
this function is 2:1, the resulting processor is also 2:1. Formally, the function
processor can be noted as:

[[e1, . . . , em : f]]i ≡ f(e1[i], . . . , em[i])

Two special cases of function processors are worth mentioning. The Mutator
is a m : n processor where f returns the same output events, no matter its input.
Hence, this processor “mutates” whatever its input is into the same output. The
Fork is a 1 : n processor that simply copies its input to its n outputs. When
n = 1, the fork is also called a passthrough.

A variant of the function processor is the CumulativeProcessor, noted Σt
f .

Contrarily to the processors above, which are stateless, a cumulative processor
is stateful. Given a binary function f : T × U → T, a cumulative processor is
defined as:

[[e1, e2 : Σt
f]]i ≡ f([[e1, e2 : Σt

f]]i−1, e2[i])

Intuitively, if x is the previous value returned by the processor, its output on
the next event y will be f(x, y). The processor requires an initial value t ∈ T to
compute its first output.

Depending on the function f , cumulative processors can represent many
things. If f : R2 → R is the addition and 0 ∈ R is the start value, the processor
outputs the cumulative sum of all values received so far. If f : {�,⊥, ?}2 →
{�,⊥, ?} is the three-valued logical conjunction and ? is the start value, then
the processor computes the three-valued conjunction of events received so far,
and has the same semantics as the LTL3 “Globally” operator.

4.2 Trace Manipulating Processors

A few processors can be used to alter the sequence of events received. We already
mentioned the decimator, formally named CountDecimate, which returns every
n-th input event and discards the others. The Freeze processor, noted ↓, repeats
the first event received; it is formally defined as

[[e :↓]] ≡ (e0)∗

Another operation that can be applied to a trace is trimming its output.
Given a trace e, the Trim processor, denoted as �n, returns the trace starting
at its n-th input event. This is formalized as follows:

[[e : �n]] ≡ en

Events can also be discarded from a trace based on a condition. The Filter
processor f is a n : n − 1 processor defined as follows:

[[e1, . . . , en−1, en : f]]i ≡
{

e1[i], . . . , en−1[i] if en[i] = �
ε otherwise

80 S. Hallé

The filter behaves like a passthrough on its first n − 1 inputs, and uses its last
input trace as a guard; the events are let through on its n − 1 outputs, if the
corresponding event of input trace n is �; otherwise, no output is produced. A
special case is a binary filter, where its first input trace contains the events to
filter, and the second trace decides which ones to keep.

This filtering mechanism, although simple to define, turns out to be very
generic. The processor does not impose any particular way to determine if the
events should be kept or discarded. As long as it is connected to something
that produces Boolean values, any input can be filtered, and according to any
condition—including conditions that require knowledge of future events to be
evaluated. Note also that the sequence of Booleans can come from a different
trace than the events to filter. This should be contrasted with CEP systems, that
allow filtering events only through the use of a WHERE clause inside a SELECT
statement, and whose syntax is limited to a few simple functions.

4.3 Window Processor

Let ϕ : T∗ → U
∗ be a 1:1 processor. The window processor of ϕ of width n,

noted as Υn(ϕ), is defined as follows:

[[e : Υn(ϕ)]]i ≡ [[ei : ϕ]]n

One can see how this processor sends the first n events (i.e. events numbered 0
to n − 1) to an instance of ϕ, which is then queried for its n-th output event.
The processor also sends events 1 to n to a second instance of ϕ, which is then
also queried for its n-th output event, and so on. The resulting trace is indeed
the evaluation of ϕ on a sliding window of n successive events.

In existing CEP engines, window processors can be used in a restricted way,
generally within a SELECT statement, and only a few simple functions (such
as sum or average) can be applied to the window. In contrast, in BeepBeep,
any processor can be encased in a sliding window, provided it outputs at least
n events when given n inputs. This includes stateful processors: for example, a
window of width n can contain a processor that increment a count whenever an
event a is followed by a b. The output trace hence produces the number of times
a is followed by b in a window of width n.

4.4 Slicer

The Slicer is a 1:1 processor that separates an input trace into different “slices”.
It takes as input a processor ϕ and a function f : T → U, called the slicing
function. There exists potentially one instance of ϕ for each value in the image
of f . If T is the domain of the slicing function, and V is the output type of ϕ,
the slicer is a processor whose input trace is of type T and whose output trace
is of type 2V.

When an event e is to be consumed, the slicer evaluates c = f(e). This value
determines to what instance of ϕ the event will be dispatched. If no instance of

When RV Meets CEP 81

ϕ is associated to c, a new copy of ϕ is initialized. Event e is then given to the
appropriate instance of ϕ. Finally, the last event output by every instance of ϕ
is collected into a set, and that set is the output event corresponding to input
event e. The function f may return a special value #, indicating that no new
slice must be created, but that the incoming event must be dispatched to all
slices.

A particular case of slicer is when ϕ is a processor returning Boolean values;
the output of the slicer becomes a set of Boolean values. Applying the logical
conjunction of all elements of the set results in checking that ϕ applies “for all
slices”, while applying the logical disjunction amounts to existential quantifica-
tion over slices.

5 A Few Palettes

BeepBeep was designed from the start to be easily extensible. As was discussed
earlier, it consists of only a small core of built-in processors and functions. The
rest of its functionalities are implemented through custom processors and gram-
mar extensions, grouped in packages called palettes. Concretely, a palette is
implemented as a JAR file that is loaded with BeepBeep’s main program to
extend its functionalities in a particular way. Users can also create their own
new processors, and extend the eSQL grammar so that these processors can be
integrated in queries.

This modular organization has three advantages. First, they are a flexible and
generic way to extend the engine to various application domains, in ways unfore-
seen by its original designers. Second, they make the engine’s core (and each
palette individually) relatively small and self-contained, easing the development
and debugging process.4 Finally, it is hoped that BeepBeep’s palette architec-
ture, combined with its simple extension mechanisms, will help third-party users
contribute to the BeepBeep ecosystem by developing and distributing extensions
suited to their own needs.

We describe a few of the palettes that have already been developed for Beep-
Beep in the recent past. These processors are available alongside BeepBeep from
the same software repository.

5.1 LTL-FO+

This palette provides processors for evaluating all operators of Linear Temporal
Logic (LTL), in addition to the first-order quantification defined in LTL-FO+

(and present in previous versions of BeepBeep) [29]. Each of these operators
comes in two flavours: Boolean and “Troolean”.

Boolean processors are called Globally, Eventually, Until, Next, ForAll
and Exists. If a0a1a2 . . . is an input trace, the processor Globally produces
an output trace b0b1b2 . . . such that bi = ⊥ if and only there exists j ≥ i such

4 The core of BeepBeep is made of less than 2,500 lines of code.

82 S. Hallé

that bj = ⊥. In other words, the i-th output event is the two-valued verdict of
evaluating Gϕ on the input trace, starting at the i-th event. A similar reasoning
is applied to the other operators.

Troolean processors are called Always, Sometime, UpTo, After, Every and
Some. Each is associated to the Boolean processor with a similar name. If
a0a1a2 . . . is an input trace, the processor Always produces an output trace
b0b1b2 . . . such that bi = ⊥ if there exists j ≤ i such that bj = ⊥, and “?” (the
“inconclusive” value of LTL3) otherwise. In other words, the i-th output event
is the three-valued verdict of evaluating Gϕ on the input trace, after reading i
events.

Note that these two semantics are distinct, and that both are necessary in the
context of event stream processing. Consider the simple LTL property a → F b.
In a monitoring context, one is interested in Troolean operators: the verdict
of the monitor should be the partial result of evaluating an expression for the
current prefix of the trace. Hence, in the case of the trace accb, the output trace
should be ???�: the monitor comes with a definite verdict after reading the
fourth event.

However, one may also be interested in using an LTL expression ϕ as a filter:
from the input trace, output only events such that ϕ holds. In such a case,
Boolean operators are appropriate. Using the same property and the same trace
as above, the expected behaviour is to retain the input events a, c, and c; when b
arrives, all four events can be released at once, as the fate of a becomes defined (it
has been followed by a b), and the expression is true right away on the remaining
three events.

First-order quantifiers are of the form ∀x ∈ f(e) : ϕ and ∃x ∈ f(e) : ϕ.
Here, f is an arbitrary function that is evaluated over the current event; the
only requirement is that it must return a collection (set, list or array) of values.
An instance of the processor ϕ is created for each value c of that collection;
for each instance, the processor’s context is augmented with a new association
x �→ c. Moreover, ϕ can be any processor; this entails it is possible to perform
quantification over virtually anything.

5.2 FSM

This palette allows one to define a Moore machine, a special case of finite-state
machine where each state is associated to an output symbol. This Moore machine
allows its transitions to be guarded by arbitrary functions; hence it can operate
on traces of events of any type.

Moreover, transitions can be associated to a list of ContextAssignment
objects, meaning that the machine can also query and modify its Context object.
Depending on the context object being manipulated, the machine can work as a
pushdown automaton, an extended finite-state machine [16], and multiple varia-
tions thereof. Combined with the first-order quantifiers of the LTL-FO+ package,
a processing similar to Quantified Event Automata (QEA) [8] is also possible.

When RV Meets CEP 83

5.3 Other Palettes

Among other palettes, we mention:

Gnuplot. This palette allows the conversion of events into input files for the
Gnuplot application. For example, an event that is a set of (x, y) coordinates
can be transformed into a text file producing a 2D scatterplot of these points.
An additional processor can receive these strings of text, call Gnuplot in the
background and retrieve its output. The events of the output trace, in this
case, are binary strings containing image files.5

Tuples. This palette provides the implementation of the named tuple event
type. A named tuple is a map between names (i.e. Strings) and arbitrary
objects. In addition, the palette includes a few utility functions for manip-
ulating tuples. The Select processor allows a tuple to be created by nam-
ing and combining the contents of multiple input events. The From processor
transforms input events from multiple traces into an array (which can be used
by Select), and the Where processor internally duplicates an input trace and
sends it into a Filter evaluating some function. Combined together, these
processors provide the same kind of functionality as the SQL-like SELECT
statement of other CEP engines.

XML, JSON and CSV. This palette provides a processor that converts text
events into parsed XML documents. It also contains a Function object that
can evaluate an XPath expression on an XML document. Another palette
provides the same functionalities for events in the JSON and the CSV format.

6 Some Examples

In the spirit of BeepBeep’s design, processors and functions from multiple
palettes can be freely mixed. We end this tutorial by presenting a few exam-
ples of how BeepBeep can be used to compute various kinds of properties and
queries.

6.1 Numerical Function Processors

As a first example, we will show how Query 5 can be computed using chains
of function processors. First, let us calculate the statistical moment of order
n of a set of values, noted En(x). As Fig. 2a shows, the input trace is dupli-
cated into two paths. Along the first path, the sequence of numerical values
is sent to the FunctionProcessor computing the n-th power of each value;
these values are then sent to a CumulativeProcessor that calculates the sum
of these values. Along the second path, values are sent to a Mutator processor
that transforms them into the constant 1; these values are then summed into
another CumulativeProcessor. The corresponding values are divided by each

5 An example of BeepBeep’s plotting feature can be seen at: https://www.youtube.
com/watch?v=XyPweHGVI9Q.

https://www.youtube.com/watch?v=XyPweHGVI9Q
https://www.youtube.com/watch?v=XyPweHGVI9Q

84 S. Hallé

Fig. 2. (a) A chain of function processors for computing the statistical moment of order
n on a trace of numerical events; (b) The chain of processors for Query 5

other, which corresponds to the statistical moment of order n of all numerical
values received so far. A similar processor chain can be created to compute the
standard deviation (i.e.

√
E2(x)).

Equipped with such a processor chain, the desired property can be evaluated
by the graph shown in Fig. 2b. The input trace is divided into four copies. The
first copy is subtracted by the statistical moment of order 1 of the second copy,
corresponding to the distance of a data point to the mean of all data points
that have been read so far. This distance is then divided by the standard devi-
ation (computed form the third copy of the trace). A FunctionProcessor then
evaluates whether this value is greater than the constant trace with value 2.

The result is a trace of Boolean values. This trace is itself forked into two
copies. One of these copies is sent into a Trim processor, that removes the first
event of the input trace; both paths are sent to a processor computing their
logical conjunction. Hence, an output event will have the value � whenever an
input value and the next one are both more than two standard deviations from
the mean.

Note how this chain of processors involves events of two different types:
turquoise pipes carry events consisting of a single numerical value, while grey
pipes contain Boolean events.

When RV Meets CEP 85

6.2 Quantifiers, Trim and XPath Processors

The next example is taken from our previous work on the monitoring of video
games [38]. It focuses on the video game Pingus, a clone of the popular game
Lemmings. In this game, individual characters called Pingus can be given skills
(Walker, Blocker, Basher, etc.). An instrumented version of the game produces
events in XML format at periodic intervals; each event is a snapshot of each
character’s state (ID, position, skills, velocity).

The property we wish to check is that every time a Walker encounters a
Blocker, it must turn around and start walking in the opposite direction. An
encounter occurs whenever the (x, y) coordinates of the Walker come within 6
pixels horizontally, and 10 pixels vertically, of some Blocker. When this happens,
the Walker may continue walking towards the Blocker for a few more events, but
eventually turns around and starts walking away.

Figure 3 shows the processor graph that verifies this. The XML trace
is first sent into a universal quantifier. The domain function, repre-
sented by the oval at the top, is the evaluation of the XPath expression
//character[status=WALKER]/id/text() on the current event; this fetches the
value of attribute id of all characters whose status is WALKER. For every such
value c, a new instance of the underlying processor will be created, and the
context of this processor will be augmented with the association p1 �→ c. The
underlying processor, in this case, is yet another quantifier. This one fetches the

Fig. 3. Processor graph for property “Turn Around”

86 S. Hallé

ID of every BLOCKER, and for each such value c′, creates one instance of the
underlying processor and adds to its context the association p2 �→ c′.

The underlying processor is the graph enclosed in a large box at the bottom.
It creates two copies of the input trace. The first goes to the input of a function
processor evaluating function f1 (not shown), on each event. This function eval-
uates |x1 − x2| < 6 ∧ |y1 − y2| < 10, where xi and yi are the coordinates of the
Pingu with ID pi. The resulting function returns a Boolean value, which is true
whenever character p1 collides with p2.

The second copy of the input trace is duplicated one more time. The first
is sent to a function processor evaluating f2, which computes the horizontal
distance between p1 and p2. The second is sent to the Trim processor, which
is instructed to remove the first three events it receives and lets the others
through. The resulting trace is also sent into a function processor evaluating f2.
Finally, the two traces are sent as the input of a function processor evaluating
the condition >. Therefore, this processor checks whether the horizontal distance
between p1 and p2 in the current event is smaller than the same distance three
events later. If this is true, then p1 moved away from p2 during that interval.

The last step is to evaluate the overall expression. The “collides” Boolean
trace is combined with the “moves away” Boolean trace in the Implies processor.
For a given event e, the output of this processor will be � when, if p1 and p2
collide in e, then p1 will have moved away from p2 three events later.

Note how this property involves a mix of events of various kinds. Blue pipes
carry XML events, turquoise pipes carry events that are scalar numbers, and
grey pipes contain Boolean events.

6.3 Slicers, Generalized Moore Machines and Tuple Builders

The second example is a modified version of the Auction Bidding property pre-
sented in a recent paper introducing Quantified Event Automata (QEA) [8]. It
describes a property about bids on items on an online auction site. When an item
is being sold an auction is created and recorded using the create auction(i,m, p)
event where m is the minimum price the item named i can be sold for and p is
the number of days the auction will last. The passing of days is recorded by a
propositional endOfDay event; the period of an auction is over when there have
been p number of endOfDay events.

Rather than simply checking that the sequencing of events for each item is
followed, we will take advantage of BeepBeep’s flexibility to compute a non-
Boolean query: the average number of days since the start of the auction, for all
items whose auction is still open and in a valid state.

The processor graph is shown in Fig. 4. It starts at the bottom left, with
a Slicer processor that takes as input tuples of values. The slicing function
is defined in the oval: if the event is endOfDay, it must be sent to all slices;
otherwise, the slice is identified by the element at position 1 in the tuple (this
corresponds to the name of the item in all other events). For each slice, an
instance of a Moore machine will be created, as shown in the top part of the
graph.

When RV Meets CEP 87

Fig. 4. Processor graph for the “Auction Bidding” query (Color figure online)

Each transition in this Moore machine contains two parts: the top part is a
function to evaluate on the input event, to decide whether the transition should
fire. The bottom part contains instructions on how to modify the Context object
of the processor. For example, the top left transition fires if the first element of
the event is the string “Create Auction”. If so, the transition is taken, and the
processor’s context is updated with the associations Last Price �→ 0, Days �→ 0.
The values of Min. Price and Max. Days are set with the content of the third and
fourth element of the tuple, respectively. The remaining transitions take care of
updating the minimum price and the number of days elapsed according to the
events received.

Each state of the Moore machine is associated with an output value. For
three of these states, the value to output is the empty event, meaning that no
output should be produced. For the remaining two states, the value to output is
the current content of Days, as defined in the processor’s context.

According to the semantics of the Slicer, each output event will consist of
a set, formed by the last output of every instance of the Moore machine. Thus,
this set will contain the number of elapsed days of all items whose auction is
currently open (the Moore machine for the other items outputs no number).

88 S. Hallé

This set is then passed to a function processor, which computes the average of
its values (sum divided by cardinality).

As a bonus, we show how to plot a graph of the evolution of this average over
time. We fork the previous output; one branch of this fork goes into a Mutator,
which turns the set into the value 1; this stream of 1 s is then sent to a cumulative
function processor Σ0

+ that computes their sum. Both this and the second branch
of the fork are fed into a function processor, that creates a named tuple where x
is set to the value of the first input, and y is set to the value of the second input.
The result is a tuple where x is the number of input events, and y is the average
computed earlier. These tuples are then accumulated into a set with the means
of another cumulative function processor, this time performing the set addition
operation. The end result is a stream of sets of (x, y) pairs, which could then be
sent to a Scatterplot processor to be plotted with the help of Gnuplot.

One can see again that processors of multiple palettes are involved, and events
of various types are mixed: predicates (pink), sets of numbers (grey), numbers
(turquoise), and named tuples (yellow).

7 Conclusion

In this paper, we have presented a short introduction to the field of Complex
Event Processing, and highlighted the differences between classical CEP prob-
lems and properties typically considered in Runtime Verification. In particular,
we have seen how CEP problems involve intricate computations and transforma-
tions over data fields inside events, while runtime monitors are generally more
powerful for evaluating properties that relate to the sequencing of events.

These observations motivated the development of BeepBeep, an event stream
processing engine that attempts to reconcile these two fields. In BeepBeep’s
generic architecture, basic units of computation called processors can be freely
composed to evaluate a wide range of expressions. Given an appropriate toolbox
of processors, properties involving extended finite-state machines, temporal logic,
aggregation and various other concepts can be evaluated. Moreover, through the
modular mechanism of palettes, end users can easily create their own processors,
thereby extending the expressiveness of the tool.

Still, several elements of BeepBeep have not been discussed due to lack of
space. To start with, BeepBeep proposes its own declarative input language,
eSQL, which provides an alternative to creating processor chains through “glue”
code; the detailed exposition of this language, which is still under development,
is left for a future publication. Performance is also a key aspect of both RV and
CEP; benchmarks have been conducted to compare BeepBeep’s throughput with
a roster of CEP software on a set of queries; these results are, again, left for a
future research paper devoted to the question.

Several research problems around BeepBeep’s concepts of processors and
event streams are also left unexplored. For example, BeepBeep currently does not
support lazy evaluation; if the output of an n-ary processor can be determined by
looking at fewer than n inputs, all inputs must still be computed and consumed.

When RV Meets CEP 89

Implementing lazy evaluation in a stream processing environment could provide
some performance benefits, but is considered at the moment as a non-trivial task.
In addition, since each processor represents an independent unit of computation
communicating through message passing, chains of processors should be easily
amenable to parallelization; whether this would bring tangible improvements in
terms of throughput is currently unknown.

In time, it is hoped that BeepBeep will be adopted as a modular framework
under which multiple event processing techniques can be developed and coexist,
and that their potential for composition will make the sum greater than its parts.

References

1. Esper. http://espertech.com
2. LINQ (language-integrated query). http://msdn.microsoft.com/en-us/library/

bb397926.aspx
3. Simple API for XML. http://docs.oracle.com/javaee/1.4/tutorial/doc/JAXPSAX.

html. Accessed 13 Dec 2013
4. StreamBase SQL. http://streambase.com
5. VoltDB. http://voltdb.com
6. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang,

J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.B.: The design of the Borealis stream processing engine. In: CIDR, pp.
277–289 (2005)

7. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani,R.,
Srivastava, U., Widom, J.: Stream: the stanford data stream management sys-
tem. Technical report 2004-20, Stanford InfoLab (2004). http://ilpubs.stanford.
edu:8090/641/

8. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9

9. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time monitor-
ing: from Eagle to RuleR. J. Log. Comput. 20(3), 675–706 (2010)

10. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29860-8 27

11. Basin, D.A., Klaedtke, F., Marinovic, S., Zalinescu, E.: Monitoring of temporal
first-order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–
285 (2015). http://dx.doi.org/10.1007/s10703-015-0222-7

12. Berry, A., Milosevic, Z.: Real-time analytics for legacy data streams in health: Mon-
itoring health data quality. In: Gasevic, D., Hatala, M., Nezhad, H.R.M., Reichert,
M. (eds.) EDOC, pp. 91–100. IEEE (2013)

13. Bodden, E., Hendren, L.J., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative run-
time verification with Tracematches. J. Log. Comput. 20(3), 707–723 (2010)

14. Brenna, L., Gehrke, J., Hong, M., Johansen, D.: Distributed event stream process-
ing with non-deterministic finite automata. In: Gokhale, A.S., Schmidt, D.C. (eds.)
DEBS. ACM (2009)

http://espertech.com
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://docs.oracle.com/javaee/1.4/tutorial/doc/JAXPSAX.html
http://docs.oracle.com/javaee/1.4/tutorial/doc/JAXPSAX.html
http://streambase.com
http://voltdb.com
http://ilpubs.stanford.edu:8090/641/
http://ilpubs.stanford.edu:8090/641/
http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-642-29860-8_27
http://dx.doi.org/10.1007/s10703-015-0222-7

90 S. Hallé

15. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: continuous dataflow processing for an uncertain world. In: CIDR
(2003)

16. Cheng, K., Krishnakumar, A.S.: Automatic functional test generation using the-
extended finite state machine model. In: DAC, pp. 86–91 (1993). http://doi.acm.
org/10.1145/157485.164585

17. Colombo, C., Gauci, A., Pace, G.J.: LarvaStat: monitoring of statistical properties.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 480–484.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9 38

18. Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-time Java
programs (tool paper). In: Seventh IEEE International Conference on Software
Engineering and Formal Methods (SEFM), pp. 33–37. IEEE Computer Society,
November 2009

19. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME 2005), 23–25 June 2005, Burlington, Vermont, USA, pp. 166–174.
IEEE Computer Society (2005). http://dx.doi.org/10.1109/TIME.2005.26

20. Erlingsson, Ú., Pistoia, M. (eds.) Proceedings of the 2008 Workshop on Program-
ming Languages and Analysis for Security, PLAS 2008, Tucson, AZ, USA, June 8,
2008. ACM (2008)

21. Erlingsson, Ú., Schneider, F.B.: IRM enforcement of Java stack inspection. In:
IEEE Symposium on Security and Privacy, pp. 246–255 (2000)

22. Fegaras, L., Dash, R.K., Wang, Y.: A fully pipelined XQuery processor. In: XIME-
P (2006)

23. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Formal Methods Syst. Des. 27(3), 253–274 (2005). http://dx.doi.org/
10.1007/s10703-005-3399-3

24. Fry, C., Sagar, D.: Streaming API for XML, JSR 173 specification (2003). https://
www.jcp.org/aboutJava/communityprocess/final/jsr173/

25. Goldsmith, S., O’Callahan, R., Aiken, A.: Relational queries over program traces.
In: OOPSLA, pp. 385–402 (2005)

26. Hallé, S., Gaboury, S., Bouchard, B.: Towards user activity recognition through
energy usage analysis and complex event processing. In: PETRA. ACM (2016)

27. Hallé, S., Varvaressos, S.: A formalization of complex event stream processing.
In: Reichert, M., Rinderle-Ma, S., Grossmann, G. (eds.) 18th IEEE Interna-
tional Enterprise Distributed Object Computing Conference, EDOC 2014, Ulm,
Germany, September 1–5, 2014, pp. 2–11. IEEE Computer Society (2014). http://
dx.doi.org/10.1109/EDOC.2014.12

28. Hallé, S., Villemaire, R.: Runtime monitoring of web service choreographies using
streaming XML. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 2118–2125. ACM
(2009)

29. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE T. Serv. Comput. 5(2), 192–206 (2012)

30. Krishnan, R., Goldstein, J., Raizman, A.: A hitchhiker’s guide to StreamInsight
queries, version 2.1 (2012). http://support.sas.com/documentation/onlinedoc/
dfdmstudio/2.4/dfU ELRG.pdf

31. Luckham, D.C.: The power of events - An introduction to complex event processing
in distributed enterprise systems. ACM (2005)

http://doi.acm.org/10.1145/157485.164585
http://doi.acm.org/10.1145/157485.164585
http://dx.doi.org/10.1007/978-3-642-16612-9_38
http://dx.doi.org/10.1109/TIME.2005.26
http://dx.doi.org/10.1007/s10703-005-3399-3
http://dx.doi.org/10.1007/s10703-005-3399-3
https://www.jcp.org/aboutJava/communityprocess/final/jsr173/
https://www.jcp.org/aboutJava/communityprocess/final/jsr173/
http://dx.doi.org/10.1109/EDOC.2014.12
http://dx.doi.org/10.1109/EDOC.2014.12
http://support.sas.com/documentation/onlinedoc/dfdmstudio/2.4/dfU_ELRG.pdf
http://support.sas.com/documentation/onlinedoc/dfdmstudio/2.4/dfU_ELRG.pdf

When RV Meets CEP 91

32. Martin, M.C., Livshits, V.B., Lam, M.S.: Finding application errors and security
flaws using PQL: a program query language. In: OOPSLA, pp. 365–383 (2005)

33. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview
of the MOP runtime verification framework. STTT 14(3), 249–289 (2012).
http://dx.doi.org/10.1007/s10009-011-0198-6

34. Perera, S., Suhothayan, S., Vivekanandalingam, M., Fremantle, P.,
Weerawarana, S.: Solving the grand challenge using an opensource CEP
engine. In: Bellur,U., Kothari, R. (eds.) The 8th ACM International Conference
on Distributed Event-Based Systems, DEBS 2014, Mumbai, India, May 26–29,
2014, pp.288–293. ACM (2014). http://doi.acm.org/10.1145/2611286.2611331

35. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 55

36. Rodrigues, J.: Health Information Systems: Concepts, Methodologies, Tools, and
Applications, vol. 1. IGI Global, Hershey (2010)

37. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electr. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

38. Varvaressos, S., Lavoie, K., Gaboury, S., Hallé, S.: Automated bug finding in video
games: A case study for runtime monitoring. ACM Computers in Entertainment
(2014, in press)

39. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: Chaudhuri, S., Hristidis, V., Polyzotis, N. (eds.) SIGMOD Confer-
ence, pp. 407–418. ACM (2006)

http://dx.doi.org/10.1007/s10009-011-0198-6
http://doi.acm.org/10.1145/2611286.2611331
http://dx.doi.org/10.1007/978-3-662-46681-0_55

Frama-C, A Collaborative Framework for C
Code Verification: Tutorial Synopsis

Nikolai Kosmatov and Julien Signoles(B)

CEA, LIST, Software Reliability and Security Laboratory, PC 174,
91191 Gif-sur-Yvette, France

{nikolai.kosmatov,julien.signoles}@cea.fr

Abstract. Frama-C is a source code analysis platform that aims at
conducting verification of industrial-size C programs. It provides its users
with a collection of plug-ins that perform static and dynamic analysis
for safety- and security-critical software. Collaborative verification across
cooperating plug-ins is enabled by their integration on top of a shared
kernel, and their compliance to a common specification language, ACSL.

This paper presents a three-hour tutorial on Frama-C in which we
provide a comprehensive overview of its most important plug-ins: the
abstract-interpretation based plug-in Value, the deductive verification
tool WP, the runtime verification tool E-ACSL and the test generation
tool PathCrawler. We also emphasize different possible collaborations
between these plug-ins and a few others. The presentation is illustrated
on concrete examples of C programs.

Keywords: Frama-C · ACSL · Abstract interpretation · Deductive
verification · Runtime verification · Test generation · Combinations of
analyses

1 Introduction

The last few decades have seen much of the groundwork of formal software analy-
sis being laid. Several angles and theoretical avenues have been explored, from
deductive verification to abstract interpretation to program transformation to
monitoring to concolic testing. While much remains to be done from an aca-
demic standpoint, these techniques have become mature enough to have been
successfully implemented and used in industrial settings [1].

However, although verification of C programs is of paramount importance
because the C programming language is still the language of choice for devel-
oping safety-critical systems and is also routinely used for security-based appli-
cations, verifying large C programs remains a time-consuming and challenging
task. One of the reasons is related to the C programming language itself since it
combines high level features like arrays and low level features like user-controlled
memory allocations, bitfields and unions. Another reason comes from weaknesses

This work has received funding for the S3P project from French DGE and BPIFrance.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 92–115, 2016.
DOI: 10.1007/978-3-319-46982-9 7

Frama-C, A Collaborative Framework for C Code Verification 93

of each verification technique: dynamic techniques are not bothered by C code
complexity but are not exhaustive, abstract interpretation is exhaustive and
almost automatic but may be imprecise and cannot verify complex functional
properties, while deductive methods may tackle a broad varieties of properties
but require formal specifications and may be less efficient in presence of low level
code. One effective way to circumvent this problem is to combine several analy-
ses in order to reduce weaknesses of each one thanks to the others. For instance,
abstract interpretation can ensure the absence of most runtime errors, deductive
verification can prove most functional properties, while monitoring can check
at runtime the remaining properties. Such analysis combinations is the raison
d’être of Frama-C.

The Frama-C software analysis platform [2] provides a collection of scalable,
interoperable, and sound software analyses for the industrial analysis of ISO
C99 source code. The platform is based on a kernel which hosts analyzers as
collaborating plug-ins and uses the ACSL formal specification language [3] as
a lingua franca. Frama-C includes plug-ins based on abstract interpretation,
deductive verification, monitoring and test case generation, as well as a series of
derived plug-ins which build elaborate analyses upon the basic ones. This large
variety of analysis techniques and its unique collaboration capabilities make
Frama-C most suitable for developing new code analyzers and applying code
analysis techniques in many academic and industrial projects.

This article is a companion paper of a 3-h tutorial which brings participants to
a journey into theFrama-Cworld along its main plug-ins. It aims at providing the
essence of each technique and tool along with a few illustrating examples. While
several tutorials about some parts of Frama-C have already been presented in
previous conferences [4–8], none of them have already presented all these tech-
niques altogether. Here, after a general overview of Frama-C (Sect. 2), we present
deductive verification tool WP [2,9] (Sect. 3), abstract interpretation based plug-
in Value [2,10] and its recent redesign Eva (Sect. 4), the runtime verification
tool E-ACSL [11,12] (Sect. 5) and the test generation tool PathCrawler [13,14]
(Sect. 6). A last section is dedicated to some of their possible collaborations
(Sect. 7).

2 Overview of FRAMA-C

Frama-C is a platform which aims at analyzing source code written in ISO
C99. This code may be annotated with formal specifications written in the ACSL
formal specification language [3] (presented in Sect. 3). Recently Frama-Clang
has been released as a prototype Frama-C extension to handle C++ code. The
platform is written in OCaml [15] and based on a plug-in architecture [16]: each
analyzer is a plug-in which is linked against the Frama-C kernel.

The kernel provides a normalized representation of C programs and ACSL
specifications. In addition, the kernel provides several general services for sup-
porting plug-in development and providing convenient features to Frama-C’s
end-users. For instance, messages, source code and annotations are uniformly

94 N. Kosmatov and J. Signoles

Frama-C Plug-ins
Dynamic Analysis

PATHCRAWLER

E-ACSL

STADY

SANTELTEST

Specification Generation

RTE
AORAÏ

Formal Methods

Deductive Verification

WPJESSIE

Abstract Interpretation

VALUE/ EVA

Code Transformation

Semantic constant folding

CLANG

SPARECODE

SLICING

Browsing of unfamiliar code

CALLGRAPH

Scope & Data-flow browsing
OCCURRENCE

IMPACT

METRICS

Fig. 1. Frama-C plug-in gallery

displayed, whereas parameters and command line options are homogeneously
handled. The kernel also allows plug-ins to collaborate with each other either
sequentially or in parallel. Sequential collaboration consists in a chain of analyses
that perform operations one after another, while parallel collaboration combines
partial analysis results from several analyzers to complete a full program verifi-
cation. Examples of collaborations will be provided in Sect. 7. In particular, the
kernel consolidates analysis results to provide the users with a synthesis of what
is proven and ensure logical consistency when verifying dependent properties:
the proof of a property P by analyzer A may depend on the validity of another
property Q whose proof is done by analyzer B [17].

The Frama-C kernel is open source (under LGPL v2.1), as well as many of
its plug-ins. Several plug-ins are presented in Fig. 1. Many important plug-ins
are dedicated to program verification. First, Frama-C comes with a powerful
abstract interpretation framework based on Value, which aims at computing
over-approximations of possible values of program variables at each program
point. Value is presented in Sect. 4. Next, Frama-C provides two alternative
plug-ins for deductive verification: Jessie (which is now deprecated) and Wp.
These plug-ins aim at verifying that a given C code satisfies its specification
expressed as ACSL annotations. ACSL language and WP plug-in are presented
in Sect. 3. Finally, Frama-C provides dynamic verification through the E-Acsl
plug-in which aims at verifying annotations at runtime. This plug-in is pre-
sented in Sect. 5. Another dynamic tool, PathCrawler 1 is dedicated to test

1 unlike many other Frama-C analyzers, PathCrawler is currently not open source
but is available through the online test generation service http://pathcrawler-online.
com.

http://pathcrawler-online.com
http://pathcrawler-online.com

Frama-C, A Collaborative Framework for C Code Verification 95

case generation and is presented in Sect. 6. Plug-ins Sante, StaDy and Ltest
implement different collaborations between static and dynamic analyses. They
are introduced in Sect. 7.

Other plug-ins are not directly program verifiers. Some of them aim at helping
the users to better understand a source code they are not familiar with: plug-in
Metrics computes some useful metrics about the code, plug-in Occurrences
displays in the Frama-C GUI all occurrences of a particular left-value (taking
into account aliasing), while a few other plug-ins compute scope and dataflow
dependency information. Plug-in Callgraph computes the callgraph, taking
into consideration function pointers as soon as Value has been executed.

Some plug-ins perform program transformations. Plug-in Semantic Con-
stant Folding replaces constant variables by their numerical values and prop-
agates them along the dataflow by taking into account aliasing. Plug-in Slic-
ing simplifies the code by removing code fragments that are irrelevant with
respect to a given program property (e.g. preserve the effects of a particular
statement). Plug-in Sparecode can be seen as a particular case of Slicing
which removes dead code. Plug-in Impact computes the values and statements
impacted (directly or transitively) by the side effects of a given statement. It is
the forward counterpart of the usual (backward) slicing, but it does not necessar-
ily generate a new program: by default it just highlights the impacted statement.

Frama-C also allows analyzers to generate new ACSL annotations which
encode specific properties. Plug-in Aoräı takes as input a Büchi automaton or an
LTL formula and generates ACSL annotations which encode the corresponding
temporal property that can be verified by other means. In the same spirit, plug-
in Rte generates an ACSL annotation for every possible undefined behavior of
the source code. For instance, it generates a guard y �= 0 before a division by y
in the source code.

3 Specification and Deductive Verification with
FRAMA-C/Wp

3.1 Specification of C Programs with ACSL

ACSL (ANSI/ISO C Specification Language) [3] is a formal behavioral specifica-
tion language offered by Frama-C and shared by different Frama-C analyzers.
It allows its users to specify functional properties of C programs similarly to Eiffel
[18] and JML [19]. It is based on the notion of function contract. The contract of
a function f specifies the preconditions that are supposed to be true before a call
of f (i.e. ensured by the caller), and the postconditions that should be satisfied
after the call of f (and should be thus established during the verification of f).
The preconditions are specified in requires clauses, while the postconditions
are stated in ensures clauses. An additional type of postconditions, specified in
an assigns clause in ACSL and used for the so-called frame rule, states a list of
locations of the global memory state that may have a different value before and
after the call. When the contract of f contains such a clause, all locations that

96 N. Kosmatov and J. Signoles

Fig. 2. Function all_zeros specified in ACSL (file all_zeros.c).

are not mentioned in it must have the same value before and after the call of f .
Function contracts can be also represented in the form of different behaviors.

Predicates used in annotations are written in typed first-order logic. Variables
have either a C type or a logical type (e.g. integer or real for mathematical
integer or real numbers). The user can define custom functions and predicates
and use them in annotations together with ACSL built-ins. Indeed, ACSL fea-
tures its own functions and predicates to describe memory states. In particular,
regarding memory-related properties, \valid(p) expresses validity of a pointer
p (i.e. being a non-null pointer which can be safely accessed by the program);
\base addr(p), \block length(p), and \offset(p) express respectively the
base address, the size of the memory block containing p and the offset of p
inside it (in bytes), while \initialized(p) is true whenever the pointed loca-
tion *p has been initialized. We refer the reader to [3] for detailed documentation
of all ACSL features.

Example of Specifications. Figure 2 illustrates a C function all_zeros specified
in ACSL. This function receives as arguments an array t and its size n and
checks whether all elements of the array are zeros. If yes, it returns a nonzero
value, and 0 otherwise. The function contract contains a precondition (line 1)
and postconditions (lines 2–4). The precondition states that the input array
contains n valid memory locations at indices 0..(n-1) that can be safely read
or written, and that the size n is non negative. This property must be ensured by
the caller and should be thus specified in the precondition. The assigns clause
at line 2 states that the function is not allowed to modify any non-local variable.
Without this clause, an erroneous implementation writing zeros in all elements

Frama-C, A Collaborative Framework for C Code Verification 97

Fig. 3. Function find_value specified in ACSL.

of the array and returning 1 would be considered correct with respect to the
contract. Finally, the clause at lines 3–4 states that the result is nonzero if and
only if all elements of the array are equal to zero. The loop contract at lines 8–12
will be discussed in the next section.

Figure 3 provides another example of a specified function. This function is
only declared and takes as arguments an array t of size n and some element elt.
It must return an index i such than t[i] = elt, or −1 if there is no such index.
The precondition (line 1) and the assigns clause (line 2) are similar to the ones
of the function all_zeros. The postcondition is expressed through two named
behaviors. They correspond to the two different cases of the contract. First, the
behavior present states that, if the searched element elt is present in the array
(line 4), the function’s result is an index with the expected property (line 5). The
behavior absent corresponds to the opposite case (line 7). In that case, the func-
tion returns −1 (line 8). Additionally the disjoint behaviors clause states that
these behaviors are mutually exclusive (line 9), while the complete behaviors
clause indicates that their cover all the possible cases of the function (line 10).
In other words, being both disjoint and complete guarantees that one and only
one behavior applies at each function call.

3.2 Deductive Verification with FRAMA-C/Wp

Among other formal software verification techniques, deductive program verifica-
tion consists in establishing a rigorous mathematical proof that a given program
respects its specification. When no confusion is possible, one also says for short
that deductive verification consists in “proving a program”. The weakest pre-
condition calculus proposed by Dijkstra [20] reduces any deductive verification
problem to establishing the validity of first-order formulas called verification con-
ditions. The Wp plug-in [2,9] of Frama-C performs weakest precondition cal-
culus for deductive verification of C programs. Various automatic SMT solvers,
such as Alt-Ergo, CVC4 and Z3, can be used to prove the verification conditions
generated by Wp.

98 N. Kosmatov and J. Signoles

Example of Proof. Let us illustrate deductive verification with Wp on the exam-
ple of Fig. 2. The command frama-c-gui -wp all_zeros.c runs the proof with
Wp on this example and shows the results in the Frama-C GUI. Suppose first
that the user has specified the contract at lines 1–4 without writing the loop con-
tract at lines 8–12. In this case, the proof of the postcondition will not be success-
ful. Indeed, in presence of loops, since the number of loop iterations is unknown,
the deductive verification tool requires a loop invariant, i.e. an additional prop-
erty on the program state that is true before the loop and after each complete
loop iteration. It can be specified in a loop contract using loop invariant and
loop assigns clauses. The clause at line 8 specifies the interval of values of
the loop variable k. The clause at line 9 specifies that all elements at indices
0..(k-1) are equal to 0 (that is indeed true after any complete loop iteration
otherwise the loop execution was interrupted at line 15). Similarly to assigns,
the loop assigns clause specifies the variables (but both global and local ones
in this case) that may change their value during the loop. The loop contract
can also contain a loop variant, which defines a decreasing natural measure
corresponding to an upper bound of the number of remaining loop iterations and
is used to prove that the loop terminates. In this example, n-k provides such a
bound (cf. line 11).

On the complete program of Fig. 2 with the loop contract, Wp successfully
proves that this function respects its specification. In addition, it is possible to
make Wp check the absence of runtime errors using the option -wp-rte. In this
case, thanks to the array validity assumed at line 1 and the interval of values
specified at line 8, Wp successfully proves that array access at line 14 is valid
and the arithmetic operation at line 16 does not overflow (Fig. 4).

Fig. 4. Successful proof for the program of Fig. 2 with Frama-C/Wp.

Frama-C, A Collaborative Framework for C Code Verification 99

Wp’s Models. Deductive methods rely on models. For C programs, arithmetic
models provide abstract representations of machine integers and/or floats, while
memory models are abstractions of the program memory. These models are
a trade-off between simplicity (making proof more automatic) and expressivity
(being able to deal with more properties or programs at the price of making proof
harder). Wp’s internal engine is generic, tries to simplify verification conditions
and does not depend on a particular model [21]. Wp actually comes with several
different arithmetic and memory models. For arithmetics, the users can choose
between mathematical integers or machine integers and between real numbers or
floats. Machine integers make proofs easier, but the user must ensure the absence
of integer overflows by other means (usually by using the -wp-rte option). Using
reals converts float operations to real ones without rounding (that is unsafe
with respect to norms, but tractable), while the float model introduces correct
rounding but the proofs are rarely automatic and often require the use of a proof
assistant (like Coq or PVS).

The Wp’s Hoare memory model, directly inspired by the historic definition
of weakest precondition calculus, is very simple. However, it assumes a program
with no pointer to be sound. A common programming C pattern is nevertheless
to use pointers for function arguments passed by reference. In such cases, their
adresses are never taken and so they are not aliased if they were not aliased
when calling the function. Thus, it remains safe to use the a Hoare-like model:
that is the purpose of the Reference Parameters model (shortly Ref). The last
provided model is the Typed model which allows powerful reasoning on heap
data. The special mode Typed+Ref uses the Typed model for expressiveness but
is automatically able to detect when using the simpler Ref model is safe (making
the proof more automatic).

For additional detail on specification with ACSL and deductive verification
with Wp, the reader may refer to articles [2,21], dedicated tutorials [6,22] and
the Wp manual [9].

4 Value Analysis with FRAMA-C/VALUE and EVA

The Value Analysis plug-in of Frama-C (Value for short) [10] automatically
computes sets of possibles values for the variables of an analyzed program at
each program point, by means of abstract interpretation [23]. It also warns about
potential runtime errors. These objectives and means are shared with commercial
tools like Polyspace [24] or Astrée [25]. However, Value has also distinct goals.
First, it is not application directed: it aims at being directly usable on any C code
in any applicative domain, from low level system libraries to safety-critical appli-
cations.2 One consequence is that Value relies on an efficient generic domain
which can nevertheless be less precise than specific domains designed for specific
code like digital filters [26]. This drawback is circumvented by the Frama-C

2 This goal is not yet reached but progress is regularly made in that direction and it
is still an objective (which is not shared by other widely used tools, as far as we
know).

100 N. Kosmatov and J. Signoles

Fig. 5. Frama-C GUI with Value’s results on PolarSSL’s function net_recv. It dis-
plays the possible values of the function’s parameter buf per callstack.

ecosystem: what cannot be proven by Value may still be proven by another
plug-in, possibly a dedicated one.

Another originality of Value comes from its presence in the Frama-C
ecosystem: one would like to reuse what it has computed in other plug-ins.
Consequently, Value keeps the computed possible values of each variable of the
program at each program point. This information is available in the Frama-
C GUI and helps the user to better understand Value’s results. An illustrative
example for PolarSSL 1.1.73 is presented in Fig. 5. It also allows derived analyses
like slicing to be sound. In particular it helps them to safely interpret function
pointers and to find out potential aliasing. In this way, several plug-ins have
been developed by academic and industrial users for specific goals in a safe way
without spending too much time with pointer intricacies [27–30].

Abstract Domains. Value has hard-coded domains which can not be changed
easily. They have been chosen for their good compromise between precision and
efficiency and rely on heavily optimized datastructures and algorithms [31].

Integers are represented either by an exact set of possible values (when such
a set remains small), or by intervals with congruence information (when the set
of possible values becomes large). For example, an int variable could have values
in the domain [1..41], 1,%2, which means any positive odd integer smaller or

3 See https://tls.mbed.org/.

https://tls.mbed.org/

Frama-C, A Collaborative Framework for C Code Verification 101

equal to 41. Congruence is of particular interest to express offset properties like
“the pointer p is a 32-bit aligned offset from &t[0]”. Note that this domain
is not relational: it does not keep any relation between program variables. For
instance, if x = y, Value only knows that both variables have the same possible
set of values (say, the interval [a; b]). It does not know that x and y have the
same value in [a; b].

Floating points are represented by IEEE 754 double-precision finite inter-
vals. Rounding is performed when necessary (e.g. from simple-precision floats to
double-precision). Infinities and NaN are considered as undesirable errors and
reported as such.

Pointers are seen as a pair of a base address and an offset. This way, it is
possible to verify the absence of buffer overflow by checking that the offset is
positive and smaller than the size of the base. Consequently, Value’s abstract
representation of a pointer is a set of possible base addresses associated with
possible offsets (in bytes). A base address can be either the address of a local
or global variable, the address of a function formal parameter, the address of a
literal string constant, or the special NULL base which is used to encode absolute
addresses (denoted by their offsets). For instance, let P be a global pointer and
t be a local array of 16-bit integers. Then a pointer Q could have values in the
set { NULL; &P[0..24],0 %8; &t[4..10],0 %2 }. It means that pointer Q is
either null, or equal to pointer P with an offset (in bytes) divisible by 8 between
0 and 24, or refers to one of the cells t[2],...,t[5].

In addition to one of the above-mentioned abstract values, Value associates
to each memory location a flag which indicates if its contents may contain an
indeterminate value like uninitialized local variables (ISO C99 standard [32],
Sect. 6.2.4). Having a memory location containing such a value is not an error
per se but accessing it is. The abstract memory representation maps each base
address to a size and a chunk of memory cells. Each chunk itself maps a consec-
utive range of bits to abstract values. This representation is untyped and so can
precisely interpret unions, bitfields and heterogeneous pointer conversions.

Parameterization. Abstract interpreters are automatic tools. However they
rarely give useful results when running from scratch on a new large C program,
because the analysis quickly diverges due to approximations. These tools always
need parameterization to get more precise tractable results while consuming a
decent amount of resources (computation time and computer memory). Value
has a large variety of parameters [10], two of which are presented below.

The most important one is named slevel. It is an instance of trace parti-
tioning [33] and, in particular, allows the user to unroll loops up to a certain
limit. It may be set per loop, per function or for the whole program. Instead
of having a single analysis state that approximates all the values of all possible
executions, it allows the analysis to keep up to n separated states in parallel,
which improves precision.

Another important way of parameterization is case splitting through ACSL
trivial disjunctions (and slevel). Consider the following simple example.

102 N. Kosmatov and J. Signoles

1 /*@ ensures \result ≥ 0; */
2 int f(char x) {
3 if (x == 0) return 0;
4 else return x * x;
5 }

Without case splitting, Value is not able to prove the function’s postcondition.
Indeed, since Value is not relational and x may take any value from −128
to 127, it can only conclude that the returned value at line 4 belongs to the
interval [−16256..16384]. However, the user may introduce the trivial assertion
/*@ assert x <0 || x ==0 || x >0; */ before line 3 and set slevel to 3.
This way, Value will split the 3 cases of the disjunctive predicate and keep
them separated. In each case, it is able to verify the postcondition4. Of course,
it is also able to prove the newly introduced trivial assertion. Interestingly, case
splitting and aggressive trace partitioning often compensate for the absence of
relational domains. It is true in this simple example, and it remains true in much
larger applications.

Eva: Evolved Value Analysis. Since the very last open source release of Frama-
C (namely, Frama-C Aluminium), an Evolved version of Value, named Eva,
is available. It aims at reconciling the variety of target programs of Value
with application-specific abstract domains, which allows to improve precision
and/or efficiency in particular cases. Consequently, Eva transforms Value from
a monolithic analyzer with hard-coded domains to a generic extendable analysis
parameterized by cooperating abstract domains. In Frama-C Aluminium, the
focus was made on supporting the very same domains as in Value for com-
patibility: case studies demonstrate that Eva gets comparable analysis time for
better results. New domains will be introduced in the next releases of Frama-C,
like support for Apron’s domains [34] and Venet’s Gauge [35].

5 Runtime Verification with FRAMA-C/E-ACSL

Frama-C was initially designed as a static analysis platform. Later on, it was
extended to provide dynamic analysis tools as well. First, PathCrawler, a
preexisting test case generation tool (presented in Sect. 6), has been partially
rewritten to become a Frama-C plug-in. Second, a runtime verification tool,
namely E-Acsl, has been implemented as a Frama-C plug-in. The E-Acsl tool
is the purpose of this section.

Since Frama-C was originally oriented towards static verification, ACSL has
the same bias. In particular, it is based on mathematical logic that cannot be
dynamically verified in its entirety. Consequently, an “executable” subset of this
specification language has been designed, in which each annotation has an exe-
cutable meaning. This specification language is also called E-ACSL (“E” stands

4 Interval arithmetic guarantees that the product of two numbers of the same sign is
positive here.

Frama-C, A Collaborative Framework for C Code Verification 103

for “executable”). Given a C program p annotated in E-ACSL, the Frama-C
plug-in E-Acsl generates another C program which observationally behaves
like p if each annotation is satisfied, or reports the first failing annotation and
exits otherwise. Section 5.1 introduces the annotation language, while Sect. 5.2
presents an overview of the tool.

5.1 E-ACSL Specification Language

The E-ACSL specification language [11,36] is a large strict subset of ACSL. It
excludes ACSL constructs which have no significance at runtime. For instance, it
includes neither mathematical lemmas nor axiomatics. There is no termination
property as well, for example, to specify that a function does not terminate:
it could not be verified in finite time at runtime. However, loop variants and
decreases clauses—which are respectively used to prove termination of loops
and recursive functions by specifying a measure which strictly decreases at each
iteration/invocation—are still present because their verification only depends on
(at most) two previous loop/function body runs.

Quantifications. The most important restriction of E-ACSL is certainly that
every quantified variable must be syntactically bounded to a finite interval
(whose bounds are not necessarily constant). For instance, if arr is an array
of len cells, the predicate

\forall integer i; 0≤i<len =⇒arr[i]>0 (1)

means that every cell of arr is positive. However, because of an unbounded
quantification over x, the ACSL predicate \forall integer x, (2*x)%2 == 0
(stating that every even integer is dividable by 2) does not belong to the E-
ACSL language. This restriction is not a strong limitation in practice because
quantifications in program properties are usually constrained by the program
context.

Integers. Example (1) of the previous paragraph illustrates that E-ACSL also
supports mathematical integers in the same way as ACSL: E-ACSL remains
compatible with tools supporting ACSL (in particular, other Frama-C plug-
ins). It is still possible to use modular arithmetic in specifications through
casts. For instance, the term (int)(INT_MAX+1) is interpreted as INT_MIN.5

Although mathematical integers make the runtime verification harder, they can
be safely implemented by using machine integers in almost all practical cases
(see Sect. 5.2).

5 Unlike the ISO C99 standard, ACSL and E-ACSL explicitly specify the semantics
of cast overflows through modular interpretations (see ACSL reference manual [3,
Sect. 2.2.4]).

104 N. Kosmatov and J. Signoles

Undefinedness. The most important change with respect to ACSL is the intro-
duction of undefined terms and predicates à la Chalin [37] through tri-valued
logic. Indeed, undefined terms like 1/0 would lead to an undefined C behav-
ior if executed, while they introduce no issue in static tools: these tools just
cannot prove any non-trivial property containing such terms except tautologies
like 1/0==1/0 (by commutativity of equality). The E-ACSL semantics of such
terms and predicates is undefined in order to overcome this issue.

Another important source of undefinedness is memory accesses like *p and
t[i]. Tools supporting the E-ACSL language must ensure that undefined terms
and predicates are never evaluated. Section 5.2 explains how our Frama-C plug-
in handles them. In order to limit the impact of undefinedness, logical operators
like &&, || and =⇒ are lazy in E-ACSL. For instance, the interpretation of
n �=0 && 10/n==m is always well-defined. This semantics change remains never-
theless consistent with the original ACSL semantics: for any E-ACSL predicate
p, if p is valid (resp. invalid) in ACSL then p is either valid (resp. invalid) or
undefined in E-ACSL. Conversely, if p is valid (resp. invalid) in E-ACSL then
p is also valid (resp. invalid) in ACSL. This fundamental property ensures tool
compatibility between ACSL and E-ACSL.

5.2 E-ACSL Inline Monitoring Tool

The Frama-C plug-in E-Acsl is a program transformation tool: it takes as
input a C program p annotated with E-ACSL specifications and generates
another C program which observationally behaves like p if each annotation is
satisfied, or stops on the first failing annotation otherwise. In other words, E-
Acsl generates an online (more precisely, inline) monitor [38] for a C program
based on its formal specification. This inline monitor is heavily optimized: E-
Acsl got the second place of the first Competition of Runtime Verification tool
(CRV) in 2014 [39], then won the second competition in 2015 (in the category
of online monitoring of C programs in both cases).

Figure 6 shows how simple the E-Acsl transformation looks like in sim-
ple cases6: it mainly converts an ACSL assertion into an executable assertion
through the use of a dedicated C function e_acsl_assert7 which behaves by
default in the same way as the standard C macro assert and can be customized
by the end-user. However, a closer look at this simple example illustrates that
the transformation is not as easy as it may sound. Indeed, E-Acsl generates
long long integers 1LL and 0LL in order to perform the computation in this
(bigger) type and ensure the absence of int overflows in y-1.8 This section pro-
poses a short overview of the transformation scheme which allows E-Acsl to
generate efficient-but-sound code.
6 The generated code shown in this paper is compliant with a 64-bit x86 architecture.
7 It actually takes additional arguments in order to provide informative user feedback

when a property is violated. They are omitted for clarity.
8 The C99 semantics of subtraction ensures that, in the generated code, y is con-

verted to long long through the usual arithmetic conversion before computing the
subtraction (see ISO C99 standard [32, Sects. 6.3.1.8 and 6.5.6]).

Frama-C, A Collaborative Framework for C Code Verification 105

Fig. 6. Naive E-ACSL translation. Original code (left) vs. translated code (right).

Fig. 7. Translation of function div by using GMP.

Implementing Mathematical Integers. E-Acsl uses the GMP library9 in order
to implement mathematical integers. For instance, Fig. 7 presents the generated
code for the previous example of function div when forcing E-Acsl to use GMP
for integer operations. GMP integers are actually pointers that must be allocated
and deallocated. In the example, lines 5–7 and 9 allocate (and initialize at the
same time) four GMP integers, while lines 12–13 free them. Integer operations are
performed through function calls. In our example, the subtraction is computed
at line 8 and the comparison is done at line 10. The runtime check at line 11
consists in checking the result of this comparison.

Although safe, this translation scheme through GMP is quite heavy and inef-
ficient: compare it with the direct translation scheme presented in Fig. 6 to see
how more complex it is. Doing this GMP translation for every integer opera-
tion is not practical, but it allows us to translate any mathematical operations
in a safe way. Consequently, E-Acsl implements a (sub-)type system based on
interval inference which infers, for every integer term, the smallest C type that
may contain all its possible values [11,40]. It is either a C integral type or a
GMP. In our div example, it allows E-Acsl to safely use the type long long to
perform the subtraction without overflow. Our experiments have demonstrated
that almost no GMP code is generated by E-Acsl, except if the initial code does

9 See http://gmplib.org/.

http://gmplib.org/

106 N. Kosmatov and J. Signoles

Fig. 8. Preventing runtime errors in the code generated from specifications.

contain (signed or unsigned) long long integers. It is worth noting that AdaCore
has adapted this solution to SPARK 2014 in order to allow its users to spec-
ify mathematical properties without worrying about overflows while preserving
efficiency at runtime.

Preventing Undefined Behaviors. In Sect. 5.1, we have said that every tool which
aims at supporting the E-ACSL language must ensure that undefined terms and
predicates are never executed. To reach this goal, the E-Acsl plug-in relies on
the Frama-C plug-in Rte. As explained in Sect. 2, this plug-in generates an
ACSL annotation with a guard to prevent every possible undefined behavior of
the source code. All the annotations generated by Rte are actually E-ACSL-
compliant and the Rte’s API allows a developer to generate such annotations
for a particular code fragment (for example, a C expression).

Consequently, when generating some code fragment C, E-Acsl asks Rte to
generate annotations to prevent undefined behavior in C. Then it converts them
into additional code fragment C ′ thanks to its own translator. No recursion is
required because Rte’s generated annotations never contain undefined terms
or predicates: C ′ is always free of undefined behaviors. Figure 8 illustrates this
translation scheme on a simple example: when translating the predicate u/v==2,
E-Acsl generates an annotation v �= 0 thanks to the RTE plug-in. This extra
annotation is then turned into C code by E-Acsl itself.

Supporting Memory-Related Constructs. An important feature of E-ACSL is
memory-related constructs (introduced in Sect. 3.1), which allow the users to
express complex properties about program memory. In particular, the Rte plug-
in may use them to generate annotations preventing memory-related errors like
dereferencing an invalid pointer: if the Rte plug-in has been executed on the
original code in order to generate annotations for possible undefined behaviors,
E-Acsl may be used to detect them at runtime.

Frama-C, A Collaborative Framework for C Code Verification 107

Fig. 9. E-ACSL memory instrumentation.

In the general case, handling such constructs requires to query the program
memory at runtime, for instance, to check whether some data has been fully ini-
tialized, to get the length of a memory block, or to get the offset of a pointer from
its base address. For this purpose, E-Acsl comes with its own memory runtime
library (mRTL) to be linked against the generated code [41]. This code records
program memory modifications in a dedicated mRTL datastore, which can then
be queried to evaluate memory-related E-ACSL constructs. Figure 9 shows such

108 N. Kosmatov and J. Signoles

an instrumentation: memory allocations, deallocations and initializations are
stored in the mRTL store, and checking an assertion requires to query the store.

However, this instrumentation is expensive: it is desirable to avoid it when-
ever possible. In our example, every line marked as useless is indeed not neces-
sary since we are only interested in checking the validity of p at line 16 (that
is, checking whether p is an initialized pointer that refers to a memory location
which can be safely accessed by the program). It is worth noting that line 7
which stores the allocation of the local variable x must be kept because of the
alias between p and &x is created at line 9: p is indeed valid because it is the
address of this local variable.

In order to limit this instrumentation, E-Acsl implements a backward
dataflow analysis that soundly over-approximates the memory locations to be
monitored [40,42]: all other locations (all the lines marked as useless in our
example) can safely be untracked by the monitor.

6 Test Case Generation with PATHCRAWLER

For structural unit testing of C code, Frama-C offers a test case generation tool,
called PathCrawler [13,14]. Given a C source code with a function under test
f , it tries to generate test cases that cover (i.e. activate) all feasible execution
paths in f , that is, to achieve the all-paths test coverage criterion. Its method
combines symbolic execution, concrete execution and constraint solving similarly
to Dynamic Symbolic Execution tools like DART/CUTE, PEX, SAGE, KLEE,
etc. [43].

The main steps of the method are presented in Fig. 10. First, a chosen (par-
tial) program path π is symbolically executed in order to construct its path predi-
cate ϕπ, that is, the constraints over the values of input variables that ensure the
execution of π. Next, a constraint solver is used to solve the set of constraints ϕπ.
PathCrawler relies on the Colibri constraint solver also developed at CEA
List. If it succeeds, the resulting solution provides a test datum that covers the
target path π. This test datum is then executed concretely on an instrumented
version of the function in order to record the complete path and program out-
puts, and to double-check that it covers the target path π. If ϕπ has no solution,
path π is infeasible (i.e. impossible to activate). Finally, the next path to be
covered is chosen. The tool continues similarly for all program paths that are
explored in a depth-first search. When the number of paths is too large for an

Symbolic Execution

Constraint solverConcrete Execution

Constraints of the path to cover

Test data

Executed path

Fig. 10. Main steps of the PathCrawler method.

Frama-C, A Collaborative Framework for C Code Verification 109

Fig. 11. Example of test case generation results on pathcrawler-online.com where the
user can find the test data, executed paths and branches, path predicates, concrete and
symbolic outputs, pass or fail verdicts, etc.

exhaustive path coverage, the user can limit their exploration to paths with at
most k consecutive iterations of loops (k-paths criterion).

PathCrawler is sound, meaning that each test case activates the test objec-
tive for which it was generated. This is verified by concrete execution. Path-
Crawler is also complete in the following sense: if the tool manages to explore
all feasible paths of the program, then the absence of a test for some path means
that this path is infeasible, since the tool does not approximate path constraints
[14, Sect. 3.1].

PathCrawler can accept user-provided test parameters that indicate the
chosen strategy (all-paths or k-paths) and a precondition specifying the desired
value intervals and relationships between input variables. They should be care-
fully specified in order to avoid generation of inadmissible test data. Path-
Crawler can be used through the online test generation service http://
pathcrawler-online.com/. Figure 11 illustrates the results of a test generation
session with this service. The reader can find more information on the tool and
its usage in [4,5,13,14].

Recently, a new efficient variant of dynamic symbolic execution has been pro-
posed for a rich set of test coverage criteria [44]. In this approach, test generation
is highly optimized in order to avoid both unnecessary redundant attempts to
cover a test objective and an exponential blow-up of the search space (in par-
ticular, by removing the constraints of a test objective from the constraint store
while trying to cover other objectives). This technique has been implemented in
the LTest toolset [45] on top of PathCrawler.

http://pathcrawler-online.com/
http://pathcrawler-online.com/

110 N. Kosmatov and J. Signoles

7 Combinations of Analyses

Various combinations of analyses have been designed and implemented within
Frama-C. In this section, we present a few of them where different static and
dynamic analyzers are advantageously combined together in Frama-C.

The SANTE method [46,47] aims at detecting runtime errors and combines
three Frama-C analyzers. First it runs value analysis to detect potential errors,
or alarms. Next, it runs slicing in order to simplify the program with respect to
these alarms by preserving possible erroneous behavior. Finally, test generation
with PathCrawler tries to cover these alarms and trigger potential erroneous
situations. PathCrawler can confirm an alarm as a real bug, or sometimes,
when it manages to cover all paths without triggerring the alarm, establish that it
is safe (i.e. a false alarm). In this combination, the analyzers are complementary:
error detection with abstract interpretation based value analysis is complete
but imprecise, while testing is precise but incomplete since it is in general not
exhaustive. Slicing removes irrelevant code, simplifies the search space and thus
makes testing more efficient.

The SANTE method was recently extended to security flaw detection and
successfully applied to the Heartbleed vulnerability in OpenSSL library [48]. Its
methodology is shown in Fig. 12. In addition to value analysis that detects run-
time errors, taint analysis is used to identify alarms that can be impacted by
potentially malicious input values and are likely to be exploitable. After a pro-
gram simplification step with slicing, a dynamic analysis step (with the fuzzing
tool Flinder) is used to try to trigger the alarms. This work also demonstrates the
possibilities of collaboration of Frama-C analyzers with external tools: indeed,
taint analysis and fuzz testing tools used in this project were implemented by
two industrial partners.

Program p

Value & Taint analysis

Program p, Alarms

Program slicing

Slice p′, Alarms

Fuzz testing

Diagnostic

Fig. 12. Methodology of the Flinder-SCA tool.

Frama-C, A Collaborative Framework for C Code Verification 111

Another interesting collaboration where dynamic analysis also improves a
static verification technique is realized by the STADY tool [49]. During deductive
verification, when some proof fails, STADY runs test generation to help the
validation engineer to understand the reason of each proof failure and illustrate
it by a counterexample.

Inversely, static analysis can be beneficial for dynamic analysis. In the context
of the LTest testing toolset [45], a combination of Value and Wp is efficiently
used to detect infeasible test objectives and therefore to avoid the waste of time
of covering them during test generation [50]. Another combination, where static
analysis helps to optimize runtime verification by removing irrelevant monitoring
code, has been mentioned in Sect. 5.

8 Conclusion

Modern software has nowadays become increasingly critical and widely expanded
in various domains of our life. Bugs and security flaws may have very expensive
costs and sometimes lead to dramatic consequences. In this context, practical
and efficient tools for software analysis and verification are necessary to ensure
a high level of safety and security of software.

In this paper we have presented a synopsis of a tutorial on Frama-C, a rich
and extensible platform for analysis of C code. Frama-C has been successfully
applied in several industrial [28,51–54] and academic projects [27,29,55–59], and
has become a reference for teaching software verification in several universities
and engineering schools all around the world (including France, Germany, United
Kingdom, Portugal, Russia, Brazil, China, United States). We have described
its main analyzers based on abstract interpretation, deductive verification, run-
time assertion checking and test case generation. These analyzers are publicly
available in open-source or online versions. We have also emphasized a few com-
binations of analyses that appear to be practical and complementary to each
other. Frama-C provides a convenient and powerful platform for combining
different analyzers and development of new ones.

References

1. Boulanger, J.L. (ed.): Industrial Use of Formal Methods: Formal Verification.
Wiley-ISTE, New York (2012)

2. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

3. Baudin, P., Filliâtre, J.C., Hubert, T., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

4. Kosmatov, N., Williams, N., Botella, B., Roger, M., Chebaro, O.: A lesson on struc-
tural testing with PathCrawler-online.com. In: Brucker, A.D., Julliand, J. (eds.)
TAP 2012. LNCS, vol. 7305, pp. 169–175. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30473-6 15

http://frama-c.com/acsl.html
http://dx.doi.org/10.1007/978-3-642-30473-6_15
http://dx.doi.org/10.1007/978-3-642-30473-6_15

112 N. Kosmatov and J. Signoles

5. Williams, N., Kosmatov, N.: Structural testing with PathCrawler: tutorial synop-
sis. In: International Conference on Quality Software (QSIC 2012), pp. 289–292.
IEEE (2012)

6. Kosmatov, N., Prevosto, V., Signoles, J.: A lesson on proof of programs with frama-
C. Invited Tutorial Paper. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol.
7942, pp. 168–177. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38916-0 10

7. Kosmatov, N., Signoles, J.: A lesson on runtime assertion checking with frama-C.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 386–399. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40787-1 29

8. Kosmatov, N., Signoles, J.: Runtime assertion checking and its combinations
with static and dynamic analyses. In: Seidl, M., Tillmann, N. (eds.) TAP
2014. LNCS, vol. 8570, pp. 165–168. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-09099-3 13

9. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z.: WP plug-in manual. http://
frama-c.com/wp.html

10. Cuoq, P., Yakobowski, B., Prevosto, V.: Frama-C’s value analysis plug-in. http://
frama-c.com/download/value-analysis.pdf

11. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static
and dynamic analysis of C programs. In: the 28th Annual ACM Symposium on
Applied Computing (SAC 2013), pp. 1230–1235. ACM (2013)

12. Signoles, J.: E-ACSL user manual. http://frama-c.com/download/e-acsl/e-acsl-
manual.pdf

13. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005). doi:10.1007/11408901 21

14. Botella, B., Delahaye, M., Hong-Tuan-Ha, S., Kosmatov, N., Mouy, P., Roger,
M., Williams, N.: Automating structural testing of C programs: experience with
PathCrawler. In: International Workshop on Automation of Software Test (AST
2009), pp. 70–78. IEEE (2009)

15. Cuoq, P., Signoles, J.: Experience report: Ocaml for an industrial-strength static
analysis framework. In: International Confererence on Functional Programming
(ICFP 2009), pp. 281–286 (2009)

16. Signoles, J.: Software architecture of code analysis frameworks matters: the Frama-
C example. In: Workshop on Formal Integrated Development Environment (F-IDE
2015), pp. 86–96 (2015)

17. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32469-7 8

18. Meyer, B.: Object-oriented Software Construction. Object-oriented Series, 2nd edn.
Prentice Hall, New York (1997)

19. Leavens, G.T., Cheon, Y., Clifton, C., Ruby, C., Cok, D.R.: How the design of JML
accommodates both runtime assertion checking and formal verification. In: Boer,
F.S., Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO 2002. LNCS, vol.
2852, pp. 262–284. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39656-7 11

20. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

21. Correnson, L.: Qed. Computing what remains to be proved. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 215–229. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-06200-6 17

http://dx.doi.org/10.1007/978-3-642-38916-0_10
http://dx.doi.org/10.1007/978-3-642-40787-1_29
http://dx.doi.org/10.1007/978-3-319-09099-3_13
http://dx.doi.org/10.1007/978-3-319-09099-3_13
http://frama-c.com/wp.html
http://frama-c.com/wp.html
http://frama-c.com/download/value-analysis.pdf
http://frama-c.com/download/value-analysis.pdf
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf
http://frama-c.com/download/e-acsl/e-acsl-manual.pdf
http://dx.doi.org/10.1007/11408901_21
http://dx.doi.org/10.1007/978-3-642-32469-7_8
http://dx.doi.org/10.1007/978-3-540-39656-7_11
http://dx.doi.org/10.1007/978-3-319-06200-6_17

Frama-C, A Collaborative Framework for C Code Verification 113

22. Burghardt, J., Gerlach, J., Lapawczyk, T.: ACSL by example (2016).
https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample/blob/master/
ACSL-by-Example.pdf

23. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages (POPL 1977), pp. 238–252. ACM Press (1977)

24. Deutsch, A.: Static verification of dynamic properties. PolySpace White Paper
(2003)

25. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min, A., Monniaux, D., Rival,
X.: The ASTRE analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

26. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24725-8 4

27. Berthomé, P., Heydemann, K., Kauffmann-Tourkestansky, X., Lalande, J.F.:
Attack model for verification of interval security properties for smart card C codes.
In: Programming Languages and Analysis for Security (PLAS 2010), pp. 1–12.
ACM (2010)

28. Cuoq, P., Delmas, D., Duprat, S., Moya Lamiel, V.: Fan-C, a Frama-C plug-in for
data flow verification. In: Embedded Real-Time Software and Systems Congress
(ERTS22012) (2012)

29. Demay, J.C., Totel, E., Tronel, F.: SIDAN: a tool dedicated to software instru-
mentation for detecting attacks on non-control-data. In: International Conference
on Risks and Security of Internet and Systems (CRiSIS 2009), pp. 51–58. IEEE
(2009)

30. TrustInSoft: tis-ct blog post. http://trust-in-soft.com/tis-ct/
31. Bonichon, R., Cuoq, P.: A mergeable interval map. Studia Inform. Univ. 9(1), 5–37

(2011)
32. ISO/IEC 9899:1999: Programming languages – C
33. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static

analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31987-0 2

34. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Computer Aided Verification (CAV 2009), pp. 661–667 (2009)

35. Venet, A.J.: The gauge domain: scalable analysis of linear inequality invariants.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 139–154.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 15

36. Signoles, J.: E-ACSL: Executable ANSI/ISO C Specification Language, May 2015.
http://frama-c.com/download/e-acsl/e-acsl.pdf

37. Chalin, P.: Engineering a sound assertion semantics for the verifying compiler.
IEEE Trans. Softw. Eng. 36, 275–287 (2010)

38. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy,
M., Peled, D., Kalus, G. (eds.) Engineering Dependable Software Systems. NATO
Science for Peace and Security Series - D: Information and Communication Secu-
rity, vol. 34, pp. 141–175. IOS Press, Amsterdam (2013)

39. Bartocci, E., Bonakdarpour, B., Falcone, Y., Colombo, C., Decker, N., Klaedtke, F.,
Havelund, K., Joshi, Y., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D.,
Zalinescu, E., Zhang., Y.: First International Competition on Runtime Verification.
Rules, Benchmarks, Tools and Final Results of CRV 2014 (Submitted)

40. Jakobsson, A., Kosmatov, N., Signoles, J.: Rester statique pour devenir plus rapide,
plus précis et plus mince. In: Journes Francophones des Langages Applicatifs
(JFLA 2015) (2015) (in French)

https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample/blob/master/ACSL-by-Example.pdf
https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample/blob/master/ACSL-by-Example.pdf
http://dx.doi.org/10.1007/978-3-540-24725-8_4
http://trust-in-soft.com/tis-ct/
http://dx.doi.org/10.1007/978-3-540-31987-0_2
http://dx.doi.org/10.1007/978-3-642-31424-7_15
http://frama-c.com/download/e-acsl/e-acsl.pdf

114 N. Kosmatov and J. Signoles

41. Kosmatov, N., Petiot, G., Signoles, J.: An optimized memory monitoring for run-
time assertion checking of C programs. In: Legay, A., Bensalem, S. (eds.) RV
2013. LNCS, vol. 8174, pp. 167–182. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40787-1 10

42. Jakobsson, A., Kosmatov, N., Signoles, J.: Expressive as a tree: optimized memory
monitoring for C (Submitted)

43. Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C.S., Sen, K., Tillmann, N.,
Visser, W.: Symbolic execution for software testing in practice: preliminary assess-
ment. In: International Conference on Software Engineering (ICSE 2011), pp. 1066–
1071. ACM (2011)

44. Bardin, S., Kosmatov, N., Cheynier, F.: Efficient leveraging of symbolic execution
to advanced coverage criteria. In: International Conference on Software Testing,
Verification and Validation (ICST 2014), pp. 173–182. IEEE (2014)

45. Bardin, S., Chebaro, O., Delahaye, M., Kosmatov, N.: An all-in-one toolkit for
automated white-box testing. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS,
vol. 8570, pp. 53–60. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09099-3 4

46. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances a
verification technique combining static and dynamic analysis. In: The ACM Sym-
posium on Applied Computing (SAC 2012), pp. 1284–1291. ACM (2012)

47. Chebaro, O., Cuoq, P., Kosmatov, N., Marre, B., Pacalet, A., Williams, N.,
Yakobowski, B.: Behind the scenes in SANTE: a combination of static and dynamic
analyses. Autom. Softw. Eng. 21(1), 107–143 (2014)

48. Kiss, B., Kosmatov, N., Pariente, D., Puccetti, A.: Combining static and dynamic
analyses for vulnerability detection: illustration on heartbleed. In: Piterman, N.
(ed.) HVC 2015. LNCS, vol. 9434, pp. 39–50. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-26287-1 3

49. Petiot, G., Kosmatov, N., Botella, B., Giorgetti, A., Julliand, J.: Your proof fails?
Testing helps to find the reason. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP
2016. LNCS, vol. 9762, pp. 130–150. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-41135-4 8

50. Bardin, S., Delahaye, M., David, R., Kosmatov, N., Papadakis, M., Traon, Y.L.,
Marion, J.: Sound and quasi-complete detection of infeasible test requirements. In:
International Conference on Software Testing, Verification and Validation (ICST
2015), pp. 1–10. IEEE (2015)

51. Bishop, P.G., Bloomfield, R.E., Cyra, L.: Combining testing and proof to gain
high assurance in software: a case study. In: International Symposium on Software
Reliability Engineering (ISSRE 2013), pp. 248–257. IEEE (2013)

52. Cuoq, P., Hilsenkopf, P., Kirchner, F., Labb, S., Thuy, N., Yakobowski, B.: Formal
verification of software important to safety using the Frama-C tool suite. In: Inter-
national Topical Meeting on Nuclear Plant Instrumentation, Control and Human
Machine Interface Technologies (NPIC & HMIT) (2012)

53. Delmas, D., Duprat, S., Moya-Lamiel, V., Signoles, J.: Taster, a Frama-C plug-
in to enforce coding standards. In: Embedded Real-Time Software and Systems
Congress (ERTS22010)

54. Pariente, D., Ledinot, E.: Formal verification of industrial C code using Frama-C: a
case study. In: International Conference on Formal Verification of Object-Oriented
Software (FoVeOOS 2010) (2010)

55. Ceara, D., Mounier, L., Potet, M.L.: Taint dependency sequences: A characteri-
zation of insecure execution paths based on input-sensitive cause sequences. In:
the 3rd International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2010), pp. 371–380 (2010)

http://dx.doi.org/10.1007/978-3-642-40787-1_10
http://dx.doi.org/10.1007/978-3-642-40787-1_10
http://dx.doi.org/10.1007/978-3-319-09099-3_4
http://dx.doi.org/10.1007/978-3-319-26287-1_3
http://dx.doi.org/10.1007/978-3-319-26287-1_3
http://dx.doi.org/10.1007/978-3-319-41135-4_8
http://dx.doi.org/10.1007/978-3-319-41135-4_8

Frama-C, A Collaborative Framework for C Code Verification 115

56. Ayache, N., Amadio, R., Régis-Gianas, Y.: Certifying and reasoning on cost anno-
tations in C programs. In: Formal Methods for Industrial Critical Systems (FMICS
2012) (2012)

57. Carvalho, N., Silva Sousa, C., Pinto, J.S., Tomb, A.: Formal verification of
kLIBC with the WP frama-C plug-in. In: Badger, J.M., Rozier, K.Y. (eds.) NFM
2014. LNCS, vol. 8430, pp. 343–358. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06200-6 29

58. Gavran, I., Niksic, F., Kanade, A., Majumdar, R., Vafeiadis, V.: Rely/guarantee
reasoning for asynchronous programs. In: International Conference on Concurrency
Theory (CONCUR 2015), pp. 483–496 (2015)

59. Nguena-Timo, O., Langelier, G.: Test data generation for cyclic executives with
CBMC and frama-C: a case study. Electr. Notes Theor. Comput. Sci. 320, 35–51
(2016)

http://dx.doi.org/10.1007/978-3-319-06200-6_29
http://dx.doi.org/10.1007/978-3-319-06200-6_29

Using Genetic Programming
for Software Reliability

Doron Peled(B)

Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Software reliability methods, such as testing and model
checking, are well integrated into the software development process. They
are complemented by safety enforcement mechanisms such as run time
verification. However, even with a wealth of techniques and method-
ologies for developing reliable systems, it is still quite challenging to
eliminate all the bugs from software systems. One of the reasons is the
magnitude of software systems, having to handle a very large number
of use cases and possible interactions with an environment or between
concurrent components. Genetic algorithms and programming provide a
powerful heuristic search that involves randomization based on operators
that simulate natural reproduction. We show various ways where genetic
algorithms and programming can be integrated with formal methods to
enhance software reliability.

1 Introduction

Computer applications surround our daily functions and well being, penetrating
to a growing number of aspects of life and expanding in capabilities. Software
development cannot exist nowadays without the intensive use of formal methods.
Traditional methods of testing are still in extensive use, as well as more modern
methods for the automatic testing of programs and systems, and algorithms that
provide more comprehensive validation, such as model checking. There is also
a growing interest in the automatic synthesis of (parts of) code directly from
specification.

One of the problems in achieving software reliability is a combinatorial growth
in complexity in the size of the system. A naive estimate for the complexity of the
system is the number of possible states, representing the instantaneous values of
all data stored. This is an enormous number, which is exponential in the number
of bits that are used to hold all pieced of data, including internal representation of
various items such as program counters and procedure call stacks. This number is
larger than the actual number of states that the system may actually reach. Still,
the actual number of involved states is not of a reasonable magnitude that can
be enumerated as part of any formal method tool. Then, the number of possible
executions, where the system moves between states, can be exponentially larger, in
fact, it can even be unbounded. There seems to be a race between newly developed

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 116–131, 2016.
DOI: 10.1007/978-3-319-46982-9 8

Using Genetic Programming for Software Reliability 117

testing and verification methods implemented within increasingly powerful tools,
and the growing size and intricacy of new software projects.

There are several ways to combat the combinatorial explosion of system size.
One principle is to check, test or verify a system compositionally instead of
attacking the entire system or a large portion of it; the checks are designed in
a way that would cover, when taken together, a large as possible part of the
system. This approach still falls short of achieving comprehensiveness in many
software projects, where sometimes even small parts of the system may witness a
huge state space. The principle of abstraction allows one to map the state space
of a system into a much smaller one. If we are interested only in the sign of a
multiplication result, we may replace two 64 bits integers by the values −1, 0
and 1, having altogether 9 possible values to check. However, abstraction may
also fall short of reducing the number of possibilities that we need to check.
Other methods can help us to bound these possibilities. For example, partial
order reduction (see e.g., [6]) can be used to partition the executions, based on
inherent commutativity between actions in concurrent systems, into equivalence
classes; the executions in each equivalence class are indifferent with respect to
the checked properties, hence it is possible to check only representatives of the
equivalence classes. A further technique with growing popularity is the use of
randomization. In some cases where we cannot comprehensively check a sys-
tem, we can at least sample it and provide some statistical results. We may use
randomization to provide noncomprehensive model checking, as in [9].

Genetic algorithms provide a heuristic search strategy that uses random-
ization and is based on natural reproduction principles such as mutation and
crossover. This is a beam search, progressing from one collection of points, called
generation, to the next one, without backtracking. It promotes the propaga-
tion and evolution of individual points that show better potential through the
calculation of a fitness function. There are a several places where the genetic
principles can interface with formal methods, exploiting the combined power of
these techniques. We will describe some of these combinations related to testing,
verification and the automatic synthesis of correct-by-construction code.

2 Genetic Algorithms

During the 1970s, Holland [11] established the field known as Genetic Algorithms
(GA). Individual candidate solutions are represented as fixed length strings of
bits, corresponding to chromosomes in biological systems. Candidates are eval-
uated using a fitness function. This is a value that approximates the distance of
the candidate from a desired solution. Genetic algorithms (and programming)
differ from traditional search methods that progress from one point to another.
Instead it is a kind of beam search in this sense that progress evolves a set of
candidates (the beam) into a successor set. Each such set is a generation, and
there is no backtracking. The different candidates in a single generation have
a combined effect on the search, as progress tend to promote and improve the
candidates that are better according to the fitness function and subsequently
improve the fitness average.

118 D. Peled

Inspired by genetic selections, candidates progress from one generation to the
next one according to one of the following cases:

– Reproduction. Part of the candidates are selected to propagate from one gen-
eration to the subsequent one. The reproduction is done at random, with
probability relative to the fitness value or to the relation between the fit-
ness of the selected individual and the average of fitness values in the current
generation.

– Crossover. Some pairs of the candidates selected for reproduction are chosen,
with some given probability pc, to be combined using the crossover operation.
This operation takes parts of bitstrings from two parent solutions and com-
bines them into a two new solutions, which potentially inherit useful attributes
from their parents. The lengths of the two parts needs to sum up to the fixed
length of bitstrings representing candidates.

– Mutation. This operation randomly alters the content of small number of bits
from candidates selected for reproduction (this can also be done after the
crossover). To do that, one can decide on mutating each bit separately with
some probability pm.

A one-point crossover decides at random on the point k of splitting, where
1 ≤ k < l for a bit-string of length l. One new candidate will consist of the first
k prefix bits from the first selected candidate, and the l − k suffix bits from the
second, and the other new candidate will consist of the first k prefix bit from the
second selected candidate and the l − k suffix bit from the first. For example,
the shuffle point between the following two strings

10110110 11011010

is after 3 bits. The resulted strings are the following:

10111010 11010110

The process of selecting candidates from the previous generation and deciding
whether to apply crossover or mutate them continues until we complete a new
generation. All generations are of some predefined size N . This can be, typically,
a number between 50 and 500.

Genetic algorithms thus perform the following steps:

1. Randomly generate N initial candidates.
2. Evaluate the fitness of the candidates.
3. If a satisfactory solution is found, or the number of generations created

exceeds a predefined limit (say hundreds or a few thousands), terminate.
4. Otherwise, select candidates for reproduction using randomization, propor-

tional to the fitness values and apply crossover or mutation, again using ran-
domization, until N candidates are obtained.

5. Go to step 2.

Using Genetic Programming for Software Reliability 119

Holland [11] tried to explain the intuition behind the success of the genetic
heuristic search with a schema theorem. We will present a simplified version that
takes into account only mutations, but not crossover. The idea is that a good
solution consists of good “building blocks” or “schemas” and that the search
tends to quickly increase the density of candidate with better building blocks. A
schema, (or template) represents a building block. In this analysis, it is a string
of 1s, 0s and ∗s: the latter represents a “wildcard”, i.e., can correspond to either
1 or 0. Thus, 1 ∗ 0 ∗ 1 is a schema for candidates of length 5 that allows four
possibilities, for all the cases of replacing the two ∗s with either 0 or 1. There
are 3l possible schemas (but 22

l

sets of subsets of candidates).
Now, let N(s, t) be the number of instances for the schema s at generation

t and the average fitness of these instances u(s, t). Statistically, the number of
times a candidate x with fitness f(x) is selected at a generation with average
fitness f̄(t) is directly proportional to f(x)/f̄(t). Hence, the expected number of
candidates to be selected for reproduction for schema s at generation t is:

∑
x∈s

f(x)
f̄(t)

=
u(s, t)
f̄(t)

N(s, t)

Now we take into account mutation of candidates that are selected for repro-
duction. Suppose that for each bit of such a selected candidate we decide with
small probability pm whether to mutate the bit (from 1 to 0 or from 0 to 1). Let
o(s) be the order of the schema s, i.e., the number of its non ∗ characters (for
s = 1 ∗ 0 ∗ 1, o(s) = 3). Then the probability that a selected candidate is not
caused to leave the schema due to mutation is (1 − pm)o(s). Overall (ignoring
for simplicity the effect of mutation) this gives the expected number of schema
s candidates in generation t + 1 to be:

E(N(s, t + 1) ≥ u(s, t)
f̄(t)

N(s, t)(1 − pm)o(s)

The reason we have ≥ rather than = is that instances of a scheme s can also
be randomly generated by mutation from instances of other schemes. Depending
on how good the fitness of candidates of s with respect to other candidate,
the population of candidates of s can grow exponentially with the number of
generations.

An individual candidate can participate in an effort to increase the population
of multiple good building blocks that it is comprised of. In that sense, each
candidate can participate in a “parallel effort” to improve the quality of the
population based on several schemas.

The operations of crossover and mutation can produce candidates with new
helpful building blocks. Genetic algorithms were successfully applied to a large
variety of domains, including strategies for games, optimization for economical
systems, etc.

120 D. Peled

2.1 Testing Using Genetic Programming

Testing is the most common, and also oldest, software reliability method used. It
is based on sampling the code while observing whether the inspected behaviors
comply with the desired behavior. There are different principles to generate the
test suite for code (see, e.g., the classical testing book by Myers [24]). The main
challenge is to select a good test suite that will provide a high probability of
detecting design programming errors but would have a reasonable size.

In [8] a genetic algorithm was used to select the execution paths that are
tested. The idea is to use a crossover operator that is inspired by genetic pro-
gramming. A finite execution path is represented as a bitstring of some length,
a sort of a chromosome. A trivial description of a path would use k bits per each
state to encode the next successor. This allows up to 2k successors. However, the
number of enabled successors per state is not fixed. Instead, the representation
looks at the number of successors n from a state reached during testing using
the current chromosome and reads the next �log(n)� bits. If this gives a value
that is bigger than the number of currently enabled transitions, then these bits
are corrected to a randomly chosen value between 0 and n − 1, representing one
possible successor. Then, the crossover just affixes together two parts from two
parent chromosomes.

As the goal of testing, in this case, is finding deadlocks and checking violation
of inline assertions, the following fitness calculation is used:

– The number of enabled transitions are summed up along the checked path.
The fitness grows inversely proportional to this number, as paths with small
number of enabled transitions are often more likely to lead to deadlocks.

– The fitness grows up with the number of states in which inline assertions
are checked. One can also increase fitness for occurrences of tests (as in if
statement conditions) that lead to the inline assertions.

– When checking programs with message passing, fitness grows up proportion-
ally to the number of messages being sent.

3 Synthesis Using Genetic Programming

Software synthesis is a relatively new research direction. Manna and Wolper [23]
suggested a transformation of temporal logic specification into automata. A sim-
ilar idea appears also in the early model checking paper of Clarke and Emer-
son [5]. The translation into an automaton (on infinite sequences) provides an
operational description of these sequences. Then, the operations that belong
to different processes are projected out on these processes, while a centralized
scheduler enforces globally the communication to occur in an order that is con-
sistent with the specification. The main disadvantage of this approach is that
due to the centralized scheduler, concurrency is lost.

Concurrent systems are complicated to synthesize: the specified task needs to
be decomposed into different components, where each one has limited visibility
and control over the behavior of the other components. Pnueli and Rosner [26]

Using Genetic Programming for Software Reliability 121

showed that automatic synthesis of concurrent systems with distributed com-
ponents from Linear Temporal Logic specification is, in general, undecidable.
Decidable cases are quite restrictive, see, e.g., [21].

Genetic programming [2,19] is a method for the automatic generation of
computer programs by a process that mimics biological evolution and Darwinian
natural selection. Turing [12] provided some initial insights about the connection
between biological evolution, mutations and selection, and algorithmic iterative
search in the space of candidate solutions or programs.

A number of researchers suggested methodologies of representing and evolv-
ing computer programs. One of the most influential works was by Koza [19],
who gave the field its name. Genetic programming [19] is a direct successor
of genetic algorithms. In GP, each individual organism represents a computer
program. Instead of fixed length strings, programs are represented by variable
length structures, such as trees or a sequences of instructions. Each individual
solution is built from a set of functions and terminals, and corresponds to a
program or an expression in a programming language that can be executed. The
genetic operations were customized in order to match the flexible structure of
individuals.

For instance, in tree-based genetic programming, crossover is performed by
selecting subtrees on each of the parents, and then swapping between them. This
forms two new programs, each having parts from both of its parents. Mutation
can be carried out by choosing a subtree and replacing it by another randomly
generated subtree. The fitness is calculated by directly running the generated
programs on a large set of test cases and evaluating the results. In Koza’s work,
crossover is the main genetic operation, and mutations are negligible. On the
other hand, there is an ongoing debate about the actual role and importance of
crossover. The main question is whether it indeed combines building blocks into
larger blocks of code, or just acts as a macro mutation. There were various sug-
gestions of improving crossover, while other researches focused on the mutation
operation [4].

GP has successfully generated complex solutions to problems in a broad range
of domains, and it constantly yields human-competitive results [20]. Herman and
Jones [10] subscribed genetic programming to a class of heuristic search methods
that they termed search-based software engineering. These fitness guided search
methods, which include also simulated annealing, are aimed at constructing,
improving and correcting software artifacts.

Representation of code uses syntax trees, as shown in Fig. 1. It is quite easy
to transfer between program and a syntax tree (this is the usual task of a com-
piler) and vice versa. One can use either of these representations for verification,
however, the syntax tree representation can be easily utilized for applying the
genetic operations of mutation and crossover. These trees are well-typed, which
means that each node is classified as code, (Boolean) condition or expression.
The genetic operations, need to respect these (and possibly further) types, e.g.,
expressions can be exchanged with expressions.

122 D. Peled

while

<>

a[]

2

0 a[]

me

1

:=

while

<>

a[]

2

0 a[]

me

:=

a[]

0

while (a[2]<>0) a[me]:=a[0]while (a[2]<>0) a[me]:=1

Fig. 1. Mutation

There are several kinds of mutation operations. In replacement mutation, we
pick at random a node in the tree, which roots a subtree. Then we throw away
this subtree and replace it with a subtree of the same type, which we generate
at random. Figure 1 demonstrate this kind of mutation. In this case, we chose
the rightmost leaf node, which we marked with double ellipse. In this case, the
subtree consists of this single node, representing the constant 1. Thus, it needs to
be replaced with another expression, built at random. In this case we generated
a new subtree consisting of two nodes, representing the expression a[0].

In insertion mutation, we generate a new node of the same type as the
selected subtree and insert it just above it (type permitting). This means that the
new node needs to have the selected subtree as one of its descendants. Then we
may need to complete other descendant of the newly inserted node, as required.
For example, if we pick up an expression and insert above it a node that corre-
sponds to addition +, we can make the expression one of the descendants to be
added (left or right), but need to complete the tree with another expression to
be added to make it syntactically correct. The reduction mutation has the oppo-
site effect of insertion: the selected node is replaced with one of its offsprings
(type permitting). The remaining of the offsprings are just deleted. In deletion
mutation we remove the selected subtree, and recursively update the ancestors
to make the program syntactically correct.

Crossover can be performed as followsL: we pick up two candidate trees, then
select in them, at random, two nodes that are roots for subtrees of compatible
types. Then we exchange the two subtrees to generate two new trees.

The syntax trees are not limited to a fixed size, as is the bit string repre-
sentation of genetic algorithms. Therefore the candidates can shrink or grow
after mutation and crossover. Because of this, there is actually a tendency of
candidates to grow up with unnecessary code, for example, assignments such
as a[1] := a[1] or larger pieces of code that do not contribute anything. This
is called bloating. the countermeasure for this, called parsimony pressure, is to
provide a negative value to the fitness function corresponding to the length of

Using Genetic Programming for Software Reliability 123

the code. As a consequence, resulted solutions are not expected to have a perfect
fitness value, but instead they need to pass all the tests/verifications performed.

3.1 Calculating Fitness

An important ingredient of genetic programming is providing a fitness function
that helps promoting the good candidates for reproduction. In its simplest form,
fitness is calculated by inspecting a collection of test cases, comparing their
desired inputs against the observed inputs. This can be a test suite (also called
here training set) that was prepared in advance, using some distribution of the
input values with some fixed intervals or obtained using a random process.

It is important to be able to compare the observed outputs of the test cases
against the correct ones. Given a test suite of n cases, with pi the correct value
for the ith case and oi the observed value for this case, we can calculate the
fitness, e.g., as

∑n
i=1 |pi − oi|. In other cases, it is argued, we may prefer to

square the difference, as in
∑n

i=1 |pi − oi|2. In both of these cases, the “best”
fitness will be 0, and we may want to normalize it, e.g., to be between 0 and 1,
or 0 and 100. We may also want to reverse it so that a higher fitness value will
correspond to better fitness. All of that is done through simple arithmetic.

We can apply the following principle of mutation testing to check and improve
a given test suite. The idea is that the test suite needs to be able to detect coding
mistakes. Mutating the code would most likely generate an observable deviation
of the behavior (e.g., in the obtained output values), hence one can check if
at least one of the provided test cases would catch this behavior. In case that
the current test suite cannot recognize the change in behavior introduced by
mutation of some of the better fitted candidates, it is extended to include a test
case that does so.

The principle of coevolution allows to reproduce and evolve test cases from
one generation to another. The fitness of a test case can increase with the number
of candidates for which it shows discrepancy between the expected and observed
behavior. New test cases can be obtained from existing ones by using mutation
or crossover.

The above description of calculating fitnes takes care of a simple case, where
the sought after program is intended to obtain some initial input value, and
calculate some output value. Things can get more complicated when we are
interested in synthesizing an interactive program that repeatedly takes input
and produces output. Even further, we may be interested in some temporal
specification of a system, describing how it is behaves over time.

To illustrate this situation, we look at synthesizing a solution for the well
known mutual exclusion problem. The problem has the following general form:

While W1 do While W2 do
NonCrit1 NonCrit2
preCS1 preCS2
CS1 CS2
postCS2 postCS2

end while end while

124 D. Peled

The nonCSi represents the actions of the process i outside the critical section.
It can actually be fixed as empty code. The CSi represents the critical section,
which both processes want to enter a finite or unbounded number of times. It
is not part of the synthesis task, and can be represented by trivial code, which
serves only to allow checking that it is eventually entered upon request. The
goal of the mutual exclusion problem is to allow eventual access to the critical
section each time a process wants to enter it, but to disallow both processes to
enter their critical section at the same time. Entering and exiting the critical
section is controlled by the code in preCSi and postCSi. These are the two parts
that consist of the mutual exclusion protocol and are the focus of the synthesis.
The code for these two parts should be symmetric, although each one can index
itself as i and the other as 2− i. The other code segments and the while loop are
fixed.

We require the following Linear Temporal Logic properties:

Safety: �¬(p0 in CS1 ∧ p1 in CS2), i.e., there is no state where the program
counters of both processes are in their corresponding critical sections simul-
taneously.

Liveness: �(pi in preCSi → ♦pi in CSi), i.e., if a process wants to enter its critical
section, then it will eventually do so. This has to apply for both processes,
p1 and p2.

These two classical requirements from mutual exclusion are not sufficient as
a requirement for the mutual exclusion problem, and there are further subtle
considerations. The variables Wi are used to control whether processes want to
keep entering their critical section. They serve an important purpose: we want to
make sure that the liveness holds not only when the two processes want to enter
the critical section indefinitely (W1∧W2), but also when only one process wants
to do keep doing that (W1∧¬W2). This eliminates solutions where the processes
are allowed to enter in alternation or any pattern of access that assume that both
processes have an unbounded need to enter the critical section. Note that the
candidates should be tested with both cases. This consideration puts us outside
of the scope of Linear Temporal Logic, which postulates required properties of
all the executions.

We also need to require that the duration of preCSi, postCSi and critical
sections CSi are finite. E.g., by requiring ¬♦�pi in CSi.

Another consideration is fairness [22]. Fairness requires that the computation
will not prevent the execution of some process (or transition) that is enabled
continuously (or frequently often). For many models of computation it is unrea-
sonable to seek a solution that works without assuming any fairness. Even the
classical solutions for mutual exclusion by Dekker [7], requires a (weak) fair-
ness assumption in order to guarantee liveness. There, one process may perform
actions that promote the other process into its critical section, but those can be
constantly delayed (in the absence of fairness) by the other process, which just
repeatedly checks for the moment it can progress.

Suppose that we want to provide a set of tests that would allow calculating
a fitness value ranging between 0 and 100. We can run k tests in which only one

Using Genetic Programming for Software Reliability 125

process wants to enter its critical section (setting only W1 to true), and m runs
in which both processes repeatedly want to enter their critical section.

Let k1 be the number of runs in which process 1 managed to enter its critical
section among the first k runs, m1 the number of runs in which only process 1 or
only process 2 manages to enter their critical section among the latter m runs,
and m2 the number of times both processes entered their critical section (thus,
m1 + m2 ≤ m). Let a, b and c be some numbers chosen such that b < c and
a + c = 100, the fitness can be calculated as

a × k1
k

+ b × m1

m
+ c × m2

m
.

This gives small fitness value to candidates in which the critical section is
never managed, and checks that the critical section can be entered when there is
(repeated) demand from only one process. It also gives preference to candidates
that allow more executions in which processes enter both their critical section
when there is demand from both processes. The analysis can (and should) be
further refined, e.g., further separating k1 and m1 into cases where the critical
sections are entered once or multiple times.

3.2 Genetic Programming Based on Verification

The direct translation from specification into a system that realizes it is unde-
cidable for distributed systems and Linear Temporal Logic specification [26]. A
simple idea is to bound the size of the system (in states, length of code, variables,
values) and enumerate the possibilities and verify the resulting code. This was
used successfully to synthesize mutual exclusion algorithms with three bits [3].
Systematic enumeration using powerful computing power will result in correct
solutions if they exist within the limitations used. This is a generate-and-test
approach that uses automatic verification (model checking) to sift the bad can-
didates. A related approach is Sketching [27], where some small parts of the
code, e.g., constants or choices, are being left out and completed automatically
through SAT solving.

Genetic programming can be used to harness the power of model checking
to assist in searching for correct-by-design code, without being exhaustive. As
a first approximation, we may assign fitness based on the number of properties
that are satisfied [13]. As opposed to testing, with model checking, one checks all
the executions, not only samples of them. For the mutual exclusion algorithm,
instead of running two versions, one with only W1 set to true and one with
both W1 and W2 set to true, we can change the code a little, making the two
possibilities a nondeterministic choice. Model checking will automatically check
all nondeterministic choices.

However, this approach is unlikely to work well in practice, unless we have a
very large number of properties; in order for the fitness to separate among cases,
it needs to be relatively smooth. In order to smooth out the fitness function, we
can use additional verification levels between success and failure of the temporal
properties. In particular, we can include the following levels per property:

126 D. Peled

– Not all the executions satisfy the property, but some of them do.
– The property is satisfied with probability 0.
– The property is satisfied with probability 1.
– The property holds under some fairness assumption that is stronger (ignores

more executions) than the fairness provides by the actual hardware architec-
ture used.

– Levels provided by statistical model checking, quantifying the portion of the
executions satisfying the property.

We used a specially designed model checker and GP engine, which implement
the methods [14–17] described earlier. This prototype tool was called MCGP
and is described in [18]. It allows selecting the set of allowed commands and the
number of variables and modes of communication (synchronous, asynchronous).
Synthesis starts with a given program structure or architecture, where some
parts are fixed. The architecture can also include the number of processes and
the communication channels between them.

Experimental Results for Mutual Exclusion [14]. Program (a) shows one
of the obtained candidates, which later evolved into program (b). The evolution
first included the addition of the second line to the postCSi section. A replace-
ment mutation then changed the inner while loop condition, leading to a perfect
solution similar to Dekker’s algorithm. Another interesting algorithm generated
by one of the runs is program (c). This algorithm (also reported in [3]) is a per-
fect solution too, but it is shorter than Dekker’s algorithm. On the other hand,
it compares two variables, rather than a variable and a constant, in its while
loop.

Non Critical Section Non Critical Section Non Critical Section

A[me] = 1 A[me] = 1 A[other] = other

While (A[other] == 1) While (A[other] == 1) if (A[2] == other)

While (A[0] != other) While (A[2] == me) A[2] = me

A[me] = 0 A[me] = 0 While (A[me] == A[2])

A[me] = 1 A[me] = 1 Critical Section

Critical Section Critical Section A[other] = me

A[me] = 0 A[2] = me

A[me] = 0

(a) [94.34] (b) [96.70] (c) [97.50]

4 Model Checking as Generalized Testing and Correcting
Programs

Many interesting synthesis challenges are parametric. For example, sorting algo-
rithms are developed for an arbitrary number of elements of arbitrary size,
although are used with specific limits. Model checking is undecidable for para-
metric families of programs, e.g., with n processes, each with the same code,
initialized with different parameters, even for a fixed property [1].

Using Genetic Programming for Software Reliability 127

One possibility is to synthesize code that works with respect to a given finite
constraint. Another possibility is to exploit model-checking as generalized testing:
the automated verification is performed comprehensively multiple times, each
time for specific values, parameters or architecture. These cases play the role
of a test suite. They are selected in advance, or using randomization. We can
also use coevolution to ameliorate this set, e.g., by elevating the fitness of those
cases that managed to demote more candidates than others. For instance, we
can make the fitness of such an individual case proportional to the number of
properties not satisfied for a large enough portion of the candidates in the current
generation.

C1 C2

P1 P2

Fig. 2. An architecture of α-core that manifested an error

In [17] we approached the ambitious problem of correcting a known protocol
for obtaining interprocess interaction called α-core [25]. The algorithm allows
multiparty synchronization of several processes. Besides the processes that per-
form local and synchronized transitions there are supervisory processes, each
responsible for a fixed interaction between multiple processes. It needs to func-
tion in a system that allows nondeterministic choices: processes that may con-
sider one possible interaction may decide to be engaged in an alternative interac-
tion. The algorithm uses asynchronous message passing between the processors
and the synchronization supervisors in order to enforce a selection of the inter-
actions by the involved processes without deadlock. In Fig. 2 we demonstrate
two processes, P1 and P2, that are involved in two types of interactions with one
another, through the supervision of managers C1 and C2. This nontrivial algo-
rithm, which is used in practice in distributed systems, contains an error in its
published version. The challenges in correcting this algorithm are the following:
Size. The protocol is quite big, involving sending different messages between the

controlled processes and new processes, per each possible multiparty interac-
tion. These messages include announcing the willingness to be engaged in an
interaction, committing an interaction, canceling an interaction, requesting
for commit from the interaction manager processes, as well as announcing
that the interaction is now going on, or is canceled due to the departure of
at least one participant. The state space of such a concurrent protocol is
obviously high.

Varying architecture. The protocol can run on any number of processes, each
process with arbitrary number of choices to be involves in interactions, and
with each interaction involving any number of processes.

128 D. Peled

The parametric nature of the problem makes the model checking itself unde-
cidable in general. In fact, we can used the genetic programming approach first
to find the error, including finding the architecture instance that manifests the
problem. We used two important ideas:

1. Employ the genetic engine not only to generate programs, but also to evolve
different architectures on which programs can run.

2. Apply a co-evolution process, where evolution of candidate programs and of
candidate architectures that fail these candidates is intermixed.

Specifically, the architecture for the candidate programs was also represented
as code (or, equivalently, a syntactic tree) for spanning processes and their
interactions, which can be subjected to genetic mutations. The fitness func-
tion directed the search for an architecture that falsify the specification for the
original α-core algorithm. After finding a “bad” architecture for a program, one
that causes the program to fail its specification, our next goal was to reverse
the genetic programming direction. Then we try to automatically correct the
program.

For the α-core algorithm, the smallest architecture that manifested the failure
included two processes, with two alternative communication between both of
them. The architecture that was found to produce the error in the original α-core
algorithm is the one appearing in Fig. 2. The message sequence chart in Fig. 3
demonstrates the bad scenario that was found. While we did not describe here
the α-core algorithm, the scenario demonstrates the intricacy of the algorithm.
The correction consisted of changing the following line of code

if n > 0 then n := n − 1

into
if sender∈shared then n := n − 1

In order to support the different capabilities of synthesizing and correcting
code for fixed and varying architectures, the prototype tool MCGP [18], which
we constructed for carrying out the experiments described here and in [14–17],
can be used in different modes:

– Setting all parts as static will cause the tool to just run the model checking
algorithm on the user-defined program, and provide detailed results.

– Setting an init process that defines the architecture of processes and the
interaction between them as static, and all or some of the other processes
as dynamic, will order the tool to synthesize code according to the specified
architecture. This can be used for synthesizing programs from scratch, synthe-
sizing only some missing parts of a given partial program, or trying to correct
or improve a complete given program.

– Setting the init process as dynamic, and all other processes as static, is used
when trying to falsify a given parametric program by searching for a configu-
ration that violates its specification (see [17]).

– Setting both the init and the program processes as dynamic, is used for syn-
thesizing parametric programs, where the tool alternatively evolves various
programs, and configurations under which the programs have to be satisfied.

Using Genetic Programming for Software Reliability 129

P1 P2 C1 C2

OFFER (1)

OFFER (2)

OFFER (3)
n=1

OFFER (4)
n=2

LOCK (5)

OK (6)

LOCK (7)

OK (8)

LOCK (9)

START (10)

REFUSE (11)

START (12)

REFUSE (13)

ACKREF (14)

UNLOCK (15)
n=0

OFFER (16)

OFFER (17)
n=1

n=0
ACKREF (18)

msc Assertion violation

Fig. 3. A Message Sequence Chart showing the counterexample for the α-core protocol

5 Conclusions

We described here the combination of genetic algorithms and programming with
formal methods. This was shown to help providing the following goals:

– Generating an effective test suite,
– synthesizing correct-by-design programs,
– finding errors in parametric programs,
– automatically correcting erroneous code with respect to a given specification.

We demonstrated the use of genetic programming for automatically synthe-
sizing solutions for the classical mutual exclusion problem, and for detecting and
correcting an error in a complicated multiparty synchronization algorithm called
α-core.

The use of genetic programming with formal methods does not guarantee
successful termination, neither for finding errors, nor for synthesizing programs
from specification. Rather, it is a powerful heuristic that can be part of a human-
assisted process for checking, correcting and synthesizing software.

130 D. Peled

References

1. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming -
An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. 3rd edn. Morgan Kaufmann, dpunkt.verlag (2001)

3. Bar-David, Y., Taubenfeld, G.: Automatic discovery of mutual exclusion algo-
rithms. In: PODC, p. 305 (2003)

4. Chellapilla, K.: Evolving computer programs without subtree crossover. IEEE
Trans. Evol. Comput. 1(3), 209–216 (1997)

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

6. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. STTT 2(3), 279–287 (1999)

7. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

8. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. STTT 6(2), 117–127 (2004)

9. Grosu, R., Smolka, S.A.: Monte carlo model checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271–286. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-31980-1 18

10. Harman, M., Jones, B.F.: Software engineering using metaheuristic innovative algo-
rithms: workshop report. Inf. Softw. Technol. 43(14), 905–907 (2001)

11. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

12. Ince, D.C. (ed.): Mechanical Intelligence (collected works of A.M. Turing). North-
Holland Publishing Co., Amsterdam (1992)

13. Johnson, C.G.: Genetic programming with fitness based on model checking. In:
Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.)
EuroGP 2007. LNCS, vol. 4445, pp. 114–124. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-71605-1 11

14. Katz, G., Peled, D.: Genetic programming and model checking: synthesizing
new mutual exclusion algorithms. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee,
I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 33–47. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-88387-6 5

15. Katz, G., Peled, D.: Model checking-based genetic programming with an appli-
cation to mutual exclusion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 141–156. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 11

16. Katz, G., Peled, D.: Synthesizing solutions to the leader election problem using
model checking and genetic programming. In: Namjoshi, K., Zeller, A., Ziv, A.
(eds.) HVC 2009. LNCS, vol. 6405, pp. 117–132. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19237-1 13

17. Katz, G., Peled, D.: Code mutation in verification and automatic code correction.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2 36

http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-540-31980-1_18
http://dx.doi.org/10.1007/978-3-540-71605-1_11
http://dx.doi.org/10.1007/978-3-540-71605-1_11
http://dx.doi.org/10.1007/978-3-540-88387-6_5
http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-540-78800-3_11
http://dx.doi.org/10.1007/978-3-642-19237-1_13
http://dx.doi.org/10.1007/978-3-642-12002-2_36

Using Genetic Programming for Software Reliability 131

18. Katz, G., Peled, D.: MCGP: a software synthesis tool based on model checking and
genetic programming. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol.
6252, pp. 359–364. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4 28

19. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

20. Koza, J.R.: Human-competitive results produced by genetic programming. Genet.
Program. Evol. Mach. 11(3–4), 251–284 (2010)

21. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proceedings of
16th Annual IEEE Symposium on Logic in Computer Science, Boston, 16–19 June
2001, pp. 389–398 (2001)

22. Manna, Z., Pnueli, A.: How to cook a temporal proof system for your pet language.
In: Conference Record of the Tenth Annual ACM Symposium on Principles of
Programming Languages, Austin, pp. 141–154, January 1983

23. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

24. Myers, G.: The Art of Software Testing. Wiley, New York (1979)
25. Perez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing

multiparty synchronization. Concurr. Pract. Exp. 16(12), 1173–1206 (2004)
26. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:

FOCS, pp. 746–757 (1990)
27. Solar-Lezama, A.: Program sketching. STTT 15(5–6), 475–495 (2013)

http://dx.doi.org/10.1007/978-3-642-15643-4_28

Regular Papers

Predicting Space Requirements for a Stream
Monitor Specification Language

David M. Cerna(B), Wolfgang Schreiner, and Temur Kutsia

Research Institute for Symbolic Computation (RISC),
Johannes Kepler University (JKU), Linz, Austria

David.Cerna@risc.jku.at

Abstract. The LogicGuard specification language for the runtime mon-
itoring of message/event streams specifies monitors by predicate logic
formulas of a certain kind. In this paper we present an algorithm that
gives upper bounds for the space requirements of monitors specified in a
formally elaborated core of this language. This algorithm has been imple-
mented in the LogicGuard software and experiments have been carried
out to demonstrate the accuracy of its predictions.

1 Introduction

We investigate the space complexity of the LogicGuard stream monitor spec-
ification language [14], which was developed in an industrial collaboration for
the runtime monitoring of networks for security violations [11]. LogicGuard rep-
resents an alternative to the commonly used language of linear temporal logic
(LTL) [12], from which efficient stream monitors can be generated but in which,
due to its limited expressiveness, it can be difficult to formulate more complex
properties of interest. The LogicGuard language is more expressive than LTL,
because it encompasses a large fragment of predicate logic, in particular, it sup-
ports value computation and the construction of virtual streams by a form of
set builder notation. However, the inclusion of such elements can make moni-
toring of specifications inefficient. We thus aim to identify such specifications
expressing properties of interest for which monitoring is effectively possible.

First, since a LogicGuard monitor is able to “look into the past”, it has in
general to preserve the complete history of the stream in memory. Thus a static
analysis was developed to determine whether a specification gives rise to a moni-
tor that is able to operate with only a finite number of past messages in memory.
This analysis was shown to be sound [10] and resulted in a “history pruning”
optimization that enabled effective monitoring. For the soundness proof, a sim-
plified core language with a formal operational semantics was devised.

Second, we investigated for the same core language a complementary analysis
to determine the space requirements of monitors which “look into the future”.
In particular, we are interested in the number of formula instances which have

Supported by the Austrian Research Promotion Agency (FFG) in the frame of the
BRIDGE program 846003 “LogicGuard II”.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 135–151, 2016.
DOI: 10.1007/978-3-319-46982-9 9

136 D.M. Cerna et al.

to be preserved in memory, because their truth values cannot be determined
from the observations made so far. Based on preliminary investigations we have
in [3] provided upper bounds for the space complexity of monitors. The present
paper improves this work by capturing these bounds more precisely, in some
cases even optimally. Together with the history size, the result of this analysis
bounds the memory requirements of the monitor and also the time required for
processing every message/event. Also, these results seem to pinpoint a possible
optimization by exchanging the order of logically independent nested quantifiers.
This direction of research is based on the presented algorithm and the technical
report [2].

The LogicGuard core language has much in common with Monadic First-
Order Logic (MFO) [13]. LTL captures the class of star-free languages; its for-
mulas can be translated into MFO formulas. The full language on the other hand
is more closely related to Monadic Second-Order Logic (MSO) [1] which cap-
tures the class of omega-regular languages. Most space complexity results with
respect to MFO and MSO use as a measure the size of the non-deterministic
Büchi automaton that accepts the language of a formula. For MFO this size is
in the worst case exponential in the formula size [15]; for MSO, it is in general
even non-elementary [7]. These measures are relevant for model checkers which
operate on non-deterministic automata; for runtime monitoring, the automata
have to be determinized which results in another exponential blowup.

Because of this state space explosion, more restricted logics have been inves-
tigated. The hardware design language PSL [8] which is based on LTL defines a
“simple subset” that restricts the use of disjunction to avoid exponential blow
up. In [9], the class of “locally checkable” properties (a subclass of the “locally
testable” properties introduced in [13]) is defined, where a word satisfies a prop-
erty, if every k-length subword of the word does; such properties can be recog-
nized by deterministic automata whose size is exponential in k but independent
of the formula size. In [6] a procedure for synthesizing monitor circuits from LTL
specifications is defined that restricts the exponential blow-up to those parts of
a formula that involve unbounded-future operators.

LogicGuard shares some characteristics with two other systems, LOLA [5],
for monitoring of synchronous systems, and LARVA [4] for real-time monitor-
ing of Java programs. One of the main advantages of LOLA is independence
of stream history, which is exactly the property shown in the history analysis
of LogicGuard; however LogicGuard allows the users to run monitors without
history bounds. Our work in this paper is tangent to this analysis, we focus on
the memory usage of evaluation given independence of the monitor specifica-
tion from stream history size. Concerning LARVA, which gives a more complete
picture of resource requirements, our work in this paper plus the history analy-
sis aims at providing a similar complete picture of monitor execution. Though,
we do not provide time bounds, such bounds are closely related to the runtime
representation size. More concerning this issue is discussed in the conclusion.
LogicGuard can be thought of as similar to the above software, but more of

Predicting Space Requirements for a Stream Monitor Specification Language 137

an application specific monitoring specification language, that is a language for
monitoring complex safety and security properties.

In our work we do not consider the translation of formulas to automata, nor
use automata sizes as a space complexity measure. The operational form of a
LogicGuard monitor is not an automaton but a structure that keeps in memory
a (nested) set of formula instances that dynamically grows and shrinks during by
the evaluation of the monitor on the stream. Thus we have investigated in [3] the
number of instances kept in memory by abstracting the operational semantics
into a rewriting system that is applied recursively to the formula structure.
This allowed for complexity results not only in terms of asymptotic bounds but
also in terms of concrete complexity functions. However, the method suffered
from severe overestimation; in the present paper, we devise an analysis that
provides much more accurate results. This analysis was also implemented in the
LogicGuard software to estimate the space requirements of real monitors.

The rest of this paper is structured as follows: in Sect. 2, we present the core
of the LogicGuard specification language and sketch its operational semantics.
In Sect. 3, we define the space complexity of monitors and describe the algorithm
that represents the core of the analysis. In Sects. 4 and 5, we present the formal
details; in Sect. 6, we discuss experimental results. In Sect. 7, we conclude by
outlining a few open problems which we would like to address in future work.

2 Core Language

The LogicGuard language [14] for monitoring event streams allows, for example,
the derivation of a higher level stream (representing e.g. a sequence of messages
transmitted by the datagrams) from a lower level input stream (representing e.g.
a sequence of TCP/IP datagrams). Such a stream is processed by a monitor for
a particular property (e.g. that every message is within a certain time bound
followed by another message whose value is related in a particular way to the
value of the first one). A specification of this kind has the following form:

type tcp; type message; ...

stream<tcp> IP;

stream<message> S = stream<IP> x satisfying start(@x) :

value[seq,@x,combine]<IP> y

with x < _ satisfying same(@x,@y) until end(@y) :

@y ;

monitor<S> M = monitor<S> x satisfying trigger(@x) :

exists<S> y with x < _ <=# x+T:

match(@x,@y);

After the declaration of types tcp and message and external functions and
predicates operating on objects of these types, a stream IP of TCP/IP datagrams
is declared that is connected by the runtime system to the network interface.
From this stream, a “virtual” stream S of “messages” is derived; each message
is created by sequentially combining every datagram at position x on IP (whose

138 D.M. Cerna et al.

value is denoted by @x) that satisfies a predicate start by application of a
function combine with every subsequent datagram at position y that is related
to the first one by a predicate same until a termination condition end is satisfied.
The stream S is monitored by a monitor M that checks whether for every message
on S that satisfies a trigger predicate within T time, a partner message appears
that fits with the first message according to some match predicate.

To support a formal analysis, in [10] a core version of the LogicGuard lan-
guage was defined and given a formal operational semantics. This core language
has been subsequently used to analyze the complexity of monitoring and to
derive the results presented in this paper. The analysis was also implemented
in the LogicGuard system by translating specifications from the full language
to the core language such that the analysis of the translated specification also
predicts the complexity of monitoring the original specification (the translation
is not semantics-preserving but generates a specification for which monitoring is
at least as complex as the monitoring of the original one).

In the remainder of this section, we introduce this core language, partially
relying on material from [3]. Its syntax is depicted to the left of Fig. 1 where the
typed variables M,F, . . . denote elements of the syntactic domains M,F, . . . of
monitors, formulas, etc. A monitor M has form ∀0≤V : F for some variable V and
formula F ; it processes an infinite stream of truth values � (true) or ⊥ (false)
by evaluating F for V = 0, V = 1, . . . The predicate @V denotes the value in the
stream at position V , ¬F denotes the negation of F , F1 ∧ F2 denotes parallel
conjunction (both F1 and F2 are evaluated simultaneously), F1 &F2 denotes
sequential conjunction (evaluation of F2 is delayed until the value of F1 becomes
available), ∀V ∈[B1, B2]: F denotes quantification over the interval [B1, B2].

M ::= ∀0≤V : F.
F ::= @V | ¬F | F ∧ F | F &F

| ∀V ∈[B,B]: F.
B ::= 0 | ∞ | V | | B ± N.
V ::= x | y | z | . . .
N ::= 0 | 1 | 2 | . . .

m ::= ∀ (×f×c)
0≤V : f

f ::= d(�) | d(⊥) | n(g)
g ::= @V | ¬f | f ∧ f | f & f

| ∀V ∈[b,b]: f | ∀V ∈[∞, ∞]: f

| ∀ (×f×c)
V ≤ ∞ : f

b ::= c → ∞

c ::= (V →part.) × (V →part. {�, ⊥})

T (∀0≤V : F) := ∀∅
0≤V : TF(F)

TF(@V) := n(@V)

TF(¬F) := n(¬TF(F))

TF(F1 ∧ F2) := n(TF(F1) ∧ TF(F2))

TF(F1 &F2) := n(TF(F1)&TF(F2))

TF(∀V ∈[B1,B2]: F) := ∀V ∈[TB(B1),TB(B2)]: TF(F)

TB(0) := λc. 0

TB(∞) := λc. ∞
TB(V) := λc. c.1(V)

TB(B ± N) := λc. TB(B)(c) ± N

Fig. 1. The core language: syntax, runtime representation, translation.

Predicting Space Requirements for a Stream Monitor Specification Language 139

Monitor M ∈ M is translated by the function T : M → M defined at the
bottom of Fig. 1 into its runtime representation m = T (M) ∈ M whose structure
is depicted to the right; here the typed variables m, f, . . . denote elements of the
runtime domains M,F , . . ., i.e., the runtime representations of M,F, . . . Over the
domain N∞ = N ∪ {∞} arithmetic operations are interpreted in the usual way,
i.e., the operator − is interpreted as truncated subtraction and for every n ∈ N
we have ∞ ± n = ∞. The notions P(S), for some set S, and A →part. B denote
the powerset of S and the set of partial mappings from A to B, respectively. A
context c consists of a pair of partial functions that assign to every variable its
position and the truth value that the stream holds at that position, respectively.

During the execution of monitor M , its runtime representation m = ∀I
0≤V : f

holds in set I those instances of its body F which could not yet be evaluated to �
or ⊥; each such instance is represented by a tuple 〈p, f, c〉 where p is the position
assigned to V , f is the (current) runtime representation of F , and c represents
the context to be used for the evaluation of f . A runtime representation f can be
a tagged value n(g) where g represents the runtime representation of the formula
to be evaluated in the next step; when the evaluation has completed, its value
becomes d(t) where the truth value t represents the evaluation result.

The evaluation of a monitor’s runtime representation is formally defined by a
small-step operational semantics with a 6-ary transition relation m →p,s,v,R m′

where m is the runtime representation of the monitor prior to the transition,
m′ is its representation after the transition, p is the stream position of the next
message value v to be processed, s denotes the sequence of p messages that have
previously been processed, and R denotes the set of those positions which are
reported by the transition to make the monitor body false. The monitor thus
processes a stream 〈v0, v1, . . .〉 by a sequence of transitions(

∀I0
0≤x: f

)
→0,s0,v0,R0

(
∀I1
0≤x: f

)
→1,s1,v1,R1

(
∀I2
0≤x: f

)
→ · · ·

where sp = 〈v0, . . . , vp−1〉. Each set Ip contains those instances of the monitor
which, by the p messages processed so far, could not be evaluated to a truth
value yet and each set Rp contains the positions of those instances that were
reported to become false by transition p. In particular, we have

Ip+1 = {(t, n(g), c) ∈ I | ∃f ∈ F : (t, f, c) ∈ I ′ ∧ f →p,sp,vp,c n(g)}
Rp+1 = {t ∈ N | ∃f ∈ F , c ∈ C : (t, f, c) ∈ I ′ ∧ f →p,sp,vp,c d(⊥)}

where I ′ = Ip ∪ {(p, f, ((V, p) , (V, vp)))}. The transition relation on monitors
depends on a corresponding transition relation f →p,s,v,c f ′ on formulas where
c represents the context for the evaluation of f . In each step p of the monitor
transition, a new instance of the monitor body F is added to set Ip, and all
instances in that set are evaluated according to the formula transition relation.
Note that each formula instance in that set contains the runtime representation
of a quantified formula (otherwise, it could have been immediately evaluated)
which in turn contains its own instance set; thus instance sets are nested up to
a depth that corresponds to the quantification depth of the monitor.

140 D.M. Cerna et al.

Atomic Formulas

Transition Constraints

A1 n(@V) → d(c.2(V))) V ∈ dom(c.2)

. . .

Sequential conjunction

C1 n(f1 & f2) → n(n(f ′
1)& f2) f1 → n(f ′

1)

C2 n(f1 & f2) → d(⊥) f1 → d(⊥)

C3 n(f1 & f2) → n(f ′
2) f1 → d(�), f2 → n(f ′

2)

Quantification

Q1 ∀V ∈[b1,b2]: f → d(�) p1 = b1(c) , p2 = b2(c) , p1 = ∞ ∨ p1 > p2

Q2 ∀V ∈[b1,b2]: f → f ′ p1 = b1(c) , p2 = b2(c), p1
= ∞ , p1 ≤ p2,
n(∀V ∈[p1,p2]: f) → f ′

Q3 n(∀V ∈[p1,p2]: f) → n(∀V ∈[p1,p2]: f) p < p1

Q4 n(∀V ∈[p1,p2]: f) → f ′ p1 ≤ p, n(∀I0
V ≤p2

: f) → f ′

Q5 n(∀I
V ≤p2

: f) → d(⊥) DF

Q6 n(∀I
V ≤p2

: f) → d(�) ¬DF , I ′′ = ∅, p2 < p

Q7 n(∀I
V ≤p2

: f) → n(∀I ′′
V ≤p2

: f) ¬DF , (I ′′
= ∅ ∨ p ≤ p2)

Fig. 2. The operational semantics of formula evaluation.

Figure 2 shows an excerpt of the operational semantics of formula evaluation
(the full semantics is given in [10]) where the transition arrow → is to be read
as →p,s,v,c and rules Q4–Q7 are based on the following definitions.

I0 = {(i, f, (c.1[V �→ i], c.2[V �→ s(i + p − |s|)])) | p1 ≤ i ≤ min {p2 + 1, p}}

I ′ =

{
I if p2 < p

I ∪ (p, f, (c.1[V �→ p], c.2[V �→ v])) otherwise

I ′′ = {(t, n(g), c) ∈ I ′ | (t, f, c) ∈ I ′ ∧ f → n(g)}
DF ≡ ∃t ∈ N, f ∈ F , c ∈ C : (t, f, c) ∈ I ′ ∧ f → d(⊥)

We provide an example adapted from [3] on the application of these rules.

Example 1. We take the monitor M = ∀0≤x: ∀y∈[x+1, x+2]: @x& @y, which states
that the current position of the stream is true as well as the next two future
positions. We determine its runtime representation m = T (M) as m = ∀∅

0≤x: f
with f = ∀y∈[b1, b2]: g for some b1 and b2 and g = @x& @y. We evaluate m

over the stream 〈�,�,⊥, . . .〉. First consider the transition (∀∅
0≤x: f) →0,〈〉,
,∅

(∀I0
0≤x: f). Which generates the instance set

I0 =
{
(0, n(∀y∈[1, 2]: g), ({(x, 0)}, {(x,�)}))

}
.

Performing another step (∀I0
0≤x: f) →1,〈
〉,
,∅ (∀I1

0≤x: f) we get

I1 =
{
(1, n(∀y∈[2, 3]: g), ({(x, 1)}, {(x,�)})),
(0, n(∀∅

y≤2: g), ({(x, 0)}, {(x,�)}))
} .

Predicting Space Requirements for a Stream Monitor Specification Language 141

The instance set ∅ in the runtime representation of the formula is empty, because
the body of the quantified formula is propositional and evaluates instantly. Notice
that the new instance is the same as the instance in I0 but the positions are
shifted by 1. The next step is (∀I1

0≤x: f) →2,〈
,
〉,⊥,{0,1} (∀I2
0≤x: f) where

I2 =
{
(2, n(∀y∈[3, 4]: g), ({(x, 2)}, {(x,⊥)}))

}
.

The first two instances evaluate at this point and both violate the specification,
thus yielding the set {0, 1} of violating positions of the monitor. Again, the
remaining instance is shifted by one position.

3 Space Complexity

Our goal is to determine the maximum size of the runtime representation of a
monitor during its execution. For doing this we have to define the size of the
runtime representation of monitors, formulas and formula instances.

Definition 1. We define the functions cm : M → N, cf : F →part. N, cg :
G → N, and ci : I → N which denote the size of the runtime representation of
a monitor respectively unevaluated formula (with and without tag) respectively
formula instance:

cm(∀I
0≤V : f) =

∑
g∈I ci(g) cf(n(g)) = cg(g)

cg(@V) = 0 cg(f1 ∧ f2) = cf(f1) + cf(f2)
cg(¬f) = cf(f) cg(f1 & f2) = cf(f1) + cf(f2)

cg(∀V ∈[b1, b2]: f) = 1 cg(∀I
V ≤p: f) = 1 +

∑
g∈I ci(g)

cg(∀V ∈[p1, p2]: f) = 1 ci((n, f, c)) = cf(f)

Our notion of size thus only considers the quantifier structure of a monitor and
its formulas that are being evaluated and ignores their propositional contents
(because it is this structure that dominates the space complexity).

Now we can define a relation which determines the maximum size of the
runtime representation of a monitor encountered during its execution.

Definition 2. We define the relation �⊆ M×N×{�,⊥}∗ ×N×N inductively
as follows:

M �p,s,0 S′ ↔ S′ = cm(M)
M �p,s,(n+1) S

′ ↔(∃R. (M →p,s,s(p),R M ′) ∧ (M ′ �p+1,s,n S) ∧ S′ = max {cm(M), S})
Essentially, M �p,s,n S states that S is the maximum size of the representation
of monitor m during the execution of n transitions over the stream s starting at
position p. Our goal is to compute/bound the value of S by a static analysis, i.e.,
without having to actually perform the transitions. We will later in Theorem 2
formalize the connection between our analysis and the relation given above. In
a nutshell, this analysis proceeds as follows:

142 D.M. Cerna et al.

Algorithm 1. Space Requirements of an Annotated Quantifier Tree
1: function SR(aqt) � aqt is an annotated quantifier tree (A, a, b, qt′)
2: if A = ∞ then
3: return ∞
4: else
5: return

∑A−1
i=0 SR(aqt, i)

6: end if
7: end function
8:
9: function SR(aqt,i) � aqt is an annotated quantifier tree (A, a, b, Q), i < A
10: cil ← 1 + min {i, b} − a
11: if cil ≤ 0 & b ≥ a then
12: return 1
13: else
14: return 0
15: end if
16: if i ≥ b then
17: inst ← 0
18: else
19: inst ← 1
20: end if
21: for all aqt′ = (A′, a′, b′, Q′) ∈ Q do
22: if i < A′ then
23: inst ← inst + cil · SR(aqt′, i)
24: end if
25: end for
26: return inst
27: end function

1. We compute from a monitor M ∈ M the dominating monitor M ′ = D(M) ∈
M whose space requirements on the one hand bound the requirements of M
and on the other hand can be determined exactly by the subsequent analysis.

2. We translate M ′ ∈ M into a quantifier tree qt = QT (M ′) which contains the
essential information required for the analysis.

3. We translate qt into an annotated quantifier tree aqt = AQT (qt) which labels
every node with the maximum interval bound of the corresponding subtree.

4. Finally, we compute SR(aqt) ∈ N by application of Algorithm1.

While the various steps will be explained in the following subsections, we will
give a short account on the rationale behind this algorithm.

The core idea is that, if the monitor has a limit on the size of its runtime
representation, it has also a limit on the number of instances stored in that rep-
resentation. This limit will be reached in a finite number A of steps determined
by the maximum distance that any subformula of the monitor will “look for-
ward” in the stream in relation to the position of the message that is currently
being processed. It then suffices, for every distance i in the interval [0, A− 1], to
determine the number N(i) of instances that are created by the monitor instance

Predicting Space Requirements for a Stream Monitor Specification Language 143

M(p) at position p+ i; every monitor instance M(p+A) then behaves identical
to M(p). In particular, if p ≥ A and the upper limit of the number of instances
is reached, for every new instance added to some instance set another instance is
removed. Thus it suffices to compute the sum of all N(i) to determine the max-
imum space requirements of the monitor, which in essence explains the top-level
function SR(aqt) in the algorithm.

In the auxiliary function SR(aqt , i) of the algorithm, we first determine the
“current interval length” cil which essentially denotes the number of steps that
have already been performed for the monitoring of the currently considered
quantified formula. If cil < 0, the monitoring has not yet started, and the space
requirements are 0. Otherwise, if i is less than the upper bound b of the quantifier
interval, one more instance of the formula may be created at position i and stored
for processing in future steps. Anyway, for every quantified subformula aqt ′, the
number of instances SR(aqt ′, i) has to be determined and multiplied with cil ,
since for every previous position that number of instances has been created.

After this short exposition, the following sections will elaborate the formal
details of the analysis and also justify its soundness.

4 Dominating Monitor Transformation

A concept introduced in [3], the Dominating Monitor formula, allows us to
restrict our analysis to quantified formulas whose variable intervals only depend
on the outermost monitor variable, i.e. the size of every interval is the same for
every value of the monitor variable.

Definition 3 (Dominating Monitor/Formula Transformation). Let A =
V →part. N be the domain of assignments that map variables to natural numbers.
Then the dominating monitor transformation D : M → M respectively formula
transformation D′ : F × A × A → F are defined as follows:

D(∀0≤V : F) = ∀0≤V : D′(F, [V �→ 0], [V �→ 0])
D′(@V, al, ah) = @V

D′(¬F, al, ah) = ¬D′(F, al, ah)
D′(F1 &F2, al, ah) = D′(F1, al, ah)&D′(F2, al, ah)
D′(F1 ∧ F2, al, ah) = D′(F1, al, ah) ∧ D′(F2, al, ah)

D′(∀V ∈[B1, B2]: F, al, ah) = ∀V ∈[hL(B1), hH(B2)]: D
′(F, a′

l, a
′
h)

In the last equation we have a′
l = al[V �→ hL(B1)], a′

h = ah[V �→ hH(B2)],
hL(B1) = min {[[B1]]al , [[B1]]ah}, hH(B2) = max {[[B2]]al , [[B2]]ah} and [[B]]a

denotes the result n of the evaluation of bound expression B for assignment a;
actually, if B contains the monitor variable x, the result shall be the expression
x + n (we omit the formal details, see the example below).

The relationship, in terms of the maximum size of instance sets, between a mon-
itor M and its dominating form D(M) is summarized in the following theorem.

144 D.M. Cerna et al.

Theorem 1. Let M ∈ M. Then for all p, n, S, S′ ∈ N and s ∈ {�,⊥}ω such
that T (M) �p,s,n S and T (D(M)) �p,s,n S′, we have S ≤ S′.

Proof. The correctness of this theorem follows from Definitions 2 and 3. Because
the dominating formula considers the smallest lower bound and the largest upper
bound only and creates a constant interval over which the quantifier is defined.
The constant interval is the largest interval considered by the initial formula.
The initial might have also considered smaller intervals which are a subset of
this largest interval, thus we are checking extra instances. If M = D(M), i.e.,
the monitor is already in its dominating form, then we have S = S′ because
there are no extra instances being checked.

Example 2. Consider the following monitor M :

∀0≤x: ∀y∈[x+1, x+5]: ((∀z∈[y, x+3]: ¬@z & @z)&G(x, y))
G(x, y) = ∀w∈[x+2, y+2]: (¬@y& (∀m∈[y, w]: ¬@x& @m))

The dominating form D(M) of M is the following:

∀0≤x: ∀y∈[x+1, x+5]: ((∀z∈[x+1, x+3]: ¬@z & @z)&G(x, y))
G(x, y) = ∀w∈[x+2, x+7]: (¬@y& (∀m∈[x+1, x+7]: ¬@x& @m))

Notice that additional instances are needed for the evaluation of D(M).

Dominating monitors are used in the construction of annotated quantifier trees
Which allow for a simpler space analysis of the core language. Theorem 1 makes
it clear that space complexity results derived for dominating monitor provide
upper bounds for the space complexity of general monitors.

5 Quantifier Trees

In this section we introduce the concept of quantifier trees. A quantifier tree
represents the skeleton of a monitor that only describes its quantifier structure
without the propositional connectives.

Definition 4 (Quantifier Trees). A quantifier tree is inductively defined to
be either ∅ or a tuple of the form (y, b1, b2, Q) where y ∈ V , b1, b2 ∈ B and Q is
a set of quantifier trees. Let QT be the set of all quantifier trees.

Definition 5 (Quantifier Tree Transformation). We define the quantifier
tree transformation QT : M → QT, respectively QT : F → QT, recursively as
follows:

QT (∀0≤V : F) = (V, 0, 0, {QT (F)}) QT (F&G) = QT (F) ∪ QT (G)
QT (F ∧ G) = QT (F) ∪ QT (G) QT (¬F) = QT (F)
QT (∀V ∈[B1, B2]: F) = (V,B1, B2, {QT (F)}) QT (@V) = ∅

Predicting Space Requirements for a Stream Monitor Specification Language 145

By this transformation, every node of a quantifier tree consists of the variable
bound by a quantifier, the interval bounds of the variable, and a set of nodes
that represent the quantified subformulas. Thus a quantifier tree describes that
internal structure of a monitor which essentially influences its space complexity.

In our analysis, we take a monitor M ∈ M and compute the quantifier
tree QT (D(M)) of its dominating form D(M). Every interval bound in a node
of that tree can be only ∞, a constant c, or a term x + c where x denotes the
monitor variable. We may thus annotate each node of the tree with the maximum
constant occurring in the bounds of the subtree rooted at that node (except in
the cases of lower bound being infinity or lower bound constant and upper bound
variable). The following definition formalizes this annotation.

Definition 6 (Size Annotation). We define the size annotation A : QT

→part. Z ∪ {∞} (whose domain is the set of quantifier trees resulting from the
dominating form of a monitor) recursively as follows:

A((V,∞, B, qt)) = 0

A((V, c1, x + c2, qt)) =

{
max {c1, c2} , if ∀q ∈ qt. A(q) ≤ 0
∞, otherwise

A((V, x + c1, c2, qt)) = A((V, x + c1, x + c2, qt)) = A((V, c1, c2, qt))
= max {c1, c2,maxq∈qt {A(q)}}

A((V, x + c1,∞, qt)) = A((V, c1,∞, qt)) = ∞
Notice that the annotation takes care of the cases when the evaluation of a

formula requires an infinite amount of memory. There are three such cases, the
most complex one being (V, c1, x + c2, qt): here the amount of memory needed
increases over time if qt requires a positive amount of memory, because every
time we generate a new monitor instance the interval increases. This occurs while
we are still evaluating the previous instances. These two factors together result
in an unbounded number of instances.

The point of this annotation is to indicate at what position a monitor
instance’s runtime representation will have size zero. Assume we are dealing
with monitor instance x = m, when this instance is evaluated at position A+ n
for m ≤ n, the runtime representation is of size zero. When m ≥ n the run-
time representation will have a size greater than zero. When m > A + n, the
monitor instance cannot be evaluated at all and we end up with a runtime rep-
resentation with size one. Our Algorithm 1 considers monitor instance such that
n < m ≤ A + n.

Definition 7 (Annotated Quantifier Trees). An annotated quantifier tree
is inductively defined to be either ∅ or a tuple of the form (a, b1, b2, Q) where
a ∈ Z ∪ {∞}, b1, b2 ∈ Z ∪ {∞} and Q is a set of annotated quantifier trees. Let
AQT be the set of all annotated quantifier trees.

146 D.M. Cerna et al.

Definition 8 (Annotated Quantifier Tree Transformation). We define
AQT : QT →part. AQT (whose domain is the set of quantifier trees where only
the monitor variable x occurs in bounds) recursively as follows:

AQT ((V, x + c1, x + c2, qt)) = (A((V, x + c1, x + c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, c1, c2, qt)) = (A((V, c1, c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, x + c1, c2, qt)) = (A((V, x + c1, c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, x + c1,∞, qt)) = (A((V, x + c1,∞, qt)), c1,∞,∪q∈qtAQT (q))
AQT ((V, c1,∞, qt)) = (A((V, c1,∞, qt)), c1,∞,∪q∈qtAQT (q))
AQT ((V,∞, x + c1, qt)) = (A((V,∞, x + c1, qt)),∞, c1,∪q∈qtAQT (q))
AQT ((V,∞, c1, qt)) = (A((V,∞, c1, qt)),∞, c1,∪q∈qtAQT (q))
AQT ((V, c1, x + c2, qt)) = (A((V, c1, x + c2, qt)), c1, c2,∪q∈qtAQT (q))
AQT ((V, c1, c2, qt)) = (A((V, c1, c2, qt)), c1, c2,∪q∈qtAQT (q))

Notice that if any subtree of an annotated quantifier tree requires infinite
memory, then the uppermost node of the tree, i.e. the root, will have an anno-
tation of ∞. Also, if the monitor represented by the annotated quantifier tree is
completely backwards looking, then the annotation at the root will be 0. Thus, in
these two cases no further computation is necessary to compute the space com-
plexity of the monitor. This can be seen in function SR(·) of Algorithm 1. Also
note that we drop the variable from the bounds. This means that the bounds c1
and x + c1 are treated the same. This is not problematic being that our algo-
rithm only considers the case when x maps to zero. To deal with cases x ≥ 0,
we consider the monitor instance created at x = 0 at various future positions.

Example 3. Let us consider the monitor specification M from Example 2. Then
QT (M) and AQT (QT (D(M))) are as depicted in Fig. 3.

We are now ready to formally state the soundness of our analysis.

QT (M):

(x,0,0,{A})

(y,x+1,x+5,{B,C})

(z,y,x+3,∅) (w,x+2,y+2,{D})

(m,y,w,∅)

A

B C

D

AQT (QT (D(M))):

(7,0,0,{A})

(7,1,5,{B,C})

(3,1,3,∅) (7,2,7,{D})

(7,1,7,∅)

A

B C

D

Fig. 3. (Annotated) Quantifier trees

Predicting Space Requirements for a Stream Monitor Specification Language 147

Theorem 2. Let M ∈ M and aqt = AQT (QT (D(M))). Then for all n, p, S ∈ N
and s ∈ {�,⊥}ω such that T (M) �p,s,n S, we have S ≤ SR(aqt).

We informally sketch the argument for the correctness of this theorem.
Ignoring the special cases that the algorithm considers, i.e. the annotation of

infinite memory, or subtrees which evaluate instantly, the heart of the algorithm
is the observation that the quantifiers in dominating monitors can be treated
the same independently of their position in the formula. This is not the case for
non-dominating monitors because there is dependence between the intervals.

A second important observation is that the evaluation of the runtime mon-
itors is independent of the position of the stream. Thus, we can take a single
monitor instance and evaluate it as different positions to understand how all
instances of the monitor will evaluate. See Sect. 3 for more detail.

Going back to the first observation and Definitions 1 and 2, we can con-
sider the evaluation of a monitor M with a single quantifier whose interval
is [x + a, x + b], where a ≤ b and a, b ∈ N. For n ≥ b it is easy to com-
pute that T (M) �p,s,n (b − a) + 1. However, at positions a ≤ n < b,
T (M) �p,s,n (n − a) + 1. These results can already be found in [3]. Since
the instance production of quantifiers is independent of their location in a for-
mula, we can use these two basic results to compute the number of instances of
the quantified formula produced. An elementary but tedious inductive argument
leads to a soundness result and proof of Theorem2. The argument would be,
take a monitor with m quantifiers and construct a new monitor such that the
monitor’s formula has an additional quantifier added on top. The rest of the
proof is just checking cases. We now give an asymptotic bound on the space
complexity.

Theorem 3. Let aqt = (A, b1, b2, aqt′) ∈ AQT. Then SR(aqt) = O (An) where
n = d(aqt) is the quantifier depth of aqt inductively defined by d(∅) = 0 and
d(a, b1, b2, Q) = 1 + maxaqt∈Q d(aqt).

Proof (sketch.). It is well known that
∑A−1

i=0 in = O(An). If every quantifier in
aqt has an interval [0, A], then this summation accurately represents the com-
putation of this algorithm: the outer SR(·) function represents the summation
and the inner function SR(·, ·) computes the nth degree polynomial.

This result improves the O
(
A2n

)
space complexity bound presented in [3].

6 Experimental Results

We have experimentally validated the predictions of our analysis for the following
monitors where (1a) and (2a) represent the dominating forms of the monitors
(1b) and (2b), respectively:

∀0≤x: ∀y∈[x, x+80]: ∀z∈[x, x+80]: @z (1a)
∀0≤x: ∀y∈[x, x+80]: ∀z∈[x, y]: @z (1b)

148 D.M. Cerna et al.

∀0≤x: ∀y∈[x, x+40]: ∀z∈[x, x+80]: @z (2a)
∀0≤x: ∀y∈[x, x+40]: ∀z∈[x, y+40]: @z (2b)

The diagram in Fig. 4 displays on the vertical axis the number of formula
instances reported by the LogicGuard runtime system for corresponding moni-
tors in the real specification language; the horizontal axis displays the number of
messages observed so far on the stream. The monitors are defined such that the
body of the innermost quantifier always evaluates to true and thus always the
full quantifier range is monitored and the worst-case space complexity is exhib-
ited. One should note that the runtime system reports the number of formula
instances while our analysis determines a measure for the size of the monitor’s
runtime representation (which is difficult to determine in the real system); how-
ever, for monitors with less than three nested quantifiers, such as the ones given
above, the results coincide (the z-quantifier does not store any instances, since
its body is propositional; the y quantifier contains instances of size 1; the run-
time system reports the number of these instances which is identical to the total
size of these instances determined by our analysis).

As expected, we can observe that the number of instances eventually reaches,
after the startup phase, an upper bound. For the dominating monitors 1a and 2a,
the predictions 1 (3320) and 2 (2459) reported by the analysis accurately match
the observations. As also expected, however, these predictions overestimate the
number of instances observed for the non-dominating monitors 1b (160) and
2b (1659), from which the dominating monitors were derived. Interestingly, the
overapproximation for monitor 2b (by a factor of 1.5) is much less than for mon-
itor 1b (by a factor of 21). It seems that our analysis is better at predicting the
number of instances for certain quantifier configurations. This would imply that
quantifier configurations which we cannot predict well (i.e., where the difference
between the actual space requirements and that of the dominating form is large)
may have better performance in real-world scenarios. This is a topic that we are
going to investigate further in future work.

We have also tested our algorithm with the following more realistic monitor-
ing scenario which is based on the full language sketched in Sect. 2:

type int; type message; stream<int> IP;

stream<int> S = stream<IP> x satisfying @x>=0 :

value[seq,@x,plus]<IP> y with x < _ <=# x+10000: @y;

monitor<S> M = monitor<S> x :

forall<S> y with x < _ <=# x+15000:

exists<S> z with y < _ <=# y+4000: IsEven(#z);

The predicate IsEven(#z) is true only when the message arrives at an even
time. Notice that the internal quantifier of the monitor depends on the external
quantifier, which as shown in Fig. 5 yields a less accurate prediction than for
independent quantifiers.

Predicting Space Requirements for a Stream Monitor Specification Language 149

Fig. 4. Artificial experimental results versus predictions

Fig. 5. Realistic experimental results versus predictions

7 Conclusions

In this paper we have studied the space complexity of runtime monitor execu-
tion. The monitors are written in the core version of the LogicGuard specification
language. For this purpose, we have abstracted every monitor formula into a tree
structure which contains only those aspects of the formula that influence the size
of the runtime representation, which is determined by the number of instances.
Using this structure, we developed an algorithm determining an upper bound
for the number of formula instances that a monitor stores during execution. An
essential part of this algorithm is the dominating monitor transformation, which
over-approximates the actual number of instances stored. In our experimental
results, it was shown that there are monitors whose instance number is accu-
rately approximated by the algorithm’s upper bound and monitors where the
upper bound is far too conservative. The algorithm presented hints at a possi-
ble optimization when considered in conjunction with the technical report [2].
The ordering of quantifiers seems to greatly influence space complexity, that is

150 D.M. Cerna et al.

larger quantifiers first implies lower space complexity. We plan to investigate
optimizations based on quantifiers commutativity.

Another point we would like to address in future work is the variety of ways
one can calculate the space complexity of a monitor specification. In Sect. 6, we
brought up the subtle differences between our space calculation and the one used
in the actual runtime system. The two measures diverge for quantifier depth
three or greater. We plan to perform a similar analysis using this alternative
approach to space complexity measures. On a similar note, both measures so far
mentioned are closely related to possible time complexity measures. In the case
of time complexity, we would like to count each individual step of the operational
semantics. We want to develop a time complexity measure based on the space
complexity measure devised here.

References

1. Büchi, J.R.: Weak SO arithmetic and finite automata. Z. Math. Logik Grundlagen
Math. 6, 66–92 (1960)

2. Cerna, D.: Space Complexity of LogicGuard Revisited. Technical report, RISC,
JKU, Linz, October 2015

3. Cerna, D.M., Schreiner, W., Kutsia, T.: Space analysis of a predicate logic fragment
for the specification of stream monitors. In: Davenport, J.H., Ghourabi, F. (eds.)
7th International Symposium on Symbolic Computation in Software Science. EPiC
Computing, vol. 39, pp. 29–41 (2016)

4. Colombo, C., Pace, G.J., Schneider, G.: LARVA—safer monitoring of real-time
Java programs (Tool Paper). In: 2009 Seventh IEEE International Conference on
Software Engineering and Formal Methods, pp. 33–37, November 2009

5. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchro-
nous systems. In: 12th International Symposium on Temporal Representation and
Reasoning (TIME 2005), pp. 166–174, June 2005

6. Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded and unbounded
future. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 60–75.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04694-0 5

7. Frick, M., Grohe, M.: The complexity of FO and monadic SO logic revisited. Ann.
Pure Appl. Logic 130(1–3), 3–31 (2004)

8. IEEE Std 1850-2007: Standard for Property Specification Language (PSL) (2007)
9. Kupferman, O., Lustig, Y., Vardi, M.Y.: On locally checkable properties. In:

Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 302–316. Springer, Heidelberg (2006). doi:10.1007/11916277 21

10. Kutsia, T., Schreiner, W.: Verifying the Soundness of Resource Analysis for Log-
icGuard Monitors. Technical Report 14–08, RISC, JKU, Linz (2014)

11. LogicGuard II, November 2015. http://www.risc.jku.at/projects/LogicGuard2/
12. Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future.

In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16.
Springer, Heidelberg (2005). doi:10.1007/11603009 2

13. McNaughton, R., Papert, S.: Counter-Free Automata. Research Monograph, vol.
65. MIT Press, Cambridge (1971)

http://dx.doi.org/10.1007/978-3-642-04694-0_5
http://dx.doi.org/10.1007/11916277_21
http://www.risc.jku.at/projects/LogicGuard2/
http://dx.doi.org/10.1007/11603009_2

Predicting Space Requirements for a Stream Monitor Specification Language 151

14. Schreiner, W., Kutsia, T., Cerna, D., Krieger, M., Ahmad, B., Otto, H., Rummer-
storfer, M., Gössl, T.: The LogicGuard Stream Monitor Specification Language
(Version 1.01). Tutorial and Reference Manual, RISC, JKU, Linz (2015)

15. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS 1986, 16–18 June, Cambridge, Massachusetts, USA, pp. 332–
344. IEEE Computer Society (1986)

A Stream-Based Specification Language
for Network Monitoring

Peter Faymonville, Bernd Finkbeiner(B), Sebastian Schirmer,
and Hazem Torfah

Saarland University, Saarbrücken, Germany
finkbeiner@react.uni-saarland.de

Abstract. We introduce Lola 2.0, a stream-based specification language
for the precise description of complex security properties in network traf-
fic. The language extends the specification language Lola with two new
features: template stream expressions, which allow input data to be car-
ried along the stream, and dynamic stream generation, where new mon-
itors can be invoked during the monitoring process for the monitoring of
new subtasks on their own time scale. Lola 2.0 is simple and expressive: it
combines the ease-of-use of rule-based specification languages like Snort
with the expressiveness of heavy-weight scripting languages or temporal
logics previously needed for the description of complex stateful depen-
dencies and statistical measures. Lola 2.0 specifications are monitored
by incrementally constructing output streams from input streams, while
maintaining a store of partially evaluated expressions. We demonstrate
the flexibility and expressivity of Lola 2.0 using a prototype implemen-
tation on several practical examples.

Keywords: Runtime verification · Monitoring · Network intrusion
detection

1 Introduction

Automatic support for the monitoring of network traffic has become essential
in order to cope with the massive exchange of data over high-speed networks
and the constantly rising number of attacks. With the help of network intru-
sion detection systems (NIDS), system administrators check the network against
predefined malicious patterns and identify previously unknown attack patterns
based on irregularities observed in the network traffic. For instance, to check
whether a server is subject to a denial of service attack, one observes whether
a large number of connections are established to the server in a short period of
time from external IP addresses.

Traditionally, monitoring tasks in telecommunication networks have been
specified in powerful scripting languages, such as the N-Code language in the
Network Flight Recorder (NFR) [14]. Intrusion detection systems implemented

This work was partially supported by the German Research Foundation (DFG) in
the Collaborative Research Center 1223 and by the Deutsche Telekom Foundation.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 152–168, 2016.
DOI: 10.1007/978-3-319-46982-9 10

A Stream-Based Specification Language for Network Monitoring 153

in such languages extract from the network traffic a complex combination of tem-
poral patterns and statistical measures that distinguish intrusions from normal
network traffic. Such heavy-weight solutions are, however, expensive to develop
and maintain, since specification and monitoring algorithm are typically not
separated and dependencies on future behavior have to be explicitly encoded.

Descriptive specification languages allow us to naturally express future pro-
tocol behavior in concise and readable specifications. One such language is the
stream-based specification language Lola [7], which describes complex tempo-
ral patterns with references into the past and the future in a simple way and
can both monitor correctness properties and compute statistical measures. Lola
specifications resemble programs in a synchronous programming language like
Lustre [12], Esterel [5], or Signal [10], but may include formulas that refer
to future values of streams. For network monitoring tasks, however, specifying
properties for individual connections of a network stream is cumbersome, because
every possible connection would need to be defined in a separate stream.

The contribution of the paper is to introduce new language features into the
Lola language that allow us to run each stream on an individual slice of the
incoming data and on an individual time scale. In this way, inexpensive patterns
can be used as filters that produce streams that run at slower speeds with less
data, and can therefore be analyzed against more expensive patterns.

To illustrate the need for the new language features of Lola, consider the
classic Lola specification

input bool loginSuccess
output int attempts := ite(loginSuccess, 0, attempts[+1,0] + 1)

which computes, from a given position in the stream, the number of overall failed
login attempts until that future point of time where either the login attempt
succeeds or the stream ends. Now, to distinguish the login attempts of individual
users, Lola 2.0 extends the streams of Lola to parameterized stream templates.
The instantiation of a template, as well as the speed in which an instance runs,
is determined dynamically by auxiliary invocation and extension streams. If, for
example, we wish to count the number of failed login attempts per user, we
might introduce a stream template

input bool loginSuccess
input String uid
output int attempts<user> : inv :uid; ext :useraction :=

ite(loginSuccess,0,
attempts(user)[+1,0]+1)

where uid and useraction are auxiliary streams: the uid stream contains the id
of the user who is currently logging in, and causes an invocation of the instance
of the attempts stream corresponding to that user if that instance does not exist
already, i.e., during the first login attempt of that user; the useraction stream
extends the attempts stream whenever that user attempts another login:

output bool useraction<u> := (uid=u)

154 P. Faymonville et al.

As a result, the attempts(u) stream of a particular user u consists of those
positions, and only those positions, where the user u tries to log on. The condition
under which the monitor should raise an alarm is indicated in Lola with the
keyword trigger. In Lola 2.0, the trigger condition might involve an aggregation
over the instances of a stream template, as in the following example:

output bool bruteforce<user> : inv: uid; ext: useraction :=
attempts(user)>3

trigger any(bruteforce)

The alarm is triggered if there exists a user who attempts more than three failed
login attempts. Note that the only expensive part of the monitoring happens
in the attempts(user) streams, which each run very slowly, at the pace of an
individual user, and deal with very little data. While many instances of the
attempts template might be active at the same time, this does not constitute a
performance bottleneck as the instances could easily be distributed over several
parallel machines.

Outline. In Sect. 2, we relate Lola 2.0 to other specification mechanisms for
network monitoring. In Sect. 3 we discuss the syntax of Lola 2.0. In Sect. 4 we
provide some illustrative examples of the application of Lola 2.0 to network intru-
sion detection. In Sect. 5 we turn to describing the semantics of Lola 2.0 in more
detail. In Sect. 6, we present a monitoring algorithm for Lola 2.0 specifications.
We report on experimental results in Sect. 7 and conclude in Sect. 8.

2 Related Work

Approaches to network intrusion detection are broadly classified into signature-
based [1,11,16,17,19] and anomaly-based [8,15] approaches. Signature-based
approaches monitor for known patterns of attacks, while anomaly-based
approaches detect deviations from the usual behavior. Typically, signature-based
approaches run the risk of missing attacks that do not follow a known pattern,
anomaly-based approaches can recognize previously unseen attacks, but often
produce false alarms. While our approach belongs to the category of signature-
based approaches, it can, to some extent, emulate an anomaly-based approach
by computing certain statistics and raising an alarm if the values fall out of the
normal range.

Within the signature-based approaches, a wide range of specification lan-
guages has been proposed that differ significantly in expressiveness and ease-
of-use. One of the most common NIDS is the Snort system [19]. Specifications
for Snort are based on a simple rule-based model language that describes per
packet tests and actions. Snort rules can define statistical anomaly patterns
over packets and collect traffic based on data contained in the payload of the
packets. Suricata1, is a more recent implementation using the same rule-based

1 https://suricata-ids.org.

https://suricata-ids.org

A Stream-Based Specification Language for Network Monitoring 155

input language as Snort. The focus on individual packets, rather than the rela-
tion between multiple packets, is the key weakness of light-weight specification
approaches like Snort and Suricata rules. On the other end of the expressivity
spectrum, systems like Bro [18], which use an event-based scripting language as
a specification mechanism, fall into the category of heavy-weight specification
mechanisms, which have the full power of a programming language.

As first pointed out by Roger and Goubault-Larrecq [20], the temporal pat-
terns in the relations of multiple packets can naturally be expressed in a tem-
poral logic. Approaches to intrusion detection based on temporal logic include
the ORCHIDS [17], TeStID [2], and MONID [16] tools. ORCHIDS uses a spe-
cialized temporal logic tailored towards eventuality properties and employs an
expressive underlying rule-based language as well as the capability to spawn
monitors for individual instances of monitoring tasks. In comparison to Lola 2.0,
non-determinism in the specification has to be handled explicitly. TeStID uses
Many Sorted First Order Metric Temporal Logic (MSFOMTL). MONID uses
the temporal logic EAGLE, which is based on parameterized recursive equa-
tions. A simpler, and often more efficient version of EAGLE is the rule-based
specification language RuleR [4].

Our approach is based on the stream-based specification language Lola [7].
The definition of Lola output streams in terms of other streams resembles syn-
chronous programming languages (notably Lustre [12], Esterel [5], and Sig-
nal [10]). Unlike these languages, Lola is not, however, an executable program-
ming language, but a descriptive specification language. Lola subsumes many
other specification languages, such as the temporal logics, and has been shown
to provide natural encodings for both the temporal and the statistical measures
needed to monitor industrial hardware designs. More theoretical work on Lola
concerns the complexity, expressiveness, succinctness, and closure properties of
Boolean streams [6]. The new version of Lola presented in this paper extends the
original language with the concepts of parameterization and multiple temporal
time scales.

Parameterization is a common concept in specification languages for runtime
verification. In parametric temporal logic [9], parameters refer to quantitative
measures, such as the number of steps until an eventuality is fulfilled. While
this type of parametric specification can also be encoded in Lola, the purpose
of the parameterization in Lola 2.0 is to run individual streams on small slices
of the incoming data stream. This type of parameterization is similar to the
parameterization in QEA (Quantified Event Automata) [3], an approach based
on state machines, where a given trace is sliced into separate projections for
different parameter values. Both types of parameterization appear in rule-based
specification languages like LogFire [13], where a set of facts F (v1, . . . , vn) for
some name F and parameter values v1, . . . , vn is maintained. A generic approach
to add parameterization to an existing specification language was presented by
Rosu and Chen [21]. The parameterization in Lola 2.0 extends these approaches
with the dynamic creation and termination of streams and the aggregation of
statistics over the instances of a stream template.

156 P. Faymonville et al.

3 Stream-Based Specifications

We introduce the syntax of stream-based Lola specifications in two steps. We
begin with “standard” Lola, as introduced in [7], where specifications are given
by equations over stream variables. In the second step, we introduce Lola 2.0,
by generalizing such stream equations to stream equation templates.

Lola 1.0. A Lola specification is a system of equations of stream expressions
over typed stream variables of the following form:

input T1 t1

...
input Tm tm

output Tm+1 s1 := e1(t1, . . . , tm, s1, . . . sn)
...

output Tm+n sn := en(t1, . . . , tm, s1, . . . sn)

Each stream expression ei(t1, . . . , tm, s1, . . . sn), for 1 ≤ i ≤ n is defined over a
set of independent stream variables t1, . . . , tm and dependent stream variables
s1, . . . , sn. Independent stream variables refer to input stream values, and depen-
dent stream variables refer to output stream values computed over the values of
all streams. All stream variables are typed: the type of an independent stream
variable ti is Ti, the type of an dependent stream variable si is Tm+i.

A stream expression e(t1, . . . , tm, s1, . . . sn) is defined recursively as follows:

– Let c be a constant of type T and let si for 1 ≤ i ≤ n be a stream variable of
type T ′, then both e = c and e = si are atomic stream expressions of type T
and T ′ respectively.

– Let f : T1 × T2 × . . . Tk → T be a k-ary function, then for stream expres-
sions e1, . . . ek of type T1, . . . , Tk, the expression e = f(e1, . . . , ek) is a stream
expression of type T .

– Let b be a boolean stream expression and e1, e2 stream expressions of type
T , then e = ite(b, e1, e2) is a stream expression of type T . The expression
evaluates to e1 when b is true and to e2 when b is false.

– Let e′ be a stream expression of type T , d a constant of type T , and i an integer,
then e = e′[i, d] is a stream expression of type T . The stream expression e′[i, d]
refers to the value of expression e′ offset i positions from the current position.
If such a position is not defined, then the value of the stream is the default
value d.

In addition to the stream equations, Lola specifications often contain a list
of triggers

trigger ϕ1, ϕ2, . . . , ϕk

where ϕ1, ϕ2, . . . , ϕk are expressions of type boolean over the stream variables.
Triggers generate notifications when their value becomes true.

A Stream-Based Specification Language for Network Monitoring 157

Lola 2.0. Lola 2.0 extends Lola with stream equation templates of the following
form:

output T s〈p1 : T1, . . . , pl : Tl〉 : inv : sinv;
ext : sext;
ter : ster :=
e(t1, . . . , tm, s1, . . . sn, p1, . . . , pl)

Each such stream equation template introduces a template variable s of type
T that depends on parameters p1, . . . , pl of types Tp1 , . . . Tpl

, respectively. For
given values v1, . . . , vl of matching types Tp1 , . . . Tpl

we call

s〈v1, . . . , vl〉 = e(t1, . . . , tm, s1, . . . sn, p1, . . . , pl)[p1/v1, . . . pl/vl]

an instance of s. The template variables sinv, sext, and ster indicate the following
auxiliary streams:

– sinv is the invocation template stream variable of s and has type Tp1 ×· · ·×Tpl
.

If some instance of sinv has value (v1, . . . vl), then an instance s〈v1, . . . , vl〉 of
s is invoked.

– sext is the extension template stream variable of s and has type bool and
parameters of type Tp1 , . . . Tpl

. If s is invoked with parameter values α =
(v1, ..., vl), then an extension stream sα

ext is invoked with the same parameter
values. If sα

ext is true, then the value of the output stream s〈v1, . . . , vl〉 is
computed at the position.

– ster is the termination template stream variable of s and has type bool and
parameters of type Tp1 , . . . Tpl

. If s is invoked with parameter values α =
(v1, ..., vl), then a terminate stream sα

ter is invoked with the same parameter
values. If sα

ter is true, then the output stream s〈v1, . . . , vl〉 is terminated and
not extended until it is invoked again.

A template stream expression e(t1, . . . , tm, s1, . . . sn, p1, . . . , pl) is defined like
a stream expression in Lola 1.0, with the following additions:

– Let pi for i ∈ {1, . . . l} be a parameter. Then pi is a template stream expression
of type Ti.

– Let s be a template variable, and Op be an aggregation operator of type T . For
example, any is an aggregation operator of type bool, count is an aggregation
operator of type int. Then Op(s) is a template stream expression of type T .

If a stream equation template has no parameters, we omit the empty para-
meter tuple 〈〉. We also permit that any of the auxiliary streams may be omitted,
in which case the invocation stream is set to the default stream σ0, which is the
constant stream that produces the empty tuple () in every position; the exten-
sion template stream is set to the constant stream that produces true in every
position, and the termination template stream is set to the constant stream that
produces false in every position. Note that in this way, Lola 1.0 stream equations
are special cases of Lola 2.0 stream equation templates. The same also holds for
independent stream variables. If omitted from the declaration, the invocation,
extension and termination streams are set to the default values.

158 P. Faymonville et al.

4 Example Specifications

In this section we show how we can employ Lola 2.0 to define properties over
network traffic. Consider the Lola 2.0 specification given in Fig. 1. The specifi-
cation defines a pattern for detecting a web application fingerprinting attack. In
such an attack a hostile client sends arbitrary HTTP requests and awaits the
responses from the server, which contain a HTTP response header with informa-
tion about the server software vendor, its version, and more. Such information
allows the client to determine known vulnerabilities according to the type of the
server. The attacker mostly requests access to random URLs, which may lead
in many cases to an HTTP response declaring either a bad HTTP request or a
page not found message. One way to observe such an attack is to observe server
responses containing either “Bad HTTP request” or “Page not found” messages
and then check whether the IP address, which initiated the request, continues
sending random requests to the server.

In the specification, the stream webApplicationFingerprinting is invoked
for a pair of source and destination addresses every time the invocation stream
badHttpRequestInvoke is extended with a new pair of addresses. Such a pair

input string Protocol, RequestMethod, ResponsePhrase, Source, Destination

output (string, string) badHttpRequestInvoke;

ext: Protocol="HTTP" & (ResponsePhrase="Bad Request" | "Not Found")

:= (Source, Destination)

output bool badHttpRequestExtend<src, dst>:

inv: badHttpRequestInvoke;
:= src=Source & dst=Destination &

ResponsePhrase = "Bad Request" | "Not Found"

output bool webApplicationFingerprintingTerminate<src,dst>:
inv: badHttpRequestInvoke;
:= src=Source & dst=Destination & ResponsePhrase = "OK"

output int webApplicationFingerprinting<src, dst>:

inv: badHttpRequestInvoke;
ext: badHttpRequestExtend;
ter: webApplicationFingerprintingTerminate
:= webApplicationFingerprinting(src, dst)[-1,0]+1

trigger any(webApplicationFingerprinting > threshold)

Fig. 1. A Lola 2.0 specification for a web application fingerprinting pattern

A Stream-Based Specification Language for Network Monitoring 159

is recorded whenever a bad request or no page found response is sent out, as
defined by the extension stream of badHttpRequestInvoke2.

Once an instance of webApplicationFingerprinting is invoked it tracks
the number of bad requests, using the extension stream badHttpRequestExtend
which is invoked simultaneously with the same pair of addresses. If at some point
the status code OK was returned then the instance is terminated via the ter-
mination stream webApplicationFingerprintingTerminate. This allows the
monitoring process to discard many instances of the template that otherwise
would cause many false positive alerts. If an instance is not terminated and its
value exceeds a certain threshold, then the monitoring algorithm alerts about
a potential web application fingerprinting threat. The latter is defined by the
keywords trigger and any.

We consider another example involving denial of service attacks (DoS). One
way of checking whether a server is subject to a DoS attack, is to observe whether
a large number of connections are established to the server in a short period of
time from external IP addresses. Consider a client that is trying to perform a
DoS attack via a TCP-SYN scan. The hostile client sends a SYN request to the
server to initiate a three-way handshake, upon which the server responds with
a SYN/ACK packet including the port number it was sent from. The malicious
client then sends no ACK packet to acknowledge the reception of the SYN/ACK
package, or might even request a reset of the communication, which leaves the
port and connection data structure open and thus leads to eventual resource
exhaustion. One way to monitor such an attack is to check whether a large
number of uncompleted handshakes are observed in the traffic.

Figure 2 shows a specification for checking whether the number of open
TCP requests exceeds a given threshold using the stream template tcpSynScan.
Whenever there is a TCP request from a client to the server, the monitor waits
for an acknowledgment from the client. This is determined by the specification
waitForAck which is invoked by the stream incompleteHandshakeInvoke for
a pair of addresses. At the same time the stream incompleteHandshakeInvoke
also invokes an instance of the template tcpSynInvoke. If a certain time passes
without seeing an acknowledgement, then the instance is extended by the pair
of source and destination addresses and an instance of tcpSynScan is invoked to
monitor a potential TCP SYN scan attack for this pair of IP addresses. From this
position on the monitor keeps track of how many TCP requests are received from
an IP address or whether Syn requests keep being sent from one address without
acknowledgements. When one of the thresholds threshold2 and threshold3 is
exceeded, the monitor triggers an alert. This is achieved using the keywords
trigger, any and count.

2 In Fig. 1 the extension stream of badHttpRequestInvoke is defined explicitly in the
output stream. This could also have been defined separately by a declaration of
another boolean output stream with the same condition.

160 P. Faymonville et al.

input string Protocol, Syn, Ack, Source, Destination

output (string,string) incompleteHandshakeInvoke:

ext: Protocol= "TCP" & Syn="Set" & Ack="Not Set";
:= (Source,Destination)

output bool incompleteHandshakeTerminate<src, dst>:
inv: incompleteHandshakeInvoke;
=Source=src & Destination=dst & Syn="Not Set" & Ack="Set"

output int waitForAck<src,dst>:

inv: incompleteHandshakeInvoke;
ter: incompleteHandshakeTerminate
= waitForAck(src, dst)[-1,0]+1

output (string,string) tcpSynInvoke<src, dst>:

inv: incompleteHandshakeInvoke;
ext: waitForAck(src,dst)[0,0] > threshold

ter: waitForAck(src,dst)[0,0] > threshold

= (src,dst)

output bool tcpSynExtend<src,dst>:
inv:tcpSynInvoke;
= src = Source & dst = Destination & Syn = "Set"

output bool tcpSynTerminate<src,dst>:
inv:tcpSynInvoke;
= src = Source & dst = Destination & Syn = "Not Set" & Ack="Set"

output int tcpSynScan<src,dst>:

inv:tcpSynInvoke;
ext:tcpSynExtend;
ter:tcpSynTerminate;
=tcpSynScan(src,dst)[-1,0] +1

trigger count(tcpSynScan) > threshold2

trigger any(tcpSynScan > threshold3)

Fig. 2. A specification of a TCP SYN scan pattern

5 Lola 2.0 Semantics

We now give a formal definition of the Lola 2.0 semantics. Let Φ be a specification
with independent stream variables t1, . . . , tm of type T1, . . . Tm, respectively, and
template stream variables s1, . . . , sn of types Tm+1, . . . Tm+n, respectively.

We fix a natural number N ≥ 0 as the length of the traces. An evaluation
model of Φ is a set Γ of streams of length N , where each stream has type
Tm+i ∪ {#} for 1 ≤ i ≤ n. The symbol # is added to the types to indicate that

A Stream-Based Specification Language for Network Monitoring 161

the stream does not exist yet at a particular position, for example if the stream
has not been invoked yet. In the following, we use sα

i to refer to the instance of a
template variable si with parameter values α, and σα

i to refer to a corresponding
stream in Γ .

We now pose several conditions that evaluation models must satisfy. Intu-
itively, the conditions concern the two mutually dependent requirements that (1)
the evaluation model is populated with a sufficiently large set of streams, and
that (2) each stream actually produces the right values. To guarantee require-
ment (1), we describe the elements of Γ inductively as follows:

– σ0 ∈ Γ , where σ0 is the constant stream that produces the empty tuple () in
every position.

– For each template stream variable si, we consider the associated invocation
stream variable sinv . If Γ contains some stream σα

inv for some parameter values
α ∈ T inv

1 ×· · ·×T inv
li

, then Γ must also contain a stream for every instance of si

invoked by σα
inv at some position; i.e., for all j < N where σα

inv(j) 	= #, there
must exist some stream σβ

i ∈ Γ for the instance of si given by the parameter
values β = σα

inv(j).

To guarantee condition (2), that each stream actually produces the right
values, we first characterize the positions in which the stream exists.

Let alive(si, (v1, . . . , vli), j) be true for some stream position j if the stream
was actually invoked, i.e., there is a stream σβ

inv ∈ Γ for some instance of the
associated invocation stream variable sinv (with arbitrary parameter values β)
and an earlier stream position j′ < j such that σβ

inv(j
′) = (v1, . . . , vl), and

the stream was not terminated in the meantime, i.e., for j′ < j′′ ≤ j we have
σβ′
ter(j′′) = false for all instances of the termination stream variable with β′ =

(v1, . . . , vl).
If a stream exists in some position, we determine its value by evaluating

the corresponding stream expression. For each stream σα
i ∈ Γ for the instance

α = (v1, . . . , vli) of some stream template variable si,

σα
i (j) =

{
val(ei[p1/v1, . . . , pli/vli], j) if alive(si, (v1, . . . , vli), j)
otherwise

where the evaluation function val(ei[p1/v1, . . . , pli/vli], j) is defined as follows:

– if σα
ext(j) = true, where σα

ext is the extension stream of σα
i , then val(e, j) is

defined as follows:
• val(c)(j) = c
• val(th)(j) = τh(j) for 1 ≤ h ≤ m
• val(f(e1, . . . , eh))(j) = f(val(e1)(j), . . . , val(eh)(j))
• val(ite(b, e1, e2))(j) = if val(b)(j) then val(e1)(j) else val(e2)(j)

• val(sβ
h[0, d])(j) =

{
σβ

h(j) alive(sh, β, j)
d otherwise

162 P. Faymonville et al.

• val(sβ
h[k, d])(j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d if j ≥ N or j < 0
val(e[k − 1, d])(j + 1) if k > 0, σβ

ext(j) = true
val(e[k + 1, d])(j − 1) if k < 0, σβ

ext(j) = true
val(e[k, d])(j + 1) if k > 0
val(e[k, d])(j − 1) otherwise

– otherwise val(ei[p1/v1, . . . , pli/vli], j) = #

Intuitively, the extend stream defines a local clock for every template variable.
Unlike in Lola, where all streams follow the same one clock, streams in Lola 2.0
follow several clocks depending on their invocation time and the extension pace.
The invoke stream starts new instances of the template output stream whenever
it evaluates to a fresh parameter instantiation. The extend stream is evaluated
for all instances which are active on a current stream. Whenever it evaluates to
true, the template output stream instance advances on its timeline. A template
output stream instance is terminated whenever its terminate stream evaluates
to true for its parameter instantiation. The clocks can be inductively defined on
top of the clock of stream σ0, which we call the base clock.

Well-defined specifications. We say a specification is well-defined, if for any
set of appropriately typed input streams of length N for the independent stream
variables, it has a unique evaluation model. In general, specifications need not
be well-defined, for example through self-references without offsets in stream
expressions or circular offsets via multiple stream variables, which lead to the
non-existence of evaluation models or lead to infinitely many evaluation models
for a given set of input streams.

Since well-definedness is a semantic condition and expensive to check, we give
a syntactic criterion, called well-formedness, which implies well-definedness and
can be checked by a simple check on the dependency graph. For a specification
Φ, its associated dependency graph is a weighted and directed multi-graph G =
〈V,E〉 with V = {s1, . . . , sn, t1, . . . , tm}. We add an edge e ∈ E where e =
〈si, sk, w〉 from si to sk with weight w iff the stream expression of si contains
the subexpression sk[w, d] for some default value d. Edges leading to tk are added
analogously. Thus, the edges represent the fact that expression si depends on
sk at (positive or negative) offset w. Since each stream may be used more than
once with different offsets in an expression, the graph may contain multiple edges
between vertices. A cycle in the graph is a sequence v1

e1,w1−−−→ v2 . . . vk
ek,wk−−−−→

vk+1 such that all ei = 〈vi, vi+1, wi〉 ∈ E, and v1 = vk+1. The total weight of
the cycle is the sum of all weights wi along the cycle. A specification is well-
formed, iff it does not contain a zero-weight cycle. Well-formed specifications are
guaranteed to be well-defined.

6 The Monitoring Algorithm

We now describe a monitoring algorithm for the evaluation of a given Lola
2.0 specification on a set of input streams for the independent stream variables.

A Stream-Based Specification Language for Network Monitoring 163

The streams become available online, i.e., one position at a time. The length of
the streams is a-priori unknown and the full streams may be too large to store
in memory.

The central data structure of the algorithm is the equation store, which con-
sists of the following parts: A store S, in which we keep a set of the currently
active instances of template stream variables; a store of resolved equations R,
which are fully evaluated but may still be used by other streams, and a store of
unresolved equations U , which are not yet fully evaluated.

For each position, we begin the evaluation by adding the input stream values
at the current position to the store R. As we are adding resolved equations to
R, we always check whether they start new invocations for any of the template
stream expressions. Should this happen, we add these to the store S and add
corresponding unresolved equations to the store U . We then continue by simpli-
fying the equations in U by function applications, rewriting rules for conditionals
and resolving stream access and offsets by the equations from store R. The invo-
cation check and the simplification step are repeated until nothing new is added
to R and no new streams are invoked. The number of repetitions depends on the
structure and dependencies of the specification. Equations are removed from the
store R whenever they are not needed anymore.

To simplify the presentation of the algorithm, we assume that all extension
and termination streams are locally determined, i.e., their value at every position
can be calculated just from the values of the input streams at the same or earlier
positions. Let, for each independent stream variable ti, the corresponding input
stream be denoted by τi. Starting at position j = 0 with the empty equation
stores, the algorithm performs the following steps for each position:

1. For each input stream ti, add τi(j) = c to store R.
2. Add σ0(j) = () to R.
3. Initialize the set of active stream valuations: For all template streams si, and

valuations α such that α ∈ S(si, j − 1), if σα
ext = true and σα

ter = false then
α ∈ S(si, j).

Then repeat the following steps until a fixpoint is reached:

1. Simplify all equations in U , if any expression is now constant, add to R.
2. Check for new invocations, extensions and terminations by the additions to

R.
3. If for some stream template si, and any position k, σα

inv(k) = β is added to
R, then S(si, k) = S(si, k) ∪ β and we add σβ

i (k) = e to U .
4. If for some stream template si, and any position k, σα

ext(k) = true is added
to R, we add σα

i (k) = e to U .

The equations in U are simplified according to the following rules:

– Function application: e.g. 0 + x → x, . . .
– Rewriting for conditionals: ite(true, e1, e2) → e1, ite(false, e1, e2) → e2.
– Resolve stream access: If σi,α(j) = c in R, replace every occurence of σi,α(j)

by c in U .

164 P. Faymonville et al.

– Resolve stream offsets: If some σi,α(j) = ei in U contains a subexpression
σi,α(j)[k, d], σα

ext(j) = c is in R for c ∈ {true, false}, and σα
ter(j) = false then

σi,α(j)[k, d] →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σi,α(j) if k = 0, σα
ext(j) = true

σi,α(j + 1)[k − 1, d] if k > 0, σα
ext(j) = true

σi,α(j − 1)[k + 1, d] if k < 0, σα
ext(j) = true

σi,α(j + 1)[k, d] if k > 0
σi,α(j − 1)[k, d] if k ≥ 0, j > 0
d otherwise

– Resolve nonliving stream offsets: If some σi,α(j) = ei in U contains a subex-
pression σi,α(j)[k, d], and α /∈ S(si, j), then σi,α(j)[k, d] → d.

During the monitoring, we use a garbage collection process to remove entries
from store R that are no longer needed. For each template stream expression
si, we initially calculate the cutoff vector, which determines when a resolved
stream expression can be cleared from store R. The vector records the usage of
the stream expression within the definition of other streams and the maximal
offset value. The vector contains one entry for every other stream, with default
value 0. If there exits a reverse path in the dependency graph from stream sk

to stream si, we use the path with the smallest negative weight occuring on the
edge originating in sk on the path as the value. This yields the longest time we
keep a value for si in memory for any dependency of sk.

In an extra garbage collection store GC , we keep track of the current vectors
of stream extensions which need to occur before a value can be eliminated.
Whenever a new stream is invoked, we initialize GC(si, α, j) = (c1, . . . , cn) with
the cutoff vector (c1, . . . , cn). Whenever a stream sk is extended, we increment
the corresponding component ck of all vectors in GC . If a vector in GC for any
α and any si reaches strictly positive values in all elements at position j, we can
safely remove σi,α(j) from R.

Once the stream has terminated, we replace all open offset expressions beyond
the end of the stream with the specified default value and compute the fixpoint
once again.

Efficiently monitorable specifications. A specification is called efficiently
monitorable if its memory consumption is constant in the length of the input
streams. In Lola 1.0, a specification is guaranteed to be efficiently monitorable,
if the value of every stream depends, at every position, only on values of other
streams up to a bounded number of steps into the future [7]. A corresponding
result for Lola 2.0 does not hold, because we do not know how many streams
are invoked during run-time. Thus, the memory needed for a Lola 2.0 specifi-
cation therefore might grow with the length of generated traces. In practice, it
is, however, often possible to bound the number of instances invoked during the
monitoring process. This additional assumption in fact allows us to syntactically
characterize a class of efficiently monitorable specifications. The restriction from
Lola 1.0 that future dependencies are bounded is, however, not strong enough
for Lola 2.0. The reason is that, even when a reference in a Lola 2.0 specification

A Stream-Based Specification Language for Network Monitoring 165

looks only a constant number of steps into the future, the actual occurrence of
these future events might be delayed indefinitely by the extension stream. To
obtain an efficiently monitorable fragment for Lola 2.0, we must therefore forbid
all future references. Arbitrary references into the past remain allowed.

7 Experimental Results

We have implemented the monitoring algorithm for the efficiently monitorable
fragment of Lola 2.0 as a command-line tool in C. As an input, it takes pre-
processed network capture files (using the tool Wireshark3), which contain only
the relevant input data defined by the input streams in the specification, and a
Lola specification and produces output streams and statistics according to the
specification.

Our experiments use network capture files from the Malware Capture Facility
Project4. The network capture files range from 0.9 million up to 2.4 million
packets and capture the traffic in a time frame of 24 h. All experiments were run
on a single quad-core machine with an 3.6 GHz Intel Xeon processor with 32 GB
RAM. The input stream files were stored on an internal SSD drive.

Table 1 shows the result of the monitoring tool on the specification in Fig. 2.
We computed the number of count triggers, whose task was to observe the num-
ber of open handshake communications that have been waiting for more than 500
packets for an acknowledgment. We also observed the any trigger which checked
whether any TCP request was not acknowledged after 600 packets. We compare
the results of our specification with a Snort specification that checks whether
the number of TCP Syn requests exceeds a threshold of 100 requests per 60 s.
The results show that the specification in Fig. 2 never triggered, and therefore
all Syn-requests were acknowledged eventually. In comparison, a large number
of Snort alerts were issued on the trace files for the Snort specification. The
reason for that is that Lola 2.0 allows an intermediate step using the templates
waitForAck and tcpSynScan, where the monitor waits for the acknowledgment

Table 1. A comparison between our Lola 2.0 prototype and the rule-based language
Snort for detecting a simple pattern of TCP SYN scans.

#Packets Snort alerts Invocation Count trigger Any trigger Time (sec)

Wait Scan

901710 613 53654 340 323 0 2550.31

1710372 472 95983 260 254 0 6279.87

1857752 1699 107721 280 274 0 6786.06

1954427 2428 115787 379 369 0 7160.27

2419006 2036 146748 869 835 0 10347.96

3 http://www.wireshark.org.
4 http://mcfp.weebly.com.

http://www.wireshark.org
http://mcfp.weebly.com

166 P. Faymonville et al.

for a pair of IP-addresses before triggering. The high number of waitForAck
invocations in comparison to the number of tcpSynScan invocations shows that
Lola 2.0 allows to filter many TCP communications before starting the check for
a possible TCP-Syn scan.

However, on the trace files used in the experiment of Table 1, Snort was
able to return all the alerts in less than a minute. Since the following manual
inspection of the Snort alerts is necessary to evaluate the potential TCP Syn
Scan attack, this points to an interesting trade-off between the expressiveness of
the specification mechanism and the time needed to analyze large trace files.

8 Conclusion

We have extended the stream-based specification language Lola with stream
templates. Lola 2.0 is a descriptive language that subsumes many other spec-
ification languages and we showed how one can provide natural encodings for
properties and attack patterns over network traffic. The extended language pro-
vides a bridge between more light-weight approaches and monitoring techniques
based on expensive formalisms such as the temporal logics, combining both sim-
plicity and expressiveness. During runtime, each template can be instantiated
dynamically to obtain new streams. This allows each stream to run on an indi-
vidual slice of the incoming data. In this way, Lola 2.0 can combine specifications
that run on widely varying amount of data, and with widely varying speed. Inex-
pensive patterns can be used as filters that produce streams that run with less
data, which can subsequently be analyzed against more expensive patterns.

Even though our prototype is an online monitoring tool, we have evaluated
the tool on previously recorded pcap log data. In future work, we plan to deploy
the monitor directly in the network. Since Lola specifications can easily be par-
allelized, such an implementation will likely consist of several connected nodes,
placed at strategically chosen positions within the network. Further investigating
the trade-off between the expressiveness and efficiency in descriptive, stream-
based approaches for network monitoring remains an interesting topic for future
work.

References

1. Ahmed, A., Lisitsa, A., Dixon, C.: A misuse-based network intrusion detection
system using temporal logic and stream processing. In: 2011 5th International
Conference on Network and System Security (NSS), pp. 1–8, September 2011

2. Ahmed, A., Lisitsa, A., Dixon, C.: TeStID: a high performance temporal intrusion
detection system. In: Proceedings of the ICIMP, pp. 20–26 (2013)

A Stream-Based Specification Language for Network Monitoring 167

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event
automata: towards expressive and efficient runtime monitors. In: Giannakopoulou,
D.,Méry,D. (eds.)FM2012.LNCS, vol. 7436, pp. 68–84. Springer,Heidelberg (2012).
doi:10.1007/978-3-642-32759-9 9

4. Barringer, H., Rydeheard, D.E., Havelund, K.: Rule systems for run-time moni-
toring: from eagle to ruler. J. Log. Comput. 20(3), 675–706 (2010). http://dx.doi.
org/10.1093/logcom/exn076

5. Berry, G.: Proof, Language, and Interaction: Essays in Honour of Robin Milner,
Chap. The Foundations of Esterel, pp. 425–454. MIT Press, Cambridge (2000)

6. Bozzelli, L., Sánchez, C.: Foundations of boolean stream runtime verification. In:
Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 64–79.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 6

7. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: Lola: runtime monitoring of synchronous
systems. In: 12th International Symposium on Temporal Representation and Rea-
soning (TIME 2005), pp. 166–174. IEEE Computer Society Press, June 2005

8. Debar, H., Becker, M., Siboni, D.: A neural network component for an intrusion
detection system. In: Proceedings of 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 240–250, May 1992

9. Faymonville, P., Finkbeiner, B., Peled, D.: Monitoring parametric temporal logic.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 357–375.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54013-4 20

10. Gautier, T., Guernic, P., Besnard, L.: SIGNAL: a declarative language for synchro-
nous programming of real-time systems. In: Kahn, G. (ed.) FPCA 1987. LNCS,
vol. 274, pp. 257–277. Springer, Heidelberg (1987). doi:10.1007/3-540-18317-5 15

11. Goubault-Larrecq, J., Olivain, J.: A smell of Orchids. In: Leucker, M. (ed.)
RV 2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89247-2 1

12. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-
flow programming language lustre. Proc. IEEE 79(9), 1305–1320. citeseer.ist.
psu.edu/halbwachs91synchronous.html

13. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transf. 17(2), 143–170 (2015). http://dx.doi.org/10.1007/s10009-014-0309-2

14. Lee, W., Park, C.T., Stolfo, S.J.: Automated intrusion detection using NFR: meth-
ods and experiences. In: Proceedings of the Workshop on Intrusion Detection and
Network Monitoring, Santa Clara, 9–12 April 1999, pp. 63–72. USENIX (1999).
http://www.usenix.org/publications/library/proceedings/detection99/lee.html

15. Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion
detection models. In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy, pp. 120–132 (1999)

16. Naldurg, P., Sen, K., Thati, P.: A temporal logic based framework for intrusion
detection. In: Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 359–376. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30232-2 23

17. Olivain, J., Goubault-Larrecq, J.: The Orchids intrusion detection tool. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 286–290.
Springer, Heidelberg (2005). doi:10.1007/11513988 28

18. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23–24), 2435–2463. http://dx.doi.org/10.1016/S1389-1286(99)00112-7

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1093/logcom/exn076
http://dx.doi.org/10.1093/logcom/exn076
http://dx.doi.org/10.1007/978-3-319-11164-3_6
http://dx.doi.org/10.1007/978-3-642-54013-4_20
http://dx.doi.org/10.1007/3-540-18317-5_15
http://dx.doi.org/10.1007/978-3-540-89247-2_1
http://dx.doi.org/10.1007/978-3-540-89247-2_1
http://citeseer.ist.psu.edu/halbwachs91synchronous.html
http://citeseer.ist.psu.edu/halbwachs91synchronous.html
http://dx.doi.org/10.1007/s10009-014-0309-2
http://www.usenix.org/publications/library/proceedings/detection99/lee.html
http://dx.doi.org/10.1007/978-3-540-30232-2_23
http://dx.doi.org/10.1007/11513988_28
http://dx.doi.org/10.1016/S1389-1286(99)00112-7

168 P. Faymonville et al.

19. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceed-
ings of the 13th USENIX Conference on System Administration. LISA 1999,
USENIX Association, Berkeley, pp. 229–238 (1999). http://dl.acm.org/citation.
cfm?id=1039834.1039864

20. Roger, M., Goubault-Larrecq, J.: Log auditing through model-checking. In: Com-
puter Security Foundations Workshop, p. 0220. IEEE (2001)

21. Rosu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Log.
Methods Comput. Sci. 8(1) (2012). http://dx.doi.org/10.2168/LMCS-8(1:9)2012

http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dx.doi.org/10.2168/LMCS-8(1:9)2012

On the Complexity of Monitoring Orchids
Signatures

Jean Goubault-Larrecq1(B) and Jean-Philippe Lachance1,2

1 LSV, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
goubault@lsv.ens-cachan.fr

2 Coveo Solutions, Inc., Québec City, QC G1W 2K7, Canada
jplachance@coveo.com

Abstract. Modern monitoring tools such as our intrusion detection tool
Orchids work by firing new monitor instances dynamically. Given an
Orchids signature (a.k.a. a rule, a specification), what is the complexity
of checking that specification, that signature? In other words, let f(n)
be the maximum number of monitor instances that can be fired on a
sequence of n events: we design an algorithm that decides whether f(n) is
asymptotically exponential or polynomial, and in the latter case returns
an exponent d such that f(n) = Θ(nd). Ultimately, the problem reduces
to the following mathematical question, which may have other uses in
other domains: given a system of recurrence equations described using
the operators + and max, and defining integer sequences un, what is the
asymptotic behavior of un as n tends to infinity? We show that, under
simple assumptions, un is either exponential or polynomial, and that this
can be decided, and the exponent computed, using a simple modification
of Tarjan’s strongly connected components algorithm, in linear time.

1 Introduction

Orchids [OG05,GO08] is an intrusion detection system. Given a trace σ of
events, typically obtained in real-time, and a family of so-called signatures (var-
iously otherwise called rules or specifications), Orchids tries to find a subse-
quence of σ that satisfies one of the signatures. Each signature is described as an
automaton—not a finite-state automaton, though: each state comes with a piece
of code, in a simple but expressive imperative language, that is executed when-
ever control flow enters that state. Orchids then waits for an event matching one
of the transitions going out of the state.

See Fig. 1 for a slightly edited example of a signature that monitors legal user
id (uid) and group id (gid) changes, and reports any system call done with an
unexpected uid or gid (at state alert). Events are records with fields such as
.syscall or .euid (we have slightly simplified the syntax), and variable names
start with a dollar sign. Transitions are introduced by the expect keyword, so,
e.g., the start state init has one outgoing transition, and wait has five. The last
of the transitions of state wait is triggered whenever the currently monitored

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 169–184, 2016.
DOI: 10.1007/978-3-319-46982-9 11

170 J. Goubault-Larrecq and J.-P. Lachance

Fig. 1. The pid tracker signature

process (with pid $pid) executes an action with an effective user id .euid that
is not the one we expected (in $uid), or with an unexpected effective group id.

Since Orchids cannot predict which of the five expect transitions will be
matched by a subsequent event (and in fact, since, in principle, an event might
match several of those transitions), Orchids must monitor all five. To implement
that, the Orchids engine simulates so-called threads, and forks a new thread for
each pending transition, each new thread waiting for a matching event. That is,
on entering state wait, Orchids will create five threads.

This description of the working of Orchids is, of course, oversimplified, but is
enough to explain the problem we attack in this paper: evaluating the complexity
of detecting a subsequence that matches one of the signatures. A similar question
occurs naturally in other modern monitors, such as JavaMOP or the more recent
RV-Monitor [LZL+14], where signatures are called specifications, and threads
are called monitor instances. As the authors argue, and as our own experience
confirms, the main function that has to be estimated is the number of threads
that the engine may create after reading n events.

In the worst case, for a signature S, the Orchids algorithm may create a
number of threads fS(n) that is exponential in n, and that would be untenable.
For an intrusion detection system, that would be dangerous, too, as that would
open the door to an easy denial-of-service attack on the system itself.

Experience with practical signatures S shows that fS(n) is most often a poly-
nomial of low degree. The exponential worst case behavior just means that one
could instead craft specific signatures S such that fS(n) would be exponential.

On the Complexity of Monitoring Orchids Signatures 171

Most signatures are not of this kind. But can we warn a signature writer of the
complexity of his signatures? I.e., how does fS(n) vary as a function of S?

Our main contribution is the design, and proof, of a linear time algorithm
that, given a signature S, computes the asymptotic behavior of fS(n) as n tends
to +∞. We shall see that fS(n) is either exponential or polynomial. In the second
case, our algorithm computes the unique exponent d such that fS(n) = Θ(nd).

Outline. We review some recent related work in Sect. 2, and briefly describe
how our task reduces to estimating the asymptotic growth of sequences defined
by recurrence equations in Sect. 3. The core of our work lies in the subsequent
sections: we define systems of recurrence equations and illustrate their possible
asymptotic behaviors on several examples in Sect. 4; each such system Σ is better
handled through its associated graph G(Σ), which we introduce in Sect. 5; the
building blocks of our complexity evaluation algorithm are then given in Sect. 6,
relying on the decomposition of G(Σ) in its strongly connected components (scc),
and carefully distinguishing trivial and non-trivial sccs, cheap and expensive
edges; the algorithm quickly follows in Sect. 7, as an easy adaptation of Tarjan’s
algorithm; we also report here on our implementation and the result it gives on
the ten standard Orchids signatures. We conclude in Sect. 8.

2 Related Work

The question of evaluating the complexity of monitors at this level of detail
does not seem to have been addressed already. Efficiency has always been an
important subject in the field, and RV-Monitor [LZL+14] was recently advocated
as a fast implementation of monitors, able to sustain a large number of monitor
instances (a.k.a., our threads). This is backed by experimental evidence.

RV-Monitor’s algorithm is data-driven. Given a specification with parameters
x1, x2, . . . , xk, RV-Monitor organizes monitor instances inside an indexing tree,
and if we agree to call N the maximal number of different values that parameters
can take over an n event run, there can be at most Nk monitor instances at any
given time. If we assume no fixed bound on N , it is however clear that N = O(n),
and that the RV-Monitor analogue of our function fS(n) above is polynomial in
all cases (assuming the specification S fixed).

The Orchids algorithm is not data-driven, but trace-driven. That is, Orchids
does not look merely for values of parameters that make a match, but for a
subsequence of the input sequence. This is important for security. See Sect. 3.1
of [GO08] for a precise explanation: as we have argued there, Orchids needs to
be able to sort matching subsequences (even with different sets of parameter
values), so that only the smallest, lexicographically, is eventually reported: this
is in most cases the most informative subsequence of events that characterizes a
successful attack. Orchids signature matching is therefore necessarily more com-
plex in general, and one can craft signatures that would make Orchids generate
exponentially many threads. This is why the algorithm presented here is needed.

As a side matter, one can force the newest versions of Orchids to work in a
data-driven way, using a specific “synchronized” construction. For example, the

172 J. Goubault-Larrecq and J.-P. Lachance

signature shown in Fig. 1 will only keep one Orchids thread per value of the $pid
parameter, which keeps track of the pid of an actual Unix process monitored by
Orchids. Such annotations will be ignored in this paper. They have little impact
on the complexity analysis we shall do, in the worst case.

Efficiency is also one of the main concerns behind the MonPoly-Reg and
MonPoly-Fin tools [BKMZ15]. The signature language there, MFOTL, is a real-
time logic. Each variable varies in a domain of at most N elements, and it is
assumed that there is an upper bound m on the number of successive events
with the same timestamp. Time complexity is always polynomial. By carefully
reading Sect. 5 of [BKMZ15], one sees that the polynomial degree is linear in
the maximal number k of free variables in the monitored formula and in the
number c of connectives of the formula. When m = 1 (i.e., event timestamps are
strictly increasing) and there are no temporal future operators, the complexity
is comparable with the O(Nk) bound given for RV-Monitor: if t(n) is the time
to check one RV-Monitor instance, so that RV-Monitor takes time O(Nkt(n)),
the MFOTL-based tools run in time O(NO(k+c)).

We will not cite any other paper on the question of monitor complexity.
Other (parametric) monitors such as QEA or LogFire are described in [HR15],
with some features in common with Orchids and RV-Monitor respectively. Extra
information can be gleaned by following references from the above papers.

Later, we will argue that our problem reduces to finding asymptotic esti-
mates for sequences (un)n∈N

defined by so-called recurrence equations. Those
are (systems of) equations of the form un+1 = f(un, vn, wn, · · ·), vn+1 =
g(un, vn, wn, · · ·), etc., where f , g, . . . , are some explicitly given functions. There
is a huge body of literature, specially in the mathematical literature, on those
objects. One of the most relevant source is Flajolet and Sedgwick’s book on ana-
lytic combinatorics [FS09]. Unfortunately, we shall need to deal with recurrence
equations where un+1 depend on un, vn, wn, etc., by using both the + and max
operations. The latter seems to be out of scope of what is known in analytic
combinatorics.

3 Orchids, and Recurrence Equations

Let us have a quick look at how Orchids creates and handles threads (a.k.a.,
monitor instances). We shall ignore optimizations, both algorithmic and
implementation-related, as they do not change the worst-case behavior of
Orchids. Also, since 2008, Orchids has evolved a lot, and we warn the reader that
the view we take of Orchids is rather remote, at least in form, from [GO08]1.
The algorithm is however the same from a conceptual standpoint.
1 Historically, Orchids also evolved from previous attempts, starting from [RG01],

which presents two approaches. The second approach was a forerunner of the 2008
approach [GO08], and corrected a few flaws from the first approach. That same first
approach (not the second one) is covered by a patent [RGL99]. That patent does
not cover Orchids. The main reason is that the main claims of that patent require a
means of generating propositional Horn clauses from formulae in a temporal logic for
each new event read. The Orchids algorithm is not based on any such mechanism.

On the Complexity of Monitoring Orchids Signatures 173

An Orchids signature consists in finitely many states. One of them, init, is
the initial state. Each state starts with an optional piece of code (e.g., $pid =
.exit; $uid = .euid; $gid = .egid in state newpid), which gets executed on
entering the state. That code can contain elementary computations, tests, but
no loops: we consider it irrelevant as far as complexity is concerned.

The second part of the description of a state defines its outgoing transitions,
and comes in two flavors. We may either see a block of expect clauses, labeled
with conditions that must be satisfied to launch the transition, as in state wait;
or a case-delimited multi-way conditional, as in state update setuid for exam-
ple (or as in the degenerate case of state update uid gid, where there is just
one branch, hence no case keyword).

The latter kind of state has an obvious semantics. For example, a thread
entering state update setuid will compare the field .egid with the value of
the variable $gid2, and branch to state alert if they are different (a system
call was made with a group id that is not what it was expected to be), or to
update uid gid otherwise—such transitions were called ε-transitions in [GO08].

The former kind of state will wait for a subsequent event matching one of
the expect clauses. A same event may match several expect clauses at once,
and accordingly Orchids will fork as many threads as needed. We shall ignore
the semantics of the tests performed by those clauses, and therefore a state with
5 expect clauses such as wait may fork 5 new threads.

The actual details are more complicated, and slightly different, but explaining
it would involve examining the actual working of the Orchids algorithm in detail,
and distract us from our goal.

We are now in a position to describe the basics of our complexity analysis.
For each Orchids state q, let qn denote the maximal number of threads that will
descend from a single thread starting at state q, after reading n events. This is
a function of n ∈ N, and our goal is to evaluate its asymptotic behavior. The
definition of qn is derived from the semantics.

For a state q with 5 expect transitions leading to states s, t, u, v, w, for
example, we must have the so-called linear recurrence equation qn+1 = sn +
tn + un + vn + wn: if you consider a trace with n + 1 events, then on reading
one event, only n remain, and forking a thread going to state s will contribute
sn new threads after those remaining n events, forking a thread to state t will
contribute tn, and so on.

For a state q with ε-transitions instead, such as update setuid, the semantics
is different: Orchids will not fork any new thread, rather it will make the current
thread go to exactly one of the target states. Hence if q has, say, two ε-transitions
going to states s and t, then we must have the following non-linear recurrence
equation qn+1 = max(sn, tn).

Note that we can produce those recurrence equations in linear time from an
Orchids signature given as input. As we have said already, the actual recurrence
equations needed for Orchids are slightly more complex, but the way they are

2 Variables are thread-local: if an Orchids thread modifies one of its variables, this
does not affect any other thread.

174 J. Goubault-Larrecq and J.-P. Lachance

built is entirely analogous. We now come to recurrence equations, the core of
this paper.

4 Systems of Recurrence Equations

A sequence is an infinite family of natural numbers (un)n∈N
indexed by natural

numbers. We say that a property P holds of un for n large enough if and only
if there is an n0 ∈ N such that P holds of un for every n ≥ n0. For a function
f : N → R, un = Θ(f(n)) means that there are two real constants m,M > 0 such
that, for n large enough, mf(n) ≤ un ≤ Mf(n). If only the left-hand inequality
is assumed, then we write un = Ω(f(n)), and if only the right-hand inequality
is assumed, then we write un = O(f(n)).

We shall say that (un)n∈N
has exponential behavior if and only if un = Ω(an)

for some constant a > 1. It has polynomial behavior if and only if un = Θ(nk)
for some constant k ∈ N.

Let Q = {u, v, · · · } be a finite non-empty set of symbols. Each symbol u ∈ Q
is meant to denote a sequence (un)n∈N

of natural numbers. A system of recur-
rence equations Σ for Q is, at least informally:

– an initial condition of the form u0 = au, where au ∈ N � {0}, one for each
u ∈ Q;

– for each u ∈ Q, an equation that defines un+1 in terms of the terms vn,
v ∈ Q, and natural number constants, using the operations max and +.
Semantically, since max distributes over +, this means defining un+1 as
maxmu

i=1(
∑

v∈Q auivvn+bui), where auiv and bui are natural number constants.
For reasons that will be explained below, we require mu �= 0, and for each u
and i, either bui �= 0 or auiv �= 0 for some v ∈ Q.

We shall use a slightly different formal definition below.
Sticking to the above definition for now, Σ defines a unique family of

sequences (un)n∈N
, one for each u ∈ Q, in the obvious way. Our purpose is

to show that one can decide, in linear time, which of these sequences have expo-
nential behavior, and which have polynomial behavior; in the latter case, our
algorithm will return a natural number d such that un = Θ(nd). Note that this
will imply that (un)n∈N

has either exponential or polynomial behavior, nothing
else—e.g., not logarithmic, Θ(2

√
n) or Θ(nlog n) for example.

Example 1. Consider Q = {u}, the system u0 = 1, un+1 = 2un is a system of
recurrence equations; it defines a unique sequence un = 2n, which has exponen-
tial behavior.

Example 2. Instead, consider Q = {u, v, w} and the system u0 = 1, v0 = 1,
w0 = 1, un+1 = vn + 1, vn+1 = un + wn, wn+1 = wn + 2. Its unique solution is
given by wn = 2n+1, vn = 1

2n2 +n+1 if n is even, vn = 1
2n2 +n+ 1

2 if n is odd,
un = 1

2n2 + 1 if n is even, un = 1
2n2 + 3

2 if n is odd. In that case, wn = Θ(n),
un = Θ(n2), vn = Θ(n2) all have polynomial behavior.

On the Complexity of Monitoring Orchids Signatures 175

Notice the slightly oscillating behavior of (un)n∈N
and (vn)n∈N

. Although
those sequences have polynomial behavior, we cannot find an actual, unique
polynomial p(n) such that un = p(n) for every n ∈ N.

Our recurrence equations have a few constraints attached: au is non-zero, mu

is non-zero, and either bui �= 0 or auiv �= 0 for some v ∈ Q. This will be the case
in all applications. Without this condition, the behaviors of the corresponding
sequences might be much wilder, as exemplified below.

Example 3. Consider Q = {u, v, s, t} with u0 = 0, v0 = 1, s0 = 1, t0 = 1,
un+1 = 2vn, vn+1 = un, sn+1 = sn + 1, tn+1 = vn + sn. This is not a system of
recurrence equations in our sense, because the initial value au for u is equal to
0. Its unique solution is un = 0 if n is even, 2(n+1)/2 if n is odd; vn = 2n/2 if n is
even, 0 if n is odd; sn = n+1; tn = 1 if n = 0, n if n is even, and 2(n−1)/2+n if n
is odd. Note that (tn)n∈N

exhibits neither polynomial nor exponential behavior,
as it oscillates between the two. Such a system is forbidden by our definition.

We claimed that, for every vertex u ∈ Q, (un)n∈N
would either have expo-

nential or polynomial behavior, and that in the latter case, we would be able to
find a degree d ∈ N such that un = Θ(nd). One may wonder whether it would
be possible to refine this, and to also find a coefficient a such that un ∼ and

(meaning that u/(and) would tend to 1 as n tends to +∞). This is not possible,
as the following example shows.

Example 4. Let Q = {u, v, s, t} with u0 = 1, v0 = 2, s0 = 1, t0 = 1, un+1 = vn,
vn+1 = un, sn+1 = tn, tn+1 = sn +un. Its unique solution is: un = 1 if n is even,
2 if n is odd; vn = 2 if n is even, 1 if n is odd; sn = n/2 + 1 if n is even, n if
n is odd; tn = n + 1 if n is even, (n + 3)/2 if n is odd. Note that both s and
t exhibit polynomial behavior, as they are Θ(n), but we cannot find an a such
that sn ∼ an or tn ∼ an: for example, sn oscillates between n/2 + 1 and n.

Let us give a formal definition of systems of recurrence equations. One might
do this in the obvious way, by the data of Q and families of numbers auiv and
bui. However, we would also like some equations such as

un+1 = un + max(vn,max(un, wn + 2) + max(2un, wn)) (1)

where the max and + operators are freely mixed. Distributing max over + would
produce an equivalent system of the right shape, but this transformation takes
exponential time and space in the worst case.

Instead, we use the following folklore transform, which works in linear time,
at the expense of introducing new symbols to Q (clearly, only linearly many
more). For each non-variable proper subexpression of the term on the right (here,
un+max(vn,max(un, wn+2)+max(2un, wn))), we introduce a fresh symbol. By
non-variable we mean any subexpression except the non-constant leaves (here,
un, vn, wn); this includes all non-leaf expressions, such as max(un, wn + 2), and
all constant leaves, such as 2. Let us do so on (1). There are seven non-variable
proper subexpressions there, and we create seven fresh symbols, call them a, b,

176 J. Goubault-Larrecq and J.-P. Lachance

c, d, e, f and two. The sequence twon is meant to be the constant sequence
equal to 2, and is defined by two0 = 2, twon+1 = twon. The sequence an denotes
wn+2, bn denotes max(un, wn+2), cn denotes 2un, dn denotes max(2un, wn), en
denotes max(un, wn +2)+max(2un, wn), and fn denotes max(vn,max(un, wn +
2)+max(2un, wn)). Accordingly, we replace (1) by the following eight equations:

un+1 = un + fn fn = max(vn, en) en = bn + dn
dn = max(cn, wn) cn = 2un bn = max(un, an)
an = wn + twon twon+1 = twon

plus the initial condition two0 = 2.
Doing so only requires us to be able to state three kinds of equations:

1. equations of the form un+k = max(vn, wn, · · ·), for some non-empty subset
of symbols v, w, · · · ∈ Q,

2. and equations of the form un+k =
∑

v∈Q auvvn, where at least one auv, v ∈ Q,
is non-zero,

where k is equal to 0 or 1, and if k = 1, then we also need an initial condition u0 =
au, for some constant au ∈ N�{0}. Note that constants bui have disappeared in
the process, being replaced by fresh symbols (such as two in the above example).

This leads us to the following, formal, definition. A system of recurrence
equations Σ on the set of symbols Q is a Q-indexed family of recurrence equations
Eu, each one being of one of the above two forms, plus initial conditions. We
represent equations un+k =

∑
v∈Q auvvn in sparse form, that is, as a list of pairs

(v, auv) for each v ∈ Q such that auv �= 0.
Our formal definition includes strictly more systems than our previous,

informal definition. Systems defined per our previous definition always have
exactly one solution; in other words, for each u ∈ Q, they define exactly one
sequence (un)n∈N

. A contrario, our new definition allows for systems of the form
un = un, which have infinitely many solutions; or of the form un = un + onen,
onen+1 = onen, one0 = 1, which have no solution. We repair this shortly.

5 Graphs

Given a system Σ of recurrence equations on the set of symbols Q, let us define
its graph G(Σ) as follows. We write s → t to say there is an edge from s to t.
G(Σ) is a labelled directed graph, and both vertices and edges receive labels. Its
vertices are the elements of Q, and are split in two kinds, corresponding to the
two kinds of allowed equations:

1. the max vertices u are those whose associated equation Eu is of the form
un+k = max(vn, wn, · · ·); there is one edge from u to v, one from u to w, and
so on; u itself is labeled with k, and the edges receive label 1;

2. the plus vertices u are those whose associated equation Eu is of the form
un+k =

∑
v∈Q auvvn; there is one edge from u to each v ∈ Q such that

auv �= 0, and it is labeled with auv; the vertex u itself is labeled with k;
3. there is no other edge.

On the Complexity of Monitoring Orchids Signatures 177

Fig. 2. Three examples of graphs G(Σ)

Introducing auxiliary symbols as necessary, Example 1 is really the system:

un+1 = 2un u0 = 1

Its graph is shown on the top left of Fig. 2. We distinguish the plus vertices by
showing them on a light grey background. We also distinguish the vertex labels
by writing them with a plus sign, viz., +1, not 1. The right-hand graph is that
of the system of Example 2, put into the adequate form:

un+1=vn + onen u0=1 vn+1=un + wn v0=1 wn+1=wn + twon
onen+1=onen one0=1 twon+1=twon two0=2 w0=1

Similarly for the graph of Example 4, shown at the bottom left.
Using the graph G(Σ), we evacuate the problem of those systems Σ that

have non-unique solutions, or no solution: we say that Σ is well-formed if and
only if there is no cycle in the graph that goes only through vertices labeled +0.

Proposition 1. Every well-formed system Σ has a unique solution, consisting
of uniquely-defined sequences (un)n∈N

for each u ∈ Q, which satisfy all the equa-
tions in Σ.

Note that G(Σ) has no provision for specifying initial conditions such as
u0 = 1. They are not needed for Proposition 1. They will be useless in our subse-
quent developments as well: the asymptotic behavior of un will be independent
of u0.

6 Sccs, and Asymptotics

We shall see that the key to understanding the asymptotic behavior of sequences
defined by a well-formed system of recurrence equations Σ lies in the strongly
connected components of G(Σ).

178 J. Goubault-Larrecq and J.-P. Lachance

We fix a well-formed system Σ of recurrence equations for the rest of the
section, as well as its set of symbols Q, and the unique sequences (un)n∈N

that
it defines. The following trivial lemma is crucial.

Lemma 1. Assume two vertices u, v in Q such that v is reachable from u,
namely, such that there is a path from u to v in G(Σ). There is a constant
k ∈ N such that, for every n ∈ N, un+k ≥ vn.

More precisely, k can be taken as the sum of vertex labels on any given path
from u to v, including u but excluding v.

Proof. The key argument is that for every edge of the form s → t, where s is
labeled a, sn+a ≥ tn for every n ∈ N. This holds whether s is a max or a plus
vertex. 	

A subset A of vertices is strongly connected if and only if every vertex from A
is reachable from any other vertex of A. The maximal strongly connected subsets
are called the strongly connected components of the graph, and we abbreviate
that as scc. They partition the graph, and in particular every vertex u belongs
to a unique scc, which we write scc(u).

Computing the sccs of a graph can be done, in linear time, by Tarjan’s
algorithm [Tar72].

On Fig. 2, the top left graph is its unique scc. The right-hand graph has four
sccs, the top cycle {u, v}, the middle cycle {w}, and the two cycles {one} and
{two}. The bottom left graph has two sccs, the top cycle {s, t}, and the bottom
cycle {u, v}.

In general, an scc can be more complex than a mere cycle, but if one wants to
picture a non-trivial scc, a cycle is a good first approximation. Sccs can also be
trivial, i.e., consist of no cycle at all, just a single vertex with no self-loop. Figure 3
displays a more complex graph, with sccs shown as darker gray rectangles. The
topmost scc is an example of an scc that is not just a cycle. There are also
trivial sccs: {c} and {f}. We let the reader reconstruct a system of recurrence
equations associated with this graph. Note that, contrarily to previous examples,
this one involves the max operator in order to define (un)n∈N

, (vn)n∈N
, (sn)n∈N

,
(tn)n∈N

, (wn)n∈N
, (rn)n∈N

. Although this may seem like a complicated graph,
it will follow from our algorithm that un = Θ(n) and vn = Θ(n), and all other
vertices have constant behavior.

Call a vertex u ∈ Q bad if and only if it is a plus vertex, and given its
associated equation un+k =

∑
v∈Q auvvn, the sum of the coefficients auv where

v ranges over scc(u) is at least 2. Equivalently, u is bad if and only if it is a plus
vertex, and at least one of the following possibilities occurs:

1. there is an edge (u, v) of label at least 2 to a vertex v in the same scc as u,
2. or there are at least two edges u → v and u → w to vertices v and w that are

both in the same scc as u.

In Example 1, u is bad. There is no bad vertex in Example 2 or in Example 4.
There is no bad vertex either in Fig. 3: although there are several edges with label

On the Complexity of Monitoring Orchids Signatures 179

Fig. 3. Sccs in a graph G(Σ)

at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u ∈ Q is bad∗ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad∗ vertices u are exactly those such that (un)n∈N

has exponential
behavior. In Example 1, u is bad∗. There is no bad∗ vertex in Example 2 or in
Example 4, or in Fig. 3.

Proposition 2. For every bad∗ vertex u in Q, (un)n∈N
has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n∈N

will have exponential behavior, which implies the claim by Lemma1.
Since v is bad, for some a ∈ {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn−k for some constant k. Hence
vn+a ≥ 2vn−k, which entails the claim. 	

If an scc contains a bad∗ vertex, then all its vertices are bad∗. Let us consider
the case of sccs A without any bad∗ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Fig. 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = Θ(ndA) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

180 J. Goubault-Larrecq and J.-P. Lachance

Proposition 3. Assume u ∈ Q is a trivial scc, and that for every edge u → v,
the sequence (vn)n∈N

has polynomial behavior, viz., for some dv ∈ N, vn =
Θ(ndv). Then (un)n∈N

has polynomial behavior, too, and un = Θ(ndu), where
du = max{dv | v ∈ Q such that u → v}.
Proof. This follows from the fact that max(Θ(ndv), Θ(ndw), · · ·) =
Θ(nmax(dv,dw,···)) for max vertices, and that

∑
v∈Q such that u→v auvΘ(ndv) =

Θ(nmax{dv|u→v}) for plus vertices, using the fact that auv ≥ 1 for every v ∈ Q
such that u → v. 	

Now assume A is a non-trivial scc without any bad vertex. Such an scc must
have a special shape, exemplified on the three sccs of the graph on the right of
Fig. 2, or on the bottom left graph of the same figure, or on the non-trivial sccs
of Fig. 3: the weights of all edges between vertices of A must be equal to 1, and
every plus vertex has exactly one successor in A (all others are outside A). That
it has at most one successor in A (and that all its edge labels are equal to 1)
is a consequence of the absence of bad vertices. That it has at least one follows
from the fact that A is non-trivial.

Note that plus vertices in A may have more than one successor; but only one
can be in A. For example, v has two successors in the graph of Example 2 (Fig. 2,
right), but only u is in the scc A = {u, v} that v belongs to. Example 4 displays
a similar situation. Figure 3 does, too: b has two successors, but only one in its
own scc.

Definition 1 (Expensive, cheap edges). Say that an edge u → v goes out
of A if and only if u ∈ A and v �∈ A. If u is a plus vertex, then we say that it is
an expensive edge out of A, otherwise it is a cheap edge out of A.

In Fig. 3, there is only one expensive edge out of a non-trivial scc, namely the
edge b → w, with label 1. There are two other edges going out of non-trivial
sccs, namely u → c and w → f . They are both cheap.

Note that being cheap or expensive is entirely independent of the label it
carries. Here the expensive edge has the lowest possible label of the whole graph.

The key argument in Proposition 4 consists in noting that
∑n

j=0 jN =
Θ(nN+1) when n tends to +∞—a well-known identity. The way we use that
is probably best explained on a small test case. Imagine one of the simplest pos-
sible non-trivial sccs: a one-vertex loop, as shown on the right, and assume that
we know that vn = Θ(nN), and even, to make things simpler, that vn = nN .

1

+1

1

u

v

The equation defining (un)n∈N
is un+1 = un + vn = un +

nN . It follows easily that un = (n−1)N +(n−2)N +· · ·+1N +
0N + u0 = u0 +

∑n−1
j=0 jN , and that is Θ(nN+1), as we have

just seen. Note that the edge u → v is expensive. The name
“expensive” was chosen so as to suggest that those are the
edges that are responsible for the increase in the exponent,
from N to N + 1. Cheap edges will incur no such increase.

In general, the proof of the bounds in the following propo-
sition uses a similar argument. The case of non-trivial sccs A

On the Complexity of Monitoring Orchids Signatures 181

without any bad vertex, and with only + vertices (no max vertex) is easier to
argue. There is a single elementary cycle from u back to u, and all its weights
are equal to 1; all edges out of this path go out of A. Semantically un+a can be
written as un−k (for some constant k) plus values vn, for v outside of A. If vn
has polynomial growth, viz. if vn = Θ(ndv), then ndv will enter a summation
defining un+a, and a similar argument as above shows that un will grow as a
polynomial in n whose degree is the largest exponent dv plus 1. The fact that +
and max vertices can be used freely inside A makes the (omitted) proof of the
following proposition slightly more involved.

Proposition 4. Let A be a non-trivial scc of G(Σ) without a bad vertex. For
each edge u → v going out of A, assume that (vn)n∈N

has polynomial behavior.
Precisely, assume that vn = Θ(ndv).

Then every vertex of A has polynomial behavior, with the same degree dA,
where dA is the maximum of:

– all the quantities dv, where u → v ranges over the cheap edges out of A,
– and all the quantities dv +1, where u → v ranges over the expensive edges out

of A.

To be completely formal, we agree that the maximum of an empty set of numbers
is 0; this is needed in case there is no edge going out of A at all.

Let us use all those results to determine the asymptotic behavior of all the
sequences defined in the system associated with the graph of Fig. 3. Recall that
there is no bad∗ vertex in that example. We start from the sccs at the bottom,
and work our way up:

– The non-trivial sccs {r} and {s, e, t, d} have no outgoing edge at all, hence
their associated sequences are Θ(n0) (bounded from below and from above by
constants).

– The scc {f} is trivial, and its two successors behave as Θ(n0), hence it itself
behaves as Θ(n0), by Proposition 3.

– Similarly for the trivial scc {c}.
– The scc {w} is not trivial, but it does not have any expensive edge out of it;

by Proposition 4, it also behaves as Θ(n0).
– The topmost scc is non-trivial, it has one cheap outgoing edge, u → c, and one

expensive outgoing edge b → w. By applying Proposition 4, all the sequences
associated with vertices in that scc behave as Θ(nmax(0,0+1)), that is, Θ(n).

7 The Algorithm

To conclude, we need a final, standard ingredient: the condensation of a directed
graph G is the graph whose vertices are the sccs of G, and such that there is
an edge from A to B if and only if there are vertices q ∈ A and r ∈ B and an
edge q → r in G. The condensation is always acyclic, meaning that working our
way up, that is, from the leaves to the roots of the condensation, must terminate

182 J. Goubault-Larrecq and J.-P. Lachance

(hence terminate in a linear number of steps). In the case of a graph G of the
form G(Σ), we shall say that an edge A → B as above in the condensation is
expensive if and only if A is non-trivial, and we can find a q ∈ A and an r ∈ B
such that the edge q → r is expensive in G; it is cheap otherwise, namely when
A is trivial, or A is non-trivial and all the edges q → r in G with q ∈ A and
r ∈ B are cheap.

Theorem 1. Given any system Σ of recurrence equations with set Q of symbols,
we can compute a table of numbers du ∈ N ∪ {+∞}, u ∈ Q, in linear time, such
that du = +∞ iff (un)n∈N

has exponential behavior, and otherwise un = Θ(ndu).
The algorithm works as follows:

1. Compute G(Σ) and its sccs, building its condensation G′.
2. Traverse G′ in reverse topological order (i.e., from the bottom up). For each

visited scc A, decide whether A contains a bad vertex. If so, let dA := +∞.
Otherwise, for every successor B of A in G′, dB has already been computed,
and let dA := max(maxA→B cheap dB ,maxA→B expensive (dB +1)), where by
convention we agree that the maximum of the empty set is zero.

3. Finally, for each u ∈ Q, let du := dscc(u).

The correctness of the algorithm is a direct consequence of Propositions 2, 3,
and 4. That it works in linear time is easy. Notably, the second phase sweeps
through all the sccs A once, and for each, takes time proportional to the number
of vertices in A plus the number of edges that go out of A. The sum over all sccs
A of those values is the size of G(Σ).

In practice, this is implemented by simply modifying Tarjan’s scc algorithm
[Tar72]. In any description of that algorithm, there is a single line of code where
it has just found an scc A, and it must emit it by repeatedly popping a stack.
It is enough to compute dA there, by the formula given in Theorem1, item 2,
knowing that at that point, all the values dB will have been computed earlier.

We have implemented that algorithm inside Orchids, and its ten standard sig-
natures. Execution time was negligible. We had the pleasant surprise of observ-
ing that all our signatures had polynomial thread complexity, confirming our
intuition that human experts do not write signatures with exponential behavior.

The largest observed complexity is Θ(n3) for the lin24 ptrace.rule, a sig-
nature that attempts to detect the ptrace attack [Pur03]. This is actually over-
estimated: the actual complexity is Θ(n2). There is a loop in that signature that
our algorithm thinks may create a linear number of threads, but that loop can
only be traversed 10 times, due to a counting mechanism implemented in the
Orchids programming language.

The second largest is Θ(n2) for the apachessl.rule, a signature that tries
to correlate abnormal variations in message entropy [GO13] with specific failure
events from the Apache server. Out of our ten signatures, seven others have
linear behavior, including the pid tracker of Fig. 1. We have instrumented our
algorithm so that it reports the main causes of complexity. For example, on the
pid tracker, our algorithm reports:

On the Complexity of Monitoring Orchids Signatures 183

rule pidtrack may have worst case linear behavior, i.e., O(#events).

each event may fork a new thread going to ’init’.

And indeed, each newly created Unix process (through the clone system call, a
Linux abstraction behind the more well-known fork call) may cause the creation
of a new Orchids thread for that signature, starting at state init.

The last of the ten signatures, taint auditd.rule, a tainting mechanism
for detecting illegal transitive information flows, is not even flagged by our algo-
rithm: it is correctly classified as generating a constant number of threads.

8 Conclusion

We have described, and proved, a linear time algorithm that decides the asymp-
totic complexity of sequences defined by certain forms of systems of recurrence
equations, using both the + and max operators. Our goal was to analyze, auto-
matically, which Orchids signatures have polynomial detection complexity (in
terms of numbers of created Orchids threads), and with which exponent.

This turns out to be an extremely reliable and useful tool to Orchids signature
writers. Personal experience shows that a high degree in the polynomial, or worse,
an estimation of exponential complexity, is indicative of a mistake in the writing
of the signature.

Beyond Orchids, it seems obvious that our simple algorithm for estimating
the asymptotic complexity of recurrence equations should find applications out-
side of security or of runtime verification. Mounir Assaf recently proposed a (yet
unpublished) static analysis that detects whether leakage of sensitive data in
security programs is negligible or not [Ass15]. This is based on estimating the
rate of growth of a sequence un as the number of steps taken, n, tends to infinity,
and we hope that our algorithm, or similar techniques, apply.

Acknowledgement. This research was partially funded by INRIA-DGA grant 12 81
0312 (2013–2016). This, in particular, funded the second author’s internship at LSV,
ENS Cachan, in the spring of 2013, who implemented two prototypes for a precursor
of the algorithm described here. The second author also thanks Hydro-Québec and Les
Offices jeunesse internationaux du Québec (LOJIQ) for their financial support.

The first author would like to thank Mounir Assaf for drawing his attention to
analytic combinatorics, and the anonymous referees for their suggestions.

References

[Ass15] Assaf, M.: From qualitative to quantitative program analysis: permissive
enforcement of secure information flow. PhD thesis, Université Rennes I
(2015)

[BKMZ15] Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-
order temporal properties. J. ACM 62(2), 15:1–15:45 (2015)

[FS09] Flajolet, P., Sedgwick, R.: Analytic Combinatorics. Cambridge University
Press, New York (2009)

184 J. Goubault-Larrecq and J.-P. Lachance

[GO08] Goubault-Larrecq, J., Olivain, J.: A smell of Orchids. In: Leucker, M. (ed.)
RV 2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-89247-2 1

[GO13] Goubault-Larrecq, J., Olivain, J.: On the efficiency of mathematics in
intrusion detection: the NetEntropy case. In: Danger, J.-L., Debbabi,
M., Marion, J.-Y., Garcia-Alfaro, J., Zincir Heywood, N. (eds.) FPS -
2013. LNCS, vol. 8352, pp. 3–16. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-05302-8 1

[HR15] Havelund, K., Reger, G.: Specification of parametric monitors - quantified
event automata versus rule systems. In: Drechsler, R., Kuhne, U. (eds.)
Formal Modeling and Verification of Cyber-Physical Systems, pp. 151–189.
Springer, Wiesbaden (2015)

[LZL+14] Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F.,
Roşu, G.: RV-Monitor: efficient parametric runtime verification with simul-
taneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014.
LNCS, vol. 8734, pp. 285–300. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11164-3 24

[OG05] Olivain, J., Goubault-Larrecq, J.: The Orchids intrusion detection tool.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
286–290. Springer, Heidelberg (2005). doi:10.1007/11513988 28

[Pur03] Purczyński, W.: Linux kernel privileged process hijacking vulnerability.
BugTraq Id 7112, March 2003. http://www.securityfocus.com/bid/7112

[RG01] Roger, M., Goubault-Larrecq, J.: Log auditing through model checking. In:
Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW 2001), Cape Breton, pp. 220–236. IEEE Computer Society Press,
June 2001

[RGL99] Roger, M., Goubault-Larrecq, J.: Procédé et dispositif de résolution de
modèles, utilisation pour la détection des attaques contre les systèmes
informatiques. Dépôt français du 13, correspondant Dyade, demandeurs:
1. INRIA 2. Bull S.A. Numéro de publication: 2 798 490. Numéro
d’enregistrement national: 99 11716. Classification: G 06 F 19/00. Date
de mise à la disposition du public de la demande: 16 mars 2001, bulletin
01/11, 1999, September 1999

[Tar72] Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

http://dx.doi.org/10.1007/978-3-540-89247-2_1
http://dx.doi.org/10.1007/978-3-540-89247-2_1
http://dx.doi.org/10.1007/978-3-319-05302-8_1
http://dx.doi.org/10.1007/978-3-319-05302-8_1
http://dx.doi.org/10.1007/978-3-319-11164-3_24
http://dx.doi.org/10.1007/978-3-319-11164-3_24
http://dx.doi.org/10.1007/11513988_28
http://www.securityfocus.com/bid/7112

Input Attribution for Statistical Model Checking
Using Logistic Regression

Jeffery P. Hansen(B), Sagar Chaki, Scott Hissam, James Edmondson,
Gabriel A. Moreno, and David Kyle

Carnegie Mellon University, Pittsburgh, PA, USA
{jhansen,chaki,shissam,jredmondson,gmoreno,dskyle}@sei.cmu.edu

Abstract. We describe an approach to Statistical Model Checking
(SMC) that produces not only an estimate of the probability that spec-
ified properties (a.k.a. predicates) are satisfied, but also an “input attri-
bution” for those predicates. We use logistic regression to generate the
input attribution as a set of linear and non-linear functions of the inputs
that explain conditions under which a predicate is satisfied. These func-
tions provide quantitative insight into factors that influence the pred-
icate outcome. We have implemented our approach on a distributed
SMC infrastructure, demeter, that uses Linux Docker containers to iso-
late simulations (a.k.a. trials) from each other. Currently, demeter is
deployed on six 20-core blade servers, and can perform tens of thousands
of trials in a few hours. We demonstrate our approach on examples involv-
ing robotic agents interacting in a simulated physical environment. Our
approach synthesizes input attributions that are both meaningful to the
investigator and have predictive value on the predicate outcomes.

1 Introduction

Statistical model checking (SMC) [4,23] has emerged as a key technique for quan-
titative analysis of stochastic systems. Given a stochastic system M depending
on random input x, and a predicate Φ, the primary goal of SMC is to estimate
the probability P [M |= Φ] that Φ is satisfied in M within some specified level of
confidence (e.g., relative error). SMC, which is based on Monte-Carlo methods,
has some major advantages over methods such as probabilistic model checking.
It can be applied to larger and more complex systems, and to the actual sys-
tem software rather than an abstract model of that software. Moreover, it can
analyze a system as a “black box” observing only its inputs and outputs.

While estimating the probability that a predicate holds is important, it is
also important to understand the factors that contribute to that estimate. We
refer to this as input attribution. More specifically, an input attribution is a

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center, DM-0003895.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 185–200, 2016.
DOI: 10.1007/978-3-319-46982-9 12

186 J.P. Hansen et al.

human-understandable quantitative model explaining the relationship between
the random inputs and the specified predicate Φ (e.g., a mathematical expression
of the input variables that predicts whether Φ will be satisfied). A good input
attribution must: (i) describe a relationship that actually exists in the system;
(ii) be presented in a way that is quantitative, meaningful and understandable to
the investigator; (iii) give the investigator new insights into the system; and (iv)
be resilient to additional hidden or uncontrolled randomness (e.g., randomness
due to the physics in the system not included in the input x).

In this paper, we address the input attribution problem for SMC, and make
the following contributions. First, we present an approach to input attribut-
ion that builds a statistical model from the simulation data collected during
SMC. Among several potential statistical modeling methods, we focus on logis-
tic regression [14] (LR). Logistic regression is targeted at systems with a binary
(or categorical) dependent variable, which is exactly the case in SMC. The result
of an LR analysis is a function that predicts the probability that the dependent
binary variable will be 1 as a function of the input variables. One advantage of
LR over other techniques, such as linear discriminant analysis, is that it makes
no assumptions on the distribution of the inputs. We show how to compute both
linear and polynomial input attributions via LR.

Second, we implement our approach in a distributed SMC infrastructure,
called demeter, that uses a dispatch and join pattern to run many simulations in
parallel across a set of machines. demeter uses Docker [17] containers to isolate
simulations from each other, and batching to avoid statistical bias in results [22].
Using six blade servers, demeter has to date run millions of simulations over
many days, demonstrating its robustness. Finally, we validate our approach over
a set of examples involving one or more agents that operate under uncertainty to
achieve specific goals. Our results indicate that the LR-based approach is able to
synthesize input attributions that are both meaningful to the investigator and
have predictive value on the predicate outcomes.

The rest of this paper is organized as follows. In Sect. 2 we discuss related
work; in Sect. 3 we discuss some basic concepts and theory of Statistical Model
Checking; in Sect. 4 we discuss our approach to input attribution; in Sect. 5 we
describe demeter; in Sect. 6 we present our results in applying our techniques
to three different examples; and in Sect. 7 we conclude.

2 Related Work

SMC, developed by Younes [23], has been applied to a wide variety of sys-
tem models including stochastic hybrid automata [7], real time systems [8],
and Simulink models for cyber-physical systems [4]. In contrast, we apply SMC
directly to the system executing in an operating environment that includes uncer-
tainty from scheduling and communication. Our prior work [16] also presented
a distributed SMC infrastructure for dmpl [3] programs, but used a manually
managed set of virtual machines to isolate trials from each other logically. In
contrast, demeter uses lighter weight Docker [17] containers for isolation, and

Input Attribution for SMC 187

Rancher [1] for automated launching and failover. In addition, it is able to carry
out trials involving a broader class of applications, not just those generated from
dmpl programs.

The prismatic [19] project investigated “counterexample generation and cul-
prit identification” in the context of probabilistic verification. It used machine
learning (specifically the Waffles tool) to construct decision trees from runs of
the system. From the decision tree, one can infer the component that is most
responsible for failure. Their approach has limited effectiveness when a combi-
nation of several components leads to failure. In contrast, we use LR to give
numeric weights to input variables, as well as polynomial terms of such vari-
ables. This makes our approach more effective when a combination of multiple
random inputs is the more likely cause of failure. In addition, the prismatic tool
is built on top of prism [15] and can analyze models, while we analyze system
executables.

The problem of determining under which conditions a program will fail has
also been explored in the context of non-stochastic software. For example, Cousot
et al. [6] use abstract interpretation [5] to statically compute an expression over a
function’s parameters (i.e., a precondition) under which the function will always
fail a target assertion. Similarly, the daikon system [11] dynamically constructs
likely program invariants from collected execution traces using machine learning
techniques. Our goals are similar, in that we want to produce artifacts that pro-
vide insight about a program’s behavior, but our focus is on stochastic systems,
and we use logistic regression.

3 Background

Consider a system M with a finite vector of random inputs x over domain Dx.
The SMC problem is to estimate the probability p = P [M |= Φ] that M satisfies
a predicate Φ given a joint probability distribution f on x. Let us write x∼f to
mean x has distribution f . SMC involves a series of Bernoulli trials, modeling
each trial as a Bernoulli random variable having value 1 with probability p, and
0 with probability 1 − p. For each trial i, a random vector xi ∼ f is generated,
and the system M is simulated with input xi to generate a trace σi. The trial’s
outcome, yi, is 1 if Φ holds on σi, and 0 otherwise.

Traditionally, we would assume that whether M |= Φ is satisfied under a
specific input x is deterministic. However, since we are considering physical sim-
ulations of agents, the physics engine itself may introduce additional randomness
that is not under our control. For this reason, we weaken our deterministic out-
put assumption and assume the outcome yi of M |= Φ for a specific input xi is
itself a Bernoulli random variable with an unknown probability JM|=Φ(xi) that
M |= Φ is satisfied. An alternative and equivalent way to model this is to intro-
duce a hidden random variable u∼U(0, 1) to represent randomness inherent in

188 J.P. Hansen et al.

the simulation.1 We then have a system with input x, u for which M |= Φ is
satisfied when JM|=Φ(x) ≥ u.

Define an indicator function IM|=Φ : Dx × [0, 1] → {0, 1} that returns 1 if
M |= Φ under input x, u, and 0 otherwise. Then, when x ∼ f , and u ∼ U(0, 1),
the probability p = E[IM|=Φ(x, u)] that M |= Φ holds can be estimated as
p̂ = 1

N

∑N
i=1 IM|=Φ(xi, ui), where N is the number of trials. Note that, while we

observe the values of xi for each trial simulation, we can see only the resulting
outcome IM|=Φ(xi, ui) and not the value of the hidden variable ui itself.

The precision of p̂ is quantified by its relative error RE(p̂) =
√

Var(p̂)

p̂ where
Var(p̂) is the variance of the estimator. It is known [4] that for Bernoulli trials,
relative error is related to the number of trials N and the probability of the
event p as RE(p̂) =

√
1−p
pN ≈ 1√

pN
. Thus, we have N = 1−p

pRE2(p̂) ≈ 1
pRE2(p̂) .

4 Input Attribution

Statistical learning is a field of statistics that is concerned with finding a model
that relates a stimulus to some response [12]. In the case of statistical model
checking, the stimulus is the set of random input variables and the response
is the outcome of a trial. There are two main uses for these learned models:
prediction and inference. Prediction is using the model to predict the response
given a stimulus, while inference is learning something about the relationship
between the stimulus and the response. Input attribution is primarily concerned
with inference, though we do evaluate the predictive power of the model to ensure
validity of any input attribution generated by our approach.

One technique used in statistical learning is logistic regression. In logistic
regression, a linear function of “predictors” is fit to the log of the odds (often
called a “logit”) ratio that a binary response variable holds. Here, odds are
simply an alternative way of representing probability such that p = γ

1+γ is the
probability where γ is the odds. For example, if the odds of an event are 4 to 3,
then γ = 4

3 and the probability is p ≈ 0.57.
In this paper, we take the predictors to be either the input variables, or

a combination of the input variables and functions of the input variables. For
simplicity we assume all random variables are continuous or countable, though
it is possible to generalize these results to categorical random variables. The
analysis is performed independently for each predicate defined by the investigator
with a separate result for each. Let xij be the inputs over a set of trials 1 ≤ i ≤ N
with predictors 1 ≤ j ≤ M for each input, and yi be the result of each trial.
Logistic regression will find a linear function of the form:

L : x �→ β0 +
M∑

j=1

βjxj (1)

1 In this paper we use U(a, b) for the uniform distribution between two real numbers
a ≤ b, and U{a, b} for the uniform integer distribution between a and b, inclusive.

Input Attribution for SMC 189

such that p̂ = 1
1+e−L(xi)

is the predicted probability that we will get a response
of yi = 1 given input xi. The βj for a continuous random variable xj represents
the increase in the “logit” for each unit increase in of xj . When interpreting
the coefficients, it is sometimes useful to think of an “odds ratio”, the factor by
which the odds changes in response to some change. For an increase of Δ on
variable xj the odds ratio will be eβjΔ. Note that βj itself does not necessarily
indicate the importantance of xi as it is also dependentant on the units.

We use the R statistical analysis system [20] to perform the logistic regres-
sion. For each predictor xj , R generates a maximum likelihood estimate β̂j and
a standard error se(β̂j) of the coefficient βj for that predictor. The standard
error is used to perform a Wald test [14] on the significance of βj against the
null-hypothesis that βj could be 0 (i.e., the hypothesis that predictor xj is not
important for determining the outcome). The Wald test involves calculating a

z-value zj = β̂j−0

se(β̂j)
representing the number of standard deviations from zero

of the β̂j estimate, then looking up that value in the Normal distribution table
to find the p-value representing the probability that the null-hypothesis could
occur by chance. Typically a p-value <0.05 is considered statistically significant.

Since our goal is to discover relationships between the predictors and the
predicate, the β̂j and the associated p-values for each coefficient are the most
useful for us. Low p-values tell us that a predictor is significant, and the β̂j

tells us the factor by which the log of the odds for the predicate being satisfied
increases which each unit increase in predictor xj .

4.1 Linear Input Attribution

The most straight-forward application of logistic regression is to use each input
xj as a predictor, and report those for which the p-value is below the selected
threshold. Our approach includes this as one of its options, and is the easiest to
use when relationships between input variables and predicates are linear.

Example. As an illustrative example consider a data set consisting of 500
samples of random vectors x = (x1, x2, x3) where x1 ∼ U{1, 6}, x2 ∼ U{1, 6},
x3 ∼ U{1, 12}. Also assume there is a hidden random variable u ∼ U{1, 10}
that affects the outcome of the trial, but cannot be directly observed. Now
assume the predicate y we are testing is 1 when x2 + x3 + u > 10 and 0
otherwise. When we apply logistic regression on this data set using R we get:
L : x �→ −2.8− 0.03x1 +0.50x2 +0.64x3, with p-factors well below 0.01 for both
x2 and x3, and a p-factor of 0.78 for x1 indicating it is not statistically signifi-
cant (which is expected since it was not involved in the predicate being tested).
For this example, our approach generates the input attribution: 0.50x2 +0.64x3,
excluding the x1 term because it was not statistically significant. The positive
coefficients for both x2 and x3 indicate the probability of y being 1 increases
with an increase in either input, as expected.

Before accepting the result of the logistic regression analysis, we must verify
that the overall logistic model fits the data. We do this using ROC (Receiver

190 J.P. Hansen et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

iti
ve

s

False Positives

Name β se(β) p-value

x1 16.0 2.80 < 10−4

x2 17.8 2.75 < 10−4

x2
1 -18.1 2.43 < 10−4

x2
2 -19.2 2.42 < 10−4

x1x2 4.5 2.74 0.0976

)b()a(

Fig. 1. (a) ROC curves for linear example; (b) Logistic regression results for polynomial
example.

Operating Characteristic) analysis [13]. In ROC analysis, we consider L(x) > T
for some threshold T to be the prediction that is compared to the actual result
of the predicate y. We then plot the true positive rate P [y = 1|L(x) > T] against
the false positive rate P [y = 0|L(x) > T] for −∞ < T < ∞.

The ROC curve for our example data using 5-fold cross validation is shown
in Fig. 1(a). In 5-fold cross validation, the trials are randomly partitioned into
5 chunks then 4/5 of the data are used to build the logistic model while the
remaining 1/5 is used to validate the model. This process is repeated 5 times
with each chunk taking its turn as the test data resulting in curves for each of
the 5 folds shown in the figure. In ROC analysis, curves that approach the upper
left corner are considered “good” detectors while a detector near the diagonal
from the lower left to upper right are no better than random guessing. Another
more succinct way to present the results of an ROC analysis is the AUC (Area
Under Curve). It is known [13] that the AUC is equivalent to the probability
P [L(xsat) > L(xunsat)] where xsat is a randomly selected input that satisfies
the predicate and xunsat is a randomly selected input that does not satisfy the
predicate. An AUC of 1 corresponds to a perfect detector, while an AUC of 0.5
corresponds to a detector that is no better than guessing. Using our sample data,
we computed AUC for each fold yielding values be 0.87 and 0.91 with a mean
of 0.90 indicating good predictive value of the model, and thus indicating our
input attribution is valid.

Input Attribution for SMC 191

4.2 Non-linear Input Attribution

If there are non-linear dependencies between a predictor and the predicate, the
linear analysis techniques described above will fail to find a statistically signifi-
cant relationship. To solve this problem, we include non-linear functions of the
inputs as predictors. In effect, the non-linear functions are “guesses” on potential
relationships between the inputs and the predicate. Some guesses may result in
statistically significant relationships, while others may not and be discarded.

In this paper, we restrict our guesses to 2nd order polynomials over the input
variables. These are important because in sets of random variables describing
points in space, distances between fixed points, or between pairs of random
points can be described as 2nd order polynomials. Note that it is not necessary
to actually include every possible polynomial of the inputs, we need only include
the monomial building blocks of the possible polynomials. More specifically,
in addition to the linear input terms {x1, . . . , xM}, we include the additional
predictors {x2

j | 1 ≤ j ≤ M}, and the predictors {xjxk | 1 ≤ j < k ≤ M}.

Factored Polynomials. In order to present relationships that are easy to inter-
pret, our algorithm further attempts to find factored polynomials where possible.
Two types of factors are considered: single variable and two variable. In each case,
we look for subsets of the log odds expression (1) that can be factored. In the
single variable case, we look for predictors βax2

j and βbxj where both have a low
p-value and factor by completing the squares as:

βa(xj +
βb

2βa
)2 + C = βax2

j + βbxj (2)

where C is the constant needed to complete the square. But since our goal is to
show relationships, our algorithm only outputs the βa(xi + βb

2βa
)2 part.

Factored Two-Variable Polynomials. Similarly, in the two variable case, we
look for predictors βax2

j , βbxjxk and βcx
2
k with low p-values, and factor as:

βax2
j + βbxjxk + βcx

2
k = βa(xj + (h + g)xk)(xj + (h − g)xk) (3)

where h = βb

2βa
and g =

√
β2
b−4βaβc

2βa
when g is real. Since all of the βi are

approximations, our algorithm suggests the simpler factoring:

βax2
j + βbxjxk + βcx

2
k ≈ βa(xj + hxk)2 (4)

when |βc −βah2| < Kse(βc) (i.e., when the polynomial coefficient of the x2
k term

in βa(xj +hxk)2 is within K standard error of its original value). We use K = 3
in this paper.

Example. Now consider an example with 500 trials with inputs x = (x1, x2)
where x1 ∼ U(0, 1) and x2 ∼ U(0, 1) are uniformly distributed between 0 and 1
and represent coordinates in a 2D square. Define the predicate y as being true
when the point x is within distance u ∼ U(0, 0.5) of the center (0.5, 0.5) of the
square but with u being a hidden random variable.

192 J.P. Hansen et al.

When we first try a linear analysis, we find that the p-factors for both x1

and x2 are not significant. When we repeat the analysis using polynomial terms
we get the results shown in Table 1(b). The 5-fold cross validation for this exam-
ple results in an average AUC of 0.85 indicating reasonable predictive strength
for the model. Since the p-value for the x1x2 term is greater than 0.05, it is
not statistically significant and so we only look for single variable polynomial
expressions. Completing the squares for the x1 and x2 gives us the input attribu-
tion: −18.1(x1 − 0.44)2 − 19.2(x2 − 0.46)2. We see from the form of this expres-
sion that the analysis synthesizes an expression for distance between (x1, x2)
and (0.44, 0.46) which is close to the expected distance from the center point
at (0.5, 0.5). We also see this expression is negative meaning that the further
(x1, x2) is from the center point, the lower the probability that y is satisfied.

5 SMC Infrastructure: DEMETER

We have implemented our approach in a distributed SMC infrastructure called
demeter (Distributed Execution of Multiple Experiments and Transfer of
Empirical Results). demeter uses a dispatch and join pattern for parallel
processing across a set of machines. Dispatch is managed by an SMC Master
(see Fig. 2) which queues SMC jobs. A job is described via a .smc file, which
includes the system M, the input variables xi and their probability distribution
f , target predicate(s) Φ, and the target relative error for each predicate RE(p̂)Φ.

A job is conducted by the Master as a series of Bernoulli trials. Each trial in
the series is allocated to an SMC Runner which simulates the system M with
the trial inputs, and reports the outcome. The system M can be any arbitrary
piece of software that can be invoked from a shell script dispatched by the
Runner, potentially with multiple communicating processes. The trial input to
the Runner is an instance of a random input vector, xi ∼ f , generated by the
Master for that trial. The outcome, produced by M, is either 1 if Φ holds on σi,
and 0 otherwise for each Φ described by the job. The Master records the input

Fig. 2. The Master-Runner architecture of demeter.

Input Attribution for SMC 193

and outcome for each trial in the Results database and the Master will continue
to perform trials until the target relative error computed for each p̂Φ is reached.

A job may require thousands of trials to reach the target RE(p̂Φ). The Master
dispatches trials in parallel as a sequence of batches allowing all trials in a batch
to complete before starting the next batch to avoid bias [22]. The default batch
size equals the number of available Runners, but this can be controlled via
the “weight” specification for the job (discussed later in Load Management).
Once a batch is dispatched, the Master waits for all trials in that batch to
complete before dispatching the next batch. A batch is complete if every trial in
it completes with either 0 or 1 for all predicates defined for the job. Any other
result (e.g., an infrastructure error) is considered an error for the trial, and the
entire batch is discarded to avoid bias. Trials from a complete batch are used to
compute RE(p̂Φ) for each predicate.

For our experiments, we deployed demeter over six Dell PowerEdge blades
with each blade having 128 Gb of RAM and 2 Intel Xeon E5-2687W 3.1 GHz
processors with each processor having 10 processing cores and 2 cpu threads per
core. A pool of 216 Runners (36 Runners ∗ 6 blades2) were used. We now
discuss how demeter achieves isolation between trials.

Logical Isolation is achieved by running each trial within a separate Docker [17]
instance. Docker has the following twofold advantage over other virtual machine
approaches: (i) startup, shutdown and failover for each Runner can be managed
by open source tools like Rancher [1] with low learning curve; and (ii) Docker’s
overhead is low compared to other full operating system virtualization technolo-
gies [21].

Network Isolation. Processes in Docker containers can communicate at the net-
work level with each other. By default, multicast messages (used in our simu-
lations) cross container boundaries. This can result in processes from one sim-
ulation receiving messages from another simulation. Using Docker’s icc=false
configuration directive disables such inter-container communication, but also dis-
ables Rancher’s ability to manage the Runners. As such, iptables was used
in conjunction with icc=true to drop all multicast traffic emanating from
the docker0 interface. This minimalistically isolates Runners from each other,
avoiding network interference within the simulation, while allowing Rancher
management.

Load Management. demeter allows a numeric “weight” to be specified for the
job. Intuitively, the weight w is the number of CPU cores required to execute
each trial. Note that w can be greater than 1 if, for example, the application
is distributed and consists of several nodes executing in parallel. The Master
executes at most � 216

w � trials in parallel at a time. Thus, CPU overload can be
avoided by specifying a suitably large value of w.

2 This leaves a few CPU threads for host processing independent of simulation activ-
ities.

194 J.P. Hansen et al.

6 Results

We validated our approach on three scenarios with increasing complexity. In
each experiment, one or more agents are realized by a quadcopter model in the
physics simulator V-REP [9]. An additional Linux process is used as a controller
for each agent, communicating over a socket with V-REP. For each scenario we
show that demeter constructs effective input attributions.

6.1 Pursuer/Evader Scenario

Scenario Overview. The goal of this example was to validate the effectiveness
of non-linear input attribution via logistic regression. It consists of two agents—
a pursuer P and an evader E—moving on a 2-dimensional 20 × 20 grid of cells.
Each cell is identified by its coordinate, with the cell at the lower-left corner of
the grid being (0, 0) and the cell at the upper-right corner being (19, 19). Each
trial runs as follows: (i) the pursuer starts in a random initial cell (xp, yp) and
the evader starts in a random initial cell (xe, ye) such that xp, yp, xe and ye are
all uniformly selected from U{6, 13}; note that this means that initially P and
E are located in the sub-grid whose lower-left cell is (6, 6) and upper-right cell
is (13, 13); (ii) the evader moves toward the grid corner away from the pursuer
with velocity v, and the pursuer moves toward the evader with velocity kv where
k > 1 is the factor by which P is faster than E; (iii) if P is able to reach within
distance d of E by time tmax then P wins and the trial results in 0; otherwise,
E wins and the trial results in 1. The constants v and tmax are such that E can
never reach a grid corner by time tmax, and hence always has space to move.
Intuitively, the result of a trial depends on the initial distance between E and P ,
i.e., on (xe −xp)2 +(ye −yp)2. Moreover, this is a polynomial and hence requires
non-linear input attribution. Purely linear logistic regression will not be able to
detect this dependency. Our results, discussed next, confirm these intuitions.

Analysis of Results. Using demeter, we estimated the probability p̂ that the
evader escapes the pursuer with a result of p̂ = 0.214. This was estimated to a
target relative error of 0.01 and required 36,960 trials, of which 7,900 satisfied the
predicate. Total run time was 5 h and 20 min with 120 trials per batch. When
we perform the Logistic Regression for the linear analysis, we get the results
shown in Table 1(a). Only xe results in a p-value less than 0.05. However, an
ROC analysis with 5-fold cross validation results in an average AUC of 0.51,
indicating that the predictive value of the model is no better than chance. For
this reason, we do not accept the results of the linear analysis.

When we include the polynomial terms, we get the results shown in Table 1(b)
(only terms for which the p-value was below 0.05 are shown). The AUC for
the 5-fold cross validation including the polynomial terms was 0.77, consider-
ably better than that including only linear terms. When we apply the factor-
ing heuristics from Sect. 4.2, we get the following polynomial input attribution
expressions: 0.0602(xe − 1.03xp)2 and 0.0561(ye − 1.09yp)2. These expressions,
generated automatically from just the simulation data, are very close to our

Input Attribution for SMC 195

Table 1. Logistic analysis results of pursuer/evader experiment.

(a) Linear Analysis
Name β se(β) p-value

xe -0.0178 0.0055 0.0013
ye 0.0106 0.0055 0.0554
xp 0.0026 0.0056 0.6458
yy -0.0009 0.0055 0.8689

(b) Polynomial Analysis
Name β se(β) p-value

xexp -0.124 0.0027 < 10−4

yeyp -0.122 0.0027 < 10−4

x2
e 0.060 0.0031 < 10−4

y2
e 0.056 0.0031 < 10−4

x2
p 0.056 0.0031 < 10−4

y2
p 0.056 0.0031 < 10−4

expectation that the probability of escape for the evader depends on the initial
distance between the pursuer and evader. The positive leading coefficient on
both of the expressions tell us that the probability of escape increases as the
initial distance increases, which is also what we expect.

6.2 Target/Threat Scenario

Scenario Overview. This scenario involves self-adaptive behavior by an agent
that must fly a pre-planned route over a 2D grid at constant forward speed,
detecting as many targets on the ground as possible. Target detection is done
using a downward-looking sensor whose performance is inversely proportional to
the distance from the ground. There are also threats along the route, but the
probability of being destroyed by a threat is inversely proportional to the height
of the agent. Clearly, when deciding at what height the agent should fly there is
a tradeoff between detecting targets and avoiding threats.

The number and location of targets and threats is random and unknown.
However, the agent has a forward-looking sensor that observes the environment
ahead with some finite horizon to detect threats and targets, albeit with false
positive and false negative rates. The agent self-adapts proactively [18] to this
uncertainty by changing its altitude as it flies. It aims to maximize the number
of targets detected, taking into account that if it is destroyed, no more targets
are detected and the mission fails. Specifically, using the forward-looking sensor
information, the agent periodically constructs at run time a probabilistic model
of the environment, which is then used to make the adaptation decision—either
stay at the current altitude, or increase/decrease altitude by one level.

In this scenario, mission success is defined as detecting at least 50 % of the
existing targets without being destroyed. We break this down into three pred-
icates with the predicate Φt being “at least 50 % of the existing targets are
detected”, Φs being the “the agent survives to end of run”, and Φm = Φt ∧ Φs

being the predicate for mission success. The random variables upon which these
results depend are shown in Table 2.

Analysis of Results. The estimated probabilities produced by demeter for
the predicates tested are P̂ [Φt] = 0.361, P̂ [Φs] = 0.618 and P̂ [Φm] = 0.308. Thus,
while the agent survived most trials, the mission success rate is low because of

196 J.P. Hansen et al.

Table 2. Inputs for target/threat scenario.

Name Dist. Description

NE U{10, 40} Total number of existing targets

NT U{5, 20} Total number of existing threats

dLA U{1, 5} Number of cells in front of the agent scanned by the
forward-looking sensor, and decision horizon for proactive
adaptation

pEFP U(0, 0.5) False positive rate for target detection with the forward-looking
sensor

pEFN U(0, 0.5) False negative rate for target detection with the forward-looking
sensor

pTFP U(0, 0.5) False positive rate for threat detection with the forward-looking
sensor

pTFN U(0, 0.5) False negative rate for threat detection with the forward-looking
sensor

rE U{1, 5} Downward-looking sensor range (i.e., maximum height from
which a target can possibly be detected)

rT U{1, 3} Threat range (i.e., maximum height at which agent can be
destroyed)

failure to detect the required number of targets. The target relative error was
0.01, and 22,560 trials were completed in 10 h and 6 min, with 120 trials per
batch. The 5-fold cross validated mean AUCs for the linear and polynomial
versions of the logistic regression analysis for each of the three predicates were
approximately equal, ranging between 0.891 and 0.926. Since the polynomial
model provides no additional predictive quality, we focus our analysis on the
linear results shown in Table 3 (coefficients that were not statistically significant
for a predicate are not shown). Notable conclusions from these results are:

(a) The most important variables affecting Φm are rE , rT , NT , dLA and pTFP .
Mission success P̂ [Φm] increases as rE and dLA increase, but decreases as
the other input variables increase.

(b) As the target false-positive rate pTFP increases, P [Φs] increases but P [Φt]
decreases. The increase in P [Φs] is explained by the fact that falsely detecting
a threat causes the agent to fly at a higher altitude on average. This results
in it being at a higher than necessary altitude when it actually encounters a
threat, thus increasing its probability of survival. On the other hand, being
higher than necessary causes it to miss targets, thus lowering P [Φt].

(c) Increasing the number of targets NT results in decreases to all three predi-
cates. While it is not surprising that increasing the number of targets makes
it more difficult to meet the 50 % requirement, the effect on the survival prob-
ability P [Φs] is less obvious. A possible explanation for this is that detections
of a potential target cause the agent to take more risk flying at lower altitude
and thus increasing its chances for being destroyed.

Input Attribution for SMC 197

Table 3. Results for target/threat scenario

Name Φs Φt Φm

β se(β) p-value β se(β) p-value β se(β) p-value

rE 1.46 0.0195 <10−4 1.33 0.0194 <10−4

rT −2.37 0.0308 <10−4 −1.189 0.0195 <10−4 −1.57 0.0288 <10−4

dLA 0.377 0.0137 <10−4 0.194 0.0137 <10−4 0.233 0.0140 <10−4

NT −0.0792 0.0041 <10−4 −0.0943 0.0043 <10−4 −0.0892 0.0043 <10−4

NE −0.0296 0.0021 <10−4

pEFP −17.8130 1.3026 <10−4

pTFP 32.7410 1.3363 <10−4 −10.0390 1.3358 <10−4 −3.2583 1.3569 0.0163

(d) Increasing dLA increases all three predicates. This happens for two reasons.
First, the agent accumulates observations done with the forward-looking sen-
sor as it flies. Thus, the larger the look-ahead, the more time a target/threat
will be within the sensor range and the more times it will be sensed. Second,
using a longer horizon for the adaptation decision allows the agent to con-
sider not only immediate, but also upcoming needs (e.g., to start increasing
altitude to avoid a threat likely present three cells ahead).

(e) The target and threat sensor false-negative rates – pEFN and pTFN – have
no predictive value on the outcome. This is surprising since the correspond-
ing false-positive rates are predictive, and we expect the input-attribution to
be symmetric. However, we validated these results by repeating our exper-
iments with different combinations of (high and low) values of these rates.
Our results showed that while changing pEFP and pTFP changed the p̂ signif-
icantly, changing pEFN and pTFN had no effect. This demonstrates the effec-
tiveness of our approach in producing counter-intuitive input-attributions,
and its predictive value.

6.3 Paparazzi Scenario

Scenario Overview. This scenario involves multiple collaborating autonomous
agents attempting to protect another agent from being clearly photographed.
There is one paparazzi photographer (P) agent, one famous celebrity (C) agent,
and one or more unmanned autonomous quadcopter guardian (G) agents. All
agents start at random initial locations on a 3D map. Guardians must position
themselves between P and C, while P moves around C to get a clear shot.

The guardians G execute an “onion-defense” formation between C and P . An
onion-defense is a layered formation with the number of layers being a function
of the number of guardians, and each layer forming an arc around C, resembling
the layers of an onion as it is peeled. The goal is to provide redundant line-of-
sight blocking for any direction P might move to attempt to get a picture of C.

198 J.P. Hansen et al.

The more guardians G in the formation, the more protected C is from a nimble
P that tries to flank members of G. Once in stable formation, members of G try
to maintain a spacing buffer SG = 1 between each other.

Each guardian G has a block radius BG which is the range around its center-
of-mass that it blocks effectively. Each trial has a random number of guardians
NG ∼U{1, 14}, each having a random BG ∼U(1, 4) (note that BG ≥ SG). P has
a minimal distance DP that he must be from C to take a useful photograph, and
an initial distance IP that he starts north from C. Once P reaches DP from C,
he moves counter-clockwise around C until he either has line of sight (success) or
a 300 s timeout occurs (failure). We keep DP a constant, but IP ∼U(DP , 1.5DP).
To prevent guardians from blocking all possible photograph angles on initializa-
tion, each member of G has an initial distance IG ∼U(0.4DP , 1.2DP) from C in
a random direction θG ∼ U(0, 360). The farther any G is from C and other G,
the longer it takes to get into formation and the better chance P should have
to get a good photograph of C once the actual distance AP between P and C
equals the useful photograph distance DP .

Our experiments are built atop the Group Autonomy for Mobile Systems [2]
toolkit (which provides the onion defense algorithm), the Multi-Agent Distrib-
uted Adaptive Resource Allocation [10] middleware, and V-REP.

Analysis of Results. demeter estimated the probability that P photographs
C as p̂ = 0.0023, with a target relative error of 0.05, using 170,424 trials of
which 400 satisfied the predicate (i.e., the photographer succeeded 0.23 % of the
time). Total run time was 1 day 17 h and 37 min with 120 trials per batch. The
Logistic Regression for linear and polynomial analysis is shown in Table 4. The
ROC analysis for linear analysis had a good predictive value with an AUC of
0.73. However, the ROC for polynomial analysis was a more distinctive curve
with average AUC of 0.87. Consequently, we will focus on the results of the
polynomial analysis over the linear analysis.

Table 4(b) shows results for polynomial terms with p-values below 0.0002.
Applying the factoring heuristics from Sect. 4.2 results in the input attribution
expressions: 0.0208(NG−1.53θ1)(NG+2.96θ1) and 0.0939(θ1−7.82)2. This result
illuminates the peculiarities of the onion-defense, which gets more protective with
more defenders (NG). The first defender (G1) is especially important because
it is located directly between P and C. G2 is then placed to its left in an arc
around C and G3 to the immediate right of G1. Each subsequent member builds

Table 4. Logistic analysis results for Paparazzi experiment.

(a) Linear Analysis
Name β se(β) p-value

NG 0.1166 0.0133 0.0000
θ1 0.1792 0.0284 0.0000
θ2 -0.1452 0.281 0.0000
IP -1.6228 0.3524 0.0000

(b) Polynomial Analysis
Name β se(β) p-value

θ2
2 0.0939 0.0170 0.0000

θ2
1 0.0939 0.0173 0.0000

N2
G -0.0208 0.0044 0.0000

Input Attribution for SMC 199

outward from G1 and new layers are added behind it as NG gets larger. θ1 is
important because P always starts due north of C, and if θ1 is more northward,
then G1 gets to its assigned position quickly to block P . θ2 is also important
because G2 is to the left of G1, and if it can get into position quickly, it can
block the counter-clockwise movement of P .

We were surprised by θ1 being more important than I1 (the initial distance
from C). Through this analysis, we were able to give guidance to the onion-
defense designer on potential fixes to deal with P being detected very close to
C. For instance, instead of the current algorithm using fixed formations based
on indices of agents, the algorithm could use intercept times to assign agent
positions in formations to protect C from P . This highlights the usefulness of
our approach to diagnose and fix issues in stochastic systems.

7 Conclusion

We have presented an approach for input-attribution in SMC and have imple-
mented it in demeter, a distributed SMC infrastructure. We have shown that
our approach synthesizes input attributions that satisfy the four conditions we
stated are necessary for a good input attribution in Sect. 1 as follows: (i) by
showing that the generated models have predictive power, we demonstrated that
synthesized expressions correspond to actual relationships in the system; (ii) syn-
thesized attributions are numeric in nature and backed up with confidence scores
on individual coefficients and on the overall predictive power of the model; (iii)
results from our experiments were able to validate our hypotheses and in some
cases such as in the paparazzi scenario resulted in new and unexpected insights;
and (iv) all of these results were obtained despite substantial noise from other
hidden and explicit random variables in the system.

Note that while in this paper we focused on inputs, we believe that it is also
possible to “watch” internal variables in the system and include them in the
attribution. We also expect that other relationships, besides polynomial, could
also be found by adding predictors to the logistic regression analysis, and believe
this to be an important area for future work.

References

1. A platform for operating docker in production. http://github.com/rancher/rancher
2. Dukeman, A., Adams, J.A., Edmondson, J.: Extensible collaborative autonomy

using GAMS. In: Proceedings of IRMAS (2016)
3. Chaki, S., Kyle, D.: DMPL: programming and verifying distributed mixed-

synchrony and mixed-critical software. Technical report CMU/SEI-2016-TR-005,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh (2016).
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=464254

4. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24372-1 1

http://github.com/rancher/rancher
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=464254
http://dx.doi.org/10.1007/978-3-642-24372-1_1

200 J.P. Hansen et al.

5. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL (1977)

6. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35873-9 10

7. David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimizing
control strategy using statistical model checking. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38088-4 24

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-22110-1 27

9. Rohmer, E., Signgh, S.P.N., Freese, M.: V-REP: a versatile and scalable robot
simulation framework. In: Proceedings of IROS (2013)

10. Edmondson, J., Gokhale, A.: Design of a scalable reasoning engine for distributed,
real-time and embedded systems. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011.
LNCS (LNAI), vol. 7091, pp. 221–232. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25975-3 20

11. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. In: Proceedings of ICSE
(1999)

12. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical
Learning, 6th edn. Springer, New York (2015)

13. Hanley, J., McNeil, B.: The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

14. Hosmer, D., Lemeshow, S.: Applied Logistic Regression, 3rd edn. Wiley, Hoboken
(2013)

15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

16. Kyle, D., Hansen, J., Chaki, S.: Statistical model checking of distributed adaptive
real-time software. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol.
9333, pp. 269–274. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23820-3 17

17. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. http://dl.acm.org/citation.cfm?id=2600239.2600241

18. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Efficient decision-making
under uncertainty for proactive self-adaptation. In: Proceedings of ICAC (2016,
to appear)

19. Musliner, D.J., Engstrom, E.: PRISMATIC: unified hierarchical probabilistic ver-
ification tool. Technical report AFRL-RZ-WP-TR-2011-2097 (2011)

20. R Development Core Team: R: A Language and Environment for Statistical Com-
puting (2008). http://www.R-project.org

21. Seshachala, S.: Docker vs VMs. http://devops.com/2014/11/24/docker-vs-vms
22. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,

S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
doi:10.1007/11513988 43

23. Younes, H.L.S.: Verification and planning for stochastic processes with asynchro-
nous events. Ph.D. thesis, CMU, Technical report no. CMU-CS-05-105 (2005)

http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-38088-4_24
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1007/978-3-642-25975-3_20
http://dx.doi.org/10.1007/978-3-642-25975-3_20
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-319-23820-3_17
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://www.R-project.org
http://devops.com/2014/11/24/docker-vs-vms
http://dx.doi.org/10.1007/11513988_43

Quantitative Monitoring of STL with Edit
Distance

Stefan Jakšić1,2(B), Ezio Bartocci2, Radu Grosu2, and Dejan Ničković1

1 AIT Austrian Institute of Technology, Seibersdorf, Austria
Stefan.Jaksic.fl@ait.ac.at

2 Faculty of Informatics, Vienna University of Technology, Vienna, Austria

Abstract. In cyber-physical systems (CPS), physical behaviors are typ-
ically controlled by digital hardware. As a consequence, continuous
behaviors are discretized by sampling and quantization prior to their
processing. Quantifying the similarity between CPS behaviors and their
specification is an important ingredient in evaluating correctness and
quality of such systems. We propose a novel procedure for measuring
robustness between digitized CPS signals and Signal Temporal Logic
(STL) specifications. We first equip STL with quantitative semantics
based on the weighted edit distance (WED), a metric that quantifies both
space and time mismatches between digitized CPS behaviors. We then
develop a dynamic programming algorithm for computing the robustness
degree between digitized signals and STL specifications. We implemented
our approach and evaluated it on an automotive case study.

1 Introduction

Cyber-physical systems (CPS) integrate heterogeneous collaborative compo-
nents that are interconnected between themselves and their physical environ-
ment. They exhibit complex behaviors that often combine discrete and continu-
ous dynamics. The sophistication, complexity and heterogeneity of CPS makes
their verification a difficult task. Runtime monitoring addresses this problem by
providing a formal, yet scalable, verification method. It achieves both rigor and
efficiency by enabling evaluation of systems according to the properties of their
individual behaviors.

In the recent past, property-based runtime monitoring ofCPS centered around
Signal Temporal Logic (STL) [18] and its variants have received considerable
attention [1,5,6,10–12,20]. STL is a formal specification language for describing
properties of continuous and hybrid behaviors. In its original form, STL allows to
distinguish correct from incorrect behaviors. However, the binary true/false clas-
sification may not be sufficient for real-valued behaviors. In fact, systems with con-
tinuous dynamics are often sensitive to small perturbations in initial conditions,
system parameters and the accuracy of sensors, which may influence the correct-
ness of the verdict. In order to address this problem, the satisfaction relation can
be replaced by the robustness degree [10–12] of a behavior with respect to a tem-
poral specification. The robustness degree gives a finer measure of how far is the
behavior from satisfying or violating of the specification.
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 201–218, 2016.
DOI: 10.1007/978-3-319-46982-9 13

202 S. Jakšić et al.

In this paper, we propose a novel quantitative semantics forSTL that measures
the behavior mismatches in both space and time. We consider applications in which
continuous CPS behaviors are observed by a digital device. In this scenario, con-
tinuous behaviors are typically discretized, both in time and space, by an analog-
to-digital converter (ADC). As a consequence, we interpretSTL over discrete-time
digitizedbehaviors.Wefirstdefine theweighted editdistanceasanappropriatemet-
ric for measuring combined space-time similarity between discretized CPS behav-
iors.We thenprovide thequantitative semantics forSTLbasedon this distance and
discuss the effects of sampling and quantization on the distance value. We develop
an efficient on-line algorithm for computing the robustness degreebetweenabehav-
ior andaSTL formula.Thealgorithmcanbedirectly implementedboth in software
and hardware. In the former case, the implemented procedure can be connected to
the simulation engine of the CPS design and used to monitor its correctness and
quality. In the latter case, the resulting implementationcanbedeployedontheField
Programmable Gate Array (FPGA) and used to monitor real systems or design
emulations. We implement the above procedure in Verilog and evaluate it on an
automotive benchmark.

Related Work. The Levenshtein (edit) distance [17] has been extensively used
in information theory, computer science and bioinformatics for many applica-
tions, including approximate string matching, spell checking and fuzzy string
searching. Levenshtein automata [24] were introduced to reason about the edit
distance from a reference string. A Levenshtein automaton of degree n for a
string w recognizes the set of all words whose edit distance from w is at most
n. A dynamic programming procedure for computing the edit distance between
a string and a regular language has been proposed in [26]. The problem of com-
puting the smallest edit distance between any pair of distinct strings in a reg-
ular language has been studied in [15]. In contrast to our work, these classical
approaches to edit distance consider only operations with simple weights on
unordered alphabets and do not relate the distance to specification formalisms.

The edit distance for weighted automata was studied in [19], where the
authors propose a procedure for computing the edit distance between weighted
transducers. A space efficient algorithm for computing the edit distance between
a string and a weighted automaton over a tropical semiring was developed in [2].
The resulting approach is generic and allows for instance to assign an arbitrary
cost to each substitution pair. However, all substitution pairs must be enumer-
ated by separate transitions. In contrast, we consider signals with naturally
ordered alphabets as input strings and hence can efficiently handle substitution
over large alphabets by treating allowed input values with symbolic constraints.
In addition, we use the edit distance to define the semantics of a temporal spec-
ification formalism. Finally, we provide insights into the effect of sampling and
quantization to the computation of the distance. The weighted Hamming and
edit distances between behaviors are also proposed in [23], where the authors
use it to develop procedures for reasoning about the introduce the Lipshitz-
robustness of Mealy machines and string transducers. The notion of robustness

Quantitative Monitoring of STL with Edit Distance 203

is different from ours, and in contrast to our work it is not computed against a
specification.

The quantitative semantics for temporal logics were first proposed in [12,22],
with the focus on the spatial similarity of behaviors, given by their point-wise
comparison. The spatial quantitative semantics is sensitive to phase shifts and
temporal inaccuracies in behaviors – a small temporal shift in the behavior
may result in a large robustness degree change. This problem was addressed
in [11], in which STL with spatial quantitative semantics is extended with time
robustness. In [1], the authors propose another approach of combining space and
time robustness, by extending STL with averaged temporal operators. Another
approach to determining robustness of hybrid systems using self-validated arith-
metics is shown in [13]. Monitoring of different quantitative semantics is imple-
mented in tools S-TaLiRo [3] and Breach [9]. These works differ from ours in
that they all assume continuous behaviors, in contrast to our approach where
behaviors are quantized and sampled.

The recent results on using Skorokhod metric to compute the distance
between piecewise-linear or piecewise-constant continuous behaviors [8] partially
inspired our work. Skorokhod metric quantifies both space and time mismatches
between continuous behaviors by allowing application of time distortions in
behaviors in order to minimize their pointwise distance. The distortion of the
timeline is achieved by applying a retiming function - a continuous bijective
strictly increasing function from time domain to time domain. Given a behavior
x(t), the resulting retimed behavior r(x(t)) preserves the values and their order
but not the duration between two values. This information-preserving distance
relies on continuous time and is not applicable to the discrete time domain –
stretching and compressing the discrete time axis results inevitably in an infor-
mation loss. Finally, computation of the Skorokhod distance was extended to
the flow-pipes in [7], but we are not aware of any work that addrsses the prob-
lem of computing the Skorokhod distance between a behavior and a temporal
specification.

2 Preliminaries

In this section, we provide the necessary definitions to develop the algorithm
presented in subsequent sections of the paper. We first shortly recall the notion
of metric spaces and distances. We then define signals and Signal Temporal Logic.
Finally, we introduce a variant of symbolic and weighted symbolic automata.

Metric Spaces and Distances. A metric space is a set for which distances
between all elements in the set are defined.

Definition 1 (Metric space and distance). Suppose that M is a set and d :
M ×M → R is a function that maps pairs of elements in M into the real numbers.
Then M is a metric space with the distance measure d, if (1) d(m1,m2) ≥ 0 for
all m1,m2 in M ; (2) d(m1,m2) = 0 if and only if m1 = m2; (3) d(m1,m2) =

204 S. Jakšić et al.

d(m2,m1) for all m1,m2 in M ; and (4) d(m1,m2) ≤ d(m1,m) + d(m,m2) for
all m,m1,m2 in M .

Given m ∈ M and M ⊆ M , we can lift the above definition to reason about
the distance between an element m of M and the subset M of M as follows

d(m,M) = min
m′∈M

d(m,m′)

We define the robustness degree ρ(m,M) of m with respect to the set M as
follows

ρ(m,M) =
{

d(m,M \M) if m ∈ M
−d(m,M) otherwise

Signals. Let X be a finite set of variables defined over some domain D. Then, a
signal s is a function s : T×X → D, where T is the time domain1. We distinguish
between analog, discrete and digital signals. Analog signals have continuous value
and time domains. The time domain of discrete signals is the set of integers,
while digital signals have in addition their value domain restricted to a finite set.
Digital signals can be obtained by sampling and quantization of analog signals.
The conversion of analog to digital signals is at the core of the signal processing
field and is in practice done by an analog-to-digital converter (ADC).

Sampling is the process of reducing the continuous time in analog signals to
the discrete time in the resulting discrete signal. The ideal theoretical sampling
function periodically measures the value of the analog signal every T time units,
where T denotes the sampling interval. Similarly, we denote by f the sampling
frequency, that is the average number of measurements obtained by sampling in
one second, where f = 1/T . Given an analog signal sa : R≥0 × X → R

n and
a sampling interval T , applying the ideal sampling function to sa results in a
discrete signal sdisc : N × X → R such that sdisc(i, x) = sa(iT, x) for all i ≥ 0
and x ∈ X.

When sampling real-valued signals, it is impossible to maintain the arbi-
trary precision of its values, which consequently must be restricted to a finite
set. Quantization consists of converting real values to their discrete numerical
approximations, and thus allows to map discrete to digital signals. We consider
the basic uniform quantization function with a quantization step Q which is
defined as follows

Q(r) = Q · �|r|/Q + 0.5�,
where r ∈ R. We note that the quantization can be decomposed into two stages,
classification and reconstruction. The classification function c maps the real input
value into an integer index k, and the reconstruction function y converts k into
the actual discrete approximation of the input. Hence, we have that Q(r) =
y(c(r)) where

1 We use s(t) to denote the valuation vector of the variables in X at time t.

Quantitative Monitoring of STL with Edit Distance 205

c(r) = �|r|/Q + 0.5�
y(k) = Q · k

The decomposition of the quantization into two independent stages has a prac-
tical advantage – without loss of generality, we can from now directly work with
digital signals obtained after the classification stage with their value domain
being a finite subset of N. We also restrict ourselves to signals that have finite-
length and hence are of the form sdig : [0, l) × X → [vmin, vmax], where [0, l)
and [vmin, vmax] are intervals in N, and X is now the set of variables defined
over the domain [vmin, vmax]. We extend the signal notation s(i,X) to denote
the vector D

|X| of all variable values in X at time i. From now on, we refer to
digital signals of finite length simply as signals and denote them by s.

Signal Temporal Logic. In this paper, we study Signal Temporal Logic (STL)
with both past and future operators interpreted over digital signals of final
length2.

Let X be a finite set of variables defined over a finite interval domain D =
[vmin, vmax] ⊆ N. We assume that X is a metric space equiped with a distance
d. The syntax of a STL formula ϕ over X is defined by the grammar

ϕ := x ∼ u | ¬ϕ | ϕ1 ∨ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2

where x ∈ X, ∼∈ {<,≤}, u ∈ D, I is of the form [a, b] or [a,∞) such that a, b ∈ N

and 0 ≤ a ≤ b. The other standard operators are derived as follows: true = p∨¬p,
false = ¬true, ϕ1 ∧ϕ2 = ¬(¬ϕ1 ∨¬ϕ2), ◇I ϕ = trueUI ϕ, ◻I ϕ = ¬ ◇I ¬ϕ,
◇− I ϕ = trueSI ϕ, ◻− I ϕ = ¬◇− I¬ϕ, ◯ ϕ = falseU[1,1] ϕ and ◯− ϕ = falseS[1,1] ϕ.

The semantics of a STL formula with respect to a signal s of length l is
described via the satisfiability relation (s, i) |= ϕ, indicating that the signal
s satisfies ϕ at the time index i, according to the following definition where
T = [0, l).

(s, i) |= x ∼ u ↔ s(i, x) ∼ u
(s, i) |= ¬ϕ ↔ (s, i) �|= ϕ

(s, i) |= ϕ1 ∨ϕ2 ↔ (s, i) |= ϕ1 or (s, i) |= ϕ2

(s, i) |= ϕ1 UI ϕ2 ↔ ∃j ∈ (i + I) ∩ T : (s, j) |= ϕ2 and ∀i < k < j, (s, k) |= ϕ1

(s, i) |= ϕ1 SI ϕ2 ↔ ∃j ∈ (i − I) ∩ T : (s, j) |= ϕ2 and ∀j < k < i, (s, k) |= ϕ1

We note that we use the semantics for I and I that is strict in both arguments
and that we allow punctual modalities due to the discrete time semantics. Given
an STL formula ϕ, we denote by L(ϕ) the language of ϕ, which is the set of all
signals s such that (s, 0) |= ϕ.

2 Although this segment of STL is expressively equivalent to LTL, use the STL name
to highlight the explicit notions of real-time and quantitative values in the language.

206 S. Jakšić et al.

Automata and Weighted Automata. In this section, we define a variant of
symbolic automata [25] and also introduce its weighted extension. Similarly to
the definition of STL, we consider D = [vmin, vmax] to be the finite interval of
integers equipped with the distance d and let X to be a finite set of variables
defined over D. The variable valuation v(x) is a function v : X → D, which we
naturally extend to the valuation v(X) of the set X. A variable constraint γ
over X is defined by the grammar in negation normal form γ := x ≤ c | ¬(x ≤
c) | γ1 ∨ γ2 |γ1 ∧ γ2, where x ∈ X and c ∈ D. We denote by Γ(X) the set of all
constraints definable over X. Given the valuation v(X) and a constraint γ over
X, we write v(X) |= γ when v(X) satisfies γ.

Definition 2 (Symbolic Automata). We define a symbolic automaton A as
the tuple A = (D,X,Q, I, F,Δ), where D is the finite alphabet, X is a finite set
of variables over D, Q is a finite set of states, I ⊆ Q is the set of initial states,
F ⊆ Q is the set of final states and Δ = ΔX ∪ Δε is the transition relation,
where ΔX ⊆ Q × Γ(X) × Q and Δε ⊆ Q × {ε} × Q are sets of transitions that
consume an input letter and silent transitions.

Given a q ∈ Q, let E(q) denote the set of states reachable from q by following
ε-transitions in Δ only. Formally, we say that p ∈ E(q) iff there exists a sequence
of states q1, . . . , qk such that q = q1, (qi, ε, qi+1) ∈ Δ for all 0 ≤ i < k, and
p = qk. Let s : [0, l) × X → D be a signal. We say that s is a trace of A if there
exists a sequence of states q0, . . . , ql in Q such that q0 ∈ E(q) for some q ∈ I,
for all 0 ≤ i < l, there exists (qi, γ, q) ∈ Δ for some γ such that s(i,X) |= γ
and qi+1 ∈ E(q) and ql ∈ F . We denote by L(A) the set of all traces of A.
A path π in A is a sequence π = q0 · δ0 · q1 · · · δn−1 · qn such that q0 ∈ I and
for all 0 ≤ i < n, δi is either of the form (qi, γ, qi+1) or (qi, ε, qi+1). We say
that π is accepting if qn ∈ F . Given a trace s : [0, l) × X → D and a path
π = q0 · δ0 · q1 · δ1 · · · δn−1 · qn, we say that s induces π in A if π is an accepting
path in A and there exists a monotonic injective function f : [0, l) → [0, n] such
that for all 0 ≤ i < l, δi = (qi, γ, qi+1) such that s(i,X) |= γ and δj = (qj , ε, qj+1)
for all j ∈ ⋃

0≤i<n(f(i), f(i + 1)) ∪ [0, f(0)) ∪ (f(l), n]. We denote by Π(A, s) =
{π | s induces π in A} the set of all paths in A induced by s.

We now introduce weighted symbolic automata, by adding a weight function
to the transitions of the symbolic automaton, relative to the consumed input
letter.

Definition 3 (Weighted symbolic automata). A weighted symbolic
automaton W is the tuple W = (D,X,Q, I, F,Δ, λ), where A = (D,X,Q, I, F,Δ)
is a symbolic automaton and λ : Δ × (D|X| ∪ {ε}) → Q

+ is the weight function.

Let s be a signal of size l and π = q0 · δ0 · · · δn−1 · qn a path in W induced
by s. The value of π in W subject to s, denoted by v(s, π,W), is the sum of
weights associated to the transitions in the path π and subject to the signal s.
We define the value v(s,W) of s as the minimum value from all the paths in W
induced by s, i.e. v(s,W) = minπ∈Π(W ,s) v(s, π,W).

Quantitative Monitoring of STL with Edit Distance 207

3 Weighted Edit Distance

Measuring the similarity of sequences is important in many application areas,
such as information theory, spell checking and bioinformatics. The Hamming dis-
tance dH is the most basic and common string measure arising from the informa-
tion theory. It measures the minimum number of substitution operations needed
to match equal length sequences. The edit distance dE extends the Hamming
distance with two additional operations, insertion and deletion and is defined
as the minimum accumulation of edit operation costs used to transform one
sequence into the other.

Neither of these metrics provide satisfactory solution for comparing digitized
signals. They are defined over unordered alphabets and associate fixed costs to
different kinds of operations. In contrast, the value domain of digital signals
admits a natural notion of a distance representing the difference between two
signal valuations. In addition, the Hamming distance provides only pointwise
comparisons between sequences and consequently does not account for potential
timing discrepancies in the sampled signals. Two discrete signals that differ only
in a constant time delay will typically have a large Hamming distance. The edit
distance addresses this problem by allowing us to bridge the time shifts using
insertion and deletion operations.

Inspired by [19,23], we propose the weighted edit distance as the measure
for comparing the similarity of two discrete signals. It adopts the insertion and
deletion operations from the edit distance and adapts the substitution operation
to the ordered alphabets. Since we consider multi-dimensional signals, we extend
the cost of the substitution operation to take into account different variable
valuations.

Let X be a finite set of variables defined over some interval domain D =
[vmin, vmax]. Given two valuation vectors a, b ∈ D

|X| of X, we denote by dM (a, b)
the Manhattan distance [16] between a and b, where dM (a, b) = Σ|X|−1

i=0 |ai − bi|.
Let wi, wd ∈ Q be weight constants for the insertion and deletion operations. We
then define the costs of the substitution cs, insertion ci and deletion cd operations
as follows: (1) cs(a, b) = dM (a, b); (2) ci = wi; (3) cd = wd. The definition of the
WED adapts the classical edit distance recursive definition with the new costs.

Definition 4 (Weighted edit distance). Let s1 : [0, l) × X → D and s2 :
[0, l) × X → D be discrete-time signals. The weighted edit distance dW (s1, s2)
equals to dl,l(s1, s2) :

d−1,−1(s1, s2) = 0
di,−1(s1, s2) = di−1,−1(s1, s2) + ci

d−1,j(s1, s2) = d−1,j−1(s1, s2) + cd

di,j(s1, s2) = min

⎧⎨
⎩

di−1,j−1(s1, s2) + cs(s1(i,X), s2(j,X))
di−1,j(s1, s2) + ci

di,j−1(s1, s2) + cd

208 S. Jakšić et al.

Proposition 1. The weighted edit distance is a distance.

Remark. We chose the Manhattan distance for the substitution cost because it
combines the absolute difference of several signal components.

We first note that the distance is additive in two dimensions - the Manhattan
distance adds substitution costs for each variable in the signal, and the edit
operation costs are accumulated over the signal length. In addition, the distance
is sensitive to the sampling period used to discretize the signal. As a consequence,
this distance can be normalized, in order to provide more uniform results. Given
signals s1, s2 of length l defined over X and sampled with a period T , the value
domain D = [vmax, vmin], we define the normalized weigted edit distance, which
is always bounded by [0, 1] as follows:

d#
W (s1, s2) =

T · dW (s1, s2)
l|X|(vmax − vmin)

.

3.1 Sampling, Quantization and Weighted Edit Distance

We compute the WED between digital signals resulting from physical behavior
observations after sampling and quantization. In this section, we discuss the
effect of inaccuracies introduced by these operations on the WED.

Let s be an analog signal, T a sampling period and Q a quantization step.
We assume that s has a band limit fM and T ≤ 1/(2fM). We denote by s[T] the
discrete signal obtained from s by sampling with the period T , and by s[T][Q]
the digital signal obtained from s[T] by quantization with the step Q.

We cannot directly relate the WED to the analog signals, because it is not
defined in continuous time. However, this distance allows tackling phase shifts
in the sampled signals. Consider two analog signals s1(t) and s2(t− τ) such that
τ = iT for some i ≥ 0 and their sampled variants s1[T](t) and s2[T](t). It is
clear that with 2 · i insertion and deletion operations, s2[T] can be transformed
into s1[T] such that their remaining substitution cost equals to 0. This situation
is illustrated in Fig. 1 (see signals s1 and s2). We see that the distance between
the two signals initially grows due to the insertion and deletion operations, but
that eventually it becomes perfectly stable.

Now consider another signal s3(t) = s1(t − τ) such that τ is not a multiple
of T . In this case, the sampled signal s3[T](t) cannot be perfectly transformed
into s1[T](t) by using insertion and deletion operations because of the mismatch
between the sampling period and the phase shift. As a consequence, the distance
between s1[T](t) and s3[T](t) will accumulate substitution costs due to this mis-
match. This scenario is also depicted in Fig. 1 (see signals s1 and s3). The figure
shows that after an initial steep increase of the distance due to the insertion and
deletion operations, its value does not converge, but continues slowly increasing
due to the accumulation of remaining substitution costs.

We define the sampling error as the maximum difference in value between
two periods in a sampled signal. Intuitively, this value gives an impression about
the error that can be accumulated when comparing sampled variants of two

Quantitative Monitoring of STL with Edit Distance 209

Fig. 1. Weighted edit distances dW (s1, s2) and dW (s1, s3), where s1(t) = sin(2πft),
s2(t) = sin(2πf(t − 0.1)), s3(t) = sin(2πf(t − τ)), T = 0.01, f = 1 Hz and τ = π/15.

phase-shifted signals, when the phase shift is not a multiple of the sampling
period.

Definition 5 (Sampling error). Let s be an analog signal with band-limit fM

and sampling period T , such that T ≤ 1/(2fM). The sampling error is defined
as errT (s, i) = ||s[T](i) − s[T](i + 1)| − max0≤τ≤T |s(iT) − s(iT + τ)||

We show that this error converges to 0 when the sampling period goes to 0.

Proposition 2. limT→0 errT (s, i) = 0

Intuitively, the quantization step abstracts the real value of s[T] to the near-
est multiple of the quantization step. This approximation inevitably introduces
an accumulative error to the distance between quantized signals. We provide
a bound on this error as a function of Q and the length of the signals, and
show that the error bound decreases with smaller quantization steps. We now
formalize this result. We first define the WED error due to quantization.

Definition 6 (Weighted Edit Distance Error). Let s1[T] and s2[T] be two
discrete signals of length l and Q a quantization step. The WED error, denoted
by errQ(s1[T], s2[T]), is defined as follows

errQ(s1, s2) = |dW (s1[T], s2[T]) − dW (s1[T][Q], s2[T][Q])|

The following theorem bounds the WED error due to quantization and states
that the error bound improves as the quantization step approaches 0.

Theorem 1. For arbitrary discrete signals s1[T] and s2[T] of length l defined
over the same value domain and quantization step Q,

1. errQ(s1[T], s2[T]) ≤ Q|X|l
2. limQ→0 errQ(s1[T], s2[T]) = 0

210 S. Jakšić et al.

4 Weighted Edit Robustness for Signal Temporal Logic

In this section, we propose a novel procedure for computing the robustness degree
of a discrete signal with respect to a STL property. In our approach, we set ci

and cd to be equal to |X|(vmax−vmin). In other words, the deletion and insertion
costs are at most the largest substitution cost. Our procedure relies on comput-
ing the WED between a signal and a set of signals, defined by the specification.
It consists of several steps, illustrated in Fig. 2. We first translate the STL for-
mula ϕ into a symbolic automaton Aϕ that accepts the same language as the
specification. The automaton Aϕ treats timing constraints from the formula enu-
meratively, but keeps symbolic guards on data variables3. We then transform Aϕ

into a weighted edit automaton Wϕ, a weighted symbolic automaton that accepts
all the signals but with the value that corresponds to the WED between the
signal and the specification (Fig. 2 (a)). We propose an algorithm for computing
this distance. Computing the robustness degree between a signal and an STL
specification follows from the calculation of their WED, as shown in Fig. 2 (b).

Fig. 2. Computation of (a) dW (s, ϕ) and ρ(s, ϕ).

4.1 From STL to Weighted Edit Automata

Let X be a set of finite variables defined over the domain D = [vmin, vmax] ⊆ N.
We consider an STL formula ϕ defined over X. Let s : [0, l)×X → D be a digital
signal.

From ϕ to Aϕ. In the first step, we translate the STL specification ϕ into the
automaton Aϕ such that L(ϕ) = L(Aϕ). The translation from STL interpreted
over discrete time and finite valued domains to finite automata is standard, and
can be achieved by using for instance on-the-fly tableau construction [14] or the
temporal testers approach [21].

Example 1. Consider the past STL formula ϕ =◻ (x = 4 →◇− (x < 3)), where
x is defined over the domain [0, 5]. The resulting automaton Aϕ is shown in
Fig. 3(a).

3 The time in Aϕ cannot be treated symbolically with digital clocks since every pair
of states and clock valuation may behave differently with respect to the WED.

Quantitative Monitoring of STL with Edit Distance 211

(b)(a)

A
x = 3 or
x = 5C

x ≤ 5

B

x = 3 or x = 5

x< 3x< 3

x< 3 : 3− x
x = 3 : 0
x = 4 : 1
x = 5 : 0

ε : 5

x = 3 : 0

x = 5 : 0
x = 4 : 1

x< 3 : 3− x

x< 3 : 0
x ≥ 3 : x−2

ε : 5
x< 3 : 0

x ≥ 3 : x−2

ε : 5

x ≤ 5

B

CA

x ≤ 5 : 5

Fig. 3. (a) Aϕ accepting L(ϕ) - all states are accepting and (b) Wϕ. (Color figure online)

From Aϕ to Wϕ. In this step, we translate the automaton Aϕ to the weighted
edit automaton Wϕ. The automaton Wϕ reads an input signal and mimics the
weighted edit operations. In essence, Wϕ accepts every signal along multiple
paths. Each accepting path induced by the signal corresponds to a sequence of
weighted edit operations needed to transform the input signal into another one
allowed by the specification. The value of the least expensive path corresponds to
the weighted edit distance between the input signal and the specification. The
weighted automaton Wϕ explicitly treats substitution, insertion and deletion
operations, by augmenting Aϕ with additional transitions and associating to
them the appropriate weight function. We now provide details of the translation
and describe the handling of weighted edit operations. Let Aϕ = (D,X,Q, I, F,Δ)
be the symbolic automaton accepting the language of the specification ϕ.

Substitution. In order to address substitutions in the automaton, we define a
new set of substitution transitions Δs and associate to them the weight function
λs as follows. Given q, q′ ∈ Q, let γ(q, q′) =

∨
(q,γ,q′)∈Δ γ. Then, we have:

– (q, true, q′) ∈ Δs if there exists (q, γ, q′) ∈ Δ for some γ; and
– λs((q, true, q′), v) = dM (v, γ(q, q′)), for all v ∈ D

|X|.

Intuitively, we replace all the transitions in Aϕ with new ones that have the same
source and target states. We relax the guards in the new transitions and make
them enabled for any input. On the other hand, we control the cost of making
a transition with the weight function λs, which computes the substitution cost
needed to take the transition with a specific input. This cost is the Manhat-
tan distance between the input value and the guard associated to the original
transition.

Deletion. Addressing deletion operations consists in adding self-loop transitions
that consume all the input letters to all the states with the deletion cost cd =
|X|(vmax−vmin), thus mimicking deletion operations. We skip adding a self-loop
transition to states that already have the same substitution self-loop transition –
according to our definition cd ≥ cs(a,X) for all a, hence taking the deletion

212 S. Jakšić et al.

transition instead of the substitution one can never improve the value of a path
and is therefore redundant. We define the set of deletion transitions Δd and the
associated weight function λd as follows:

– (q, true, q) ∈ Δd if (q, true, q) �∈ Δs; and
– λd(δ, v) = cd for all δ ∈ Δd and v ∈ D

|X|.

Insertion. In order to mimic the insertion operations, we augment the transitions
relation of Wϕ with silent transitions. For every original transition in Δ, we
associate another transition with the same source and target states, but labeled
with ε and having the insertion cost ci = |X|(vmax−vmin). Formally, we define the
set of insertion transitions Δi and the associated weight function λi as follows:

– (q, ε, q′) ∈ Δi if (q, γ, q′) ∈ Δ for some γ; and
– λi(δ, {ε}) = ci for all δ ∈ Δi.

Given the symbolic automaton Aψ = (D,X,Q, I, F,Δ) accepting the lan-
guage of the specification ϕ, its associated symbolic weigthed edit automaton Wψ

is the tuple (D,X,Q, I, F,Δ′, λ′), where Δ′ = Δs∪Δd∪Δi and λ′(δ, v) = λs(δ, v)
if δ ∈ Δs, λ′(δ, v) = λd(δ, v) if δ ∈ Δd and λ′(δ, ε) = λi(δ, ε) if δ ∈ Δi.

Example 2. The weighted edit automaton Wϕ obtained from Aϕ is illustrated in
Fig. 3(b). The blue transitions, such as (A, 0, A) with weight 5, correspond to
the deletion transitions. The red transitions, such as (A, ε,B), correspond to the
insertion transitions.

The resulting weighted automaton Wϕ allows determining the weighted edit
distance between a signal w and the formula ϕ, by computing the value of s
in Wϕ.

Theorem 2. dW (s,ϕ) = v(s,Wϕ).

4.2 Computing the Value of a Signal in a Weighted Edit Automaton

We now present an on-the-fly algorithm Val, shown in Algorithm 1, that com-
putes the value of a signal s in a weighted automaton W . In every step i, the
algorithm computes the minimum cost of reaching the state q with the prefix
of s consisting of its first i values. After reading a prefix of s, we may reach
a state q ∈ Q in different ways with different costs. Note that it is sufficient
to keep the state with the minimum value in each iteration. It follows that the
algorithm requires book keeping |Q| state value fields in every iteration. We now
explain the details of the algorithm. The procedure first initializes the costs of
all the states in W (see Algorithm 2). The initial states are set to 0 and the
non-initial ones to ∞. Then, we compute the effect of taking the ε transitions
without reading any signal value. It is sufficient to iterate this step |Q| times,
since within |Q| iterations, one is guaranteed to reach a state q that was already

Quantitative Monitoring of STL with Edit Distance 213

visited with a smaller value v. In every subsequent iteration i, we first update the
state values by applying the cost of taking all transitions labeled by s(i,X) and
then update the effect of taking ε transitions |Q| times. The weight function of a
substitution cost is computed as follows: λ(v, x ≤ k) gives 0 if v ≤ k, and v − k
otherwise; λ(v,¬(x ≤ k)) is symmetric; λ(v,ϕ1 ∧ϕ2) = max(λ(v,ϕ1), λ(v,ϕ2))
and λ(v,ϕ1 ∨ϕ2) = min(λ(v,ϕ1), λ(v,ϕ2)).

Upon termination, the algorithm returns the minimum cost of reaching an
accepting state in the automaton.

Theorem 3. Val(s,W) = v(s,W).

Theorem 4. Given a signal s of length l defined over X and a weighted
automaton W with n states and m transitions, Val(s,W) takes in the order
of O(lnm)) iterations to compute the value of s in W , and requires in the order
of O(n(�log(l(vmax − vmin))�)) memory.

Algorithm 1. Val(s,W)
Input: s and Wψ

Output: v
InitVal(W)
for all i ∈ [0, l) do

for all δ = (q, γ, q′) ∈ Δ do
v′(q′) ← min(v′(q′), v(q) + λ(s(i, X), δ))

end for
for i = 0; i < |Q|; i + + do

for all δ = (q, ε, q′) ∈ Δ do
v′(q′) ← min(v′(q′), v(q) + λ(δ, ε))

end for
for all q ∈ Q do

v(q) ← v′(q)
v′(q) ← ∞

end for
end for

end for
v ← minq∈F v(q)

return v

Algorithm 2. InitVal(W)
for all q ∈ Q do

v(q) ← (q ∈ I) ? 0 : ∞; v′(q) ← ∞
end for
for i = 0; i < |Q|; i + + do

for all δ = (q, ε, q′) ∈ Δ do
v′(q′) ← min(v′(q′), v(q) +
λ(δ, ε))

end for
for all q ∈ Q do

v(q) ← v′(q)
v′(q) ← ∞

end for
end for

Example 3. Consider the STL property ϕ from Example 1, the associated
weighted edit automaton Wϕ from Fig. 1 and the signal4 s : [0, 2] → [0, 5] such
that s(0) = 5, s(1) = 5 and s(2) = 4. It is clear that (s, 0) �|= ϕ, since s(2) = 4,
while there was not a single 0 ≤ i < 2 where s(i) < 3. We illustrate in Fig. 4
the computation of v(s,Wϕ). We can see that with the signal s, we can reach
one of the accepting states (B or C) with the value 1. This value corresponds
to one substitution operation, replacing the value of 4 in s(2) by 5, which allows
vacuous satisfaction of the property ϕ.

4 Since s has only one component, we skip the variable name.

214 S. Jakšić et al.

ε-init

s(0) = 5 s(1) = 5 s(2) = 4

0 0 5 5 10 10 15 15

∞ 5 3 3 3 3 3 3

∞ 5 0 0 0 0 1

init update update update
ε-update ε-update ε-update

A

B

C 1

Fig. 4. Example - computation of v(s,Wϕ).

5 Implementation and Case Study

We now describe our implementation of quantitative monitors for STL. The
parser for the STL formulas is developed using Java and ANTLR. We translate
STL properties into temporal testers, and convert them to acceptor automata.
We use JAutomata library to represent the testers and the acceptors. We then
generate quantitative monitor code in Verilog HDL. The resulting monitor is a
hardware implementation of the weighted automata and the underlying algo-
rithm for computing the weighted edit distance.

Table 1. Automatic transmission properties [4].

ID ϕ

ϕ1 ◻ (ω < 4500)
ϕ2 ◻ ((ω < 4500) ∧ (v < 120))
ϕ3 ◻ ((g2∧◯ g1) →◻(0,2.5] ¬g2)
ϕ4 ◻ ((¬g1∧◯ g1) →◻(0,2.5] g1)
ϕ5

∧4
i=1 ◻ ((¬gi∧◯ gi) →◻(0,2.5] gi)

ϕ6 ¬(◇[0,4] (v > 120)∧ ◻ (ω < 4500))
ϕ7 ◇[0,4] ((v > 120)∧ ◻ (ω < 4500))
ϕ8 ((g1Ug2Ug3Ug4)∧ ◇[0,10] (g4 ∧ ◇[0,2] (ω >

4500))) →◇[0,10] (g4 →◯ (g4U[0,1](v ≥ 120)))

For the evaluation of our approach, we apply it to an automotive benchmark
problem published in [4]. We consider the slightly modified Automatic Transmis-
sion deterministic Simulink demo provided by Mathworks as our system-under-
test (SUT). It is a model of an automatic transmission controller that exhibits
both continuous and discrete behavior. The system has two inputs – the throttle
ut and the break ub. The break allows the user to model variable load on the
engine. The system has two continuous-time state variables – the speed of the

Quantitative Monitoring of STL with Edit Distance 215

engine ω (RPM), the speed of the vehicle v (mph) and the active gear gi. The
system is initialized with zero vehicle and engine speed. It follows that the output
trajectories depend only on the input signals ut and ub, which can take any value
between 0 and 100 at any point in time. The Simulink model contains 69 blocks
including 2 integrators, 3 look-up tables, 2 two-dimensional look-up tables and a
Stateflow chart with 2 concurrently executing finite state machines with 4 and 3
states, respectively. The benchmark defines 8 STL formalized requirements that
the system shall satisfy, shown in Table 1.

We now describe the evaluation setup. We simulated the Simulink model with
fixed-step sampling and recorded the results. The obtained traces, as the one
shown in Fig. 5, were then further discretized with the uniform quantization. We
have obtained 751 samples from the Simulink model and normalized all variables’
value domain to the interval [0, 5000] which is the range of RPM variable, thus
achieving fair reasoning about their substitution cost. We designed a test-bench
in Verilog to stimulate the monitor with the generated values from the Simulink
model. We used Xilinx Vivado to perform monitor simulation and synthesis.

Fig. 5. A simulation trace s from the Automatic Transmission model and dW (s,¬ϕ6).

Figure 5 illustrates the monitoring results for ϕ6 on a specific gear input.
In the depicted scenario, the speed does not reach 120 mph in 4 s, a sufficient
condition for the satisfaction of the formula. In order to violate the formula,
we need to alter both v and ω signals such that (1) v reaches 120 mph at any
moment within the first 4 s; and (2) ω remains continuously below 4500 rpm.
These alterations result in (1) a single substitution happening within the first

216 S. Jakšić et al.

Table 2. Evaluation results.

ϕ ρ ϕ ¬ϕ

|Q| |Δ| #FF #LUT |Q| |Δ| #FF #LUT
ϕ1 −2528 2 2 62 260 4 8 94 657
ϕ2 −11423 2 2 75 306 4 11 107 799
ϕ3 1000 496 1374 4106 53033 992 2878 8127 106937
ϕ4 1000 496 692 3061 22777 992 1445 6025 44968
ϕ5 n/a n/a n/a n/a n/a n/a n/a n/a n/a
ϕ6 5337 405 813 6540 66085 409 903 6504 73657
ϕ7 −5336 403 903 6504 73766 405 813 6545 66116
ϕ8 n/a n/a n/a n/a n/a n/a n/a n/a n/a

4 s which is necessary to bring v to 120 mph; and (2) the accumulation of substi-
tution costs in the interval between 7 and 8 s of the simulation where ω actually
exceeds 4500 rpm. Note that the robustness degree decreases in the first 4 s. This
happens because the actual v increases and the substitution cost needed for v
to reach 120 mph is continuously being improved.

The evaluation results are shown in Table 2. We tested the correctness of
STL to automata translation by generating both acceptors for ϕ and ¬ϕ. The
presented robustness degrees are not normalized, which can be statically com-
puted using the formula from Sect. 3. It is clear from our table that either the
distance from ϕ or from its negation is always 0. The dominant type of resources
when implementing our monitors on FPGA hardware are LUTs. This is not
surprising, due to the large combinatorial and arithmetic requirements of the
computation. We can also note that the size of our monitors is sensitive to the
timing bounds in the formulas and the sampling period of the input signals. Our
monitor automata enumerate clock ticks instead of using a symbolic represen-
tation. The enumeration is necessary because state - clock valuation pairs can
have different values associated and thus cannot be grouped. We were not able
to generate monitors for ϕ5 and ϕ8 due to the state explosion. However, ϕ5 can
be decomposed into 4 independent sub-properties. We can see several ways to
handle large properties such as ϕ8 that we will investigate in the future – by
reformulating the specification using both past and future operators, by using
larger sampling periods (and thus smaller time bounds in the formula) and by
using more powerful FPGA hardware.

6 Conclusions

In this paper, we proposed a new procedure for measuring robustness of STL
properties based on the weighted edit distance. Weighted edit distance is an
accumulative measure, and provides insight on how often the property is violated.

Quantitative Monitoring of STL with Edit Distance 217

It is thus sensitive to the length of the signal, but also to the sampling rate
and the number of components in the signal. Normalizing the distance enables
obtaining a uniform measure of “goodness” of a behavior. While the focus is on
the quantitative semantics of STL, our approach is applicable to other regular
specification languages interpreted over finite signals.

In the future, we will study more closely the effect of sampling to the com-
puted distance. We will apply our approach on more relevant examples, in order
to get better insight on the interpretation of the values obtained by the robust-
ness measurements. Finally, we will work on the optimization of our procedure in
order to obtain smaller weighted automata that can be efficiently implemented
on hardware, and will deploy our implementation on FPGA and evaluate it in
the lab environment.

Acknowledgements. We would like to thank Oded Maler, Mario Klima and the
anonymous reviewers for their comments on the earlier drafts of the paper.

We acknowledge the support of the IKT der Zukunft of Austrian FFG project
HARMONIA (nr. 845631), the ICT COST Action IC1402 Runtime Verification beyond
Monitoring (ARVI), the Austrian National Research Network S 11405-N23 and S 11412-
N23 (RiSE/SHiNE) of the Austrian Science Fund (FWF) and the Doctoral Program
Logical Methods in Computer Science of the Austrian Science Fund (FWF).

References

1. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207,
pp. 356–374. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21668-3 21

2. Allauzen, C., Mohri, M.: Linear-space computation of the edit-distance between a
string and a finite automaton. CoRR abs/0904.4686 (2009)

3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 21

4. Abbas, H., Hoxha, B., Fainekos, G.: Benchmarks for temporal logic requirements
for automotive systems. In: Proceedings of Applied Verification for Continuous and
Hybrid Systems (2014)

5. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS,
vol. 8711, pp. 23–37. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10512-3 3

6. Brim, L., Dluhos, P., Safránek, D., Vejpustek, T.: STL*: extending signal temporal
logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)

7. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9207, pp. 234–250. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21668-3 14

8. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the
Skorokhod metric (full version). CoRR abs/1505.05832 (2015)

9. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17

http://dx.doi.org/10.1007/978-3-319-21668-3_21
http://dx.doi.org/10.1007/978-3-642-19835-9_21
http://dx.doi.org/10.1007/978-3-319-10512-3_3
http://dx.doi.org/10.1007/978-3-319-21668-3_14
http://dx.doi.org/10.1007/978-3-642-14295-6_17

218 S. Jakšić et al.

10. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 19

11. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15297-9 9

12. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

13. Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Robustness of model-
based simulations. In: Proceedings of the 30th IEEE Real-Time Systems Sympo-
sium, RTSS 2009, Washington, DC, USA, 1–4 December 2009, pp. 345–354 (2009)

14. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: Protocol Specification, Testing and Verification
XV, Proceedings of the Fifteenth IFIP WG6.1 International Symposium on Pro-
tocol Specification, Testing and Verification, Warsaw, Poland, pp. 3–18 (1995)

15. Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput.
205(9), 1307–1316 (2007)

16. Krause, E.F.: Taxicab Geometry: An Adventure in Non-Euclidean Geometry.
Courier Corporation, North Chelmsford (2012)

17. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, rever-
sals. Sov. Phys. Dokl. 10, 707 (1966)

18. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013)

19. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. Found. Comput. Sci. 14(6), 957–982 (2003)

20. Nguyen, T., Ničković, D.: Assertion-based monitoring in practice–checking cor-
rectness of an automotive sensor interface. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 16–32. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-10702-8 2

21. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69850-0 11

22. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfac-
tion of temporal logic formulae with applications to systems biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-88562-7 19

23. Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of string trans-
ducers. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
427–441. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02444-8 30

24. Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein automata. Int. J.
Doc. Anal. Recogn. 5(1), 67–85 (2002)

25. Veanes, M., Bjørner, N., de Moura, L.: Symbolic automata constraint solving. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 640–654.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16242-8 45

26. Wagner, R.A.: Order-n correction for regular languages. Commun. ACM 17(5),
265–268 (1974)

http://dx.doi.org/10.1007/978-3-642-39799-8_19
http://dx.doi.org/10.1007/978-3-642-15297-9_9
http://dx.doi.org/10.1007/978-3-319-10702-8_2
http://dx.doi.org/10.1007/978-3-319-10702-8_2
http://dx.doi.org/10.1007/978-3-540-69850-0_11
http://dx.doi.org/10.1007/978-3-540-88562-7_19
http://dx.doi.org/10.1007/978-3-319-02444-8_30
http://dx.doi.org/10.1007/978-3-642-16242-8_45

Extended Code Coverage for AspectJ-Based
Runtime Verification Tools

Omar Javed(B), Yudi Zheng, Andrea Rosà, Haiyang Sun, and Walter Binder

Faculty of Informatics, Università della Svizzera Italiana (USI), Lugano, Switzerland
{omar.javed,yudi.zheng,andrea.rosa,haiyang.sun,walter.binder}@usi.ch

Abstract. Many runtime verification tools for the Java virtual machine
rely on aspect-oriented programming, particularly on AspectJ, to weave
the verification logic into the observed program. However, AspectJ
imposes several limitations on the verification tools, such as a restricted
join point model and the inability of weaving certain classes, particularly
the Java and Android class libraries. In this paper, we show that our
domain-specific aspect language DiSL can overcome these limitations.
While offering a programming model akin to AspectJ, DiSL features an
extensible join point model and ensures weaving with complete bytecode
coverage for Java and Android. We present a new compiler that trans-
lates runtime-verification aspects written in AspectJ to DiSL. Hence, it
is possible to use existing, unmodified runtime verification tools on top
of the DiSL framework to bypass the limitations of AspectJ. As a case
study, we show that the AspectJ-based runtime verification tool Java-
MOP significantly benefits from the automated translation of AspectJ to
DiSL code, gaining increased code coverage. Thanks to DiSL, JavaMOP
analyses are able to unveil violations in the Java class library that cannot
be detected when using AspectJ.

1 Introduction

Many state-of-the-art runtime verification tools, such as JavaMOP [1],
LARVA [2], Tracematches [3], and MARQ [4], target the Java Virtual Machine
(JVM). Often, such tools rely on Aspect-Oriented Programming (AOP), in par-
ticular on AspectJ [5], to weave the verification logic into the observed program
at specified join points1.

Unfortunately, while offering a convenient programming model, AspectJ suf-
fers from severe shortcomings that may impair the development of effective run-
time verification tools. First, AspectJ provides only a limited set of join points
that can be instrumented. Second, AspectJ is unable to weave aspects in certain
classes, in particular, those in the class libraries of Java and Android. While the
first limitation has been addressed in the approach described in [6], the second

1 In this paper, we use the following terms related to AOP: join points (i.e., any iden-
tifiable execution point in a system), pointcuts (i.e., a set of join points of interest),
and advice (i.e., code to be executed when a join point of a pointcut is reached).

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 219–234, 2016.
DOI: 10.1007/978-3-319-46982-9 14

220 O. Javed et al.

limitation results in monitoring tools with only limited code coverage2, which
may fail to fully verify program correctness.

In this paper, we argue that the aforementioned limitations of AspectJ can
be overcome by DiSL [7], our instrumentation framework for runtime verifica-
tion. In particular, our work targets runtime verification tools that generate
aspects to express the verification logic and rely on AspectJ to weave that
logic into the observed program. By translating verification aspects expressed
in AspectJ into DiSL instrumentations, the code coverage of existing AspectJ-
based tools [1–4] can be significantly extended, enabling runtime verification
on classes (such as those in the Java class library) which otherwise cannot be
processed with AspectJ, as well as on Android applications. Such feature enables
library developers to easily apply out-of-the-box tools on the library code, which
demands a better code quality than the application code. To this end, we present
a novel AspectJ-to-DiSL compiler that can be readily integrated with unmodified
AspectJ-based runtime verification tools.

This work makes the following contributions. We show that DiSL achieves
better code coverage than AspectJ, which results in the discovery of violations
in Java that cannot be found by AspectJ. Moreover, we present a novel compiler
to translate a subset of AspectJ constructs into DiSL code (detail of supported
subset is mentioned in Sect. 3.1). The constructs supported by the compiler are
particularly important for runtime monitoring and verification.

Our evaluation results demonstrate that applying our compiler to the Java-
MOP runtime verification tool [1] results in a more versatile, enhanced tool that
presents a considerably increased code coverage and is able to detect violations
in the Java class library. In particular, this enhanced tool has led to the discov-
ery of previously unknown violations found by JavaMOP analyses in the Java
Development Kit (JDK) 8.

In the rest of the paper, we present an overview of DiSL in Sect. 2, while we
detail our novel AspectJ-to-DiSL compiler in Sect. 3. Section 4 shows the benefits
of using DiSL over AspectJ for runtime verification, discussing our evaluation
results on both the JVM and on Android. Finally, we discuss related work in
Sect. 5 and conclude in Sect. 6.

2 DiSL Overview

In this section we give a brief overview of DiSL; see [7] for more information.

Language Constructs. With DiSL, any region of bytecodes can be used as a
join point. Pointcuts are expressed with markers that select bytecode regions.
DiSL provides an extensible library of such markers, including those for select-
ing method bodies, exception handlers, basic blocks, and single bytecodes. Join
points selected by a marker can be further restricted by guards, i.e., side-effect-
free predicate methods executed at weave-time. Advice in DiSL are expressed

2 We use the term “code coverage” to refer to the degree to which the program is
monitored by runtime verification tools.

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 221

Instrumentation
Server

Observed JVM

 DiSL JVMTI Agent

Intercept

DiSL WeaverClass

Woven
Class

Class
Loading

Exclusion

Resolve

U
pd

at
e

Analysis
Result

Forward &
Instrument

Resume
Loading

Fig. 1. DiSL architecture (configuration for JVM in-process analysis).

in the form of code snippets, which serve as code templates to be inserted at
certain join points indicated by annotations. Snippets are instantiated by the
weaver using contextual information.

Context Information. Snippets have access to complete context information
provided via method arguments. Context information can be of two types: sta-
tic (i.e., static reflective join point information limited to constants: primitive
values, strings, or class literals) or dynamic (i.e., including local variables and
the operand stack). DiSL provides an extensible library of both kinds of context
information. Guards have access only to static context information.

Data Passing. DiSL supports synthetic local variables that enable efficient data
passing between snippets woven into the same method body. To allow snippets
to access the same variables, snippets are inlined by the DiSL weaver. Syn-
thetic local variables are expressed as annotated static fields. DiSL also supports
thread-local variables that are efficiently implemented by extra instance fields in
java.lang.Thread. They are also expressed as annotated static fields.

Architecture. The architecture of DiSL (when instrumenting applications on
the JVM) is shown in Fig. 1. DiSL uses a separate process for instrumentation to
reduce perturbations and interferences in the observed JVM. All classes (includ-
ing those from the Java class library) are intercepted at load-time by the DiSL
JVMTI agent and forwarded to the instrumentation process, which executes the
DiSL weaver. Instrumented classes are then returned to the observed JVM where
they are linked.

Instrumentation. When a snippet is selected to be woven at a join point,
it is first instantiated using the context of the join point. The DiSL weaver
replaces invocations of static-context methods with the corresponding constants,
i.e., static-context method invocations in a snippet are pseudo method calls
that are substituted with concrete constants. Similarly, dynamic-context method
invocations in a snippet are pseudo method calls that are replaced with bytecode
sequences to access local variables or to copy operands from the stack. DiSL
relies on polymorphic bytecode instrumentation [8] to achieve complete bytecode
coverage.

222 O. Javed et al.

Out-of-Process Analysis. DiSL also supports a deployment setting to enforce
isolation between the analysis and the observed program [9]. In this setting analy-
sis code in executed in a separate process, avoiding any shared state between the
analysis and the observed program. This setting prevents interference problems
often found in systems that execute the analysis code and the observed program
within the same process [10].

Android Support. DiSL supports instrumentation on the Dalvik Virtual
Machine (DVM) employed in Android [11]. The DiSL instrumentation server
receives Dalvik bytecode from Android, converts it to Java bytecode, instru-
ments it, and converts the result to Dalvik bytecode before sending it back.
By intercepting class loading on Android, DiSL achieves load-time weaving and
ensures full bytecode coverage [12], enabling also the instrumentation of the
Android system library and of dynamically loaded classes. Moreover, DiSL inte-
grates a bypass mechanism which dynamically activates or deactivates an instru-
mentation [13]. This approach is useful for shared libraries and allows applying
multiple instrumentations in a single weaving pass, as each instrumentation can
be selectively enabled or disabled.

3 AspectJ-to-DiSL Compiler

Here we present our compiler that translates AspectJ aspects to DiSL instru-
mentations. It allows unmodified AspectJ-based runtime verification tools to
take advantage of the increased bytecode coverage of DiSL. We refer any inter-
ested reader to [13] for how DiSL achieves comprehensive code coverage. We start
with an overview of the compiler in Sect. 3.1, followed by an explanation of the
implementation in Sect. 3.2. Finally, we illustrate the compiler with a running
example in Sect. 3.3.

3.1 Overview

Our AspectJ-to-DiSL compiler takes compiled AspectJ classes as input and gen-
erates a corresponding DiSL instrumentation. We employ ASM3, a Java bytecode
manipulation framework, to parse the AspectJ constructs. An alternative app-
roach would be to modify the AspectJ compiler to directly emit a DiSL instru-
mentation. While the latter approach would require more development effort, it
would result in a tighter integration of DiSL with AspectJ.

Our compiler transforms AspectJ pointcuts and advice. Because DiSL only
supports instrumentations for monitoring tasks and prevents structural modifica-
tions of the woven code, our AspectJ-to-DiSL compiler supports neither around
advice that alters the control flow4, nor inter-type declarations that may modify
the class structure or even the class hierarchy.

3 http://asm.ow2.org/.
4 We show a solution for around advice that does not alter the control flow in Sect. 3.2.

http://asm.ow2.org/

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 223

Fig. 2. Overview of the AspectJ-to-DiSL compiler.

An overview of the AspectJ-to-DiSL compiler is shown in Fig. 2. The com-
piler first parses the AspectJ pointcut declarations and advice specifications,
instantiates custom DiSL markers, and assembles them into concrete DiSL snip-
pet annotations. Then, it copies the body of the AspectJ advice and adapts code
accessing context information.

3.2 Implementation

AspectJ advice is translated into DiSL snippets. Depending on the advice
specification, the corresponding DiSL snippet is annotated with @Before,
@AfterReturning, @AfterThrowing, or @After5. For around advice which does not
alter the control flow in the observed program (i.e., proceed is guaranteed to be
invoked exactly once, which is checked by a static analysis), our compiler trans-
forms the advice into two DiSL snippets annotated with @Before and @After,
respectively, and introduces synthetic local variables for sharing data between
these two DiSL snippets if necessary.

Pointcut declarations in AspectJ aspects are translated to custom DiSL
markers as follows. For each type of pointcut, we create a method template that
selects the corresponding bytecode regions. This method template must be spe-
cialized with the parameter of the pointcut before being instantiated to a custom
marker class. For instance, a call(* Iterator.hasNext()) pointcut will be mapped to
our CallMarkerTemplate. During compilation, we instantiate a custom CallMarker
class with a parameter to the call pointcut, i.e., ”* Iterator.hasNext()”. For a
pointcut that composes multiple pointcuts using logical operators such as && or
||, the custom DiSL marker embeds such logic into its top level marking method,
and composites the marker classes instantiated from the corresponding method
templates.

5 Such annotations denote a DiSL snippet to be inserted, respectively, before the
marked code region, after a normal exit, after an exceptional exit, and after any exit
from the marked code region.

224 O. Javed et al.

(a)

(b)

Fig. 3. (a) AspectJ code for the HasNext property in JavaMOP. The naming convention
is derived from JavaMOP. (b) DiSL code generated for the AspectJ code in Fig. (a).

The body of the AspectJ advice is reused in the DiSL snippet, yet access to
the context information is adapted. Our compiler maintains a mapping from each
kind of join point context into specific methods for accessing the same context
information in the DiSL library. When the compiler encounters an access to the
join point context in the AspectJ advice, including those defined in the pointcut
or advice declaration (e.g. target, arg or this), it will be replaced with an invo-
cation to the corresponding method. For optimization purposes, the compiler
distinguishes between static context information and dynamic context informa-
tion. The compiler folds multiple identical accesses to the latter, and place them
at the beginning of the DiSL snippet.

3.3 Example

To illustrate our AspectJ-to-DiSL compiler, we use the HasNext property in
JavaMOP as an example. This property is used for specifying constraints on
the invocation of Iterator.hasNext() and Iterator.next() for each Iterator instance.
Figure 3(a) shows the AspectJ code related to the HasNext property, while
Fig. 3(b) demonstrates the output of our AspectJ-to-DiSL compiler. The seman-
tics of the pointcuts are encapsulated into two custom DiSL markers, i.e.,

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 225

Table 1. JavaMOP properties evaluated.

Property Description

HasNext Program should always call hasNext() before next() on an
iterator.

UnsafeIterator When the iterator associated with a collection is accessed,
the collection should not be updated.

SafeSyncMap When the iterator associated with a map is accessed, the
map should not be updated.

SafeSyncCollection A synchronized collection should always be accessed by a
synchronized iterator, and the iterator should always be
accessed in a synchronized manner

NextInvocationMarker and HasNextInvocationMarker. The two markers apply the
library method corresponding to the call pointcut, marking bytecodes that
invoke Iterator.next() or Iterator.hasNext(). In the body of the DiSL snippets,
the compiler adapts the access to the receiver of the invocations by using
ArgumentProcessorContext6.

4 Evaluation

In this section, we demonstrate the prominence of DiSL over AspectJ in terms
of code coverage and violation detection, and show how existing runtime veri-
fication tools can benefit from our AspectJ-to-DiSL compiler. In particular, we
apply the proposed compiler to the JavaMOP [1] verification tool, and show
how the compiler enhances JavaMOP analyses by converting AspectJ aspects
generated by JavaMOP into DiSL instrumentation7.

We start by describing the setting of our evaluation in Sect. 4.1; then, we
compare AspectJ and DiSL instrumentation along different dimensions, i.e., the
number of join points executed (Sect. 4.2), violations detected in the Java class
library (Sect. 4.3) and bytecode coverage on the Android platform (Sect. 4.4.).

4.1 Evaluation Setup

We choose multiple well-known JavaMOP properties (shown in Table 1), and
evaluate two versions of each property: (1) the AspectJ aspect as generated by
JavaMOP, and (2) the translated DiSL instrumentation.

6 The ArgumentProcessorContext interface allows one to access method arguments
within snippets. Here, this features is used to get the receivers of method invo-
cations.

7 Note that some AspectJ constructs in such aspects are not supported by our com-
piler, as DiSL does not support them (see Sect. 3.1).

226 O. Javed et al.

To guarantee a fair comparison between AspectJ and DiSL, we did not
include any class or method in the exclusion list8 of both frameworks. Because
the generated JavaMOP aspects exclude the Java class library using the !within
pointcut, we also manually modify the generated DiSL markers to enable
the instrumentation of the Java class library. Concerning the experiments on
the Android platform, since the AspectJ load-time weaver is not available on
Android, we conduct the evaluation by comparing the DiSL instrumentation
applied on application code only VDISL (i.e., excluding the Android class library)
and with full coverage VDISL+.

We have confirmed the correctness of our compiler as follows. First, we
defined an exclusion list for DiSL with all the classes that could not be woven
by AspectJ9; then, for each JavaMOP property, we compared the number of
joint points executed by both the original AspectJ code and the translated DiSL
instrumentation. In all cases, the results showed no relevant differences (apart
from minor fluctuations due to non-determinism between different runs of some
benchmarks) between the two frameworks, confirming that the same join points
were intercepted by both AspectJ and DiSL.

On the JVM, our base programs come from the DaCapo10 and Scala bench-
mark suites11. The experiments are run on a 64-bit multicore platform with Ora-
cle Hotspot Server VM12. We use JavaMOP 4.2, AspectJ 1.8.9, and DiSL 2.1.
On Android, the base programs are applications in the Android Open Source
Project (AOSP)13. We evaluate theses applications on Android 4.4.

4.2 Join Point Executions on the JVM

Figure 4 shows the number of join point executions for each JavaMOP property.
The shaded region of each bar denotes the number of join points intercepted by
AspectJ, while the unshaded region of the bar denotes the difference between
the join points intercepted by DiSL and those intercepted by AspectJ. In all
benchmarks DiSL intercepts more join points than AspectJ, because DiSL pro-
vides full bytecode coverage, allowing the same JavaMOP property to cover
the Java class library as well as all AspectJ dependencies (i.e., classes that are
implicitly excluded from load-time weaving in AspectJ). We expect the increase

8 The exclusion list allows one to specify a list of classes and methods that must not
be considered in the weaving process.

9 Such classes are hard-coded in the AspectJ weaver, and cannot be woven even when
specified in the weaver’s inpath flag.

10 Release 9.12-bach, http://www.dacapobench.org/. We excluded tradesoap, trade-
beans and tomcat due to well-known issues. See bug #70 (hardcoded timeout in
tradesoap and tradebeans) and bug #68 (StackOverflowError in tomcat) in the
DaCapo bugtracker at https://sourceforge.net/p/dacapobench/bugs/.

11 http://www.benchmarks.scalabench.org/.
12 Intel Core i7, 2.5 GHz, Oracle JDK 1.8.0 60 Hotspot Server VM (64-bit) on Darwin

Kernel Version 15.4.0.
13 https://source.android.com/.

http://www.dacapobench.org/
https://sourceforge.net/p/dacapobench/bugs/
http://www.benchmarks.scalabench.org/
https://source.android.com/

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 227

in the number of join points intercepted to expose more violation of JavaMOP
properties, especially within the Java class library.

From the figure, we can see that there is a significant coverage difference
between AspectJ and DiSL in most of the benchmarks. However, the differ-
ence is smaller for avrora and h2, because most intercepted join points stem
from an application class. The two join points java.util.Iterator.hasNext() and
java.util.Iterator.next() are the most frequent ones, and in the case of h2 and
avrora, they occur frequently in application classes. This behavior is different
from other benchmarks, where the major contribution to the total number
of join point executions is within the Java class library. When weaving with
AspectJ, we observe that h2 shows the same number of join points in three dif-
ferent properties: HasNext, SafeSyncCollection, and SafeSyncMap, caused by a
common pointcut which intercepts calls to both java.util.Iterator.hasNext() and
java.util.Iterator.next(). For instance, org.h2.command.dml.Select.is Everything()14

contains join points which are intercepted by all three properties.
Amongst the four properties, SafeSyncMap yields the biggest difference

between the number of join points executed by AspectJ and DiSL, with
an exception in the avrora benchmark. In this benchmark, method calls to
java.util.List.iterator() and java.util.Iterator.hasNext() are intercepted most of the
time, and, among all properties, only SafeSyncCollection employs pointcuts to
intercept the aforementioned two join points. For many benchmarks, the prop-
erty HasNext shows the lowest number of joint point executions among all prop-
erties. The reason is that this property employs pointcuts which can be consid-
ered as a subset of the pointcuts employed by other properties. For example,
pointcuts which intercept java.util.Iterator.hasNext() and java.util.Iterator.next(),
apart from being defined in HasNext, are similarly defined in SafeSyncCol-
lection and SafeSyncMap. An exception is h2, where java.util.Iterator.next()
and java.util.Iterator.hasNext() account for the majority of join point execu-
tions. Since UnsafeIterator only intercepts java.util.Iterator.hasNext() (but not
java.util.Iterator.next()), the total number of join points executed in this prop-
erty is lower than for HasNext.

Overall, most of the benchmarks show a low number of join points intercepted
by AspectJ, especially in Scala benchmarks (i.e., the last 12 benchmarks shown
in Fig. 4). The reason is that AspectJ can only instrument application classes,
in contrast to DiSL. In the case of Scala benchmarks, the number of join points
executed by AspectJ are very low when compared to DiSL (in some cases, they
are not even visible in the figure). With full bytecode coverage, most join point
executions are in library code rather than in application code, with the exception
of the actor benchmark.

14 For brevity, we do not report parameters and return type for methods.

228 O. Javed et al.

Fig. 4. Number of join points executed in different benchmarks for the four considered
properties of JavaMOP. Pattern shows the number of join points in AspectJ. Pattern

shows the difference of join points executed between AspectJ and DiSL (DiSL -
AspectJ).

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 229

4.3 Violations in the Java Class Library

JavaMOP analyses, after being translated to DiSL instrumentations, reveal the
existence of two property violations in the Java class library which cannot be
detected by standard AspectJ code.

The first violation concerns java.util.EnumSet.copyOf(Collection)
(source code at Fig. 5), which violates the HasNext property. Further investi-
gation reveals that this library method invokes Iterator.next() at line 8 without
calling Iterator.hasNext(). While the code is valid, as it asserts whether the input
Collection is empty, the implicit dependency between the assertion and the invo-
cation of Iterator.next() is error-prone during code evolution—a developer may
support copying an empty collection and drop the assertion. For this reason, we
consider the reported violation as a valid one, which cannot be detected by the
AspectJ code generated by JavaMOP.

The second violation is related to com.sun.org.apache.xerces.internal.
jaxp.SAXParserImpl.setFeatures(Hashtable) (source code at Fig. 6),
which violates the SafeSyncCollection property. After investigating this mat-
ter further, we found that this library method iterates through an instance of
Hashtable, which is a synchronized Collection, without explicit synchronization
(i.e., without specifying the synchronized keyword).

If the invocation to this method is not synchronized by the user, line 6 may
throw a ConcurrentModificationException if the content of the Hashtable instance
is modified concurrently after calling java.util.Iterator.hasNext() at line 5. In the
newer version of Oracle JDK (e.g., 1.8.0 91), the responsibility of synchronization
is explicitly shifted to the user by having this method accepting a Map argument
instead of a Hashtable. When passing an Hashtable instance, the user should
guarantee that the invocation is properly synchronized.

Overall, the increased number of join point executions intercepted by DiSL
has enabled the discovery of two previously unknown property violations in the
Java class library. Thanks to our AspectJ-to-DiSL compiler and to the DiSL
framework, runtime verification tools such as JavaMOP can also support the
developers of the Java class library.

Fig. 5. Source code of java.util.EnumSet.copyOf(Collection).

230 O. Javed et al.

Fig. 6. Source code of com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl.setFeatures.
(Oracle JDK 1.8.0 60)

4.4 Join Point Executions on Android

Here, we show the number of join points intercepted by JavaMOP analyses in
Android applications (after translation of the analyses to DiSL instrumenta-
tions), remarking that such an analysis is not possible with AspectJ’s load-time
weaver. We note that the evaluation on VDISL is meant to simulate the code
coverage that AspectJ would have had if it had been applicable to Android
applications. That is, VDISL does not weave any classes that cannot be woven
by AspectJ. To illustrate the effectiveness of our work, we apply the translated
JavaMOP analyses on built-in applications from the AOSP, which are standard
and well-known applications for the Android system. We report our results in
Fig. 7.

It can be seen from the figure that VDISL+ (i.e., DiSL instrumentation applied
on all classes) shows a significant increase in the number of join point executions
wrt. VDISL. This behavior follows our expectation, since VDISL+ intercepts join
points in the Android class library, which are not covered by VDISL.

Amongst all applications, inputmethod shows the highest coverage at
the application level, It is because two join points, Iterator.next() and
Iterator.hasHext() are the most frequent ones, and in the case of inputmethod,
they occur frequently in application classes. However, in all other applications,
the coverage at the application level is rather low, showing the need for employ-
ing full bytecode coverage also to the Android system.

5 Related Work

There are many runtime monitoring and verification frameworks, most of them
based on AspectJ. JavaMOP [1] supports parametric properties and uses decen-
tralized indexing to reduce the runtime overhead. LARVA [2] provides runtime
verification of real-time properties, while Tracematches [3] can process traces of
events instead of single events by specifying regular expressions of symbols with
free variables. Finally, MARQ [4] generates monitors based on the structural
characteristics of the properties being monitored in order to optimize runtime
monitoring. Since all these tools use AspectJ for generating events, they suffer

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 231

Fig. 7. Number of join points executed in different Android applications for the four
considered properties of JavaMOP. Pattern shows number of join points in DiSL
when excluding the Android class library. Pattern shows the difference of join points
executed between VDISL+ and VDISL.

232 O. Javed et al.

from the shortcomings pinpointed in this paper. By integrating our AspectJ-
to-DiSL compiler in these tools, they can benefit from an increased bytecode
coverage, which may yield more effective runtime verification tools.

Xiang et al. propose a framework to enhance the flexibility of JavaMOP [6].
The framework consists of a deployment controller that manipulates bytecodes
for capturing events, and a translator for directly converting monitoring spec-
ifications to DiSL code instead of generating AspectJ code. The framework is
applicable only to JavaMOP, as it directly generates DiSL code from JavaMOP
specifications. Their work aims at addressing the limited support for pointcuts
offered by AspectJ. In contrast, our compiler translates pure AspectJ constructs
to DiSL, providing benefits to any runtime verification tool that uses AspectJ
for instrumentation.

The AspectBench Compiler (abc) [14] is an extensible AspectJ compiler that
makes it possible to add new features. It uses the Polyglot [15] framework as
its front-end and the Soot framework [16] as its back-end for improving code
generation. The compiler can also be applied on the Android platform [17].
However, abc supports neither load-time weaving nor the instrumentation of the
core class library, which are supported by DiSL.

InterAspect [18] is an instrumentation framework for GCC that allows writ-
ing instrumentation plugins using AOP. InterAspect provides an API which
defines pointcuts to ease the instrumentation, hiding the intricacies of writ-
ing GCC instrumentation plugins, which requires expert knowledge of the GCC
internals. While InterAspect manipulates GIMPLE representations of Java pro-
grams, weaving takes place at the bytecode level in DiSL. It is not clear whether
an instrumentation generated by InterAspect covers the Java class library, as
DiSL instrumentations do.

Instrumenting Android applications with AOP is popular [19,20], especially
for monitoring security and privacy threats. RV-Droid [21] relies on third-party
runtime verification tools such as JavaMOP to produce monitoring libraries on
Android. The authors modified the AspectJ compiler to enable instrumentation
on Android. RV-Android [22] targets safety properties and provides a unified tool
for runtime verification for Android applications. It also leverages AspectJ for
instrumentation. Both tools support only static weaving, whereas DiSL enables
load-time weaving and is able to cover the class library and dynamically loaded
code. Since AspectJ is unable to weave the Android class library, RV-Droid and
RV-Android could benefit from the full bytecode coverage offered by DiSL.

6 Conclusions

Several state-of-the-art runtime verification tools for the JVM leverage AspectJ
for instrumentation. Unfortunately, AspectJ suffers from severe drawbacks, such
as a restricted join point model and limited weaving capabilities that reduce code
coverage, especially in the Java class library. In this paper, we have demonstrated
that such limitations can be overcome by DiSL, our instrumentation framework
for runtime verification. Moreover, we have presented a compiler to translate a

Extended Code Coverage for AspectJ-Based Runtime Verification Tools 233

subset of AspectJ constructs to DiSL. Our evaluation results show that apply-
ing our compiler to unmodified AspectJ-based runtime verification tools results
in significantly increased code coverage, which allows one to find violations in
the Java class library. Thanks to DiSL, runtime verification tools can also gain
complete bytecode coverage on the Android platform.

DiSL is open-source and available at http://disl.ow2.org/. A new release
is currently under preparation. In our ongoing research, we are improving the
AspectJ-to-DiSL compiler to produce highly optimized woven code, aiming at
outperforming AspectJ for runtime verification tasks. We plan to add support for
inter-type declarations to minimize the impact on the monitoring performance.
Moreover, we are investigating how to support ART on Android.

Acknowledgement. The research presented in this paper was supported by
Oracle (ERO project 1332), by the Swiss National Science Foundation (project
200021 141002), by the European Commission (contract ACP2-GA-2013-605442), and
by the Swiss Government Excellence Scholarship (ESKAS-Nr: 2015.0989).

References

1. Jin, D., Meredith, P.O.N., Lee, C., Roşu, G.: JavaMOP: efficient parametric run-
time monitoring framework. In: ICSE, pp. 1427–1430 (2012)

2. Colombo, C., Pace, G.J., Schneider, G.: LARVA–safer monitoring of real-time Java
programs (tool paper). In: SEFM, pp. 33–37 (2009)

3. Bodden, E., Hendren, L., Lam, P., Lhoták, O., Naeem, N.A.: Collaborative runtime
verification with tracematches. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS,
vol. 4839, pp. 22–37. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77395-5 3

4. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 55

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). doi:10.1007/3-540-45337-7 18

6. Xiang, C., Qi, Z., Binder, W.: Flexible and extensible runtime verification for Java
(Extended Version). Int. J. Softw. Eng. Knowl. Eng. 25, 1595–1609 (2015)

7. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: AOSD, pp. 239–250
(2012)

8. Binder, W., Moret, P., Tanter, É., Ansaloni, D.: Polymorphic bytecode instrumen-
tation. Softw. Pract. Exp. (2015) doi:10.1002/spe.2385

9. Marek, L., Kell, S., Zheng, Y., Bulej, L., Binder, W., Tůma, P., Ansaloni, D.,
Sarimbekov, A., Sewe, A.: ShadowVM: robust and comprehensive dynamic pro-
gram analysis for the Java platform. In: GPCE, pp. 105–114 (2013)

10. Kell, S., Ansaloni, D., Binder, W., Marek, L.: The JVM is not observable enough
(and What to do about it). In: VMIL, pp. 33–38 (2012)

11. Sun, H., Zheng, Y., Bulej, L., Villazón, A., Qi, Z., Tůma, P., Binder, W.: A pro-
gramming model and framework for comprehensive dynamic analysis on Android.
In: MODULARITY, pp. 133–145 (2015)

http://disl.ow2.org/
http://dx.doi.org/10.1007/978-3-540-77395-5_3
http://dx.doi.org/10.1007/978-3-662-46681-0_55
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1002/spe.2385

234 O. Javed et al.

12. Zheng, Y., Kell, S., Bulej, L., Sun, H., Binder, W.: Comprehensive multi-platform
dynamic program analysis for Java and Android. IEEE Softw. 33, 55–63 (2016)

13. Moret, P., Binder, W., Tanter, E.: Polymorphic bytecode instrumentation. In:
AOSD, pp. 129–140 (2011)

14. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták, O.,
de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Abc: an extensible AspectJ
compiler. In: AOSD, pp. 87–98 (2005)

15. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: an extensible compiler frame-
work for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer,
Heidelberg (2003). doi:10.1007/3-540-36579-6 11

16. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:
Optimizing Java bytecode using the Soot framework: is it feasible? In: Watt, D.A.
(ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000). doi:10.
1007/3-540-46423-9 2

17. Arzt, S., Rasthofer, S., Bodden, E.: Instrumenting Android and Java applications
as easy as abc. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
364–381. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40787-1 26

18. Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S.A., Stoller,
S.D., Zadok, E.: InterAspect: aspect-oriented instrumentation with GCC. Formal
Methods Syst. Des. 41, 295–320 (2012)

19. Falcone, Y., Currea, S.: Weave droid: aspect-oriented programming on Android
devices: fully embedded or in the cloud. In: ASE, pp. 350–353 (2012)

20. Bodden, E.: Easily instrumenting Android applications for security purposes. In:
CCS, pp. 1499–1502 (2013)

21. Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for
Android applications with RV-Droid. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 88–95. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 11

22. Daian, P., Falcone, Y., Meredith, P., Şerbănuţă, T.F., Shiriashi, S., Iwai, A., Rosu,
G.: RV-Android: efficient parametric Android runtime verification, a brief tutorial.
In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 342–357.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-23820-3 24

http://dx.doi.org/10.1007/3-540-36579-6_11
http://dx.doi.org/10.1007/3-540-46423-9_2
http://dx.doi.org/10.1007/3-540-46423-9_2
http://dx.doi.org/10.1007/978-3-642-40787-1_26
http://dx.doi.org/10.1007/978-3-642-35632-2_11
http://dx.doi.org/10.1007/978-3-642-35632-2_11
http://dx.doi.org/10.1007/978-3-319-23820-3_24

nfer – A Notation and System for Inferring
Event Stream Abstractions

Sean Kauffman1, Klaus Havelund2(B), and Rajeev Joshi2

1 University of Waterloo, Waterloo, Canada
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

klaus.havelund@jpl.nasa.gov

Abstract. We propose a notation for specifying event stream abstrac-
tions for use in spacecraft telemetry processing. Our work is motivated
by the need to quickly process streams with millions of events generated
by the Curiosity rover on Mars. The approach builds a hierarchy of event
abstractions for telemetry visualization and querying to aid human com-
prehension. Such abstractions can also be used as input to other runtime
verification tools. Our notation is inspired by Allen’s Temporal Logic,
and provides a rule-based declarative way to express event abstractions.
The system is written in Scala, with the specification language imple-
mented as an internal DSL. It is based on parallel executing actors com-
municating via a publish-subscribe model. We illustrate the solution with
several examples, including a real telemetry analysis scenario.

1 Introduction

A key challenge in operating remote spacecraft is that human operators must
rely on telemetry to assess the status of the spacecraft. Telemetry can be thought
of as an execution trace, a stream consisting of millions of discrete events. These
event streams are difficult to interpret and validate because of their size and
complexity. The current approach to analyzing spacecraft telemetry relies on
ad-hoc scripts that are difficult to write and maintain. We propose a notation
for computing abstractions of event streams, resulting in a hierarchy of inter-
val abstractions, which is useful for telemetry visualization and querying to aid
human comprehension. Our notation is inspired by interval logics, specifically
Allen’s Temporal Logic [2], commonly used in the planning and artificial intel-
ligence (AI) domains. We extend a variation of this logic with a rule-based
declarative way to express event abstractions. We also present a system named
nfer (inference), written in Scala, which implements the notation as an internal
Scala (DSL). The nfer system is based on concurrently executing actors com-
municating via a publish-subscribe model. We show the application of nfer to
telemetry received from the Curiosity Mars rover.

The research performed by the last two authors was carried out at Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 235–250, 2016.
DOI: 10.1007/978-3-319-46982-9 15

236 S. Kauffman et al.

Our system differs from traditional runtime verification (RV) systems, in
which a program execution trace is checked against a user-provided specification.
RV usually results in a binary decision (true/false) as to whether the execution
trace satisfies the specification, although variations on this theme have been
developed. These include 3-valued logics (true, false, don’t know) [8] and 4-
valued logics (true, false, true-so-far, false-so-far) [6].

The remaining content of the paper is as follows. Section 2 introduces pre-
liminary notation. Section 3 provides the problem statement and motivation for
this work. Section 4 defines the nfer notation. Section 5 describes the imple-
mentation of the system in Scala, including the DSL. Section 6 illustrates the
application of nfer to a scenario from the Mars Science Laboratory. Section 7
discusses related work. Finally, Sect. 8 concludes the paper.

2 Preliminary Notation

By B we denote the set of Boolean values {true, false}. By N we denote the set
of natural numbers {0, 1, 2, . . .} and by R we denote the set of real numbers. For
readability, we use the type C = R to represent clock time stamps. By A×B we
denote the cross product of types A and B. By A → B we denote the set of total
functions from A to B. Functions in A → B can be denoted by lambda terms:
λx.e. A function of type A → B is referred to as a predicate. Predicates with
the same domain type can be composed with Boolean operators. For example,
given f : A → B and g : A → B, then (f ∧ g)(x) = f(x)∧ g(x). Given a set S, 2S

denotes the power set of S containing as elements all subsets of S. S∗ denotes
the set of finite sequences over S where each sequence element is of type S. A
sequence σ of length N is a function of type: {n ∈ N|n < N} → S. The i’th
element of a sequence is denoted σ(i). We say that a value v is in σ, denoted by
v ∈ σ iff ∃ i ∈ N such that σ(i) = v. Given a set S, by Sn for a given n ∈ N

(n ≥ 2) we denote the tuple type: S × S × . . . × S (n times).
Let I be a set of identifiers, and let V be a set of values, including strings,

integers, and floating point numbers1. A map is a partial function from identifiers
to values with a finite domain, that is, a function of type I m→ V. We use M to
denote the type of all maps. The empty map is denoted by []. We denote by M⊥
the extension of M with a bottom element: M⊥ = M ∪ {⊥}. Here ⊥ represents
a “no map” value.

An event is a timestamped named tuple of the type E = I × C × M.
An element (id, t,M) of type E is written as id(t,M). A trace is a sequence of
events. The type of traces is denoted by T and is defined by T = E

∗. In our
context a trace corresponds to a telemetry stream.

3 Problem Statement

In this section, we briefly outline the requirements to our specification language.
We first illustrate a concrete problem with an example. Subsequently, we outline
the specific needs.
1 V can be any set of values that are part of monitored events.

nfer – A Notation and System for Inferring Event Stream Abstractions 237

3.1 Illustrating Example

Consider the trace shown on the left part of Fig. 1, that we assume has been
generated by a spacecraft2. The trace consists of a sequence of events, or EVent
Reports (EVRs) as they are named in space mission operations, each with a
name, a time stamp, and a list of parameters. The events in this particular
trace represent such activities as a boot process starting, a boot process ending,
downlink of data to ground, and operating the antenna and radio.

Fig. 1. An event trace and its abstractions

Our concern, in this case, is whether there is a downlink operation during
a 5-min time interval where the flight computer reboots twice. This scenario
could cause a potential loss of downlink information. Notice the use of the term
interval. We need a form of interval notation. We suggest imposing a structure
on the trace, where these intervals are named and highlighted, as shown on the
right part of Fig. 1. Specifically, we want to identify the following intervals: A
BOOT represents an interval during which the spacecraft software is rebooting. A
DBOOT (double boot) represents an interval during which the spacecraft reboots
twice within a 5-min timeframe. A RISK represents an interval during which
the spacecraft reboots twice and at the same time also attempts to downlink
information.

Our objective now is to formalize the definition of such intervals in a spec-
ification language. Specifically, in this case, we need a rule-based formalism for
formally defining the following three intervals:

1. A BOOT interval starts with a BOOT S (boot start) event and ends with a
BOOT E (boot end) event.

2. A DBOOT (double boot) interval consists of two consecutive BOOT intervals,
with no more than 5-min from the start of the first BOOT interval to the end
of the second BOOT interval.

3. A RISK interval is a DBOOT interval during which a DOWNLINK occurs.

2 The trace is artificially constructed to have no resemblance to real artifacts.

238 S. Kauffman et al.

3.2 Desired Features

The specification language should allow a user to:

1. define intervals as a composition of other intervals/events. For example to
define the label BOOT as an interval delimited by the events BOOT S and BOOT E,
or to define a DBOOT to be composed sequentially of two BOOT intervals.

2. refer to time stamps associated with events, as well as generate and later
read start and end times of generated intervals. It should be possible to define
complex time constraints.

3. refer to data associated with events, as well as generate and later read
data of generated intervals using a rich expression language. For example, a
generated interval may have a datum value defined as the sum of two lower-
level interval data.

We believe that Allen’s Temporal Logic (ATL) [2], specifically its operators
for expressing temporal constraints on time intervals, is a good starting point.
In ATL, a time interval represents an action or a system state taking place over
a period. A time interval has a name, a start time, and an end time. ATL offers
13 mutually exclusive binary relations. Examples are: Before(i, j) which holds
iff interval i ends before interval j starts, and During(i, j) which holds iff i starts
strictly after j starts and ends before or when j ends, or i starts when or after j
starts and ends strictly before j ends. An ATL formula is a conjunction3 of such
relationships, for example, Before(A,B) ∧ Contains(B,C). A model is a set of
intervals satisfying such a conjunction of constraints. ATL is typically used in
planning for generating a plan (effectively a model) from a formula, but ATL
can also be used for checking a model against a formula, as described in [20].

Our objective is different from planning and verification. Given a trace, we
want to generate a model (a set of intervals), guided by a specification that
we provide, that represents a layered view of the trace, and is used for system
comprehension.

4 The nfer Notation

4.1 Intervals

Before we more formally introduce the nfer notation, we shall introduce some
further basic semantic concepts. As already mentioned in Sect. 2, a telemetry
stream (for example received from a spacecraft) is a sequence of events, also
referred to as a trace. In contrast to most runtime verification systems, however,
the nfer notation does not directly operate on such traces. Instead, it operates
on a set of intervals (defined below). We will provide the definition and intuition
behind intervals, and how a trace is converted into an initial set of intervals, on
which nfer operates.

3 A limited form of disjunction is also allowed but not described here.

nfer – A Notation and System for Inferring Event Stream Abstractions 239

An interval represents a named section of a trace, spanning a certain time
period. An interval can carry data as well, using a map. Concretely, an interval
is a 4-tuple of the form (η, t1, t2,M), where η ∈ I is an interval name, t1, t2 ∈ C

are time stamps4 representing the start and end time of the interval, satisfying
the condition t1 ≤ t2, and M is a map in M, the data that the interval carries.
The type of all intervals is denoted by I.

A pool is a set of intervals, that is, an element of type P = 2I. A trace τ is
converted into an initial pool by a function init of type T → P :

init(τ) = { (η, t, t,M) | η(t,M) ∈ τ }

nfer subsequently transforms this initial pool of intervals to a pool containing
as well all abstractions defined by the specification. In the following, we shall
illustrate how such specifications are written.

4.2 Syntax of the nfer Notation

An nfer specification consists of a list of labeling rules of the form:

η ← η1 ⊕ η2 map Φ (1)

where, η, η1, η2 ∈ I are identifiers, ⊕ : C
6 → B is a clock predicate on six

time stamps, and Φ : M × M → M⊥ is a map function taking two maps and
returning a map or ⊥. The syntax contains mathematical functions to simplify
the presentation.

The informal interpretation of such a rule is as follows. Given a pool π,
the rule generates a set of new intervals (a pool), each of the form (η, s, e,M),
provided that in π there exist two intervals (η1, s1, e1,M1) and (η2, s2, e2,M2),
such that the time constraint defined by ⊕ is satisfied: ⊕(s1, e1, s2, e2, s, e), and
such that the map function Φ produces a well-defined map as a function of the
maps of the two input intervals: M = Φ(M1,M2) �= ⊥. Note that the ⊕ time
constraint constrains the start time s and end time e of the result interval as
well. Hence, one can control the time values of the generated interval.

The time constraint can, for example, express that one interval ends before
the other interval starts (e1 < s2), which is one of the Allen operators. Likewise,
the map function can check whether the input maps M1 and M2 satisfy certain
conditions: if not return ⊥, but if so, return a new map to be part of the generated
interval. The time constraint must evaluate to true and the resulting map not
be ⊥ for the rule to apply.

As an example, the following rule generates an abstraction interval named
BOOT from a BOOT S (boot start) event that occurs before a BOOT E (boot end)
event, and furthermore carries the boot count contained in the BOOT S interval:

BOOT ← BOOT S ⊕ BOOT E map Φ

4 Time stamps have no specified units.

240 S. Kauffman et al.

where the two functions ⊕ and Φ are defined as follows:

⊕(s1, e1, s2, e2, s, e) = e1 < s2 ∧ s = s1 ∧ e = e2
Φ(m1,m2) = [count → m1(count)]

Note how the resulting interval’s start time s is constrained to be the start time
of the BOOT S event, and likewise the end time e is constrained to be the end
time of the BOOT E event. Below, we introduce a pre-defined set of candidate
functions for ⊕ inspired by Allen logic to make specifications easier to write,
allowing us instead to write this rule as follows (with the same Φ function and
before denoting the ⊕ function above):

BOOT ← BOOT S before BOOT E map Φ

4.3 Semantics of the nfer Notation

The semantics is provided in two steps. First the semantics for the core notation
is provided, second a collection of derived symbols (called operators) are defined,
which map to the core notation.

Semantics of Core Notation. The semantics of the core notation is defined
in three steps: the semantics R of individual rules on pools, the semantics S
of a specification (a list of rules) on pools, and finally the semantics T of a
specification on traces.

Let Δ be the type of rules. We define the semantics of labeling rules with
the interpretation function R, with the type and definition below, and using the
brackets [[]] around syntax being given semantics:

R [[]] : Δ → P → P

R [[η ← η1 ⊕ η2 map Φ]] π =
{ (η,s,e,M) ∈ I |

∃ s1 ,e1 ,s2 ,e2 ∈ C • ∃ J ,K ∈ M •
(η1 ,s1 ,e1 ,J) ∈ π ∧
(η2 ,s2 ,e2 ,K) ∈ π ∧
⊕(s1 ,e1 ,s2 ,e2 ,s,e) ∧
M= Φ(J ,K) �= ⊥

}

That is, given a rule δ and a pool π, a new pool is returned by: R[[δ]]π, containing
(only) the new intervals generated. The definition reads as follows. A pool is
returned containing intervals (η, s, e,M), where there exist two intervals in π,
with names η1 and η2, and where the time constraint is satisfied, and the map
resulting from applying Φ to the respective sub-maps is not ⊥.

Next, we define the semantics of a list of rules, also referred to as a specifica-
tion. For this we define the following one-step interpretation function S, which,
given a set of rules and a pool, returns a new pool extending the input pool

nfer – A Notation and System for Inferring Event Stream Abstractions 241

with added abstraction intervals resulting from taking the union of the pools
generated by each rule:

S [[]] : Δ∗→ P → P

S [[δ1 . . . δn]] π = π ∪ R [[δ1]] π ∪ . . . ∪ R [[δn]] π

That is, given a specification δ1 . . . δn and a pool π, a new pool is returned by:
S[[δ1, . . . , δn]] π. Finally, we define the semantics of a specification applied to a
trace (a sequence of events). For this we define the interpretation function T ,
which given a list of rules and a trace returns a pool containing abstraction
intervals:

T [[]] : Δ∗→ T → P

T [[δ1 . . . δn]] τ =
least π ∈ P such that

init(τ) ⊆ π
∧

π = S [[δ1 . . . δn]] (π)

That is, given a specification δ1 . . . δn and a trace τ , a pool of abstractions is
returned by: T [[δ1, . . . , δn]]τ . The resulting pool is defined as the least fixed-point
of S[[δ1 . . . δN]] : P → P that includes init(τ), corresponding to repeatedly apply-
ing S[[δ1 . . . δN]] , starting with init(τ), and until no new intervals are generated.
Note that the least fixed-point exists since the semantic functions are monotonic.
However, our simple iterative algorithm may not reach the least fixed-point if it
is an infinite set. In practice, the nfer tool processes rules in a slightly different,
but equivalent, order to improve performance.

4.4 Derived Forms

As hinted at the end of Sect. 4.2, a collection of ⊕ functions have been pre-
defined, along with symbols (operators) denoting them. These symbols are shown
in Table 1 together with their function definitions. Note that s1 and e1 are the
start and end times for the left-hand interval, s2 and e2 are the start and end
times for the right-hand interval, and s and e are the start and end times for
the resulting interval. For all operators, except the slice operator, the start and
end times of the resulting interval is the respectively left-most and right-most
time stamps of the involved intervals. For the slice operator, the resulting time
span denotes the overlapping section of two intervals. Note that the definitions
of these operators differ from those of the Allen logic operators in [2], which are
defined to be mutually exclusive, whereas nfer’s operators are not. This is due
to our different practical needs.

The informal explanation of the operators is as follows: A before B: A ends
before B starts; A meet B: A ends where B starts; A during B: all of A occurs
during B; A coincide B: A and B occur at the exact same time; A start B:

242 S. Kauffman et al.

Table 1. nfer operators

Operator ⊕ ⊕(s1, e1, s2, e2, s, e)

before e1 < s2 ∧ s = s1 ∧ e = e2

meet e1 = s2 ∧ s = s1 ∧ e = e2

during s1 � s2 ∧ e1 � e2 ∧ s = s2 ∧ e = e2

coincide s = s1 = s2 ∧ e = e1 = e2

start s = s1 = s2 ∧ e = max(e1, e2)

finish s = min(s1, s2) ∧ e = e1 = e2

overlap s1 < e2 ∧ s2 < e1 ∧ s = min(s1, s2) ∧ e = max(e1, e2)

slice s1 < e2 ∧ s2 < e1 ∧ s = max(s1, s2) ∧ e = min(e1, e2)

A starts at the same time as B; A finish B: A finishes at the same time as B;
A overlap B: A and B overlap in time; A slice B: A and B overlap in time, and
only the overlapping time span is returned. For the before operator, the nfer
tool returns the shortest matching intervals, whereas the semantics specifies that
all matching intervals are returned.

The next abbreviation concerns further time constraints a user may want to
impose. The core rule notation, see (1) on page 5, allows for any time constraints
to be expressed. Possible constraints include the just introduced relational oper-
ators, but also time spans, such as stating that an event B should follow an event
A within 10 time units. We present the following shorthand for allowing the spec-
ification of additional time constraints in addition to the just introduced oper-
ators. Let � ∈ {before,meet,during, coincide, start,finish,overlap, slice},
and let �p denote the corresponding clock predicate. The following abbreviation
is introduced:

η ← η1 � η2 within Θ map Φ

where Θ : C6 → B is a predicate on six time stamps. This is synonymous with:

η ← η1 (�p ∧ Θ) η2 map Φ

The one operator (clock predicate) rule format (1) on page 5 presents a simple
notation with a clean semantics. However, further convenient syntax allows rules
containing more than one operator on the right-hand side, for example: A ←
(B before C) overlap D. Such rules are mapped into the core form resulting
in additional auxiliary rules. The internal Scala DSL described in Sect. 5 allows
such enriched rules. Note that we shall allow time constraints (within) and map
transformations (map) to be left out in rules, in which case they assume the
default function values respectively λs1, e1, s2, e2, s, e. true and λm1,m2. [].

4.5 Example

As an example, we will formalize the three rules that were informally stated in
Sect. 3.1. The specification similarly consists of three rules:

nfer – A Notation and System for Inferring Event Stream Abstractions 243

BOOT ← BOOT S before BOOT E map (λ m1,m2 . [count → m1(count)])

DBOOT ← BOOT before BOOT within (λ s1,e1,s2,e2,s,e . e−s � 300)
map snd

RISK ← DOWNLINK during DBOOT map snd

The rules should be mostly self-explanatory (time is assumed measured in sec-
onds). The first rule creates from the two sub-maps m1 and m2 a new map,
mapping count to the same value as in m1. The function snd selects m2 from a
binary tuple (m1,m2).

Let us illustrate how this specification is evaluated on the trace in Fig. 1.
This trace is first converted into an initial pool. The semantic S function on
(page 7) will go through three iterations when applied to this initial pool before
a fixed-point is reached. The added intervals in each iteration are as follows:

1 : { (BOOT, 42, 160, [count → 3]), (BOOT, 255, 312, [count → 4]) }
2 : { (DBOOT, 42, 312, [count → 4]) }
3 : { (RISK, 42, 312, [count → 4]) }

5 Implementation

In this section, we outline the nfer infrastructure and internal DSL, implemented
in the Scala programming language.

5.1 The Nfer Infrastructure

The nfer implementation is based on Scala actors communicating via asyn-
chronous message passing through a publish/subscribe model built with Apache
Kafka [16]. Figure 2 shows the nfer implementation’s internal configuration cor-
responding to the double boot example from Sect. 4.5. The Kafka publish/sub-
scribe framework is represented in the center by the Shared Telemetry Bus. Each
actor is represented by a circle, with arrows showing the messages that are passed
to the actor (those it subscribes to), as well as the messages the actor publishes
back.

Specifically, each rule in an nfer specification results in an actor, which
subscribes to events/intervals occurring on the right-hand side of the rule, and
publishes the interval mentioned on the left-hand side of the rule to the shared
bus. This means that rule actors are only passed events and intervals which
are pertinent to their execution. For example, the RISK actor subscribes to
both DBOOT intervals and DOWNLINK events, and publishes back RISK intervals.
A special actor receives messages from the spacecraft and publishes them to the
bus. When a rule actor publishes an interval, any subscribers will be notified

244 S. Kauffman et al.

Fig. 2. Implementation of the example from Sect. 4.5

and can build on this interval to create yet new intervals. The nfer notation is
declarative and the order in which rules are declared is unimportant. Likewise,
the order in which actors execute is also unimportant, since the results of one
actor cannot inhibit the behavior of any other actor. If the DSL offered a negation
operator that would not be the case.

The implementation can process events online, as they come down to ground
from the spacecraft, as well as events produced at an earlier point in time, and
stored in a database. The full telemetry stream in principle includes all events
from the start of the mission. Normally ground operators are only interested in
recent events. However, there can be a need to analyze the telemetry stream
from the start of the mission. It is not expedient to process all events in the
full telemetry stream from the start of the mission whenever the nfer system
is activated. Instead, nfer can be used to incrementally create intervals, which
can then be stored for later use as an abstraction of the entire telemetry stream.

5.2 The Internal Scala DSL

This section introduces the internal Scala DSL for writing nfer specifications.
Consider the double boot example written in the nfer notation in Sect. 4.5. This
example can be written as follows in the internal DSL that we shall describe:

class DoubleBoot extends Nfer {
"BOOT" :− ("BOOT_S" before "BOOT_E" map {

case (m1,m2) ⇒ Map("count" → m1("count"))
})

"DBOOT" :− ("BOOT" before "BOOT" within 300 map (. 2))

"RISK" :− ("DOWNLINK" during "DBOOT" map (. 2))
}

nfer – A Notation and System for Inferring Event Stream Abstractions 245

The complete specification is a class, named DoubleBoot, that extends the Nfer

class, which provides all the operators needed for writing rules. The specification
in the DSL has largely the same format as the specification in our notation.
Some differences include the use of the symbol :- instead of ←, and the map
function defined using Scala’s partial function case-notation. Also, note that the
constant 300 is automatically lifted by an implicit function (defined in the Nfer

class) into a predicate on six time stamps with the expected semantics. Each rule
in turn is essentially a function call having the side-effect of creating an actor
that subscribes and publishes on the shared telemetry bus. For example, the first
rule corresponds to a function call (series of function calls really) that will create
an actor, which consumes BOOT S and BOOT E events (represented as intervals)
from the telemetry bus and returns BOOT intervals back to the bus. Although it
does not look like a normal function call, it is equivalent to the following call:

liftRuleName("BOOT").:−(
(liftOperand("BOOT_S").before(liftOperand("BOOT_E"))).map {
case (m1,m2) ⇒ Map("count" → m1("count"))

)

This equivalence holds due to Scala’s features for defining domain-specific lan-
guages. First of all, Scala allows method names to be non-alphanumeric, as for
example :−. Second, Scala allows the omission of dots and parentheses in calls
of methods on objects. For example, "BOOT" :− (...) is just another way of writ-
ing "BOOT" .:−(...) . Finally, we notice that the method :− is called on the string
object "BOOT". However, no such method is defined on strings. Scala’s implicit
function concept can again be used here to lift the "BOOT" string to an object
which defines a :− method. The following function (defined in the Nfer class)
is applied automatically by the Scala compiler to resolve the typing conflict, as
shown above:

implicit def liftRuleName(s: String) = new {
def :−(op: Op) = makeRules(s, op)

}
The right-hand side of the rule contains the expression: "BOOT_S" before "BOOT_E",
which again is equivalent to: "BOOT_S".before("BOOT_E"), and again implicit lifting
is needed. The following implicit function lifts "BOOT_S" to an object of type Op,
on which methods like before are defined:

implicit def liftOperand(s: String) = new Op(s)

The Op class itself provides all the infix binary temporal operators, such as before,
during, etc. as well as the functions within and map for defining time constraint
and map functions (the latter two update variables holding these functions).
Note how these functions return new instances of the Op class such that further
infix binary methods can be applied in a chain-like manner.

case class Op(s : String, left : Op = null, right : Op = null, op: Fun = null)
{
def before(e: Op) = Op(..., this, e, BEFORE)

246 S. Kauffman et al.

def during(e: Op) = Op(..., this, e, DURING)
...

}
Each instantiation of the Op class takes two arguments and an operator defining
how they should be related. For example, BEFORE is defined as follows:

def BEFORE(...) {
makeRule(...,
{ case (i1 : Interval , i2 : Interval) ⇒ (i1 .end < i2.start)},
{ case (i1 : Interval , i2 : Interval) ⇒ (i1 . start , i2 .end) })

}
The parameters to the makeRule function are (some dotted out): the name of the
rule, two patterns (interval names essentially) that the generated actor subscribes
to, the function evaluating the map, the function evaluating any added time
constraints beyond the before, during, etc. constraints, and finally two functions
(shown) defining respectively (1) the temporal operator, in this case an interval
occurs before another if the end time of the first is less than the start time of the
second, and (2) the boundary times of the generated interval as the start time
of the first and the end time of the second.

6 Example Application to Warning Analysis

As noted earlier, we are currently applying the nfer tool to processing teleme-
try from the Curiosity rover. In this section, we briefly describe an application
to a task, that is traditionally performed either manually or by ad-hoc scripts.
We consider the problem of automatically labeling warning messages that are
expected due to known idiosyncrasies of the system. EVRs produced by Curios-
ity are associated with a severity level, which is used to distinguish between
expected and unexpected behavior. One of the severity levels is WARNING,
which indicates potentially anomalous behavior. Unfortunately, due to various
idiosyncrasies of hardware and software, there are several situations in which
warning EVRs do not denote real anomalies. As a result, one of the roles of
the ground operations team is to label those received warnings that are to be
ignored; this work needs to be completed before the next plan can be uplinked to
the spacecraft. To speed up analysis, we have implemented a set of rules that can
label EVRs corresponding to known idiosyncrasies. As a result, ground operators
can limit their attention to only unlabeled warning EVRs. We describe some of
these rules below.

The first pair of rules capture a known (benign) race condition in the soft-
ware caused by a thread reading from a shared buffer before another thread has
finished its write. While race conditions can be serious, in this case, the effect is
that the reading thread generates a warning, and ignores the data. Because the
error was discovered late in the mission, and the impact is benign, no code fix
was deemed necessary. The rule below looks for this known scenario by checking
for an occurrence of TLM TR ERROR during execution of either a MOB PRM or an

nfer – A Notation and System for Inferring Event Stream Abstractions 247

ARM PRM command. A command execution interval itself is defined by a pair of
CMD DISPATCH and CMD COMPLETE events whose maps agree on the "cmd" key,
which denotes the command name.

"cmdExec" :− ("CMD_DISPATCH" before "CMD_COMPLETE" map {
case (m1, m2) ⇒

if (m1("cmd") == m2("cmd")) Some(Map("cmd" → m1("cmd"))) else None
})

"telecom0208" :− ("TLM_TR_ERROR" during "cmdExec" map {
case (, m2) ⇒ if ((m2("cmd") == "MOB_PRM") || (m2("cmd") == "ARM_PRM"))

Some(Map()) else None
})

The second rule involves a timing consideration. In this case, a power-on com-
mand fails and then recovers within 15 seconds. Since the behavior is predictable,
and benign, the two warnings about command failure and subsequent recovery
are labeled as expected. Note that for readability we have simplified the signature
of the delay15 function.

def delay15(s1,e1,s2,e2,s ,e : Double): Boolean = e − s <= 15

"instCmdFail" :− ("INST_PWR_ON" before
("INST_CMD_FAIL" before "INST_RECOVER") within delay15)

As we illustrated in Sect. 5.2, this can be written more simply by just providing
15 as argument to the within function, which would have the same effect.

"instCmdFail" :− ("INST_PWR_ON" before
("INST_CMD_FAIL" before "INST_RECOVER") within 15)

The third set of rules labels a situation in which a warning about task starvation
is expected whenever the vdp activity overlaps with a communications activity
(labeled comm). In this case, we use the slice operator to identify the interval of
overlap between the vdp and comm intervals:

"comm" :− ("WIN_BEGIN" before "WIN_END" map {
case (m1,) ⇒ Map("wid" → m1("wid"))

})

"vdp" :− ("VDP_START" before "VDP_STOP")

"starvationOk" :− "TASK_STARVATION" during ("vdp" slice "comm")

7 Related Work

An earlier effort to develop a telemetry comprehension tool is described in [14],
which provided a Scala DSL for writing a subset of the specifications offered in
this paper. That work was inspired by yet earlier efforts using the rule-based
system LogFire [13] for analyzing telemetry streams, as described in [15]. Log-
Fire, however, offers a more traditional rule notation, which becomes verbose for

248 S. Kauffman et al.

writing the desired specifications (similar to state machines being more verbose
than regular expressions).

Interval logics are common in the planning domain. Allen formalized his alge-
bra [2], which has come to be known as ATL, for modeling time intervals. He
argued that it was necessary to model relative timing with significant impreci-
sion, and proposed his algebra’s use in planning systems [3]. Many other plan-
ning languages have been proposed which rely on these same concepts, including
PDDL [18] and ANMLite [7].

The concepts introduced and formalized by these interval logics are useful
for modeling telemetry data, but the languages themselves have been principally
designed for planning, not verification. Some efforts have been made to adapt
them to that role, however. An effort is described in [22], where the suitability of
the ANMLite system for verification was evaluated, with some positive results,
but it was ultimately concluded that the solver techniques were not yet mature
enough to be useful. A translation from LTL to PDDL is described in [1] as a
means to leverage PDDL’s solver for verification.

Conversely, [20] defines a translation of a modified ATL to LTL for mon-
itoring. It is concluded, however, that this approach is impractical since the
generated monitoring automata become too large, even for small ATL formulas.
Instead, they introduce a simple algorithm for that purpose using a state machine
for each relationship. For example, a state machine is created for Before(A,B),
which is violated if a B is seen before an A. Our work differs in some respects: (i)
Instead of monitoring ATL relationships for verification, we generate a relation-
ship hierarchy for supporting system execution comprehension. (ii) We handle
parameterized intervals. (iii) We allow any constraints on time and parame-
ter values, not just the 13 ATL constraints. (iv) In their system, an interval is
unique, while in nfer it can occur multiple times. Other interval logics have
been designed specifically for verification purposes, such as Interval Temporal
Logic (ITL) [19], the Duration Calculus (DC) [12], and Graphical Interval Logic
(GIL) [9].

Our work has strong similarities to data-flow (data streaming) languages.
A recent example is QRE [4], which is based on regular expressions, and offers
a solution for computing numeric results from traces. QRE allows the use of
regular programming to break up the stream for modular processing, but is lim-
ited in that the resulting sub-streams may only be used for computing a single
quantitative result, and only using a limited set of numeric operations, such as
sum, difference, minimum, maximum, and average, to achieve linear time (in
the length of the trace) performance. Our approach is based on Allen logic, and
instead of a numeric result produces a set of named intervals, useful for visual-
ization (and thereby systems comprehension). Furthermore, data arguments to
intervals can be computed using arbitrary functions.

RV systems have been developed which aggregate data as part of the verifi-
cation [5,11]. Statistical model checking [17] is an approach collecting statistical
information about the degree to which a specification is satisfied on multiple
traces. Pushing statistical analysis further, in specification mining [10,21] the

nfer – A Notation and System for Inferring Event Stream Abstractions 249

user provides no specification, and the system learns one by sampling nominal
runs or by static analysis of the source code. This approach relieves the user of
writing specifications and allows them to better understand the behavior of the
software.

8 Conclusion

We have introduced the nfer rule-based notation and system for labeling event
streams. The result of a labelling is a set of intervals: named sections of the
event stream, each including a start time, and end time, and a map holding
data selected from the events and sub-intervals making up the interval. Typi-
cally intervals are built on top of intervals, forming a hierarchy of abstractions.
The result can for example be visualized, and can generally help engineers to
better comprehend the structure of an event stream. The nfer system is imple-
mented as an internal Scala DSL. Each interval-generating rule spawns an actor,
that subscribes to events and/or sub-intervals, and publishes new intervals in
the publish/subscribe architecture. Future work includes optimizing the imple-
mentation; handling missing telemetry; support for visual entering of rules and
visualization of results; improving the internal Scala DSL; and allowing rules
to be written in Python (commonly used by engineers) and encoded in JSON.
The problem has been inspired by actual planetary space mission operations,
specifically the Mars Curiosity rover, and the solution is being evaluated for use
by the next Mars rover mission in 2020.

References

1. Albarghouthi, A., Baier, J.A., McIlraith, S.A.: On the use of planning technol-
ogy for verification. In: Proceedings of the ICAPS Workshop on Verification and
Validation of Planning and Scheduling Systems (VVPS). Citeseer (2009)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

3. Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23(2), 123–
154 (1984)

4. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative
properties of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632,
pp. 15–40. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49498-1 2

5. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012)

6. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how
ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007)

7. Butler, R.W., Siminiceanu, R.I., Muno, C.: The ANMLite language and logic for
specifying planning problems. Report No. 215088, 23681–2199 (2007)

8. Chen, F., Roşu, G.: MOP: an efficient and generic runtime verification framework.
In: ACM SIGPLAN Notices, vol. 42, pp. 569–588. ACM (2007)

http://dx.doi.org/10.1007/978-3-662-49498-1_2

250 S. Kauffman et al.

9. Dillon, L.K., Kutty, G., Moser, L.E., Melliar-Smith, P.M., Ramakrishna, Y.S.: A
graphical interval logic for specifying concurrent systems. ACM Trans. Softw. Eng.
Methodol. 3, 131–165 (1994)

10. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007)

11. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Formal Meth. Syst. Des. 27(3), 253–274 (2005)

12. Hansen, M.R., Van Hung, D.: A theory of duration calculus with application. In:
George, C.W., Liu, Z., Woodcock, J. (eds.) Domaine Modeling. LNCS, vol. 4710,
pp. 119–176. Springer, Heidelberg (2007)

13. Havelund, K.: Rule-based runtime verification revisited. Softw. Tools Technol.
Transf. (STTT) 17, 143–170 (2015)

14. Havelund, K., Joshi, R.: Comprehension of spacecraft telemetry using hierarchical
specifications of behavior. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol.
8829, pp. 187–202. Springer, Heidelberg (2014)

15. Havelund, K., Joshi, R.: Experience with rule-based analysis of spacecraft logs. In:
Artho, C., Ölveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476, pp. 1–16. Springer,
Heidelberg (2015)

16. Kreps, J., Narkhede, N., Rao, J.: Kafka: a distributed messaging system for log
processing. In: Proceedings of the 6th International Workshop on Networking
Meets Databases (NetDB 2011), pp. 1–7. ACM (2011)

17. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010)

18. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL-the planning domain definition language (1998)

19. Moszkowski, B.C.: A temporal logic for multilevel reasoning about hardware. IEEE
Comput. 18, 10–19 (1985)

20. Roşu, G., Bensalem, S.: Allen linear (interval) temporal logic–translation to LTL
and monitor synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 263–277. Springer, Heidelberg (2006)

21. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using
automata-based abstractions. IEEE Trans. Softw. Eng. 34(5), 651–666 (2008)

22. Siminiceanu, R.I., Butler, R.W., Muñoz, C.A.: Experimental evaluation of a plan-
ning language suitable for formal verification. In: Peled, D.A., Wooldridge, M.J.
(eds.) MoChArt 2008. LNCS, vol. 5348, pp. 132–146. Springer, Heidelberg (2009)

Accelerated Runtime Verification of LTL
Specifications with Counting Semantics

Ramy Medhat2(B), Borzoo Bonakdarpour1, Sebastian Fischmeister2,
and Yogi Joshi2

1 McMaster University, Hamilton, Canada
2 University of Waterloo, Waterloo, Canada

rmedhat@uwaterloo.ca

Abstract. This paper presents a novel and efficient parallel algorithm
for runtime verification of an extension of Ltl that allows for nested
quantifiers subject to numerical constraints. Such constraints are useful
in evaluating thresholds (e.g., expected uptime of a web server). Our algo-
rithm uses the MapReduce programming model to split a program trace
into variable-based clusters at run time. Each cluster is then mapped to
its respective monitor instances, verified, and reduced collectively on a
multi-core CPU or the GPU. Our experiments on real-world case studies
show that the algorithm imposes negligible monitoring overhead.

1 Introduction

Runtime verification (RV) is an automated specification-based technique, where
a monitor evaluates the correctness of a set of logical properties on a partic-
ular execution. RV complements exhaustive approaches such as model check-
ing and theorem proving and under-approximated methods such as testing. RV
can be particularly helpful in scenarios, where one needs to monitor paramet-
ric requirements on types of execution entities (e.g., processes and threads),
user- and kernel-level events and objects (e.g., locks, files, sockets), web services
(e.g., requests and responses), and network traffic. For example, the requirement
‘every open file should eventually be closed’ specifies a rule for causal and tem-
poral order of opening and closing individual objects which generalizes to all
files. Such properties can become even more complex by incorporating numer-
ical constraints such as thresholds, floors, ceilings. However, to our knowledge
existing RV frameworks fall short in expressing counting semantics.

In this paper, we extend the 4-valued semantics of Ltl (denoted RV-Ltl
in this paper) [6] by adding counting semantics with numerical constraints and
propose an efficient parallel algorithm for their verification at run time. Inspired
by the work in [15], the syntax of our language (denoted Ltl4−C) extends Ltl
syntax by the addition of counting quantifiers. That is, we introduce two quanti-
fiers: the instance counting quantifier (E) which allows expressing properties that
reason about the number of satisfied or violated instances, and the percentage
counting quantifier (A) which allows reasoning about the percentage of satisfied

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 251–267, 2016.
DOI: 10.1007/978-3-319-46982-9 16

252 R. Medhat et al.

or violated instances out of all instances in a trace. These quantifiers are sub-
scripted with numerical constraints to express the conditions used to evaluate
the count. For example, the following Ltl4−C formula:

A≥0.95 s : socket(s) · (G receive (s) ⇒ F respond (s))

intends to express the property that ‘at least 95% of TCP/UDP sockets must
eventually respond to a received request’. For a web admin, ideally the number
of dropped requests is zero, however in reality requests will be dropped some-
times [19]. Thus it is beneficial for a monitor to keep track of the percentage of
dropped requests and fire an alert once a certain threshold is exceeded.

The first contribution of the paper is extending RV-Ltl by redefining pre-
sumably true/false within the context of counting semantics. Consider the exam-
ple demonstrated above, where it is required that a web server drops less than
5% of the requests. For such a property, counting semantics justify the need for
presumably true/false in a similar fashion to incomplete executions in RV-Ltl.
For instance, if only 4% of the requests have been dropped so far, that does not
mean that the property is permanently satisfied. There could be more requests
that arrive in the future and are dropped, increasing the percentage of dropped
requests beyond 5%. A verdict of true is incorrect, since the property can be
violated in the future. In Ltl4−C, this property is presumably satisfied, with a
potential to be violated by more requests. For a web admin, this verdict indicates
that the system is currently healthy.

The second contribution of this paper is a divide-and-conquer-based online
monitor generation technique for Ltl4−C specifications. Our technique first
synthesizes an RV-Ltl monitor for the inner Ltl formula of the given Ltl4−C
formula at pre-compile time using the technique in [6]. Then, based upon the
values of variables observed at run time, submonitors are generated and merged
to compute the current truth value of a property for the current program trace.

Our third contribution is a monitoring algorithm that implements the above
approach for verification of Ltl4−C properties at run time. The monitoring
algorithm evaluates properties in parallel, utilizing multicore CPUs or GPUs and
maximizing the throughput of the monitor. The algorithm utilizes the popular
MapReduce programming model to (1) spawn submonitors that aim at eval-
uating subformulas using partial quantifier elimination, and (2) merge partial
evaluations to compute the current truth value of properties.

Our parallel algorithm for verification of Ltl4−C properties is fully imple-
mented on multi-core CPU and GPU technologies using our own simple imple-
mentation of the MapReduce programming model. We report experimental
results by conducting three real-world independent case studies. The first case
study is a monitor for HTTP requests and responses on an Apache Web Server.
The second case study is a monitor for upload chunk size based on a dataset for
profiling DropBox traffic. The third case study monitors a network proxy cache to
reduce the bandwidth usage of online video services, based on a YouTube request
dataset. We present performance results comparing single-core CPU, multi-core
CPU, and GPU implementations. Our results show that our GPU-based imple-
mentation provides an average speed up of 6.3x when compared to single-core

Accelerated Runtime Verification of LTL Specifications 253

CPU, and 1.75x when compared to multi-core CPU. The CPU utilization of the
GPU-based implementation is negligible compared to multi-core CPU, freeing
up the system to perform more computation. Thus, the GPU-based implemen-
tation manages to provide competitive speedup while maintaining a low CPU
utilization, which are two goals that the CPU cannot achieve at the same time.
Put it another way, the GPU-based implementation incurs minimal monitoring
costs while maintaining a high throughput.

2 LTL with Counting Semantics

Let IP be a finite set of interpreted predicates, and let Σ = 2IP be the power
set of IP . We call each element of Σ an event.

Definition 1 (Trace). A trace w = w0w1 · · · is a finite or infinite sequence of
events where each event consists of interpreted predicates; i.e., wi ∈ Σ, for all
i ≥ 0. �

We denote the set of all infinite traces by Σω and the set of all finite traces
by Σ∗.

2.1 Syntax of LTL4-C

Ltl4−C extends RV-Ltl [6] (also known as RV-LTL) with two counting quanti-
fiers: the instance counting quantifier (E) and the percentage counting quantifier
(A). The semantics of these quantifiers are introduced in Subsect. 2.4. The syntax
of Ltl4−C is defined as follows:

Definition 2 (Ltl4–C Syntax). Ltl4−C formulas are defined using the fol-
lowing grammar:

ϕ ::=A∼k x : p(x) · ϕ | E∼l x : p(x) · ϕ | ψ

ψ ::= � | a | p (x1 · · · xn) | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1 Uψ2

where A is the percentage counting quantifier, E is the instance count-
ing quantifier, x, x1 · · · xn are variables with finite domains D,D1, · · · Dn,
∼∈ {<,≤, >,≥,=}, k :R ∈ [0, 1], l ∈ Z

+, a is an atomic proposition, X is
the next, and U is the until temporal operators. �

If we omit the numerical constraint in A∼k (respectively, E∼l), we mean A=1

(respectively, E≥1). The syntax of Ltl4−C forces constructing formulas, where a
string of counting quantifiers is followed by a quantifier-free formula. We empha-
size that A and E do not necessarily resemble standard first order quantifiers ∀
and ∃. In fact, ¬A and E are not equivalent.

Consider the Ltl4−C property ϕ = Ax : p(x) · ψ, where the domain of x
is D. This property denotes that for any possible valuation of the variable x
([x := v]), if p(v) holds, then ψ should hold. If p(v) does not hold, then p(v) · ψ

254 R. Medhat et al.

evaluates to true. This effectively means that the quantifier Ax is in fact applied
only over the sub-domain {v ∈ D | p(v)} ⊆ D.

To give an intuition, consider the scenarios where file management anomalies
can cause serious problems at run time (e.g., in NASA’s Spirit Rover on Mars
in 2004). For example, the following Ltl4−C property expresses “at least half
of the files that a process has previously opened must be closed”:

ϕ = A≥50% f : inevent(f) · G(opened(f)U close(f)) (1)

where inevent is the p predicate of the quantifier, denoting that the concrete file
appeared in an event in the trace.

2.2 Truth Values of LTL4-C

The objective of Ltl4−C is to verify the correctness of quantified properties
at run time with respect to finite program traces. Such verification attempts to
produce a sound verdict regardless of future continuations.

Similar to RV-Ltl, we incorporate four truth values to define the semantics of
Ltl4−C: B4 = {�,⊥,�p,⊥p}; true, false, presumably true, and presumably false,
respectively. The values in B4 form a lattice ordered as follows: ⊥ < ⊥p < �p <
�. Given a finite trace u and an Ltl4−C property ϕ, the informal description
of evaluation of u with respect to ϕ is as follows:

– True (�) denotes that any infinite extension of u satisfies ϕ. For example,
ϕ1 = E≥1t : thread(t) · log(t) is a property that checks a process has at least one
log thread. If one log thread is found in the trace, the property is permanently
satisfied.

– False (⊥) denotes that any infinite extension of u violates ϕ. For example,
ϕ2 = E=1t : thread(t) · log(t) is a property that checks a process has exactly one
log thread. If more than one log thread is found in the trace, the property is
permanently violated.

– Presumably true (�p) extends the definition of presumably true in RV-
Ltl [6], where �p denotes that u satisfies the inner Ltl property and the
counting quantifier constraint in ϕ, if the program terminates after execution
of u. An example is

ϕ3 = E≥1t : thread(t) · log(t) ∧ G(event(t) ⇒ Fwrite(t))

which evaluates to �p if there is only one log thread that has received an event
and has written it, but can still potentially receive another event and never
write it, thus violating the property.

– Presumably false (⊥p) extends the definition of presumably false in RV-
Ltl [6], which denotes that u presumably violates the quantifier constraint in
ϕ. For example, Property ϕ3 evaluates to ⊥p if there is one log thread that
has received an event and not yet written it. A future extension of the trace
can potentially contain a write event, thus transforming the valuation of the
property to �p.

Accelerated Runtime Verification of LTL Specifications 255

2.3 Valuation in Ltl4−C

An Ltl4−C property essentially defines a set of traces, where each trace is a
sequence of events (i.e., sets of predicates). We define the semantics of Ltl4−C
with respect to finite traces and present a method of utilizing these semantics
for runtime verification. In the context of runtime verification, the objective is
to ensure that a trace is in the set of traces that the property defines.

To introduce the semantics of Ltl4−C, we examine counting quantifiers
further. Since the syntax of Ltl4−C allows nesting of counting quantifiers, a
canonical form of properties is ϕ = Qϕ ψ where ψ is an Ltl property and
Qϕ is a sequence of counting quantifiers Qϕ = Q0Q1 · · · Qn−1 such that each
Qi = 〈qi,∼i, ci, xi, pi〉, 0 ≤ i ≤ n − 1, is a tuple encapsulating the counting
quantifier information. That is, qi ∈ {A,E}, ∼i∈ {<,≤, >,≥,=}, ci is the con-
straint constant, xi is the bound variable, and pi is the predicate within the
quantifier (see Definition 2).

Variable Valuation. We define a vector Dϕ with respect to a property ϕ
as Dϕ = 〈d0, d1, · · · , dn−1〉 where n = |Qϕ| and di, 0 ≤ i ≤ n − 1, is a
value for variable xi. We denote the first m components of the vector Dϕ (i.e.,
〈d0, d1, · · · , dm−1〉) by Dϕ|m. We refer to Dϕ as a value vector and to Dϕ|m as
a partial value vector.

A property instance ϕ̂(Dϕ|m) is obtained by replacing every occurrence of
the variables x0 · · · xm−1 in ϕ with the values d0 · · · dm−1, respectively. Thus,
ϕ̂(Dϕ|m) is free of quantifiers of index less than m, yet remains quantified over
variables xm · · · xn−1. ϕ̂(Dϕ) denotes replacing all quantified variables with val-
ues in Dϕ, resulting in an unquantified LTL property. For instance, for the fol-
lowing property ϕ = A>c1 x : px(x) · (A<c2 y : py(y) · G q(x, y)) and value vector
Dϕ = 〈1, 2〉 (i.e., the vector of values for variables x and y, respectively), ϕ̂(Dϕ)
will be ϕ̂(〈1, 2〉) = px(1) · (py(2) · G q(1, 2)) = G q(1, 2).

We now define the set Dϕ,u as the set of all value vectors with respect to a
property ϕ = Qϕ ψ and a trace u = u0u1 · · · :

Dϕ,u = {Dϕ | ∃j ≥ 0 : ∀i ∈ [0, |Qϕ|) : pi(di) ∈ uj} (2)

Valuation of Property Instances. As per the definition of Dϕ,u, every value
vector Dϕ = 〈d0 · · · dn−1〉 in Dϕ,u contains values for which the predicates pi(di)
hold in some trace event uj . For simplicity, we denote this as a value vector in a
trace event uj . These value vectors can possibly be in multiple and interleaved
events in the trace. Thus, we define a trace uDϕ = u

Dϕ

0 u
Dϕ

1 · · · as a subsequence
of the trace u such that the value vector Dϕ is in every event:

∀ j ≥ 0 : ∀ i ∈ [0, n − 1] : pi(di) ∈ u
Dϕ

j

2.4 Semantics of LTL4-C

Definition 3 (Ltl4–C Satisfaction Relation). Given an Ltl4–C property
ϕ = Qψ where Q is a quantifier (either A or E), and ψ is an Ltl4–C formula.

256 R. Medhat et al.

Also, given an infinite trace w, we define the satisfaction relation w |=4 ϕ as
follows:

w |=4 ψ iff w |= ψ and ψ is an Ltl property

w |=4 E∼cx : px(x) · ψ iff ∃D
′
ϕ,w ⊂ Dϕ,w s.t. ∀Dϕ ∈ D

′
ϕ,w : wDϕ |= ϕ̂(Dϕ)∧

∀Dϕ /∈ D
′
ϕ,w : wDϕ �|= ϕ̂(Dϕ) ∧ |D′

ϕ,w| ∼ c

w |=4 A∼cx : px(x) · ψ iff ∃D
′
ϕ,w ⊂ Dϕ,w s.t. ∀Dϕ ∈ D

′
ϕ,w : wDϕ |= ϕ̂(Dϕ)∧

∀Dϕ /∈ D
′
ϕ,w : wDϕ �|= ϕ̂(Dϕ) ∧ |D′

ϕ,w|/|Dϕ,w| ∼ c

where Dϕ,w is the finite set of all value vectors in the infinite trace w. ϕ̂(Dϕ) is
an Ltl property and |= is the satisfaction relation as defined in Ltl semantics.

Definition 4 (Ltl4–C Semantics for finite prefixes). Given an Ltl4–C
property ϕ = Q∼c ψ where Q is a quantifier and ψ is an Ltl4−C formula. Also,
given a finite prefix u of a trace, Ltl4–C semantics are defined as follows:

[u |=4 ϕ] =

⎧⎪⎪⎨
⎪⎪⎩

[u |=RV-Ltl ϕ] iff ϕ is an Ltl property
� iff ∃D

′
ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] = � ∧

∀Dϕ /∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] �= � ∧

|D′
ϕ,u| ∼ c if Q = E else |D′

ϕ,u|/|Dϕ,u| ∼ c ∧
∀v ∈ Σω : uv |=4 ϕ

⊥ iff ∃D
′
ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] �= ⊥ ∧

∀Dϕ /∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] = ⊥ ∧

|D′
ϕ,u| �∼ c if Q = E else |D′

ϕ,u|/|Dϕ,u| �∼ c ∧
∀v ∈ Σω : uv �|=4 ϕ

�p iff ∃D
′
ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] ∈ {�,�p} ∧

∀Dϕ /∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] /∈ {�,�p} ∧

|D′
ϕ,u| ∼ c if Q = E else |D′

ϕ,u|/|Dϕ,u| ∼ c ∧
∃v ∈ Σω : uv �|=4 ϕ

⊥p iff ∃D
′
ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] ∈ {�,�p} ∧

∀Dϕ /∈ D
′
ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] /∈ {�,�p} ∧

|D′
ϕ,u| �∼ c if Q = E else |D′

ϕ,u|/|Dϕ,u| �∼ c ∧
∃v ∈ Σω : uv |=4 ϕ

�

Accelerated Runtime Verification of LTL Specifications 257

The semantics are defined for five cases:

– If ϕ is an Ltl property, then we use the four-valued semantics in RV-Ltl.
– Let D

′
ϕ,u be a subset that contains all values of the quantified variable that

satisfy the inner property. If the cardinality of this subset satisfies the numer-
ical constraint on the quantifier, and no infinite extension of the trace can
violate it, the valuation is �.

– Now, let D
′
ϕ,u contain all values for which the inner property is not ⊥, i.e. it

could be �, �p, or ⊥p. If the cardinality of this subset violates the numerical
constraint on the quantifier, and no infinite extension of the trace can satisfy
it, the valuation is ⊥.

– �p is similar to �, except that D
′
ϕ,u can include values with which the inner

property evaluates to �p, and there exists an extension to the trace prefix
that can violate the quantifier constraint.

– ⊥p is the opposite of �p, where D
′
ϕ,u violates the quantifier constraint, and

there exists an extension to the trace prefix that can satisfy the constraint.

Note that Ltl4−C semantics are defined recursively from the outermost
quantifier. The recursion can be observed in [uDϕ |=4 ϕ̂(Dϕ)] where Dϕ is a
value vector 〈d〉 for the quantified variable in Q, and ϕ̂(Dϕ) is property ϕ without
quantifier Q. Hence, the semantics recurse with one less quantifier at each step
until there are no counting quantifiers and ϕ is an Ltl property, at which case we
use RV-Ltl semantics. Also note that for a finite prefix of a trace, the semantics
of Ltl4−C is decidable since the quantification is over a finite set of objects that
exist in the trace.

3 Divide-and-Conquer-based Monitoring of LTL4-C

In this section, we describe our technique inspired by divide-and-conquer for
evaluating Ltl4−C properties at run time. This approach forms the basis of our
parallel verification algorithm in Sect. 4.

Unlike runtime verification of propositional RV-Ltl properties, where the
structure of a monitor is determined solely based on the property itself, a moni-
tor for an Ltl4−C needs to evolve at run time, since the valuation of quantified
variables change over time. More specifically, the monitor Mϕ for an Ltl4−C
property ϕ = Qϕψ relies on instantiating a submonitor for each property instance
ϕ̂ obtained at run time. We incorporate two type of submonitors: (1) RV-Ltl
submonitors evaluate the inner Ltl property ψ. An RV-Ltl submonitor instance
is denoted as M∗

Dϕ
, where Dϕ is the unique value vector that binds all quanti-

fied variables in the property, leaving only a simple Ltl property to be moni-
tored. (2) The second time of submonitors is quantifier submonitors, described in
Subsect. 3.1. In Subsect. 3.2, we explain the conditions under which a submon-
itor is instantiated at run time. Finally, in Subsect. 3.3, we elaborate on how
submonitors evaluate an Ltl4−C property.

258 R. Medhat et al.

3.1 Quantifier Submonitors

Given a finite trace u and an Ltl4−C property ϕ = Qϕψ, a quantifier submon-
itor (MQ) is a monitor responsible for determining the valuation of a property
instance ϕ̂(Dϕ|i) with respect to a trace subsequence uDϕ|i , if i < |Qϕ|.
Definition 5 (Quantifier Submonitor). Let ϕ = Qϕψ be an Ltl4−C prop-
erty and ϕ̂(Dϕ|i) be a property instance, with i ∈ [0, |Qϕ| − 1]. The quantifier
submonitor for ϕ̂(Dϕ|i) is the tuple MQ

Dϕ|i = 〈Qi,MDϕ|i ,F〉, where

– Qi encapsulates the quantifier information (see Subsect. 2.4)
– MDϕ|i is the set of child submonitors (submonitors of child property instances)

defined as follows:

MDϕ|i =

{{M∗
D′

ϕ
| D′

ϕ|i = Dϕ|i} if i = |Qϕ| − 1

{MQ
D′

ϕ|i+1 | D′
ϕ|i = Dϕ|i} if i < |Qϕ| − 1

– F is a function that applies the quantifier constraint Qi on the truth values of
all the child submonitors MDϕ|i .

Thus, if i = |Qϕ|−1, all child submonitors are RV-Ltl submonitors. Otherwise,
they are quantifier submonitors of the respective child property instances. �

3.2 Instantiating Submonitors
MQ

Dϕ|0

MQ
Dϕ|1 MQ

Dϕ|1

MQ
Dϕ|n−1 MQ

Dϕ|n−1 MQ
Dϕ|n−1

M∗
Dϕ

M∗
Dϕ

M∗
Dϕ

M∗
Dϕ

M∗
Dϕ

Fig. 1. Tree structure of an Ltl4−C monitor

Let an Ltl4−C monitor Mϕ for
property ϕ evaluate the property
with respect to a finite trace u =
u0u1 · · · . Let Dϕ = 〈d0, d1, · · · 〉 be
a value vector and u0 the first trace
event such that ∀di : pi(di) ∈ u0.
In this case, the Ltl4−C monitor
instantiates submonitors for every
property instance resulting from
that value vector. A value vector of
length |Qϕ| results in |Qϕ| + 1 prop-
erty instances: one for each quantifier in addition to an RV-Ltl inner property.
Figure 1 demonstrates the tree structure of submonitors graphically.

3.3 Evaluating LTL4-C Properties

Once the Ltl4−C monitor instantiates its submonitors, every submonitor is
responsible for updating its truth value. The truth value of an RV-Ltl submon-
itor (M∗) is determined by its automaton. Quantifier submonitors update their
truth value by applying the quantifier constraint on their child submonitors and
producing a valuation based on Ltl4−C semantics.

Accelerated Runtime Verification of LTL Specifications 259

4 Parallel RV Algorithm

The main challenge in designing a runtime monitor is to ensure that its behavior
does not intervene with functional and extra-functional (e.g., timing constraints)
behavior of the program under scrutiny. This section presents a parallel algo-
rithm for verification of Ltl4−C properties. Our idea is that such a parallel
algorithm enables us to offload the monitoring tasks into a different computing
unit (e.g., the GPU). The algorithm utilizes the MapReduce programming model
to spawn and merge submonitors to determine the final verdict. It is important
to note that the algorithm supports both online and offline monitoring. We gen-
eralize the input to the algorithm as a trace, which could be the entire program
trace in the case of offline monitoring, or an event or a buffered sequence of
events in the case of online monitoring.

This section is organized as follows: Subsect. 4.1 describes how valuations are
extracted from a trace in run time, and Subsect. 4.2 describes the steps of the
algorithm in detail.

4.1 Valuation Extraction

Valuation extraction refers to obtaining a valuation of quantified variables from
the trace. As described in Ltl4−C semantics, the predicate pi(xi) identifies the
subset of the domain of xi over which the quantifier is applied: namely the subset
that exists in the trace. From a theoretical perspective, we check whether the
predicate is a member of some trace event, which is a set of predicates. From an
implementation perspective, the trace event is a key-value structure, where the
key is for instance a string identifying the quantified variable, and the value is
the concrete value of the quantified variable in that trace event.

4.2 Algorithm Steps

Algorithm 1 presents the pseudocode of the parallel monitoring algorithm. Given
an Ltl4−C property ϕ = Qϕ ψ, the input to the algorithm is the RV-Ltl
monitor M∗ of RV-Ltl property ψ, a finite trace u, the set of quantifiers Qϕ, and
the vector of keys K used to extract valuations. Note that the algorithm supports
both online and offline runtime verification. Offline mode is straightforward since
the algorithm receives a finite trace that it can evaluate.

In the case of online mode, the algorithm maintains data structures that
represent the tree structure shown in Fig. 1, and repeated invocation of the
monitor updates these data structures incrementally. Thus, an online monitor
will receive batches of events in run time and process them, building the tree of
monitors with every invocation of the monitor. These invocations can be periodic
or event based, and the batches can be of any length.

The entry point to the algorithm is at Line 5 which is invoked when the mon-
itor receives a trace to process. This can be the entire trace in offline monitoring,
or a buffered segment of the trace in online monitoring. The algorithm returns
a truth value of the property at Line 8. Subsect. 4.2 describe the functional calls
between Lines 5–8.

260 R. Medhat et al.

Algorithm 1. Ltl4−C Monitor
1: INPUT: An RV-Ltl monitor M∗ of Ltl property ψ, a

finite trace u, a set of quantifiers Qϕ, and a vector of
keys K to extract valuations of quantified variables.

2: declare T = {MQ
D|0} � Tree of quantifier submonitors

3: declare D = {}, � Value vector set
4: declare M

∗ = {} � RV-Ltl submonitor set
5: μ ← SortTrace(u) � The entry point
6: SpawnMonitors(μ)
7: Distribute(u,μ)
8: return ApplyQuantifiers(|Qϕ − 1|)

9: function SortTrace(u)� Trace sorting and compaction
10: ui ⇒ u′

i :=ValueVec(ui, K) � ‖ map to value
vectors

11: ParallelSort(u′,K)
12: μ〈D, r〉 ← ParallelCompact(u′)
13: return μ

14: function SpawnMonitors(μ) � Monitor spawning
15: for D ∈ μ do in parallel
16: if D �∈ D then
17: Add(D,D)
18: t ← AddToTree(D)
19: t.addMonitor(CreateMonitor(D))

20: function AddToTree(D)
21: t = T .root
22: for i ∈ [1, |Qϕ| − 1] do

23: if MQ
D|i �∈ t.children then

24: t.addchild(MQ
D|i)

25: t ← t.children
[
MQ

D|i
]

26: return t

27: function CreateMonitor(D) � Monitor creation
28: M∗

D ← LaunchMonitorThread(D)
29: M∗

D.D ← D
30: add(M∗,M∗

D)
31: return M∗

D

32: function Distribute(u,μ) � Distribute trace to
monitors

33: for M∗
D ∈ M

∗ do in parallel
34: ProcessBuffer(M∗

D,u,μ[M∗
D.D])

35: function ProcessBuffer(M∗
D,u,r) � Process trace

36: filter include u ⇒ u′ := u[r.start, r.end] � ‖ filter
37: M∗

D.b ←UpdateMonitor(M∗
D, u′)

38: function ApplyQuantifiers(i) � Apply quantifiers
39: for t ∈ T.nodesAtDepth(i) do in parallel
40: t.children ⇒ {s := [v, v′, · · ·]} � ‖ map
41: s � t.v � ‖ reduction to truth vector
42: t.b ← Valuation(t) � Ltl4−C semantics

43: if i = 0 then
44: return t.b
45: return ApplyQuantifiers(i − 1)

The MapReduce opera-
tions are visible in functions
SortTrace and ApplyQuanti-
fiers, which perform a map
(⇒) in Lines 10 and 40 respec-
tively. ApplyQuantifiers also
performs a reduction (�) in
Line 41.

Trace Sorting. As shown in
Algorithm 1, the first step in
the algorithm is to sort the
input trace u (Line 5). The
function SortTrace performs
this functionality as follows:

1. The function performs a
parallel map of every trace
event to the value vector
that it holds (Line 10).

2. The mapped trace is sorted
in parallel using the quan-
tifier variable as a key
(Line 11).

3. The sorted trace is then
compacted based on val-
uations, and the function
returns a map μ where
keys are value vectors and
values are the ranges of
where these value vectors
exist in trace u (Line 12).
A range contains the start
and end index. This essen-
tially defines the subse-
quences uDϕ for each prop-
erty instance ϕ̂(Dϕ) (refer
to Subsect. 2.4).

Monitor Spawning. Mon-
itor spawning is the second
step of the algorithm (Line 6).
The function SpawnMonitors receives a map μ and searches the cached collec-
tion of previously encountered value vectors D for duplicates. If a value vector
in μ is new, it creates submonitors and inserts them in the tree of submonitors

Accelerated Runtime Verification of LTL Specifications 261

T (Line 18). The function AddToTree attempts to generate |Qϕ| − 1 quantifier
submonitors MQ (Line 22) ensuring there are no duplicate monitors in the tree
(Line 23).

After all quantifier submonitors are created, SpawnMonitors creates an RV-
Ltl submonitor M∗ and adds it as a child to the leaf quantifier submonitor in
the tree representing the value vector (Line 19). This resembles the structure in
Fig. 1.

Checking whether submonitors do not already exist and the creation of new
submonitors is performed in parallel for all value vectors in trace u. This is
because the trace has been sorted and grouped by unique value vectors in the
previous step. Thus, each subtree of monitors that corresponds to a unique value
vector is created in parallel, and connected to its parent via locks.

Distributing the Trace. The next step in the algorithm is to distribute
the sorted trace to all RV-Ltl submonitors (Line 7). The function Distribute
instructs every RV-Ltl submonitor to process its respective trace by passing
the full trace and the range of its respective subsequence, which is provided by
the map μ (Line 34). The RV-Ltl monitor updates its state according to the
trace subsequence and stores its truth value b.

Applying Quantifiers. Applying quantifiers is a recursive process, beginning
with the leaf quantifier submonitors and proceeding upwards towards the root
of the tree (Line 8). Function ApplyQuantifiers operates in the following steps:

1. The function retrieves all quantifier submonitors at the ith level in the tree
T (Line 39).

2. In parallel, for each quantifier submonitor, all child submonitor truth values
are reduced into a single truth value of that quantifier submonitor (Lines
40–42). This step reduces all child truth vectors into a single vector and
then applies Ltl4−C semantics to determine the truth value of the current
submonitor, essentially applying function F on the truth values of all child
submonitors.

3. The function proceeds recursively calling itself on submonitors that are one
level higher. It terminates when the root of the tree is reached, where the
truth value is the final verdict of the property with respect to the trace.

5 Implementation and Experimental Results

We have implemented Algorithm 1 for two computing technologies: Multi-core
CPUs and GPUs. We applied three optimizations in our GPU-based implemen-
tation: (1) we use CUDA Thrust API to implement parallel sort, (2) we use
Zero-Copy Memory which parallelizes data transfer with kernel operation with-
out caching, and (3) we enforced alignment, which enables coalesced read of
trace events into monitor instances. In order to intercept systems calls, we have

262 R. Medhat et al.

integrated our algorithm with the Linux strace application, which logs all sys-
tem calls made by a process, including the parameters passed, the return value,
the time the call was made, etc. Notice that using strace has the benefit of
eliminating static analysis for instrumentation.

5.1 Case Studies

We have conducted three case studies, the first demonstrates using our imple-
mentation for online monitoring, while case study 2 and 3 are monitored offline.
Following is a detailed description of the case studies:

1. Ensuring every request on a socket is responded to. This case
study monitors the responsiveness of a web server. Web servers under heavy
load may experience some timeouts, which results in requests that are not
responded to. This is a factor contributing to the uptime of the server, along
with other factors like power failure, or system failure. Thus, we monitor that
at least 95 % of requests are indeed responded to:

A≥0.95 s : socket(s) · (G receive (s) ⇒ F respond (s))

We use the Apache Benchmarking tool to create varying loads on the Apache
web server, and monitor the property online.

2. Ensuring fairness in utilization of personal cloud storage services.
This case study is based on the work in [12], which discusses how profiling
DropBox traffic can identify the bottlenecks and improve the performance.
Among the issues detected during this analysis, is a user repeatedly upload-
ing chunks of maximum size to DropBox servers. Thus, it is beneficial for a
runtime verification system to ensure that the majority of chunks are not of
maximum size, ensuring fairness of service use. The corresponding Ltl4−C
property is as follows:

Au : user(u) · A<0.5 c : chunk(c) · ismaxchunksize (u, c)

3. Ensuring proxy cache is functioning correctly. This experiment is based
on a study that shows the effectiveness of utilizing proxy cache in decreasing
YouTube videos requests in a large university campus [20]. Thus, we monitor
that no video is requested externally more than once:

Av : vid(v) · E≤1 r : req(r, v) · external(r, v)

Notice that the formulas in the above case studies utilize counting seman-
tics to express properties that cannot be expressed in standard Ltl. Moreover,
evaluation of these properties can never result in permanent satisfaction nor per-
manent violation (Case Study 1 and 2 only). Thus, the use of four-valued logic
allows the monitor to produce a meaningful verdict for these properties.

Accelerated Runtime Verification of LTL Specifications 263

5.2 Experimental Setup

Experiment Platform. The experiments machine comprises of a 12-core Intel
Xeon E5-1650 CPU, an Nvidia Tesla K20c GPU, and 32GB of RAM, running
Ubuntu 12.04.

Experimental Factors. We experiment with three implementations: single
CPU, parallel CPU, and a GPU based implementation. We also experiment
with multiple trace sizes to demonstrate scalability.

Experimental Metrics. We measure the total execution time and the moni-
tor’s CPU utilization. This is to demonstrate the impact of monitoring on overall
CPU utilization. We perform 20 replicates of each experiment and present error
bars of a 95 % confidence interval.

5.3 Results

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%

0
5

10
15
20
25
30
35
40
45

32768 65536 131072 262144 524288

C
P

U
 U

ti
liz

at
io

n
 %

T
o

ta
l t

im
e

(m
se

c)

CPU Total Time CPU || Total Time GPU Total Time
CPU Util CPU || Util GPU Util

(a) Case Study 1

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

0

20

40

60

80

100

120

32768 65536 131072 262144 524288

C
P

U
 U

ti
liz

at
io

n
 %

T
o

ta
l t

im
e

(m
se

c)

CPU Total Time CPU || Total Time GPU Total Time
CPU Util CPU || Util GPU Util

(b) Case Study 2

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

0

100

200

300

400

500

600

131072 262144 524288 1048576 2097152

C
P

U
 U

ti
liz

at
io

n
 %

T
o

ta
l t

im
e

(m
se

c)

CPU Total Time CPU || Total Time GPU Total Time
CPU Util CPU || Util GPU Util

(c) Case Study 3

Fig. 2. Experimental results

First of all, the case studies have been
evaluated with real-world datasets,
except in Case Study 1, where we
use the Apache benchmark tool to
generate traces. We have validated
that the monitor works correctly by
ensuring that verdicts of presumably
true/false are produced appropriately
for Case Studies 1 and 2, and verdicts
of presumably true/permanently false
are produced appropriately for Case
Study 3.

The performance results of Case
Study 1 are shown in Fig. 2a. As seen
in the figure, the GPU implementation
scales efficiently with increasing trace
size, resulting in the lowest monitoring
time of all three implementations. The
GPU versus single core CPU speedup
ranges from 0.8 to 1.6, increasing with
the increasing trace size. When com-
pared to parallel CPU (CPU ||), the
speedup ranges from 0.78 to 1.59. This
indicates that parallel CPU outper-
forms GPU for smaller traces (32768),
yet does not scale as well as GPU in
this case study. This is attributed to
the low number of individual objects
in the trace, making parallelism less
impactful.

264 R. Medhat et al.

CPU utilization results in Fig. 2a show a common trend with the increase of
trace size. When the trace size is small, parallel implementations incur high CPU
utilization as opposed to a single core implementation, which could be attributed
to the overhead of parallelization relative to the small trace size. On the other
hand, GPU shows a stable utilization percentage, with a 78% average utilization.
The single core CPU implementation shows a similar trend, yet slightly elevated
average utilization (average 86 %). The parallel CPU implementation imposes
a higher CPU utilization (average 115 %), since more cores are being used to
process the trace. This result indicates that shipping the monitoring workload
to GPU consistently provides more time for CPU to execute other processes
including the monitored process. The results of Case Study 2 and Case Study 3
in Figs. 2b and c respectively demonstrate a more prominent advantage of using
GPU in terms of speedup. The number of individual objects in these traces are
large, making parallelism highly effective. For Case Study 2, the speedup of the
GPU implementation over single core CPU ranges from 1.8 to 3.6, and 0.83
to 1.18 over parallel CPU. The average CPU utilization of GPU, single core
CPU, and parallel CPU is 64 %, 82 %, and 598 % respectively. For Case Study
3, speedup is more significant, with 6.3 average speedup of GPU over single
core CPU, and 1.75 over parallel CPU. The average CPU utilization of GPU,
single core CPU, and parallel CPU is 73 %, 95 %, and 680 % respectively. Thus,
the parallel CPU implementation is showing large speedup similar to the GPU
implementation, yet also results in a commensurate CPU utilization percentage,
since most cores of the system are fully utilized.

Although the parallel CPU implementation provides reasonable speedup
and the single-core CPU implementation imposes low CPU overhead, the
GPU implementation manages to achieve both simultaneously.

6 Related Work

Runtime verification of parametric properties has been studied by Rosu
et al. [13,16]. In this line of work, it is possible to build a runtime monitor para-
meterized by objects in a Java program. The work by Chen and Rosu [9] presents
a method of monitoring parametric properties in which a trace is divided into
slices, such that each monitor operates on its slice. This resembles our method
of identifying trace subsequences and how they are processed by submonitors.
However, parametric monitoring does not provide a formalization of applying
existential and numerically constrained quantifiers over objects.

Bauer et al. [5] present a formalization of a variant of first order logic combined
with LTL. The work by Leucker et al. presents a generic approach for monitor-
ing modulo theories [11]. This work provides a more expressive specification lan-
guage. Our work enforces a canonical syntax which is not required in [11], resulting
in more expressiveness. However, the monitoring solution provided requires SMT
solving at run time. Ltl4−C extends RV-Ltl by redefining �p and ⊥p to support
quantifiers and their numerical constraints. This four-valued semantics provides a

Accelerated Runtime Verification of LTL Specifications 265

more accurate assessment of the satisfaction of the property based on finite traces
as opposed to the three-valued semantics in [11].

The work in [14] presents an extension to LTL that allows counting events
associated with the Until operator. In this work, it is possible to apply a numer-
ical constraint on the number of events satisfying subformulas. This differs from
Ltl4−C, where numerical constraints are applied on quantified objects, allowing
us to reason about the number or percentage of objects that satisfy a property.
The work in [2] allows a limited form of quantification over values of a variable,
yet does not support a higher level of quantification on the entire LTL prop-
erty parameterized by the quantified variable, as is possible in Ltl4−C. The
work in [18] presents a property specification language that allows quantifica-
tion, and separates propositional evaluation from quantifier evaluation, similar
to Ltl4−C. However, Ltl4−C supports Ltl operators and quantification with
numerical constraints.

The work in [1] presents a method of using MapReduce to evaluate LTL prop-
erties. The algorithm is capable of processing arbitrary fragments of the trace in
parallel. The work in [3] presents a MapReduce method for offline verification of
LTL properties with first-order quantifiers. Our approach supports both offline
and online monitoring by extending RV-Ltl’s four valued semantics, which are
capable of reasoning about the satisfaction of a partial trace. This is unclear
in [3], since there is no evidence of supporting online monitoring.

The work in [10] presents a specification language for defining properties
on input streams. The work in [4] presents an extension to metric first order
temporal logic that allows aggregate operations.

Finally, the work in [7,8] presents two parallel algorithms for verification of
propositional Ltl specifications at run time. These algorithms are implemented
in the tool RiTHM [17]. This paper enhances the framework in [7,8,17] by intro-
ducing a significantly more expressive formal specification language along with
a parallel runtime verification system.

7 Conclusion

In this paper, we proposed a specification language (Ltl4−C) for runtime veri-
fication of properties of types of objects in software and networked systems. Our
language is an extension of Ltl that adds counting semantics with numerical
constraints. The four truth values of the semantics of Ltl4−C allows system
designers to obtain informative verdicts about the status of system properties at
run time. We also introduced an efficient and effective parallel algorithm with
two implementations on multi-core CPU and GPU technologies. The results of
our experiments on real-world case studies show that runtime monitoring using
GPU provides us with the best throughput and CPU utilization, resulting in
minimal intervention in the normal operation of the system under inspection.

For future work, we are planning to design a framework for monitoring
Ltl4−C properties in distributed systems and cloud services. Another direction
is to extend Ltl4−C such that it allows non-canonical strings of quantifiers.
Finally, we are currently integrating Ltl4−C in our tool RiTHM [17].

266 R. Medhat et al.

Acknowledgments. This work was partially sponsored by Canada NSERC Discovery
Grant 418396-2012 and NSERC Strategic Grants 430575-2012 and 463324-2014.

References

1. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.-A., Hallé, S.: MapReduce for
Parallel trace validation of LTL properties. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 184–198. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 20

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Program monitoring with LTL
in eagle. In: 2004 Proceedings of the 18th International Parallel and Distributed
Processing Symposium, p. 264. IEEE (2004)

3. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 31–47. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 4

4. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285
(2015)

5. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

6. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Logic Comput. 20(3), 651–674 (2010)

7. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: GPU-based runtime verification.
In: IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pp. 1025–1036 (2013)

8. Berkovich, S., Bonakdarpour, B., Fischmeister, S.: Runtime verification with min-
imal intrusion through parallelism. Formal Methods Syst. Des. 46(3), 317–348
(2015)

9. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski,
S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer,
Heidelberg (2009)

10. d’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchro-
nous systems. In: 12th International Symposium on Temporal Representation and
Reasoning (TIME 2005), pp. 166–174. IEEE (2005)

11. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 341–356.
Springer, Heidelberg (2014)

12. Drago, I., Mellia, M., Munafo, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside
dropbox: understanding personal cloud storage services. In: Proceedings of the
2012 ACM Conference on Internet Measurement Conference, pp. 481–494. ACM
(2012)

13. Jin, D., Meredith, P.O., Lee, C., Rosu, G.: JavaMOP: efficient parametric run-
time monitoring framework. In: 2012 34th International Conference on Software
Engineering (ICSE), pp. 1427–1430, June 2012

14. Laroussinie, F., Meyer, A., Petonnet, E.: Counting LTL. In; Proceedings of the
2010 17th International Symposium on Temporal Representation and Reasoning,
TIME 2010, pp. 51–58. IEEE Computer Society, Washington, DC (2010)

http://dx.doi.org/10.1007/978-3-642-35632-2_20
http://dx.doi.org/10.1007/978-3-642-35632-2_20
http://dx.doi.org/10.1007/978-3-319-11164-3_4

Accelerated Runtime Verification of LTL Specifications 267

15. Libkin, L.: Elements of Finite Model Theory. Springer, New York (2004)
16. Meredith, P., Rosu, G.: Efficient parametric runtime verification with deterministic

string rewriting. In: 2013 IEEE/ACM 28th International Conference on Automated
Software Engineering (ASE), pp. 70–80. IEEE (2013)

17. Navabpour, S., Joshi, Y., Wu, W., Berkovich, S., Medhat, R., Bonakdarpour, B.,
Fischmeister, S.: RiTHM: a tool for enabling time-triggered runtime verification
for C programs. In: ACM Symposium on the Foundations of Software Engineering
(FSE), pp. 603–606 (2013)

18. Sokolsky, O., Sammapun, U., Lee, I., Kim, J.: Run-time checking of dynamic prop-
erties. Electron. Notes Theoret. Comput. Sci. 144(4), 91–108 (2006)

19. Williams, M.: Scaling Web Applications with NGINX, Part II: Caching and Mon-
itoring (2015). https://www.nginx.com/blog/. Accessed 27 May 2016

20. Zink, M., Suh, K., Gu, Y., Kurose, J.: Watch global, cache local: Youtube network
traffic at a campus network: measurements and implications. In: Electronic Imaging
2008, p. 681805. International Society for Optics and Photonics (2008)

https://www.nginx.com/blog/

Non-intrusive Runtime Monitoring Through
Power Consumption: A Signals and System
Analysis Approach to Reconstruct the Trace

Carlos Moreno(B) and Sebastian Fischmeister

Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
{cmoreno,sfischme}@uwaterloo.ca

Abstract. The increasing complexity and connectivity of modern
embedded systems highlight the importance of runtime monitoring to
ensure correctness and security. This poses a significant challenge, since
monitoring tools can break extra-functional requirements such as timing
constraints. Non-intrusive program tracing through side-channel analy-
sis techniques have recently appeared in the literature and constitute
a promising approach. Existing techniques, however, exhibit important
limitations.

In this paper, we present a novel technique for non-intrusive program
tracing from power consumption, based on a signals and system analy-
sis approach: we view the power consumption signal as the output of a
system with the power consumption of training samples as input. Using
spectral analysis, we compute the impulse response to identify the sys-
tem; the intuition is that for the correct training sample, the system will
appear close to a system that outputs a shifted copy of the input signal,
for which the impulse response is an impulse at the position correspond-
ing to the shift. We also use the Control Flow Graph (CFG) from the
source code to constrain the classifier to valid sequences only, leading to
substantial performance improvements over previous works.

Experimental results confirm the effectiveness of our technique and
show its applicability to runtime monitoring. The experiments include
tracing programs that execute randomly generated sequences of func-
tions as well as tracing a real application developed with SCADE. The
experimental evaluation also includes a case-study as evidence of the
usability of our technique to detect anomalous execution through run-
time monitoring.

Keywords: Program tracing · Runtime monitoring · Embedded soft-
ware security · Side-channel analysis · Power-based program tracing ·
Signal processing · Signals and systems analysis

1 Introduction

Modern embedded devices are rapidly increasing in complexity and connectivity,
making it ever more important to incorporate runtime monitoring systems for
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 268–284, 2016.
DOI: 10.1007/978-3-319-46982-9 17

Non-intrusive Runtime Monitoring Through Power Consumption 269

the purpose of ensuring correctness and security. This introduces an important
challenge, as instrumentation added to the system can break extra-functional
requirements such as real-time constraints in the operation. Non-intrusive pro-
gram tracing through side-channel analysis techniques have recently appeared
in the literature and constitute a promising approach. These techniques use an
external device to measure power consumption and reconstruct the program
trace. From the perspective of runtime monitoring, there are several benefits: (i)
we obtain the program trace without any instrumentation that could affect the
device’s functionality; (ii) once the program trace is obtained, additional mon-
itoring (processing/analysis) tools can be introduced without the risk of inter-
fering with the device’s functionality or breaking any extra-functional require-
ments; and (iii) the runtime monitor is tamper-proof in the sense that it is not
affected by system “crashes” or even deliberate cyber-attacks.

Moreno et al. presented a novel technique for non-intrusive program tracing
and debugging through side-channel analysis [19]. In that work, they used power
consumption measurements — power traces — to determine blocks of source code
being executed. That work was an important step in showing the technical fea-
sibility of these program tracing techniques. However, it exhibits important lim-
itations with respect to both methodology and performance. In particular, it
requires a user-assisted training phase where fragments of source code have to
be isolated and individually executed. Moreover, the technique in [19] operated
at the granularity level of whole functions, which may be too coarse to be practi-
cal. Indeed, [19] does not present any case-studies to support the idea of this non-
intrusive tracing technique being useful in practice. The work in [20] proposes a
technique that can be combined with the approach in [19], and indeed can be com-
bined with our proposed technique, potentially increasing its performance through
a compiler-assisted transformation of the generated binary code. Eisenbarth
et al. [9] presented a different approach, introducing the idea of a side-channel
disassembler. Without using information about source code, they attempted to
obtain the sequence of CPU instructions from power consumption. However, their
results showed a performance far too low to be applicable in practice. Clark et al. [5]
used side-channel analysis to identify execution traces in medical devices for the
purpose of tamper-detection. That work is limited in the sense that it only works
at the granularity level of the entire execution trace, and relies on the assumption
that the device’s task is simple and highly repetitive.

Using online trace information, our approach can work within the concep-
tual scheme of traditional runtime monitoring and verification systems [22], but
it exhibits important advantages with respect to their implementation. The main
benefits derive from the fact that in our system, the external monitor is a phys-
ically isolated subsystem, yet suitable for low-cost microcontrollers that have
little or no hardware support for debugging, tracing, or in general runtime mon-
itoring. Both event-triggered [4,12–14,25] and time-triggered frameworks [21]
typically rely on components or instrumentation that run together with the mon-
itored system, making them vulnerable to security threats and failures involving
memory corruption (“system crashes”).

270 C. Moreno and S. Fischmeister

1.1 Our Contributions

In this work, we propose and implement a novel technique for non-intrusive
program tracing through side-channel analysis, and show its application to
online runtime monitoring through anomaly detection. We introduce conceptual
changes that improve the effectiveness and efficiency of power-based program
tracing, thus addressing most of the limitations in [5,9,19]. Our proposed tech-
nique has several aspects that account for these improvements over previous
work:

• Novel use of signal processing for classification in power-based pro-
gram tracing. Instead of standard statistical pattern recognition techniques,
we propose a novel approach based on signal processing; specifically, a form
of system identification. We use a computationally efficient procedure that
determines the best match for a trace segment and also the position of the
match (without requiring any extra, separate computation). This addresses
one of the important limitations in [19]: the system is given a single power
trace and has to split it into segments to be classified, maintaining align-
ment with the correct segments boundaries (of which the system is given no
information as input). Our signals and system analysis approach proved to
not only work well in terms of the performance of the system, but also con-
tributed to a substantial improvement in processing speed, with a measured
speedup of more than 4× attributable to this aspect.

• Use of code analysis to improve performance. Using the Control Flow
Graph (CFG) obtained from the source code, we assist the classification sys-
tem by constraining the blocks to those that are part of valid sequences. The
intuition is that the probability of misclassification is lower if the classifier
counts on additional information that reduces the set of candidates. This is
illustrated by Fig. 1, where sub-figure (a) represents classification when con-
sidering all possible blocks, and sub-figure (b) represents classification where
a reduced set of candidates is considered. Our technique builds upon this
intuition: by expanding the CFG using a dynamic programming approach,
we validate sequences of blocks; this can be seen as a mechanism where we
obtain fine granularity, but with the equivalent of the classifier working at a
coarser granularity so that it reduces the probability of misclassification by
working with larger segments.

• Improved methodology and nearly fully automated work flow. We
instrumented the source code using the CFG, allowing us to achieve nearly
full automation of both the training phase and the performance evaluation
phases of the system.

In addition to the experimental evaluation where we measure the performance
of our system, we include a case-study presented as evidence of the usability of
this technique. This case-study applies in the context of runtime monitoring as
well as in the context of computer security, where our technique may be used
as an Intrusion Detection System (IDS) [17] for embedded devices. The case-
study involves introducing a buffer-overflow bug/vulnerability, exploited in two

Non-intrusive Runtime Monitoring Through Power Consumption 271

Fig. 1. Reducing the set of candidates for classification

distinct ways: (i) overflowing the stack to make execution return to a random
address (a “bug” in the conventional sense); and (ii) through a buffer-overflow
attack [1,7], where the stack is overwritten in a controlled way to hijack the
device’s execution. Results from the case-study confirm our approach’s potential
and usability in these two contexts.

1.2 Organization of the Paper

The remaining of this paper proceeds as follows: Sect. 2 presents a brief review
of signals and system analysis tools. Section 3 describes our proposed approach.
Our experimental setup is described in Sect. 4, followed by the results in Sect. 5,
including the case-study. Finally, a discussion and concluding remarks are pre-
sented (Sects. 6 and 7).

2 Background – Frequency Domain Analysis of Signals
and Systems

A discrete-time linear time-invariant (LTI) system can be fully described by its
impulse response, h(n). This impulse response is the output of the system when
the input is the impulse signal δ(n), where δ(0) � 1 and δ(k) � 0 ∀ k �= 0. For
an arbitrary input signal x(n), the system’s output y(n) is obtained through the
convolution relationship [24]:

y(n) =
∞∑

k=−∞
h(k)x(n − k) (1)

A frequency domain representation of a discrete-time signal x(n) can be
obtained through the (Discrete-Time) Fourier Transform F , defined as [24]:

F{x} = X (ω) =
∞∑

k=−∞
x(k) e−jωk (2)

where ω is the angular frequency (−π < ω < π), and j denotes the imaginary
unit (i.e., j2 = −1).1

1 We adopt the electrical engineering convention of using j to denote the imaginary
unit, to avoid ambiguity with the symbol for electrical current or intensity, i.

272 C. Moreno and S. Fischmeister

Given the Fourier Transform X (ω), the signal x(n) can be obtained through
the inverse Fourier Transform F−1, defined as [24]:

F−1{X} = x(n) =

π∫
−π

X (ω)e jωndω (3)

The properties of the Fourier Transform for discrete-time signals regarding
convolution in the time domain are the same as those of the Fourier Transform
for continuous-time signals. In particular, if x(n), y(n), and h(n) follow the
relationship described in Eq. (1), then it holds that:

Y(ω) = X (ω)H(ω) (4)

where X (ω), Y(ω), H(ω) are the Fourier Transforms of x(n), y(n), h(n), respec-
tively. Thus, given an input signal x(n) and its corresponding output signal y(n),
the impulse response h(n) of the system can be obtained as:

h(n) = F−1

{ Y(ω)
X (ω)

}
= F−1

{ F{y}
F{x}

}
(5)

To apply frequency domain analysis to a segment or a window of a signal of
length N (viewed as a signal x(n) with 0 � n < N), we use the discrete Fourier
Transform (DFT), defined as [24]:

DFT (x) = X (k) =
N−1∑
n=0

x(n)e−j 2πkn
N (6)

with 0 � k < N . Its inverse operation is given by:

DFT −1(X) = x(n) =
1
N

N−1∑
k=0

X (k)e j 2πkn
N (7)

The DFT can be efficiently computed through the Fast Fourier Transform
(FFT) algorithm [24]. In our case, we used the FFTW library [10], which effi-
ciently computes both FFT and inverse FFT. The DFT represents the Fourier
Transform of a periodic signal with period N where x(n) comprises one period
of the signal. The properties shown above hold, with the system’s output
being given by the circular convolution of the input signal and the impulse
response— convolution computed with time indexes treated in a modulo N fash-
ion. This allows us to obtain the impulse response of a system when looking at
N -samples windows of the related signals:

h(n) = DFT −1

{
H =

Y
X

}
(8)

where the quotient H is computed through sample-wise division. That is, for
each k ∈ [0, N), H(k) = Y(k)

X (k) .

Non-intrusive Runtime Monitoring Through Power Consumption 273

3 Proposed Technique

This section describes the main aspects and novelty of our proposed technique.

3.1 Frequency Analysis: Classifying and Determining the Shift
in the Power Trace Segments

The main idea and novel aspect behind our proposed approach for classification
is to view the power trace segments as the output of a system whose input is
the power trace of the training samples. For each of the training samples (corre-
sponding to fragments of code) we perform a system identification; in particular,
we obtain the impulse response as described in Sect. 2. The intuition is that for
the correct fragment, the identified system will correspond to a system that out-
puts a copy of the input signal shifted by a certain amount of samples. For this
time-shift system, we know that the impulse response is a single pulse at the
position corresponding to the shift [24].

A key detail is that as the system advances through the trace, the exact
positions where the trace segments begin (i.e., the position at which the corre-
sponding fragment of code started execution) are not given. One advantage of
this system identification approach is that once we determine the best match
among the training samples, the shift in the impulse response reveals the posi-
tion where the match occurs. In terms of execution speed, this represents an
important advantage with respect to the technique in [19], where the system
needs to attempt classification over a somewhat large range of possible starting
positions around the nominal starting point given by the outcome of the previous
classification (see [18] for details).

We have to be careful, however, with the “circular” nature of the DFT-based
analysis: consider a system that shifts the signal by n0 samples, with impulse
response h(n) = δ(n − n0). If we look at an N -samples window of a periodic
signal, the shift occurs circularly within the window. However, for the case of a
non-periodic signal (as it is our case), shifting the signal and comparing input
and output in the same N -samples window corresponds to truncating the signal
on one end and introducing an alien fragment on the other end. Thus, the impulse
response obtained through DFT analysis within an N -samples window will not
be a single pulse.

The key observation is that for small values of n0 compared to N , the impulse
response will be close to a single pulse, since the output corresponds to the linear
superposition of a large fraction of the signal shifted and two signals that are
nonzero only in a small fraction of the interval. Figure 2 illustrates this intuition,
with sub-figure (a) showing the computed impulse response for a shift by a small
amount (5 positions in a 128 samples window) and sub-figure (b) showing the
response for a larger shift (40 positions). The impulse response for the small
shift shows a very prominent pulse at index 5, whereas the response for the
larger shift exhibits a higher “noise level” outside the main pulse near index 40,
thus making the pulse less prominent. It should be obvious that the response

274 C. Moreno and S. Fischmeister

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Va
lu

e

Time index

(a) Shift = 5

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Va
lu

e

Time index

(b) Shift = 40

Fig. 2. Examples of impulse responses

for two unrelated signals should not have any prominent pulses, so we omit any
examples.

3.2 Statistical Pattern Recognition

Though the use of pattern recognition as the main classification technique was
largely replaced by the signal processing approach, some elements from this field
are present. In particular, we use a distance metric to quantify how close the
impulse response is from a single pulse, and this distance is evaluated for the
elements of a database of training samples; we determine the k closest matches
from the database and evaluate the average distance — a logic similar to that
behind the k nearest neighbors (k-NN) rule [26].

For the distance metric, we used the following heuristics: we quantify how
close a given impulse response is from a single pulse based on the following
parameters (computed in the same order as listed):

• Highest value of the signal (the “height” of the main pulse; denoted Hp) and
position where it occurs (denoted n0).

• Median of the absolute values of the signal; denoted h̃.
• Width of the main pulse (obtained from the interval around n0 for which the

absolute value of the signal is above h̃; denoted Wp).
• Highest absolute value of the signal outside the interval corresponding to the

main pulse (the “noise” level; denoted Ln).

With these parameters, the distance, d (a metric corresponding to the natural
notion that the smaller the distance, the closer the match), is given by:

d = Wp × Ln

Hp
(9)

The first term accounts for the effect that the narrower the main pulse, the closer
it is to a single pulse. The second term accounts for the effect that the smaller
the values outside the main pulse (relative to the height of the main pulse), the
closer it is to being a single pulse.

Non-intrusive Runtime Monitoring Through Power Consumption 275

3.3 Static Analysis: Using the Control Flow Graph

The second important aspect introduced in this work is the addition of static
analysis tools to assist the classifier by restricting the classification choices to
blocks that constitute allowed sequences. In particular, use of the CFG allows us
to constrain the choice of best match to those that are part of valid sequences. To
this end, we used a dynamic programming approach [6]: at each point in the
classification, we expand the CFG to determine the set of possible paths up to a
given depth (given as a configuration parameter). For each of the nodes in this
expanded/unrolled CFG, we evaluate the distance (as described in Sect. 3.2).
We choose the path P with lowest sum of distances, and the classifier’s decision
corresponds to the first node in P.

This can be seen as a mechanism where we obtain fine granularity in the exe-
cution trace, but with the equivalent of using a coarse granularity for the clas-
sification, reducing the probability of misclassification by working with longer
traces. The dynamic programming implementation improves computational effi-
ciency: we advance through the tree, discarding the subtrees of the sibling nodes
to the selected one, but keeping the subtree of the selected node so that we avoid
redundant calculations when expanding the CFG at the new node. Algorithm1
shows the details of this procedure. In the algorithm, the expression {Suc(·)}
denotes the set of successors of the argument ·, and Gn denotes the CFG G with
a state indicating that it is currently at node n.

Algorithm 1. Classification Procedure.

Input: G (CFG), PT (Power Trace), D (Depth)

Output: T (Program Trace) Expressed as sequence of blocks

begin
R ← RootNode;
repeat D times;

for each leaf node n ∈ R do
n.child nodes ← {Suc(Gn)};
Compute distance and start pos. (shift) for added nodes

end
while R leaf nodes not at end of PT do

P ← Path to leaf with lowest sum of distances;
T ← T ‖ P(1);
R ← Subtree with root P(1);
for each leaf node n ∈ R do

n.child nodes ← {Suc(Gn)};
Compute distance and shift for added nodes

end

end

end

276 C. Moreno and S. Fischmeister

Notice that this “recursion forward” is possible because we have the complete
trace for analysis; in an actual implementation where the system has to operate
online (i.e., classify traces on-the-fly), this simply means that we have to allow
for a small delay in the classification process, so that at block n of the trace, the
classifier is making the decision for block n − D, where D is the depth of the
expanded CFG.

We also highlight the aspect that this dynamic programming approach of
expanding the CFG can be combined with other classification techniques, since
it relies on a distance metric that quantifies how close given samples are from
training samples. Though our signals and system analysis approach proved effec-
tive, other techniques may be suitable under different conditions, and could
exhibit better results in terms of classifier’s performance. Being able to combine
any such techniques with the CFG expansion approach ensures that one can
improve the classifier’s performance while targeting a fine granularity regardless
of the classification technique being used.

3.4 Segmentation of Traces and Fragments of Source Code

One important limitation in the approach proposed in [19] relates to the diffi-
culty in training the system. For the training phase, fragments of code (whole
functions, in that work) had to be run in isolation and surrounded by markers.
In our proposed approach, during the training phase we run the fragments of
code in the natural sequence as they occur in the source code. An instrumented
version of the source code allows us to segment the trace into the sections that
correspond to the fragments in the source code by flipping a port bit at the
boundaries between fragments. This was done in a way such that the effect on
the power traces is negligible (Sect. 4.1 describes this setup in more detail).

For the training phase, where we require a priori knowledge of the fragment
of code being executed, an additional instrumented version is created with print
statements at the boundaries between segments. This instrumented instance is
run outside the target, in “offline” mode; both instrumented versions produce
the same execution trace, since the source code is the same for both cases and
the input data is the same (it is chosen at random, but once chosen it is “hard
coded” into the programs — Sect. 4.1 includes a more detailed description). Thus,
the system can automatically determine the fragment of code corresponding to
each segment of the trace, as marked by the edges in the port bit signal.

3.5 Instrumenting the Source Code

We used LLVM [16] to extract a CFG from the source code. However, for our
setup — with an AVR Atmega2560 [2] operating at 1 MHz — basic blocks pro-
duce trace segments that are too short for the classifier to operate successfully.
We devised a procedure to merge CFG nodes into nodes representing larger

Non-intrusive Runtime Monitoring Through Power Consumption 277

Fig. 3. Example of merging CFG nodes

blocks of source code, yet maintaining a valid CFG structure2 where the begin-
ning of execution of each block can be marked in the source code.

Since we require markers between segment boundaries, and segments cor-
respond directly with blocks of code associated to CFG nodes, the important
aspect to maintain is preserving the beginning of the block by merging nodes
corresponding to short blocks into their predecessor nodes. As an example, con-
sider the subgraph of a CFG shown at the left in Fig. 3, where block B is too
short.

We merge node B into node A to create node A′. The result is consistent with
the initial CFG: the meaning of this new CFG subgraph is that if we enter node
A′, then the possible successors are node C (if block B does not get executed)
or nodes D or E (if B does execute). The beginning of block A′ (the line in
the source code) remains the same as the beginning of block A, and there is
no ambiguity. Block B no longer needs its beginning marked, since block B is
no longer being considered, and instead, it is part of block A′. When executing,
marks are correctly applied at the beginning of each block. Blocks with multiple
possible internal paths are not a problem; we enter block A′ and its starting point
is marked. The next mark will occur at the beginning of one of its successors,
and execution of any instance of block A′ will be enclosed between the mark at
its beginning and the next mark that appears.

4 Experimental Evaluation

The experimental evaluation includes two parts:

• Random sequence of functions. We evaluate our system against a target
executing randomly generated sequences of MiBench [11] functions, with a
random choice of two functions to execute next at each step in the sequence.
The experiment is run multiple times, and we randomly generate a differ-
ent sequence for each execution. The rationale for this choice is twofold:
(i) it allows us to compare the performance against previous works, espe-
cially against the results reported in [19]; and (ii), a sequence of code with
a “random CFG” constitutes a highly demanding task for our classifier, and

2 Technically, the resulting graph is not a CFG, since the blocks can contain condi-
tionals; however, it maintains the aspect that is relevant to our application: edges
indicate the possible sequences during execution.

278 C. Moreno and S. Fischmeister

this has two important consequences: the results obtained are not “helped”
by any particular structure of specific software that one may choose for this
purpose; and also, the results are more statistically meaningful.

• Cruise Control application. The target device executes a SCADE 6 [8]
Cruise Control application. This application follows the periodic, real-time tick
based scheme where execution alternates between an interval of computations
and idle. The rationale for using a concrete, real-world application is also clear:
as much as the execution of random sequences of functions has important
advantages, we still want to demonstrate the effectiveness of our technique
on real applications. Not surprisingly, the performance of our system was
substantially better for this case, given the simpler structure of the software
and the more systematic patterns in the execution.

Many aspects in the experimental setup are common for both parts. The
following section describes the setup.

4.1 Workflow

Figure 4 shows the hardware setup, including the use of two workstations to
automate the experimentation (Fig. 4(a)) and the interface subsystem to capture
the power trace and markers through the sound card (Fig. 4(b)). The workflow
itself does not require two workstations; but the connections for the signals
capture forced us to electrically isolate the flashing from the capture.

(a) Setup for automated experimentation (b) Power trace capture

Fig. 4. Experimental setup

The workstations communicate via TCP/IP to synchronize the required
actions: Workstation 2 is the “master” in that it instructs Workstation 1 to
generate an instance of the software and flash the target device. The software
running on Workstation 2 captures and processes the traces. It detects the bit
flips (markers at the boundaries between trace segments) by looking for inflec-
tion points between neighboring minima and maxima. We used the standard

Non-intrusive Runtime Monitoring Through Power Consumption 279

Fig. 5. Procedure for the training phase

numeric approximations for the derivatives [23], with interpolation to find the
position of the inflection point with sub-sample resolution.

We used a custom-made pseudorandom number generator (PRNG) to ran-
domize the input data and the choice of functions to execute. This ensures that
execution on the target and on the print-instrumented version produce the same
trace. This is not guaranteed if we use the Standard Library PRNG, since it
can potentially vary between compilers. We used a linear congruential generator
with 64-bit internal state, as described in [15]. The PRNG is seeded by the code
generator software running on Workstation 1, using /dev/urandom.

We emphasize the aspect that the training phase and the operation phase
in our experiments always use different input data, to ensure that the results
are meaningful. This is the case since every execution of a function (for either
training or operation purposes) operates on randomly selected input data.

Figures 5 and 6 show the experimental procedures for the training phase and
the performance evaluation phase, respectively.

The implementations are in fact coded as infinite loops, simply relying on
the user to interrupt the program when they estimate that a sufficient amount
of data has been collected.

Fig. 6. Operation phase and performance evaluation

280 C. Moreno and S. Fischmeister

5 Experimental Results

In this section we present and briefly discuss the results from our experimental
evaluation.

5.1 Classifier’s Performance

The metric used to evaluate the performance is the standard notion of precision.
In our case, this corresponds to the fraction of the time during which the classifier
output corresponds to the correct segment or block (a true positive):

P �
∑ |ITP |∑ |ITP | +

∑ |IFP | (10)

where P denotes the precision, ITP are the intervals for which the output of
the classifier is a true positive, IFP are the intervals where the output is a false
positive (a misclassification), and | · | denotes the length of the argument · (the
length of the interval). The notion of recall is not applicable, since at all times
the classifier outputs something — either a true positive or a false positive.

Table 1 shows the measured precision for the various experiments, including
95 % confidence intervals. The “Raw” measurement is the precision obtained
while the system is in sync with the CFG — roughly speaking, it corresponds
to the probability of correct classification when the candidates are restricted to
the actual possible options. It was measured by counting misclassifications but
correcting them so that the next classification is done with the correct set of
candidates. The purpose of this metric is to isolate the effect of using the CFG
to narrow down the set of candidates for the classifier from the issue of hav-
ing to maintain sync with the CFG. This allows for a more direct comparison
against the results in [19], as they report the precision when classifying functions
executed in isolation as well as the overall system precision including the task
of maintaining sync after misclassifications. With the use of the dynamic pro-
gramming/CFG expansion approach, the experiment with random sequence of
functions used a depth of 8 for the tree, and with the cruise control application,
a depth of 5.

The results show a reasonably good precision, given the granularity at which
our system operates — 800 functions correspond to approx. 3000 nodes, giving a
granularity close to four times finer than that reported in [19]. Working at this
substantially finer granularity, the precisions that we obtain are similar to those
in [19]: 97.1 % precision for classification of individual blocks; close to the 98 %

Table 1. Classifier precision

Random sequence Cruise control application

Raw 97.1 % ± 0.3 % – –

With CFG Expansion 86.25 % ± 3.4 % 95.68% ± 0.01%

Non-intrusive Runtime Monitoring Through Power Consumption 281

reported in [19] when classifying individual functions in isolation. And 86.25 %
overall precision, with the classifier never going out of sync; in the same order
as the 88 % reported in [19]. For the SCADE application, the performance was
substantially higher, even when working with a lower recursion depth (which
also improves execution speed), and the classifier never went out of sync.

Observation of the classifier’s output additionally gave us several interesting
insights that will be discussed in Sect. 6.

5.2 A Case-Study: Buffer Overflows

As a case-study to assess the usability of our runtime monitoring technique in
practice, we repeated the experiments with a deliberately introduced defect that
allows buffer overflows. We performed this modified experiment in two distinct
ways: overwriting the return address with a random value (a “bug” in the con-
ventional sense); and overwriting the return address with a crafted value to cause
execution to return to a different address (a buffer-overflow/code reuse attack).
As expected, for both scenarios the system irrecoverably went out of sync with
the CFG and misclassified essentially every segment after the buffer overflow
occurred.

The shifts in the trace segments (the deviation of the starting point with
respect to the “nominal” position, given by the outcome of the previous classifi-
cation) provide a good indicator of an out-of-sync condition. When the system
is operating normally, we expect the shifts to be small, to compensate for minor
deviations due to measurement noise. When operating on a trace that is not
consistent with the CFG, the matches are found at somewhat random positions,
resulting in large values of the shifts. Figure 7 shows the shift values for the case
where the buffer overflow occurs at the seventh block; as expected, we observe
a noticeable increase in the values after that position.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30

Sh
ift

 o
f S

eg
m

en
t P

os
iti

on

Block #

Depth = 3
Depth = 5
Depth = 7

Fig. 7. Effect of a buffer overflow bug/attack on the classifier’s shifts

Though we did not incorporate any formal anomaly detection techniques [3]
to automate the reporting of these unrecognized segments, the results represent
encouraging evidence to the usability of our technique in the context of either
monitoring to detect faulty behavior or as an IDS.

282 C. Moreno and S. Fischmeister

6 Discussion and Future Work

One of the positive aspects to highlight relates to the potential for usability of
our system as a runtime monitoring tool in real-world systems; the experimental
results confirm this potential for cases where execution follows the CFG but
deviating from specifications (e.g., an infinite loop due to lack of validation of
input data) and also the cases where execution violates the CFG constraints (e.g.,
stack corruption, invalid pointer accesses, malware/tampering, etc.). Combining
our approach with the technique in [20] is a promising avenue to further improve
our system’s performance, and is one of the aspects suggested as future work.

The following are some of the interesting insights that we obtained from this
work, in particular from analysis of the classifier’s output from the experiments:

• Use of additional static analysis to improve the precision of the
classifier. We could observe that one of the main opportunities for misclas-
sifications arises from segments that are short in length and where the CFG
expansion allows a substitution without getting out of sync. Static analysis
could reduce the set of paths that can execute (with respect to using the CFG
alone). This would also improve speed, as it reduces the size of the expanded
CFG in our dynamic programming algorithm in the classifier.

• Using the shifts to avoid misclassifications. We could observe several
instances where the shifts (the deviation from the nominal starting point of a
segment) could help correct misclassifications; indeed, several errors occurred
for instances where the correct path was A → B → C and the classifier output
A → C, with a large positive shift for A and a large negative shift for C, which
suggests that the choice A → B → C was likely the correct one (in any case,
the system could confirm this if it verifies that the shifts for the former case
are small).

• Optimizing the choice of CFG blocks. The choice of CFG blocks could
be adjusted to improve the classifier’s performance; for example, this could
address the aspect mentioned above, where a short segment is incorrectly
selected without getting out of sync. By looking at the training samples and
estimating probabilities of correct classification, situations prone to errors
could be identified and avoided through a different choice of CFG blocks,
obtained by merging blocks in different combinations.

7 Conclusions

In this paper, we presented a non-intrusive program tracing technique and
showed its applicability to runtime monitoring. We used a novel signals and sys-
tem analysis approach, combined with static analysis to further improve both
performance and methodology. The proposed technique exhibits substantially
better performance compared to previous work on power-based program trac-
ing, as it has comparable precision while working at a granularity level close to
four times finer. A case-study confirmed the potential of our technique either as
a runtime monitoring tool or as an IDS for embedded devices.

Non-intrusive Runtime Monitoring Through Power Consumption 283

Acknowledgments. The authors would like to thank Pansy Arafa, Hany Kashif, and
Samaneh Navabpour for their valuable assistance with the CFG and instrumentation
infrastructure as well as related discussions.

This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada and the Ontario Research Fund.

References

1. One, A.: Smashing the stack for fun and profit. Phrack Magazine (1996)
2. Atmel Corporation: ATmega2560 (2016). http://www.atmel.com/devices/

ATMEGA2560.aspx
3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-

puting Surveys (CSUR) 41(3), 15 (2009)
4. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment

for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31980-1 36

5. Clark, S.S., Ransford, B., Rahmati, A., Guineau, S., Sorber, J., Fu, K., Xu, W.:
WattsUpDoc: power side channels to nonintrusively discover untargeted malware
on embedded medical devices. In: USENIX Workshop on Health Information Tech-
nologies. USENIX (2013)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

7. Solar Designer: “return-to-libc” Attack, Bugtraq, August 1997
8. Dormoy, F.X.: SCADE 6: a model based solution for safety critical software devel-

opment. In: Proceedings of the 4th European Congress on Embedded Real Time
Software (ERTS 2008) (2008)

9. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Com-
putational Science X. LNCS, vol. 6340, pp. 78–99. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17499-5 4

10. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. In: Pro-
ceedings of the IEEE special issue on “Program Generation, Optimization, and
Platform Adaptation” (2005)

11. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: a free, commercially representative embedded benchmark suite.
In: Proceedings of the Workload Characterization. IEEE Computer Society (2001)

12. Havelund, K.: Runtime verification of C programs. In: International Conference on
Testing of Software and Communicating Systems (2008)

13. Havelund, K., Roşu, G.: Monitoring Java programs with Java PathExplorer. Elec-
tron. Notes Theoret. Comput. Sci. 55(2), 200–217 (2001). Runtime Verification
(RV 2001)

14. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-
time assurance approach for Java programs. Formal Methods Syst. Des. 24(2),
129–155 (2004)

15. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms, 3rd edn. Addison-Wesley, Reading (1998)

16. Lattner, C., the LLVM Developer Group: The LLVM Compiler Infrastructure -
online documentation. http://llvm.org

17. Bishop, M.: Computer Security: Art and Science. Addison-Wesley, Reading (2003)

http://www.atmel.com/devices/ATMEGA2560.aspx
http://www.atmel.com/devices/ATMEGA2560.aspx
http://dx.doi.org/10.1007/978-3-540-31980-1_36
http://dx.doi.org/10.1007/978-3-642-17499-5_4
http://llvm.org

284 C. Moreno and S. Fischmeister

18. Moreno, C.: Side-channel analysis: countermeasures and application to embedded
systems debugging. Ph.D. Thesis (University of Waterloo) (2013)

19. Moreno, C., Fischmeister, S., Hasan, M.A.: Non-intrusive program tracing and
debugging of deployed embedded systems through side-channel analysis. In: Con-
ference on Languages, Compilers and Tools for Embedded Systems, pp. 77–88
(2013)

20. Moreno, C., Kauffman, S., Fischmeister, S.: Efficient program tracing and monitor-
ing through power consumption - with a little help from the compiler. In: Design,
Automation, and Test (DATE) (2016)

21. Navabpour, S., Joshi, Y., Wu, W., Berkovich, S., Medhat, R., Bonakdarpour, B.,
Fischmeister, S.: RiTHM: a tool for enabling time-triggered runtime verification for
C programs. In: Foundations of Software Engineering, pp. 603–606. ACM (2013)

22. Pnueli, A., Zacks, A.: PSL model checking and run-time verification via testers.
In: 14th International Symposium on Formal Methods (2006)

23. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C,
2nd edn. Cambridge University Press, Cambridge (1992)

24. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing: Principles, Algorithms,
and Applications, 4th edn. Prentice Hall, Upper Saddle River (2006)

25. Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S.A., Stoller,
S.D., Zadok, E.: Aspect-oriented instrumentation with GCC. In: Barringer, H.,
et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 405–420. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16612-9 31

26. Webb, A.R., Copsey, K.D.: Statistical Pattern Recognition, 3rd edn. Wiley, New
York (2011)

http://dx.doi.org/10.1007/978-3-642-16612-9_31

An Automata-Based Approach to Evolving
Privacy Policies for Social Networks

Raúl Pardo1(B), Christian Colombo3, Gordon J. Pace3,
and Gerardo Schneider2

1 Department of Computer Science and Engineering,
Chalmers University of Technology, Gothenburg, Sweden

{pardo,gersch}@chalmers.se
2 Department of Computer Science and Engineering,

University of Gothenburg, Gothenburg, Sweden
3 Department of Computer Science, University of Malta, Msida, Malta

{christian.colombo,gordon.pace}@um.edu.mt

Abstract. Online Social Networks (OSNs) are ubiquitous, with more
than 70% of Internet users being active users of such networking ser-
vices. This widespread use of OSNs brings with it big threats and chal-
lenges, privacy being one of them. Most OSNs today offer a limited set
of (static) privacy settings and do not allow for the definition, even less
enforcement, of more dynamic privacy policies. In this paper we are con-
cerned with the specification and enforcement of dynamic (and recurrent)
privacy policies that are activated or deactivated by context (events). In
particular, we present a novel formalism of policy automata, transition
systems where privacy policies may be defined per state. We further pro-
pose an approach based on runtime verification techniques to define and
enforce such policies. We provide a proof-of-concept implementation for
the distributed social network Diaspora, using the runtime verification
tool Larva to synthesise enforcement monitors.

1 Introduction

As stated in [21] by Weitzner et al., “[p]rotecting privacy is more challenging
than ever due to the proliferation of personal information on the Web and the
increasing analytical power available to large institutions (and to everyone else)
through Web search engines and other facilities”. The problem being not only
to determine who might be able to access what information and when but also
how the information is going to be used (for which purpose). Addressing all these
privacy-related questions is complex, and as today there is no ultimate solution.

The above is particularly true for Online Social Networks (OSNs) (also
known as Social Networking Sites or Social Networking Services — SNSs), due
to their explosion in popularity in the last years. Sites like Facebook, Twitter
and LinkedIn are in the top 20 most visited Web sites in the world [1]. Nearly
70 % of the Internet users are active on OSNs as shown in a recent survey [12],
and this number is increasing. A number of studies show that the number of
privacy breaches is keeping pace with this growth [10,14–16]. The reasons for
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 285–301, 2016.
DOI: 10.1007/978-3-319-46982-9 18

286 R. Pardo et al.

this increase on privacy breaches are manifold; just to mention a few: (i) Many
users are not aware of the implications of content sharing on OSNs, and do not
foresee the consequences until it is too late; (ii) Most users do not take the time
to check/change the default privacy settings, which are usually quite permis-
sive; (iii) The privacy settings offered by existing OSNs are limited and are not
fine-grained enough to capture desirable privacy policies; (iv) Side knowledge
and indirect disclosure, e.g. through aggregation of information from different
sources, it is difficult to foresee and detect; (v) There currently are no good
warning mechanisms informing users of the potential breach of privacy, before
a given action is taken; (vi) Privacy settings are static (they are not time- nor
context-dependent), thus not being able to capture the possibility of defining
repetitive or recurrent privacy policies.

Recently, the following privacy flaw was pointed out in the Facebook mes-
senger app [3]. It was shown that it is possible to track users based on their
previous conversations. It was enough to chat several times per day with users
to accurately track their locations and even infer their daily routines. It was pos-
sible since the app adds by default the location of the sender to all the messages.
This problem arises because of some of the reasons in the previous list such as
(i), (ii) and (v). Facebook solution was to disable location sharing by default,
which might be seen as a too radical solution. However, it is the best Facebook
developers can do given the current state of privacy protection mechanisms. We
believe that there is room for better solutions that offer protection to users while
not restricting the sharing functionalities of the OSN. For instance, this privacy
flaw could have been solved with a privacy policy that says “My location can
only be disclosed 3 times per day”. This policy prevents tracking users while still
allowing users to share their location in a controlled manner. We called this type
of privacy policies evolving polices and they are the focus of this paper. Other
examples of evolving policies are “Co-workers cannot see my posts while I am
not at work, and only family can see my location while I am at home” or “My
supervisor cannot see my pictures during the weekend”.

In this paper we address the above problem, through the following contribu-
tions: (i) The definition of policy automata (finite state automata enriched with
privacy policies in their states), the definition of a subsumption and a conflict
relation between policy automata, and the proofs of some properties about these
relations (Sect. 2); (ii) A translation from policy automata into DATEs [4], the
underlying data structure of the runtime verification tool Larva [5] (Sect. 3);
(iii) A proof-of-concept implementation of dynamic/recurrent privacy policies
for the open source distributed OSN Diaspora* [6] using Larva (Sects. 4 and 5).

2 Policy Automata

In order to describe evolving policies, we adopt the approach of taking a static
policy language and use it to describe temporal snapshots of the policies in force.
We then use a graph structure to describe how a policy is discarded and another
enforced, depending on the events taking place e.g. user actions or system events.

Evolving Privacy Policies for Social Networks 287

2.1 Semantics of Policy Automata

Policy automata are defined as structures such that progressing through struc-
ture represents evolving policies, parametrised by a static policy language SPL.
This approach allows us to define a whole family of evolving policy languages,
depending on the underlying static language used.

Assumption 1. We assume that SPL has the notion of conjunction of policies
such that, for any two policies1 p1, p2 ∈ SPL, p1 & p2 ∈ SPL.

Definition 1. A policy automaton over a static privacy policy language SPL is
a 4-tuple 〈Σ, Q, q0,→, π〉 where: Σ is the alphabet — effectively the set of observ-
able actions of the underlying system; Q is the set of states in the automaton;
q0 ∈ Q is the initial state of the automaton; →⊆ Q × Σ × Q is the transition
relation; and π ∈ Q → SPL is a function which maps each state to a privacy
policy in SPL.

We will write q
a−→ q′ to indicate that there is a transition from state q to

state q′, labelled by a: q
a−→ q′ df

= (q, a, q′) ∈→. We will take the transitive closure
of the transition relation to enable us to write q

es=⇒ q′ to denote that the sequence
of events es takes the automaton from state q to state q′.

Example 1. To illustrate policy automata let us consider the policy ‘Co-workers
cannot see my posts while I am not at work, and only family can see my location
while I am at home’ (P1). If we use the static policy operator Fg(x) to denote
that anyone in group g is forbidden from performing action x (where x can refer
to posting, viewing a post, liking a post, etc.), we can express the first part of
P1 to be Fco-workers(read-post), and the second part to be Ffamily(see-location)
(we use ḡ to denote the complement of a group of users g). By synchronising
with the actions of our social network application through events marking the
arrival at and departure from a location (enter(l) and leave(l) respectively), we
can express the evolving policy in the following manner2:

Fco-workers(read-post)

start

Fco-workers(read-post) &

Ffamily(see-location)

leave(work)

enter(work)

enter(home)

leave(home)

Non-deterministic and non-total transition relations in a policy automaton
can lead to policy behaviour which is typically not required in real-life policy
analysis. For instance, we do not want to consider automata that under the
1 In the rest of the paper we take SPL to be the set of well-formed policy formulae of

the static policy language.
2 When we draw a policy automaton, transitions for events that are not explicitly

drawn are assumed to be reflexive.

288 R. Pardo et al.

execution of an event, randomly choose between the activation of two different
static policies. For this reason, we define the subset of sane policy automata
which behave deterministically and never deadlock.

Definition 2. We say that a policy automaton P = 〈Σ, Q, q0,→, π〉 is sane if its
transition relation is total and deterministic (functional). With sane policies, we
write q

e−→ and q
es=⇒ (with e ∈ Σ and es ∈ Σ∗) to denote the unique state reachable

from state q, following action e and sequence es respectively. Finally, we will
write policyP(es) to denote the policy in force after following event sequence es

from the initial state: policyP(es)
df
= π(q0

es=⇒).

In order to give a semantics to policy automata, we require the semantics
of the underlying static policy language. Let σ ∈ SN be the state of the social
network where SN is the universe of all possible social network states. Given a
static policy language SPL, we write σ, e �SPL p to denote that in the social
network state σ an event e respects privacy policy p. We assume that the social
network (but not the policy) may evolve over time through events via the relation
→SN⊆ SN × Σ × SN which is assumed to be a total function on the two first
parameters.

Based on the semantics of the static policy language, we can now define the
semantics of policy automata:

Definition 3. The configuration of a policy automaton consists of the state of
the automaton3. The initial configuration is taken to be q0. Whether an event
respects a policy automaton in a particular configuration C is defined as follows:

σ, e �SPL π(C)
σ, e �PA C

SPL

This is extended over traces in the following manner:

σ, ε �PA C
BaseTrace

σ, e �PA C σ
e−→SN σ′ C

e−→ C ′ σ′, es �PA C ′

σ, e : es �PA C
IndTrace

Example 2. Consider the policy ‘Only up to 3 posts disclosing my location are
allowed per day in my timeline’ (P2), which can be encoded as the following
automaton (we will assume that from left to right, the states are named q0, q1,
q2 and q3):

3 We present these semantics in terms of general configurations, rather than the
automata states, since we envisage the extension of the automata to handle local
symbolic state, requiring a richer configuration but still in line with the definitions
given in this paper.

Evolving Privacy Policies for Social Networks 289

start Fall(post(my-location))

post(my-location) post(my-location) post(my-location)

midnight

midnight

midnight

Since we expect that posting the location when a policy prohibiting it is
in force is a violation, we would expect the static policy language seman-
tics to show that for any social network state σ: σ, post(my-location) 	�SPL

Fall(post(my-location)).
From this, and given that π(q3) = Fall(post(my-location)) we can deduce

that in state q3, the policy clause is likewise violated whenever a post dis-
closing my-location is performed, no matter the state of the social network:
σ, post(my-location) 	�PA q3.

Using the rule IndTrace, provided there is σ′ such that σ
post(my-location)3

===========⇒
σ′, we have:4 σ, post(my-location)4 	�PA q0.

Note that here we write post(my-location)4 because we want to check that
after disclosing 3 times the user’s location, the forth one would be a violation of
π(q3).

If the maximum number of posts were to be increased, the number of states
in the automaton would grow quickly. For the sake of presentation, in the rest
of the paper, we will also be enriching our notation in the examples to transi-
tion systems which have an implicit symbolic state. Transitions are labelled by a
triple: event/condition/state-update — triggering when the specified event hap-
pens and the condition holds, performing the state update before proceeding.
The property allowing for 10 location posts can be expressed in this notation in
the following manner:

start Fall(post(my-location))

post(my-location)/posts < 10/posts + +

midnight//posts = 0

midnight//posts = 0

post(my-location)/posts == 10/

Such a symbolic automaton can be unfolded into a policy automaton possibly
with an infinite number of states. For instance, in the above example, the set
of states would be {(q, n) | q ∈ {q0, q1}, n ∈ N} where q holds the value of the
(explicit) state, and n the value of posts. Since in this paper we are concerned
with runtime verification — enforcing a dynamic policy along a single trace, the
infinite number of states poses no challenge to the decidability question.

4 The supra-index over events represent the number of occurrences of the event, so
my-location3 represent the sequence of events my-location;my-location;my-location.

290 R. Pardo et al.

States in policy automata do not contain all the privacy policies which are
being enforced in the OSN. Internally the OSN could be enforcing other static
policies that have been manually activated by the users. Policy automata are a
separate layer to control some static policies. When a policy automaton moves
to a state, the static policies in the new state are activated in the OSN. Similarly,
when the automaton leaves a state, the static polices are deactivated. Transitions
to and from an empty state just mean that there is no update of static policies.

One advantage of using policy automata is that one can combine them syn-
chronously to get the equivalent of conjunction over evolving policies. In order
to do so, we require the underlying SPL to have a notion of conjunction (cf.
Assumption 1).

Policy automata can now be combined using standard synchronous compo-
sition over a particular alphabet:

Definition 4. Given two policy automata P1 and P2 (such that Pi =
〈Σi, Qi, q0i,→i, πi〉), the synchronous composition of the automata synchronising
over actions G, is defined to be the policy automaton P1‖GP2 = 〈Σ1 ∪ Σ2, Q1 ×
Q2, (q01, q02), →, π〉 where π(q1, q2)

df
= π1(q1) & π2(q2) and the transition rela-

tion is defined as follows:

q1
a−→1 q′

1 q2
a−→2 q′

2

(q1, q2)
a−→ (q′

1, q
′
2)

a ∈ G

q1
a−→1 q′

1

(q1, q2)
a−→ (q′

1, q2)
a /∈ G

q2
a−→2 q′

2

(q1, q2)
a−→ (q1, q

′
2)

a /∈ G

Example 3. The policy automaton of Example 1 effectively is a composition of
two individual evolving policies. First “Colleagues cannot see my posts when I
am not at work”, which can be represented in the following automaton

Fco-workers(read-post)

start

q10 q11leave(work)

enter(work)

and secondly, “Only my family can see my location while I am at home”:

start

q20

Fco-workers(read-post) &

Ffamily(see-location)

q2

enter(home)

leave(home)

Let P1 and P2 denote the previous two automata, respectively. The fol-
lowing diagram shows P12, the parallel composition of the previous automata

Evolving Privacy Policies for Social Networks 291

P1‖∅P2 (the synchronisation set is empty because P1 and P2 do not communi-
cate over any event):

Fco-workers(read-post)

start

(q10 ,q
2
0)

Fco-workers(read-post) &

Ffamily(see-location)

(q10 ,q
2
1)

(q11 ,q
2
0)

Fco-workers(read-post) &

Ffamily(see-location)

(q11 ,q
2
1)

enter(home)

leave(home)

enter(home)

leave(home)

leave(work) enter(work) leave(work) enter(work)

Note that this automaton is not equivalent to that of Example 1. In some
transitions that Example 1’s automaton do not update the static privacy poli-
cies (i.e., the automaton remains in the same state) this synchronous com-
position updates the policies accordingly. Imagine, for instance, that a user
goes from work to home without leaving work (it is a possible scenario if
the user lives at her workplace). After receiving enter(work), enter(home), the
automaton resulting from the synchronous composition would active the policy
Fco-workers(read-post) & Ffamily(see-location) whereas Example 1’s automaton
would activate no policies. Formally, the state (q1

0 ,q2
1) should contain the sta-

tic policy Fco-workers(read-post) & Fco-workers(read-post) & Ffamily(see-location).
However, we require the & operator of the static policy language to be idem-
potent (cf. Assumption 2, see below), thus being able to reduce the policy to
Fco-workers(read-post) & Ffamily(see-location).

Though formally the evolving policies can thus be combined into a single
one, in practice one can keep them separate and enforce them independently, e.g.
possibly on separate machines, thus avoiding information leaks (if all the policies)
have to be communicated to a central server for enforcement. For instance, one
can see a user’s set of policies being combined together over his or her local
alphabet, and then synchronising globally at a global level across users:

(p1,1‖U1 . . . ‖U1p1,n) ‖Global (pm,1‖Um
. . . ‖Um

pm,n′)

2.2 Subsumption of Dynamic Privacy Policies

Many notions can be carried over from the underlying static policy language to
dynamic policies expressed using policy automata. Provided that the static pol-
icy language has a notion of semantic equivalence (which encompasses the usual
properties of idempotency, commutativity and associativity of conjunction), we
can derive equivalence and strictness ordering over policy automata.

292 R. Pardo et al.

Assumption 2. We assume that the static policy language SPL has the notion
of semantic equivalence =SPL which is assumed to be an equivalence relation.

Furthermore, conjunction is assumed to be commutative, associative
and idempotent under this equivalence: (i) p1&p2 =SPL p2&p1; (ii)
p1&(p2&p3) =SPL (p1&p2)&p3; and (iii) p&p =SPL p.

Based on this equivalence, we can extend this to policy automata equivalence
by quantifying over traces:

Definition 5. Two policy automata P1 and P2 (with Pi = 〈Σi, Qi, q0i,→i, πi〉)
with a common alphabet Σ (which requires Σ1 = Σ2) are equivalent if after fol-
lowing any trace, they both end up in a state in which the policies are equivalent:

P1 =PA P2
df
= ∀es : Σ∗ · policyP1

(es) =SPL policyP2
(es).

Using standard approach, we can now define policy strictness ordering — a policy
is considered stricter than another if all behaviour allowed by the former is also
allowed by the latter.

Definition 6. Given policy automata P1 and P2 over alphabet Σ, we say that
P1 is stricter than P2, written P1 PA P2 as follows:

P1 PA P2
df
= P1‖ΣP2 =PA P1.

The strictness relation can be shown to obey certain properties.

Lemma 1. The relation PA is transitive, antisymmetric and reflexive.

Example 4. Consider the policy automaton in Example 1 (P1) and the synchro-
nous composition of the two automata in Example 3 (P12).

As we remarked in Example 3, the two policy automata are clearly not equiv-
alent. However, we would expect P12 to be a stricter version of P1. To show
this, we note that the synchronous composition of P1 and P12, P1‖ΣP12 (where
Σ is the whole alphabet, including {leave(home), leave(work), enter(home),
enter(work)}), and P12 result in identical policies after following any trace. For-
mally, for all traces es ∈ Σ∗ · policyP12‖P1

(es) =SPL policyP12
(es), and thus we

can conclude that P12 is stricter than P1: P12 PA P1.

2.3 Conflicting Policy Automata

In a similar manner as policy equivalence can be lifted from the static policy
language to evolving policies, we can extend the notion of conflicting policies.
Two static policies conflict when both cannot be satisfied or enforced at the
same time. For example, imagine that Alice sets the policy “Everyone can see
the posts on my timeline” and Bob activates a policy saying “Only my friends
can see my posts”. If Bob posts in Alice’s timeline which policy would apply? If

Evolving Privacy Policies for Social Networks 293

the audience of the post is only Bob’s friends Alice’s policy would be violated.
Similarly, if the audience of the posts is everyone, Bob’s policy would not be
satisfied. In order to define conflicting policy automata, we require the static
policy language to include the notion of conflict between policies.

Assumption 3. The static policy language SPL must be equipped with the
notion of conflicting polices ✠SPL, which is assumed to be (i) symmetric; and
(ii) closed under conjunction: if p1✠SPLp2 then for any p′

1, it also holds that
(p1 & p′

1)✠SPLp2.

We can lift the static policy conflict relation to one on evolving policies:

Definition 7. Given any static policy language SPL and policy automata
P1 and P2 with alphabet Σ:

P1 ✠PA P2
df
= ∃es ∈ Σ∗ · policyP1

(es) ✠SPL policyP2
(es).

The intuition behind the previous definition is simple. Any two automata are
in conflict if after the execution of a sequence of events, they end up in a state
where their policies conflict (at the static policy level).

Example 5. Imagine that Alice and Bob want to leverage the advantages of
evolving policies, and they rewrite the previous static policies in a more precise
way, “Everyone can see the posts on my timeline during my birthday” and “Only
my friends can see my posts when I am at home”. Combining the policy automata
representing these two policies, we can identify a conflict in a state reachable
after a trace in which, Alice’s birthday begins and afterwards (before the day
ends) Bob goes home. Note that it is not required that Bob posts in Alice’s
timeline for the conflicting policies to be reached, since it is known beforehand
that both policies cannot be satisfied at the same time.

Based on this definition and the assumptions we made about conflicts over
static policies, we can prove that evolving policies are closed under increasing
strictness.

Theorem 1. Given the policy automata P1 and P2 the following holds

P1 ✠PA P2 ∧ P ′
1 PA P1 =⇒ P ′

1 ✠PA P2.

3 Translation of Policy Automata to DATEs

Dynamic Automata with Timers and Events (DATEs) [4] are symbolic automata
aimed at representing monitors, with a corresponding compilation tool Larva.
In this section, we introduce the basic definitions (leaving out advanced ele-
ment which are not necessary for this paper) enabling us to provide the transla-
tion from policy automata, effectively providing an implementation to the latter

294 R. Pardo et al.

through Larva. As a monitoring formalism, DATE transitions are event, con-
dition, action triples: if a matching event occurs and the condition — based on
event parameters and the automaton symbolic state — holds, then the action
is carried out. The action can be used to either modify the automaton state,
interact with the event-generating system, or generate an alert as appropriate.

Definition 8. A symbolic automaton (SA) running over a system with state
of type Θ, is a quintuple 〈Q, q0, a0, →, B〉 with set of states Q, initial state
q0 ∈ Q, initial action to be executed a0 ∈ Θ → Θ, transition relation →⊆
Q × event × (Θ → B) × (Θ → Θ) × Q, and bad states B ⊆ Q. Note that the
transitions between automaton states are labelled with: (i) an event expression
which triggers the transition; (ii) an enabling condition on the system state —
encoded as a function from the system state to a boolean value; and (iii) an
action (code) which may change the state of the underlying system — encoded
as a function, which given a system state returns an updated system state.

A total ordering <, giving a priority to transitions, is assumed to be given so
as to ensure determinism.

The behaviour of an SA M , upon receiving a set of events, consists of: (i)
choosing the enabled transition with the highest priority; (ii) performing the
transition (possibly triggering a new set of events); and (iii) repeating until no
further events are generated, upon which the automaton waits for a system event.

3.1 Translation

Intuitively, the translation keeps the same states of the policy automaton, but
introduces transitions and states for each static policy. We note that the transla-
tion below only handles the high-level enabling and disabling of policies, leaving
the low-level checking and enforcement up to a static policy checker. We note
that the translation below only handles conjunction of policies.

Given a policy automaton 〈Σ, Q, q0,→, π〉, for a given transition (q, e, q′) ∈→,
we generate an action which disables policies in the outgoing state, and enabling
those in the ingoing state, as follows: action(q, e, q′) = stopEnforcing(π(q));
startEnforcing(π(q′)), where startEnforcing(p) and stopEnforcing(p) switches on
and off the enforcement of static policy p. Using this construction, we generate
transitions of the SA labelled as follows: →SA= {(q, e, true, action(q, e, q′), q′) |
(q, e, q′) ∈→}. The resulting DATE would be: 〈Q, q0, start,→SA, ∅〉 where start
is an action representing the activation of the automaton.

Example 6. Consider the policy automata presented in Example 1, which mod-
els the policy ‘Co-workers cannot see my posts while I am not at work, and
only family can see my location while I am at home’. Assuming that the events
leave(work), leave(home), enter(work) and enter(home) exist, the automaton
can be directly converted to a DATE as follows:

Evolving Privacy Policies for Social Networks 295

start//E1

leave(work)//E1

enter(work)//D1

enter(home)//D1;E2

leave(home)//D2;E1

where E1, D1, E2 and D2 are defined as follows:

E1 = startEnforcing(Fco-workers(read-post))
D1 = stopEnforcing(Fco-workers(read-post))
E2 = startEnforcing(Fco-workers(read-post) & Ffamily(see-location))
D2 = stopEnforcing(Fco-workers(read-post) & Ffamily(see-location))

4 Implementation in Diaspora* Using Larva

One of our objectives is to have an effective enforcement mechanism for evolving
privacy policies based on policy automata in a real OSN. In this section, we
describe the details of the implementation of policy automata using Larva in
the OSN Diaspora*.

We chose Diaspora* since it is open source, which allows us to implement the
interaction between the OSN and Larva. Diaspora* has a built-in mechanism
for enforcing static privacy policies. Pardo and Schneider have recently extended
Diaspora* with a prototype implementation of some privacy policies defined in
the PPF framework [17,18]. PPF is a formal (generic) privacy policy framework
for OSNs, which needs to be instantiated for each OSN in order to take into
account the specificities of the OSN. PPF was shown not only to be able to
capture all privacy policies of Twitter and Facebook, but also more complex
ones involving implicit disclosure of information. PPF comes with a privacy
policy language, PPLSN , which satisfies all the assumptions placed for the static
privacy language in policy automata (cf. Sect. 2).

Using policy automata to model the evolution of the privacy policies makes
it possible to define a modular enforcement of evolving policies. As we men-
tioned, policy automata are independent of the static policy language of the
OSN (except for the assumptions on =SPL and &), and consequently, they are
also independent of the underlying enforcement of each particular static policy.
Policy automata can be translated to DATEs (cf. Sect. 3). In order to imple-
ment policy automata we use the tool Larva [5], which automatically generates
a monitor from properties expressed in DATEs.

In order for the runtime enforcement to work we use a communication proto-
col between Diaspora* and Larva. Every time a relevant event occurs in Dias-
pora* (i.e., an event that can update the state of the automata), it is reported to
Larva. Then Larva updates the state of the privacy policies (if applicable), and
whenever a privacy policy is updated Larva reports this change to Diaspora*,
which would update the corresponding (static) privacy policy (see Fig. 1).

Given that Diaspora* is implemented in Ruby and the monitors that
Larva generates are Java programs, we implement the communication protocol

296 R. Pardo et al.

Fig. 1. High-level representation of the Diaspora*-Larva communication

using sockets. One socket is used by Diaspora* to send a message to Larva con-
taining the event that has occurred, plus additional information such as the
user who triggered the event; if it is a post the audience of the post, whether
the post contains a location, etc. Larva monitors detect (among other things)
Java method calls corresponding to events on DATE transitions. Therefore, we
have implemented a Java program, which listens to the communication socket
and depending on the message sent by Diaspora* it calls a concrete method
causing the Larva automaton to update its state. When an automaton updates
its state, the privacy policies to be enforced might change. There is another
socket that the Larva monitor uses to send the privacy policies that Diaspora*
should enforce. The message sent by the monitor includes the policies that must
be activated (policies of the incoming state) and/or deactivated (policies of the
outgoing state). This part of the communication will also be handled by the Java
program, which contains an auxiliary method for sending messages to Diaspora*.

5 Case Studies

As a proof-of-concept we have implemented two policy automata in the
Disapora*-Larva system presented in the previous section. Here we describe
the concrete details of this prototype. The code of these case studies can be
found in [8].

5.1 Case 1: Protecting Pictures During the Weekend

In this case study we describe the implementation of the following evolv-
ing privacy policy, “My supervisor cannot see my pictures during the week-
end”. This is a simple policy that only depends on the time of the week. Let
Fsupervisor(see-pictures) represent that my supervisor cannot see my pictures,
the following DATE models the policy

start//

monday//stopEnforcing(Fsupervisor(see-pictures));

saturday(uid)//startEnforcing(Fsupervisor(see-pictures));

Evolving Privacy Policies for Social Networks 297

As we mentioned, Diaspora*’s privacy protection mechanism is based on an
instantiation of PPF . In this instantiation, we consider that a user appears
in a picture if the user is mentioned in the post containing the picture5. For
this policy automaton Diaspora* is required to report the events saturday and
monday. Each of them represents the beginning of the day after which they are
named. Every Saturday at 00:00 Diaspora* sends the message uid;saturday to
Larva where uid is a user id. This message is sent once for each user with her
corresponding uid. At this point the automaton of each user is updated. The
automaton moves to the only possible state where it replies with the message
uid;exclude-supervisor;picture. When this message is received by Dias-
pora*, it activates the static privacy policy that forbids posting a picture of a
user if her supervisor is part of the audience. More precisely, Diaspora*’s built-in
enforcement mechanism will block any post that contains a picture and mention
of a user whose supervisor is included in the audience of the post. Similarly, on
Monday at 00:00, Diaspora* informs the automata with the message monday.
All active automata update their state, therefore no uid parameter is needed for
this event. This choice also reduces the amount of messages sent between Dias-
pora* and Larva. Finally, these automata reply to Diaspora* with the message
uid;include-supervisor;picture, which allows again the user’s supervisor to
be part of the audience of her pictures.

5.2 Case 2: Disclosing Location at Most 3 Times per Day

Here we describe the implementation of the policy automaton of Example 2,
which we translate to a DATE (as described in Sect. 3) as follows

start//

post(uid,location)/posts < 3/posts + +

midnight//posts:=0

midnight//posts = 0;D0;

post(uid,location)/posts == 3/E0;

In the previous automaton E0 = startEnforcing(Fall(post(uid,location))) and
D0 = stopEnforcing(Fall(post(uid,location))). Note that we use the variable
posts to symbolically encode the explicit states of the real policy automata (cf.
Sect. 2). There are two events present in the transitions of the automaton, which
therefore need to be reported from Diaspora* to the Larva monitors when they
occur, post(uid,location) and midnight.

In our Diaspora* PPF instantiation, mentioning users in a post that includes
a location constitutes a disclosure of their location. Every time a user is men-
tioned in a post (i.e., post(uid,location)), a message including the message
uid;post;location is sent to Larva, specifying the user id and that a location
of this user has been disclosed. The message is sent for each user mentioned
in the post. As described before, there is one Larva monitor per user, which
5 Diaspora* does not support tagging users in pictures.

298 R. Pardo et al.

controls the policy automaton of each individual. When the message is received
the automaton of the user specified by uid will be updated. This update will
increase the value of the automaton variable posts, whose initial value is 0. After
sending the message, Diaspora* waits for the answer of the automaton, in case
an update of the privacy policies of the user is required. In case posts is less
than 3, there is no need to update the privacy policies, therefore the message
do-nothing is sent back. On the other hand, if posts is greater than 3, the
automaton will move to the state where the policy forbidding the disclosure of
locations must be activated, thus it will send the message disable-posting to
Diaspora*. Note that it is not required to specify the user id in the reply since
Diaspora* initiated the communication.

As for the event midnight, Diaspora* sends the message midnight to the
monitors of all users every day at 23:59. If the monitors are in the state where
the disclosure of location is forbidden, they take the transition to the initial state.
This transition involves, firstly, resetting the variable posts to 0, and secondly,
sending the message uid;enable-posting;location back to Diaspora*, which
removes the privacy policy preventing the location of the user uid to be disclosed.
If the automaton is already in the initial state, it simply resets posts to 0.

6 Related Work

The lack of a temporal dimension in privacy policies was already pointed out by
Riesner et al. [19]. In their survey, they show that there is no OSN that supports
policies that automatically change over time. The authors mention that Facebook
allows users to apply a default audience to all their own old posts, but there is a
big gap between that privacy policy and the family of evolving policies that we
introduce in this paper.

Specifying and reasoning about temporal properties in multi-agent systems
using epistemic logic have been the subject of study for a long time. It began
with the so called interpreted systems (IS). In [7] Fagin et al. introduce IS as
a model to interpret epistemic formulae with temporal operators such as box
and diamond. IS have been used for security analyses of multi-agent systems.
Though we do consider a temporal aspect, the focus and objectives of our work
are different from the work done in interpreted systems, at least in what concerns
the domain of application and the scope of the approach. In our case, the policies
themselves are the ones evolving based on events, rather than the information
on what is known to different agents at a given time.

Recent research has been carried out in extending IS to be able to reason
about past or future knowledge. In [2] Ben-Zvi and Moses extend Ki with a
timestamp Ki,t, making it possible to express properties such as “Alice knows
at time 5 that Bob knew p at time 3”, i.e., KAlice,5KBob,3 p. With the same
essence but including real time, Woźna and Lomuscio present TCTLKD [22], a
combination of epistemic logic, CTL, a deontic modality and real time. In these,
and other related work, the intention is to be able to model the time differences
in the knowledge acquired by different agents due to delay in communication

Evolving Privacy Policies for Social Networks 299

channels. Although both our motivation as well as the application domain differ
from those of the aforementioned logics, it is worth mentioning that they could
be indeed useful to express certain real-time policies not currently supported in
our formalism.

Despite the richness of both timed epistemic logics, TCTLKD [22] and the
epistemic logic with timestamps [2], they would not be able to express recurrent
policies as we do. We are of course adding a separate layer beyond the power
of the logical formalism by using automata to precisely express when to switch
from one policy to another. It remains an interesting question what would be
the expressivity of policy automata if we consider an enhancement of PPF with
timed extensions as done in some of the above works in order to express richer
(static) policies.

We have not defined here a theory of privacy policies (we have not given a
formal definition in terms of traces or predicates), nor have we developed a formal
theory of enforcement of privacy policies. To the best of our knowledge such a
characterisation does not exist for privacy policies. There is, however, work done
in the context of security policies, for instance the work by Le Guernic et al. on
using automata to monitor and enforce non-interference [9,11] or by Schneider on
security automata [20]. It could be instructive to further develop the theoretical
foundations of policy automata and relate it to security automata and their
successors (e.g., edit automata [13]).

7 Conclusions

We have presented a novel technique to define and implement evolving privacy
policies (i.e., recurrent policies that are (de)activated depending on events) for
OSNs. We have defined policy automata as a formalism to express about such
policies. Moreover, we have introduced the notion of parallel composition, sub-
sumption and conflict between policy automata and we have proved some of
their properties. We have defined a translation from policy automata to DATEs
which enables their implementation by means of the tool Larva. Furthermore,
we have describe how to connect Larva monitors to the OSN Diaspora* so that
policy automata can effectively be implemented. In fact, the presented approach
would allow to plug in policy automata to any OSN with a built-in enforcement
of static privacy policies. Finally, as a proof-of-concept, we have implemented a
prototype of two evolving privacy policies.

The policy automata approach has some limitations. For instance, consider
that Alice enables the following policy “Only my friends can see my pictures
during the weekend”. Imagine that Alice and Bob are not friends. If Alice shares
a picture on Saturday, Bob will not have access to it. However, on Monday this
policy would be deactivated. What would be the effect of turning off this policy?
It might be possible that Bob gains access to all the pictures that Alice posted
during the weekend, since no restrictions are specified outside the scope of the
weekend. In order to address this problem we might need a policy language able
to express real-time aspects, with an element of access memory integrated within
policy automata.

300 R. Pardo et al.

We are currently also extending policy automata with timing events such
as timeouts. This extension will be almost immediately implementable using
Larva since DATEs already support timeouts in their transitions. Another line
of work is to extend policy automata with location events. Users normally access
OSNs through mobile devices. These devices could directly report the location of
users to their policy automata, which avoids having to constantly report users’
location to the OSN.

Acknowledgements. This research has been supported by: the Swedish funding
agency SSF under the grant Data Driven Secure Business Intelligence, the Swedish
Research Council (Vetenskapsr̊adet) under grant Nr. 2015-04154 (PolUser: Rich User-
Controlled Privacy Policies), the European ICT COST Action IC1402 (Runtime Ver-
ification beyond Monitoring (ARVI)), and the University of Malta Research Fund
CPSRP07-16.

References

1. Alexa-ranking. http://www.alexa.com/topsites. Accessed 11 May 2016
2. Ben-Zvi, I., Moses, Y.: Agent-time epistemics and coordination. In: Lodaya, K.

(ed.) Logic and Its Applications. LNCS, vol. 7750, pp. 97–108. Springer, Heidelberg
(2013)

3. Harvard student loses Facebook internship after pointing out privacy
flaws. http://www.boston.com/news/nation/2015/08/12/harvard-student-loses-
facebook-internship-after-pointing-out-privacy-flaws/. Accessed 11 May 2016

4. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

5. Colombo, C., Pace, G.J., Schneider, G.: LARVA -a tool for runtime monitoring
of Java programs. In: 7th IEEE International Conference on Software Engineering
and Formal Methods (SEFM 2009), pp. 33–37. IEEE Computer Society (2009)

6. Diaspora*. https://diasporafoundation.org/. Accessed 11 May 2016
7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge, vol.

4. MIT Press, Cambridge (2003)
8. Diaspora*. Test pod: https://ppf-diaspora.raulpardo.org, Code: https://github.

com/raulpardo/ppf-diaspora (2016)
9. Guernic, G.L.: Automaton-based confidentiality monitoring of concurrent pro-

grams. In: 20th IEEE Computer Security Foundations Symposium (CSF 2007),
pp. 218–232 (2007)

10. Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: it’s complicated.
In: Proceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS
2012, pp. 9:1–9:15. ACM, New York (2012)

11. Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based confiden-
tiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435,
pp. 75–89. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77505-8 7

12. Lenhart, A., Purcell, K., Smith, A., Zickuhr, K.: Social media & mobile internet
use among teens and young adults. Pew Internet & American Life Project (2010)

13. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4, 2–16 (2005)

http://www.alexa.com/topsites
http://www.boston.com/news/nation/2015/08/12/harvard-student-loses-facebook-internship-after-pointing-out-privacy-flaws/
http://www.boston.com/news/nation/2015/08/12/harvard-student-loses-facebook-internship-after-pointing-out-privacy-flaws/
https://diasporafoundation.org/
https://ppf-diaspora.raulpardo.org
https://github.com/raulpardo/ppf-diaspora
https://github.com/raulpardo/ppf-diaspora
http://dx.doi.org/10.1007/978-3-540-77505-8_7

Evolving Privacy Policies for Social Networks 301

14. Liu, Y., Gummadi, K.P., Krishnamurthy, B., Mislove, A.: Analyzing Facebook
privacy settings: user expectations vs. reality. In: Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, IMC 2011, pp. 61–
70. ACM (2011)

15. Madejski, M., Johnson, M., Bellovin, S.: A study of privacy settings errors in an
online social network. In: IEEE International Conference on Pervasive Computing
and Communication Workshops (PERCOM Workshops 2012), pp. 340–345 (2012)

16. Madejski, M., Johnson, M.L., Bellovin, S.M.: The failure of online social network
privacy settings. Columbia University Computer Science Technical Reports (2011)

17. Pardo, R.: Formalising privacy policies for social networks. Licentiate thesis,
Department of Computer Science and Engineering, Chalmers University of Tech-
nology, p. 102 (2015)

18. Pardo, R., Schneider, G.: A formal privacy policy framework for social networks. In:
Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 378–392.
Springer, Heidelberg (2014)

19. Riesner, M., Netter, M., Pernul, G.: An analysis of implemented and desirable set-
tings for identity management on social networking sites. In: 2012 Seventh Inter-
national Conference on Availability, Reliability and Security (ARES), pp. 103–112,
August 2012

20. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

21. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J.A.,
Sussman, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)

22. Woźna, B., Lomuscio, A.: A logic for knowledge, correctness, and real time. In:
Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 1–15.
Springer, Heidelberg (2005). doi:10.1007/11533092 1

http://dx.doi.org/10.1007/11533092_1

TrackOS: A Security-Aware Real-Time
Operating System

Lee Pike1(B), Pat Hickey2, Trevor Elliott1, Eric Mertens1, and Aaron Tomb1

1 Galois, Inc., Portland, USA
{leepike,trevor,emertens,atomb}@galois.com

2 Helium, Portland, USA
pat@helium.com

Abstract. We describe an approach to control-flow integrity protec-
tion for real-time systems. We present TrackOS , a security-aware real-
time operating system. TrackOS checks a task’s control stack against a
statically-generated call graph, generated by an abstract interpretation-
based tool that requires no source code. The monitoring is done from a
dedicated task, the schedule of which is controlled by the real-time oper-
ating system scheduler. Finally, we implement a version of software-based
attestation (SWATT) to ensure program-data integrity to strengthen our
control-flow integrity checks. We demonstrate the feasibility of our app-
roach by monitoring an open source autopilot in flight.

1 Introduction

Cyber-physical systems are becoming more pervasive and autonomous without
an associated increase in security. For example, recent work demonstrates how
easy it is to gain access to and subvert the software of a modern automobile [4]. In
this paper, we focus on software integrity attacks aimed at modifying a program’s
control flow. Traditional methods for launching software integrity attacks include
code injection and return-to-libc attacks.

Control-flow attacks are well known, and protections like canaries [5,10] and
address-space layout randomization [21] have been developed to thwart them.
However, for each of these protections, researchers have shown ways to circum-
vent them, using techniques such as return-oriented programming [4].

More recently, control-flow integrity (CFI), originally developed by
Abadi et al. [1], is more difficult to exploit. CFI implements run-time checks
to ensure that a program respects its statically-built control-flow graph. If the
control stack is invalid, then some other program is being executed; modulo false
positives, it is a program resulting from a malicious attack.

Consequently, the CFI approach to security has been favored recently as
the way forward in protecting program integrity. For example, Checkoway et al.
demonstrate how to execute return-to-libc attacks without modifying return
addresses [4]. In reference to traditional kinds of defenses, the authors write:

What we show in this paper is that these defenses would not be worthwhile
even if implemented in hardware. Resources would instead be better spent
deploying a comprehensive solution, such as CFI.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 302–317, 2016.
DOI: 10.1007/978-3-319-46982-9 19

TrackOS: A Security-Aware Real-Time Operating System 303

Fig. 1. TrackOS RTOS integration

The traditional technique for implementing CFI requires program instrumen-
tation (the instrumentation can be done at various levels of abstraction, from
the source to the binary). Instrumentation is not suitable for critical hard real-
time systems code for at least two reasons. First, instrumentation fundamentally
changes the timing characteristics of the program. Not only can instrumentation
introduce delay, but it can introduce jitter: CFI checks are control-flow depen-
dent. Second, safety-critical or security critical systems are often certified, and
instrumenting application code with CFI checks may require recertification. Our
approach allows real-time CFI without instrumenting application code.

The question we answer in this paper is how to provide CFI protections
for critical embedded software. Our answer is a CFI-aware real-time operating
system (RTOS) called TrackOS .

TrackOS has built in support for performing CFI checks over its tasks, as
processes on an RTOS are generally known. TrackOS tasks do not require any
special instrumentation or runtime modifications to be checked. TrackOS over-
comes the delay and jitter issues associated with CFI program instrumentation:
rather than instrumenting a program, CFI checks are performed by a separate
monitor task as shown in Fig. 1. This task is responsible for performing CFI
checks on other untrusted tasks. The monitor task is scheduled by the RTOS,
just like any other task. However, the task is privileged by the RTOS and is
allowed access to other tasks’ memory (this is why we show the task overlapped
with the RTOS in Fig. 1).

An insight of TrackOS is that RTOS design already addresses the problem of
real-time scheduling, and CFI monitoring in a real-time setting is just an instance
of the task scheduling problem. Furthermore, as an instance of the real-time
task scheduling problem, the user has the freedom to decide how to temporally
integrate CFI into the overall system design, given the timing constraints. For
example, a developer could decide to make CFI monitoring a high-priority task
if there is sufficient slack in the schedule or instead monitor intermittently as
the schedule allows.

Summary of Contributions

1. Static analysis: Before execution, we analyze a task’s executable to gener-
ate a call graph that is stored in non-volatile memory (program memory).
We implement a lightweight static analysis that is able to analyze a 200 KB
machine image (compiled from an approx. 10kloc autopilot) and generate a
call graph in just over 10 s on a modern laptop.

304 L. Pike et al.

2. Control-flow integrity : At runtime, a monitor task traverses the observed
task’s control stack from the top of the stack, containing the most recent
return addresses, to the bottom of the stack. The control stack is compared
against the static call graph stored in memory. In our approach, we do not
assume frame pointers, so the analysis must parse the stack. We make opti-
mizations to ensure checks have very low-overhead. Most importantly, the
overhead is completely controllable by the user using the RTOS’s scheduler,
just like any other task.

This approach implements callstack monitoring rather than just checking
well-formedness of function pointers, like many rootkit dectection mecha-
nisms [11,14,15]. The approach supports concurrency (i.e., multiple tasks
can be monitored simultaneously).

3. Program-data integrity : Our CFI approach is only valid as long as it is exe-
cuting. An attacker that can reflash a microcontroller can simply overwrite
TrackOS and any of its tasks. Consequently, we need a check that the program
memory has not been modified. We implement a software-based attestation
framework to provide evidence to this effect. The framework is not novel
to us; we borrow the SoftWare-based ATTestation (SWATT) approach tai-
lored to attestation in embedded systems [19]. Our full implementation there-
fore answers a challenge by the authors of SWATT, in which they note that
“software-based attestation was primarily designed to achieve code integrity,
but not control-flow integrity” [13]. As far as we know, this is the first inte-
gration of software-based program-data integrity attestation with control-flow
integrity; de Clercq et al. previously combine CFI and data integrity relying
on hardware support [6].

Assumptions and Constraints. Regarding system assumptions, while not funda-
mental to our approach, we assume execution on a Harvard or modified Harvard
architecture in which the program and data are stored in separate memories
(e.g., Flash and SRAM, respectively). Return-oriented programming is still fea-
sible on a Harvard architecture [8]. We do not assume the hardware supports
virtual memory or provides read-write memory protections. We do not assume
that programs have debugging symbols. We also do not assume the existence of
frame pointers.

We assume the attacker does not have physical access to the hardware. How-
ever, she may have perfect knowledge of the software including exploitable vul-
nerabilities in the software, including the bootloader. She may have unlimited
network access to the controller. We assume that the microcontroller’s fuses
allow all memory, including program memory, to be written to. Furthermore,
any control-flow transfer technique is in-scope by the attacker.

2 Static Analysis

TrackOS compares the control stack against a statically-generated call graph of
each monitored task. The call graphs are generated via binary static analysis tool
called StackApprox ; no sources or debugging symbols are required. StackApprox
currently targets AVR binaries.

TrackOS: A Security-Aware Real-Time Operating System 305

StackApprox is similar in spirit to a tool developed by Regehr et al. [16],
although the use cases are different. In Regehr’s case, the focus is on statically
determining control-stack bounds, whereas our primary use case is to generate
representations of call graphs as C code, although StackApprox approximates
stack sizes, too. StackApprox uses standard abstraction interpretation techniques
to efficiently generate a call graph; for the sake of space, we elide details about
the tool’s design and implementation.

Like in Regehr et al. [16], StackApprox analyzes direct jumps automatically
but requires the user to explicitly itemize indirect jumps. Doing so ensures that
all indirect jumps are specified and not the result of unintended or undefined
(with respect to C source semantics) behavior. Moreover, large number of indi-
rect jumps are not common in hard real-time systems (we itemized 30 targets
for a 10K LOC autopilot, including interrupts).

For the purposes of CFI checking, we generate four tables or maps from the
generated call graph. Only values for functions reachable from the start address
are generated. Typically, the start address is the entry point for an RTOS task.

– Loop map: A mapping from return addresses to callers’ return addresses asso-
ciated with their call-sites.

– Top map: A mapping from call-targets (usually the start of a function defini-
tion) to the set of return addresses associated with the functions’ call-sites.

– Local stack usage map: A mapping from call-targets to the maximum number
of data bytes pushed on the stack, not including callees’ stack usage.

– Contiguous region map: Pairs representing the start and stop address that
define a contiguous region.

Our build system calls StackApprox , which generates C sources containing
the four maps, and then integrates the generated C files into the build auto-
matically. The basis of TrackOS , FreeRTOS (see Sect. 3), like many embedded
RTOSes, statically links the operating system and its tasks. Consequently, there
is a circular-dependency problem: because the call-graph data is statically linked
into the program, it is needed to build the program, but the program binary must
be available to generate the call-graph data. Our solution is to split compilation
into two rounds. First, we generate dummy call-graph data that contains empty
structures but provide the necessary definitions for building an ELF file. This
ELF is then analyzed to extract the actual call-graph data, which is linked with
the target program to produce the final ELF file.

Note that this approach requires that the call-graph data be located after
the program it is linked with (i.e., the .text segment) to ensure the addresses
are not modified by populating the call-graph data.

3 TrackOS Architecture

Before describing the CFI monitoring algorithm in the following section, we high-
light here the aspects of integrating the CFI checker with the RTOS, including
the definition of task control blocks, context switching, and finally, a scheduler

306 L. Pike et al.

Fig. 2. Stack layout for a swapped out task. The saved context is on the top,
target stack points to the beginning of the saved control stack, and a fixed address,
0x456, marks the bottom.

addition we call restartable tasks. Our prototype of TrackOS is a derivative of
FreeRTOS, an open source commercially-available RTOS written in C and avail-
able for major embedded architectures.1

TrackOS Task Control Blocks TrackOS extends FreeRTOS’s task control blocks
with the following additional state:

1. Stack location: a pointer to the portion of a stack that comes after its saved
context is added to the TCB. When a task has been swapped out by the
scheduler, its control stack will first contain its saved context (i.e., its saved
registers and a pointer to its task control block). The saved context is a fixed
size. On the top of the stack is the task’s saved context; on the bottom of the
stack is a return address to the task’s initialization function. A hypothetical
task control stack is shown in Fig. 2.

2. Timing : timing variables are used to track the timing behavior of the observed
task to provide TrackOS with the duration the task has executed in its most
recent time slice. This can be used, for example, to control when stack check-
ing is run (e.g., it might be delayed until after initialization) or even to have
time-dependent stack-checking properties (e.g., “after 500 ms of execution,
function f() should not appear on the stack”).

3. Restarting : “restarting” variables allow the CFI task to be restarted as nec-
essary; we explain the concept in Sect. 4.2. To do this, we save a code pointer
to the CFI intialization code and its initial parameters as well as a pointer to
a shared “restart mutex” with the observed task.

Context Switching. In Fig. 3(top right), we show FreeRTOS’s context switching
routine (ported to the AVR architecture), together with the extensions necessary
for TrackOS . This routine is used to swap the context of all tasks (including the
monitoring task), whether they are checked or not by the monitor task, and
it may be called from the timer interrupt during preemption or explicitly by a
task during a cooperative yield (interrupts are disabled when vPortYield() is
called). After saving a task’s context, TrackOS updates its pointer to the top of
the stack, after the saved context. Additionally, it saves the execution time of
the saved task. After scheduling a new task in (Line 10), all that has to be done
is record the execution start time for the newly-scheduled task.

1 http://www.freertos.org/.

http://www.freertos.org/

TrackOS: A Security-Aware Real-Time Operating System 307

0 void check stack(stack t ∗target stack) {
current = target stack;

// Preemptive yield
if (preemptive yield ret(current)) {

5 current = preemptive stack(current);
stack loop(current);

}
// Cooperative yield
else if (coop yield ret (current)) {

10 stack loop(current);
}
// Cooperative yield from an ISR
else if (search ret isrs (current) {

current++;
15 current = preemptive stack(current);

stack loop(current);
}
else { error (); }

}
20

// Check a preemptive function
void preemptive stack(stack t ∗current) {

current++;
func = find current func(current);

25 if (interrupt in main(func, current))
done(SUCCESS);

else
return find caller ret (func, current);

}

0 void vPortYield(void) {
portSAVE CONTEXT();

#ifdef TRACKOS
pxCurrentTCB−>pxStoredStack =

5 pxCurrentTCB−>pxTopOfStack
+ portSP TO RET ADDR;

saveTime();
#endif

10 vTaskSwitchContext();

#ifdef TRACKOS
newStartTime();

#endif
15

portRESTORE CONTEXT();
asm volatile (‘‘ ret ’ ’);

}

——————————–

0 void stack loop(stack t ∗current) {
while(!(inside main(current)) {

stack t ∗ valid rets =
lookup valid rets (current);

if (NULL == valid rets) { error(); }
5 else {

current =
loop find next(current, valid rets);

if (NULL == current) { error(); }
}

10 }
if (at stack end(current)) {
done(SUCCESS);

}
else error ();

15 }

Fig. 3. Left: CFI procedure to discover the task’s yield location. Top right: Context
switch in TrackOS . Bottom right: TrackOS CFI procedure to walk the stack.

4 Control-Flow Integrity

In this section, we overview the control-flow integrity algorithm implemented in
TrackOS , which is the heart of the approach. We begin by describing the basic
algorithm in Sect. 4.1, then we describe two extensions to basic real-time stack
checking in Sect. 4.2.

4.1 Basic Algorithm

The CFI algorithm described below is the heart of TrackOS . There are two main
procedures: first, we find the top return address in the stack, resulting from an
interrupt or an explicit yield by the task. Second, once a valid return address is
found, it serves as an “entry point” to the rest of the control stack. The second
procedure walks the control stack, moving from stack frame to stack frame.

308 L. Pike et al.

We describe each procedure in turn. Pseudo-code representations of the two
procedures are in Fig. 3. For readability, we elide details from the implemen-
tation, including hooks for performing restartable checks (see Sect. 4.2), helper
functions (e.g., binary search), memory manipulations, type conversions, error
codes, special-cases to deal with hardware idiosyncrasies, and other integrated
stack checks for aberrant conditions. In addition, for the sake of readability, util-
ity functions in pseudo-code listings that are underlined are described in the text
without being defined.

In the following, we assume the maps generated by the StackApprox static
analysis tool are available to the CFI checker. We do not assume that frame
pointers are present, so the stack must be parsed by the CFI algorithm to dis-
tinguish data bytes from return addresses.

Yield Address Algorithm. While a task is in the task queue waiting to
be executed, its context is saved on its control stack. The CFI checker’s entry
point is just after the saved context, pointed to by the target stack variable.
(The stack t type is the size of stack elements, which are one byte in our
implementation.)

The entry point to the stack checker algorithm is check stack(), shown in
Fig. 3, left. The invariant that holds after calling check stack() is that either the
check has been aborted due to an error, or the function returns a stack pointer
to the first proper stack frame on the stack (pointing to the frame’s return
address). check stack() is executed within a critical section, ensuring that the
CFI checker, whenever it executes, always checks that the current location of
the observed task’s execution is valid.

There are three cases to consider at the entry point of the stack: a preemptive
yield, a cooperative yield, and a cooperative yield from an interrupt service
routine. These cases correspond to the three cases in the body of check stack()
in Fig. 3, left.

Preemptive Yield. In this case, the RTOS scheduler preempts the task via a
timer interrupt. Inside the interrupt service routine (ISR), there is a call to a
function that performs a preemptive context switch; if this is a preemptive yield,
the top of the stack should contain the return address inside the ISR from that
function. (The return address is found by StackApprox at compile time.) The
function preemptive yield ret() performs this check.

In the case of a preemptive yield, we call preemptive stack() (Line 22 in
Fig. 3, left). In that function, we first increment the stack pointer: the next
value on the stack following the return address inside the timer ISR is the inter-
rupt address for the task. The function find current func() takes an arbitrary
address and searches through a map containing the address ranges of reachable
functions generated by StackApprox . If a function that contains the interrupt
address cannot be found, the procedure returns an error. Assuming a reachable
function is found, interrupt in main() checks that the function is not the ini-
tialization function for the task. If it is the initialization function, then there are

TrackOS: A Security-Aware Real-Time Operating System 309

no further stack frames to check, since no function calls have occurred. (Addi-
tionally, the function checks that the distance to the bottom of the stack is less
than the maximum number of data bytes the task’s initialization function pushes
onto the stack.) The CFI checker completes successfully (done(SUCCESS).

If there are additional stack frames to check, from the interrupted func-
tion, the algorithm searches for the first return address on the stack.
find caller ret() finds on the stack a return address for some caller of func.
Using StackApprox ’s top map (see Sect. 2), find caller ret() finds the set of
return addresses associated with the call-sites for func; we determine the maxi-
mum stack usage for func that is also generated by StackApprox ; call this value
max. Then, find caller ret() searches for a return address appearing in the
top map that is no more than max bytes from the current location in the stack,
which are assumed to be data bytes. If a match is found, it is returned. At this
point, we have found a return address on the stack belonging to the monitored
task, and we are ready to enter the stack loop() function in Fig. 3, bottom
right.

find caller ret() is a heuristic for finding a valid return address. It is
possible for a data byte to have the same value as a valid return address. If by
malicious behavior, then the attacker may be able to cause the CFI algorithm
to trace data bytes as return addresses, but these data bytes would still have to
conform to StackApprox ’s static call-graph.

Cooperative Yield. In a cooperative yield, the target task has yielded to the
RTOS scheduler by directly making a yield() system call, which the function
coop yield ret() expects to find on the top of the stack. We increment the
stack pointer and call stack loop().

Cooperative Yield From an ISR. This is a case in which the target task is pre-
empted by an ISR, and then that ISR directly yields to the scheduler. We assume
ISRs mask interrupts, so while an ISR should not be preempted, it can yield
directly. Also, we assume an ISR only calls yield() just before returning, after
all its local data has been popped from the stack. For each ISR that can pre-
empt the target task, StackApprox generates a lookup table mapping ISRs to
the return addresses for their calls to yield(). The function search ret isrs()
searches for a match between the top of the stack and a return address from the
ISR tables.

If a match is found, then after incrementing the stack pointer (Line 14), we
can treat the stack the same as in the preemptive case in which we handle an
interrupt to a task.

The Stack Loop Algorithm. At the entry to stack loop() in Fig. 3, bottom
right, current points to a known return address on the stack. stack loop()
“walks down” the stack in its main loop (Lines 1–10), from stack frame to stack
frame.

The motivation for checking the stack in the reverse order of calls is to deter-
mine if the current location of the program is in an unexpected program location.

310 L. Pike et al.

Unexpected return addresses further down the stack represent latent vulnerabil-
ities in which the program may return to an unallowed program location as it
pops return addresses off of its stack.

The algorithm breaks out of the loop when it reaches a return address for the
entry point to the task, relying on the convention that the task entry has exactly
one caller, checked by inside main(). Once outside the main loop, there is a
final check by at stack end() that return address of the task’s main() function
is indeed the last return address on the stack and that there are exactly the
number of data bytes between the bottom of the stack and the first call by
main().

Inside the loop, for each return address ret pointed to by current, the
function lookup valid rets() looks up the set of return addresses of calls to the
function func containing ret based on the loop map generated by StackApprox .
If there are known callers of func found, then loop find next() searches the
stack for another valid return address for a call to func. For each return address
ret’, loop find next() depends on knowing the number of data bytes to be
expected on the stack between ret’ and ret, which is provided by StackApprox .

4.2 Extensions

Below we describe three extensions to the basic algorithm described above.

Restartable Monitoring. The monitor task as it has been described is not reen-
trant. If it is swapped out by the RTOS scheduler while checking task A’s stack,
and task A then executes, its stack changes. When the monitor is swapped back
in, the control stack it was previously checking is stale. Thus, we have designed
the monitor task so that it is restarted when it is swapped in by the scheduler,
meaning that its state is automatically reinitialized to its initial state when it
is scheduled; in particular, the monitor restarts checking an observed task from
the top of the stack.

The portion of the algorithm to determine a task’s yield location and discover
the first return address (Fig. 3, left) on the stack is executed inside of a critical
section in which interrupts are disabled. Thus, each time the CFI task is enabled
by the RTOS, it is guaranteed to at least perform the initial checks on the stack.
This initial check is small and the execution time is fairly constant, requiring
just a few thousand clock cycles in our experiments. The motivation is to ensure
that if the CFI monitor is scheduled, it is not prevented from checking that the
current control location is valid. While the algorithm could allow this portion
to also be interruptable, it provides the attacker with the opportunity to starve
the monitor.

Blacklisting. Sometimes, a code block might be reachable in a statically-
generated call graph, but under nominal conditions, it should not appear on
a tasks’s control stack. For example, after startup, initialization code should not
be executed. Similarly, error-handling code should not be executed under normal
conditions. While this code cannot be eliminated from the program, it represents

TrackOS: A Security-Aware Real-Time Operating System 311

a security risk similar to libc insofar as it contains additional instructions for use
in return-oriented attacks [17].

Consequently, we extend the CFI algorithm with a blacklisting capability. The
user specifies at compile time a list of code blocks that can be called (usually
these are function entry addresses), and StackApprox generates an array of all
return addresses for callers of those blocks. The array is stored in non-volatile
memory as well. Then during the execution of the CFI algorithm, for each return
address found on the control stack, the algorithm makes an additional check to
see whether the return address appears in the blacklist array. If it is found, then
a blacklisting error is returned.

Timing Analysis. Finally, a task’s control block contains hooks to keep track
of a task’s total execution time. This allows the programmer greater flexibility
to determine when checks should occur with respect to a task’s total execution
time or to state control-flow properties in terms of timing behavior.

4.3 Implementation

The implementation of the CFI algorithm requires around 150 lines of code
(LOC) of extensions to the RTOS, together with the implementation of a CFI
monitoring task. The CFI monitor task is a privileged task, with access to the
state of other tasks (and in particular, their control stack memory). Its imple-
mentation is approximately 500LOC. The monitoring task can be assigned any
schedule priority level; of course, this will affect the frequency of the CFI checks.

Compiled, our implementation of the CFI task requires approximately
2000 bytes of program memory. The call-graph is stored in a special section after
the .text segment so that instruction addresses do not change when by linking
call-graph data (i.e., by “pushing” program instruction addresses down), thereby
rendering the analysis on the original program useless. The size of the call graph
and TCB pointers are hard-coded into the task. CFI tasks are cheap; in our
implementation, adding an additional CFI task adds only 28 additional bytes
to the text segment of the resulting ELF file and requires only 200–250 bytes of
stack space, as noted above.

Most importantly, this approach does not require any modifications to the
CFI monitoring algorithm and we can simply use the RTOS scheduler to schedule
the individual CFI monitors.

5 Program-Data Integrity

As TrackOS currently targets the Harvard architecture AVR processor, it gains
some measure of program protection through the separation of program and data
memory spaces; typically, the program memory is flashed once at programming
time, and used as read-only memory during its execution. However, assuming
a bootloader is installed, the bootloader can write to program memory during
execution. Francillon et al. demonstrate how to install malware on a Harvard

312 L. Pike et al.

architecture by exploiting the bootloader to write malicious code into program
memory during execution [8]. This sort of attack can be used to simply over-
write the CFI monitor or even the entire RTOS! Even more problematic is that
for embedded RTOSes on small microcontrollers, there is no memory isolation
between the tasks and the RTOS itself. So a malicious task can potentially mod-
ify OS code. Consequently, for increased security, control-flow checking should
be augmented by a data attestation approach.

The problem of remote attestation of low-cost embedded devices is addressed
in both Secure Code Update By Attestation (SCUBA) [18], and SoftWare-based
ATTestation (SWATT) SWATT [19]. SCUBA strives to provide a safe execution
environment for a firmware update, while SWATT attempts to establish the state
of a remote system. For our implementation of the remote-verification checksum
function, we have drawn from both SWATT and SCUBA. From SWATT, we
have taken the idea of verifying the entire program, and from SCUBA we have
taken the implementation of a high-performance checksum function.

The checksum function itself is implemented as a simpler version of the ICE
primitive from SCUBA [18] that omits the program counter and status register
from the hash to simplify the implementation.

The advantage of software-based attestation (SBA) is that it requires no
new hardware, which is particularly important in embedded systems with size,
weight, and power constraints. SBA was thought to be impractical until the
publications of SWATT and its successors, such as SCUBA. While there are
shortcomings, e.g., [3], it is a comprehensive approach to ensuring data-integrity
without requiring additional or modified hardware.

6 Experimental Results

In our work, the runtime overhead that is typically introduced by CFI is col-
lected into a single RTOS task that can be scheduled at a user-defined priority,
and system scheduability analysis is no different than if a new user task were
introduced into the system. Because the system is general and highly-dependent
on user configuration, general benchmarking is not particularly informative.

Still, to show the feasibility of our approach, we describe a case-study in which
we use TrackOS to detect instrumented latent software vulnerabilities in ArduPi-
lot, a popular open source autopilot [2]. ArduPilot is a full-featured autopilot
that executes (at the time of the experiments) on an 8-bit ATMega2560 AVR
microcontroller running at 16 MHz with 256 KB of flash, and 8 KB of SRAM. A
custom board has been designed for the autopilot that contains sensors includ-
ing GPS, an accelerometer, gyroscope, and a barometer and sonar to determine
altitude. The ArduPilot can be used with fixed-wing and multi-rotor aircraft. It
provides stabilization, GPS-guided waypoint navigation, autoland, position loi-
tering, and communication with a ground station over a Zigbee protocol-enabled
radio transmitter.

Architecture. The ArduPilot code base is just under 10K LOC of C/C++, not
including standard libraries. The ArduPilot runs “bare” on the AVR hardware.

TrackOS: A Security-Aware Real-Time Operating System 313

Fig. 4. Top: Attack launch configuration. Bottom: Ported ArduPilot architecture on
TrackOS

Consequently, we ported it to run as a set of tasks on TrackOS . Its architecture
is shown in Fig. 4. The infrastructure is decomposed into the following tasks:

– The CFI checker, integrated with TrackOS .
– A “slow loop” that reads GPS data, updates navigation information, updates

altitude and throttle data.
– A “fast loop” that reads the pilot’s radio controller, updates attitude, and

writes to the servos.
– Another “fast loop” reading SPI-bus devices, the gyroscope and barometer.
– A program-data integrity task that responds SWATT challenges sent to it over

a SPI bus interface.
– Finally, a recovery task. The recovery task only implements throttle control

from the radio controller and is enabled if TrackOS detects malicious behavior.
This task is not enabled until an attack is detected, at which point the slow
loop task is disabled (the micro-controller does not have enough memory to
support both tasks simultaneously). Thus, the recovery task is shown in the
figure as a dashed component.

The CFI checker runs at priority 2, the slow loop runs at priority 1, the fast loops
and recovery tasks run at priority 3, the highest priority, and the program-data
integrity task runs at priority 1.

The SWATT server is implemented on an ARM Cortex M3, clocked at
60 MHz. The server has 4 MB of external flash memory, with a 50 MB/s interface
to the memory over a SPI bus.

We manually annotate just under 30 indirect jumps, including the interrupt
vector table.

314 L. Pike et al.

In our experiments, we implemented two kinds of attacks. First, we imple-
ment a buffer overflow vulnerability in which an array is allocated on the stack
allowing an attacker to overwrite bytes out-of-bounds. Overwriting a return
address, the attack jumps to a function that is unreachable without modifying
the control flow. Second, we implement a blacklist attack in which we instru-
ment the code with a function that is supposed to be unreachable during stack
checking (e.g., the function could be part of a start-up or an error-handling
routine).

The experiment setup is shown in Fig. 4. The attacks are launched from
a ground station (i.e., a laptop) communicating with the autopilot over the
MAVLink protocol2. When an attack is detected on board, the recovery task
begins, which ignores all radio signals except to reduce thrust to land the craft.

Even though we have scheduled the CFI checker to run at a lower prior-
ity than the fast loop, it detects the buffer overflow and blacklisting attacks
we instrument. (Indeed, on the Atmega2560, the fast loop must be the highest
priority to be schedulable.) Our work shows that CFI checking can happen inter-
mittently and still discover control flow vulnerabilities. To evade detection, an
attacker must either (1) exploit a vulnerability, perform an attack, and cleanup
before the scheduler swaps the task out; or (2) starve the CFI monitor task
indefinitely.

7 Related Work

Research in run-time control-flow protections for embedded software is nascent.
In particular, there are few approaches that take into consideration the real-
time and memory constraints present in embedded control systems. In the fol-
lowing, we focus specifically on the dynamic monitoring approaches. We omit
related research in static analysis and software-based attestation; while TrackOS
depends on them, we did not make novel research contributions there.

As noted in the introduction, work by Abadi et al. [1] addresses many of the
shortcomings with earlier protection approaches. An approach that is similar in
spirit to our is work by Petroni and Hicks for monitoring control-flow attacks to
detect Linux kernel rootkits [14]. Their work is inspired by CFI checks as describe
by Abadi et al. but addresses environments in which some of the assumptions
made by Abadi et al. do not hold. Petroni and Hicks also periodically monitor
the OS to reduce the timing overhead; in their case monitoring is done from
a separate virtual machine hosted by a hypervisor. They focus specifically on
rootkit attacks; empirically, many Linux rootkits work by modifying function
pointers found in the heap. Therefore, they do not check stack-based software
attacks like we do. Furthermore, their work is not focused on real-time systems.
Hofmann et al. take a similar approach to Petroni and Hicks, also looking to
detect kernel rootkits [11] in Linux. Hofmann et al. do consider stack-based
attacks by checking return addresses on the stack for property violations (i.e.,
that they point to valid kernel code regions). Their approach is not suitable for
2 http://qgroundcontrol.org/mavlink/start.

http://qgroundcontrol.org/mavlink/start

TrackOS: A Security-Aware Real-Time Operating System 315

checking general return-to-libc attacks, like ours is. Note though that generating
a call graph for something as complex as the Linux kernel is much more difficult
than traditional embedded code given the prevalent use of heap-based function
pointers, dynamic linking, and sheer complexity.

Two works combine CFI and data integrity checks, like ours. These include
de Clercq et al. [6] and Zeng et al. [22], using hardware support and sandboxing,
respectively.

With respect to CFI in embedded systems, Francillon et al. propose hard-
ware extensions that support a distinguished control stack and data stack [9],
and corresponding instruction-based memory access control. They implement
a prototype hardware simulator. While hardware support like they envision
simplifies the control-flow security problem, our approach works with conven-
tional, unmodified hardware. Reeves et al. present Autoscopy, an in-kernel tool
for detecting CFI violations targeted at SCADA systems [15]. Autoscopy has
a five percent overhead. Their approach differs from ours insofar as we do not
assume reliance on an advanced operating system mechanism, which is not avail-
able in small embedded RTOSes. Furthermore, Autoscopy learns a call graph by
executing the system during a learning phase, an approach that can lead to false
positives if any control paths are missed. Like the rootkit-specific approaches
already described, Autoscopy focuses specifically on function-pointer hijacking
rather than arbitrary CFI violations.

8 Conclusions and Future Work

We have described TrackOS , a unique implementation of CFI monitoring tar-
geted at real-time embedded systems. Our research demonstrates the feasibility
of CFI monitoring for low-level systems, relying on the operating system to han-
dle scheduling, making the approach suitable even in hard real-time systems.
Many research opportunities remain in the area of CFI checking for embedded
systems; below, we describe research questions specifically left open in our work.

We have not addressed the resteering problem. One framework for resteer-
ing is the Simplex architecture, originally designed to increase the reliability of
complex control systems by providing a safe and simple fallback controller [20].
Mohan et al. show how to adapt the Simplex architecture for control-flow attacks.
The idea is to monitor with high fidelity the execution time of a control system,
with the idea that deviations from the expected execution time are the result of
malicious behavior [12]. The approach relies on having accurate timing bounds
on normal execution. Our approach does not require timing analysis of the mon-
itored task.

Our use of data attestation is partly because we there is no memory isolation
between the RTOS and the tasks executing on it. On a microcontroller and kernel
supporing virtual memory, this is less problematic. With a control-flow graph
and timing information available to a dynamic monitor, high-level properties can
be checked at run-time. For example, temporal logic analyses might be written
about control flow, which can be useful for both testing as well as run-time

316 L. Pike et al.

protections of the system. For example, we might query that an authentication
routine always follows updated waypoints being read from a ground station over
the radio. One of the authors discusses other potential temporal logic properties
in related work [7].

Acknowledgments. This work is supported in part by Air Force contract FA8650-
11-C-1003. All findings herein are the authors’ alone. Pat Hickey performed the work
while at Galois, Inc.

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity princi-
ples, implementations, and applications. ACM Trans. Inf. Syst. Secur. 13(1), 1–40
(2009)

2. Source code, December 2012. http://code.google.com/p/ardupilot-mega/
3. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of

software-based attestation of embedded devices. In: Computer and Communica-
tions Security (CCS), pp. 400–409. ACM (2009)

4. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: USENIX Security (2011)

5. Cowan, C., Calton, P., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie,
S., Grier, A., Wagle, P., Zhang, Q.: Stackguard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: SSYM 1998: Proceedings of the 7th Con-
ference on USENIX Security Symposium. USENIX Association (1998)

6. de Clercq, R., De Keulenaer, R., Coppens, B., Yang, B., Maene, P., de Bosschere,
K., Preneel, B., de Sutter, B., Verbauwhede, S.I.: Software and control flow integrity
architecture. In: Proceedings of the 2016 Conference on Design, Automation & Test
in Europe (2016)

7. Diatchki, I., Pike, L., Erkök, L.: Practical considerations in control-flow integrity
monitoring. In: Proceedings of the The Second International Workshop on Security
Testing (SECTEST 2011). IEEE, March 2011

8. Francillon, A., Castelluccia, C.: Code injection attacks on harvard-architecture
devices. In: Computer and Communications Security (CCS), pp. 15–26. ACM
(2008)

9. Francillon, A., Perito, D., Castelluccia, C.: Defending embedded systems against
control flow attacks. In: Proceedings of the First ACM Workshop on Secure exe-
cution of Untrusted Code, SecuCode 2009, pp. 19–26. ACM (2009)

10. Frantzen, M., Shuey, M., Stackghost: hardware facilitated stack protection. In:
SSYM 2001, Proceedings of the 10th Conference on USENIX Security Symposium
(2001)

11. Hofmann, O., Dunn, A.M., Kim, S., Roy, I., Witchel, E.: Ensuring operating system
kernel integrity with OSck. In: Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM (2011)

12. Mohan, S., Bak, S., Betti, E., Yun, H., Sha, L., Caccamo, M., S3A: secure system
simplex architecture for enhanced security of cyber-physical systems. CoRR (2012)

13. Perrig, A., van Doorn, L.: Refutation of “on the difficulty of software-based attes-
tation of embedded devices” (2010) (Unpublished). https://sparrow.ece.cmu.edu/
group/publications.html

http://code.google.com/p/ardupilot-mega/
https://sparrow.ece.cmu.edu/group/publications.html
https://sparrow.ece.cmu.edu/group/publications.html

TrackOS: A Security-Aware Real-Time Operating System 317

14. Petroni, Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: CCS 2007: Proceedings of the 14th ACM Conference on Computer and
Communications Security, pp. 103–115. ACM (2007)

15. Reeves, J., Ramaswamy, A., Locasto, M., Bratus, S., Smith, S.: Lightweight intru-
sion detection for resource-constrained embedded control systems. In: Butts, J.,
Shenoi, S. (eds.) ICCIP 2011. IAICT, vol. 367, pp. 31–46. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-24864-1 3

16. Regehr, J., Reid, A., Webb, K.: Eliminating stack overflow by abstract interpreta-
tion. ACM Trans. Embed. Comput. Syst. 4(4), 751–778 (2005)

17. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
systems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1), 1–34
(2012)

18. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, S.P.: Secure code update
by attestation in sensor networks. In: ACM Workshop on Wireless Security (WiSe
2006), September 2006

19. Seshadri, A., Perrig, A., van Doorn, L., Pradeep Khosla, S.: Software-based attes-
tation for embedded devices. In: Proceedings of the IEEE Symposium on Security
and Privacy, May 2004

20. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)
21. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the

effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, pp. 298–307.
ACM (2004)

22. Zeng, B., Tan, G., Morrisett, G.: Combining control-flow integrity and static analy-
sis for efficient and validated data sandboxing. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security. ACM (2011)

http://dx.doi.org/10.1007/978-3-642-24864-1_3

Leveraging DTrace for Runtime Verification

Carl Martin Rosenberg1, Martin Steffen1, and Volker Stolz1,2(B)

1 Inst. for Informatikk, Universitetet i Oslo, Oslo, Norway
volker.stolz@hib.no

2 Inst. for Data- og Realfag, Høgskolen i Bergen, Bergen, Norway

Abstract. DTrace, short for “dynamic tracing”, is a powerful diagnos-
tic tool and tracing framework. It is invaluable for performance monitor-
ing, tuning, and for getting insights into almost any aspect of a running
system. In this paper we investigate how we can leverage the DTrace
operating system-level instrumentation framework [9] to conduct run-
time verification. To this end, we develop graphviz2dtrace, a tool for
producing monitor scripts in DTrace’s domain-specific scripting language
D for specification formulas written in LTL3, a three-valued variety of the
well-known Linear Temporal Logic. We evaluate the tool by analyzing a
small stack-implementation and a multi-process system.

1 Introduction

Runtime verification is an emergent field of research in which formal properties
of concrete program or system runs are checked in an automatic manner. In order
to conduct runtime verification, one must extract relevant information from the
running system without harming or degrading the system in the process. We
investigate using the DTrace [9] framework for this purpose.

Originally developed for Sun Microsystems, DTrace combines both static and
dynamic instrumentation techniques in a unified framework spanning all aspects
of a software system, from specific events in userland processes to function calls
within the operating system kernel. DTrace exposes instrumentation points rep-
resenting events of interest, and lets users associate actions that the computer
should take when the selected events occur via a domain-specific, AWK-like,
programming language, D. We investigate the suitability of DTrace for runtime
verification by making the following contributions:

1. We design and implement graphviz2dtrace, a tool for generating DTrace-
based monitors for properties specified in LTL3: a three-valued variety of the
well-known specification logic Linear Temporal Logic (LTL) [5]. In conjunc-
tion with the LamaConv automata library [22], graphviz2dtrace provides a
complete runtime verification platform.

This article is based upon work from COST Action ARVI IC1402, supported by
COST (European Cooperation in Science and Technology).

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 318–332, 2016.
DOI: 10.1007/978-3-319-46982-9 20

Leveraging DTrace for Runtime Verification 319

2. We use graphviz2dtrace-based monitors to verify two software systems: A
simple stack implementation written in C, and a web application consisting
of a Node.js [17] web server communicating with a PostgreSQL [19] data-
base. We demonstrate how graphviz2dtrace-based monitors can be used to
detect property violations and analyze the performance penalty we induce by
monitoring the running system.

3. Drawing on the two case studies, we discuss the possibilities and inherent
limitations of graphviz2dtrace-based monitoring, and suggest directions for
future work using DTrace for runtime verification.

The paper is organized as follows. In Sect. 2, we describe the main compo-
nents of DTrace: probes, providers, and the D scripting language. We also dis-
cuss how dynamic instrumentation is possible with the pid and fbt providers.
Then, we describe how to create a bridge between logical and practical con-
cepts by associating atomic LTL propositions with DTrace probe specifications,
and how this idea is implemented in graphviz2dtrace. Since graphviz2dtrace
produces standalone scripts in the D programming language, we discuss how
graphviz2dtrace is constrained by the inherent limitations of D, especially
with respect to concurrency.

We describe the process of finding and specifying observable events, associ-
ating the events to atomic propositions in LTL specification formulas, and using
the generated monitors to detect property violations.

We evaluate the tool in two case studies: First, we investigate a faulty stack
implementation written in C, demonstrating how we can instrument a program
without leaving static artifacts in the source code. Then, we investigate a sys-
tem composed of a web server written in Node.js and a PostgreSQL database.
We specify a safety property concerning the interaction between the web server
and the database and demonstrate how to detect a violation by hooking a mon-
itor onto the running processes. We also analyze the performance degradation
we induce through monitoring, before evaluating our findings and drawing our
conclusions.

Section 5 concludes with related and future work. An extended version and
technical annexes can be found in the recently published Master thesis [21] and
the accompanying web-page.1

2 DTrace

DTrace, short for “dynamic tracing”, is a powerful operating system level diag-
nostic tool and tracing framework. It can be seen as a major step forward from
older tools such as ptrace or strace in terms of versatility, sophistication, and
efficiency. It offers a flexible tool set for performance monitoring, tuning and
collecting comprehensive information on the behavior of a running system, from
the behavior of a single process to the internals of the operating system kernel.

1 http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/
rosenberg/.

http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/

320 C.M. Rosenberg et al.

In its most basic form, it gives users a way of specifying events of interest
and associate actions that the computer should take when those events occur.
With DTrace, a user can make requests like

– whenever a process opens this file, increment this counter and notify me when
the counter exceeds a hundred, or even something as complex as

– whenever the Apache web server processes an HTTP request, store the response
code in a data structure, and when I say so, show me a statistical distribution
of the response codes.

Requests like these are programmed in a domain-specific scripting language,
D, which is heavily inspired by AWK and C. Originally written for the Sun
Solaris 10 operating system, DTrace is now available for Mac OS X, FreeBSD,
and other systems [13]. With DTrace installed, an administrative user can log
into the system, write a DTrace script and get insights about the system without
having to reboot, stop or alter the system in any way.

DTrace has two main concerns: Firstly, to give users a way of specifying the
information they want, and secondly, to acquire the requested information in a
safe and efficient manner. While both concerns ultimately must be met, they
are treated separately within DTrace: Producers are DTrace components that
acquire the requested data. Other components post-process the acquired data,
presenting it to the user in the manner the user requested: These components are
called consumers. One purpose of this separation is to ensure safety: producers
should only be concerned with acquiring data in a safe and unintrusive way, not
with how the acquired data is to be presented or used [8, p. 30-32].

At the kernel level, there are a series of producer components called providers
that gather data about some aspect of the running system. For example, the
syscall provider gives data about system calls that are issued to the operating
system. The most important consumer is the dtrace program, the command-
line utility that provides the most common way of interacting with the DTrace
framework. This component compiles and executes D-scripts, and calls upon the
underlying producers to acquire the requested data.

Specifying Events of Interest: Probes. First of all, users need a way to specify
events of interest. To this end, DTrace provides the user with an enormous list
of possible instrumentation points representing events of interest. These instru-
mentation points are called probes. The available probes reflect aspects of the
system that can be monitored at the current point in time.

Probes are identified by a four-tuple <provider:module:function:name>.
Users use these tuples to select the probes they are interested in, and specify
actions to be taken once the associated events occur. In DTrace parlance, when
the event a probe represents occurs, one says that the probe “fires”.

It is also possible for application developers to employ so called User Stati-
cally Defined Tracing (USDT) to their own programs, by inserting static probes
in the application source code. In this way, the application developers can create
custom providers for their applications. Many notable software projects have
USDT probes, including the PostgreSQL database management software, that

Leveraging DTrace for Runtime Verification 321

we will visit in our case study later, as well as many programming language
runtimes.

Doing Things When Events Occur: Actions. Once users have specified which
probes they are interested in, they can associate actions blocks that should
be executed when the selected probes fire. Users can store data in variables,
collect statistics, spawn other processes, inspect system structure and analyze
function parameters, to name just a few of the possibilities. Even though action
statements are specified in blocks tying them to specific probes, it is possible to
share variables and data structures between action blocks, making it possible to
monitor complex interactions between events [13, p. 37-42]. The available action
statements will vary between DTrace implementations on different platforms.

Filtering Out the Noise: Predicates. When a probe fires, an optional predicate
determines if the corresponding action block should execute or not. Predicates
are written as boolean expressions that can use any D operator and any D data
object. A missing predicate is equivalent to the predicate /true/, meaning that
no filter is present and the action block will be executed unconditionally when
the probe fires.

Dynamic Tracing. A foundational concept in DTrace is dynamic tracing.
Dynamic tracing permits users to instrument programs on the fly, without requir-
ing static artifacts to be present in the software that is being instrumented [8,
p. 30]. This makes it possible to analyze systems that provide limited logging
capabilities, systems that are distributed in binary form only, and systems that
are opaque in other ways.

In DTrace, dynamic tracing is made possible by the fbt and pid
providers [12]. The previously mentioned fbt provider makes it possible to
instrument all function return values and arguments in the operating system
kernel [13, p. 163]. For userland processes, the pid provider gives probes that
fire when a function is entered or returned from, and can also be used to create
probe firings for specific instructions in the function [13, p. 788-791]. In Sect. 4.1,
we use the pid provider to dynamically instrument a stack program in C.

The listing in Fig. 1 shows a simple D-script which matches on read-syscalls
into the kernel. It prints the name of the process issuing the call, except of any
running instance of the dtrace-process itself.

syscall::read:entry /* probe */
/execname != "dtrace" / /* predicate */
{ printf("%s \n " , execname); } /* action block */

Fig. 1. A simple D-script

322 C.M. Rosenberg et al.

3 Design of graphviz2dtrace

The fundamental idea behind graphviz2dtrace is to let users associate the
atomic propositions in LTL formulas with DTrace-observable events represented
by DTrace probes (with optional predicates). Suppose, for example, that we
want to ensure that a program deallocates all memory before exiting, and
have expressed this property as ¬exit W dealloc using the precedence pat-
tern identified by Dwyer et al. in [1]. Suppose that we also have produced a
corresponding LTL3 automaton with LamaConv. With graphviz2dtrace, we
can create a concrete monitor program for this property in the following man-
ner: First, we can map exit to the DTrace probe pid$target::main:return,
which fires whenever the main function returns. Similarly, we can map dealloc to
pid$::dealloc:entry, which fires whenever the dealloc function is entered.
Every time DTrace registers one of the specified events, the state of the automa-
ton is updated according to the automaton transition function (encoded in a
two-dimensional array). The monitor reports a verdict the moment it detects
that the property is either satisfied or violated and terminates itself.

Originally, the idea (and hence the name) of graphviz2dtrace was to pro-
vide a unified way of producing DTrace monitors from any monitor automaton
encoded in Graphviz [11] dot notation2. However, we chose to restrict ourselves
to monitor automata for LTL3 since it is well suited for reasoning about finite
traces.

LTL3 differs from traditional LTL in its semantics, which is defined for finite
prefixes of infinite traces. The semantics of LTL3 is based on the notion of good
and bad prefixes originally developed in [15]: A good prefix for a formula φ is a
prefix such that all possible continuations of the prefix make φ true. Conversely,
a bad prefix for φ is a prefix such that all possible continuations of the prefix
make φ false. Consequently, an LTL3 monitor is an automaton that accepts a
trace if it detects a good prefix, rejects a trace if it detects a bad prefix or outputs
inconclusive if the provided trace is neither a good nor a bad prefix [6].

In LTL3 monitor automata produced by LamaConv, all states will be labeled
either green, red or yellow. Whenever the automaton enters a red state, the
automaton has detected a bad prefix. If the automaton enters a green state, a
good prefix has been found. If the trace (i.e. the input to the automaton) is
terminated while the automaton is in a yellow state, the verdict is inconclusive.
In graphviz2dtrace-produced scripts, this is reflected in three types of probe
clauses: As soon as the automaton detects that it is about to enter an accepting
or rejecting state, the script outputs the corresponding verdict and stops itself. If
the script is terminated while in a yellow state, the script outputs INCONCLUSIVE.

Concurrency-Related Limitations. The most important limitation with DTrace
is that there is no way to have a globally accessible yet synchronized state variable
in D : This introduces the possibility of race conditions if two or more probe

2 The graphviz dot notation was chosen because LamaConv can produce it, for its
ubiquity, and for the ease with which automata can be visualized.

Leveraging DTrace for Runtime Verification 323

clauses attempt to update the state variable of the automaton at the same time.
A possible mitigation would be to use a thread-local rather than a global state
variable, but that would make it impossible to reason about probes that are not
associated with the same thread. We elected to make graphviz2dtrace agnostic
about the provided probes: Users are responsible for preventing race conditions.
While this severely restricts the properties that one can safely monitor with
graphviz2dtrace-based scripts, we show an example that works around this
limitation in Sect. 4.

4 Case Studies

In this section we use graphviz2dtrace to analyze simple properties in two
different setups: in the first case study, we observe function calls in a simple C
program that implements a stack-API. In the second, we show how our DTrace-
based approach can be used to cover properties that span different operating-
system level processes. Lastly, we discuss the performance penalties incurred
through DTrace.

4.1 Verifying a Single Process Program

To demonstrate graphviz2dtrace in practice, we start by investigating a näıve
implementation of the classic stack data structure, supporting the operations
push, pop and empty. The push function adds an element to the top of the stack,
pop removes the topmost element on the stack and returns the element to the
user, and empty says whether the stack is empty or not. We will consider the
following property:

�((push ∧ ♦empty) → (¬empty U pop))

This property is chosen among the properties which Bauer et al. determined to
be LTL3-monitorable [6] and can be understood as saying that for any stack
that has been pushed to and is eventually found empty, a pop event must have
occurred before the empty event.

Obtaining the Automaton. First, we must obtain an automaton by using
LamaConv. We use the following invocation to generate an automaton encoded
in the Graphviz dot language:
r l t l c o n v ‘ ‘LTL= [] ((push && <>empty) −> (! empty U pop)) ,

ALPHABET=[push , pop , empty] ” −−formula −−moore −−min −−dot

The resulting automaton and corresponding dot code are shown in Fig. 2. We
observe that the resulting automaton has two yellow states and one red state.
If the input to the automaton ends while the automaton is in any of the yellow
states, the verdict is inconclusive. If the automaton is in the red state, it means
that it has detected a violation of the property.

324 C.M. Rosenberg et al.

digraph G {
q0 -> q0 [label="?"];
q1 -> q2 [label="\"pop\""];
q1 -> q1 [label="\"push\""];
q1 -> q0 [label="\"empty\""];
q2 -> q2 [label="\"empty\""];
q2 -> q2 [label="\"pop\""];
q2 -> q1 [label="\"push\""];
start [shape=none, style=invis];
start -> q2 [label="START"];
q2 [style=filled, fillcolor=yellow]
q1 [style=filled, fillcolor=yellow]
q0 [style=filled, fillcolor=red]

}

Fig. 2. Automaton (left) and dot script (right) for the formula �((push ∧ ♦empty) →
(¬empty U pop)) (Color figure online)

Mapping Atomic Propositions to DTrace Probe and Predicate Expres-
sions. With the automaton in hand, we map the atomic propositions in the LTL
formula (push, pop and empty) to DTrace probe and predicate expressions. We
use the pid provider to detect function calls within the program, which lets us
detect when a function is being called and when a function is returned from. In
this way, we can inspect both function arguments and return values. We create
the following mapping in JSON as mapping.json:

push → pid$target::push:entry

pop → pid$target::pop:return

empty → pid$target::empty:return/arg1 == 1/

Anytime the stack program enters the push function, our monitor script registers
this as a push event and updates the internal automaton state accordingly. Sim-
ilarly, whenever the stack program returns from the pop function, the monitor
registers this as a pop event.

The empty function reports whether the stack is empty or not. It returns
either 1 or 0, meaning true or false. Since we are interested in the event “the
stack is empty” rather than “the empty function is being called”, we must check
the return value of empty. We use a predicate expression for this. The predicate
checks that the return value of the function, which the pid provider binds to
arg1, is 1.

We now have all the necessary ingredients. To obtain our monitor, we use
the following graphviz2dtrace invocation:

The listing in Fig. 3 shows the salient parts of the generated script, eliding gen-
erated comments, and parts of the transition table.

Detecting a Violation. To experiment with the monitor, we introduce a fault
into the stack implementation. The push function does not increment the buffer

Leveraging DTrace for Runtime Verification 325

i n t HAS VERDICT;
i n t s t a t e ;
i n t t f [3] [3] ;

d t race : : : BEGIN
{

t f [0] [0] = 0 ;
/∗ . . . ∗/
t f [2] [2] = 0 ;
HAS VERDICT = 0 ;
s t a t e = ($1 ? $1 : 0) ;

}

p id$ ta rge t : : empty : re turn
/ (arg1 == 1) && (s t a t e == 2)/
{

t r a c e (”REJECTED”) ;
HAS VERDICT = 1 ;
e x i t (0) ;

}

p id$ ta rge t : : push : entry
/ s t a t e == 2 | | s t a t e == 0/
{

s t a t e = t f [s t a t e] [1] ;
}

p id$ ta rge t : : empty : re turn
/ (arg1 == 1) && (s t a t e == 0)/
{

s t a t e = t f [s t a t e] [0] ;
}

p id$ ta rge t : : pop : re turn
/ s t a t e == 2 | | s t a t e == 0/
{

s t a t e = t f [s t a t e] [2] ;
}

dtrace : : :END / !HAS VERDICT /
{ t r a c e (”INCONCLUSIVE”) ; }

Fig. 3. Generated script

index after pushing a new element onto the stack, ie. the empty operation will
yield 1 (ie. true) even though elements have been pushed onto the stack:

We demonstrate this by feeding the program a test case via the standard input.
Notice that the monitor is called with the -c parameter, which tells the moni-
toring script that it should start the provided program and trace until the target
program finishes running. We run the program with sudo, as DTrace requires
special privileges to run, regardless of the privilege level of the programs being
monitored.

Indeed, we see that the last line is REJECTED. To ensure against a false posi-
tive, we fix the stack implementation to increment on push, which should make
the monitor output INCONCLUSIVE, we recompile the program and run the test
case again:

As expected, the verdict is INCONCLUSIVE, since we have reached the end of
the trace and stopped in neither an accepting, nor rejecting, state.

326 C.M. Rosenberg et al.

4.2 Verifying Interactions Between Programs

The previous case study concerned a single-process program. What if the system
we want to analyze is realized by more than one process? To illustrate how
graphviz2dtrace can create monitors suitable for these occasions, we will now
analyze a simple system consisting of a web server written in Node.js [17] talking
to a PostgreSQL [19] database. The point of this case study is not to illuminate
some complex system—in fact, the system is made deliberately simplistic to
emphasize how the system is instrumented—but rather to discuss what it is like
to use graphviz2dtrace in practice on a deployed system.

The web server listens to incoming HTTP requests and stores the user-agent
strings of the incoming requests in a PostgreSQL database. When the server
starts up, it reports its process ID and the process ID of the attached PostgreSQL
client to the terminal. Suppose we wanted to ensure that whenever the web server
receiving a request, the database completes the corresponding insertion query
successfully before the web server sends a response to the client. How could we
do that?

In the following, we go through the process of selecting relevant probes corre-
sponding to the events we want to study, specifying the property in LTL, creat-
ing the corresponding monitor, attaching it to the running system and detecting
violations.

Both Node.js and PostgreSQL have tailor-made static probes that we can
make use of. For PostgreSQL, we consulted the listing of available static probes
in [20] and used DTrace to find a single probe to associate with the event that
a specific PostgreSQL client is done executing a query:

postgresql$$1:postgres:PortalRun:query-execute-done.

The $$1 lets us target a specific PostgreSQL client instance by providing the
corresponding PID to the monitoring script via the command line. Furthermore,
Node.js has static probes for incoming HTTP requests and responses, which can
be tied to a specific Node.js instance as in these probe specifications:

node$target:node::http-server-request and
node$target:node::http-server-response.

Here, we use the $target macro variable to specify the PID of the relevant
Node.js instance via the command line.

By not supporting parameterized properties, graphviz2dtrace makes it hard
to reason about distinct events of the same type. However, the predicate mecha-
nism in DTrace is quite expressive. Let us see if we can use the DTrace predicate
mechanism to express the property as something that either should happen or
should never happen, and see if we can get closer to our intended meaning.

We wanted to ensure that the server never sends a response to the client
before the database management system has completed the corresponding query.
Let us rephrase this property in terms of what should never happen:

Leveraging DTrace for Runtime Verification 327

1. The server should never send a response before the corresponding database
query is complete.

2. There should never be an HTTP request for which the corresponding database
query and HTTP response never happen.

Suppose we kept three running counters: One for registered requests, another
for completed queries, and a third for completed responses. We can achieve this
in a D script by adding one probe clause for each event that increments the
corresponding counter:

If we want to add this to a graphviz2dtrace-generated script, we must
place these probe clauses before the clauses related to the automaton logic to
get the intended result, since probe clauses associated with the same probe are
processed in order. If we place them below the automaton-related clauses, the
counters would be incremented after we check if the property is violated. Note
also that global variables are initialized to 0 by default in D script.

With the counters in place, we can then express the first property as

�¬(nresponses > nqueries)

What about the response property? We suggest the following: Define a tolerance
level for how big the difference can be between registered requests on the one
hand and registered responses and queries on the other. As a starting point, let
us arbitrarily specify the tolerance level by saying that this difference should
never exceed 100:

�¬(((nrequests − nresponses) > 100) ∧ ((nrequests − nqueries) > 100))

Having decided on these properties, we need to find a way of associating the
atomic propositions of these properties with probe firings so we can detect viola-
tions. We can associate the atomic proposition in the precedence property with
the http-server-response probe:

node$target:node::http-server-response/nresponses > nqueries/

The response property is not as obvious, but we we can use the special tick
provider to inspect the state of the monitoring script at a given interval. The
tick provider fires at a fixed interval on one CPU [18, p. 177]. By associating

328 C.M. Rosenberg et al.

a suitable predicate with a tick event, we can check if the difference between
registered requests and registered queries and responses is too large. If we check
the property 10 times a second, the probe and predicate specification becomes:

tick-10hz/((req - res) > 100) || ((req - queries) > 100)/

We then go on to constructing an appropriate automaton. First, we create
some aliases. We call the event related to the precedence property mismatch and
the event associated with the response property unresponsive. We then define
our specification formula as the following conjunction:

(�¬mismatch) ∧ (�¬unresponsive)

We then use LamaConv to create the automaton, and graphviz2dtrace to
create the corresponding script. We also add the counter logic mentioned above
to get the counters to work. Finally, to make the verdicts more informative, we
also add print statements helping us distinguish between when the property is
violated due to the mismatch event and when the violation is caused by the
unresponsive event.

Detecting a Violation. With the monitoring script in hand, let us proceed
to verifying the system under scrutiny. Again, we have introduced an artificial
problem in our code to give our monitor something interesting to observe. We
use the following fragment in the web server source code to handle a request:

Once the database finishes, the runtime executes the code in the anonymous
callback function. In the meantime, the webserver can go on processing other
events. However, the statement which closes
the HTTP response, is outside of the callback which fires when the database is
done. Therefore it is possible that the statement above is executed before the
database is done completing the query.

On startup, the Node.js server prints all the information that we need to
subsequently attach DTrace:

Leveraging DTrace for Runtime Verification 329

The p flag binds 11509 to the $target macro variable. Similarly, 11510 will
be bound to $1. With the monitor attached, we use the Apache Benchmark [2]
tool ab to send the server a series of requests, and quickly trigger the monitor:

We can detect a violation of the response property, too. Running a new
benchmark on the server after fixing the callback error above, this time with a
high number of concurrent connections via the command line option -c 200, we
get immediately: REJECTED DUE TO UNRESPONSIVENESS.

The tolerance gap of 100 requests in the property was chosen arbitrarily, so
this does not have to mean that there is any grave error with the software system
as such. Nevertheless, we have seen that the monitor detects a violation.

On Concurrency. Since the Node.js web server and the PostgreSQL database run
as separate processes on a multi-core machine it is both possible and desirable
that they do tasks in parallel: Generally, this can also mean that we get two
simultaneous probe firings that create a race condition on the monitor’s state
variable. In this specific case, we are in the clear: The clauses in the generated
monitor never update the state variable, since as soon as either the mismatch
or the irresponsive event is detected a bad prefix has been found and monitoring
is terminated.

4.3 Performance

Finally, we would like to observe and discuss the performance of DTrace-based
runtime verification. Gregg [12] analyzes the overhead of the pid provider
and states the following principle about the performance overhead induced by
DTrace:

“The running overhead is proportional to the rate of probes - the more
they fire per second, the higher the overhead.”

He then formulates the following rules of thumb:

– “Don’t worry too much about pid provider probe cost at < 1 000 events/s.”
– “At > 10 000 events/s, pid provider probe cost will be noticeable.”
– “At > 100 000 events/s, pid provider probe cost may be painful.”

Paraphrasing our performance evaluation detailed in [21], we see that in the
case of the web-server, in our benchmark the system processes roughly 2 000
requests per second, and with three probe firings associated with each request
(one for the request, one for the query and one for the response), this only adds
up to 6 000 probe firings per second, which is well below this threshold.

In the case of the stack example, we also compared with printf-based events
(essentially how logging would be implemented). We observe that although this

330 C.M. Rosenberg et al.

method of event-generation has only half the runtime overhead of using DTrace
probes from the pid provider, it is a static instrumentation which gives less flexi-
bility, especially in the case where the application does not need to be monitored.
In that case, DTrace would have virtually no overhead, whereas the program with
the printf-statements would have to be recompiled without them.

This shows that we can instrument a running system with DTrace without
adversary performance effects, so long as we limit the number of possible probe
firings per second to a reasonable level.

5 Conclusion and Future Work

DTrace offers a unique insight into running programs with little overhead. Its
main design goal is unobtrusiveness, i.e., apart from a usually minor performance
impact, DTrace cannot affect the program execution in any way. Here, we have
used DTrace scripts to monitor events provided by the operating system runtime
(function calls via C-style libraries or syscalls into the kernel), and through User
Statically Defined Tracing, where developers deliberately expose relevant probes
to DTrace.

As the scripts run inline with the actual program, we have chosen to encode
the transition function of three-valued Linear Time Logic LTL3 directly through
a two-dimensional array in DTrace. The three-valued logic gives us the possibility
to yield a verdict on an accepting/rejecting a run as soon as possible.

A major advantage of this approach is that we can associate events from
different (operating system-level) processes, possibly even implemented in dif-
ferent languages. We have illustrated the usefulness in two small cases studies,
and reflected on performance impacts.

Related Work. The main challenge in applied runtime verification is how to
observe a program. Approaches can be divided into those that require access to
the source code, and those that do not.

The former rely on recompilation (or byte-code transformation in case of
interpreted languages) to be able to intercept relevant events at runtime. Pro-
grams are either recompiled with manual annotations or instrumentations, or
through a more declarative approach like aspect-oriented programming [16]. The
notions of capturing function entries and exits with the possibility to bind values
in AspectJ have already been used previously together with temporal logics [24]
and trace-based interface specifications [7].

In the second category of tools that can work with a binary representation
only of the software, we have log-based tools [14], or those that work on a lower
level, e.g. by using advanced emulation or virtualization techniques like Intel’s
SAE technology [10]. The latter works on the instruction-level and requires
reconstruction of higher-level actions of the program from sequences of assembly
instructions.

Another dimension of classification is online versus offline monitoring. In
online monitoring, properties are checked in lock-step with the program execu-
tion. This also allows the monitor to interrupt, or otherwise interact with the

Leveraging DTrace for Runtime Verification 331

program as soon as a violation is detected. The ability of a system to reason and
reflect about its own operating modes and overall system state at runtime has
also been termed runtime reflection in [4]. In offline monitoring, runtime verifi-
cation techniques are only used to record a trace, which is then processed later,
e.g. for post-mortem analyses. Our DTrace approach realises online monitoring,
as scripts are executed inline, yet we have not made use of a feedback mech-
anism to realise reflection. However, a feedback mechanism could be achieved
by connecting the output of the DTrace script to the input of the program, or
making use of DTrace’s so-called destructive actions [18, p. 114], which, among
other things, offer direct manipulation of memory contents. This requires active
cooperation from the program, in the sense that a developer has to program the
application to respond to monitor verdicts.

In future work, we plan to extend the framework with parametrized propositions
[23], or quantified event automata [3]. This will allows us to instantiate properties
with events that carry values, e.g. to match corresponding identifiers in requests
and responses. As we have seen in the web-server example, this is a limiting
factor which can only be partially remediated through counters.

It is not clear how concurrent programs can effectively be monitored without
race conditions in the action blocks. An obvious, though less elegant, solution
would be to use DTrace to only collect the trace data, and produce a single
stream of interleaved events that is processed outside of DTrace.

All source code to the example programs, monitors, and detailed instructions
are available in [21] and the accompanying web-page http://www.mn.uio.no/ifi/
english/research/groups/pma/completedmasters/2016/rosenberg/.

References

1. Aalav, H., Avrunin, G., Corbett, J., Dillon, L., Dwyer, M., Pasareanu, C.: Speci-
fication patterns. http://patterns.projects.cis.ksu.edu/. Accessed 13 Aug 2015

2. Apache Software Foundation: ab - Apache HTTP server benchmarking tool.
https://httpd.apache.org/docs/2.4/programs/ab.html

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012)

4. Bauer, A., Leucker, M., Schallhart, C.: Model-based runtime analysis of distributed
reactive systems. In: 17th Australian Software Engineering Conference (ASWEC
2006). IEEE Computer Society (2006)

5. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011)

7. Bodden, E., Stolz, V.: Tracechecks: defining semantic interfaces with temporal
logic. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 147–162.
Springer, Heidelberg (2006)

http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/
http://www.mn.uio.no/ifi/english/research/groups/pma/completedmasters/2016/rosenberg/
http://patterns.projects.cis.ksu.edu/
https://httpd.apache.org/docs/2.4/programs/ab.html

332 C.M. Rosenberg et al.

8. Cantrill, B.: Hidden in plain sight. ACM Queue 4(1), 26–36 (2006)
9. Cantrill, B., Shapiro, M.W., Leventhal, A.H.: Dynamic instrumentation of produc-

tion systems. In: ATEC 2004 Proceedings of the Annual Conference on USENIX
Annual Technical Conference. USENIX (2004)

10. Chachmon, N., Richins, D., Christensson, M., Cohn, R., Cui, W., Reddi, V.J.:
Simulation and analysis engine for scale-out workloads. In: Proceedings of the
30th ACM on International Conference on Supercomputing. ACM (2016)

11. Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz -
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, p. 483. Springer, Heidelberg (2002)

12. Gregg, B.: DTrace pid Provider Overhead (2011). http://dtrace.org/blogs/
brendan/2011/02/18/dtrace-pid-provider-overhead/

13. Gregg, B., Mauro, J.: DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD. Prentice Hall Professional, Upper Saddle River (2011)

14. Havelund, K., Joshi, R.: Experience with rule-based analysis of spacecraft logs. In:
Artho, C., Ölveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476, pp. 1–16. Springer,
Heidelberg (2015)

15. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Meth.
Syst. Des. 19(3), 291–314 (2001)

16. Laddad, R.: AspectJ in Action, 2nd edn. Manning Publications, Cherry Hill (2009)
17. Node.js Foundation. Node.js. https://nodejs.org/en/
18. Oracle Corporation: DTrace Guide for Oracle Solaris 11. Oracle Corporation,

Redwood City (2012)
19. PostgreSQL Global Development Group: PostgreSQL. http://www.postgresql.org/
20. PostgreSQL Global Development Group: PostgreSQL Documentation: Dynamic

Tracing. http://www.postgresql.org/docs/current/static/dynamic-trace.html
21. Rosenberg, C.M.: Leveraging DTrace for runtime verification. Master thesis,

Department of Informatics, Faculty of Mathematics and Natural Sciences, Uni-
versity of Oslo, May 2016

22. Scheffel, T., Schmitz, M., et al.: LamaConv-logics and automata converter library.
http://www.isp.uni-luebeck.de/lamaconv

23. Stolz, V.: Temporal assertions with parametrized propositions. J. Log. Comput.
20(3), 743–757 (2010)

24. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electron. Notes Theoret.
Comput. Sci. 144(4), 109–124 (2006)

http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/
http://dtrace.org/blogs/brendan/2011/02/18/dtrace-pid-provider-overhead/
https://nodejs.org/en/
http://www.postgresql.org/
http://www.postgresql.org/docs/current/static/dynamic-trace.html
http://www.isp.uni-luebeck.de/lamaconv

Finite-Trace Linear Temporal Logic:
Coinductive Completeness

Grigore Roşu(B)

University of Illinois, Champaign, USA
grosu@illinois.edu

Abstract. Linear temporal logic (LTL) is suitable not only for infinite-
trace systems, but also for finite-trace systems. Indeed, LTL is frequently
used as a trace specification formalism in runtime verification. The com-
pleteness of LTL with only infinite or with both infinite and finite traces
has been extensively studied, but similar direct results for LTL with only
finite traces are missing. This paper proposes a sound and complete proof
system for finite-trace LTL. The axioms and proof rules are natural and
expected, except for one rule of coinductive nature, reminiscent of the
Gödel-Löb axiom. A direct decision procedure for finite-trace LTL satis-
fiability, a PSPACE-complete problem, is also obtained as a corollary.

1 Introduction

Finite execution traces play an important role in several computing fields. For
example, Hoare logic [12], which is at the heart of deductive program verification,
defines (partial) correctness in terms of finite traces: {pre}P{post} holds iff any
finite execution trace of P starting in a state satisfying pre ends in a state
satisfying post. Also, in runtime verification, formal specifications are often used
to characterize the bad behaviors of a system. Then the system is monitored
against monitors generated from specifications. While infinite-trace specification
formalisms have occasionally been used to specify systems’ bad behaviors, in the
end such bad behaviors occur after a finite number of observed events, so the
generated monitors need only be faithful to the finite-trace safety fragment of the
property. Consequently, many temporal specification formalisms used in runtime
verification (and not only) have finite-trace semantics [5,8,11,13,15,20,23].

Linear temporal logic (LTL) [18] has established itself as one of the major
trace specification formalism. With few exceptions (some mentioned above, oth-
ers shortly below), the semantics of LTL is typically given in terms of infinite
traces or of both infinite and finite traces (see, e.g., [17]), and some of the major
theoretical results of LTL have only been studied in this context. This is unfor-
tunate, because LTL is just as suitable a specification formalism for properties
over only finite traces. For example, we can specify any finite-state machine FSM
as a finite-trace LTL formula ϕFSM (Example 2), so that a word is in the lan-
guage of FSM iff (a variant of) it satisfies ϕFSM . Moreover, consider again a
Hoare triple {pre}P{post} and suppose that FSM, ϕpre, and ϕpost, respectively,
abstract the state-space of the program P (with accepting states precisely where
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 333–350, 2016.
DOI: 10.1007/978-3-319-46982-9 21

334 G. Roşu

P is terminated), and pre and post. Then the formula ϕFSM ∧ ϕpre → ♦ϕpost

captures the abstract meaning of the Hoare triple quite elegantly.
When giving LTL a finite-trace semantics, one has to decide upon the seman-

tics of the “next” operator on one-state traces, that is, when there is no next
state. In a two-valued1 setting, there are three admittedly meaningful semantics
for “next ϕ” on one-state traces: (1) it always holds; (2) it never holds; (3) it
holds iff ϕ holds itself on the one-state trace. The semantics (3) has the techni-
cal advantage that it reduces finite-trace to infinite-trace semantics by repeating
the last state of the finite trace indefinitely, so the usual LTL reasoning remains
sound. For that reason, for example, it has been used in the context of run-
time verification [20], where a finite-trace semantics with sound deduction was
needed. However, (3) has a major drawback: the LTL formulae cannot distin-
guish between terminated traces and traces which (accidentally) repeat their last
state. Hence, in our view, (3) does not capture the nature of finite-trace LTL
properly, so we here stick to (1) and (2). In fact, (1) and (2) are equivalent and
can co-exist: if ◦ is the weak next of (1) and • is the strong next of (2), then it
is easy to see that ◦ϕ ≡ ¬•¬ϕ and •ϕ ≡ ¬◦¬ϕ.

While first-order logic expressiveness results for LTL variants with finite-trace
semantics have been studied [6,24], at our knowledge no other major theoretical
aspects of finite-trace LTL have been investigated. In particular, direct decid-
ability and complete deduction results are missing. By “direct” we mean ones
that work directly with finite-trace LTL formulae, as opposed to ones based on
translations to other logics. As an analogy, an indirect complete proof system for
infinite-trace LTL, or for equational logic, etc., can be easily obtained by trans-
lations of these logics into first-order logic (FOL) and then using the complete
proof system for FOL. Practically, such indirect results have at least two draw-
backs: first, the size of the translated formulae may be larger than the original
formula, thus incurring increased algorithmic complexity to solve the translated
problem; second, the meaning and intuitions of the original logic and its formulae
may be lost in translation, making assisted proofs more challenging and inconve-
nient for humans. Theoretically, direct decidable procedures and complete proof
systems specialized for the logics of interest are desirable, because they help us
better understand the nature of those logics and their specific challenges.

One may think that complete proof systems for finite-trace LTL should easily
follow from the infinite-trace variants, because finite traces are particular infinite
traces which stutter in the final state after a finite number of states. However,
a careful examination reveals that the infinite-trace LTL results heavily rely
on the axiom/property ¬◦ϕ ↔ ◦¬ϕ, which does not hold for finite-trace LTL.
Only one implication holds, namely ¬◦ϕ → ◦¬ϕ (or its equivalent •¬ϕ → ¬•ϕ).
Therefore, axioms need to be dropped from the infinite-trace LTL proof system.
Furthermore, one may think that it suffices to just drop the implication ◦¬ϕ →
¬◦ϕ from the axioms of infinite-trace LTL (or replace it with a weaker one), like
for the LTL variant in [17] with both infinite and finite traces, because all the
other axioms and proof rules, including the powerful Induction rule

1 See [2] for multi-valued variants of LTL.

Finite-Trace Linear Temporal Logic 335

Ind
ϕ → ◦ϕ

ϕ → �ϕ

are sound for finite traces as well, and finite-trace LTL “ought to” be simpler than
LTL with both finite and infinite-traces. However, it turns out that new rules
are needed in order to achieve completeness, because finite-trace LTL admits
new tautologies which do not hold for infinite-traces, such as ♦◦⊥ (every trace
eventually terminates).

Conceptually, the main contribution of this paper is the following Coinduc-
tion proof rule, which appears to play a central role in finite-trace temporal
reasoning:

coInd
◦ϕ → ϕ

ϕ

In words, it states that if we can always prove that a property holds now assuming
it holds next, then the property always holds. For example, if ϕ is “I am happy”
and ◦ is “tomorrow”, then coinduction allows us to infer “I am happy” provided
that we are able to prove “if tomorrow I am happy then today I am happy”.
This may seem counter-intuitive at first, but it makes full sense in the context
of finite traces with the weak interpretation of ◦. Indeed, suppose that ◦ϕ → ϕ
holds for all finite traces. Since ◦ϕ always holds on one-element traces, ◦ϕ → ϕ
implies that all one-element traces satisfy ϕ. That implies that ◦ϕ always holds
on two-element traces, so ◦ϕ → ϕ implies that all two-element traces satisfy ϕ.
We can thus inductively show that traces of any length satisfy ϕ.

As another example of coinduction, consider program verification of partial
correctness using operational semantics, as advocated in [4,19,21]. There, pro-
gram partial correctness is framed as (symbolic) reachability: the desired reach-
ability property holds iff it holds on all finite paths starting with the current
(symbolic) program configuration. Consider that our property ϕ in the coInd
rule above is such a reachability property, and suppose that it refers to a loop.
Then ◦ϕ corresponds to the same reachability property holding in the next state,
which in this approach is obtained by applying an operational semantics step,
which in our case means unrolling the loop once. Proving ◦ϕ → ϕ corresponds
to proving the original loop program assuming the desired loop property to hold
after we unroll the loop once. In other words, checking symbolically the loop
invariant property. If that holds, then we can safely assume that our original
reachability property ϕ holds, in the partial correctness sense. Indeed, if the
loop does not terminate, then any reachability property can be proved for it
using coInd (similar to Hoare logic).

Our coInd rule is reminiscent of the Gödel-Löb theorem/axiom, which is
at the heart of provability logic [1], where the modality means “provable”. We
are not aware of other uses of a coinductive, Gödel-Löb-style proof rule in the
context of program verification.

We show that coInd is strictly more powerful than Ind , by showing that
it is equivalent to Ind plus ♦◦⊥ (Proposition 4), and that dropping implica-
tion ◦¬ϕ → ¬◦ϕ from the proof system of infinite-trace LTL and replacing Ind

336 G. Roşu

with coInd yields a complete proof system for finite-trace LTL. Technically, the
contribution is an almost complete reworking of the infinite-trace LTL decid-
ability and completeness results, to adapt them to finite-trace LTL. The general
organization and structure of our proofs follow [16].

Section 2 recalls basic facts about propositional, modal, and linear tempo-
ral logics. The syntax and semantics of finite-trace LTL are defined in Sect. 3.
Section 5 defines a variant of formula closure and shows the decidability of the
satisfiability problem. In fact, the decidability result is an immediate corollary
of a major result of the paper, Theorem1, which characterizes the satisfiable
formulae as those admitting complete atom traces; this result is crucial not only
for decidability, but also for completeness. Section 6 introduces our seven-rule
sound proof system and proves several properties of it. Finally, Sect. 7 proves
the completeness of our proof system. Section 8 concludes.

2 Preliminaries

In this section we remind some basic notions and notations about propositional
and modal logic, as well as a sound and complete proof system for infinite-trace
LTL.

Fig. 1. Propositional logic proof system

Propositional Logic. Propositions are
built with propositional variables from
a countable set PVar , a constant sym-
bol ⊥ (false), and a binary operation →
(implication). Other derived operations
include: ¬ (negation), ∧ (and), ∨ (or), ↔
(equivalence). The proof system in Fig. 1
(with axiom and proof rule schemata)
is sound and complete for propositional
logic (MP stands for modus ponens).
To distinguish it from other deducibil-
ity relations, we let 	MP denote the
deducibility relation associated to the
proof system above. The Deduction Theorem of propositional logic states that
Γ 	MP ϕ1 → ϕ2 iff Γ ∪ {ϕ1} 	MP ϕ2. There are many equivalent proof sys-
tems for propositional logic, and all can be used in this paper in a similar
way. We let Prop denote the set of all theorems of propositional logic, i.e.,
Prop = {ϕ | 	MP ϕ}.

Modal Logic. In this paper we build upon the modal logic K (see [10] for a
thorough presentation and history of modal logics, using a modern notation),
whose syntax is:

ϕ :: = propositional logic variables (PVar) and constructs
| �ϕ (♦ϕ commonly used as syntactic sugar for ¬�¬ϕ)

Finite-Trace Linear Temporal Logic 337

Fig. 2. Modal logic proof system

The K modal logic is governed by the
axiom and proof rule in Fig. 2, which together
with the propositional logic proof system in
Fig. 1, yield a sound and complete proof sys-
tem for frame models (not discussed here;
see, for example, [10]). K is typically enriched
with additional axioms and/or proof rules. A
notable axiom is �ϕ → ��ϕ, which turns K
into the logic known as S4.

An interesting modal logic extension, which is at the core of provabil-
ity logic [1] where �ϕ means “ϕ provable”, is with the Gödel-Löb axiom
�(�ϕ → ϕ) → ϕ, abbreviated GL. It can be easily shown that GL makes
the proof rule

�ϕ → ϕ

ϕ

sound, but the converse is not true: one cannot prove GL from K plus the rule
above.

Fig. 3. Infinite-trace LTL proof system

A Proof System for Infinite-
Trace LTL. Several different proof
systems for infinite-trace LTL can
be found in the published literature
and in class lecture notes at various
institutions, with no well-established
winner. Our proof system is inspired
from the infinite-trace LTL proof sys-
tem in Fig. 3.

This proof system appears in
unpublished lecture notes by Dam
and Guelev, reachable from http://
www.csc.kth.se/∼mfd. They credit it
to [16] (personal communication),
although in our opinion there are sev-
eral important differences between
the two. The proof system in Fig. 3
is in fact quite close to the one in [9],
the only difference being that the lat-
ter includes a fixed point axiom for �,
in the style of U 2 in Fig. 3, which, as
shown by Dam and Guelev in their
lecture notes, can in fact be derived. Note that Ind is given as an axiom rather
than as a proof rule, but one can show them equivalent. We used the subscript
s to the until operator to make it clear that strict until is meant. In our proof
system for finite-trace LTL we prefer to work with weak until, which allows us
to eliminate U 1.

http://www.csc.kth.se/~mfd
http://www.csc.kth.se/~mfd

338 G. Roşu

3 Finite-Trace LTL: Syntax and Semantics

Here we introduce the basic elements of finite-trace LTL. For notational simplic-
ity, from here on we refer to finite-trace LTL as L. Its core syntax is the same
as that of infinite-trace LTL, that is, it consists of a unary “next” operator and
of a binary“until”:

ϕ :: = usual propositional constructs
| ◦ϕ (next)
| ϕUϕ (until)

However, the semantics is given in terms of finite-traces, where for technical
simplicity both operators are interpreted weakly. That is, ◦ϕ means: if there is
a next state then ϕ holds in that state; and ϕ1Uϕ2 means: either ϕ1 holds in
all future states or there is some future state in which ϕ2 holds and ϕ1 holds in
each state until then. Formally,

Definition 1. A finite trace is an element of P(PVar)+, that is, a non-empty
finite sequence of sets of propositional variables (each such set can be thought of
as a “state”). We inductively define the satisfaction relation between finite-
traces and formulae:

s1 . . . sn |= p iff p ∈ s1;

s1 . . . sn �|= ⊥;

s1 . . . sn |= ϕ1 → ϕ2 iff s1 . . . sn |= ϕ1 implies s1 . . . sn |= ϕ2;

s1 . . . sn |= ◦ϕ iff n = 1 or s2 . . . sn |= ϕ;

s1 . . . sn |= ϕ1Uϕ2 iff either si . . . sn |= ϕ1 for all 1 ≤ i ≤ n or there is some 1 ≤ i ≤ n

such that si . . . sn |= ϕ2 and sj . . . sn |= ϕ1 for all 1 ≤ j < i.

Formula ϕ is satisfiable iff there exists some finite trace s1 . . . sn such that
s1 . . . sn |= ϕ, and is valid, or a tautology, written |= ϕ, iff s1 . . . sn |= ϕ for
all finite traces s1 . . . sn.

We can now extend the syntax with several derived operators:

ϕ :: = •ϕ (strong next) •ϕ ≡ ¬◦¬ϕ
| �ϕ (always) �ϕ ≡ ϕU⊥
| ♦ϕ (eventually) ♦ϕ ≡ ¬�¬ϕ
| ϕUsϕ (strong until) ϕ1Usϕ2 ≡ ♦ϕ2 ∧ ϕ1Uϕ2

It can be easily shown that these operators have the expected semantics:

s1s2 . . . sn |= •ϕ iff n > 1 and s2 . . . sn |= ϕ;
s1 . . . sn |= �ϕ iff si . . . sn |= ϕ for all 1 ≤ i ≤ n;
s1 . . . sn |= ♦ϕ iff si . . . sn |= ϕ for some 1 ≤ i ≤ n;
s1 . . . sn |= ϕ1Usϕ2 iff there is some 1 ≤ i ≤ n such that si . . . sn |= ϕ2

and sj . . . sn |= ϕ1 for all 1 ≤ j < i.

Finite-Trace Linear Temporal Logic 339

It can also be easily shown that |= ◦ϕ ↔ ¬•¬ϕ, that is, ◦ and • are completely
dual to each other. In the rest of the paper some results are easier to formulate
and/or prove using the weak version of next, ◦, while others using the strong
version, •. Since we can easily and linearly convert a formula to use either one
or the other, we will simply state which one we assume as basic construct at the
beginning of each relevant section.

Another relevant and easy to prove tautology is |= ψ1Uψ2 ↔ ψ2 ∨ ψ1 ∧
◦(ψ1Uψ2).

Example 1. Consider a system which performs one or more actions a followed
by an action b. We want to show that whenever the system terminates, b is
eventually reached. We can specify both the system and the property as the
following formula:

�(a → •(a ∨ b)) → (a → ♦b)

In words, the system is described as the formula stating that once an action a
takes place then a next step must exist, and in that step a or b takes place. If
we additionally want to state that the trace must terminate as soon as b takes
place, then we write:

�((a → •(a ∨ b)) ∧ (b → ◦⊥)) → (a → ♦b)

For now, we can show that the above formulae are valid using Definition 1
directly. Section 6 gives a proof system which will allow us to formally derive
any tautologies. Note that none of these holds under infinite-trace LTL, since aω

does not satisfy them.

Example 2. We can, in fact, associate a formula ϕA over propositional variables
Q∪A to any finite-state machine FSM = (Q,A, q0 ∈ Q, δ : Q×A → 2Q, F ⊆ Q)
as follows:

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝ ∨

q∈Q

q

⎞
⎠ ∧

∧

q∈Q

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q → ((q ∈ F ∧ ◦⊥) ∨
∨

a ∈ A
δ(q, a) �= ∅

a)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∧

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∧

a ∈ A
δ(q, a) �= ∅

q ∧ a → •
∨

q′∈δ(q,a)

q
′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In words, it is always the case that: (1) a state in Q is active; (2) for each final
state, allow the trace to terminate there (◦⊥ holds iff there is no next step); (3)
for each state q which is active, its outgoing edges are also active; and (4) if a
state q and an action a of that state are both active, then a step must take place
to a state allowed by FSM .

It can be shown that a word a1 . . . an is in the language of FSM iff there are
states q1, . . . , qn ∈ Q such that qn ∈ F and {q0, a1}{q1, a2} . . . {qn−1, an}{qn} |=
ϕFSM . This allows us to prove properties about FSM (either directly using
Definition 1 or using the subsequent proof system), such as: |= ϕA → �(q0 →
♦a) (that is, a will be reached on any terminating path starting from q0), or
|= ϕA → �(a → ♦b) (that is, b will be reached on any terminating path starting
with a from any state), etc.

340 G. Roşu

4 Relationship to Infinite-Trace LTL

Before we proceed to present our novel results starting with Sect. 5, it is worth
discussing alternative, indirect approaches to reason about finite-trace LTL prop-
erties. We do it in this section, at the same time also arguing for a direct app-
roach.

There is a relatively simple way to transform any LTL formula into another
LTL formula so that the former is satisfiable under the finite-trace semantics iff
the latter is satisfiable under infinite-trace semantics. The idea is to conceptually
complete finite traces with infinite suffixes $ω, where $ is a new propositional
variable thought of as “nothing”. Formally, given ϕ, let ϕ be the formula defined
as follows:

⊥ = ⊥
p = p ∧ ¬$ where p is a propositional variable

ϕ1 → ϕ2 = ϕ1 → ϕ2

◦ϕ = ◦(ϕ ∨ $)
ϕ1Uϕ2 = ϕ1U(ϕ2 ∨ $)

Then ϕ is satisfiable in finite-trace LTL iff (¬$)Us$ ∧ ϕ is satisfiable in infinite-
trace LTL. For example, the formula (recall that �ϕ is syntactic sugar for ϕU⊥,
and ♦ϕ for ¬�¬ϕ)

�(a → •(a ∨ b)) → (a → ♦b)

in Example 1 is satisfiable in finite-trace LTL iff

(¬$)Us$ ∧ ((a ∧ ¬$ → ◦((a ∨ b) ∧ ¬$))U$ → (a ∧ ¬$ → ¬((¬(b ∧ ¬$))U$)))

is satisfiable in infinite-trace LTL. Therefore, finite-trace LTL is PSPACE-
decidable, like infinite-trace LTL [22], and a decidable procedure can be obtained
by translation to infinite-trace LTL as above.

Following such a translation approach has, however, an important practical
drawback: the size of the formula doubles, and a more complex than needed pro-
cedure is applied on the larger formula. Indeed, as seen in Sect. 5, our specialized
decision procedure for finite-trace LTL reduces to checking simple reachability in
a graph exponential in the size of ϕ, as opposed to checking for algorithmically
more complex, ultimately periodic sequences in a graph exponential in twice the
size of ϕ, as the translation to infinite-trace LTL approach would require.

Also, it can be shown that ϕ is valid in finite-trace LTL iff (¬$)Us$ → ϕ is
valid in infinite-trace LTL. Therefore, one can indirectly obtain a complete proof
system for finite-trace LTL by translation to infinite-trace LTL and then using
off-the-shelf proof systems for the latter, for example [16,17] (see also Sect. 2).
Besides having to prove a twice-larger formula, this translation-to-infinite-trace-
LTL approach has the additional drawback that we now have to explicitly reason
about $ and termination of traces, departing ourselves from the basic intuitions
of finite-trace LTL. For example, it seems hard to find a proof of the infinite-
trace LTL formula corresponding to the finite-trace formula in Example 1, while

Finite-Trace Linear Temporal Logic 341

as shown in Example 3 there is simple, direct and intuitive proof of the original
formula using our new proof system.

Arguments like the above, in favor of direct procedures and reasoning systems
for specific logics instead of translations to other logics, abound in the litera-
ture. Consider, for example, conventional infinite-trace LTL and its well-known
translation to (a monadic fragment of) first-order logic (FOL), suggested for the
first time by Kamp in his seminal 1968 thesis [14]. Specifically, each LTL formula
ϕ can be inductively translated to an equivalent (in appropriate models) FOL
formula ϕ(x) over free variable x; for example,

(ϕ Us ψ)(x) is the FOL formula ∃z . x < z ∧ ψ(z) ∧ ∀y . x < y < z → ϕ(y)

Then we can use existing or develop new procedures for that fragment of FOL
to decide satisfiability of LTL formulae, and we can use the FOL sound and
complete proof system to derive any tautology of LTL. Despite the above, sig-
nificant research and development effort has been spent since 1968 by the formal
verification and analysis community to develop specialized, direct decision proce-
dures and proof systems for LTL. Similarly and perhaps even more interestingly,
equational logic is a well-established fragment of FOL, yet almost no equational
provers are based on FOL reasoning, but on procedures and sound and complete
proof systems specifically crafted for equational logic.

To push the argument to extreme, consider the seminal result by Bergstra
and Tucker [3]: any computable domain, of any complexity class, is isomorphic
to the initial model of a finite set of equations. Therefore, inductive equational
proofs are sufficient to reason within any domain, regardless of its complexity.
Such results, in spite of their beauty and insights, tend to have little practical
relevance and have certainly not stopped, nor even slowed down the research and
development of particular decision procedures and proof systems for particular
logics. The fact that finite-trace LTL can be translated to infinite-trace LTL
falls into the same category and it is, in our view, no more than an interesting
observation. While one can attempt to use decision procedures and proof systems
for infinite-trace LTL via the translation to infinite-trace LTL discussed above,
we believe that finite trace LTL is a pivotal logic for runtime verification and
thus deserves our full attention. Decision procedures and specialized sound and
complete proof systems for it will provide the runtime verification researchers
with understanding and insights that should carry over to other finite-trace
specification formalisms, too.

5 Complete Atom Traces

In this section we show our first important result for finite-trace LTL (L): a
formula ϕ is satisfiable iff there is a complete (i.e., finite and terminated) trace
in the tableaux of ϕ, where the tableaux is constructed in a way specific to the
finite-trace semantics. This also gives a direct decision procedure for finite-trace
LTL satisfiability, but the result is particularly important for completeness. Here
we prefer to work with • and U as core formula constructs, so we assume that

342 G. Roşu

L formulae are built with: propositional variables in PVar , ⊥, →, • and U . As
notational convenience, we use ¬ϕ as a shortcut for ϕ → ⊥.

Definition 2. Let ¬′ϕ be either ϕ′ when ϕ is ¬ϕ′, or ¬ϕ otherwise. A set of
formulae C is {¬}-closed when ϕ ∈ C implies ¬′ϕ ∈ C, is {•}-closed when
•ϕ ∈ C implies ϕ ∈ C, and is closed when: (1) is {¬, •}-closed; (2) ϕ1→ϕ2 ∈ C
implies ϕ1, ϕ2 ∈ C; (3) •ϕ ∈ C implies •¬′ϕ ∈ C; and (4) ϕ1Uϕ2 ∈ C implies
ϕ1, ϕ2, •(ϕ1Uϕ2) ∈ C. If ϕ is a formula then Closure(ϕ) is the smallest closed
set that includes ϕ.

Note that our notion of closure is slightly stronger than the classic Fischer-
Ladner closure [7], in that Fischer-Ladner does not require condition (3), namely
that •¬′ϕ is included in the closure together with •ϕ. Thus, our closures of
formulae will be slightly larger than Fischer-Ladner’s, but nevertheless still linear
in the formula. For example, if ϕ1Uϕ2 ∈ C then also •¬(ϕ1Uϕ2) ∈ C, which is
critical for the proof of Theorem1.

Definition 3. Let C be a {•}-closed set of formulae. The {•}-generated tran-
sition relation of C, written RC ⊆ P(C) × P(C), is defined as follows:
for any A,B ⊆ C, (A,B) ∈ RC iff •−1A �= ∅ and •−1A ⊆ B, where
•−1A = {ψ | •ψ ∈ A}. A complete C-trace is a sequence A1 . . . An of sub-
sets of C with (Ai, Ai+1) ∈ Rϕ for all 1 ≤ i < n and •−1An = ∅.

The reason C was required to be {•}-closed in Definition 3, is because we
want •−1A �= ∅ to imply that there is some B ⊆ C such that (A,B) ∈ RC . In
other words, we want the emptyness of •−1A alone to determine whether A is
terminal for RC or not.

Definition 4. Let C be a closed set of formulae. A C-atom is a set A ⊆ C
such that:

1. ⊥ �∈ A;
2. For each ψ ∈ C, either ψ ∈ A or ¬′ψ ∈ A;
3. If •−1A �= ∅ then for each •ψ ∈ C, either •ψ ∈ A or •¬′ψ ∈ A;
4. For each ψ1→ψ2 ∈ C, ψ1→ψ2 ∈ A iff (ψ1 ∈ A implies ψ2 ∈ A);
5. For each ψ1Uψ2 ∈ C, ψ1Uψ2 ∈ A iff ψ2 ∈ A or ψ1 ∈ A and •¬(ψ1Uψ2) �∈ A.

Let AtomC be the set of C-atoms. If C = Closure(ϕ) for some formula ϕ, then
we write Atomϕ instead of AtomClosure(ϕ) and Rϕ instead of RClosure(ϕ). Also, a
complete atom trace of ϕ is a complete Closure(ϕ)-trace A1 . . . An such that
A1, . . . , An ∈ Atomϕ and ϕ ∈ A1.

The next theorem is a crucial result of finite-trace semantics, which is used
to show both the decidability (Corollary 1) and the completeness (Theorem 4)
of L.

Theorem 1. A formula is satisfiable iff it admits a complete atom trace.

Finite-Trace Linear Temporal Logic 343

Theorem 1 gives us a straightforward algorithm to test the satisfiability of a
formula ϕ: show that there is at least one node A ∈ Atomϕ in the (finite) graph
(Atomϕ, Rϕ) with ϕ ∈ A, such that there is some path from A to a node with-
out any outgoing edges. In other words, the satisfiability problem of ϕ reduces
to the reachability problem in graph (Atomϕ, Rϕ), which is decidable. Thus,
like infinite-trace LTL [22], finite-trace LTL is also decidable. Although check-
ing reachability is algorithmically simpler than checking for ultimately periodic
sequences as needed for infinite-trace LTL [22], deciding finite-trace LTL satisfi-
ability is still a PSPACE-complete problem:

Corollary 1. The satisfiability problem for L is PSPACE-complete.

6 Proof System

Fig. 4. Finite-trace LTL proof system

Figure 4 depicts our proof system
for finite trace LTL. In this section
we prefer to work with ◦ instead of
• as core construct (so •ϕ desug-
ars to ¬◦¬ϕ). We start by inher-
iting propositional logic and the
modal logic rules corresponding to
the modalities ◦ and �. Unlike in
infinite-trace LTL, ¬◦ϕ ↔ ◦¬ϕ does
not hold anymore, as both ◦ϕ and
◦¬ϕ hold in one-state traces; only
the implication ¬◦ϕ → ◦¬ϕ holds.
In interesting multi-modal logics,
the various modal operators tend to
be connected somehow. In our case,
we axiomatize the expected fact that
ϕ1Uϕ2 is the fixed-point of the for-
mula X ↔ ϕ2 ∨ ϕ1 ∧ ◦X. The only
unexpected rule is the Coinduction
rule for ◦. As usual, the axioms and
rules are schemata. The fixed-point equivalence of �, �ϕ ↔ ϕ ∧ ◦�ϕ, is an
instance of Fix with ϕ1 �→ ϕ and ϕ2 �→ ⊥. To avoid inventing rule names, from
now on we take the liberty to let Fix also refer to the latter equivalence. In fact,
if one prefers a fragment of LTL with only ◦ and �, then one can replace Fix
with the fixed-point equivalence of � and the results in this paper still hold.

Comparing our proof system above with the one for infinite-trace LTL in
Sect. 2, we note that the main difference is that the Induction rule has been
replaced with the Coinduction rule. Also, the axiom ◦¬ϕ → ¬◦ϕ has been
removed, and since we chose to work with weak instead of strong until we were
able to also remove rule U 1. We argue, without proof, that our proof system
above is minimal. Indeed, the rules K ◦, N ◦, K�, and N� say that the ◦ and

344 G. Roşu

� modalities form K logics, and K is the poorest modal logic. The axiom ¬◦
captures the specific one-step granularity of ◦, which distinguishes it from � for
example, so it is unlikely to eliminate it. Fix captures the recursive nature of
the until operator, and it is the only axiom which does it, so again it is unlikely
to be removed. Finally, note that none of the rules discussed so far is specific to
finite traces, because they are in fact consequences of the infinite-trace LTL proof
system, so at least one more rule is needed to allow proving finite-trace-specific
properties like ♦◦⊥. The coInd rule not only allows proving ♦◦⊥, but as shown
in Proposition 4 it also allows proving the Induction proof rule of infinite-trace
LTL (which therefore also holds for finite-traces), a rule which is considered
crucial for LTL and, indeed, no proof system for LTL omits it.

Let 	L denote the induced deducibility relation. Specifically, if Γ is a set of
formulae and ϕ a formula, then Γ 	L ϕ denotes that ϕ is deducible from Γ using
the proof system above; 	L ϕ is a shortcut for ∅ 	L ϕ. Let ThL = {ϕ | 	L ϕ} be
the set of all theorems of L. For notational simplicity, we let Prop also denote
the set of all formulae (not only propositions) deducible with the propositional
logic proof subsystem; e.g., �ϕ → (◦ϕ → �ϕ) ∈ Prop (instance of A1 with
formulae in L). Note that Prop = {ϕ | 	MP ϕ} ⊂ ThL.

Theorem 2. (Soundness) For any formula ϕ, 	L ϕ implies |= ϕ. In particu-
lar, ⊥ �∈ ThL.

Fig. 5. Properties of ◦ and •

Figure 5 shows a few basic properties of the
next operators, which can be shown using only
the {K ◦,N ◦,¬◦} fragment of the proof sys-
tem.

Proposition 1. The formulae in Fig. 5 are all
derivable, i.e., belong to ThL.

The following says that the � modality is
S4:

Proposition 2. 	L �ϕ → ��ϕ for any for-
mula ϕ.

The deduction theorem of propositional logic,
stating that Γ 	MP ϕ → ψ iff Γ, ϕ 	MP ψ,
is technically unnecessary but quite useful in
practice, because it allows us to prove impli-
cations by “assuming” their hypothesis and then deriving their conclusion. We
would like to also have it in our setting here. However, it is well-known that
the deduction theorem does not hold by default in other logics. For example,
in first-order logic, it only holds when ϕ is a closed formula (i.e., it has no free
variables). Here we can prove the following variant of the deduction theorem:

Theorem 3. (Deduction theorem) Γ 	L �ϕ → ψ iff Γ, ϕ 	L ψ.

Finite-Trace Linear Temporal Logic 345

When doing proofs by induction, it is often convenient to assume the property
holds in all past moments, and not only in the previous one, and then prove it
holds now. Dually, when doing proofs by coinduction, it is often convenient to
assume the property holds in all future moments, and not only in the next one,
and then prove it holds now.

Fig. 6. Other coinductive rules

The following proposition establishes that
this apparently stronger variant of coinduction
is in fact equivalent to the one we have now.
It also gives equivalent axiomatic variants of
both coinductive proof rules.

Proposition 3. Keeping all the other axioms
and rules unchanged, the rule coInd is equiv-
alent to any of the alternative rules or axioms
in Fig. 6.

Fig. 7. Induction rule and finite-
trace axiom

A natural question is what is the rela-
tionship between induction and coinduction.
Induction is valid for infinite-traces, too, which
means that it is not powerful enough to prove
♦◦⊥ (each trace terminates); indeed, ♦◦⊥ is
equivalent to ⊥ in infinite-trace LTL. On the
other hand, coinduction, as formulated here,
is only valid for finite traces. We next show
that coinduction is actually equivalent to both
induction and the finite trace axiom ♦◦⊥
together:

Proposition 4. Let Ind be the induction rule and Fin be the finite-trace axiom
in Fig. 7. Keeping all the other rules unchanged, coInd is equivalent to Ind and
Fin together.

Fig. 8. Properties of � and ♦

The properties in Fig. 8 are quite useful
in practice.

Proposition 5. The formulae in Fig. 8 are
all derivable, i.e., belong to ThL.

Example 3. Let us prove the property in
Example 1, �(a → •(a ∨ b)) → (a → ♦b).
By the Deduction Theorem3, it suffices to
show a → •(a ∨ b) 	L a → ♦b. This fol-
lows by the coInd proof rule, if we can show
a → •(a ∨ b) 	L ◦(a → ♦b) → (a → ♦b). By propositional reasoning, it suffices
to show 	L •(a ∨ b) ∧ ◦(a → ♦b) → ♦b, which follows by K ◦, propositional
reasoning, and some theorems in Propositions 1 and 5.

346 G. Roşu

7 Completeness

In this section we show that the proof system discussed in Sect. 6 is complete
for finite-trace LTL (L). The general proof scheme adopted in this section is
standard: assume that ϕ is valid but not derivable, which implies that ¬ϕ is
consistent, and then use the proof system to construct a model of ¬ϕ within
the atom universe of the tableaux, thus contradicting the validity of ϕ. Like in
Sect. 5, we here also prefer to work with • as a basic “next” construct instead of
◦. Recall that 	MP is the deducibility relation using only the proof subsystem
of propositional logic.

Consistency, maximal consistency and related results are given below, follow-
ing a pattern common to many logics (propositional logic, FOL, infinite-trace
LTL, etc.).

Definition 5. Γ is inconsistent iff ThL ∪ Γ 	MP ⊥, and it is consistent
otherwise. A formula ϕ is consistent (resp. inconsistent) iff {ϕ} is consistent
(resp. inconsistent). Γ is maximally consistent iff Γ is consistent and if Γ ′

consistent with Γ ⊆ Γ ′ then Γ = Γ ′.

Therefore, Γ is inconsistent iff we can derive ⊥ using only propositional
reasoning, but all the theorems of finite-trace LTL. Once we can derive ⊥, we
can derive anything:

Proposition 6. Γ is inconsistent iff ThL ∪ Γ 	MP ϕ for any formula ϕ.

We can always add more formulae to a consistent set of formulae which is
not maximal. Once maximal, we cannot add new formulae without breaking
consistency:

Proposition 7. Suppose that Γ is consistent and ϕ is any formula. Then:

1. Γ ∪ {ϕ} is consistent, or Γ ∪ {¬ϕ} is consistent, or both;
2. If Γ is maximally consistent, then either ϕ ∈ Γ or ¬ϕ ∈ Γ . In particular,

ThL ⊆ Γ .

In particular, no new formulae can be derived from a maximally consistent
set:

Corollary 2. If Γ is maximally consistent and ϕ is any formula, then Γ 	MP ϕ
iff ϕ ∈ Γ .

Proposition 8. Suppose that Γ is maximally consistent. Then ϕ1 → ϕ2 ∈ Γ
iff ϕ1 ∈ Γ implies ϕ2 ∈ Γ , ϕ1 ∧ ϕ2 ∈ Γ iff ϕ1 ∈ Γ and ϕ2 ∈ Γ , ϕ1 ∨ ϕ2 ∈ Γ iff
ϕ1 ∈ Γ or ϕ2 ∈ Γ , and ϕ1Uϕ2 ∈ Γ iff ϕ2 ∈ Γ or ϕ1 ∈ Γ and •¬(ϕ1Uϕ2) �∈ Γ .

Any consistent set of formulae can be extended into a maximally consistent
one; folklore goes that a result of this kind was first shown for predicate logic by
Lindenbaum in late 1920’s (according to Taski):

Finite-Trace Linear Temporal Logic 347

Proposition 9. Γ consistent implies there is a Γ ′ maximally consistent with
Γ ⊆ Γ ′.

The results above in this section followed a standard pattern to prove com-
pleteness in several logics. The remaining results, however, are specific to finite-
trace LTL (L).

Recall from Definition 3 that •−1Γ = {ψ | •ψ ∈ Γ}. The next proposition
tells that •−1 preserves consistency. This, with the help of Proposition 9, allows
us to start with a special consistent set of formulae and iteratively “derive” it
with •−1; the difficult part is to show that, for finite-trace LTL, this derivation
process can be finite. A result similar to Proposition 10 also exists for infinite-
trace LTL (see, e.g., [16]), but our proof is more involved, because of the existence
of two distinct next operators. In fact, a similar result for the weak next ◦
operator is not possible: for example, ◦⊥ is consistent but ⊥ is not.

Proposition 10. If Γ is consistent then •−1Γ is also consistent.

To prove the completeness, we will show that any consistent formula admits a
complete atom trace (see Definition 4), so we can use Theorem 1 to conclude the
formula is satisfiable. Like for infinite-trace LTL [16], it is convenient to consider
a subset of the atoms of the formula, namely those obtained by intersecting its
closure with maximally consistent sets of formulae. Let us define the worlds of
a {•}-closed set:

Definition 6. Let C be a {•}-closed set of formulae and let WC ⊆ P(C) be the
set { Γ ∩ C | Γ maximally consistent }, whose elements are called the worlds
of C. Also, let RW

C ⊆ WC ×WC be the restriction of RC ⊆ P(C)×P(C) to WC .

Proposition 10 and the {•}-closedness of C guarantee that for any w ∈ WC ,
•−1w �= ∅ iff there is some w′ ∈ WC such that (w,w′) ∈ RW

C . Now let us show
that if C is closed then its worlds are indeed particular atoms. In particular, if
C is a formula closure then its worlds are among the atoms that appear in the
tableaux of the formula (see Sect. 5).

Proposition 11. If C is closed then WC ⊆ AtomC .

The next result tells that we can formally derive that a world can evolve to
its successors, if any. A similar result also exists for infinite-trace LTL (see, e.g.,
[16]), but like before our proof is more involved due to the two distinct next
operators available.

Proposition 12. Let C be a finite and {¬, •}-closed set of formulae, and let
w ∈ WC such that •−1w �= ∅. Then 	L ŵ → •∨

(w,w′)∈RW
C

ŵ′, where Â =
∧{ψ |

ψ ∈ A} for any A ⊆ C.

Unlike for infinite-trace LTL, where the objective is to show the existence
of a ultimately periodic infinite atom trace that satisfies the formula, for finite-
trace LTL the challenge is to show the existence of any finite trace that satisfies

348 G. Roşu

the formula. This is where our proof differs completely from that for infinite-
trace LTL: we show that for any world w ∈ WC , it is impossible to have only
infinite RW

C -sequences starting with w:

Proposition 13. If C is finite and {¬, •}-closed, then for any w ∈ WC there
exists some complete C-trace (see Definition 3) starting with w whose elements
are all in WC .

We can now show that formula consistency and satisfiability coincide:

Proposition 14. A formula is consistent iff it is satisfiable.

The completeness theorem is now a simple corollary of the above:

Theorem 4. (Completeness) For any formula ϕ, |= ϕ implies 	L ϕ.

8 Conclusion

This paper gave direct decidability and completeness results for finite-trace
LTL. Neither the PSPACE-completeness of satisfiability nor the existence of
a sound and complete proof system for finite-trace LTL are surprising results
in themselves, because similar results exist for other variants of temporal logics.
Moreover, the presented proof architecture follows the usual pattern encountered
in infinite-trace variants of temporal logic, which itself follows a pattern well-
established in first-order and predicate logics (for almost 100 years now). Looked
at from that angle, this paper made two contributions, one conceptual and one
technical. The conceptual contribution is the Coinduction proof rule, stating
that if ◦ϕ → ϕ is provable then ϕ is also provable. It surprised the author that it
captures so well the essence of finite-trace reasoning and yields its completeness.
Its simplicity and elegance suggest that Coinduction may play a central role
in finite-trace temporal reasoning. The technical contribution is Proposition 13,
together with Proposition 12 on which it relies, saying that a consistent formula
cannot admit only infinite-trace models; it must admit some finite-trace models,
too, so the formula is finite-trace satisfiable. It may look “obvious” to the hasty
reader now, after the fact, but the difficulty of proving these results made the
author initially believe that finite-trace LTL may in fact not allow any complete
proof system within itself, that is, without translation to other (richer) logics.
This would have not been unheard of: equational logic restricted to uncondi-
tional equalities over regular expressions does not admit a finite axiomatization
within itself, but it does admit one if we allow conditional equations. It could
have just as well been the case that finite-trace LTL admitted no finite proof
system within itself, in spite of its infinite-trace variants admitting finite proof
systems.

Finite-Trace Linear Temporal Logic 349

References

1. Artemov, S.N., Beklemishev, L.D.: Provability logic. In: Gabbay, D.M., Guenthner,
F. (eds.) Handbook of Philosophical Logic, vol. XIII, 2nd edn, pp. 181–360. Springer,
Berlin (2005)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010)

3. Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type spec-
ifications: two characterization theorems. SIAM J. Comput. 12(2), 366–387 (1983)

4. Ştefănescu, A., Ciobâcă, C., Mereuţă, R., Moore, B.M., Şerbănută, T.F., Roşu, G.:
All-path reachability logic. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560,
pp. 425–440. Springer, Heidelberg (2014)

5. D’Amorim, M., Roşu, G.: Efficient monitoring of omega-languages. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer,
Heidelberg (2005)

6. Diekert, V., Gastin, P.: Ltl is expressively complete for mazurkiewicz traces. J.
Comput. Syst. Sci. 64(2), 396–418 (2002)

7. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

8. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: ASE, pp. 412–416. IEEE Computer Society (2001)

9. Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes, vol. 7, 2nd
edn. Center for the Study of Language and Information, Stanford (1992)

10. Goldblatt, R.: Mathematical modal logic: a view of its evolution. J. Appl. Log.
1(5–6), 309–392 (2003)

11. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. Int. J. Softw.
Tools Technol. Transf. (STTT) 6, 158–173 (2004)

12. Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12(10),
576–580 (1969)

13. Jard, C., Jeron, T.: On-line model-checking for finite linear temporal logic spec-
ifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 189–196. Springer,
Heidelberg (1990). doi:10.1007/3-540-52148-8 16

14. Kamp, H.W.: Tense logic and the theory of linear order. Ph.D. thesis, University
of California, Los Angeles (1968)

15. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assur-
ance based on formal specifications. In: Arabnia, H.R. (ed.) PDPTA, pp. 279–287.
CSREA Press, Las Vegas (1999)

16. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and com-
pleteness. Log. J. IGPL 8(1), 55–85 (2000)

17. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.)
Log. Progr. LNCS, vol. 193, pp. 196–218. Springer, Berlin, Heidelberg (1985)

18. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
19. Roşu, G., Ştefănescu, A., Ciobâcă, C., Moore, B.M.: One-path reachability logic.

In: Proceedings of the 28th Symposium on Logic in Computer Science (LICS 2013),
pp. 358–367. IEEE, June 2013

20. Rosu, G., Havelund, K.: Rewriting-based techniques for runtime verification.
Autom. Softw. Eng. 12, 151–197 (2005). doi:10.1007/s10515-005-6205-y

21. Rosu, G., Stefanescu, A.: Checking reachability using matching logic. In: Pro-
ceedings of the 27th Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2012), pp. 555–574. ACM (2012)

http://dx.doi.org/10.1007/3-540-52148-8_16
http://dx.doi.org/10.1007/s10515-005-6205-y

350 G. Roşu

22. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

23. Sulzmann, M., Zechner, A.: Constructive finite trace analysis with linear temporal
logic. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 132–148.
Springer, Heidelberg (2012)

24. Thiagarajan, P., Walukiewicz, I.: An expressively complete linear time temporal
logic for mazurkiewicz traces. Inf. Comput. 179(2), 230–249 (2002)

Wireless Protocol Validation Under Uncertainty

Jinghao Shi1(B), Shuvendu K. Lahiri2, Ranveer Chandra2,
and Geoffrey Challen1

1 University at Buffalo, Buffalo, NY 14120, USA
{jinghaos,challen}@buffalo.edu

2 Microsoft Research, Redmond, WA 98052, USA
{shuvendu,ranveer}@microsoft.com

Abstract. Runtime validation of wireless protocol implementations
cannot always employ direct instrumentation of the device under test
(DUT). The DUT may not implement the required instrumentation, or
the instrumentation may alter the DUT’s behavior when enabled. Wire-
less sniffers can monitor the DUT’s behavior without instrumentation,
but they introduce new validation challenges. Losses caused by wire-
less propagation prevent sniffers from perfectly reconstructing the actual
DUT packet trace. As a result, accurate validation requires distinguish-
ing between specification deviations that represent implementation errors
and those caused by sniffer uncertainty.

We present a new approach enabling sniffer-based validation of wire-
less protocol implementations. Beginning with the original protocol
monitor state machine, we automatically and completely encode snif-
fer uncertainty by selectively adding non-deterministic transitions. We
characterize the NP-completeness of the resulting decision problem and
provide an exhaustive algorithm for searching over all mutated traces.
We also present practical protocol-oblivious heuristics for searching over
the most likely mutated traces. We have implemented our framework and
show that it can accurately identify implementation errors in the face of
uncertainty.

1 Introduction

Custom wireless protocols are often designed and deployed to meet the spe-
cific performance and power needs of special-purpose wireless devices. Examples
include Google Iris contact lenses [14], Xbox One wireless controllers [26], and
Google Chromecast [25]. Validating that device implementations work correctly
is critical to achieve the design goals of the wireless protocol and also prevent
bugs in shipped products [7,9,12].

Runtime validation of the protocol implementations on such devices is chal-
lenging because collecting traces from the device under test (DUT) is often
infeasible. The resource limitations of embedded or battery-powered devices may
cause them to not provide trace collecting capabilities. DUT may contain propri-
etary hardware or firmware that hides the implementation details and prevents
testers from collecting traces through source code instrumentation. Even when
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 351–367, 2016.
DOI: 10.1007/978-3-319-46982-9 22

352 J. Shi et al.

collecting trace directly from the DUT is possible, the overhead it causes may
alter the behavior of the DUT due to the observer effect [21], threatening the
validation results.

An attractive alternative is to use wireless sniffers to record traffic generated
by the DUT during testing. Sniffers do not require direct access to the DUT or
the need to alter its behavior. However, due to the fundamentally unpredictable
nature of wireless communications, the packets captured by the sniffer will not
exactly match those received by the DUT. The sniffer may miss packets that
the DUT received, or receive packets that the DUT missed. This is true even
when using multiple sniffers [3,6,19], a sniffer with multiple antennas [23], or in
isolated wireless environments.

Since the sniffer trace may not perfectly match the actual trace, uncertainty
arises during protocol implementation validation. For example, if the DUT fails
to respond correctly to a packet in the sniffer trace, it may either because the
DUT’s implementation is incorrect, or the DUT did not actually receive the
packet, or the DUT’s response was missed by the sniffer. Whenever the DUT’s
behavior does not match the specification, there are now two potential explana-
tions: either the DUT’s implementation is wrong, or the sniffer trace is inaccu-
rate. Accurate validation requires distinguishing between these two causes.

We present a new technique than enables validation of protocol implemen-
tations using wireless sniffers. Given a monitor state machine representing the
protocol being validated, we describe a systematic transformation that adds
non-deterministic transitions to incorporate uncertainty introduced by the snif-
fer. This augmented validation state machine implicitly defines a set of mutated
traces, each satisfying the original state machine with a specific likelihood. If the
set is empty, the implementation definitely violates the protocol. Searching over
all the mutated traces is NP-complete, but the approach can be made practical
by applying protocol-oblivious heuristics that limit the search to likely mutated
traces.

Our paper makes the following contributions:

1. To the best of our knowledge, we are the first to identify the uncertainty
problem caused by sniffers in validating wireless protocol implementations.

2. We formalize the problem using a nondeterministic state machine that sys-
tematically and completely encodes the uncertainty of the sniffer trace.

3. We characterize the NP-completeness of the validation problem, and present
two protocol-oblivious heuristics to prune the search space and make valida-
tion possible in practice.

4. We implement the validation framework and evaluate it using the NS-3 net-
work simulator [22]. Our framework accurately identifies both synthetic and
previously unknown violations in NS-3’s implementations of the 802.11 and
ARF protocols.

Due to space limitations, we omit the proof of lemmas and theorems in this
paper. They can be found in the technical report [17].

Wireless Protocol Validation Under Uncertainty 353

2 Background and Motivating Example

We encountered the uncertainty problem while testing the protocol implemen-
tation of a popular wireless game controller. A custom wireless communication
protocol was designed to meet the low latency and low power consumption goals.
As is common industry practice, the protocol specification was then handed over
to wireless chipset vendors for implementation. However, neither implementation
details nor trace collection capabilities are provided in the shipped firmware due
to intellectual property constraints and device resource limitation. Hence using
sniffers to validate the protocol implementation is the only option.

We initially developed a tool to validate certain protocol properties over the
sniffer trace, yet often found unacceptable amount of false alarms due to the
incompleteness of the sniffer traces, making the tool virtually useless. It was
clear that we needed to account for sniffer uncertainty.

To better understand the incompleteness of sniffer trace, consider the IEEE
802.11 (also known as Wi-Fi) transmitter (DUT) state machine shown in Fig. 1.
After the DUT sends DATAi—a data packet with sequence number i (s0 → s1),
it starts a timer and waits for the acknowledgment packet—Ack. The DUT either
receives Ack within time To (s1 → s0), or it sends DATA′

i—retransmission
of DATAi (s1 → s2). Similarly, the DUT either receives the Ack within To

(s2 → s0) or aborts transmission and moves on to next packet1 (s2 → s1).

Fig. 1. Monitor state machine for 802.11 transmitter.

Given a complete log of DUT’s packet transmission and reception events,
it is trivial to feed such a log into the state machine in Fig. 1 and validate the
correctness of DUT’s protocol implementation. However, due to DUT limitations
we have described earlier, this complete log is not available. As a result, we seek
to validate the DUT implementation using sniffers.

There are two fundamental properties in wireless communication that bring
uncertainty to sniffer’s observation: packet loss and physical diversity. The sniffer
could either miss packets sent from or to the DUT due to packet loss, or overhear
packets that are sent to but missed by the DUT due to physical diversity.

1 To represent the state machine succinctly, our example assumes that the DUT retries
at most once.

354 J. Shi et al.

Fig. 2. Uncertainty of Sniffer Observations. TrOTA is the chronological sequence
of packets sent by the DUT and the receiver. TrDUT is DUT’s internal events. Tr1 and
Tr2 are two examples of many possible sniffer traces.

Consider a correct packet exchange sequence shown in Fig. 2. The DUT first
sends DATA0. Suppose the receiver receives DATA0 and sends the Ack which
the DUT does not receive. Eventually the DUT’s timer fires and it sends DATA′

0.
This time the DATA′

0 reaches receiver and the DUT also receives the Ack.
Now consider two possible traces that could have been overheard by a sniffer

shown in Fig. 2. In first sniffer trace Tr1 where the sniffer overhears the first
Ack packet, a validation uncertainty arises when the sniffer sees the DATA′

0:
was the previous Ack missed by the DUT or is there a bug in DUT which causes
it to retransmit even after receiving the Ack?

Similarly, consider the second possible sniffer trace Tr2 where both the
DATA′

0 and Ack packets were missed by the sniffer. During this period of time,
it appears the DUT neither receives Ack for DATA0 nor sends DATA′

0. Again,
without any additional information it is impossible to disambiguate between the
sniffer missing certain packets and a bug in DUT’s retransmission logic.

Informally, the question we set out to answer in this paper is: given the proto-
col monitor state machine and the sniffer’s observation with inherent uncertainty,
how to accurately validate that the DUT behaves as specified?

3 Prerequisites and Problem Statement

3.1 Packet, Trace and Monitor State Machine

The alphabet of the monitor state machine is the finite set of all valid packets
defined by the protocol, denoted as P. A packet is a binary string of a finite number
of bits, encoding interesting protocol attributes such as src, dest, type, flags,
and physical layer information, such as channel, modulation, etc. The input of
the state machine then corresponds to a time-ordered sequence of packets.

Definition 1. A packet trace is a finite sequence of (timestamp, packet) tuple:
[(t1, p1), (t2, p2), . . . , (tn, pn)] where ti ∈ Z

+ is the discrete timestamp and pi
is the packet observed at time ti. The timestamps are strictly monotonically
increasing: ti < ti+1 for 1 ≤ i < n.

Wireless Protocol Validation Under Uncertainty 355

In addition to timestamp monotonicity, we also require that adjacent packets
do not overlap in time, ti+1 − ti > airtime(pi) for 1 ≤ i < n, where airtime()
calculates the time taken to transmit a packet. The timestamp represents the
observer’s local clock ticks, and need not to be synchronized among devices.

We use timed automata [1] to model the expected behaviors of the DUT. A
timed automata is a finite state machine with timing constraints on the transi-
tions: each transition can optionally start one or more timers, which can later be
used to assert certain events should be seen before or after the time out event.
We refer the readers to [1] for more details about timed automata.

Definition 2. A protocol monitor state machine S is a 7-tuple {Σ,S,X,
s0, C,E,G}, where:

– Σ = P is the finite input alphabet.
– S is a non-empty, finite set of states. s0 ∈ S is the initial state.
– X is the set of boolean variables. We use v = {x ← true/false | x ∈ X} to

denote an assignment of the variables. Let V be the set of such values v.
– C is the set of clock variables. A clock variable can be reset along any state

transitions. At any instant, reading a clock variable returns the time elapsed
since last time it was reset.

– G is the set of guard conditions defined inductively by

g := true | c ≤ T | c ≥ T | x | ¬g | g1 ∧ g2

where c ∈ C is a clock variable, T is a constant, and x is a variable in X. A
transition can choose not to use guard conditions by setting g to be true.

– E ⊆ S × V × S × V × Σ × G × P(C) gives the set of transitions.
〈si, vi, sj , vj , p, g, C ′〉 ∈ E represents that if the monitor is in state si with
variable assignments vi, given the input tuple (t, p) such that the guard g is
satisfied, the monitor can transition to a state sj with variable assignments
vj, and reset the clocks in C ′ to 0.

A tuple (ti, pi) in the packet trace means the packet pi is presented to the
state machine at time ti. The monitor rejects a trace Tr if there exists a prefix
of Tr such that all states reachable after consuming the prefix have no valid
transitions for the next (t, p) input.

As an example, the monitor state machine illustrated in Fig. 1 can be formally
defined as follows:

– Σ = {DATAi,DATA′
i, Ack | 0 ≤ i < N}.

– Clock variables C = {c}. The only clock variable c is used for acknowledgment
time out.

– X = {i}, as a variable with log(N) + 1 bits to count from 0 to N .
– Guard constraints G = {c ≤ To, c > To, To < c ≤ Tm}. To is the acknowledg-

ment time out value, and Tm > To is the maximum delay allowed before the
retransmission packet gets sent. To can be arbitrary large but not infinity in
order to check the liveness of the DUT.

356 J. Shi et al.

The monitor state machine defines a timed language L which consists of all
valid packet traces that can be observed by the DUT. We now give the definition
of protocol compliance and violation.

Definition 3. Suppose T is the set of all possible packet traces collected from
DUT, and S is the state machine specified by the protocol. The DUT violates the
protocol specification if there exists an packet trace Tr ∈ T such that S rejects
Tr. Otherwise, the DUT is compliant with the specification.

The focus of this paper is to determine whether a given Tr is evidence of a
violation.

3.2 Mutation Trace

As shown in the motivation example in Fig. 2, a sniffer trace may either miss
packets that are present in DUT trace, or contain extra packets that are missing
in DUT trace. Note that in the latter case, those extra packets must be all sent
to the DUT. This is because it is impossible for the sniffer to overhear packets
sent from the DUT that were not actually sent by the DUT.

We formally capture this relationship with the definition of mutation trace.

Definition 4. A packet trace Tr′ is a mutation of sniffer trace Tr w.r.t. a
DUT if for all (t, p) ∈ Tr\Tr′, p.dest = DUT , where p.dest is the destination
of packet p.

By definition, either Tr′ ⊇ Tr (hence Tr\Tr′ = ∅), or those extra packets
in Tr but not in Tr′ are all sent to the DUT. Note that Tr′ may contain extra
packets that are either sent to or received by the DUT.

A mutation trace Tr′ represents a guess of the corresponding DUT packet
trace given sniffer trace Tr. In fact, the DUT packet trace must be one of the
mutation traces of the sniffer trace Tr.

Lemma 1. Let TrDUT and Tr be the DUT and sniffer packet trace captured
during the same protocol operation session, and M(Tr) be the set of mutation
traces of Tr with respect to DUT, then TrDUT ∈ M(Tr).

3.3 Problem Statement

Lemma 1 shows that M(Tr) is a complete set of guesses of the DUT packet
trace. Therefore, the problem of validating DUT implementation given a sniffer
trace can be formally defined as follows:

Problem 1. VALIDATION
instance A protocol monitor state machine S and a sniffer trace Tr.
question Does there exist a mutation trace Tr′ of Tr that satisfies S?

If the answer is no, a definite violation of the DUT implementation can be
claimed. Nevertheless, if the answer is yes, S may still reject TrDUT . In other
words, the conclusion of the validation can either be definitely wrong or probably
correct, but not definitely correct. This is the fundamental limitation caused by
the uncertainty of sniffer traces.

Wireless Protocol Validation Under Uncertainty 357

4 Validation Framework

4.1 Augmented State Machine

To deal with the inherent uncertainty of sniffer traces, we propose to systemat-
ically augment the original monitor state machine with non-deterministic tran-
sitions to account for the difference between the sniffer and DUT traces.

Fig. 3. Augmented Monitor State Machine. Augmented transitions are high-
lighted in bold face. Pkt means either ε or Pkt.

Before formally defining the augmented state machine, we first use an exam-
ple to illustrate the basic idea. Figure 3 shows the augmented state machine for
802.11 transmitter state machine shown in Fig. 1. For each existing transition
(e.g., s0 → s1), we add an empty transition with same clock guards and resetting
clocks. This accounts for the possibility when such packet was observed by the
DUT but missed by the sniffer. Additionally, for each transition triggered by a
receiving packet (i.e., p.dest = DUT), such as s1 → s0 and s2 → s0, we add
a self transition with the same trigger packet and clock guards, but an empty
set of resetting clocks and no assignments to variables. This allows the state
machine to make progress when the sniffer missed such packets.

There are two things to note. First, self transitions are added only for packets
sent to the DUT, since the sniffer will not overhear packets from the DUT if
they were not sent by the DUT. Second, no augmented transitions are added
for the packets that are sent to DUT yet are missed by both the DUT and the
sniffer, since such packets do not cause difference between the DUT and sniffer
traces.

The augmented state machine in Fig. 3 will accept the sniffer packet traces
Tr1 and Tr2 shown in Fig. 2. For instance, one accepting transition sequence
on sniffer trace Tr1 is s0 → s1 →s s1 → s2 → s0, and the sequence for Tr2 is
s0 → s1 →e s2 → s0, where → is the transition from the original state machine,
→e and →s are the augmented empty and self transitions respectively.

We now formally define the augmented state machine.

Definition 5. An augmented state machine S+ for a monitor state machine
S is a 7-tuple {Σ+,S,X, s0, C,E+, G}, where S,X, s0, C,G are the same as S.
Σ+ = {ε} ∪ Σ is the augmented input alphabet with the empty symbol, and
E+ ⊃ E is the set of transitions, which includes:

358 J. Shi et al.

Algorithm 1. Obtain Augmented Transitions E+ from E

1: function augment(E)
2: E+ := ∅
3: for all 〈si, vi, sj , vj , p, g, C′〉 ∈ E do
4: E+ := E+ ∪ {〈si, vi, sj , vj , p, g, C′〉} � Type-0
5: E+ := E+ ∪ {〈si, vi, sj , vj , ε, g, C′〉} � Type-1
6: if p.dest = DUT then
7: E+ := E+ ∪ {〈si, vi, si , vi , p, g, ∅〉} � Type-2

8: return E+

– E: existing transitions (Type-0) in S.
– E+

1 : empty transitions (Type-1) for transitions in E.
– E+

2 : self transitions (Type-2) for transitions triggered by receiving packets.

Algorithm 1 describes the process of transforming E into E+. In particular,
Line 4 adds existing transitions in E to E+, while line 5 and 7 add Type-1 and
Type-2 transitions to E+ respectively. We have highlighted the elements of the
tuple that differ from the underlying Type-0 transition. Note that in Type-2
transitions, both the state and the variables stay the same after the transition.

With augmented state machine S+, we can use Type-1 transitions to non-
deterministically infer packets missed by the sniffer, and use Type-2 transitions
to consume extra packets captured by the sniffer but missed by the DUT.

A accepting run of S+ on sniffer trace Tr yields a mutation trace Tr′ which
represents one possibility of the DUT trace. Specifically, Tr′ can be obtained
by adding missing packets indicated by Type-1 transitions to Tr, and removing
extra packets indicated by Type-2 transitions from Tr.

We show that the VALIDATION problem is equivalent to the satisfiability
problem of Tr on S+.

Theorem 1. There exists a mutation trace Tr′ ∈ M(Tr) that satisfies S if and
only if Tr satisfies S+.

By Theorem 1, the inherent uncertainty of the sniffer traces is explicitly rep-
resented by the augmented transitions, and can be systematically explored using
the well established theory of state machine.

4.2 Problem Hardness

In this section, we show that the VALIDATION problem is NP-complete. In
fact, the problem is still NP-complete even with only one type of augmented
transitions.

Recall that Type-1 transitions are added because the sniffer may miss pack-
ets. Suppose an imaginary sniffer that is able to capture every packet ever trans-
mitted, then only Type-2 transitions are needed since the sniffer may still over-
hear packets sent to the DUT. Similarly, suppose another special sniffer that
would not overhear any packets sent to the DUT, then only Type-1 transitions
are needed to infer missing packets.

Wireless Protocol Validation Under Uncertainty 359

We refer the augmented state machine that only has Type-0 and Type-1
transitions as S+

1 , and the augmented state machine that only has Type-0 and
Type-2 transitions as S+

2 . And we show that each subproblem of determining
trace satisfiability is NP-complete.

Problem 2. VALIDATION-1
Given that Tr\TrDUT = ∅ (sniffer does not overhear packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

1 accept Tr?

Problem 3. VALIDATION-2
Given that TrDUT ⊆ Tr (sniffer does not missing packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

2 accept Tr?

Lemma 2. Both VALIDATION-1 and VALIDATION-2 are NP-complete.

The hardness statement of the general VALIDATION problem naturally fol-
lows Lemma 2.

Theorem 2. VALIDATION is NP-complete.

4.3 Searching Strategies

In this section, we present an exhaustive search algorithm of the accepting tran-
sition sequence of S+ on sniffer trace Tr. It is guaranteed to yield an accepting
sequence if there exists one, thus is exhaustive. In the next sections, we present
heuristics to limit the search to accepting sequences of S+ that require relatively
fewer transitions from E+

1 ∪ E+
2 . Due to the NP-completeness of the problem,

this also makes the algorithm meaningful in practice.
The main routines of the algorithm are shown in Algorithm2. In the top level

SEARCH routine, we first obtain the augmented state machine S+, and then call
the recursive EXTEND function with an empty prefix, the sniffer trace, and the
S+’s initial state. In the EXTEND function, we try to consume the first packet in
the remaining trace using either Type-0, Type-1 or Type-2 transition. Note that
we always try to use Type-0 transitions before other two augmented transitions
(line 6). This ensures the first found mutation trace will have the most number
of Type-0 transitions among all possible mutation traces. Intuitively, this means
the search algorithm tries to utilize the sniffer’s observation as much as possible
before being forced to make assumptions.

Each of the extend functions either returns the mutation trace Tr′, or nil if
the search fails. In both EXTEND-0 and EXTEND-2 function, if there is a valid
transition, we try to consume the next packet either by appending it to the
prefix (line 13) or dropping it (line 26). While in EXTEND-1, we guess a missing
packet without consuming the next real packet (line 20). Note that since only
Type-0 and Type-2 consume packets, the recursion terminates if there is a valid
Type-0 or Type-2 transition for the last packet (line 12 and line 25).

360 J. Shi et al.

Algorithm 2. Exhaustive search algorithm of S+ on Tr.
1: function search(S, Tr)
2: S+ := augment(S)
3: return extend([], Tr, S+.s0)

4: function extend(prefix, p::suffix, s)
5: if not likely(prefix) then return nila

6: for i ∈ [0, 1, 2] do
7: mutation := EXTEND-i(prefix, p::suffix, s)
8: if mutation �= nil then return mutation

9: return nil
10: function extend-0(prefix, p::suffix, s)
11: for 〈s, s′, p〉b∈ E do
12: if suffix = nil then return prefix@p

13: mutation := extend(prefix@p, suffix, s′)
14: if mutation �= nil then return mutation

15: return nil
16: function extend-1(prefix, p::suffix, s)
17: for all 〈s, s′, q〉 ∈ E+

1 do
18: if q.time > p.time then
19: continue
20: mutation := extend(prefix@q, p::suffix, s′)
21: if mutation �= nil then return mutation

22: return nil
23: function extend-2(prefix, p::suffix, s)
24: for all 〈s, s, p〉 ∈ E+

2 do
25: if suffix = nil then return prefix

26: mutation := extend(prefix, suffix, s)
27: if mutation �= nil then return mutation

28: return nil

aThis check should be ignored in the exhaustive algorithm.
b〈s, s′, p〉 is short for 〈s, ∗, s′, ∗, p, ∗, ∗〉.

It is not hard to see that Algorithm 2 terminates on any sniffer traces. Each
node in the transition tree only has finite number of possible next steps, and
the depth of Type-1 transitions is limited by the time available before the next
packet (line 18).

4.4 Pruning Heuristics

In the face of uncertainty between a possible protocol violation and sniffer
imperfection, augmented transitions provide the ability to blame the latter. The
exhaustive nature of Algorithm2 means that it always tries to blame sniffer
imperfection whenever possible, making it reluctant to report true violations.

Inspired by the directed model checking [10] technique which is to mitigate
the state explosion problem, we propose to enforce extra constraints on the
mutation trace to restrict the search to only mutation traces with high likelihood.

Wireless Protocol Validation Under Uncertainty 361

The modified EXTEND function checks certain likelihood constraints on the prefix
of the mutation trace before continuing (line 5), and stops the current search
branch immediately if the prefix seems unlikely. Because of the recursive nature
of the algorithm, other branches which may have a higher likelihood can then
be explored.

The strictness of the likelihood constraint represents a trade-off between pre-
cision and recall of validation. The more strict the constraints are, the more false
positive violations will potentially be reported, hence the lower the precision yet
higher recall. On the contrary, the more tractable the constraints are, the more
tolerant the search is to sniffer imperfection, hence the more likely that it will
report true violations, thus higher precision but lower recall.

The exact forms of the constraints may depend on many factors, such as the
nature of the protocol, properties of the sniffer, or domain knowledge. Next, we
propose two protocol oblivious heuristics based on the sniffer loss probabilities
and general protocol operations. Both heuristic contains parameters that can be
fine tuned in practice.

NumMissing(d, l, k). This heuristic states that the number of missing packets
from device d in any sub mutation traces of length l shall not exceed k (k ≤ l).
The sliding window of size l serves two purposes. First, l should be large enough
for the calculated packet loss ratio to be statistically meaningful. Second, it
ensures that the packet losses are evenly distributed among the entire packet
trace.

The intuition behind this heuristic is that the sniffer’s empirical packet loss
probability can usually be measured before validation. Therefore, the likelihood
that the sniffer misses more packets than prior measured loss ratio is quite low.
The value of l and k can then be configured such that k/l is marginally larger
than the measured ratio.

GoBack(k). This heuristic states that the search should only backtrack at most
k steps when the search gets stuck using only E. The motivation is that many
protocols operate as a sequence of independent transactions, and the uncertainty
of previous transactions often do not affect the next transaction. For instance,
in 802.11 packet transmission protocol, each packet exchange, include the origi-
nal, retransmission and acknowledgment packets, constitute a transaction. And
the retransmission status of previous packets has no effect on the packets with
subsequent sequence numbers, hence need not be explored when resolving the
uncertainty of the packets with new sequence numbers. Note that we do not
require the protocol to specify an exact transaction boundary, but only need k
to be sufficiently large to cover a transaction.

5 Case Studies

We present case studies on applying our validation framework on two protocols
implemented in the NS-3 network simulator: 802.11 data transmission and ARF

362 J. Shi et al.

rate control algorithm. The goal is to demonstrate how our framework can avoid
false alarms and report true violations on incomplete sniffer traces and report
true violations.

5.1 802.11 Data Transmission

In this section, we first show that our framework can improve validation pre-
cision by inferring the missing or extra packets using the augmented transition
framework. We then demonstrate the ability of our framework to detect true
violations by manually introducing bugs in the NS-3 implementation and show
the precision and recall of validation results.

Experimental Setup. We set up two Wi-Fi devices acting as the transmitter
(DUT) and receiver respectively. Another Wi-Fi device is configured in monitor
mode and acts as the sniffer. During the experiments, we collect both the DUT
packet trace (the ground truth) and the sniffer trace.

Verifying Unmodified Implementation. In the original monitor state
machine shown in Fig. 1, we set acknowledgment timeout To = 334µs, maxi-
mum retransmission delay Tm = 15 ms according to the protocol. We also adapt
the state machine to include multiple retransmissions2 instead of one.

Let Prds, Pres and Pred be the packet loss probability between the DUT
and sniffer, endpoint and sniffer, endpoint and DUT respectively. Pred represents
the characteristics of the system being tested, while Prds and Pres represent the
sniffer’s quality in capturing packets.

We vary each of the three probabilities, Prds, Pres and Pred, from 0 to
0.5 (both inclusive) with 0.05 step. For each loss ratio combination, we ran the
experiment 5 times, and each run lasted 30 seconds. In total, 6655 (113×5) pairs
of DUT and sniffer packet traces were collected.

To establish the ground truth of violations, we first verify the DUT packet
traces using the original state machine S. This can be achieved by disabling
augmented transitions in our framework. As expected, no violation is detected
in any DUT packet traces.

We then verify the sniffer traces using the augmented state machine S+.
For the GoBack(k) heuristic, we set k = 7, which is the maximum number of
transmissions of a single packet. For the NumMissing(d, l, k) heuristic, we set
the sliding window size l = 100, and k = 80 such that no violation is reported.
The relationship of k and validation precision is studied in next section.

Next, we present detailed analysis of the augmented transitions on the sniffer
traces. The goal is to study for a given system packet loss probability Pred, how
the sniffer packet loss properties (Prds and Pres) affect the difference between

2 The exact number of retransmissions is not part of the protocol, and NS-3 imple-
mentation set this to be 7.

Wireless Protocol Validation Under Uncertainty 363

the DUT trace and the mutation trace, which represents a guess of the DUT
trace by the augmented state machine based on the sniffer trace.

For all following analysis, we divide the traces into three groups according
to Pred: low (0 ≤ Pred ≤ 0.15), medium (0.20 ≤ Pred ≤ 0.35) and high (0.40 ≤
Pred ≤ 0.50).

The different between two packet traces can be quantified by the Jaccard
distance metric.

Jaccard(Tr1, T r2) =
|Tr1 � Tr2|
|Tr1 ∪ Tr2| (1)

where � is the symmetric difference operator. The distance is 0 if the two traces
are identical, and is 1 when the two traces are completely different. The smaller
the distance is, the more similar the two traces are.

Pds 0.00.10.20.30.40.5

Pes0.0
0.1

0.2
0.3

0.4
0.5
0.0

0.1

0.2

0.3

(a) 0.05 ≤ Pred ≤ 0.15

Pds 0.00.10.20.30.40.5

Pes0.0
0.1

0.2
0.3

0.4
0.5
0.0

0.1

0.2

0.3

(b) 0.2 ≤ Pred ≤ 0.35

Pds 0.00.10.20.30.40.5

Pes0.0
0.1

0.2
0.3

0.4
0.5
0.0

0.1

0.2

0.3

(c) 0.4 ≤ Pred ≤ 0.5

Fig. 4. Jaccard Distance Between Mutation and DUT Traces. For each data
point, the mean of the 5 runs is used.

Figure 4 shows the Jaccard Distance between mutation and its corresponding
DUT trace. We make the following observations. First, for a given system loss
probability Pred (each sub-figure), the lower the sniffer packet loss probability
(Prds and Pres), the smaller Jaccard distance between the DUT and mutation
trace. Intuitively, this means a sniffer that misses less packets can enable our
framework to better reconstruct the DUT trace.

Second, we observe a protocol-specific trend that Prds is more dominant
than Pres. This is because retransmission packets of the same sequence num-
ber are identical, hence when the sniffer misses multiple retransmission packets,
our framework only needs to infer one retransmission packet to continue state
machine execution.

Finally, as the system loss probability Pred increases, the Jaccard distance
increases more rapidly as Prds increases. This is because the ratio of retrans-
mission packet increases along with Pred.

Introducing Bugs. We have demonstrated that our framework can tolerate
sniffer imperfections and avoid raising false alarms. The next question is, can

364 J. Shi et al.

it detect true violations? To answer this question, we manually introduce sev-
eral bugs in NS-3 implementation that concerns various aspects of 802.11 data
transmission protocol. More specifically, the bugs are:

– Sequence Number: the DUT does not assign sequence number correctly. For
example, it may increase sequence by 2 instead of 1, or it does not increase
sequence number after certain packet, etc. We choose one type of such bugs
in each run.

– Semantic: the DUT may retransmit even after receiving Ack, or does not
retransmit when not receiving Ack.

We instrument the NS-3 implementation to embed instances of bugs in each
category. At each experiment run, we randomly decide whether and which bug
to introduce for each category. We fix Prds = Pres = 0.1 and vary Pred from
0.0 to 0.5 with 0.01 step. For each Pred value, we ran the experiment 100 times,
of which roughly 75 experiments contained bugs. In total, 5100 pairs of DUT
and sniffer traces were collected.

We use the DUT packet traces as ground truth of whether or not each exper-
iment run contains bugs. For each Pred value, we calculate the precision and
recall of violation detection using the sniffer traces.

Precision =
|{Reported Bugs} ∩ {True Bugs}|

|{Reported Bugs}| (2)

Recall =
|{Reported Bugs} ∩ {True Bugs}|

|{True Bugs}| (3)

The precision metric quantifies how useful the validation results are, while the
recall metric measures how complete the validation results are.

Figure 5 shows the CDF of precision and recall of the 51 experiments for
various k values. For precision, as expected, the more tolerant the search to
sniffer losses (larger k), the more tolerant the framework is to sniffer losses,
and the more precise the violation detection. In particular, when k = 30, the

0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

k = 10

k = 15

k = 20

k = 25

k = 30

0.5 0.6 0.7 0.8 0.9 1.0

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D
F

k = 10

k = 15

k = 20

k = 25

k = 30

Fig. 5. Precision and recall of validation results.

Wireless Protocol Validation Under Uncertainty 365

precisions are 100 % for all Pred values. Second, the recall is less sensitive to the
choice of k. Except for the extreme case when k = 30, all other thresholds can
report almost all the violations.

5.2 ARF Rate Control Algorithm

We report a bug found in NS-3 ARF [16] implementation which causes the sender
to get stuck at a lower rate even after enough number of consecutive successes.
The bug was detected using sniffer traces and confirmed by both the DUT trace
and source code inspection.

6 Related Work

Hidden Markov Model (HMM) Approach. When considering the whole
system under test (both DUT and endpoint), the sniffer only captures a subset
of the all the packets (events). This is similar to the event sampling problem
in runtime verification [2,4,5,11,15]. Stoller et al. [24] used HMM-based state
estimation techniques to calculate the confidence that the temporal property is
satisfied in the presence of gaps in observation.

While it seems possible to adapt the method in [24] to our problem, we
note several advantages of our approach. First, the automatically augmented
state machine precisely encodes the protocol specification and the uncertainty.
This is intuitive to design and natural for reporting the evidence for a trace
being successful. We do not require a user to specify the number of states of
the underlying HMM, or accurately provide underlying probabilities. Second,
we use timed automata to monitor the timing constraints which are common
in wireless protocols. It may be non-trivial to encode such timing information
in HMM. Finally, we can exploit domain knowledge to devise effective pruning
heuristics to rule out unlikely sequences during the exhaustive search.

Network Protocol Validation. Lee et al. [18] studied the problem of passive
network testing of network management. The system input/output behavior is
only partially observable. However, the uncertainty only lies in missing events
in the observation, while in the context of wireless protocol verification, the
uncertainty could also be caused by extra events not observed by the tested
system. Additionally, they do not provide any formal guarantees even for cases
when we report a definite bug. Software model checking techniques [13,20] have
also been used to verify network protocols. Our problem is unique because of
the observation uncertainty caused by sniffers. Our framework shares similarity
with angelic verification [8] where the program verifier reports a warning only
when no acceptable specification exists on unknowns.

7 Conclusions

We formally define the uncertainty problem in validating wireless protocol imple-
mentations using sniffers. We describe a systematic augmentation of the protocol

366 J. Shi et al.

state machine to explicitly encode the uncertainty of sniffer traces. We character-
ize the NP-completeness of the problem and propose both an exhaustive search
algorithm and heuristics to restrict the search to more likely traces. We present
two case studies using NS-3 network simulator to demonstrate how our frame-
work can improve validation precision and detect real bugs.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Arnold, M., Vechev, M., Yahav, E.: QVM: an efficient runtime for detecting defects
in deployed systems. In: ACM Sigplan Notices, vol. 43, pp. 143–162. ACM (2008)

3. Bahl, P., Chandra, R., Padhye, J., Ravindranath, L., Singh, M., Wolman, A., Zill,
B.: Enhancing the security of corporate Wi-Fi networks using DAIR. In: Pro-
ceedings of the 4th International Conference on Mobile Systems, Applications and
Services, pp. 1–14. ACM (2006)

4. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring compliance poli-
cies over incomplete and disagreeing logs. In: Qadeer, S., Tasiran, S. (eds.) RV
2012. LNCS, vol. 7687, pp. 151–167. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35632-2 17

5. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Sampling-based runtime veri-
fication. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 88–102.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 9

6. Cheng, Y.-C., Bellardo, J., Benkö, P., Snoeren, A.C., Voelker, G.M., Savage, S.:
Jigsaw: solving the puzzle of enterprise 802.11 analysis, vol. 36. ACM (2006)

7. Ciabarra, M.: WiFried: iOS 8 WiFi Issue. https://goo.gl/KtRDqk
8. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: precise verification mod-

ulo unknowns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 324–342. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21690-4 19

9. digitalmediaphile. Windows 10 wifi issues with surface pro 3 and surface 3. http://
goo.gl/vBqiEo

10. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.: Sur-
vey on directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS (LNAI), vol. 5348, pp. 65–89. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00431-5 5

11. Fei, L., Midkiff, S.P.: Artemis: practical runtime monitoring of applications for
execution anomalies. In: ACM SIGPLAN Notices, vol. 41, pp. 84–95. ACM (2006)

12. Gizmodo. The worst bugs in android 5.0 lollipop and how to fix them. http://goo.
gl/akDcvA

13. Godefroid, P.: Model checking for programming languages using verisoft. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 174–186. ACM (1997)

14. Google. Google contact lens. https://en.wikipedia.org/wiki/GoogleContactLens
15. Hauswirth, M., Chilimbi, T.M.: Low-overhead memory leak detection using adap-

tive statistical profiling. In: ACM SIGPLAN Notices, vol. 39, pp. 156–164. ACM
(2004)

16. Kamerman, A., Monteban, L.: Wavelan-II: a high-performance wireless lan for the
unlicensed band. Bell Labs Tech. J. 2(3), 118–133 (1997)

http://dx.doi.org/10.1007/978-3-642-35632-2_17
http://dx.doi.org/10.1007/978-3-642-35632-2_17
http://dx.doi.org/10.1007/978-3-642-21437-0_9
https://goo.gl/KtRDqk
http://dx.doi.org/10.1007/978-3-319-21690-4_19
http://goo.gl/vBqiEo
http://goo.gl/vBqiEo
http://dx.doi.org/10.1007/978-3-642-00431-5_5
http://dx.doi.org/10.1007/978-3-642-00431-5_5
http://goo.gl/akDcvA
http://goo.gl/akDcvA
https://en.wikipedia.org/wiki/GoogleContactLens

Wireless Protocol Validation Under Uncertainty 367

17. Lahiri, S., Chandra, R., Shi, J., Challen, G.: Wireless protocol validation
under uncertainty. Technical report, July 2016. https://www.microsoft.com/en-us/
research/publication/wireless-protocol-validation-under-uncertainty/

18. Lee, D., Netravali, A.N., Sabnani, K.K., Sugla, B., John, A.: Passive testing and
applications to network management. In: Proceedings of 1997 International Con-
ference on Network Protocols, pp. 113–122. IEEE (1997)

19. Mahajan, R., Rodrig, M., Wetherall, D., Zahorjan, J.: Analyzing the MAC-level
behavior of wireless networks in the wild. In: ACM SIGCOMM Computer Com-
munication Review, vol. 36, pp. 75–86. ACM (2006)

20. Musuvathi, M., Park, D.Y., Chou, A., Engler, D.R., Dill, D.L.: CMC: a pragmatic
approach to model checking real code. ACM SIGOPS Oper. Syst. Rev. 36(SI),
75–88 (2002)

21. Mytkowicz, T., Sweeney, P.F., Hauswirth, M., Diwan, A.: Observer effect and mea-
surement bias in performance analysis (2008)

22. Riley, G.F., Henderson, T.R.: The NS-3 network simulator. In: Wehrle, K., Güneş,
M., Gross, J. (eds.) Modeling and Tools for Network Simulation, pp. 15–34.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-12331-3 2

23. Savvius Inc., Savvius Wi-Fi adapters. https://goo.gl/l3VXSx
24. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,

Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29860-8 15

25. Wikipedia. Chromecast. https://en.wikipedia.org/wiki/Chromecast
26. Wikipedia. Xbox One controller. https://en.wikipedia.org/wiki/XboxOne

Controller

https://www.microsoft.com/en-us/research/publication/wireless-protocol-validation-under-uncertainty/
https://www.microsoft.com/en-us/research/publication/wireless-protocol-validation-under-uncertainty/
http://dx.doi.org/10.1007/978-3-642-12331-3_2
https://goo.gl/l3VXSx
http://dx.doi.org/10.1007/978-3-642-29860-8_15
http://dx.doi.org/10.1007/978-3-642-29860-8_15
https://en.wikipedia.org/wiki/Chromecast
https://en.wikipedia.org/wiki/XboxOneController
https://en.wikipedia.org/wiki/XboxOneController

Dynamic Determinacy Race Detection
for Task Parallelism with Futures

Rishi Surendran(B) and Vivek Sarkar

Rice University, Houston, TX, USA
{rishi,vsarkar}@rice.edu

Abstract. Existing dynamic determinacy race detectors for task-
parallel programs are limited to programs with strict computation
graphs, where a task can only wait for its descendant tasks to complete.
In this paper, we present the first known determinacy race detector for
non-strict computation graphs, constructed using futures. The space and
time complexity of our algorithm are similar to those of the classical SP-
bags algorithm, when using only structured parallel constructs such as
spawn-sync and async-finish. In the presence of point-to-point synchro-
nization using futures, the complexity of the algorithm increases by a
factor determined by the number of future task creation and get opera-
tions as well as the number of non-tree edges in the computation graph.
The experimental results show that the slowdown factor observed for
our algorithm relative to the sequential version is in the range of 1.00× –
9.92×, which is in line with slowdowns experienced for strict computation
graphs in past work.

1 Introduction

Current dynamic determinacy race detection algorithms for task parallelism are
limited to parallel constructs in which a task may wait for a child task [4,16],
a descendant task [26,27] or the immediate left sibling [14]. However, current
parallel programming models include parallel constructs that support more gen-
eral synchronization patterns. For example, the OpenMP depends clause allows
tasks to wait on previously spawned sibling tasks and the future construct in C#,
C++11, Habanero Java (HJ), X10, and other languages, enables a task to wait
on any previously created task to which the waiter task has a reference. Both
approaches can lead to non-strict computation graphs, in general. Race detec-
tion algorithms based on vector clocks [3,17] are impractical for these constructs
because either the vector clocks have to be allocated with a size proportional to
the maximum number of simultaneously live tasks (which can be unboundedly
large) or precision has to be sacrificed by assigning one clock per processor or
worker thread, thereby missing potential data races when two tasks execute on
the same worker.

The approaches in [4,16,26,27] focus on an imperative structured task-
parallel model, in which tasks communicate through side effects on shared
variables. In contrast, our paper focuses on enabling the use of futures for
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 368–385, 2016.
DOI: 10.1007/978-3-319-46982-9 23

Dynamic Determinacy Race Detection 369

functional-style parallelism, while also allowing futures to co-exist with impera-
tive async-finish parallelism [10]. The addition of point-to-point synchronization
with futures makes the race detection more challenging than for async-finish task
parallelism since the computation graphs that can be generated using futures are
more general than those that can be generated by fork-join parallel constructs
such as async-finish constructs in X10 [10] and Habanero-Java [8], spawn-sync
constructs in Cilk [5], and task-taskwait constructs in OpenMP [24].

Existing algorithms for detecting determinacy races for dynamic task paral-
lelism, do not support race detection for futures. For instance, data race detectors
for Cilk [4,16] handle only spawn-sync constructs where the computation graph
is a Series-Parallel (SP) dag. Although the computation graphs for async-finish
parallelism [26,27] are more general than SP dags, whether two instructions may
logically execute in parallel can still be determined efficiently by a lookup of the
lowest common ancestor of the instructions in the dynamic program structure
tree [26,27]. The computation graphs in the presence of futures may not have
any of the structures discussed above, and therefore, the past approaches are
not directly applicable to parallel programs with futures. However, parallel pro-
grams written with futures enjoy the property that data race freedom implies
determinacy, i.e., if a parallel program is written using only async, finish, and
future constructs, and is known to not exhibit a data race, then it must be deter-
minate [12,19]. Thus, a data race detector for programs with async, finish, and
future constructs, can be used as a determinacy checker for these programs.

The main contributions of this paper1 are as follows:

1. The first known sound and precise on-the-fly algorithm for detecting races
in programs containing async, finish, and future parallel constructs. Instead
of using brute force approaches such as building the transitive closure of
the happens-before relation, our algorithm relies on a novel data structure
called the dynamic task reachability graph to efficiently detect races in the
input program. We show that the algorithm can detect determinacy races
by effectively analyzing all possible executions for a given input. Relative to
the SP-bags and related algorithms, the complexity of our algorithm only
increases by a factor determined by the number of future task creation and
get operations as well as the number of non-tree edges in the computation
graph.

2. An implementation and evaluation of the algorithm on programs with
structured async-finish parallelism and point-to-point synchronization using
futures. We implemented the algorithm in the Habanero Java compiler and
runtime system, and evaluated it on a suite of benchmarks containing async,
finish and future constructs. The experiments show that the algorithm per-
forms similarly to SP-bags in the presence of structured synchronization and
degrades gracefully in the presence of point-to-point synchronization.

The remainder of the paper is organized as follows. Section 2 discusses our
programming model, and Sect. 3 defines determinacy races for our programming
1 A summary abstract of this approach was presented as a brief announcement at

SPAA 2016 [28].

370 R. Surendran and V. Sarkar

model. Section 4 presents the algorithm for determinacy race detection for paral-
lel programs with futures, and Sect. 5 discusses the implementation and experi-
mental results for our race detection algorithm. Section 6 discusses related work,
and Sect. 7 contains our conclusions.

2 Programming Model

Our work addresses parallel programming models that can support combina-
tions of functional-style futures and imperative-style tasks; examples include the
X10 [10], Habanero-Java [8], Chapel [9], and C++11 languages. We will use X10
and Habanero Java’s finish and async notation for task parallelism in this paper,
though our algorithms are applicable to other task-parallel constructs as well.
In this notation, the statement “async {S}” causes the parent task to create
a new child task to execute S asynchronously (i.e., before, after, or in parallel)
with the remainder of the parent task. The statement “finish {S}” causes the
parent task to execute S and then wait for the completion of all asynchronous
tasks created within S. Each dynamic instance TA of an async task has a unique
Immediately Enclosing Finish (IEF) instance F of a finish statement during pro-
gram execution, where F is the innermost dynamic finish containing TA. There
is an implicit finish scope surrounding the body of main() so program execution
will end only after all async tasks have completed.

A future [18] (or promise [21]) refers to an object that acts as a proxy for
a result that may initially be unknown, because the computation of its value
may still be in progress as a parallel task. In the notation used in this paper,
the statement, “future < T > f = async < T > Expr;” creates a new child task
to evaluate Expr asynchronously, where T is the type of the expression Expr. In
this case, f contains a handle to the return value (future object) for the newly
created task and the operation f.get() can be performed to obtain the result
of the future task. If the future task has not completed as yet, the task perform-
ing the f.get() operation blocks until the result of Expr becomes available.
Futures are traditionally used for enabling functional-style parallelism and are
guaranteed not to exhibit data races on their return values. However, imperative
programming languages allow future tasks to also contain side effects in the task
bodies. These side effects on shared memory locations may cause determinacy
races if the program has insufficient synchronization.

Comparison with spawn-sync and async-finish. In both spawn-sync and
async-finish programming models, a join operation can be performed only once
on a task (by the parent task in spawn-sync and by the ancestor task contain-
ing the immediately enclosing finish in async-finish). The class of computations
generated by spawn-sync constructs is said to be fully strict [6], and the class of
computations generated by async-finish constructs is called terminally strict [1].

The introduction of future as a parallel construct increases the possible syn-
chronization patterns. Task T2 can wait for a previously created task T1 if T2 has
a reference to T1 by performing the get() operation. Moreover, this join oper-
ation on task T1 can be performed by multiple tasks. As an example, consider

Dynamic Determinacy Race Detection 371

1 // Main task
2 Stmt1;
3 future<T> A = async<T> { ... }; // Task TA

4 Stmt2;
5 future<T> B = async<T>{ Stmt3;A.get();Stmt4 ;}; // Task TB

6 Stmt5;
7 future<T> C = async<T>{ Stmt6 ; A.get(); Stmt7; B.get();}; // Task TC

8 Stmt8;
9 A.get();

10 Stmt9;
11 C.get();
12 Stmt10;

Fig. 1. Example Program with HJ Futures. A, B and C hold references to future tasks
created by the main program

the program in Fig. 1, where the main program creates three future tasks TA,
TB , and TC . There are three join operations on task TA performed by sibling
tasks TB , TC , and the parent task. Here Stmt3, Stmt6, and Stmt8 may execute
in parallel with task TA, while Stmt4, Stmt7, and Stmt9 can execute only after
the completion of task TA. Synchronization using get() can lead to transitive
dependences among tasks. For example, although the main task in Fig. 1 did not
perform an explicit join on task TB , there is a transitive join dependence from
TB to the main task, because task TC performed a get operation on task TB due
to which Stmt10 can execute only after tasks TA, TB , and TC complete their
execution. This example has a non-strict computation graph, because of the get
operations performed by TB and TC on their siblings.

3 Data Races and Determinacy

In this section, we formalize the definition of data races in programs containing
async, finish, and future constructs as a preamble to defining determinacy races.
Our definition extends the notion of a computation graph [6] for a dynamic
execution of a parallel program, in which each node corresponds to a step which
is defined as follows:

Definition 1. A step is a sequence of instruction instances contained in a task
such that no instance in the sequence includes the start or end of an async, finish
or a get operation.

The edges in a computation graph represent different forms of happens-before
relationships. For the constructs covered in this paper (async, finish, future),
there are three different types of edges:

1. Continue Edges capture the sequencing of steps within a task. All steps in
a task are connected by continue edges.

2. Spawn Edges represent the parent-child relationship among tasks. When
task A creates task B, a spawn edge is inserted from the step that ends with
the async in task A to the step that starts task B.

372 R. Surendran and V. Sarkar

S1 ;
future<T> A = async<T> {

S2;
future<T> B = async<T> { S3; };
S4; B.get(); S5; };

S6 ;
future<T> C = async<T>{ S7;

A.get(); S8;}
S9 ;
future<T> D = async<T>{ S10;

C.get(); S11;}
D.get();
S12 ;

S2 S4 S5 S7 S8 S10 S11

S1 S6 S9 S12

S3

TM

TA

TB

TC TD

Continue

Spawn

Join

Fig. 2. Example program with futures and its computation graph. S1–S12 are steps in
the program. The circles represent the steps in the program. The rectangles represents
tasks. TM is the main task and TA, TB , TC and TD are future tasks created during the
execution of the program.

3. Join Edges represent synchronization among tasks. When task A performs a
get on future B, a join edge (also referred to as a “future join edge”) is inserted
from the last step of B to the step in task A that immediately follows the
get() operation. In addition, “finish join edges” are also inserted from the
last step of every task to the step in the ancestor task immediately following
the Immediately Enclosing Finish (IEF). A join edge from task B to task A
is referred to as tree join if A is an ancestor of B; otherwise, it is referred to
as a non-tree join. Note that all finish join edges must be tree joins, and some
future join edges may be tree edges and some may be non tree edges.

All three kinds of edges have been studied in past work on computation
graphs for the Cilk [5] and Habanero-Java [26] languages, except for non-tree
join edges.

Definition 2. A step u is said to precede step v, denoted as u ≺ v, if there
exists a path from u to v in the computation graph.

This precedence relation is a partial order, and is also referred to as the
“happens-before” relation in past work [20]. We use the notation Task(u) = T
to indicate that step node u belongs to task T , and u �≺ v to denote the fact that
there is no path from step u to step v in the computation graph. Two distinct
steps, u and v may execute in parallel, denoted u ‖ v, iff u �≺ v and v �≺ u.

Definition 3. A data race may occur between steps u and v, iff u ‖ v and both
u and v include accesses to a common memory location, at least one of which is
a write.

As an example, consider the program in Fig. 2 which creates four future
tasks: TA, TB , TC , and TD. S1–S12 represent the steps in the program. Here
S2 ‖ S10 because there is no directed path from S2 to S10, or from S10 to S2,
in the computation graph, and S2 ≺ S12 since there is a directed path from

Dynamic Determinacy Race Detection 373

S2 to S12. The join edge from S3 to S5 is a tree join since TA is an ancestor of
TB . The edge from S5 to S8 is a non-tree join since TC is not an ancestor TA.

We say that a parallel program is functionally deterministic if it always com-
putes the same answer when given the same inputs. Further, we refer to a pro-
gram as structurally deterministic if it always computes the same computation
graph, when given the same inputs. Finally, following past work [12,19], we say
that a program is determinate if it is both functionally and structurally deter-
ministic. If a parallel program is written using only async, finish, and future
constructs, and is guaranteed to never exhibit a data race, then it must be
determinate, i.e., both functionally and structurally deterministic. Note that
all data-race-free programs written using async, finish and future constructs are
guaranteed to be determinate, but it does not imply that all racy programs are
non-determinate. For instance, a program with parallel writes of the same value
to a common memory location is racy, yet determinate.

4 Determinacy Race Detection Algorithm

In this section, we present our algorithm for detecting determinacy races in
programs with async, finish and future as parallel constructs. A dynamic deter-
minacy race detector needs to provide mechanisms that answers two questions:
for any pair of memory accesses, at least one of which is a write, (1) can the two
accesses logically execute in parallel?, and (2) do they access the same memory
location? To answer the first question, we introduce a program representation
referred to as dynamic task reachability graph which is presented in Sect. 4.1.
Similar to most race detectors, we use a shadow memory mechanism (presented
in Sect. 4.2) to answer the second question. Section 4.3 presents our overall deter-
minacy race detection algorithm.

4.1 Dynamic Task Reachability Graph

Since storing the entire computation graph of the program execution is usually
intractable due to memory limitations (akin to storing a complete dynamic trace
of a program), we introduce a more compact representation that still retains
sufficient information to precisely answer all reachability queries during race
detection. Our program representation, referred to as a dynamic task reachability
graph, represents reachability information at the task-level instead of the step-
level. The representation assumes that the input program is executed serially in
depth-first order, and leverages the following three ideas for encoding reachability
information between steps in the computation graph of the input program:

Disjoint set representation of tree joins. The reachability information
between tasks which are connected by tree join edges is represented using a
disjoint set data structure. Two tasks A and B are in the same set if and
only if B is a descendant of A and there is a path in the computation graph
from B to A which includes only tree-join edges and continue edges. Similar to
the SP-bags algorithm, our algorithm uses the fast disjoint-set data structure

374 R. Surendran and V. Sarkar

[11, Chap. 22], which maintains a dynamic collection of disjoint sets Σ and pro-
vides three operations:

1. MakeSet(x) which creates a new set that contains x and adds it to Σ
2. Union(X,Y) which performs a set union of X and Y , adds the resulting set

to Σ and destroys set X and Y
3. FindSet(x) which returns the set X ∈ Σ such that x ∈ X.

Any m of these three operations on n sets takes a total of O(mα(m,n)) time [30].
Here α is functional inverse of Ackermann’s function which, for all practical
purposes is bounded above by 4.

Interval encoding of spawn tree. In order to efficiently store and answer
reachability information from a task to its descendants, we use a labeling
scheme [13], in which each task is assigned a label according to preorder and
postorder numbering schemes. The values are assigned according to the order
in which the tasks are visited during a depth-first-traversal of the spawn tree,
where the nodes in the spawn tree correspond to tasks and edges represent the
parent-child spawn relationship. Using this scheme, the ancestor-descendant rela-
tionship queries between task pairs can be answered by checking if the interval of
one task subsumes the interval of the other task. For example, if [x .pre, x .post]
is the interval associated with task x and [y .pre, y .post] is the interval associ-
ated with task y, then x is an ancestor of y if and only if x .pre ≤ y .pre and
y .post ≤ x .post . When task A performs a join operation on a descendant task
B, the disjoint sets of A and B are merged together and the new set will have
the label originally associated with A. Although, a label is assigned to every
task when it is spawned, the labels are associated with each disjoint set in gen-
eral. Compared to past work [13] which used labeling schemes on static trees,
the tree is dynamic in our approach since race detection is performed on-the-
fly. This requires a more general labeling scheme, where a temporary label is
assigned when a task is spawned and the label is updated when the task returns
to its parent.

Immediate predecessors + significant ancestor representation of non-
tree joins. The non-tree joins in the computation graph are represented in the
dynamic task reachability graph as follows:

– immediate predecessors: For each non-tree join from task A to task B, B stores
A in its set of predecessors.

– lowest significant ancestor: We define the significant ancestors of task A as
the set of ancestors of A in the spawn tree that have performed at least one
non-tree join operation. For each task, we store only the lowest significant
ancestor.

Definition 4. A dynamic task reachability graph of a computation graph G is
a 5-tuple R = (N , D, L, P , A), where

Dynamic Determinacy Race Detection 375

Fig. 3. A computation graph with non-tree joins. The join edges (2,9) and (4,6) are
non-tree joins because T1 and T2 are not descendants of T3

– N is the set of vertices, where each vertex represents a dynamic task instance.

– D = {Di}ni=1 is a partitioning of the vertices in N into disjoint sets.
n⋃

i=1

Di =

N . Each partition consists of tasks which are connected by tree-join edges.
– L : N → Z≥0 × Z≥0 is a map from vertices to their labels, where each label

consists of the preorder and postorder value of the vertex in the spawn tree.
A label is also associated with each disjoint set Di ∈ D, where the label for
Di is same as the label of u, where u ∈ Di and u is the node in Di that is
closest to the root of the spawn tree.

– P : N → 2N represents the set of non-tree edges P (u) = {v1, .., vk} if and
only if there are non-tree join edges from tasks v1..vk to u.

Table 1. (a) is the dynamic task reachability graph for the computation graph in Fig. 3
after execution of step 11. Task T3 performed join operations on T2 and T1. Therefore
P (T3) = {T1, T2}. The least significant ancestor of T4, T5 and T6 is T3 because T3 is their
lowest ancestor which performed a non-tree join. (b) is the dynamic task reachability
graph for the computation graph in Fig. 3 after execution of step 17. T0, T3, T4, T5 and
T6 are all in the same disjoint set because they are connected by tree join edges

Disjoint Task L P A
Set (Label) (NT) (LSA)

0 T0 [0, MAXINT] () -
1 T1 [1, 2] () -
2 T2 [3, 4] () -
3 T3 [5, MAXINT-1] {T1,T2} -
4 T4 [6, 7] () T3
5 T5 [8, MAXINT-2] () T3
6 T6 [9, MAXINT-3] () T3

(a)

Disjoint Task L P A
Set (Label) (NT) (LSA)

T0 [0, 13]
T3 [5, 12]

0 T4 [6, 7] {T1, T2} -
T5 [8, 11]
T6 [9, 10]

1 T1 [1, 2] () -
2 T2 [3, 4] () -

(b)

376 R. Surendran and V. Sarkar

– A : N → N represents the lowest ancestor with at least one incoming non-tree
edge. A(u) = v, if and only if w1, w2..wk..wm (where r = w1, v = wk and
u = wm) is the path consisting of spawn edges from the root r of G to u, and
P (wj) = ∅,∀j such that k + 1 ≤ j ≤ m − 1 and P (v) �= ∅. v is referred to as
the lowest significant ancestor (LSA) of u.

Table 1(a) shows the dynamic task reachability graph for the computation
graph in Fig. 3 after the execution of step 11. Here the postorder values assigned
to T0, T3, T5 and T6 are temporary values (See Sect. 4.3). All tasks are in a
separate disjoint sets, because no tree joins have been performed yet. Table 1(b)
shows the dynamic task reachability graph for the computation graph in Fig. 3
after the execution of step 17.

4.2 Shadow Memory

As in past work [26,27], our algorithm maintains a shadow memory Ms for every
shared memory location M . Ms contains the following fields

– w, a reference to a task that wrote to M . Ms.w is initialized to null and is
updated at every write to M . It refers to the task that last wrote to M .

– r, a set of references to tasks that read M . Ms.r is initialized to ∅ and is
updated at reads of M . It contains references to all future tasks that read
M in parallel, since the last write to M . It also contains a reference to one
non-future (async) task which read M since the last write to M .

4.3 Algorithm

The overall determinacy race detection algorithm is given in Algorithms 1–10.
As the input program executes in serial, depth-first order the race detection
algorithm performs additional operations whenever one of the following actions
occurs: task creation, task return, begin-finish, end-finish, get() operation,
shared memory read and shared memory write. The race detector stores the
following information associated with every disjoint set of tasks.

– pre and post together form the interval label assigned to the disjoint set.
– nt is the set of incoming non-tree edges.
– parent refers to the parent task.
– lsa represents the least significant ancestor.

Next, we describe the actions performed by our race detector:

Initialization: Algorithm 1 shows the initialization performed by our race
detector when the main task M is created. The set SM is initialized to contain
task M . It assigns [0 ,MAXINT] as the interval label for the main task. Since
the postorder value of a node is known only after the full tree has unfolded, we
assign a temporary postorder value MAXINT (the largest integer value). The
parent and lsa fields are initialized to null .

Dynamic Determinacy Race Detection 377

Input: Main task M
1: dfid ← 0
2: tmpid ← MAXINT
3: SM ← Make-Set(M)
4: SM .pre ← dfid
5: dfid ← dfid + 1
6: SM .post ← tmpid
7: tmpid ← tmpid − 1
8: SM .parent ← null
9: SM .lsa ← null

Algorithm 1. Initialization

Input: Parent task P , Child task C
1: SC ← Make-Set(C)
2: SC .pre ← dfid ; dfid ← dfid + 1
3: SC .post ← tmpid ; tmpid ← tmpid −1
4: SC .parent ← SP

5: if SP .nt = {} then
6: SC .lsa ← SP .lsa
7: else
8: SC .lsa ← SP

9: end if

Algorithm 2. Task creation

Task Creation: Algorithm 2 shows the actions performed by our race detector
during task creation. Whenever a task P spawns a new task C, C is assigned the
preorder value and a temporary postorder value. Our algorithm assigns tempo-
rary postorder values starting at the largest integer value (MAXINT) in decreas-
ing order. This assignment scheme maintains the interval label property, where
the label of an ancestor subsumes the labels of descendants. The set SC is ini-
tialized to contain task C. The least significant ancestor for task C is initialized
at task creation time based on whether task P has performed any non-tree joins.

Task Termination: When task C terminates, the postorder value of C is
updated with the final value. This is shown in Algorithm3.

Get Operation: Algorithm 4 shows the actions performed by the race detector
at a get() operation. When task A performs a get() operation on task B,
there are two possible cases: (1) A is an ancestor of B and there are join edges
from all tasks which are descendants of A and ancestors of B to A. In this case,
the algorithm performs a union of the disjoint sets SA and SB by invoking the
Merge function given in Algorithm7, and (2) there is a non-tree join edge from
B to A. In this case, B is added to the sequence of non-tree predecessors of A.

Finish: Algorithms 5 and 6 shows the actions performed by the race detector
at the start and end of a finish. At the end of a finish F , the disjoint sets of all
tasks with F as the immediately enclosing finish is merged with the disjoint set
of the ancestor task executing the finish.

Shared Memory Access: Determinacy races are detected when a read or
write to a shared memory location occurs. When a write to a memory location
M is performed by step u, the algorithm checks if the previous writer or the
previous readers in the shadow memory space may execute in parallel with the
currently executing step and reports a race. It updates the writer shadow space
of M with the current task and removes any reader r if r ≺ u. This is shown
in Algorithm 8. When a read to a memory location M is performed by step
u, the algorithm checks if the previous writer in the shadow memory space
may execute in parallel with the currently executing step and reports a race.
It adds the current task to the set of readers of M and removes any task r

378 R. Surendran and V. Sarkar

Input: Terminating task C
1: SC .post ← dfid ; dfid ← dfid + 1
2: tmpid ← tmpid + 1

Algorithm 3. Task termination

Input: Tasks A, B such that A per-
forms B.get()

1: if Find-Set(A) =
2: Find-Set(B.parent) then
3: Merge(SA, SB)
4: else
5: SA.nt ← SA.nt ∪ {B}
6: end if

Algorithm 4. Get operation

Input: Start of finish F in task A
1: F.parent ← A

Algorithm 5. Start finish

Input: Finish F
1: A ← F.parent
2: for B ∈ F.joins do
3: Merge(SA, SB)
4: end for

Algorithm 6. End finish

Input: Disjoint sets SA, SB

1: procedure Merge(SA, SB)
2: nt ← SA.nt ∪ SB .nt
3: lsa ← SA.lsa
4: SA ← SB ← Union(SA, SB)
5: SA.nt ← nt
6: SA.lsa ← lsa
7: end procedure

Algorithm 7. Merge tasks

if r ≺ u. Our algorithm differentiates between future tasks and async tasks:
async tasks can be waited upon by only ancestor tasks using the finish construct
and future tasks can be waited upon using the get() operation. Given a task A
as argument, IsFuture returns true, if A is a future task. The readers shadow
memory contains a maximum of one async task, but may contain multiple future
tasks. During the read of a shared memory location by step s of an async task
A, the algorithm replaces the previous async reader X by A, if X precedes s.
This is shown in Algorithm 9.

Given tasks A and B, Precede routine shown in Algorithm10 checks if task
A must precede B by invoking routine Visit which is also given in Algorithm 10.
Lines 6–11 of Visit routine returns true if the interval corresponding to the
disjoint set of B is contained in the interval corresponding to the disjoint set of A.
Lines 12–14 returns false, if the preorder value of A is greater than the preorder
value of B, since the source of a non-tree join edge must have a lower preorder
value than the sink of the non-tree edge. Lines 15–20 checks if B is reachable
from A along the immediate non-tree predecessors of B. Lines 21–29 traverses
paths which include the non-tree predecessors of the significant ancestors of B
starting with the least significant ancestor of B. The routine returns true when
a path from A to B is found or returns false when all the non-tree edges whose
source has a preorder value greater than the preorder value of A are visited.

The following two theorems discuss the complexity and correctness of our
race detection algorithm. The proofs for these theorems are given in [29].

Dynamic Determinacy Race Detection 379

Input: Memory location M , Task A that
writes to M

1: for X ∈ Ms.r do
2: if not Precede(X,A) then
3: a determinacy race exists
4: else
5: Ms.r ← Ms.r − {X}
6: end if
7: end for
8: if not Precede(Ms.w,A) then
9: a determinacy race exists

10: end if
11: Ms.w ← A

Algorithm 8. Write check

Input: Memory location M , Task A that
reads M

1: update = false
2: for X ∈ Ms.r do
3: if Precede(X,A) then
4: Ms.r ← Ms.r − {X}
5: update ← true
6: else if IsFuture(X) or
7: IsFuture(A) then
8: update ← true
9: end if

10: end for
11: if not Precede(Ms.w,A) then
12: a determinacy race exists
13: end if
14: if update then
15: Ms.r ← Ms.r ∪ {A}
16: end if

Algorithm 9. Read check

Input: Tasks A,B
1: procedure Precede(A,B)
2: return Visit(A,B, {})
3: end procedure

1: procedure Visit(A,B, V isited)
2: if B ∈ V isited then
3: return false
4: end if
5: V isited ← V isited ∪ {B}
6: SA ← Find-Set(A)
7: SB ← Find-Set(B)
8: if SA.pre ≤ SB .pre and
9: SA.post ≥ SB .post then

10: return true
11: end if
12: if SA.pre > SB .pre then
13: return false
14: end if
15: for all x in SB .nt do
16: if Visit(A, x, V isited)
17: then
18: return true
19: end if
20: end for
21: sa ← B.lsa
22: while sa �= null do
23: for all x in sa.nt do
24: if Visit(A, x,

V isited) then
25: return true
26: end if
27: end for
28: sa ← sa.lsa
29: end while
30: return false
31: end procedure

Algorithm 10: Reachability check

Theorem 1. Consider a program with async, finish and future constructs that
executes in time T on one processor, creates a async tasks, f future tasks,
performs n non-tree join edges and references v shared memory locations.
Algorithms 1–10 can be implemented to check this program for determinacy races
in O(T (f + 1)(n + 1)α(T, a + f)) time using O(a + f + n + v ∗ (f + 1)) space.

Here α is functional inverse of Ackermann’s function which, for all practical
purposes is bounded above by 4. It is interesting to note that our algorithm

380 R. Surendran and V. Sarkar

degenerates to past complexity results for async-finish programs [26] in the case
when the program creates no futures (f = n = 0).

Theorem 2. Algorithms 1–10 detect a determinacy race for a given parallel pro-
gram and data input if and only if a determinacy race exists.

5 Experimental Results

In this section, we present experimental results for our determinacy race detec-
tion algorithm. The race detector was implemented as a new Java library for
detecting determinacy races in HJ programs containing async, finish and future
constructs. The benchmarks written in HJ were instrumented for race detec-
tion during a bytecode-level transformation pass implemented on HJ’s Parallel
Intermediate Representation (PIR) [23]. The PIR extends Soot’s Jimple IR [31]
with parallel constructs such as async, finish, and future. The instrumentation
pass adds the necessary calls to our race detection library at async, finish and
future boundaries, future get operations, and also on reads and writes to shared
memory locations.

Our experiments were conducted on a 16-core Intel Ivybridge 2.6 GHz sys-
tem with 48 GB memory, running Red Hat Enterprise Linux Server release 7.1,
and Sun Hotspot JDK 1.7. To reduce the impact of JIT compilation, garbage
collection and other JVM services, we report the mean execution time of 10
runs repeated in the same JVM instance for each data point. We evaluated the
algorithm on the following benchmarks:

Table 2. Runtime overhead for determinacy race detection

B
en

ch
m

a
rk

#
T
a
sk

s

#
N

T
J
o
in

s

#
S
h
a
re

d
M

em

#
A

v
g
R

ea
d
er

s

S
eq

(m
il
li
se

cs
)

R
a
ce

d
et

(m
il
li
se

cs
)

S
lo

w
d
ow

n
(R

a
ce

d
et

/
S
eq

)

Series-af 999,999 0 4,000,059 0.75 483,224 484,746 1.00

Series-future 999,999 0 6,000,059 0.66 487,134 487,985 1.00

Crypt-af 12,500,000 0 1,150,000,682 0.74 15,375 119,504 7.77

Crypt-future 12,500,000 0 1,175,000,682 1.23 15,517 128,234 8.26

Jacobi 8,192 34,944 641,499,805 1.70 3,402 27,388 8.05

Strassen 30,811 33,612 1,610,522,196 0.94 6,281 33,618 5.35

Smith-Waterman 1,608 4,641 1,652,175,806 1.56 3,488 34,558 9.92

Dynamic Determinacy Race Detection 381

– Series-af: Fourier coefficient analysis from JGF [7] benchmark suite (Size
C), parallelized using async and finish.

– Series-future: Fourier coefficient analysis from JGF benchmark suite (Size
C), parallelized using futures.

– Crypt-af: IDEA encryption algorithm from JGF benchmark suite (Size C),
parallelized using async and finish.

– Crypt-future: IDEA encryption algorithm from JGF benchmark suite (Size
C), parallelized using futures.

– Jacobi: 2 dimensional 5-point stencil computation on a 2048 × 2048 matrix,
where each tasks computes a 64 × 64 submatrix.

– Strassen: Multiplication of 1024×1024 matrices using Strassen’s algorithm.
The implementation uses a recursive cutoff of 32 × 32.

– Smith-Waterman: Sequence alignment of two sequences of size 10000. The
alignment matrix computation is done by 40 × 40 future tasks.

The first four benchmarks were derived from the original versions in the JGF
suite. The next two, Jacobi and Strassen were translated by the authors from
OpenMP versions of those programs in the Kastors [32] benchmark suite. The
original versions of these benchmarks used the OpenMP 4.0 depends clause,
in which tasks specify data dependence using in, out and inout clauses. The
translated versions of these benchmarks used future as the main parallel con-
struct, with get() operations used to synchronize with previously data dependent
tasks. In general, this kind of task dependences cannot be represented using only
async-finish constructs without loss of parallelism. The Smith-Waterman bench-
marks uses futures and is based on a programming project in COMP322, an
undergraduate course on parallel computing at Rice University.

The results of our evaluation is given in Table 2. The first column lists the
benchmark name, and the second column shows the dynamic number of tasks
(#Tasks) created for the inputs specified above. The third column shows the
number of non-tree joins (#NTJoins) performed by each of the applications
(the subset of future get() operations that are non-tree-joins). The fourth column
shows the total number of shared memory accesses (#SharedMem) performed
by the applications (all accesses to instance/static fields and array elements).
The fifth column (#AvgReaders) shows the average number of past parallel
readers per location stored in the shadow memory when a read/write access is
performed on that location. (The average is computed across all accesses and all
locations.) For a given access, the number of such stored readers will be either
zero or one for programs containing only async and finish constructs, thereby
ensuring that the average must be in the 0 . . . 1 range for async-finish programs.
For programs with futures, the number of stored readers can be greater than one,
if the location being accessed is in the read-shared state and is read by multiple
tasks that can potentially execute in parallel each other. Thus, #AvgReaders
can be any value that is ≥0, for programs with futures.

The next column (Seq) reports the average execution time of the sequential
(serial elision) version of the benchmark, and the following column (Racedet)
reports the average execution time of a 1-processor execution of the parallel

382 R. Surendran and V. Sarkar

benchmark using the determinacy race detection algorithm introduced in this
paper. Finally, the Slowdown column reports the ratio of the Racedet and Seq
values.

We can make a number of observations from the data in Table 2. First, if
we compute the Seq/#Tasks ratio for all the benchmarks, we can see that the
Crypt-af and Crypt-future benchmarks perform �100× less work per task on
average, relative to all the other benchmarks. This is the primary reason why the
Crypt-af and Crypt-future benchmarks exhibit slowdowns of 7.77× and 8.26×.
With less work per task, the overhead per task during race detection becomes
more significant than in other benchmarks; further, creating data structures for
large numbers of tasks puts an extra burden on garbage collection and memory
management. However, it is important to note that the slowdowns for Series-
af and Crypt-af are comparable to the slowdowns reported for the ESP-Bags
algorithm [25] that only supported async and finish, thereby showing that our
determinacy race detector does not incur additional overhead for async/finish
constructs relative to state-of-the-art implementations.

Next, we see that the number of non-tree joins performed by Series-af and
Crypt-af is zero, since they are async-finish programs for which all join (fin-
ish) operations appear as tree-join edges in the computation graph (Sect. 3).
Since their corresponding future versions, Series-future and Crypt-future, used
futures to implement async-finish synchronization, their future get() operations
also appear as tree-join edges in the computation graph, thereby resulting in zero
non-tree joins as well. However, the future versions of these two benchmarks have
higher number of shared memory accesses than the async-finish versions, due to
the additional writes and reads of future references which happened to be stored
in shared (heap) locations for both benchmarks. In particular, we know that
the reference to each future task must be subjected to at least one write access
(when the future task is created) and one read access (when a get() operation
is performed on the future), though more accesses are possible. Since Series-
future creates 999,999 future tasks, we see that the difference in the #Shared-
Mem values for Series-future and Series-af is 2,000,000 which is very close to the
lower bound of 2 × 999, 999. Likewise, for Crypt-future and Crypt-sf, the num-
ber of tasks created is 12,500,000 and the difference in the #SharedMem values
is 25,000,000 which exactly matches the lower bound of 2 × 12, 500, 000. The
slowdown for Crypt-future is higher than that of Crypt-af due to two reasons:
(1) the additional number of memory accesses due to the future references and
(2) the average number of readers stored in the shadow memory is higher,
because of the presence of future tasks.

The slowdowns for Jacobi, Smith-Waterman and Strassen (8.05×, 9.92×, and
5.35×) are positively correlated by the values of #SharedMem, #AvgReaders,
and 1/Seq, and these correlations can help explain the relative slowdowns for
the three benchmarks. A larger value of #SharedMem leads to a larger slow-
down due to the overhead of processing additional shared memory accesses. A
larger value of #AvgReaders leads to a larger slowdown because the number of
reachability queries required per shared memory access is equal to the number

Dynamic Determinacy Race Detection 383

of readers present in the shadow memory for that location. A larger value of
1/Seq indirectly leads to a larger slowdown due to the smaller available time to
amortize the overheads of race detection.

Finally, we observe that the slowdowns are not significantly impacted by the
number of non-tree edges. This is because the producer and consumer tasks of
a future object happen to be closely located to each other in the computation
graph (for these benchmarks), usually only requiring 1–2 hops involving non-tree
edges in the graph traversal.

6 Related Work

Dynamic data race detection techniques target either structured parallelism or
unstructured parallelism. Race detection for unstructured parallelism typically
uses vector clock algorithms, e.g., [3,17]. Atzeni et al. [2] presented a low over-
head, high accuracy vector clock race detector for OpenMP programs via a
combination of static and dynamic analysis. These algorithms are impractical
for task parallelism because either the vector clocks have to be allocated with a
size proportional to the maximum number of simultaneously live tasks (which
can be unboundedly large) or precision has to be sacrificed by assigning one
clock per processor or worker thread, thereby missing potential data races when
two tasks execute on the same worker.

Mellor-Crummey [22] presented the Offset-Span labeling algorithm for
nested fork-join constructs, which is an extension of English-Hebrew labeling
scheme [15]. The idea behind their techniques is to attach a label to every thread
in the program and use these labels to check if two threads can execute concur-
rently. The length of the labels associated with each thread is bounded by the
maximum dynamic fork-join nesting depth in the program. Our approach uses
a constant size labeling scheme to store reachability information for ancestor-
descendant tasks. While the Offset-Span labeling algorithm supports only nested
fork-join constructs, our algorithm supports a more general set of computation
graphs.

Feng and Leiserson [16] introduced the SP-bags algorithm for Cilk’s fully-
strict parallelism, which uses only a constant factor more memory than does the
program itself. Bender et al. [4] presented the parallel SP-hybrid algorithm which
uses English-Hebrew labels and SP-bags to detect races in Cilk programs. Despite
its good theoretical bounds, the paper did not include an implementation of the
algorithm. Raman et al. [26] extended the SP-bags algorithm to support async-
finish parallelism. They subsequently proposed the parallel SPD3 algorithm [27]
also for async-finish constructs. In contrast to these approaches, our data race
detection algorithm handles async, finish and futures, which can create more
general computation graphs than those that can be generated by async-finish
parallelism.

384 R. Surendran and V. Sarkar

7 Conclusions

In this paper, we presented the first known determinacy race detector for
dynamic task parallelism with futures. As with past determinacy race detectors,
our algorithm guarantees that all potential determinacy races will be checked so
that if a race is reported for a given input in one run of our algorithm, it will
always be reported in all runs. Likewise, if no race is reported for a given input,
then all parallel executions with that input are guaranteed to be race-free and
deterministic. Our approach builds on a novel data structure called the dynamic
task reachability graph which models task reachability information for non-strict
computation graphs in an efficient manner. We presented a complexity analysis
of our algorithm, discussed its correctness, and evaluated an implementation of
the algorithm on a range of benchmarks that generate both strict and non-strict
computation graphs. The results indicate that the performance of our approach
is similar to other efficient algorithms for spawn-sync and async-finish programs
and degrades gracefully in the presence of futures. Specifically, the experimental
results show that the slowdown factor observed for our algorithm relative to the
sequential version is in the range of 1.00×–9.92×, which is very much in line
with slowdowns experienced for fully strict computation graphs.

References

1. Agarwal, S., Barik, R., Bonachea, D., Sarkar, V., Shyamasundar, R.K., Yelick, K.:
Deadlock-free scheduling of X10 computations with bounded resources. In: SPAA
2007, pp. 229–240. ACM, New York (2007)

2. Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Ahn, D.H., Lee, G.L., Laguna, I.,
Schulz, M., Protze, J., Mueller, M.: ARCHER: effectively spotting data races in
large OpenMP applications. In: IPDPS 2016, pp. 53–62, May 2016

3. Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A theory of data race detection. In:
PADTAD 2006, pp. 69–78. ACM, New York (2006)

4. Bender, M.A., Fineman, J.T., Gilbert, S., Leiserson, C.E.: On-the-fly maintenance
of series-parallel relationships in fork-join multithreaded programs. In: SPAA 2004,
pp. 133–144. ACM, New York (2004)

5. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: PPopp. 1995, pp. 207–216.
ACM, New York (1995)

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

7. Bull, J.M., Smith, L.A., Westhead, M.D., Henty, D.S., Davey, R.A.: A benchmark
suite for high performance Java. Concurr. Pract. Exp. 12(6), 375–388 (2000)

8. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adventures of
old x10. In: PPPJ 2011, pp. 51–61. ACM, New York (2011)

9. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
Chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

10. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOPSLA 2005, pp. 519–538. ACM, New York (2005)

11. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

Dynamic Determinacy Race Detection 385

12. Dennis, J.B., Gao, G.R., Sarkar, V.: Determinacy and repeatability of parallel
program schemata. In: DFM 2012, pp. 1–9. Computer Society IEEE, Washington,
DC (2012)

13. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: STOC
1987, pp. 365–372. ACM, New York (1987)

14. Dimitrov, D., Vechev, M., Sarkar, V.: Race detection in two dimensions. In: SPAA
2015, pp. 101–110. ACM, New York (2015)

15. Dinning, A., Schonberg, E.: An empirical comparison of monitoring algorithms for
access anomaly detection. In: PPOpp 1990, pp. 1–10. ACM, New York (1990)

16. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in Cilk pro-
grams. In: SPAA 1997, pp. 1–11. ACM, New York (1997)

17. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: PLDI 2009, pp. 121–133. ACM, New York (2009)

18. Halstead Jr., R.H.: Multilisp: a language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

19. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969)

20. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

21. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-
cedure calls in distributed systems. In: PLDI 1988, pp. 260–267. ACM, New York
(1988)

22. Mellor-Crummey, J.: On-the-fly detection of data races for programs with nested
fork-join parallelism. In: Supercomputing 1991, pp. 24–33. ACM, New York (1991)

23. Nandivada, V. Krishna Shirako, J., Zhao, J., Sarkar, V.: A transformation frame-
work for optimizing task-parallel programs. ACM Trans. Program. Lang. Syst.
35(1) (2013)

24. OpenMP specifications. http://www.openmp.org/specs
25. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Efficient data race detec-

tion for async-finish parallelism. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol.
6418, pp. 368–383. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16612-9 28

26. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Efficient data race detec-
tion for async-finish parallelism. Form. Methods Syst. Des. 41(3), 321–347 (2012)

27. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Scalable and precise
dynamic datarace detection for structured parallelism. In: PLDI 2012, pp. 531–
542. ACM, New York (2012)

28. Surendran, R., Sarkar, V.: Brief announcement: dynamic determinacy race detec-
tion for task parallelism with futures. In: SPAA 2016, Pacific Grove, July 2016

29. Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. Technical report TR16-01, Department of Computer Science, Rice
University, Houston (2016)

30. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

31. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a Java bytecode optimization framework. In: CASCON 1999. IBM Press (1999)

32. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage,
O., Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman,
B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer,
Heidelberg (2014)

http://www.openmp.org/specs
http://dx.doi.org/10.1007/978-3-642-16612-9_28

Runtime Monitoring for Concurrent Systems

Yoriyuki Yamagata1(B), Cyrille Artho1,2, Masami Hagiya3, Jun Inoue1,
Lei Ma4, Yoshinori Tanabe5, and Mitsuharu Yamamoto4

1 National Institute of Advanced Industrial Science and Technology (AIST),
1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

{yoriyuki.yamagata,c.artho,jun.inoue}@aist.go.jp
2 KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

artho@kth.se
3 The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan

hagiya@is.s.u-tokyo.ac.jp
4 Chiba University, 1-33 Yayoicho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan

malei@chiba-u.jp, mituharu@math.s.chiba-u.ac.jp
5 Tsurumi University, 2-1-3 Tsurumi, Tsurumi,

Yokohama, Kanagawa 230-0063, Japan
tanabe-y@tsurumi-u.ac.jp

Abstract. Most existing specification languages for runtime verifica-
tion describe the properties of the entire system in a top-down manner,
and lack constructs to describe concurrency in the specification directly.
CSPE is a runtime-monitoring framework based on Hoare’s Commu-
nicating Sequential Processes (CSP) that captures concurrency in the
specification directly. In this paper, we define the syntax of CSPE and
its formal semantics. In comparison to quantified event automata (QEA),
as an example, CSPE describes a specification for a concurrent system in
a bottom-up manner, whereas QEA lends itself to a top-down manner.
We also present an implementation of CSPE , which supports full CSPE

without optimization. When comparing its performance to that of QEA,
our implementation of CSPE requires slightly more than twice the time
required by QEA; we consider this overhead to be acceptable. Finally, we
introduce a tool named stracematch, which is developed using CSPE .
It monitors system calls in (Mac) OS X and verifies the usage of file
descriptors by a monitored process.

Keywords: Runtime monitoring · Parametric monitoring · CSP ·
Process algebra

1 Introduction

Runtime monitoring is a technique for monitoring program execution. In a sub-
field of run-time monitoring called specification-based monitoring [34], program
execution is monitored against a given specification. The specification is given
by a formal language, such as temporal logic, automata, grammar, or rule-based
systems. Thus, specification-based monitoring lies somewhere between tests—
which usually test only input/output contracts or assertions—and traditional
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 386–403, 2016.
DOI: 10.1007/978-3-319-46982-9 24

Runtime Monitoring for Concurrent Systems 387

formal methods such as model checking or theorem proving, which try to prove
the correctness of a program along all possible execution paths.

This work focuses on parametric monitoring. In parametric monitoring, pro-
gram execution consists of a sequence of events, and each event is associated
with one or more parameters, such as a file name or an IP address.

Many frameworks for parametric monitoring have been proposed. One group
of frameworks is based on automata. Another is based on formal languages such
as regular expressions or context-free grammars, and still others are based on
temporal logic or rule-based systems. However, most of these frameworks do
not allow for a direct description of the concurrency of a monitored program.
Because a bug related to concurrency often surfaces only at runtime, runtime
monitoring of a concurrent system is important. In this paper, we investigate
the following research questions.

1. Can we design a monitoring language that specifies a concurrent system in a
bottom-up fashion—in a way that first describes the specifications of compo-
nents and then combines them?

2. Can process calculi, which are studied extensively to specify concurrent sys-
tems, be used for this particular purpose?

The first question is important because a concurrent system is often specified by
the specifications of its components and how they interact. On the other hand,
the traditional monitoring languages listed above concentrate on specifying the
global properties of systems, regardless of the specifications of their components.
This is useful, for instance, when we want to specify a safety property for the
whole system, regardless of its components. However, it would be difficult to
describe the correct interaction of the components in the system using such
methods, because they lack constructs to compose the specifications of systems
based on the specifications of their components.

The second question addresses using process calculi in a new context. Process
calculi were developed to reason about concurrent systems. In process calculi,
programs are processes, which are composed of simpler processes using sequential
or concurrent composition. Processes which compose a program can communi-
cate with each other using communication primitives such as events or channels.
In particular, we focus on Hoare’s Communicating Sequential Processes (CSP)
[35,45]. CSP is a process calculus that uses events as communication primitives.
Thus, CSP is effective for describing event sequences generated by a concurrent
system.

In this paper, we introduce CSPE , a runtime-monitoring framework based on
CSP. Because it is based on CSP, CSPE has constructs that allow for the direct
description of concurrency in the specification. In this paper, we define the lan-
guage of CSPE and its formal semantics. However, our goal is not to introduce
a completely new language. Rather, our goal is to show that, with a slight modi-
fication, CSP is amenable to monitoring. In fact, to obtain CSPE from CSP, we
merely add a Failure constant to express already-failed processes. We show that
CSPE can neatly describe a system of Unix-like processes and file descriptors.

388 Y. Yamagata et al.

We also implement a domain-specific language (DSL) based on CSPE and com-
pare its performance with quantified event automata (QEA) [5,34,43,44] imple-
mented in [13], using a simulated event log of the Unix-like processes and file
descriptors. QEA is an automata-based monitoring framework, which, according
to [36], is one of the most expressive of this kind. Further, it is easiest to under-
stand by engineers [36]. Finally, MarQ, an implementation of QEA, came top in
the offline and Java track in first international competition on Runtime Verifi-
cation (2014) [20]. We use an implementation [13] that is a successor of MarQ.
In this comparison, our CSPE implementation requires slightly more than twice
the time that QEA takes; we consider this overhead to be acceptable.

Our DSL is shallowly embedded in the Scala programming language [41]; this
language is also named CSPE . An event monitor can be defined by using the
CSPE language. A monitor that is defined by CSPE sequentially consumes the
events from an event stream. If at some point the monitor fails to proceed, this
indicates that something unexpected has occurred.

The language of CSPE was discussed in part in [3]. In this paper, we fully
explain the syntax, semantics, and implementation of CSPE . In [3], the process
construct is used for a recursive definition. In this paper, we use the built-in def
construct in Scala for a recursive definition. If a process construct is needed, it
can be derived from the def construct.

We develop denotational semantics for CSPE , based on the trace semantics of
CSP. Our technical contribution to formal semantics is a proof that the semantic
space of CSPE can still be defined as a complete partial order (CPO) — a
mathematical structure which allows a recursive definition.

This paper is organized as follows. In Sect. 2, we discuss related work. In
Sect. 3, we discuss the syntax of CSPE using a motivating example. In Sect. 4,
we discuss the formal semantics of CSPE and prove that it forms a complete
partial order. This makes it possible to define monitors recursively. In Sect. 5,
we discuss our implementation of CSPE . In Sect. 6, we show a benchmark for
our CSPE implementation and a QEA implementation [13] using the motivating
example. In Sect. 7, we introduce a tool named stracematch. This tool analyzes
a log of system calls and verifies the correct usage of file descriptors in a real
program. Finally, Sect. 8 concludes the paper.

2 Related Work

Many specification-based runtime-monitoring frameworks have been proposed,
including four approaches to parametric monitoring: an automaton-based app-
roach [5,7,14,15,17,19,26,32,39]; a regular expression- and grammar-based app-
roach [1,17,22]; an approach based on temporal logic [6,8,9,17–19,22,30,31,37,
39,46–48]; and a rule-based approach [4,6,33].

Qadeer and Tasiran [42] surveyed monitoring methods for multi-threaded
programs. They identified several important classes of correctness criteria, such
as race freedom, atomicity, serializability, linearizability and refinement. Their
notion of refinement is different from the CSP context. In the CSP context, it

Runtime Monitoring for Concurrent Systems 389

is a relation between specification, while a refinement relation in Qadeer and
Tasiran mean a relation between traces. Qadeer and Tasiran’s paper [42] deals
with specific properties and construction of specialized monitors, not general-
purpose specification languages like ours.

Among work on monitoring distributed systems, [10,21] concentrate global
properties which can be described by temporal logic. polyLarva [16] is an exten-
sion of LARVA [14,15] designed for distributed systems, by which a user can
control the location of verifiers in the distributed system explicitly. LARVA
specifies the properties of monitored systems by sets of automata which can
communicate each other through channels. In this respect, it has a similar spirit
to CSPE , because both aim to synthesize a specification of a whole system from
a specification of each component. However, LARVA is based on automata and
does not support launching new automata dynamically.

Compared to these other frameworks, our approach creates a new avenue
for specification languages. We employ a process calculus—namely, CSP—to
describe a specification of a monitored program. The advantage of using process
calculi is primarily that they are designed to describe a concurrent system,
thereby providing a way to describe concurrency in a monitored system eas-
ily and directly. Another benefit is that process calculi, and in particular CSP,
allow for automatic model checking [50,51]. Model checkers can check the refine-
ment relation between CSP specifications. A CSP specification is a refinement
of another CSP specification when the former is a more detailed specification of
the latter. Thus, by checking the refinement relation, we can guarantee that the
monitor will check for desirable properties that otherwise might not be able to
be monitored directly, especially when they are too general.

Theoretically, any model checker based on process calculi, such as CADP [23]
can be used to offline runtime monitoring. In particular, CADP has a tool called
SEQ.OPEN [22], which can convert traces to Labeled Transition System (LTS).
A trace can be converted to an LTS and then synchronously composed to a
specification. If the system in such a way exhibits a deadlock, this indicates that
the trace violates the specification. The difference of our approach is that, CSPE

does not need a full model checker, and thus is much more lightweight. Also
CSPE is a DSL which is embedded in a general-purpose programming language,
thus it is easy to extend. Finally, CSPE can be used for online monitoring. To use
model-checking approach above for online monitoring, a significant development
effort seems necessary. “exhibitor” and “evaluator” of CADP can check whether
traces confirm given specifications, if they are used together with SEQ.OPEN,
but they use regular expressions or alternation-free μ-calculus for specification
languages.

Implementation-wise, CSPE is a shallow-embedded DSL in Scala [3]. In this
respect, it closely resembles TraceContract [7]. However, the application
program interface (API) of CSPE is considerably different from that of Trace-
Contract.

390 Y. Yamagata et al.

3 Introduction to CSPE

In this section, we introduce CSPE using a motivating example, and we compare
it to QEA [5,34,43,44]. We argue that CSPE excels at describing properties that
are composed of local properties (i.e., to a process) yet interact globally.

3.1 Motivating Example

Our motivating example is a system of Unix-like processes and file descriptors.
Each process and file descriptor have unique IDs. We assume that only Process
0 is running initially, and that Process 0 never exits. Each process can spawn
child processes. Any process other than Process 0 can exit anytime, without
waiting for its child processes to exit. Each process can open any file descriptor.
If a process opens a file descriptor, it must close it before exiting. Opening the
same file descriptor twice without closing it, or closing the same file descriptor
twice without opening it again, is not allowed. If a file descriptor is opened by a
process, the process can access it. Child processes can also access file descriptors
that were opened by their parent before they were spawned. Such file descriptors
must be closed by a child process before a child process exits.

3.2 CSPE Syntax

CSPE provides a DSL that is shallowly embedded in Scala. This DSL is also
called CSPE . Figure 1 shown the above specification in CSPE .

The notable classes that appear in the example are Event and Process.

Event. The monitored system creates a stream of events. CSPE models events
using the Event case class, which is a subclass of AbsEvent. Every event takes a
symbol called an alphabet as its first argument, and it can have any number of
trailing arguments of Any type.

Process. A process class and its subclasses in CSPE are specifications of sys-
tems that are being monitored. They describe how a system produces sequences
of events. A process is often termed a monitor, because a process that is con-
structed by the CSPE accepts an event stream and judges whether it follows the
specification that the process describes. A process is constructed using methods
that are defined by the CSPE library. In Fig. 1, system is the description of
the entire system, while sysproc represents a process (and its subprocesses).
uniqSysproc guarantees that process IDs are all unique for all process. P1 ||
Set(’Spawn, ’Exit) || P2 means that P1 and P2 run concurrently and share
events which have alphabets ’Spawn and ’Exit. ?? {case ... => ...} is a
pattern match on incoming events, P1 ||| P2 is the interleaving of P1 and P2,
and SKIP is a process that does nothing and terminates normally. A process can
be defined by recursion, using the standard Scala def syntax. For the full syntax,
see Fig. 2 in BNF form.

Runtime Monitoring for Concurrent Systems 391

def sysproc(pid: Int, openFiles: Set[Int]): Process = ?? {

case Event(’Spawn, ‘pid‘, child_pid: Int) =>

sysproc(pid, openFiles) ||| sysproc(child_pid, openFiles)

case Event(’Open, ‘pid‘, fd: Int) if !openFiles(fd) =>

sysproc(pid, openFiles + fd)

case Event(’Access, ‘pid‘, fd: Int) if openFiles(fd) =>

sysproc(pid, openFiles)

case Event(’Close, ‘pid‘, fd: Int) if openFiles(fd) =>

sysproc(pid, openFiles - fd)

case Event(’Exit, ‘pid‘) if pid != 0 && openFiles.isEmpty => SKIP

}

def uniqSysproc(pidSet : Set[Int]) : Process = ?? {

case Event(’Spawn, _, child_pid : Int) if ! pidSet(child_pid) =>

uniqSysproc(pidSet + child_pid)

case Event(’Exit, pid : Int) if pidSet(pid) =>

uniqSysproc(pidSet - pid)

}

def system = sysproc(0, Set.empty) || Set(’Spawn, ’Exit) ||

uniqSysproc(Set(0))

var monitors = new ProcessSet(List(system))

Fig. 1. Motivating example in CSPE

Intuitively, each construct has the following meaning:

– SKIP : A process that does nothing and terminates normally. For example, e
->: SKIP represents a process that accepts event e and terminates.

– STOP : A process that does nothing and never terminates. For example, e ->:
STOP accepts event e but gets stuck.

– Failure : A process that has already failed. For example, e ->: Failure
accepts event e and then fails immediately. Using a process P which does not
consume e, the difference between STOP and Failure can be seen in the exam-
ples e ->: STOP ||| P and e ->: Failure ||| P. Both processes accept
event e, but subsequently, the former runs provided that P accepts events,

P ::= SKIP | STOP | Failure |
e ->: P |
?? f | ??? f |
P <+> P |
P || a || P |
P ||| P |
P $ P

Fig. 2. Full syntax for CSPE : Here, SKIP, STOP, Failure are constants, e is an event,
f is a partial function which maps a event to a process, and a is a set of alphabets.

392 Y. Yamagata et al.

whereas the latter fails immediately after event e. Using Failure explicitly
marks that a branch leads to an impossible state.

– e ->: P : A process that accepts event e and behaves like P. For example, e1
->: e2 ->: SKIP accepts events e1 and e2 and then terminates.

– ?? (f : Event -> Process) : A process that accepts event e and then
behaves like f(e). The function f typically uses pattern matching in order
to select the behavior that matches that of e. If e does not match any pattern,
?? f behaves like Failure.

– ??? (f : Event -> Process) : Similar to ??, but unlike ??, if the incoming
event e does not match any pattern, ??? f waits for another event.

– P1 <+> P2 : A process that behaves like either P1 or P2, depending on which
of them can accept the event that is input to P1 <+> P2. If both P1 and P2
can accept the event, both possibilities remain. For example, e ->: e1 ->:
SKIP <+> e ->: e2 ->: Failure first accepts e. Then, if it accepts e1, it
terminates normally; if it accepts e2, however, it fails immediately. If both
processes cannot accept the event, it behaves like Failure.

– P1 || a || P2 : Concurrent composition of P1 and P2, using events whose
alphabets are elements of a as synchronization events. For example, if a con-
tains the alphabet of e0 but a does not contain alphabets of e1 and e2, then
e0 ->: e1 ->: SKIP || a || e0 ->: e2 ->: SKIP accepts the sequences
e0, e1, e2 and e0, e2, e1 but does not accept e0, e0, e1, e2.

– P1 ||| P2 : Interleaving of P1 and P2. e1 ->: SKIP ||| e2 ->: SKIP
accepts the sequences e1, e2 and e2, e1.

– P1 $ P2 : A process that first behaves as P1 and then behaves as P2. If P1
fails, then P1 $ P2 fails. For example, e1 ->: SKIP $ e2 ->: SKIP accepts
e1 and e2 and then terminates normally.

Then, we generate a set of monitors with new ProcessSet(...) constructs.
Because CSPE can track multiple possible states in the monitored system, we
use the set of monitors to monitor the system. Our system is similar to the one
presented in [35], but with unique differences, such as the inclusion of Failure.
Another difference is that our system has no internal choice, no τ , and no hiding.
Theoretically, we can implement such constructs, but they easily lead to the state
explosion of the monitors in which they are used. We designed the syntax of
CSPE in such a way that it closely resembles the original CSP syntax. However,
there are syntactical limitations, owing to the fact that CSPE is embedded
[3] in Scala. In Scala, the associativity and precedence of operators are both
determined by the established syntax of operators, and thus cannot be changed.
For example, to make the operator → right-associative, we need to add : to ->.
Moreover, some symbols in Scala, such as [], are reserved for certain kinds of
operations. Thus, we use <+> rather than [] to indicate the choice operator. In
the traditional CSP, the human-readable representation differs from the machine-
readable representation. For CSPE , we selected the machine-readable code as
a common representation for both types for simplicity. Because the human-
readable representation of CSPE and its embedding to Scala are the same, both
are termed CSPE .

Runtime Monitoring for Concurrent Systems 393

3.3 Comparison with QEA

Because our specification contains a specification on file descriptors and a spec-
ification on processes, we split these specifications into two QEA automata:
fdMonitor and processMonitor. Using the textual representation used in [34],
each can be defined as shown in Fig. 3.

qea {

Forall(fd)

accept skip(init) {

spawn(parent, child) if [parent in PS]

do [PS.add(child)] -> init

open(pid, fd) if [pid in PS] -> failure

open(pid, fd) if [not pid in PS]

do [PS.add(pid)]-> init

access(pid, fd) if [not pid in PS] -> failure

close(pid, fd) if [pid in PS]

do [PS.remove(pid)] -> init

close(pid, fd) if [not pid in PS] -> failure

exit(pid) if [pid in PS] -> failure

}

}

}

qea {

accept next(init) {

spawn(parent, child)

if [(parent in PS || parent = 0) && not child in PS && child = 0]

do [PS.add(child)] -> init

exit(pid) if [pid in PS]

do [PS.remove(pid)] -> init

open(pid, fd) -> init

access(pid, fd) -> init

close(pid, fd) -> init

}

Fig. 3. QEA monitor for file descriptors and processes, respectively

Theoretically, CSPE , and QEA can represent any Turing computable prop-
erty, because we allow CSPE and QEA to have rich data-structures such as
Set; thus, we can encode a universal Turing machine using these data structures
as tapes. However, such theoretical representation is of no practical interest,
because such a monitor does not have much difference to a hand-coded monitor.

A major characteristic of CSPE is that it can represent the specification in a
bottom-up manner. The entire monitor is built from sysproc(pid, openFiles)
monitors, which run in an interleaving fashion, and uniqProcess, which guar-
antees that each process has a unique ID. Moreover, sysproc(pid, openFiles)

394 Y. Yamagata et al.

can be further decomposed into concurrent monitors. Thus, it can describe the
specification in the term near its implementation yet abstracted from unneces-
sary details. A major characteristic of QEA is that, insofar as it is based on state
machines, it requires specifying the states and transitions of the whole system
in order to describe the specification.

4 Formal Semantics

In this section, we define the formal semantics of CSPE . Because it is outside the
scope of this paper to define a language that contains all of the Scala constructs,
we consider a language that consists of all the constructs explicitly described in
Sect. 3.2, along with purely functional Scala expressions.

In the context of a runtime-monitoring framework, the term formal semantics
refers to the formal definition of actions of a monitor when it is given a finite
sequence of events (trace). For each trace, there are three possibilities:

1. The trace is accepted as a successful and complete execution of the monitored
program.

2. The trace is successful thus far, but not yet complete.
3. The trace is rejected as a failure.

Every possible trace falls into one of these three categories. To distinguish
these three cases, it is enough to give a set of traces which satisfy either cases
1 or 2. We call such a set a trace semantics of a monitor. In the given trace
semantics T , we interpret each trace as follows:

1. A trace t ∈ T that ends with � is interpreted as a successful and complete
execution.

2. A trace that is contained in T and does not end with � is interpreted as an
incomplete trace.

3. A trace that is not contained in T is interpreted as a failure.

The semantic space T of all possible trace semantics consists of the set of
traces T that satisfies the following:

1. If t ∈ T and t′ is a prefix of t, then t′ ∈ T , and
2. for all t ∈ T , the � appears only at the end of t.

This definition allows for the ∅ to be included as a member of T , unlike the usual
definition of CSP trace semantics [35,45]. Let T c denote all completed traces in
T , T i denote all incomplete traces in T , and T f denote all traces that are not
contained in T . We allow for the possibility that a trace t ∈ T is interpreted as
successful thus far, despite the failure of all of its successors—for example, when
〈〉 ∈ STOP. From here, we abuse notations and use STOP, SKIP and Failure
to denote their semantics. The STOP specification is required to be used for
concurrent composition. If STOP is coupled with other processes concurrently,
STOP will get stuck, whereas other processes will continue to run. If Failure is

Runtime Monitoring for Concurrent Systems 395

coupled with other processes concurrently, on the other hand, Failure causes
an immediate failure in the entire system.

Because we allow for a recursive definition of monitors, fixed points of reason-
able sets of operators are needed in the semantic space T . We follow the usual
approach by introducing a structure known as a complete partial order (CPO)
into the semantic space T . We define the order relation T1 � T2 to hold for ele-
ments T1, T2 in T , if T1 ⊆ T2. CPO is a partial order of which directed subsets
have supremums. A directed subset is a subset of a partial order such that it is
non-empty and every pair in it has an upper bound in it. A complete lattice is
a partially ordered set of which all subsets have supremums and infimums. If all
subsets have supremums, they also have infimums [45].

Theorem 1. T is a complete lattice.

Proof. For a set (Ti)i∈X of elements in T , its least upper bound T =
⊔

i∈X Ti is
defined as T =

⋃
i∈X Ti (i.e., the union of (Ti)i∈X as sets). It is routine to check

whether T ∈ T . 	

It is well known that all complete lattices are CPO. We define T1
T2 as

⊔
i=1,2 Ti.

Here, T has the minimal element Failure, and Failure does not contain any
trace. Moreover, STOP consists solely of 〈〉. In the usual trace semantics, STOP is
the smallest element of the semantic space, but it is clear that Failure � STOP.
We also define SKIP as SKIP = {〈〉, 〈�〉}. Next, we define the operators →,�
on T in order to define the semantic interpretations of ->: and $. We use the
operation e∧s and s � t on an event e and traces s, t in order to define → and �.
Here, e∧s of the concatenation of the event e to s, and s � t is the concatenation
of s and t, but if s ends with a �, then this � is removed. Let e denote an event
other than �, and let T, T1, T2 ∈ T .

e → T = {〈〉} ∪ {e∧t | t ∈ T}
T1 � T2 = T i

1 ∪ {s � t | s ∈ T c
1 , t ∈ T2}

Theorem 2. If e is an event and T, T1, T2 ∈ T , then e → T, T1 � T2 ∈ T .

Next, we define the concurrent composition T1||AT2 (� �∈ A) by co-induction
on T1 and T2. T ∈ T is either empty (T = Failure) or it can be decomposed as
follows:

C

⊔

e∈hd(T)

e → T e (1)

where C is SKIP if T can successfully terminate immediately or STOP otherwise.
Here, hd(T) is defined as {e | ∃t, e∧t ∈ T}. Intuitively, T1||AT2 is defined as
follows: first, we assume that T1 and T2 allow only one event, e1 for T1 and e2
for T2 at the first step, and after these events their behaviors are described by T e1

1

and T e2
2 respectively. If both events are not in A, we assume that T1||AT2 behaves

in an interleaved way, that is, T1||AT2 = e1 → (T e1
1 ||AT2)
 e2 → (T1||AT e2

2). If

396 Y. Yamagata et al.

one of them, say, e2 fall into A but not e1, then first e1 occurs and the occurrence
of e2 is delayed e1 → (T e1

1 ||Ae2 → T e2
2). If both fall into A, then they must be

equal otherwise T1||AT2 = STOP. If e = e1 = e2, T1||AT2 = e → (T e
1 ||AT e

2). If
there are multiple possibilities for events which can occur at the first step, we
can write T1 =

⊔
e∈hd(T1)

e → T e
1 . We define T1||T2 by distributivity: T1||AT2 =⊔

e∈hd(T1)
e → T e

1 ||AT2. Considering the possibility of immediate termination,
we reach the following conditions. Let a, a′ ∈ A and b, b′ �∈ A ∪ {�}.

1. Failure||AT = Failure
2. SKIP||AT = T
3. STOP||AT = T\T c

4. a → T a
1 ||Aa → T a

2 = a → (T a
1 ||AT a

2)
5. a → T a

1 ||Aa′ → T a
2 = STOP if a �= a′

6. b → T b
1 ||Aa → T a

2 = b → (T b
1 ||Aa → T a

2)
7. b → T b

1 ||Ab′ → T b′
2 = b → (T b

1 ||Ab′ → T b′
2)
 b′ → (b → T b

1 ||AT b′
2)

8. (C
 ⊔
e∈hd(T1)

e → Te)||AT2 = (C||AT2)
 ⊔
e∈hd(T1)

(e → Te||AT2)
9. All symmetric cases of above rules.

Theorem 3. If T1, T2 ∈ T , T1||AT2 exists and is an element of T .

Theorem 4. The operators
,
⊔

,→, ||A, and � are all monotonic.

Thus, Tarski’s fixed-point theorem can be applied, and the use of recursion is
justified [45].

We interpret Failure, STOP, and SKIP in the CSPE notation as Failure,
STOP, and SKIP in T , respectively, and ->:, <+>, ?? f, || a ||, and $ as →,

,

⊔
e:Event e → f(e), ||A(a), and �, respectively. Here, A(a) is the set of events

that have elements of a as alphabets. Moreover, ??? and ||| can be defined by
using the operators above and a recursive definition.

5 Implementation

In this section, we discuss an implementation of CSPE , which is available at
[52]. CSPE was implemented as an internal shallow-embedded DSL in the Scala
programming language. Artho et al. discussed in depth the use of a DSL in
the context of verification [3]. The proposed CSPE is a combinator library
that can be used to define an object of the Process class, which represents
a monitor. An object of the Process class includes a method called accept,
which accepts an event object and returns new monitors. To monitor an event
sequence, ProcessSet is first instantiated by a list of monitors that are defined
by CSPE . ProcessSet also includes a method named accept, which accepts an
event and returns a new ProcessSet. ProcessSet represents multiple possible
system states that are being monitored. Each monitor contained in ProcessSet
represents one possible system state. ProcessSet includes a method named
isFailure, which returns a Boolean value. If it returns true, there is no possi-
ble state that can be interpreted as a correct system state, thus signifying the

Runtime Monitoring for Concurrent Systems 397

occurrence of an error. ProcessSet includes a method named canTerminate,
which also returns a Boolean value. If it returns true, the system can exit at
that point. If it returns false and the system exits, the exit is an error.

As stated above, the Process object returns new Process objects when it
accepts a new event, rather than changing its internal state. This design simpli-
fies the implementation of non-determinism and concurrency. However, it also
requires immutable data structures for the internal state of a Process object. A
data structure for holding sets of processes is crucial in terms of performance,
especially when there are many processes running concurrently. The current
implementation uses the standard Scala List, which allows for duplicate entries.
A set in the standard library and multisets [49] have more efficient represen-
tations, but we found that using them degrades the performance. Removing
duplicate entries appears to be unnecessary, because the current implementa-
tion generates many closures. Closures in Scala are compared by their physical
equality, thus all closures which are generated at different times are distinct.
Thus, the considerable amount of time needed to compute hashes and compare
objects is superfluous. Furthermore, we attempted to enhance the performance
and reduce memory usage by caching the results of accept. Alas, this slowed the
library, contrary to our expectations. In that experiment, we used ScalaCache
[11] together with Google Guava [25].

6 Benchmark

We compared the performance of our implementation of CSPE with an imple-
mentation of QEA [13], using a randomly generated event sequence that correctly
simulates our motivating example. The benchmark generated an event sequence
and fed this into the CSPE and QEA monitors inside the same program, without
using an external log file. The program generated a sequence of Event objects
using a Stream and put its first 300,000 elements into a List to avoid record-
ing the time required to generate the sequence in the benchmark. Then, the
benchmark program first fed these elements into the CSPE monitor, recording
the real time from the first event to each 1,000 events. The benchmark program
also did the same to the QEA monitor, and finally formatted the result into the
CSV format. The time required for the JVM startup and the initialization of
the monitors is not included. The benchmark program is included in the test
directory of the CSPE distribution [52].

The benchmark uses Java 1.8.0 77-b03 and Scala 2.11.8 on Mac OS X El
Capitan, which we executed on a Mac Pro (late 2013 model), with a 3.7 GHz
Quad-Core Intel Xeon E5 and 64 GB of 1866 MHz DDR3 ECC.

Figure 4 shows the results of this experiment. The time required to process
n events is roughly quadratic to n, because the number of processes in the
monitored system increases linearly to n and for each event, checking that every
process follows the specification requires time linearly to n. We can observe that
QEA is slightly more than twice as fast as CSPE . Nevertheless, because the
current implementation of CSPE has not yet been optimized, this shows that
CSPE is a feasible approach to monitoring concurrent systems.

398 Y. Yamagata et al.

0

500

1000

1500

2000

2500

3000

0 50000 100000 150000 200000 250000 300000

R
un

 ti
m

e
(s

ec
on

ds
)

Number of events

QEA CSPE

Fig. 4. Benchmark with the motivating example

7 Application: Stracematch

stracematch is contained in the example directory of the CSPE distribution
[52]. CSPE is used to implement a complete model of open and close system
calls for file descriptors, the fork system call, and the execve system call. It
accepts the dtruss -f output on OS X from the standard input, and then
verifies that the program correctly handles file descriptors. dtruss is based on
DTrace [12]. DTrace can instrument kernel events using D-script (not related to
the D programming language), and do an arbitrary complex task at each kernel
event.

dtruss is a wrapper of DTrace and traces system calls and produces a log,
similar to strace in Linux. However, there are limitations: (1) dtruss cannot
obtain file descriptors which are created by socketpair and pipe, (2) dtruss
cannot catch the invocation of execve system call, which causes errors, (3)
dtruss outputs the trace to stderr, while it also outputs error messages to
stderr, therefore, if an error happens, the error message has to be removed from
the log manually. In the future work, we may consider using directly DTrace to
circumvent these limitations.

Owing to these limitations of dtruss, stracematch verifies that (a) a process
does not close the same file descriptor twice, and (b) if stracematch detects
the opening of a file descriptor, it is closed in the same thread. We applied
stracematch to several programs, as indicated in Table 1, where the “log size”
represents the number of lines in the log, and “time” denotes the amount of
time in seconds that stracematch required to analyze the log, which includes
the time to start the JVM.

Runtime Monitoring for Concurrent Systems 399

Table 1. Benchmark of stracematch

Program Log size Result Time [s]

ls 156 Passed 0.370

wget (short) 267 Fd not closed 0.377

wget (long) 28,901 Fd not closed 1.145

Emacs 2,678 Fd not closed 0.750

Chrome 166,090 Stopped at 2,935 0.810

Ruby ehttpd 11,034 Closed fd twice at 1,168 0.648

Sinatra 3,191 Closed fd twice at 1,170 0.673

bash 1,218 Closed fd twice at 946 0.575

ls [2] is a Unix command which lists the contents of a directory. “ls” shows the
result on a trace which was obtained by invoking ls -l in a directory. wget [29]
is a command line tool to download the contents of a Web page or a Web site.
“wget (short)” shows the result on a trace which was obtained by downloading
a single web page. “wget (long)” shows the result on a trace which is obtained
by downloading an entire web site recursively. Emacs [28] is a popular text
editor. “Emacs” shows the result on a trace which was obtained by invoking
and terminating Emacs on the terminal. Chrome [24] is a popular Web browser.
“Chrome” shows the result on a trace which was obtained by starting and exiting
Chrome. Ruby ehttpd is a web server which is included in the standard Ruby
[38] programming language distribution. Sinatra [40] is a simple web framework.
“Ruby ehttpd” and “Sinatra” shows the results on traces which were obtained
by running these web servers on a simple static web site and downloading the
entire web site by wget. bash is a popular Unix command shell. “bash” [27]
shows the result on a trace which was obtained by running an artificial shell
script which was extracted from sbt, a build system which is used mainly for
Scala programming language. The shell script which was used, is available upon
request.

Our tool can process any logs within less than 1.2 s. With the exception of
the case of “ls”, stracematch ended with errors. When stracematch encounters
an error, it stops and prints the line number and the contents of the line. In
Table 1, the location of each termination is indicated by the line number at
which stracematch stopped. One group of errors involved some file descriptors
that were still open at the end of the execution. This may be an indication of
a leak of that file descriptor. Another group of errors involved closing the same
file descriptor twice without re-opening it in between. This can cause a rare bug
in which another thread or a signal handler opens a file descriptor after that
file descriptor is closed for the first time and then the same file descriptor is
closed again; thus, that other thread or that signal handler cannot use this file
descriptor after that point. In the “Chrome” case, stracematch stopped because
invocations of fork appeared in the log, but only for child processes; and there

400 Y. Yamagata et al.

were no record of the invocation of fork for the parent processes. In such a case,
stracematch will become confused and stop working.

We contacted the developers of wget and bash, but the bash developer
answered that the error is harmless. The wget developers did not respond.

8 Conclusion

In this paper, we presented CSPE , an event-monitoring framework for concurrent
systems inspired by Hoare’s CSP. Monitoring concurrent systems is important,
because concurrent systems are now ubiquitous, and unit tests are incapable
of detecting concurrency bugs. Unlike most of other monitoring frameworks,
CSPE can describe a concurrent system in a bottom-up fashion, by composing
specifications of system components. This is often a natural way of specifying
concurrent systems.

CSPE is implemented as an internal DSL in Scala. Consequently, it can
be easily adapted to the needs of specific applications. Although the current
implementation has not yet been optimized, it incurs acceptable overhead, as
we demonstrated by comparing it to a QEA implementation to monitor a sim-
ulated event sequence of a highly concurrent system. We presented the formal
semantics for CSPE in Sect. 4. Thus, CSPE is amenable to theoretical analysis.
The semantics are closely similar to the standard trace semantics of CSP. To
interpret the Failure construct, however, we allow the ∅ as a valid element in
the semantic space. We showed that even in such a setting, the semantic space
forms a CPO, thus allowing for fixed-point construction.

There are several directions for future research. Currently, a CSPE monitor
can only determine whether a given event trace is correct, outputting a Boolean
value. This makes it difficult to find the cause of an error. In addition, there is
no mechanism for error recovery. Rather, a monitor simply terminates when it
first encounters an error. We plan to add functionality that records the event
sequence to the error, providing error recovery based on diagnostics. CSPE does
not currently offer an easy way to share states among monitors running con-
currently. Global variables in Scala cannot be used for this purpose, because
they are also shared between monitors that represent the different states of the
system. We shall consider a mechanism and a language feature that can record
the global states among monitors.

Acknowledgments. We are grateful to Giles Reger for helping to develop the QEA
models, and to Eijiro Sumii for helping us to develop the proof of Theorem 3. Yoshinao
Isobe influenced the early design of the language.Thisworkwas supported by JSPSKAK-
ENHI Grant Number JP26280019. We would like to thank Editage (www.editage.jp) for
English-language editing.

www.editage.jp

Runtime Monitoring for Concurrent Systems 401

References

1. Allan, C., Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták,
O.V.R., De Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: Adding trace match-
ing with free variables to AspectJ. In: Johnson, R., Baniassad, E., Gabriel, R.P.,
Noble, J., Marick, B. (eds.) OOPSLA 2005, pp. 345–364. ACM, New York (2005)

2. Apple: ls, version 7.2.0.0.1.1447826929
3. Artho, C., Havelund, K., Kumar, R., Yamagata, Y.: Domain-specific languages

with Scala. In: Butler, M., et al. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 1–16.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25423-4 1

4. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitor-
ing: from EAGLE to RULER. J. Log. Comput. 20(3), 675–706 (2010). Oxford
University Press

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quan-
tified event automata: towards expressive and efficient runtime monitors. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84.
Springer, Heidelberg (2012)

6. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

7. Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace analysis. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21437-0 7

8. Basin, D., Klaedtke, F., Müller, S.: Policy monitoring in first-order temporal logic.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 1–18.
Springer, Heidelberg (2010)

9. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer,
Heidelberg (2013)

10. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32759-9 10

11. Birchall, C.: ScalaCache. https://github.com/cb372/scalacache
12. Cantrill, B., Shapiro, M., Leventhal, A.: Dynamic instrumentation of production

systems. In: USENIX 2004, pp. 15–22. USENIX (2004)
13. Cuenca, H.: QEA. https://github.com/selig/qea
14. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring

of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

15. Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-time
Java programs (tool paper). In: Hung, D.V., Krishnan, P. (eds.) SEFM 2009. IEEE
Computer Society (2009)

16. Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polyLarva: runtime verifi-
cation with configurable resource-aware monitoring boundaries. In: Eleftherakis,
G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 218–232.
Springer, Heidelberg (2012)

17. D’Amorim, M., Havelund, K.: Event-based runtime verification of Java programs.
ACM SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

18. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 341–356.
Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-319-25423-4_1
http://dx.doi.org/10.1007/978-3-642-21437-0_7
http://dx.doi.org/10.1007/978-3-642-32759-9_10
https://github.com/cb372/scalacache
https://github.com/selig/qea

402 Y. Yamagata et al.

19. Drusinsky, D.: Modeling and verification using UML statecharts: a working guide
to reactive system design, runtime monitoring and execution-based model checking.
Newnes (2011)

20. Runtime Verification 2014: First international competition on runtime verification.
http://rv2014.imag.fr/monitoring-competition/results.html

21. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
Formal Meth. Syst. Des. 46(3), 226–261 (2014). Springer, US

22. Garavel, H., Mateescu, R.: SEQ.OPEN: a tool for efficient trace-based verification.
In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 151–157. Springer,
Heidelberg (2004)

23. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89–107 (2013). Springer

24. Google Inc.: Chrome, version 47.0.2526.111 (64-bit)
25. Google Inc.: Guava. https://github.com/google/guava
26. Goubault-Larrecq, J., Olivain, J.: A smell of Orchids. In: Leucker, M. (ed.) RV

2008. LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008)
27. GNU project: bash, version 4.3.42(1)-release (x86 64-apple-darwin14.5.0). https://

www.gnu.org/software/bash/
28. GNU project: Emacs, version 24.5.1. https://www.gnu.org/software/emacs/
29. GNU project: wget, version 1.17.21-df7cb-dirty built on darwin14.5.0. https://

www.gnu.org/software/wget/
30. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts

with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012). IEEE
31. Havelund, K., Roşu, G.: Monitoring programs using rewriting. In: Feather, M.,

Goedicke, M. (eds.) ASE 2001, pp. 135–143. IEEE CS Press, November 2001
32. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,

Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008)

33. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transf. 17(2), 143–170 (2014). Springer

34. Havelund, K., Reger, G.: Specification of parametric monitors: quantified event
automata versus rule system. In: Formal Modeling and Verification of Cyber-
Physical Systems, pp. 151–189. Springer Fachmedien Wiesbaden (2015)

35. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International,
London (1985)

36. Kassem, A., Falcone, Y., Lafourcade, P.: Monitoring electronic exams. In: Bartocci,
E., et al. (eds.) RV 2015. LNCS, vol. 9333, pp. 118–135. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-23820-3 8

37. Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance
based on formal specifications. In: Arabnia, H.R. (ed.) PDPTA 1999, pp. 279–287.
CSREA Press (1999)

38. Matsumoto, Y.: Ruby, version 2.2.2p95 (2015–04-13 revision 50295) [x86 64-
darwin14]

39. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. 14(3), 249–
289 (2012). Springer

40. Mizerany, B.: Sinatra, version 1.4.7. http://www.sinatrarb.com/
41. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima, Suffolk (2016)
42. Qadeer, S., Tasiran, S.: Runtime verification of concurrency-specific correctness

criteria. Int. J. Softw. Tools Technol. Transf. 14(3), 291–305 (2012). Springer

http://rv2014.imag.fr/monitoring-competition/results.html
https://github.com/google/guava
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/emacs/
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
http://dx.doi.org/10.1007/978-3-319-23820-3_8
http://www.sinatrarb.com/

Runtime Monitoring for Concurrent Systems 403

43. Reger, G.: Automata based monitoring and mining of execution traces. Ph.D.
thesis, University of Manchester (2014)

44. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015)

45. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

46. Stolz, V.: Temporal assertions with parametrized propositions. J. Log. Comput.
20(3), 743–757 (2008). Oxford University Press

47. Stolz, V., Bodden, E.: Temporal assertions using AspectJ. Electron. Notes Theoret.
Comput. Sci. 144, 109–124 (2006). Elsevier

48. Stolz, V., Huch, F.: Runtime verification of concurrent Haskell programs. Electron.
Notes Theoret. Comput. Sci. 113, 201–216 (2005). Elsevier

49. Stucki, N.: multisets. https://github.com/nicolasstucki/multisets
50. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under

fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009)

51. University of Oxford: FDR3, https://www.cs.ox.ac.uk/projects/fdr/
52. Yamagata, Y.: CSP E: log analyzing tool for concurrent systems. https://github.

com/yoriyuki/cspe

https://github.com/nicolasstucki/multisets
https://www.cs.ox.ac.uk/projects/fdr/
https://github.com/yoriyuki/cspe
https://github.com/yoriyuki/cspe

Decision-Theoretic Monitoring
of Cyber-Physical Systems

Andrey Yavolovsky, Miloš Žefran(B), and A. Prasad Sistla

University of Illinois at Chicago, Chicago, USA
{ayavol2,mzefran,sistla}@uic.edu

Abstract. Runtime monitoring has been proposed as an alternative to
formal verification for safety critical systems. This paper introduces a
decision-theoretic view of runtime monitoring. We formulate the mon-
itoring problem as a Partially Observable Markov Decision Process
(POMDP). Furthermore, we adopt a Partially Observable Monte-Carlo
Planning (POMCP) to compute an approximate optimal policy of the
monitoring POMDP. We show how to construct the POMCP for the
monitoring problem and demonstrate experimentally that it can be effec-
tively applied even when some of the state-space variables are continuous,
the case where many other POMDP solvers fail. Experimental results on
a mobile robot system show the effectiveness of the proposed POMDP-
monitor.

1 Introduction

Modern cyber-physical systems (CPS) are becoming increasingly complex and
thus call for novel approaches to guarantee their correct functioning. An impor-
tant class of CPS are autonomous systems, where an embedded control sys-
tem relies on the perception of the environment through various sensors to
autonomously operate the system. Correct functioning of autonomous systems
is especially important for medical and transportation systems, where a failure
can have catastrophic consequences.

Many cyber-physical systems are stochastic and have states that are only par-
tially observable. Runtime monitoring is an appealing alternative to the formal
verification of such systems. A monitor processes the sequence of outputs gener-
ated by the system and raises an alarm when it determines that those outputs
are likely generated by a system run that violates a given property. Monitors
are especially useful when fail-safe shutdown procedures can be implemented,
and may serve as an attractive alternative to other traditional approaches that
guarantee correctness.

In this paper, we study runtime monitoring from the decision-theoretic per-
spective. A monitor can be seen as a sequential decision process whose inputs

This research was supported in part by NSF grants CNS-0910988, CNS-1035914,
CCF-1319754 and CNS-1314485.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 404–419, 2016.
DOI: 10.1007/978-3-319-46982-9 25

Decision-Theoretic Monitoring of Cyber-Physical Systems 405

are the observations of the system (system outputs), and whose output is a deci-
sion whether to raise an alarm or continue with the system execution. Partially
Observable Markov Decision Processes (POMDPs) are a well-known formalism
for describing sequential decision processes for partially observable stochastic
systems. In this paper, we formally define a POMDP that describes the moni-
toring process. An important departure from the traditional POMDP literature
is that in monitoring, an alarm represents a terminal action.

Once the monitoring problem is formulated as a POMDP, the monitor cor-
responds to the optimal policy for the POMDP, a map that takes the current
belief state and generates an action. Solving a POMDP, i.e., finding the optimal
policy, is known to be a hard problem [14]. We adapt a Partially Observable
Monte-Carlo Planning (POMCP) [19] to compute an approximate solution for
the optimal POMDP policy. In particular, we outline how the POMCP approach
needs to be adapted for monitoring. The POMCP has been successfully applied
to the large and complex POMDPs. But what makes it particularly attractive
for monitoring is that it does not need analytical models of the system and the
property, a black-box (numerical) model is all that is needed. This makes the
approach particularly useful for industrial applications where in many cases all
that is available are Simulink or Stateflow models [9].

We use a mobile robot with a software implementation of a transmission sys-
tem to demonstrate our approach. Our experiments demonstrate that POMCP
is computationally efficient and sufficiently fast for monitoring in real time. We
evaluate the performance of POMDP-monitors for different choices of rewards,
and compare them with the threshold monitors described in [20,21]. The com-
parison shows that POMDP-monitors provide greater flexibility than threshold
monitors.

The main contributions of the paper are as follows: (1) the monitoring prob-
lem is formulated as a sequential decision process and formally described using
the POMDP formalism; (2) it is shown how POMCP framework can be adapted
to compute the approximate optimal policy for the monitoring POMDP in
real time; (3) experimental results illustrating the performance of the proposed
POMDP-monitors are provided and a comparison with the previously proposed
threshold monitors is presented.

1.1 Related Work

Safety and liveness verification for hybrid systems has been extensively stud-
ied [6,15]. It was shown that this verification problem is in general undecid-
able [6]. Another problem that has been extensively studied is fault detection and
diagnosis of hybrid automata [4,7,10,12,24], where the aim is to detect when the
automaton enters a fail state; none of these works address the problem of mon-
itoring a system against properties specified in an expressive formalism such as
Linear Temporal Logic (LTL) [5]. Control synthesis for stochastic discrete-event
systems has been studied in [11,13] but only finite-state systems with directly
observable state have been considered. Similarly, the literature on diagnosability

406 A. Yavolovsky et al.

of partially-observable discrete-event systems (e.g. [25]) only considers determin-
istic finite-state systems. Runtime monitoring for software programs modeled as
(finite-state) HMMs has been studied in [23].

Issues of safety have been studied using the POMDP formalism [1,8,18].
However, in all of these works safety was considered to be a part of the system
internally, i.e., actions need to be chosen to avoid or reduce the risk of failures.
In our work, we are not focused on controlling the system in a safe way, but on
detecting the failures accurately and in a timely fashion. Further, we consider
systems with continuous state spaces.

2 Background

2.1 Definitions and Notation

System Model. In this paper, we consider stochastic dynamical systems over
discrete time with both discrete and continuous state variables, and discrete
outputs. We will model such a system using Extended Hidden Markov Models
(EHMMs) introduced in [20].

Consider a vector σ = (σ0, . . . , σn−1), such that every σi ∈ {0, 1}. We define
a hybrid domain Sσ = T0 × · · · × Tn−1, where Ti = N or Ti = R depending
on whether σi = 0 or σi = 1 respectively. Let n1, n2,m1 ≥ 0 be integers and
σ1, σ2 be the vectors 0n11n2 and 0m1 , respectively. Intuitively, n1, n2 give the
number of discrete and continuous state variables, while m1 gives the number
of discrete outputs of the system being described. An Extended Hidden Markov
Model (EHMM) H of dimensions (n1, n2,m1, 0), is a triple (f, g, μ) defined as
follows. The function f : (Sσ1 × Sσ1) → [0,∞) is a next state function. For any
fixed value x ∈ Sσ1 , function f(x, y) represents a probability function (see [20]
for details) on Sσ1 in y. A function g : (Sσ1 × Sσ2) is an output function. For
any appropriate fixed value x ∈ Sσ1 , function g(x, z) represents a probability
function1 on Sσ2 in z. To simplify the notation, we will denote Sσ1 with S, and
Sσ2 with Σ. Finally, μ describes the probability of the initial state, i.e., it is a
probability function on Sσ1 . EHMM is a generalization of the traditional HMM
to state spaces that have both discrete and continuous components, with f , g
and μ simply generalizing the analogous quantities for HMMs.

Safety Specification. In this work, we are interested in monitoring whether
the run of the system is consistent with a certain safety property. Intuitively,
a safety property is defined by the set of all sequences that are acceptable. We
have the option whether we specify the acceptable output sequences (external
monitoring), or the acceptable state sequences (internal monitoring). It turns
out that the internal monitoring is a much harder problem [21] and it is the
focus of the present paper.

1 Since we are only considering discrete outputs, the probability function becomes a
probability distribution in z.

Decision-Theoretic Monitoring of Cyber-Physical Systems 407

Let Sω be the set of all infinite sequences on S. A run of the EHMM H is
any infinite sequence σ ∈ Sω that can be generated by H. A property is simply
a subset C ⊆ Sω; elements of C are called good runs, and those not in C are
bad sequences. Property C ⊆ Sω is a safety property if every bad sequence has
a prefix that can not be extended to a good sequence. A safety property can be
specified using a (deterministic) safety automaton P that accepts precisely those
infinite runs that are good.

Probabilistic Hybrid Systems. A hybrid system is a dynamic system whose
evolution is characterized by both symbolic (discrete) and continuous variables.
We are interested in a particular subclass of hybrid systems, probabilistic hybrid
systems (PHS) [7,20]. Formally, a probabilistic hybrid system A is a tuple
(Q,V,Δt, E , T , c0) where Q is a countable set of discrete states (modes); V is a
disjoint union of three sets V1, V2 and V3 called the continuous state variables,
output variables and noise processes, respectively; Δt is the sampling time; E
is a function that with each q ∈ Q associates a set E(q) of discrete-time state
equations describing the evolution of the continuous state (value of the variables
in V1) and the output (value of the variables in V2) at time t+Δt as functions of
the state at t and the noise variables; T is a function that assigns to each q ∈ Q
a set of transitions (φ, p), where the guard φ is a measurable predicate over the
set of continuous (and possibly discrete) state variables and p is a probability
distribution over Q; and c0 is a pair giving the initial discrete state and an initial
continuous probability distribution on the variables in V1. We require that for
each q ∈ Q, the state equations in E(q) have noise variables on the right-hand
side and that the set of guards on the transitions in T (q) be mutually exclusive
and exhaustive.

For the theoretical development in this paper, it is important to note that
we can associate an EHMM to every PHS; details are omitted in the interest of
space. The semantics of the PHS is thus given by the associated EHMM.

Monitors. Let Σ be a set of output symbols generated by the monitored system
modeled as an EHMM H. Formally [21], a monitor M : Σ∗ → {0, 1} is a function
such that for any α ∈ Σ∗, if M(α) = 0 then M(αβ) = 0 for every β ∈ Σ∗. For
an α ∈ Σ∗, we say that M rejects α (raises an alarm), if M(α) = 0, otherwise
we say M accepts α. Thus if M rejects α then it rejects all its extensions. For
an infinite sequence σ ∈ Σω, we say that M rejects σ iff there exists a prefix α
of σ that is rejected by M ; we say M accepts σ if it does not reject it. Let L(M)
denote the set of infinite sequences accepted by M .

Accuracy Measures. Let P be a safety automaton on states of H. The accep-
tance accuracy [21] of M for P with respect to the EHMM H, denoted by
AA(M,H,P), is the conditional probability that a sequence generated by the
system is accepted by M , given that it is in L(P). The rejection accuracy of
M for P with respect to H, denoted by RA(M,H,P) represents the probabil-
ity that a sequence generated by the system is rejected by M , given that it is

408 A. Yavolovsky et al.

not in L(P). Intuitively, the acceptance accuracy represents the probability that
good runs generated by H are accepted by the monitor M , while the rejection
accuracy is the probability that bad runs are rejected.

Monitoring Time. In addition to accurately detecting a failure, the time that
takes the monitor to raise an alarm plays an important role. Monitoring time
has been formally defined and studied in [22]. Intuitively, it is the expected time
span from the moment of system failure to the moment when the monitor raises
an alarm.

Monitoring Safety Properties. Let A be a PHS (with the associated EHMM
HA) and assume that the property that has to be monitored is defined by the
(deterministic) safety automaton P. Let B be the product, B = A × P (see [20]
for details). Intuitively, the execution of B corresponds to the run of A and with
P being simultaneously driven with the sequence of states of A. Finally, let HB
be the EHMM associated with B. Threshold monitors for safety properties as
defined in [20] compute the probability that a sequence of observed outputs is
generated by the execution that is rejected by the property P; this probability
is approximated by the probability (belief) that the current state of B is bad
(the second component of the combined state of B is a bad state of P). If this
probability is greater than the given threshold, the monitor raises an alarm.

Monitor M
Belief Update

Cyber-Physical
System

A

Product
Automaton

B = A x P

Decision
Procedure

Runtime
Observation

Property P

Specification

Action

Fig. 1. Monitoring algorithm.

In this paper, we generalize the algorithm and extend it by substituting the
threshold-based approach with a generic decision procedure. Figure 1 demon-
strates the basic flow and building blocks of the monitoring process. Run-time
observations that are generated by the system A are used to maintain the belief
state of the product automaton B. This belief state is used by the decision pro-
cedure to select an action.

3 Decision Theoretic Monitoring

We view the monitor as a sequential decision process [17], that makes deci-
sions according to the principle of maximum expected utility (MEU) in order to

Decision-Theoretic Monitoring of Cyber-Physical Systems 409

achieve the best possible outcome. According to the MEU, the desirability of
each action is quantified numerically, and the decision is made to pick the action
that maximizes the expected utility.

A monitor has 2 possible actions to choose from. It can either Continue
the execution of the monitored system or it may raise an Alarm to indicate
the violation of the monitored property. The set of monitor action is thus A =
{Alarm,Continue}. It is important to note that Alarm is a terminal action;
that is, the execution of the system terminates once Alarm is chosen.

Rationality of the decision is driven by the costs assigned to each of the
possible actions. We define a reward function for all s ∈ S and a ∈ A as follows.
Assume that we can represent the set of states S (of HB) as a union Sgood ∪Sbad,
where Sbad is a set of states that represent a failure, and Sgood is a complement
of Sbad. The reward function is

R(s, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rc
g ∈ R≥0 s ∈ Sgood, a = Continue

Ra
g ∈ R≤0 s ∈ Sgood, a = Alarm

Rc
b ∈ R≤0 s ∈ Sbad, a = Continue

Ra
b ∈ R≥0 s ∈ Sbad, a = Alarm

(1)

where Rc
g ≥ 0 ≥ Rc

b, Ra
b ≥ 0 ≥ Ra

g . The values of rewards (Rc
g, R

c
b, R

a
g , Ra

b)
define the monitor and will affect its performance in terms of acceptance and
rejection accuracies, and monitoring time. Given a state s, the optimal action is
to Continue if the state is good, and Alarm if the state is bad. However, when
system states are not fully observable, choosing any action entails certain risks.
Those risks are quantified by the values of rewards so that choosing a wrong
action will gain a smaller reward. To emphasize undesirability of wrong actions
we assign a negative value to Rc

b and Ra
g . Note that every time when a failure

has not been detected a penalty in the form of Rc
b will be accumulated. Note

also that a penalty for the false alarm will only be assigned once since the action
Alarm is terminal.

The simplest monitor makes a decision only based on the expected outcome
of the immediate actions. Given a sequence of observations σ[0, . . . , n − 1] at
time n, we can compute the probability p that a system state at time n is bad
(represents a failure). According to the MEU an action Alarm will be chosen if
pRa

b +(1− p)Ra
g ≥ pRc

b +(1− p)Rc
g. This directly implies the decision procedure

as a function of the failure probability: p ≥ 1

1+
Ra

b
−Rc

b
Rc

g−Ra
g

= rth, where rth is a

rejection threshold. This decision procedure is equivalent to the implementation
of the threshold-based monitoring technique studied in [21].

A more sophisticated decision procedures might include consideration of the
expected future evolution of the system by employing a system model. Evaluation
of the expected rewards over the finite or infinite horizon depth is a key part of
the POMDP. We represent the monitoring agent as a POMDP, and present the
solution of the monitoring POMDP using adapted Partially Observable Monte-
Carlo Planning (POMCP). The policy of the monitoring POMDP is the decision
procedure of the monitoring agent.

410 A. Yavolovsky et al.

4 POMDP-Monitor Design

A POMDP is a common approach in AI to describe a sequential decision
process in partially observable environments. Formally, a POMDP [17] is a tuple
(S,A, T,R,O,Z, γ), where S, A and O are correspondingly a set of states, actions
and observations, T and R represent transition and reward functions, Z is the
observation function, and γ is a discount factor that specifies how much imme-
diate rewards are preferred over future rewards.

We define the POMDP-monitor on the top of the EHMM associated with
the product automaton B = A×P, where A is a system modeled as PHS and P
is a monitored safety property automaton. For the automaton B we construct
the corresponding EHMM HB, such that SHB is the set of states of HB, Σ is the
set of outputs, f(x, y) and g(x, z) represent the next state function and output
function respectively. Let Sbad ⊂ SHB represent a set of states of the product
automaton such that the component representing the property P characterizes
a failure. Sets Sbad and Sgood = SB\Sbad represent the sets of the good and the
bad states of the EHMM HB with respect to the property.

We define the set of actions of the POMDP-Monitor as A =
{Alarm,Continue}. The set of states S of the POMDP-Monitor is a union
SHB ∪ {sterminal}. A special state sterminal represents a condition after the ter-
minal action Alarm is executed.

When the action Continue is executed, the transition function T is completely
defined by the next state function f of the EHMM HB.

T (s, s′,Continue) =

⎧⎪⎨
⎪⎩

f(s, s′) s, s′ ∈ S\{sterminal}
0 s 	= s′ and s′ = sterminal

1 s = s′ = sterminal

Transition probabilities under the effect of action Alarm are defined for ∀s ∈ S
as follows:

T (s, s′,Alarm) =

{
0 s′ ∈ S\{sterminal}
1 s′ = sterminal

The reward function R of the POMDP is based on the rewards tuple
(Rc

g, R
a
g , Rc

b, R
a
b), with additional consideration of the terminal state:

R(s, a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rc
g ∈ R≥0 s ∈ Sgood, a = Continue

Ra
g ∈ R≤0 s ∈ Sgood, a = Alarm

Rc
b ∈ R≤0 s ∈ Sbad, a = Continue

Ra
b ∈ R≥0 s ∈ Sbad, a = Alarm

0 s = sterminal,∀a ∈ A

The POMDP-monitor inherits the observation function in the form of the output
function from the underlying EHMM and, consequently, from the monitored
PHS, and extends it to consider the case of the state sterminal. To make the

Decision-Theoretic Monitoring of Cyber-Physical Systems 411

POMDP model consistent we may define a new observation oterminal, which is
deterministically observed while in the state sterminal.

Every history, i.e., a sequence of actions and observations, may be compactly
represented in the form of the belief state b - a conditional probability function
of the current state given past history that can be computed recursively using
Bayes belief propagation [17]. The policy of the POMDP-monitor defines an
action that has to be taken for every belief state b. The optimal policy corre-
sponds to an action that maximizes the expected utility gained by the immedi-
ate execution and by following the optimal strategy over a future time horizon:
π∗(b) = arg maxa∈A Q(b, a), where according to the Bellman equation [17]

Q(b,Alarm) = pRa
b + (1 − p)Ra

g

Q(b,Continue) = pRc
b + (1 − p)Rc

g + γ
∑
o∈O

Pr(o|Continue, b)V ∗(bContinue
o)

V ∗(b) = max
a∈A

Q(b, a)

In the equations above, p represents the probability that the current state is bad
(represents a failure), i.e., p =

∫
Sbad

b(s)ds (the integral needs to be understood

abstractly in the sense of probability functions, see [20] for details), Pr(o|a, b) is
the probability that given the current belief state b and action a, the next obser-
vation equals o (it can be computed by “integrating” over the current belief
state and appropriately using the transition and observation functions), and ba

o

is the belief state in the next time step given we have taken action a and that
the next observed symbol is o (it can be computed using Bayes belief propaga-
tion). Note that according to the definition of the action Alarm, a value of the
expected future reward is equal to 0 so Q(b,Alarm) misses a term compared to
Q(b,Continue). Therefore, for the given belief state b, the optimal policy π∗ will
return the action Alarm iff the following condition holds:

pRa
b + (1 − p)Ra

g > pRc
b + (1 − p)Rc

g + γ
∑
o∈O

Pr(o|Continue, b)V ∗(bContinue
o)

The value of the discount factor γ has to be selected to obtain the desired
property of the policy. Infinite horizon solutions require a value of γ < 1 to
guarantee the convergence of the infinite sum. However, if the value function is
calculated for the finite horizon it is common to assume that γ = 1.

4.1 POMDP-Monitor Rewards

The rewards that appear in the definition of the rewards function of the moni-
toring POMDP represent a six tuple (Rc

g, R
a
g , Rc

b, R
a
b , Rc

t , R
a
t), where Rc

t and Ra
t

both equal to 0 and represent reward that is assigned to an agent in the terminal
state.

It can be shown that the decision rule of any POMDP is invariant with
respect to rewards multiplied by some positive constant value. We omit the

412 A. Yavolovsky et al.

proof due to the space limitations, but this property of rewards may be derived
by rewriting the decision rule with modified rewards and observing that the new
rewards system the same decision rule.

We can always select one non-negative reward, and divide the rewards vec-
tor by its value. In this way we may assume that the absolute value of one of
Rc

g, R
a
g , Rc

b, R
a
b is equal to 1. Therefore, in any monitoring POMDP the decision

depends on 3 free parameters.
The analysis of the effect of the values assigned to the rewards in the monitor-

ing POMDP is not trivial. The primary complexity arises due to the non-linear
operator max in the value function of the action Continue. To start off, we
analyzed some of the rewards structures that lead the monitoring POMDP to
produce a trivial policy. We assume POMDP policies for a finite horizon with
discount factor γ = 1.

By studying simple reward systems that have some rewards equal to 0 we
obtained a list of trivial cases. Reward tuples (Rc

g 	= 0, Ra
g = 0, Rc

b = 0, Ra
b = 0),

(Rc
g = 0, Ra

g 	= 0, Rc
b = 0, Ra

b = 0) and (Rc
g 	= 0, Ra

g 	= 0, Rc
b = 0, Ra

b = 0)
represent a case when Alarm is never raised. While the reward tuple (Rc

g =
0, Ra

g = 0, Rc
b 	= 0, Ra

b = 0) forces Alarm for every belief state. This can be easily
obtained by plugging the values of zero rewards into the decision rule defined in
Sect. 4.

The other assignments of rewards represent non-trivial monitors that in turn
depend on the depth of the POMDP horizon and characteristics of the monitored
system, such as transition and observation models.

4.2 POMDP-Monitor Policy

While many POMDP solvers assume that POMDP models are fully defined,
i.e., the transition and observation functions are given, it is not obvious how to
define them for systems modeled as PHS. Instead, defining a black-box simulator
is straightforward. For a PHS it can be constructed by implementing the differ-
ence equations for each mode and transitions for the hybrid mode switching.
Such black-box simulator is able to produce a sample of the next state and the
observation, given a current state.

POMDPs with continuous state space are even more complex. In order to
handle continuous spaces some algorithms have been developed that employ
Monte-Carlo simulations [3,19]. Considering the lack of completely defined
POMDP model but the existence of the black-box simulator, we focused on Par-
tially Observable Monte-Carlo Planning (POMCP) to implement the POMDP-
monitor. The traditional POMCP is defined for discrete state spaces, however the
algorithm can be easily extended and applied to the continuous case, although
the observation space has to be kept discrete. Here we define a Monitoring-
POMCP, which is an adaptation of the POMCP for the POMDP-monitors.

Similarly to the traditional POMCP [19], the Monitoring-POMCP is an
online POMDP planner. Rather than requiring analytically defined probabil-
ity distributions it is designed to work with the black-box instantiation of the

Decision-Theoretic Monitoring of Cyber-Physical Systems 413

model. The generative model that is hidden within the black-box is able to pro-
duce a sample of the future state st+1, observation ot+1 and reward rt+1, given
the pair (st, at) of the current state and an action.

POMCP may be described similarly to any POMDP planner and consists of
the following basic steps: (1) update the belief state bt to obtain bt+1 considering
the new observation ot+1 and the most recent action at, (2) for the new belief
state bt+1 find an action at+1 ∈ A that should be executed. In POMCP both
steps share the same Monte-Carlo simulation to propagate the belief state from
bt to bt+1. This belief propagation step may be performed efficiently by a particle
filter and Monte-Carlo simulations even for continuous state space. Provided that
there are sufficiently many particles, the approximation of the belief state will
be close to the true distribution.

The decision step of the POMCP is based on the Monte-Carlo Tree Search
adapted for the belief state search space [19]. The root tree node corresponds
to the current belief state of the POMDP, and every other node represents a
history h of actions and observations. Each tree node has an associated pair
(N(h), V (h)), where N(h) is the number of times the node has been visited
during the search, and V (h) is the mean return of all simulations started from
the node.

In order to limit the size of the tree and compute a good approximation
of the optimal policy, it is necessary to require a finite number of actions and
observations. The POMDP-monitor only has two actions, and we have assumed
that the continuous observation space is quantized and represented with a finite
set. Note that in practice sensors typically use an analog-to-digital converter to
produce the output, which means that the observation measurements are in fact
already quantized.

The search tree of the Monitoring-POMCP is constructed sequentially with a
number of Monte Carlo simulations starting from a state sampled from the belief
state in the root node. Every simulation represents a sequence of actions and
observations. While the observations are produced by a black-box simulation,
the action at each simulation step is selected either by a tree policy or by a
rollout policy (see Fig. 2).

Fig. 2. POMCP search tree

For a history node that already has at
least one action leaf node the tree policy is
used. For the Monitoring-POMCP, we use
the UCB1 (Upper Confidence Bounds) [2]
algorithm. UC1 selects an action that max-
imizes the value of the node augmented by
the exploration bonus: V ⊕(ha) = V (ha)+

c
√

log N(h)
N(ha) . The scalar value c determines

the relative ratio between the exploration
and exploitation. The value of unexplored
actions is always set to ∞ so that each
action is selected for exploration at least
once. The Monitoring-POMCP uses the

414 A. Yavolovsky et al.

exploration constant c = Rhi − Rlo [19], where Rhi is the largest value achieved
during sample runs of the POMDP with the constant c = 0, and Rlo is the smallest
value returned during sample rollouts. In the context of the Monitoring-POMDP,
Rhi = max(Rc

g, R
a
b), and Rlo = min(Ra

g , Rc
b).

For the case of the history node that has no action leaf nodes yet the rollout
policy is used. In rollout, the execution proceeds up to the end of the fixed
horizon. The simplest form of the rollout policy is a uniform random policy.
However, it is not suitable for the POMDP-monitor. To see that, consider the
following scenario. Assume that at some point during the construction of the
search tree, the simulation is at a node with the history h that does not have
any leaf nodes so that the rollout policy is used. Let’s also assume that when
this node was reached during the simulation, the system state corresponded to
a failure. The random rollout policy will generate a finite randomly sampled
sequence of actions. The sequence will be stopped either when the maximum
horizon depth is reached, or a terminal action is executed. Let’s assume that in
the generated sequence of actions the first action is Continue, followed again by
some number of Continue actions and eventually executing an Alarm. Such an
action sequence would accumulate a significant penalty for a missed alarm, and
this penalty would be associated with the new leaf node added to the tree. Now,
let’s assume that when this search tree node is encountered again in the search,
the system state is good, i.e. there is no failure. According to the tree policy, at
first the Alarm branch will be explored, but at further times it will be unlikely
that Continue branch will be explored again. This might have a significant effect
on the value of the expected reward for the action Continue at the root node of
the tree.

Instead of selecting the action randomly during the rollout policy we propose
to select the action to maximize the reward at every step. This can be achieved
by raising the alarm only at the failure state, and continuing the execution if
the system state is good. In this way it is guaranteed that the value assigned to
the newly added will promote further exploration when the tree policy is used.

The outcome of the search is an action that produces the largest augmented
reward from the root node after the predefined number of simulations have been
performed.

Before we can apply the POMCP for any real-life problem we should consider
that just as for any POMDP, it is designed to describe decisions of completely
autonomous systems. That is, no external control input is present. While this is
a limitation of the proposed approach, the extension of the procedure to systems
that need to react to external control inputs is beyond the scope of this paper.

5 Experimental Evaluation

5.1 Example

In order to evaluate the efficiency of the decision-theoretic monitor, we use a
mobile robot with a software implementation of a 2-gear transmission system.

Decision-Theoretic Monitoring of Cyber-Physical Systems 415

By switching gears, the engine revolutions per minute (RPM) are maintained
in a safe range. However, due to failures, RPM might increase and stay beyond
the limit over a period of time. This may lead to the engine damage and should
be promptly detected. We emphasize that while this system is rather simple, it
demonstrates that decision-theoretic monitoring techniques can be used in real
time and that the POMDP-monitor works well in practice.

Fig. 3. Experimental model

The automatons for the system and monitored property are shown in the
Fig. 3. The discrete modes of the hybrid system are described by the variable
d, c is a timer, a1 and a2 correspond to the linear acceleration of the vehicle
when in the corresponding gear, and n1, . . . , n4 are disturbances. The function

416 A. Yavolovsky et al.

u(t) ∈ [−1, 1] represents the control input from the combined accelerator/brake
pedal. The positive values of u(t) correspond to acceleration, while the negative
values correspond to braking.

The system starts from the mode d = 1 with acceleration dynamics of the
first gear. Once the RPM is above the predefined constant R1→2 a transition
to the intermediate mode d = 2 occurs and the timer c is set by the random
variable n4. The mode d = 2 models the delay due to the shifting between gears.
As long as RPM is kept above R1→2 at least for the time defined by the counter
c, the transmission system physically switches to the second gear and the mode
d = 3 becomes active. In a similar way, the gear may be switched back to the
first gear. If the RPM continues to increase and is eventually greater or equal to
R2,max the system transitions into mode d = 4 that limits the RPM by ignoring
any positive, i.e. accelerating, control input u(t). Once the RPM is back to the
acceptable range, the system returns to the mode d = 3. A nondeterministic
transition from the mode d = 3 to the mode d = 7 is to model a possible failure
when the RPM limiting system fails to engage.

Fig. 4. Experimental robot.

The observation model consists of two
noisy variables WheelV elocity and Gear.
WheelV elocity is a vehicle’s wheel velocity
as a function of RPM distorted by a noise.
Gear is a distorted observation of the trans-
mission gear, which matches the actual gear
with probability 0.9.

The property automaton is a safety
automaton: the engine RPM may not exceed
a safe limit for more than time T .

We conduct the experiment by applying
different monitors many times on the same trajectories of states that were col-
lected from the physical system. The robot (Fig. 4) collects wheel velocity data
from the incremental rotary encoders. The transmission system was simulated
in software. The acquired data is transmitted to a workstation that does all the
computationally intensive processing. Communication between the robot and the
workstation is implemented using the Robot Operating System (ROS) API [16].

5.2 Results

We have recorded 14 different state trajectories on the robot for the fixed prede-
fined input function u(t). In 7 of these cases, the RPM limiting system was not
engaged correctly. For every recorded trajectory, we apply a number of POMDP-
based monitors with different values of rewards. In particular, we explore dif-
ferent ratios of rewards to penalties for the selected action. In addition to the
POMDP-based monitors, we also tested the threshold-based monitor described
in Sect. 3. We ran each monitor 100 times for the same state trajectory so that
we can assess its average performance.

Every POMCP-based monitor was configured to use the discount factor γ =
1, with a maximum depth of the search tree (search horizon) equal to 20. The

Decision-Theoretic Monitoring of Cyber-Physical Systems 417

total number of simulations executed to construct the search tree and determine
the optimal action was 1000. We have used 1000 particles to sample the belief
state both in the threshold-based and POMDP-based monitors.

For every monitor run and every system trajectory, we count how many times
the alarm was raised or missed. Then, the acceptance and rejection accuracies,
and monitoring time, denoted by AA, RA, and MTIME respectively, were com-
puted according to:

AA =
ga

ga + gr
RA =

br

ba + br
MTIME =

∑br
i=1 T i

br

br
,

where ga (resp., gr) is the number of good runs that were accepted (resp.,
rejected), br (resp., ba) is the number of bad runs that were rejected (resp.,
accepted), and T i

br
is the from when the failure occurs to when the monitor

raises an alarm. Note that gr corresponds to the number of false alarms, and ba

to the number of missed alarms; the accuracies approach 1 as these numbers app-
roach 0. An execution was considered good if the state of the property automaton
at the end of the run was not representing a failure, and bad otherwise.

The number of raised false alarms as well as the convergence time depend
on the monitor configuration. For the case of the threshold-based monitor, it
depends on the value of the threshold. The lower the threshold, the larger will be
the number of false alarms and the smaller will be the monitoring time. Threshold
monitors do not allow these two quantities to be independently adjusted.

On the other hand, POMDP-monitors are configured by the assignment of
reward values. This paper does not focus on how to obtain a monitor configu-
ration that would result in smallest MTIME for the same AA. However, our

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

MTIME

AA

POMCP
Threshold

Fig. 5. Acceptance accuracy vs. monitoring time (larger AA for smaller MTIME is
better).

418 A. Yavolovsky et al.

experiments confirm that POMDP-based approach is a promising direction in
designing efficient monitoring algorithms. Figure 5 shows that many of config-
urations that have been chosen for the experiments, indeed, result in a better
accuracy for the same monitoring time.

6 Conclusions

In this paper we formulate run-time monitors as sequential decision processes.
We present a formal definition of the sequential decision monitoring process in
the form of Monitoring-POMDP. For this POMDP model we adapt the POMCP
algorithm to compute the approximate optimal policy. The POMCP algorithm
can be applied to complex models, does not require an analytical model of
the system, and only requires the observation space to be quantized, not the
state space. Our experiments with the POMCP implementation of the POMDP-
monitor show that it is computationally efficient and suitable for real-time mon-
itoring. We have also demonstrated that POMDP based approach provides a
broader spectrum of performance outcomes and can in turn be used to achieve
better monitoring efficiency. Further work will focus on the theoretical analysis
of POMDP-monitors and their performance, especially as compared to threshold
monitors.

References

1. Agate, R., Seward, D.: Autonomous safety decision-making in intelligent robotic
systems in the uncertain environments. In: Annual Meeting of the North American
Fuzzy Information Processing Society, NAFIPS 2008, pp. 1–6. IEEE (2008)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

3. Bai, H., Hsu, D., Lee, W.S., Ngo, V.A.: Monte Carlo value iteration for continuous-
state POMDPs. In: Hsu, D., Isler, V., Latombe, J.-C., Lin, M.C. (eds.) Algorithmic
Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol. 68, pp.
175–191. Springer, Heidelberg (2011). doi:10.1007/978-3-642-17452-0 11

4. Blom, H., Bloem, E.: Particle filtering for stochastic hybrid systems. In: 43rd IEEE
Conference on Decision and Control, CDC, vol. 3 (2004)

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

6. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

7. Hofbaur, M.W., Williams, B.C.: Mode estimation of probabilistic hybrid systems.
In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 253–
266. Springer, Heidelberg (2002). doi:10.1007/3-540-45873-5 21

8. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue
Crack Growth. Applied Condition Monitoring, vol. 1, pp. 63–70. Springer, Switzer-
land (2015)

9. Kanade, A., Alur, R., Ivančić, F., Ramesh, S., Sankaranarayanan, S., Shashidhar,
K.C.: Generating and analyzing symbolic traces of simulink/stateflow models. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 430–445. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02658-4 33

http://dx.doi.org/10.1007/978-3-642-17452-0_11
http://dx.doi.org/10.1007/3-540-45873-5_21
http://dx.doi.org/10.1007/978-3-642-02658-4_33

Decision-Theoretic Monitoring of Cyber-Physical Systems 419

10. Koutsoukos, X., Kurien, J., Zhao, F.: Estimation of distributed hybrid systems
using particle filtering methods. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 298–313. Springer, Heidelberg (2003). doi:10.1007/3-540-36580-X 23

11. Kumar, R., Garg, V.: Control of stochastic discrete event systems modeled by
probabilistic languages. IEEE Trans. Autom. Control 46(4), 593–606 (2001)

12. Lerner, U., Moses, B., Scott, M., McIlraith, S., Koller, D.: Monitoring a complex
physical system using a hybrid dynamic bayes net. In: Proceedings of the 18th
Annual Conference on Uncertainty in AI (UAI), pp. 301–310 (2002)

13. Pantelic, V., Postma, S., Lawford, M.: Probabilistic supervisory control of prob-
abilistic discrete event systems. IEEE Trans. Autom. Control 54(8), 2013–2018
(2009)

14. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Math. Oper. Res. 12(3), 441–450 (1987)

15. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer Science & Business Media, New York (2009)

16. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software 3 (2009)

17. Russell, S., Norvig, P., Intelligence, A.: A Modern Approach. Prentice Hall,
Englewood (2009)

18. Seward, D., Pace, C., Agate, R.: Safe and effective navigation of autonomous robots
in hazardous environments. Auton. Robot. 22(3), 223–242 (2007)

19. Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: Advances in
Neural Information Processing Systems, pp. 2164–2172 (2010)

20. Sistla, A.P., Žefran, M., Feng, Y.: Runtime monitoring of stochastic cyber-physical
systems with hybrid state. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 276–293. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29860-8 21

21. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynamical systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 58

22. Sistla, A.P., Žefran, M., Feng, Y., Ben, Y.: Timely monitoring of partially observ-
able stochastic systems. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, pp. 61–70. ACM (2014)

23. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29860-8 15

24. Verma, V., Gordon, G., Simmons, R., Thrun, S.: Real-time fault diagnosis. IEEE
Robot. Autom. Mag. 11(2), 56–66 (2004)

25. Yoo, T., Lafortune, S.: Polynomial-time verification of diagnosability of partially
observed discrete-event systems. IEEE Trans. Autom. Control 47(9), 1491–1495
(2002)

http://dx.doi.org/10.1007/3-540-36580-X_23
http://dx.doi.org/10.1007/978-3-642-29860-8_21
http://dx.doi.org/10.1007/978-3-642-22110-1_58
http://dx.doi.org/10.1007/978-3-642-29860-8_15
http://dx.doi.org/10.1007/978-3-642-29860-8_15

Precision, Recall, and Sensitivity of Monitoring
Partially Synchronous Distributed Systems

Sorrachai Yingchareonthawornchai1(B), Duong N. Nguyen1,
Vidhya Tekken Valapil1, Sandeep S. Kulkarni1, and Murat Demirbas2

1 Department of Computer Science and Engineering, Michigan State University,
East Lansing, MI 48824, USA

{yingchar,nguye476,tekkenva,sandeep}@cse.msu.edu
2 Department of Computer Science and Engineering, University at Buffalo,

The State University of New York, Buffalo, NY 14260-2500, USA
demirbas@cse.buffalo.edu

Abstract. Runtime verification focuses on analyzing the execution of a
given program by a monitor to determine if it is likely to violate its spec-
ifications. There is often an impedance mismatch between the assump-
tions/model of the monitor and that of the underlying program. This con-
stitutes problems especially for distributed systems, where the concept
of current time and state are inherently uncertain. A monitor designed
with asynchronous system model assumptions may cause false-positives
for a program executing in a partially synchronous system: the monitor
may flag a global predicate that does not actually occur in the underlying
system. A monitor designed with a partially synchronous system model
assumption may cause false negatives as well as false positives for a pro-
gram executing in an environment where the bounds on partial synchrony
differ (albeit temporarily) from the monitor model assumptions.

In this paper we analyze the effects of the impedance mismatch
between the monitor and the underlying program for the detection of con-
junctive predicates. We find that there is a small interval where the mon-
itor assumptions are hypersensitive to the underlying program environ-
ment. We provide analytical derivations for this interval, and also provide
simulation support for exploring the sensitivity of predicate detection to
the impedance mismatch between the monitor and the program under a
partially synchronous system.

1 Introduction

Runtime verification focuses on analyzing the execution of a given program
by a monitor to determine if it violates its specifications. In analyzing a dis-
tributed program, the monitor needs to take into account multiple processes
simultaneously to determine the possibility of violation of the specification.
Unfortunately, perfect clock synchronization is unattainable for distributed sys-
tems [1,2], and distributed systems have an inherent uncertainty associated
with the concept of current time and state [3]. As a result, there is often an
impedance mismatch between the assumptions/model of the monitor and that
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 420–435, 2016.
DOI: 10.1007/978-3-319-46982-9 26

Precision, Recall, and Sensitivity 421

of the underlying program. Even after a careful analysis of the underlying dis-
tributed system/program, the model assumptions that the monitor infers for
the system/program will have errors due to uncertain communication latencies
(especially over multihops over the Internet), temporal perturbations of clock
synchronization (especially when different multihop clock references [4] are used),
and faults.

In the absence of precise knowledge about events there is a potential that
the debugging/monitoring system (which we call as the monitor) would either
(1) find non-existent bugs or/and (2) miss existing bugs. While some errors
are unavoidable, if we cannot characterize monitor and the underlying pro-
gram/system behavior precisely, there is no analysis to answer the effect of
system uncertainty on predicate detection/runtime verification. Our goal in this
paper is to analyze the errors caused by uncertainty of the underlying distributed
system and the impedance mismatch between the monitor and the underlying
distributed system.

To illustrate the role of the uncertainty and the impedance mismatch, con-
sider the example in Fig. 1. In this computation, we want to verify that the sys-
tem never reaches a state where the predicate x > 0∧ y > 0 is true. In Fig. 1(a),
it is clear that the predicate is not true since there is a message after x > 0
has become false and before y > 0 becomes true. In Fig. 1(b), if the processes’
clocks were perfectly synchronized the predicate is always false. However, if it is
assumed that the processes are asynchronous or can have large clock drifts then
in Fig. 1(b), the predicate is true. In other words, if the algorithm for runtime
monitoring assumes that the system clock is perfectly synchronized but in reality
it is not then in Fig. 1(b), the result of the monitoring algorithm will be false
negative, i.e., the monitor will fail to detect that the system (possibly) reached
a state where x > 0∧ y > 0 was true. On the other hand, if the monitoring algo-
rithm assumes an asynchronous system but in reality, it is synchronous (and the
system may be using timeouts as implicit communication) then in Fig. 1(b), the
result of the monitoring algorithm is false positive, i.e., the monitor incorrectly
finds that the system (possibly) reached a state where x > 0∧y > 0 was true. Our
goal in this work is to characterize the false positives/negatives in run-time mon-
itoring of a distributed system due to the uncertainty and impedance mismatch.
We focus on conjunctive predicates, i.e., predicates that are conjunctions of local
predicates of individual processes. The disjunction of such conjunctive predicates
can express any predicate in the system. Our analysis focuses on comparing the
application ground truth (whether the predicate was true under the assumptions
made by the application) with the monitor ground truth (whether the predicate
is true under the assumptions made by the monitor). In other words, it identi-
fies the effect of uncertainty in the problem of monitoring distributed programs
rather the uncertainty associated with a given algorithm.

Specifically, we consider the following problems in the context of detect-
ing weak conjunctive predicates. (1) Suppose we utilize a monitoring algorithm
designed for asynchronous systems; then what is the likelihood of the result
being a false positive/negative when used with an application that relies on

422 S. Yingchareonthawornchai et al.

p0

p1

x > 0
y > 0

message

(a)

p0

p1

x > 0

y > 0

(b)

Fig. 1. Uncertainty and impedance mismatch in distributed systems.

partial clock synchronization. (2) Suppose we utilize an algorithm designed for
partially synchronous systems where it is assumed that clocks of two processes
are synchronized up to εmon, but in reality, the bound used by the application
is εapp. In this context, what is the likelihood of receiving false positive/negative
detection? Moreover, if εapp cannot be precisely identified (may have temporal
perturbations), how sensitive is the debugging algorithm to variations in clock
drift/uncertainty?

Precision, recall, and sensitivity of asynchronous monitors. We present an ana-
lytical model that characterizes the false positive rate for monitors that assume
that the system is fully asynchronous (i.e., εmon = ∞) and clock drift can be
arbitrary (εapp is finite). Under these assumptions, monitor can only suffer from
false positives: The monitor will have perfect recall (i.e., there will be no false
negatives) but may suffer from a lack of precision. Our analytical results show
that we can classify the clock synchronization requirement in the partial syn-
chrony model into 3 categories with respect to two parameters εp1 and εp2 . We
find that if the clock drift is between [0..εp1] then the precision of monitoring
is very low (i.e., the rate of false positives is high). If the drift is in the range
[εp2 ..∞] then the precision of monitoring is reasonably high. Moreover, in both
of those cases, the precision is not very sensitive, i.e., changes in the clock drift
of the application does not affect the rate of false positives. However, in the
range [εp1 ..εp2], the monitoring is hypersensitive and small differences between
the clock drift assumed by the monitor and the underlying application can have a
substantial impact on the rate of false positives. A noteworthy result in this con-
text is that the hypersensitivity range εp2−εp1

εp2
approaches to 0 whenever number

of processes n → ∞.

Precision, recall, and sensitivity of partially synchronous monitors. We consider
an extension of asynchronous monitors to the general case where the monitor
relies on the fact that the underlying clocks are synchronized to be within εmon,
which may be different than the timing properties εapp of the application. We
find that for small εapp there is a tradeoff among precision, recall, and sensitivity.
If the monitor tries to achieve very high recall and precision (say at 95 %) at
the same time, it becomes hypersensitive with respective to both precision and
recall (small mismatch between the synchrony assumptions of the monitor and
the underlying program can have a substantial impact on the rate of both false
positives and false negatives). In this case, the monitor would need to sacrifice
from the quality of either precision and recall to avoid being hypersensitive.

Precision, Recall, and Sensitivity 423

We also find that for large εapp, the tradeoff dilutes. The monitor can achieve
very high recall and precision while remaining less susceptible to sensitivity for
large εapp.

Implications of our findings for monitor design/tuning. Our findings inform the
monitor designer to manage the tradeoffs among precision, recall, and sensi-
tivity according to the predicate detection task at hand. Our analytical model
can inform based on εapp and local predicate occurrence probability, whether
hypersensitivity is avoidable or not. If hypersensitivity is avoidable, εmon can be
chosen from the suitable interval to achieve both high precision and high recall.
However, if it becomes necessary to make a tradeoff between precision and recall
to avoid hypersensitivity, the monitor would need to decide which one is more
important, and which one it can sacrifice.

The monitor may decide to prioritize recall in lieu of reduced precision. In
other words, the monitor can attain better coverage of notifications of predicate
detection to the expense of increased false positive notifications. This is useful
for investigating predicates that occur rarely, where one cannot afford to miss
occurrences of the predicate but can afford to investigate/debug some false-
positive detections. This is also useful for monitoring safety predicates, which is
relatively easier to debug.

The monitor may decide to prioritize precision in lieu of reduced recall. In
other words, the monitor can reduce the false positive notifications of predi-
cate detection to the expense of allowing some missed notifications of predicate
detection. This is useful for predicates that occur frequently: the monitor has
enough opportunities to sample and can afford to miss some occurrences of the
predicate. This is also useful for monitoring liveness/progress predicates, which
is harder to debug and false-positives cause wasting time with debugging.

Organization of the Paper. In Sect. 2, we present our computational model.
In Sect. 3, we investigate precision and sensitivity of asynchronous monitors in
partially synchronous systems. In Sect. 4, we analyze the precision, recall, and
sensitivity of partially synchronous monitoring of partially synchronous systems.
We discuss related work in Sect. 5 and conclude in Sect. 6.

2 System Model

We consider a system that consists of a set of n processes that communicate via
messages. Each process has a local clock that is synchronized to be within ε of
absolute time, using a protocol such as NTP [4]. Any message sent in the system
is received no earlier than δmin time and no later than δmax time. We denote
such a system as 〈ε, δmin, δmax〉-system. We also use the abbreviated notion of
〈ε, δ〉-system, where δ denotes the minimum message delay and the maximum
message delay is ∞. Observe that this modeling is generic enough to model
asynchronous systems (ε = ∞, δmin = 0, δmax = ∞) and purely synchronous
systems (ε = 0, δmin = 0, δmax = 0), as well as partially synchronous systems.

We define hb−consistent to capture the requirement that two events e and f
“could have” happened at the same time. Specifically, e and f are hb-consistent

424 S. Yingchareonthawornchai et al.

(also called concurrent) provided both ehb f and fhb e are false.1 If both ehb
f and fhb e are false then e and f could have happened at the same time in
an asynchronous system where clock drift could be arbitrary. A global snapshot
consisting of local snapshot of each process is hb-consistent if and only if all local
snapshots are mutually hb-consistent.

For partially synchronous systems, we define the notion of ε-consistent. Two
events e and f are ε-consistent provided they are hb-consistent and the difference
between the physical time of e and f is no more than ε. A global snapshot
consisting of local snapshot of each process is ε-consistent if and only if all local
snapshots are mutually ε-consistent.

A conjunctive predicate P is defined of the form P1 ∧ P2 ∧ · · · ∧ Pn, where
Pi is a local predicate at process i. At each process, the local predicate Pi can
become randomly and independently true at the chosen time unit granularity
(say millisecond granularity) with probability β. For instance, if β = 0.1 and time
unit is selected as millisecond, then the local predicate becomes true roughly
every 10 ms. We use � to denote the length of an interval for which the local
predicate remains true at a process once it becomes true.

3 Precision and Sensitivity of Asynchronous Monitors

In this section, we evaluate the precision and sensitivity of an asynchronous mon-
itor in partially synchronous systems. In particular, we focus on 〈ε, δ〉 systems.

3.1 Analytical Model

Using a monitor designed for asynchronous systems in partially synchronous
systems can result in a false positive. Hence, in this section, we develop an
analytical model to address the following question:

If we use a monitor for predicate detection that is designed for an asyn-
chronous system and apply it in a partially synchronous system, what is
the likelihood that it would result in a false positive?

The false positive rate is defined as the probability of a snapshot discovered
by the asynchronous monitor is a false positive in 〈ε, δ〉-system. To compute
this ratio for interval-based local predicates, we first define the following. Two
intervals [a1, b1] and [a2, b2] differ by max(max(a1, a2) − min(b1, b2), 0). Let c be
a snapshot consisting of a collection of intervals [ai, bi] for each process i = 0 to
n − 1. We denote L(c) as the length of the snapshot c defined by the least value
of x such that c is x-consistent snapshot.

An asynchronous monitor has perfect recall because every ε-snapshot is hb-
snapshot as shown in Proposition 1.
1 Following Lamport’s definition of causality [5], for any two events e and f , we say

that ehb f (e happened before f) if and only if (1) e and f are events in the same
process and e occurred before f , (2) e is a send event and f is the corresponding
receive event, or (3) there exists an event g such that ehb g and ghb f .

Precision, Recall, and Sensitivity 425

Proposition 1. Let H be a set of hb-snapshots detected by an asynchronous
monitor, and P be a set of ε-snapshots detected by a partially synchronous mon-
itor. Then, P ⊆ H.

If an hb-consistent snapshot is also ε-consistent, this is a true positive, which
means the asynchronous monitor is precise in this case. Our first result is Preci-
sion (true positive rate) of hb-consistent snapshots in 〈ε, δ〉-systems.

Theorem 1. For interval-based predicate, given c is an hb-consistent snapshot,
the probability of c being also ε-consistent is φ(ε, n, β, �) = (1− (1−β)ε+�−1)n−1.

To prove Theorem 1, we first show, φ(ε, n, β, 1), probability of hb-consistent snap-
shot being ε-snapshot for point-based predicate. This is equivalent to computing
distribution of L(c) where each interval has length 1. For point-based predicate,
the result is as follows and its derivation is provided as a proof.

Lemma 1. For point-based predicate, the probability of a hb-consistent snapshot
being ε-consistent (true positive rate) is φ(ε, n, β) = (1 − (1 − β)ε)n−1.

Proof. Given the system model, for a long execution trace of a distributed pro-
gram, it follows that true positive rate will eventually converge to some value by
law of large number in probability theory. The trick is we first fix process 0 to
have true predicate at time 0. We define random variable xi as the first time after
time 0 that the predicate is true at process i, 1 ≤ i ≤ n−1. By system model, xi’s
local predicate has independent probability to be true at each time unit. Hence,
xi has geometric distribution with parameter β, i.e., P (xi ≤ ε) = 1 − (1 − β)ε.
The cut is ε-consistent if all points are not beyond ε. That is,

P (max
1≤i≤n−1

xi ≤ ε) =
n−1∏
i=1

P (xi ≤ ε)

= (1 − (1 − β)ε)n−1

We now proceed with the proof of Theorem1.

Proof. We calculate probability of hb-consistent snapshot being ε-snapshot for
interval-based predicate of length �. Using Lemma 1, we can obtain the following
result. For convenience, we denote φ(x, n, β, �) as f(x) representing the length
of an interval-based predicate snapshot.

We directly compute P (L(c) ≤ ε). In this case, L(c) = max(maxi({ai}) −
mini({bi})), 0) by definition of a length of the snapshot c, L(c). Let c′ be a
snapshot of point-based predicate. Hence,

P (L(c) ≤ ε) = P (max(max
i

({ai}) − min
i

({bi}), 0) ≤ ε)

= P (L(c′) ≤ ε + � − 1)
= (1 − (1 − β)ε+�−1)n−1

The last equation follows from Lemma 1. This completes the proof.

426 S. Yingchareonthawornchai et al.

The formula above suggests that when n increases, snapshots that are hb-
consistent will become less physically consistent. This is expected since the more
number of processes, the harder to find hb-consistent snapshots as well as physi-
cally close hb-consistent snapshots. On the contrary, if we increase β, predicates
will be more frequent and there are more physically close hb-consistent snap-
shots.

We use the characteristics of this function to compute the sensitivity of
asynchronous monitors. We focus on ε since it is likely to vary over time.
We consider the special case where predicates are point-based denoted as
φ(x, n, β) = φ(x, n, β, 1).

We identify two inflection points of ∂φ(ε,n,β)
∂ε , denoted as εp1 and εp2 where φ

changes rapidly for ε ∈ [εp1 , εp2]. On the other hand, we observe that if ε ≤ εp1

or ε ≥ εp2 , the change in φ is very small. That is, in the range, [0..εp1], the
monitor has lots of false-positives and is not very sensitive to changes in the
value of ε. Moreover, in range [εp2 ,∞], the monitor has few false positives and
again not sensitive to changes in the value of ε. However, in the range [εp1 ..εp2],
the monitor is very sensitive to changes in ε. In other words, except in the range
[εp1 ..εp2], we can compute the precision of the asynchronous monitor with only
approximate knowledge of ε used in the partially synchronous model.

Our next result shows that the gap between two inflection points of ∂φ(ε,n,β)
∂ε

approaches zero for large n.

Theorem 2. For n > 1, two inflection points of ∂φ(ε,n,β)
∂ε are at

{εp1 , εp2} = log(1−β)(
3n − 4 ± √

5n2 − 16n + 12
2(n − 1)2

)

where εp1 < εp2 . Furthermore, the relative uncertain range approaches 0 as n
increases. In other words, the relative difference of phase transition εp1 and post-
phase transition εp2 converges to 0, which is independent of β. That is,

lim
n→∞

εp2 − εp1

εp1

= 0

Proof. Solve a system of equations of the third order derivative of φ(ε, n, β) with
respect to ε by definition of inflection points of slopes. To complete the proof,
we take ratio from εp1 and εp2 . Then, we compute the limit as n → ∞.

To understand the main idea of the result, we can instantiate some concrete
values. For example, taking the unit of time granularity as millisecond, with
n = 50 and β = 0.001 (i.e., the local predicate is true every second on average),
the two points of inflection of slope are at 3635.41 and 5550.24 ms respectively.
This means if the system has ε less than 3 s, then with high probability the
hb-consistent global conjunctive predicate is not ε-consistent. If the system has
ε more than 6 s, then with high probability the hb-consistent detection is also
ε-consistent. As another example, with n = 50 and β = 0.5, the two points of
inflection of slope are at 5.24 and 8.01 ms, respectively. This means with high
probability hb-consistent predication is ε-consistent if the system has ε greater
than 8 ms.

Precision, Recall, and Sensitivity 427

3.2 Simulation Setup

To validate the analytical model, we set up a simulation environment. The simu-
lation code is available at https://sourceforge.net/projects/wcp-rv2016/. In our
simulation, at any given instance, with a certain probability a process chooses to
advance its clock as long as the synchrony requirement is not violated. When a
process increments its clock, it can decide if the local predicate is true with proba-
bility β. Depending upon point-based detection and/or interval-based detection,
the local predicate will remain true for just one instant or for a duration whose
length is chosen by an exponential distribution. Furthermore, when a process
advances its clock, it can choose to send a message to a randomly selected process
with probability α. The delay of this message will be δ, the minimum message
delay. Note that the analytical model predicts that the possibility that a given
cut is a false positive is independent of α and δ. We find that this prediction is
also valid with simulations. Hence, delivering the message as soon as it is allowed
does not change the false positive rate. The values of α and δ only affect the
number of snapshots identified.

Fig. 2. The independence of false posi-
tive rates from α and δ, shown by ana-
lytical model and simulations

For the simulation length, we run
until each process advances its clock to
100,000 as we have observed that false
positive rates stabilize quickly. Due to
space restriction, the results of stabi-
lization of false positive rate are not
included but can be found in [6]. Dur-
ing a simulation run, we identify Y , the
number of snapshots identified by the
asynchronous monitor algorithm in [7],
and YF , the number of snapshots that
are also ε-consistent. Thus, the false pos-
itive rate FPR is calculated as 1 − YF

Y .

3.3 Sensitivity for Point-Based Predicates

Independence of False Positive Rate with Respect to α and δ. Since the
analytical model predicts that the false positive rate is independent of α and δ,
we validate this result with our simulation. Specifically, Fig. 2 considers the false
positive rates for n = 20, β = 0.10. We consider different values of α = 0.05, 0.1
and δ = 10, 100 and compare the simulation results with the analytical model.
The simulation results validate the analytically computed false positive rate as
well as the fact that it is independent of α and δ.

Effect of ε. Figure 3(a)-(b) illustrate the effect of false positive rate for different
values of ε. Figure 3(a), (b) consider the cases with n = 5, and 20 processes,
respectively. In each figure, we vary β from 1% to 8%. The results validate the
analytical model’s prediction that values of ε can be divided into 3 ranges: a
brief range of high false positives to the left when ε is small, a range of low false

https://sourceforge.net/projects/wcp-rv2016/

428 S. Yingchareonthawornchai et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

Fa
ls

e
po

si
tiv

e
ra

te

n = 5, α =0.05, δ =100

β=0.01
β=0.03
β=0.05
β=0.08

(a)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400

Fa
ls

e
po

si
tiv

e
ra

te

n = 20, α=0.05, δ =100

β =0.01
β =0.03
β =0.05
β =0.08

(b)

Fig. 3. Impact of β and n on false positive rates in simulations

positives to the right when ε is large, and a short uncertainty range in the middle
where a small drift in ε significantly changes the false positive rates.

Effect of β. As expected from the analytical model, when the value of β is close
to 0, the predicted false positive rate is 1. And, as β approaches 1, false positive
rate approaches 0. We validate this result with Fig. 3(b). When considering a
network of 20 processes, and β is small, say 1%, the false positive rate at ε = 200
is 93.51%. By contrast if β is increased to 3% and 5% then the false positive
rate decreases to 4.68% and 0.08% respectively.

Effect of n. The analytical model predicts that when n increases, the false pos-
itive rate increases. The speed of change depends on β. This result is confirmed
in Fig. 3(a), (b). Let β = 0.01, when n is small, say 5, the false positive rate at
ε = 200 is 43.71%. If n is increased to 20 then the false positive rate increases
to 93.51%.

Due to reasons of space, we only focus on scenarios where the local predicates
are true for just an instant and those at different processes are independent. In
an extended version of the paper [6], we consider the cases where local predicates
are true for some duration of time and those associated with different processes
are correlated. We note that the results for these cases are also similar to the
basic case.

4 Precision, Recall, and Sensitivity of Partially
Synchronous Monitors

In this section, we focus on the following problem:

Suppose we designed a monitor (predicate detection algorithm) for a
〈εmon, δ1〉-system and applied it in a system that turns out to be a
〈εapp, δ2〉-system, then what are possible false positives/negatives that may
occur? 2

2 As validated in Sect. 3, the value of δ is not important. Hence, we only focus on the
relation between εmon and εapp.

Precision, Recall, and Sensitivity 429

4.1 Analytical Model and Its Validation with Simulation Results

We consider the case where the monitoring algorithm assumes partially synchro-
nous model where clocks do not differ by more than εmon. This algorithm is then
used for monitoring an application that implicitly relies on the assumption that
clocks are synchronized to be within εapp, that is difficult to compute and is
unavailable to the monitoring algorithm. Such an application may use εapp with
the use of timeouts, or even more implicitly may rely on database update and
cache invalidation schemes to ensure that no two events that are more than εapp

can be part of the same global state as observed by the clients [8].
If εapp < εmon, then the situation is similar to that of the asynchronous

monitors, where εmon = ∞. However, if εmon is finite then it will reduce the
false positives as this monitor will avoid detecting some instances where the
time difference between the local predicates being true is too large. Thus, a
monitor that assumes that clocks are synchronized to be within εmon, will detect
snapshots that are εmon-consistent. However, it is expected to identify εapp-
consistent snapshots. Hence, the precision of the algorithm, i.e., the ratio of the
number of snapshots correctly detected and number of snapshots detected, can
be determined by calculating the probability that an εmon-consistent snapshot
is also an εapp-snapshot. Also, in this case since every εapp-consistent snapshot
is also an εmon-consistent snapshot, the monitor will recall all correct snapshots.

If εapp > εmon, the situation would be reversed, i.e., precision will always be
1. But recall would be less than 1, as the monitor may fail to find some snapshots
that are εapp consistent but not εmon-consistent. Thus, we have

Theorem 3. When a monitor designed for 〈εmon, δ〉-system is used in an appli-
cation that assumes that the system is 〈εapp, δ〉-system, the Precision and Recall
are as follows:

Precision =
f(min(εapp, εmon))

f(εmon)
,False positive rate = 1 − Precision

Recall =
f(min(εapp, εmon))

f(εapp)
False negative rate = 1 − Recall

Where f(x) = (1 − (1 − β)x+�−1)n−1

Proof. Precision can be calculated as follows. If εmon < εapp, then Precision is 1
since all εmon-snapshots are εapp-snapshots, but not vice versa. If εmon > εapp,
then Precision can be calculated as probability of εmon-snapshot being εapp-
snapshot. In other words, Precision is probability of a snapshot has length of
εapp given that the snapshot is of length εmon. Therefore, let L(c) be length of
snapshot c; Precision is given by

430 S. Yingchareonthawornchai et al.

Precision = P (L(c) ≤ εapp|L(c) ≤ εmon)

=
P (L(c) ≤ εapp and L(c) ≤ εmon)

P (L(c) ≤ εmon)

=
P (L(c) ≤ min(εapp, εmon))

P (L(c) ≤ εmon)

=
f(min(εapp, εmon))

f(εmon)

Similarly, Recall is probability of a snapshot being of length εmon given that
the snapshot is of length εapp. The derivation is essentially the same.

Next, we study the sensitivity –changes in the value of Precision and Recall
based on changes in |εapp−εmon|– of partially synchronous monitor. We visualize
this by a diagram called PR-sensitivity Diagram using Precision and Recall.
PR-sensitivity Diagram is basically a contour map of Precision and Recall given
two variables (εmon, εapp). If εapp > εmon, the diagram shows only Recall since
Precision in this area is always one. Similarly, if εapp < εmon, the diagram shows
only Precision. Let η be an accuracy bound, meaning that Precision and Recall
are bounded by η, PR-sensitivity Diagram shows contour whose value is η.

Figure 4(a) and (b) show examples of PR-sensitivity Diagram. This diagram
shows that the contour lines of Precision/Recall move closer as εapp gets smaller.
In other words, the value of Precision and Recall is sensitive when εapp is small.
If εmon > εapp (respectively, εmon < εapp), then even minute change in εapp can
result in large change in Precision (respectively, Recall). In this case, we need to
be careful when monitoring in such tight synchronization.

For scenarios where we consider intervals where local predicates are true,
we obtain similar simulation results. Furthermore, we observe that the longer
the intervals, the better precision and recall. The simulation results for interval
scenarios are not presented here but can be found in [6].

We describe analytical result. If we want both Precision and Recall to be
greater than η, the relation between εmon and εapp needs to satisfy the condition
in the next theorem. Observe that this theorem identifies useful range –where
both precision and recall are greater than η– of a monitor.

Theorem 4. For 〈εapp, δ〉-system with n processes where each process has prob-
ability β, the monitor designed for 〈εapp, δ〉 system has Precision and Recall no
less than η if the following condition holds:

log1−β(1 − η
1

n−1 g(β, εapp, �)) ≤ εmon + � − 1 ≤ log1−β(1 − η
−1
n−1 g(β, εapp, �))

where

g(β, εapp, �) = 1 − (1 − β)εapp+�−1

Precision, Recall, and Sensitivity 431

Fig. 4. Precision and Recall diagram in point-based predicate detection

Proof. We fix εapp and then we bound the target εmon. If εapp < εmon, then by
Theorem 3 Precision is

(
1 − (1 − β)εapp+�−1

1 − (1 − β)εmon+�−1
)n−1

We want precision to be at least η where 0 ≤ η ≤ 1. We establish an inequality:

(
1 − (1 − β)εapp+�−1

1 − (1 − β)εmon+�−1
)n−1 ≥ η

The results follow from solving the inequality for both Precision and Recall cases.

0 50 100 150
epsilon

app

0

50

100

150

ep
si

lo
n m

on

n=50; beta = 0.1; l = 1

Phase TransitionHypersensitive

eta = 0.75
eta = 0.9

eta = 0.5

Non-sensitive

Fig. 5. PR diagram given by analytical
model

Finally, there is a phase transition
such that if εapp is too small then
the precision and recall are hypersen-
sitive, meaning that a minute change
can result in drastically different accu-
racy. If εapp is beyond phase transition,
then the precision and recall are almost
non-sensitive as the bound in Theorem 4
grows rapidly.

Theorem 5. The Precision and Recall
due to difference in εapp and εmon is
hypersensitive if

εapp ≤ log1−β(η
−1
n−1 − 1) − � + 1

Proof. We use the same technique as point of inflections of slopes to obtain the
phase transition. The phase transition is defined as the point that maximizes
concavity or convexity. This can be done by solving an equation given by third
order derivative of the bound in Theorem4 setting to zero. We used Computer
Algebra, WolframAlpha, to derive the final expression.

432 S. Yingchareonthawornchai et al.

Illustration of Theorems 4 and 5 is shown in Fig. 5. Suppose there are 50
processes where each local predicate truthification rate is at every 10 ms (thus,
β = 0.1). The bounds are obtained by Theorem4. Each red circle highlights the
point of maximum concavity, which is the starting point of phase-transition as
highlighted in Theorem5. Notice the after phase transition for each value of η,
there is virtually no sensitivity at all as we can deviate from εapp while main-
taining high precision and recall. However, if εmon is less than phase transition,
the regions below are hypersensitive. In this case, we cannot obtain both high
precision and recall simultaneously. Instead, we can choose to have high precision
while sacrificing recall and vice versa.

5 Related Work

Inherent to the model of shared nothing distributed systems is that the nodes
execute with limited information about other nodes. This further implies that the
system developers/operators also have limited visibility and information about
the system. Monitoring/tracing and predicate detection tools are an important
component of large-scale distributed systems as they provide valuable informa-
tion to the developers/operators about their system under deployment.

Monitoring Large-Scale Web-Services and Cloud Computing Systems.
Dapper [9] is Google’s production distributed systems tracing infrastructure. The
primary application for Dapper is performance monitoring to identify the sources
of latency tails at scale. Making the system scalable and reducing performance
overhead was facilitated by the use of adaptive sampling. The Dapper team
found that a sample of just one out of thousands of requests provides sufficient
information for many common uses of the tracing data.

Facebook’s Mystery Machine [10] has goals similar to Google’s Dapper. Both
use similar methods, however mystery machine tries to accomplish the task rely-
ing on less instrumentation than Google Dapper. The novelty of the mystery
machine work is that it tries to infer the component call graph implicitly via
mining the logs, where as Google Dapper instrumented each call in a meticulous
manner and explicitly obtained the entire call graph.

Predicate Detection with Vector Clocks. Lot of previous work has been done
on predicate detection (e.g., Marzullo & Neiger [11] WDAG 1991, Verissimo [12]
1993), using vector clock (VC) timestamped events sorted via happened-before
(hb) relationship. The work in [11] not only defined Definitely and Possibly detec-
tion modalities, but also provided algorithms for predicate detection using VC for
these modalities. This work also showed that information about clock synchro-
nization (i.e., ε) can be translated into additional happened-before constraints
and fed in to the predicate detection algorithm to take into account system syn-
chronization behavior and avoiding false positives in only VC-based predicate
detection. However, that work did not investigate the rates of false-positives with
respect to clock synchronization quality and event occurrence rates.

Precision, Recall, and Sensitivity 433

Predicate detection with physical clocks and NTP synchronization. In
partially synchronized systems, Stoller [13] investigated global predicate detec-
tion using NTP clocks, showing that using NTP synchronized physical clocks
provide some benefits over using VC in terms of complexity of predicate detec-
tion. The worst case complexity for predicate detection using hb captured by
VC is Ω(EN), where E is the maximum number of events executed by each
process, and N is the number of processes. With some assumptions on the inter-
event spacing being larger than time synchronization uncertainty, it is possible
to have worst-case time complexity for physical clock based predicate detection
to be O(3NEN2) — linear in E.

Predicate Detection under Partially Synchronous System. The duality
of the literature on monitoring predicates forces one to make a binary choice
before hand: To go with either VC- or physical clock-based timestamping and
detection [14,15]. Hybrid Vector Clocks (HVC) obviate this duality and offer
the lowest cost detection of VC and physical clock-based detection at any point.
Moreover while VC is of Θ(N) [16], thanks to loosely-synchronized clock assump-
tion, it is possible with HVC to keep the sizes of HVC to be a couple entries
at each process [17]. HVC captures the communications in the timestamps and
provides the best of VC and physical clock worlds.

Runtime Monitoring with Imprecise Timestamp. Prior runtime-
verification approaches assume timestamp to be precise. However, results from
such protocol may not be correct due to uncertainty in underlying system. Recent
works account for clocks’ imprecision under a variety of settings. Zhang et al.
[18] propose a probabilistic approach to deal with imprecise timestamp in data-
stream processing. Wang et al. [19] consider imprecise trace in runtime verifica-
tion due to unknown event ordering. In [20], Mostafa and Bonakdarpour have
focused on the issue of verifying LTL properties in asynchronous systems. As
part of this monitoring, they need to evaluate whether the current state satisfies
a given global predicate. To achieve this, they utilize the structure of the given
predicate to build distributed monitors. Basin et al. [21] focus on the real-time
temporal logic MTL over a continuous time domain that accounts for imprecise
timestamp. Implicitly, those assumptions can be too strong as well. Our result
sheds light on the sensitivity of overall error rate to the errors in assumptions
made about the underlying system.

6 Conclusion

We presented analytical and simulation models to capture the effect of the gap
between assumptions made by the application and by the monitor. First, we
investigated the effect of using a monitor designed for asynchronous systems in
partially synchronous systems. We find that regarding ε, we can partition the
system in three regions: high false positives, uncertain range, low false positives.
We find that the uncertain range is hypersensitive, i.e., small changes in ε change
the false positive rate substantially. We also showed how these ranges can be

434 S. Yingchareonthawornchai et al.

computed analytically. In particular, we show how one can compute εp1 and
εp2 such that the high false positive range is [0..εp1], uncertain range is [εp1 ..εp2]
and low false positive range is [εp2 ..∞]. An interesting observation in this context
was that the uncertainty range, εp2−εp1

εp2
, approaches 0 as the number of processes

increase or as εapp grows. Although the analytical results focused on situations
where the probability of the local predicate being true is independent, it can also
be used in cases where local predicate being true is correlated.

We also considered the case where monitoring algorithm assumes that the
clocks are synchronized to be within εmon, but the actual clock synchronization
of the system/program is εapp. One reason this may happen is that application
uses clock estimation approaches to identify dynamic value of εapp but this value
is not visible to the monitor and, hence, it uses an estimated value. We identified
possible ranges where the error rate caused by differences in these values is within
acceptable limits. Here, we find that for specific ranges of εmon, the algorithm is
highly sensitive. We observed tradeoffs among precision, recall, and sensitivity
when εapp is small, and found that the tradeoff dilutes as εapp gets larger.

There are several future extensions of these results. One extension is to eval-
uate error probability for more complex predicates in terms of conjunctive predi-
cate detection. Here, if the predicate was φ1∨φ2 there is a possibility that even if
φ1 is detected incorrectly, φ2 may still be true causing detection of φ1∨φ2. Apart
from conjuctive predicates, it is an open question if similar error probabilities
hold for distributed runtime verification for linear temporal logic (LTL) such as
in [20]. Another future extension is to consider the case for specific instances of
monitors which have potential in-built errors introduced for sake of efficiency
during monitoring.

Acknowledgments. This work is supported in part by NSF CNS-1329807, NSF CNS-
1318678, NSF XPS-1533870, and NSF XPS-1533802.

References

1. Fan, R., Lynch, N.: Gradient clock synchronization. In: PODC, pp. 320–327 (2004)
2. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchronization (extended

abstract). In: ACM Symposium on Theory of Computing (STOC), pp. 810–819
(1994)

3. Sheehy, J.: There is no now. Commun. ACM 58(5), 36–41 (2015)
4. Mills, D.: A brief history of NTP time: memoirs of an internet timekeeper. ACM

SIGCOMM Comput. Commun. Rev. 33(2), 9–21 (2003)
5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21(7), 558–565 (1978)
6. Yingchareonthawornchai, S., Nguyen, D., Valapil, V.T., Kulkarni, S.S., Demirbas,

M.: Precision, recall, sensitivity of monitoring partially synchronous distributed
systems. CoRR, abs/1607.03369 (2016). http://arxiv.org/abs/1607.03369

7. Garg, V.K., Chase, C.: Distributed algorithms for detecting conjunctive predicates.
In: International Conference on Distributed Computing Systems, pp. 423–430, June
1995

http://arxiv.org/abs/1607.03369

Precision, Recall, and Sensitivity 435

8. Lu, H., Veeraraghavan, K., Ajoux, P., Hunt, J., Song, Y.-J., Tobagus, W., Kumar,
S., Lloyd, W.: Existential consistency: measuring and understanding consistency
at Facebook. In: Proceedings of the 25th Symposium on Operating Systems Prin-
ciples, pp. 295–310. ACM (2015)

9. Sigelman, B., Barroso, L., Burrows, M., Stephenson, P., Plakal, M., Beaver, D.,
Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Google Inc., Technical report (2010). http://research.google.com/
archive/papers/dapper-2010-1.pdf

10. Chow, M., Meisner, D., Flinn, J., Peek, D., Wenisch, T.: The mystery machine:
end-to-end performance analysis of large-scale internet services. In: 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 2014), pp.
217–231 (2014)

11. Cooper, R., Marzullo, K.: Consistent detection of global predicates. ACM SIG-
PLAN Not. 26(12), 167–174 (1991)

12. Verissimo, P.: Real-time communication. In: Distributed Systems, vol. 2 (1993)
13. Stoller, S.: Detecting global predicates in distributed systems with clocks. Distrib.

Comput. 13(2), 85–98 (2000)
14. Kulkarni, S.S., Demirbas, M., Madappa, D., Avva, B., Leone, M.: Logical physical

clocks. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS,
vol. 8878, pp. 17–32. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14472-6 2

15. Demirbas, M., Kulkarni, S.: Beyond truetime: using augmentedtime for improv-
ing google spanner. In: 7th Workshop on Large-Scale Distributed Systems and
Middleware, LADIS (2013)

16. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett. 39(1), 11–16 (1991)

17. Yingchareonthawornchai, S., Kulkarni, S., Demirbas, M.: Analysis of bounds on
hybrid vector clocks. In: 19th International Conference on Principles of Distributed
Systems, OPODIS (2015)

18. Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with impre-
cise timestamps. Proc. VLDB Endow. 3(1–2), 244–255 (2010). http://dx.doi.org/
10.14778/1920841.1920875

19. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces under
recording uncertainty. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186,
pp. 442–456. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29860-8 35

20. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL speci-
fications in distributed systems. In: 2015 IEEE International Parallel, Distributed
Processing Symposium, IPDPS 2015, 25–29 May 2015 Hyderabad, India, pp. 494–
503 (2015). http://dx.doi.org/10.1109/IPDPS.2015.95

21. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: On real-time monitor-
ing with imprecise timestamps. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 193–198. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11164-3 16

http://research.google.com/archive/papers/dapper-2010-1.pdf
http://research.google.com/archive/papers/dapper-2010-1.pdf
http://dx.doi.org/10.1007/978-3-319-14472-6_2
http://dx.doi.org/10.14778/1920841.1920875
http://dx.doi.org/10.14778/1920841.1920875
http://dx.doi.org/10.1007/978-3-642-29860-8_35
http://dx.doi.org/10.1109/IPDPS.2015.95
http://dx.doi.org/10.1007/978-3-319-11164-3_16
http://dx.doi.org/10.1007/978-3-319-11164-3_16

Short Papers

Falsification of Conditional Safety Properties
for Cyber-Physical Systems with Gaussian

Process Regression

Takumi Akazaki(B)

The University of Tokyo, Tokyo, Japan
ultraredrays@is.s.u-tokyo.ac.jp

Abstract. We propose a framework to solve falsification problems of
conditional safety properties—specifications such that “a safety property
ϕsafe holds whenever an antecedent condition ϕcond holds.” In the outline,
our framework follows the existing one based on robust semantics and
numerical optimization. That is, we search for a counterexample input
by iterating the following procedure: (1) pick up an input; (2) test how
robustly the specification is satisfied under the current input; and (3)
pick up a new input again hopefully with a smaller robustness. In falsifi-
cation of conditional safety properties, one of the problems of the exist-
ing algorithm is the following: we sometimes iteratively pick up inputs
that do not satisfy the antecedent condition ϕcond, and the correspond-
ing tests become less informative. To overcome this problem, we employ
Gaussian process regression—one of the model estimation techniques—
and estimate the region of the input search space in which the antecedent
condition ϕcond holds with high probability.

1 Introduction

1.1 Falsification

In design of Cyber-Physical Systems (CPSs), the importance of quality assur-
ance of these systems is ever-rising, thus employing model-based development
(MBD)—making virtual models (e.g. Simulink/Stateflow blocks) of products,
and on these models, verifying properties by mathematical methodologies—has
become standard. However, currently at least, the complexity of these virtual
models in industry are overwhelm the scalability of the state-of-art formal veri-
fication methodologies.

Under such current situation, falsification is gathering attention as a viable
approach to quality assurance [2,6,9,11]. The falsification problem is formulated
as follows.

– Given: a system model M with its input domain D, and a specification ϕ
– Return: a counterexample input x ∈ D such that its corresponding output

M(x) violates the specification ϕ (if such an input exists).

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 439–446, 2016.
DOI: 10.1007/978-3-319-46982-9 27

440 T. Akazaki

Through solving the above falsification problem, we expect to obtain the follow-
ing insights: (1): we detect errors in which the system violates the specification
ϕ; and (2): in case that such an error could not be found, we would say “the
violation of the specification ϕ unlikely happens.”

1.2 Robustness Guided Falsification

As a formal expression of real-time specification on CPSs, metric interval tem-
poral logic (MITL) [1], and its adaptation signal temporal logic (STL) [12]
are actively studied. For these specifications, one common class of algorithms to
solve falsification is robustness guided falsification [2,6]. Here, one technical core
of these algorithms is employing robust semantics [7,8] on these logics. In robust
semantics, in contrast to conventional Boolean semantics, a truth value takes a
quantitative one �M(x), ϕ� ∈ R such that it is greater than 0 if the formula ϕ is
satisfied, and its magnitude denotes “how robustly the current output M(x) sat-
isfies ϕ.” With this robust semantics, we could attribute falsification problems to
numerical optimization problems, that is, we search for a counterexample input
x ∈ D by iterating the following steps (for t = 1 . . . N).

1. Pick an input xt ∈ D (in stochastic manner.)
2. Compute the output M(xt) by numerical simulation (e.g. sim function on

Simulink)
3. Check the robustness �M(xt), ϕ�
4. If the robustness is less equal than 0, then return xt. Otherwise pick a new

input xt+1 hopefully with which the robustness becomes smaller.

In industrial practice, a system model M is often huge and complex, hence
among the above four steps, the second one, numerical simulation step tends to
be the most costly in time—it sometimes takes several tens of seconds for each
simulation. Therefore, reducing the number of iterations in minimization of the
robustness �M(xt), ϕ� is essential. To this end, application of various numerical
optimization algorithms (e.g. Simulated Annealing [2], Cross-entropy method
[14], and so on) is actively studied.

In this paper, as one of the powerful numerical optimization algorithms,
we mainly employ Gaussian process upper confidence bound (GPU-CB) [15,
16]. Actually, applying GP-UCB and other Gaussian process regression based
optimization techniques for falsification of temporal logic properties is actively
studied. [3–5] We give further illustration of GP-UCB in Sect. 3.

1.3 Our Motivation: Falsification of Conditional Safety Property

In this paper, as a class of specifications to be falsified, we have an eye on
conditional safety properties—common class of specifications in development of
CPSs.

Whenever a model satisfies an antecedent condition ϕcond, then at that
time, the model also satisfies a safety property ϕsafe.

Falsification of Conditional Safety Properties 441

With this class of formulas, we could express various requirements of behavior of
the system under various specific conditions. Hence, for a given system, verifying
conditional safety property is as important as for safety property.

On STL, we usually encode such a condition into a STL formula in the form
of �I(¬ϕcond ∨ϕsafe). Note that, in conventional Boolean semantics, the formula
is equivalent to �I(ϕcond → ϕsafe). In robustness guided falsification, we search
for a counterexample by minimizing the robustness of the formula ¬ϕcond and
ϕsafe simultaneously.

However there exists the following gap between this straightforward attribu-
tion to the numerical optimization and what we expect to obtain through the
falsification: if we write down a conditional safety property, we would like to
say something meaningful about dynamics of the model when the antecedent
condition ϕcond holds; but in the iteration of simulation, we could not guaran-
tee that enough number of behavior are observed in which the system satisfies
the antecedent condition ϕcond. From this point of view, we would expect an
optimization algorithm that solves conditional safety property

– with as small as number of iteration to find a counterexample x ∈ D; and
– with picking up enough number of inputs xj1 . . . xjn that steers the whole

model to satisfy the antecedent condition ϕcond.

To this end, we propose a novel algorithm to pick up a suitable input in each
step of the iteration with satisfying the above twofold requirements. A technical
highlight is that, with Gaussian process regression, we estimate the function
F ∗ : x �→ �M(x), �I¬ϕcond�, and obtaining the input subspace D′ ⊂ D such
that, for any input x ∈ D′, the output M(x) satisfies the antecedent condition
ϕcond with high probability.

Related Work. The difficulty of the falsification is to observe the rare event (here,
conditional safety property is false). Our technique is based on the following
idea: we consider a superset-event that happens much likely than the original
one (ϕcond holds), and from the input space, we “prune” the region in which the
superset-event does not happen. This idea is common with importance sampling.
Actually, our Proposition 2.4 is an instance of decomposition in Sect. 4.1 in [10].

While importance sampling explores the input by stochastic sampling,
GP-UCB deterministically chooses the next input, hence combining these two
optimization algorithms are not straightforward. One of our contributions is
that we realize the above “pruning” in GP-UCB style optimization by employ-
ing regression.

2 Signal Temporal Logic (STL)

Definition 2.1 (syntax). Let Var be a set of variables. The set of STL for-
mulas are inductively defined as follows.

ϕ ::= f(v1, . . . , vn) > 0 | ⊥ | � | ¬ϕ | ϕ ∨ ϕ | ϕ UI ϕ

442 T. Akazaki

where f is an n-ary function f : Rn → R∪{−∞,∞}, v1, . . . , vx ∈ Var, and I is a
closed non-singular interval in R≥0, i.e. I = [a, b] or [a,∞) where a < b and a ∈ R.
We also define the following derived operators, as usual: ϕ1∧ϕ2 ≡ ¬(¬ϕ1∨¬ϕ2),
ϕ1 RI ϕ2 ≡ ¬(¬ϕ1 UI ¬ϕ2), ♦Iϕ ≡ � UI ϕ, and �Iϕ ≡ ⊥ RI ϕ.

Definition 2.2 (robust semantics of STL). Let σ : R≥0 → R
Var be a signal

and ϕ be an STL formula. We define the robustness �σ, ϕ� ∈ R≥0 ∪ {−∞,∞}
inductively as follows. Here and � denote infimums and supremums of real
numbers, respectively.

�σ, f(v1, · · · , vn) > 0� � f
(
σ(0)(v1), · · · , σ(0)(vn)

)
�σ, ⊥� � −∞ �σ, �� � ∞

�σ, ¬ϕ� � −�σ, ϕ� �σ, ϕ1 ∨ ϕ2� � �σ, ϕ1� � �σ, ϕ2�

�σ, ϕ1 UI ϕ2� �
⊔
t∈I

(�σt, ϕ2�
�

t′∈[0,t)

�σt′
, ϕ1�)

Notation 2.3. Let f : Rn → R ∪ {−∞,∞}. We define the Boolean abstraction
of f as the function f : Rn → B] such that as f(v) = � if f(v) > 0, otherwise
f(v) = ⊥. Similarly, for an STL formula ϕ, we denote by ϕ the formula which
is obtained by replacing all atomic functions f occurs in ϕ with the Boolean
abstraction f . We see that �σ, ϕ� > 0 implies �σ, ϕ� > 0.

As we see in Sect. 1.3, conditional safety properties are written as STL for-
mulas in the form of �σ, �I(¬ϕcond ∨ ϕsafe)�, and its intuitive meaning is “ϕsafe

holds whenever ϕcond is satisfied.” To enforce our algorithm in Sect. 4 to pick
inputs satisfying the antecedent conditions ϕcond, we convert the formula to the
logically equivalent one. The converted formula consists of mainly into the two
parts such that one of them stands for “the antecedent condition ϕcond is satisfied
or not.”

Proposition 2.4. For any signal σ and STL formulas ϕ1, ϕ2, the following
holds.

�σ, �I(¬ϕ1 ∨ ϕ2)� > 0 ⇐⇒ �σ, �I¬ϕ1� � �σ, �I(¬ϕ1 ∨ ϕ2)� > 0

3 Gaussian Process Upper Confidence Bound (GP-UCB)

As we mentioned in Sect. 1.3, in robustness guided falsification to minimize F ∗ :
x �→ �M, ϕ�, we pick inputs iteratively hopefully with smaller robustness value.
For this purpose, Gaussian process upper confidence bound (GP-UCB) [15,16]
is one of the powerful algorithm as we see in [3–5].

The key idea in the algorithm is that, in each iteration round t = 1, . . . , N ,
we estimate the Gaussian process [13] GP(μ, k) that most likely to generate the
points observed until round t. Here, we call two parameters μ : D → R and
k : D2 → R as the mean function and the covariance function respectively.

Falsification of Conditional Safety Properties 443

at iteration t at iteration t+ 1

Fig. 1. An intuitive illustration of GP-UCB algorithm. Each figure shows the esti-
mated Gaussian process GP(μ, k) at iteration round t and t + 1: the middle curve is a
plot of the mean function μ, and the upper and lower curve are a plot of μ + β1/2k,
μ−β1/2k. In each iteration round t, we pick the point x[t] (red point in the left figure)
that minimizes the lower curve. Once we observe the value F ∗(x[t]), the uncertainty at
x[t] becomes smaller in the next round t + 1. In general, as a confidence parameter β
we choose an increasing function to guarantee the algorithm not to get stuck in local
optima (e.g. β(t) = 2 log(ct2) for some constant c). See [15,16]) (Color figure online)

Very roughly speaking, for each x ∈ D, the value μ(x) of mean function stands
for the expected value of F ∗(x), and the value k(x, x) of co variance function at
each diagonal point does for the magnitude of uncertainty of F ∗(x).

Pseudocode for the GP-UCB algorithm is found in Algorithm1. As we see in
the code, we pick x[t] = argminx∈D μ(x)−β1/2(t)k(x, x) as the next input. Here,
the first term try to minimize the expected value F ∗(x[t]), and the second term
try to decrease uncertainty globally. In Fig. 1, we see an illustration of how the
estimated Gaussian process is updated in each iteration round of optimization.
Thus, the strategy balancing exploration and exploitation helps us to find a
minimal input with as small as number of iteration.

Algorithm 1. The GP-UCB algorithm for falsification
Hyper parameters: A confidence parameter β : N → R; Maximal number of iteration N ;
Input: Input space D; An uncertain function F : D → R to be minimized;
Output: An input x ∈ D such that F (x) ≤ 0

for t = 1 . . . N do
x[t] = argminx∈D μ(x) − β1/2(t)k(x, x); � Choose a new sample input
y[t] = F (x[t]); � Observe the corresponding output
if y[t] ≤ 0 then

return x[t];
end if
(μ, k) = regression

(
(x[1], y[1]), . . . (x[t], y[t])

)
;

� Perform Bayesian update to obtain new mean and covariance function
end for

4 Our Algorithm: GP-UCB with Domain Estimation

Now we give our algorithm for falsification of conditional safety properties with
enough number of testing in which the model satisfies the antecedent condition.

444 T. Akazaki

Algorithm 2. The GP-UCB algorithm for falsification with domain estimation
Hyper parameters: A confidence parameter β : N → R and its bound βmin, βmax ∈ R; Maximal

number of iteration N ; Target hit rate R ∈ (0, 1)
Input: Input space D; Uncertain functions F, G : D → R;
Output: An input x ∈ D such that max(F (x), G(x)) ≤ 0

for t = 1 . . . N do
r = (R × N − nhit)/(N − t)

� Calculate the current objective probability r of satisfying F (x) ≤ 0

βF = min(max(
√

2erf−1(1 − 2r), βmin), βmax) where erf is the error function
D′ = {x ∈ D | μF (x) − βF kF (x, x) ≤ 0}

� Estimate a region in which F (x) ≤ 0 holds with probability r
if D′ == ∅ then

xF [t] = argminx∈D μF (x) − βF kF (x, x);
else

xG[t] = argminx∈D′ μG(x) − β1/2(t)kG(x, x);
end if � Choose a new sample input
yF [t] = F (xt);
if yF [t] ≤ 0 then

n = n + 1; xG[n] = xF [t]; yG(xG[n]);
if yG[n] ≤ 0 then

return xG[n];
end if

end if � Observe the corresponding output
(μF , kF) = regression

(
(xF [1], yF [1]), . . . (xF [t], yF [t])

)
;

(μG, kG) = regression
(
(xG[1], yG[1]), . . . (xG[n], yG[n])

)
;

� Perform Bayesian update to obtain new mean and covariance function
end for

As we show in Proposition 2.4, falsification of the specification �I(¬ϕcond ∨ ϕsafe)
could be reduced to the following problem.

Find x such that �M(x), �I¬ϕcond� � �M(x), �I(¬ϕcond ∨ ϕsafe)� ≤ 0.

A key observation here is that, when the first part of the robustness
�M(x), �I¬ϕcond� becomes less than zero, then with this input x, the corre-
sponding behavior of the system M(x) satisfies the antecedent condition ϕcond.

Based on this observation, we propose the GP-UCB with domain estimation
algorithm. Pseudocode of the algorithm is available in Algorithm4. This algo-
rithm takes a hyper parameter R which stands for a target hit rate, that is, how
large ratio of the input x[1], ..., x[N] steer the model to satisfy the antecedent
condition. In each iteration round of the falsification, to guarantee both fast
minimization and enough testing on which ϕcond holds, we pick the next input
by the following strategy: (1) calculate how many ratio r of the input should
make ϕcond true through the remaining iteration; (2) estimate the input sub-
domain D′ ⊂ D in which the antecedent condition ϕcond holds with probability
r; (3) from the restricted domain x ∈ D′, pick a new input x to falsify the whole
specification in the GP-UCB manner.

5 Experiments

To examine that our GP-UCB with domain estimation algorithm achieves both
fast minimization and enough testing with the antecedent condition ϕcond.

As a model of the CPSs, we choose the powertrain control verification bench-
mark [11]. This is an engine model with a controller which try to keep the air/fuel

Falsification of Conditional Safety Properties 445

ratio in the exhaust gas. This model has 3-dimensional input parameters, and
the controller have mainly two modes—feedback mode and feed-forward mode.
As conditional safety specifications to falsify, we experiment with the following
STL formula ϕ. In this formula, the antecedent condition is mode = feedforward,
that is, we would like to observe behavior of the system in the feed-forward mode.

�[τ,∞)

(¬(mode = feedforward) ∨ |ratioA/F| < 0.2
)

(1)

In fact of the model, the formula (1) does not have any counterexample input,
and with the original GP-UCB algorithm, about 58 % of the input leads the
whole systems to feed-forward mode. Then, we run our GP-UCB with domain
estimation algorithm with setting the target hit rate as R = 0.8, and observe
that about 79 % of the inputs satisfy the antecedent condition.

6 Conclusion

To solve falsification of conditional safety properties with enforcing the generated
inputs to satisfy the antecedent condition, we provide an optimization algorithm
based on Gaussian process regression techniques.

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)

3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. In: Dang, T., Piazza, C. (eds.) Proceed-
ings Second International Workshop on Hybrid Systems and Biology, HSB 2013,
Taormina, Italy, 2nd September 2013, vol. 125 of EPTCS, pp. 3–19 (2013)

4. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25
(2015)

5. Chen, G., Sabato, Z., Kong, Z.: Active requirement mining of bounded-time tem-
poral properties of cyber-physical systems. CoRR abs/1603.00814 (2016)

6. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

7. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010)

8. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

9. Hoxha, B., Abbas, H., Fainekos, G.: Benchmarks for temporal logic requirements
for automotive systems. In: Proceedings of Applied Verification for Continuous and
Hybrid Systems (2014)

446 T. Akazaki

10. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 576–591. Springer, Heidelberg (2013)

11. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Fränzle, M., Lygeros, J. (eds.) 17th International Con-
ference on Hybrid Systems: Computation and Control (part of CPS Week), HSCC
2014, Berlin, Germany, 15–17 April 2014, pp. 253–262. ACM (2011)

12. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol.
3253, pp. 152–166. Springer, Heidelberg (2004)

13. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, Massachusetts
(2005)

14. Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid
systems using the cross-entropy method. In: Proceedings of the 15th ACM Inter-
national Conference on Hybrid Systems: Computation and Control, HSCC 2012,
pp. 125–134. ACM, New York (2012)

15. Srinivas, N., Krause, A., Kakade, S., Seeger, M.W.: Gaussian process optimiza-
tion in the bandit setting: no regret and experimental design. In: Fürnkranz, J.,
Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine
Learning (ICML 2010), 21–24 June 2010, Haifa, Israel, pp. 1015–1022. Omnipress
(2010)

16. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret
bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf.
Theor. 58(5), 3250–3265 (2012)

Reactive Property Monitoring of Hybrid
Systems with Aggregation

Nicolas Rapin(B)

CEA LIST, Bôıte Courrier 174, 91191 Gif sur Yvette, France
nicolas.rapin@cea.fr

Abstract. This work is related to our monitoring tool called ARTi-
Mon for the property monitoring of hybrid systems. We explain how the
aggregation operator of its language derives naturally from a generaliza-
tion of the eventually operator as introduced by Maler and Nickovik for
MITL[a,b]. We present its syntax and its semantics using an interval-
based representation of piecewise-constant functions. We define an on-
line algorithm for its semantics calculus coupled with an elimination of
irrelevant intervals in order to keep the memory resource bounded.

1 Introduction

Property monitoring is a unified solution in order to detect failures at many
stages of systems life-cycle. Supervision, applied during exploitation phase,
requires reactive monitoring: monitors have to run on-line, in real time and
indefinitely. The motivation of our work is to define an expressive specification
language suitable for systems evolving in dense time, like continuous and hybrid
systems, coupled to an effective monitoring approach suitable for supervision
purpose. In this short paper we restrict the presentation of this approach to one
single operator, called the aggregation operator, which makes more expressive
real time temporal logics restricted to the boolean type or to a booleanization [5]
of non-boolean types. Our presentation is strongly based on a work due to Maler
and Nickovic [4]. Signals and the eventually operator are recalled and discussed
in Sect. 2. Section 3 is dedicated to the aggregation operator and gives some
examples of properties. Section 4 describes an algorithm for reactive monitoring
of aggregation properties.

2 Signals

In [4] Maler and Nickovik study MITL[a,b] a bounded version of MITL and its
interpretation over behaviors of continuous and hybrid systems modelled by sig-
nals defined as partial piecewise-constant boolean time functions satisfying the
finite variability property. Formally, a signal s is a function ranging in B = {⊥,�}
andwhose time definition domain is a bounded interval ofR, noted |s|. This domain
is bounded because, in the context of monitoring a running system always deliv-
ers a partial trace. But as time elapses the monitoring process extends the domain
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 447–453, 2016.
DOI: 10.1007/978-3-319-46982-9 28

448 N. Rapin

of signals i.e. |s| is successively of the forms ∅, δ1, δ1 ∪ δ2, . . . where δi, δi+1 are
adjacent intervals (δi ∪ δi+1 is an interval and δi ∩ δi+1 = ∅) satisfying δi ≺ δi+1

(which holds if t < t′ holds for any t ∈ δi, t′ ∈ δi+1). Of course monitoring pro-
duces only conservative extensions: noting sn the signal s at the nth extension,
for any n > 1, the restriction of sn+1 to |sn| is sn. The finite variability property
ensures that any signal can be represented by a finite and minimal set of inter-
vals carrying the value � (called positive intervals). Notice that finite variability
does not imply the bounded variability property which is satisfied when the func-
tion changes with a bounded rate χ ∈ N (i.e. at most χ variations over any interval
of length 1). A signal changing n times on [n, n + 1[satisfies finite variability but
not bounded variability. The eventually operator is derived from the until opera-
tor primary in MITL[a,b]. Its syntax is ♦iφ where φ is a boolean sub-term and i
a bounded interval of R+. Its semantics is defined with |= called the satisfaction
relation: (s, t) |= ♦iφ iff ∃t′ ∈ t ⊕ i.(s, t′) |= φ where t ⊕ i denotes the interval i
shifted of t (for example t⊕ [a, b[is [t+a, t+ b[). Notice that notation (s, t′) |= φ is
equivalent to s(t′) = � when s is a time function. As far as we know the relation |=
comes from model theory. Using it subsumes that signals are considered as models
and that all terms of the logic should be interpreted with respect to those models.
Our approach, which constitutes one of our contribution, is different. We do not
really interpret terms over models as usual. Instead we consider there exists a set
of ground signals and that operators of a logic proceed as constructors for building
new time functions or, as it will be proven, new signals. According to this point
of view the term ♦iφ builds a time function noted (♦iφ) (we add parenthesis to
the term to denote the function it builds) which derives inductively from (φ). Let
us begin by the definition of (♦iφ)(t) and secondly we will focus on its definition
domain. Derived from the above definition based on |= relation, a first definition
is: (♦iφ)(t) = � iff ∃t′ ∈ (t ⊕ i).(φ)(t′) = �. Another equivalent definition can be
given by introducing the set of values taken by a time function over a restriction
of its domain. Let g be a signal and r satisfying r ⊆ |g| then g(r) denotes the set
{g(t)/t ∈ r}. The semantics definition of an eventually terms at a time instant
becomes:

Definition 1 (Eventually as Aggregation). (♦iφ)(t) =
∨

b∈(φ)(t⊕i) b

Since (φ) is a boolean function we have (φ)(t ⊕ i) ⊆ {⊥,�}. It suffices that
� ∈ (φ)(t ⊕ i) for (♦iφ) being true at t. This definition emphasis the fact that
the eventually modality is the result of the aggregation of a set of values using
disjunction. Extending this aggregation notion, which is the main idea of this
work, will be studied below. For now let us define |(♦iφ)|. We consider that (♦iφ)
is reliable at time instant t if (t ⊕ i) ⊆ |(φ)|. We define |(♦iφ)| as the set of all
reliable time instants, so |(♦iφ)| = {t/t ⊕ i ⊆ |(φ)|}. We will note this latter
set i � |(φ)| in the sequel. As |(φ)| is a bounded interval it is also a bounded
interval.

Definition 2 (Eventually Semantics). Let φ be a boolean signal.
|(♦iφ)| = i � |(φ)| (♦iφ)(t) =

∨
b∈(φ)(t⊕i) b

Reactive Property Monitoring of Hybrid Systems with Aggregation 449

Remark. A important point to notice here, which constitutes one of our
contribution, is that the completeness and reliability of the domain enables an
incremental and inductive computation of signals. Basic Case: as mentioned in
Sect. 2 the extension of a ground signal is conservative. Induction Step: consider
the conservative extension of (φ) from domain D to D∪λ. According to Definition
2 the domain |(♦iφ)| is extended from i � D to i � (D ∪ λ). By induction
hypothesis (φ) remains the same on D. It follows that (♦iφ) remains the same
on i � D. Hence the extension of (♦iφ) is also conservative. Thus one has
to compute (♦iφ) only on Δ = (i � (D ∪ λ)) \ (i � D) in order to know
the function (♦iφ) on i � (D ∪ λ). One can already feel the benefit of such a
restriction for the on-line calculus. It will be detailed below in Sect. 4.

Lemma 1 (Signal Property Conservation). If (φ) is a signal then the time
function (♦iφ), as defined in Definition 2, is also a signal.

We have already mentioned that |(♦iφ)| defined as i � |(φ)| is bounded (in the
algorithm below we give an operational calculus for i � |(φ)|). What remains to
be proved is that (♦iφ) satisfies the finite variability property. To establish this
we need to describe the operational semantics calculus of (♦iφ). The so-called
backward propagation proposed in [4] plays an important role in this calculus. For
the ease of the presentation, in an algorithmic context, any signal is assimilated to
its interval based representation being a chronologically ordered list of positive
intervals (i.e. ordered by ≺). It is also useful to formalize intervals and their
associated operations before introducing backward propagation. Formally an
interval is a 4-tuple (l, lb, ub, u) of B×R×R×B (for example (�, a, b,⊥) stands
for [a, b[). We use pointed notation to denote interval attributes: (l, a, b, u).ub
denotes b. The opposite of i, noted −i is (i.u,−i.ub,−i.lb, i.l) ; notation t ⊕ i
stands for (i.l, t + i.lb, t + i.ub, i.u) and t � i for t ⊕ −i. The ⊕ operation can be
extended to an interval: given k, i two intervals, k ⊕ i denotes

⋃
t∈k t⊕ i which is

(k.l∧ i.l, k.lb+ i.lb, k.ub+ i.ub, k.u∧ i.u). A valued interval is an interval carrying
a value. val(i) denotes the value carried by i. For example a boolean positive
interval is an interval carrying the value �.

Backward Propagation. Let us suppose that for t′ ∈ |(φ)| we have φ(t′) = �
then also (♦iφ)(t) = � provided t satisfies t′ ∈ t ⊕ i i.e. t ∈ t′ ⊕ −i. The interval
t′ ⊕ −i, also noted t′ � i, is the backward propagation of the true value of φ at t′.
This can be extended to an interval: if φ is valid over k then also (♦iφ) over k�i.
Given that signals representations are based on positive intervals, an algorithm
for computing (♦iφ) could be the following. Init : (♦iφ) = ∅. Iteration : for all
interval k of (φ) aggregate j = k�i to (♦iφ). Post−Treatment : merge adjacent
intervals of (♦iφ) (until no more adjacent can be found). We will refer to this
algorithm as the off-line algorithm as (φ) is assumed to exist as an input. In the
Iteration step aggregate has different meanings depending on how j covers the
existing positive intervals of (♦iφ): if covers none it is purely added to (♦iφ);
if covers some empty spaces, each empty space covered by j is converted into a
positive interval added to (♦iφ). The merging step is achieved in order to obtain
minimality of the representation. It follows that the backward propagation of

450 N. Rapin

one interval of φ produces three kind of modifications of (♦iφ): (1) it adds one
interval (2) it extends one interval (3) it reduces the number of intervals (when
j fills the gap between intervals which are merged). By induction hypothesis
(φ) is a signal; it satisfies the finite variability property and hence its interval
representation is composed of a finite number of positive intervals. So according
to modifications (1), (2), (3) it is also the case for (♦iφ) which satisfies the finite
variability assumption; hence it is a signal. With the same argumentation we
can prove that bounded variability is preserved.

3 Aggregation Operator

Our idea, firstly appearing in [6], of the aggregation operator stems from the
algorithm described in the previous Section. Let us interpret propagation as an
aggregation process. Distinguishing (♦iφ) before (with superscript bf) the prop-
agation of k and after (with superscript af) we have ∀t ∈ k � i.(♦iφ)af (t) =
� ∨ (♦iφ)bf (t). This equality shows that � is aggregated by disjunction to the
value of (♦iφ)bf for every t of k � i. This is coherent with Definition 2 relat-
ing eventually modality with disjunction. Now φ could have another type than
boolean type and the aggregation could be based on other functions than dis-
junction. This is what we investigate in the remainder. A non-boolean signal
differs from a boolean one by its range which is of the form E = E′ × {∅}
where E′ gives the type of the signals. Notice that a non-boolean signal may
takes the value ∅ which stands for the undefined value. Interval based represen-
tations of non-boolean signals is also based on positive intervals whose defini-
tion is extended to intervals not carrying the special value ∅. The syntax for an
aggregation term is A{f}iφ where f is an aggregation function, i is an inter-
val of R with finite bounds and φ is a term. An aggregation function is any
binary function f(e, a) which aggregates an element e to an aggregate a (where
a can be the special value ∅). Formally it is a function of E × A → A where
E and A are sets, both containing the special value noted ∅, and satisfying
f(∅, a) = a. A term A{f}iφ is well formed if φ and f are compatible regard-
ing their types: if range of φ is E then f must be of the form E × A → A.
Then A{f}iφ type is A \ {∅}. Examples of aggregation functions. Let
max min : R×((R×R)∪{∅}) → ((R×R)∪{∅}) be the aggregation function satis-
fying: max min(x, (M,m)) = (max(x,M),min(x,m)), max min(x, ∅) = (x, x).
Let sum(e, a) : R×(R∪{∅}) → (R∪{∅}) satisfying sum(e, a) = e+a, sum(e, ∅) =
e; disj satisfying disj(e, a) = e∨a, disj(e, ∅) = e. For aggregation the backward
propagation satisfies: ∀t ∈ k � i.(A{f}iφ)af (t) = f(val(k), (A{f}iφ)bf (t)). If f
is an aggregation function we note f its extension to finite sequences. For e1, . . . ,
en being elements of E it satisfies: f(()) = ∅ and f((e1, . . . , en) = f(en, f((e1,
. . . , en−1))). For Definition 1 we introduced g(r) denoting a set of values, for
general aggregation we need to denote a sequence. Let g be a signal and r ⊂ |g|
be an interval, it follows that the restriction of g to r is the concatenation of a
finite number of constant functions g1 → c1, . . . , gn → cn satisfying |gw| ≺ |gw+1|
for w ∈ [1, n − 1]. We note gseq(r) the sequence (c1, . . . , cn).

Reactive Property Monitoring of Hybrid Systems with Aggregation 451

Definition 3 (Aggregation). Let φ be a signal of range E, i a bounded interval
of R, and f an aggregation function of E × A → A then: |(A{f}iφ)| = i �
|(φ)|, (A{f}iφ)(t) = f((φ)seq(t ⊕ i))

Though Maler and Nickovic introduce also in [4] non-boolean signals in their
logic, those are always composed with non-temporal predicative functions reduc-
ing the composition to the boolean framework. We claim that with the aggrega-
tion the logic is more expressive as one can form terms with a spread temporal
dependency (not reduced to current time). The off-line semantics calculus for
(A{f}iφ) can be obtained by achieving a slight modification of the backward
propagation in the algorithm described for the eventually modality. Iteration
over intervals of (φ) is achieved in the chronological order. At each step of the
iteration, it aggregates j = k � i with value val(k) to (A{f}iφ). Due to the
chronological iteration, there is only three cases: (1) j covers an empty space
beyond (w.r.t ≺), if any, all positive intervals of (A{disj}iφ); this space is con-
verted into an interval with value f(val(k), ∅) and added (2) the value of any
interval m ⊆ j is changed to f(val(k), val(m)) (3) it may exists one interval m
partially covered by j, it is split in two, the uncovered part value is set to val(m)
and the covered to f(val(k), val(m)). It follows that one propagation adds at
most two intervals into (A{disj}iφ). The number of intervals of (A{disj}iφ) is
then at most the double of (φ).

Examples. Notice that ♦iφ and A{disj}iφ are equivalent. Invariant a ⇒ A
{disj}[−1,1] b specifies that b should be always present around a in a the
time window [−1, 1]. Notice that our logic supports pairing of signals and the
application of functions and predicates like STL [5]. For example if (s, s′) is a
pair of signals and g a binary function or predicate g(s, s′)(t) = g(s(t), s′(t)).
For readability we may note s g s′ instead of g(s, s′) (typically s < s′ for
< (s, s′)). Example 2. The variation of the flow over 60 s should be under
10 percent. Let us consider this term ÷(A{max min}[−60,0] flow). At t its
value is ÷(M,m) = M ÷ m where M and m are respectively the max and
the min values of flow over t ⊕ [−60, 0]. The invariant is then formalized by:
÷(A{max min}[−60,0] flow) < 1.1. Example 3. When the temperature is under
10 degrees the motor should not be started more than 3 times during the next
hour. Here we consider that motor starts function has the form of a Dirac func-
tion (its value is 0 except at some time instants where its value is 1). The invariant
is formalized by: (temp < 10) ⇒ (A{sum}[0,3600] motor starts ≤ 3). Example
4. With inc(e, a) satisfying inc(e, ∅) = (�, e), inc(e, (b, a)) = ((e > a) ∧ b, e) the
invariant motor starts ⇒ (A{inc}[0,150]temp)[0] formalizes temperature should
not decrease for 150 s after the motor starts. Example 5. A{owr}[c,c]φ where owr
(for overwrite) satisfies: owr(x, ∅) = x, owr(x, y) = x shifts (φ) of c in time.

4 On-Line Monitoring

For us supervision consists in checking that some invariants remain true. To
achieve this we exploit the remark made in Sect. 2 about an incremental seman-
tics calculus completed it with a garbage collection mechanism which, assuming

452 N. Rapin

ground signals satisfy also the bounded variability property (see Sect. 2), keeps
the memory bounded. Our on-line algorithm for (A{f}iφ) is called after (φ) has
been extended. start denotes an interval of φ or nil and nxt(i) denotes, if exists,
the next interval in the list containing i else nil. Dom is an interval initially being
∅. Basically the algorithm restricts the off-line calculus to the domain extension
and remembers, thanks to start, where to restart the iteration. (φ).last denotes
the last interval of the interval representation of (φ).

Step 0. If Dom �= ∅ goto Step 2.

Step 1. If Dom = i � |(φ)| is equal to ∅ then RETURN else perform off-line
calculus on Dom; make start refers to (φ).last; RETURN.

Step 2. Δ = (i � |(φ)|) \Dom. While ((start� i) ≺ Δ and nxt(start) �= nil) do
start = nxt(start).

Step 3. Perform the off-line algorithm on domain Δ by iterating on (φ) from
start. Concatenate result over Δ to Dom. Dom = (i � |(φ)|). RETURN.

Now let us examine which part of (φ) is irrelevant regarding the computation
of any extension of (A{f}iφ) i.e. regarding the next call. It is clear that t′ is
irrelevant if its propagation t′ � i does not exceed Dom i.e. if t′ � i is included
in Dom−∞ = (⊥,−∞, (i � |(φ)|).ub, (i � |(φ)|).u) being the left-unbounded
version of Dom. This is equivalent to have t′ ∈ (−i � Dom−∞) or t′ ∈ (i.u ⇒
⊥,−∞ + i.ub, |(φ)|.ub − i.ub + i.lb, i.l ⇒ (i.u ⇒ |(φ)|).u)). The main interesting
data is the upper bound |(φ)|.ub−i.ub+i.lb = |(φ)|.ub−(i.ub−i.lb) revealing the
constant value (i.ub− i.lb). Finally for computing further extension of (A{f}iφ)
only the definition of (φ) over is useful Dom \ (−i � Dom−∞) proved to have
always the constant length (i.ub − i.lb). If φ is sub-term of several terms each
determining a relevant interval we choose the larger one. Suppose now that
ground signals satisfy bounded variability and that their extension are always
bounded (in length or in number of new intervals). With our definition of time
domains and the argumentation used for Lemma1 one can show it is preserved
for complex terms. Then firstly the number of intervals over the relevant interval
is bounded, say by Kφ. And secondly an extension of φ is bounded in number of
new intervals, let us say by Nφ ∈ N. So, when the extension of (φ) is computed
the monitor must preserve Kφ intervals for upper terms and create at most Nφ

new intervals, for a total cost of Kφ + Nφ intervals. This principle, extended to
all operators of our logic and applied to all sub-terms of invariants ensures that
the memory resource remains bounded.

Related Works. We firstly introduced aggregation in [6]. It has been studied
by Basin et al. in [1,2] for discrete sequences of data. In this work aggregation
calculus is based on sliding windows bringing potentially some complexity reduc-
tion for associative functions. Earlier Finkbeiner et al. [3] studied an extension
of LTL with aggregation in order to collect statistics over runtime executions.

Reactive Property Monitoring of Hybrid Systems with Aggregation 453

5 Conclusion and Future Works

Starting from the eventually operator of MITL[a,b], we defined an aggregation
operator suitable for specifying complex invariants about hybrid systems. Main
principles of our reactive monitoring approach have been presented, though only
focused on the bounded aggregation of our logic. In future works we plan to
expose how the same principles extend to conventional modalities like since,
until, or to less conventional like the unbounded aggregation operator and to
operators strongly inspired by the interval based operational calculus, like for
example the incremental length operator which, combined with aggregation, can
express properties involving integrals.

References

1. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Form. Meth. Syst. Des. 46(3), 262–285 (2015)

2. Basin, D., Klaedtke, F., Zălinescu, E.: Greedily computing associative aggregations
on sliding windows. Inf. Process. Lett. 115(2), 186–192 (2015)

3. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics over run-
time executions. Form. Meth. Syst. Des. 27(3), 253–274 (2005)

4. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol.
3253, pp. 152–166. Springer, Heidelberg (2004)

5. Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog systems.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp.
304–319. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75454-1 22

6. Rapin, N.: Procede et dispositif permettant de generer un systeme de controle a
partir de comportements redoutes specifies. PCT/Ep. 2011/072221, December 2011

http://dx.doi.org/10.1007/978-3-540-75454-1_22

Integration of Runtime Verification
into Metamodeling for Simulation

and Code Generation (Position Paper)

Fernando Macias1(B), Torben Scheffel2(B), Malte Schmitz2(B),
and Rui Wang1(B)

1 Bergen University College, Bergen, Norway
{fernando.macias,rui.wang}hib.no

2 Institute for Software Engineering and Programming Languages,
University of Lübeck, Lübeck, Germany

{scheffel,schmitz}@isp.uni-luebeck.de

Abstract. Runtime verification is an approach growing in popularity to
verify the correctness of complex and distributed systems by monitoring
their executions. Domain Specific Modeling Languages are a technique
used for specifying such systems in an abstract way, but still close to the
solution domain. This paper aims at integrating runtime verification and
domain specific modeling into the development process of complex sys-
tems. Such integration is achieved by linking the elements of the system
model with the atomic propositions of the temporal correctness proper-
ties used to specify monitors. We provide a unified approach used for both
the code generation and the simulation of the system through instance
model transformations. This unification allows to check correctness prop-
erties on different abstraction levels of the modeled system.

1 Introduction

Modeling is a well-established practice in the development of big and complex
software systems. Some of the more widespread approaches (e.g. Unified Mod-
eling Language, UML) comprise the use of several general-purpose modeling
languages. The models created with each of these modeling languages are then
interconnected or related to one another. In recent years, general-purpose mod-
eling languages are being replaced by Domain Specific Modeling Languages in
many cases [6]. These languages define the structure, semantics and constraints
for models related to the same application domain [12]. Among the reasons for
the adoption of DSMLs one can mention their understandability by domain
experts, capacity for high-level abstraction, user friendliness and tailoring to the
problem space [6]. Besides, DSMLs inherit some of the advantages of general-
purpose modeling, such as an improvement of efficiency for development and
simulation.

This work is supported in part by the European Cooperation in Science and Tech-
nology (COST Action ARVI) and the BMBF project CONIRAS under number
01IS13029.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 454–461, 2016.
DOI: 10.1007/978-3-319-46982-9 29

Integration of Runtime Verification and Metamodeling 455

However, the use of DSMLs does not completely shield the produced software
from bugs or man-made mistakes. Software failures may still occur on complex
systems due to a variety of reasons such as design errors, hardware breakdown or
network problems. These failures require that verification methods are integrated
into the development process. The use of such methods during the specification of
a system can greatly improve their reliability. Unfortunately, testing is seldom
exhaustive and cannot always guarantee correctness. An exhaustive option to
check every execution path is model checking. But this alternative may suffer
the state space explosion problem [10], especially relevant in distributed systems
due to their inherent non-determinism. Yet another possibility in the system
verification domain is to use runtime verification (RV). RV can cope with the
inadequacies of testing by reacting to systems’ failures as soon as they occur [9].
Also, it is a much more lightweight technique when compared to model checking,
since only one execution path is checked. RV can be used to check whether an
execution of a system violates a given correctness property. Such checking can
be typically performed by using a monitor [10]. In its simplest form, a monitor
decides whether the execution of a system satisfies a given correctness property
by outputting either true or false. With runtime verification, the actual execution
of the complex system may then be easily checked to ensure that the program
does not violate given correctness properties.

This paper aims to effectively integrate runtime verification and domain
specific modeling into the development of complex systems. This integration
is achieved by linking the elements of domain specific models with the temporal
correctness properties.

Related Work. Using models and runtime verification during the development
of complex systems is not new. For example, in [8], common concepts of runtime
models and the provision of a basis for the metamodeling are described, and a
metamodeling process for runtime models is presented, which guides the creation
of metamodels combining design time and runtime concepts. In [3], a system
modeling approach is developed to allow design-time system models to be reused
by an autonomous system, and a runtime verification framework is also proposed.
A combination of runtime verification and a specific DSML has been used in [5].
The authors used their own modeling framework for component-based systems
and extended it by an RV framework. Their approach has a similar direction,
but our approach aims at modeling more abstractly while keeping the possibility
of verifying low-level properties, with any DSML.

The rest of this paper is organized as follows: Sect. 2 recaps some basic notion
of RV and DSMLs which are used throughout the paper. Section 3 presents
the main contribution of this paper: the integration of runtime verification and
DSMLs. Finally, a conclusion and an outlook are given in the last section.

2 Background

We view a system as having a state consisting of a set of atomic propositions.
Thereby each atomic proposition can either be true or false, and the state of the

456 F. Macias et al.

...

DSML

Model

Snapshot

LT
L

(L
in
g.

ex
te
ns
io
n)

Property

Subformula

M

State Simulation

System
Specification

ontologically typed

ontologically typed

ontologically typed

ontol. typed

ontol. typed

linguistically typed

Fig. 1. Underlying multilevel model hierarchy with linguistic extension. Correctness
properties of the system can be formulated in LTL, which is connected with the model
as a linguistic extension. The property can be translated into a monitor, which accepts
prefixes of the words in the language of the property. The System Specification is the
abstraction layer of the most specific models which is used for the code generation. A
Snapshot of the Model together with the not yet fulfilled Subformula or a State of the
Monitor forms one state of the Simulation.

system at a certain point in time is given by the current value of each atomic
proposition. Thus, a run of the system can be seen as an infinite sequence of
those states and an execution is a finite prefix of such a run. In RV, we specify
correctness properties based on the atomic propositions and generate monitors
from them. With this, monitor statements about the correctness of the current
execution of the system can then be made.

To be compatible with this view of a system, we define a multilevel modeling
hierarchy [1] where the DSML and the actual model of the system are included.
Moreover, the hierarchy includes instances of the system model that represent
the particular state of the system at a given point in time (see Fig. 1). As pre-
sented in [11], this hierarchy borrows the concepts of multilevel modelling (with
ontological typing relations), deep metamodelling [1] and linguistic extension [15]
(hence the linguistic typing relations). To avoid ambiguities, we call the instances
of the system model snapshots. A snapshot is also a model, and contains the set
of active elements of the system. The way in which the system evolves during the
simulation is described using model transformations (MT) that generate a new
snapshot from the previous one. See [7,20] for similar approaches. In a simplistic
way, this MTs remove elements which are not active anymore and create new
active ones (see Fig. 2). To link both RV and DSMLs, we associate the atomic
propositions, used in RV, with the current state of the system, represented as a
snapshot of a domain specific model.

This is done by matching : this concept is defined as finding a particular set
of elements in the current snapshot (match) or not (no match) in [11].

Integration of Runtime Verification and Metamodeling 457

::Task

::Input

::Task ::Task

::Input

Snapshot n Snapshot n + 1

Fig. 2. Sketch of the model transformation for transition triggering. A transition is
triggered (its instance appears in a new snapshot) if it is connected to a task and an
input in the model, which have active instances in the current snapshot.

3 Combining RV and DSMLs

DSMLs used for behavior generally have concepts along the lines of actions being
executed and connections among them that define the flow sequence in which
the actions are executed. In this section, we introduce our approach using an
example DSML which is a simple realization of both kinds of concepts. Together
with this DSML, we define the integration of its behavioral semantics with the
evaluation of temporal properties. We achieve such integration by linking the
elements of the DSML with the atomic propositions used in Linear Temporal
Logic (LTL) formulas. All these parts are included in the modeling hierarchy
depicted in Fig. 1.

3.1 Example of Behavioural DSML

The DSML used in the example defines three types of elements:

Input. Used to incorporate information from the environment into the model.
Inputs allow the system to react to external stimuli, such as sensor informa-
tion in a robot. Hence, inputs appear in a snapshot when any of the aforemen-
tioned happens, and disappear afterwards. Their appearance cause generally
a change of state in the system (new snapshots).

Task. A specific action or set of actions executed by the system. A task is
running if an instance of it appears in the current snapshot. Multiple tasks
can run at the same time.

Transition. Represents the order in which tasks are executed. Every transition
is connected to a source and a target task, and associated to one input.
When the source task is running (i.e. appears in the current snapshot) and
the associated input appears, the transition is triggered. After a transition is
triggered, a new snapshot is generated in which the transition and the target
task start running. Notice that a task may have more than one incoming
transition, as well as multiple outgoing transitions. In the first case, as soon
as any of the incoming transitions is fired, the target of that transition is
activated. In the second case, all of the transitions with the same input are
fired at the same time. That is, the target tasks of all fired transitions start
running in parallel.

458 F. Macias et al.

When the system is simulated, new snapshots are generated using model
transformations. These transformations are not explained in detail here due to
space limitations. A richer example similar to ours can be found in Table III
of [16]. We adapted the syntax that the authors use in our example. Gener-
ally speaking, these model transformations are responsible for the simulation
of inputs appearing, transitions being fired and tasks finishing (disappearing).
Figure 2 shows an illustrative example of the MT for the triggering of a transition.

Inputs are used in our DSML to model all the possible happenings that
may cause a change of state. The monitors used to evaluate temporal properties
require that a snapshot is generated only when there is a change of state of the
system, i.e. no two consecutive snapshots are the same. Besides, the monitors
need to be aware of any registered input, even if it does not trigger any transition.
Hence, inputs are modeled as triggers for transitions, but the appearance of an
input in a snapshot is independent from the transitions that it may trigger.

Note that the execution of our system does not include any notion of time. In
some cases it is nevertheless useful to model the expiration of a certain amount
of time. We do this by introducing timers which raise a timeout after a specified
time. A timer may be started on activating a task. In the model we abstract away
from the time passing by and represent timeouts as regular inputs. The timeout
inputs can be used like any other input in order to trigger a transition. In a
nutshell, this allows us to handle time while keeping the discrete LTL semantics
defined on a sequence of states.

3.2 Linking a DSML with Temporal Properties

As presented in [11], we implement the syntax of a temporal logic as a linguistic
extension. This extension is orthogonal to the model hierarchy composed by the
DSML, the particular system model, and the current snapshot (see Fig. 1).

The key concept of a linguistic extension for our work is the possibility to
connect any type of element or set of elements in the modeling hierarchy to
the model representing a temporal property. In this work, we will connect single
elements in the snapshots to the temporal properties. As a consequence of this
way of modeling LTL properties, an atomic proposition is a fragment of a model
instance that may appear in a snapshot. The atomic propositions are evaluated
as follows: If at least one match of the fragment appears in the current snapshot
of the system, the atomic proposition is evaluated to true otherwise to false.

This connection of elements and atomic propositions allows us to look at the
sequence of snapshots of a system as the execution of that system, from both RV
and modelling points of view. So we can do runtime verification with temporal
logics in a natural way based on those snapshots because they represent the
states of the system during the execution. An example for this can be seen in
Fig. 3. In this example we modeled a robot driving around. The figure shows
how inputs are part of the model of the system, and at the same time are linked
to the atomic propositions of the LTL formula. The correctness property given
in Fig. 3 states that obstacles found in front of the robot disappear if the robot
moves backwards. Otherwise the robot has found a moving obstacle coming after

Integration of Runtime Verification and Metamodeling 459

Fig. 3. Modeling of the behavior of a robot with an attached correctness property
detecting moving obstacles. The robot can move forwards (GoFwd), move backwards
(GoBck) and turn left or right (TurnL, TurnR). The transitions are activated by the
inputs and activate the subsequent task. Obstacle and Input represent sensor inputs
and Timeout represents the expiration of a timer started by GoBck, TurnL and TurnR.
That is, Timeout is used to represent the amount of time that a Task takes to finish.

it. This property describes the environment of the robot and hence is specified
using atomic propositions linked to inputs. Atomic propositions can be linked
to tasks in the same way if the property expresses the behavior of the robot in
a more direct way.

The connection of the atomic propositions to the elements enables us to expand
our approach to different LTL semantics like LTL3 [2] in order to report final ful-
fillment or violation of the correctness properties as soon as possible when moni-
toring. Also, we can expand to LTL extensions like timed LTL [14] that allows us
to express real-time properties or add other theories for using variables instead of
only boolean propositions [4], and quantified propositions [19].

Notice that the possibility of connecting any element (or set of them) to
atomic propositions greatly enriches LTL via its atomic propositions.

4 Conclusion and Outlook

Our approach integrates behavioral models of DSMLs and correctness proper-
ties for RV through the whole software engineering process of design, simulation
and code generation. For design, we provide a framework which allows to specify
correctness properties as a linguistic extension of the DSML modeling hierarchy.
In the simulation, a monitor and a model can be executed at once by synchroniz-
ing the model simulation and the monitor execution. Thereby the simulation is
defined as a sequence of snapshots which are enriched with atomic propositions
based on the match of certain elements in the snapshots. Finally, this synchro-
nization between correctness properties and model execution is reused in order
to execute the monitors and the designed system in the generated code for the
target platform. The connection between the correctness property and the mod-
eled behavior of the system is kept consistent throughout the whole software
engineering process.

460 F. Macias et al.

We implemented this approach in Eclipse EMF1 and generated Python code
for the ev3dev platform2 in order to control Lego EV3 robots. The Python code
for the monitors is generated by using the LTL3 semantics with the logic and
automata library LamaConv3.

We plan to extend this approach for designing and verifying asynchronous
distributed systems. Such systems generally have a huge state space generated
by the environmental influence because of the high asynchronous fashion. Hence
static verification approaches become difficult to use. With metamodeling, such
systems can be designed in a more abstract way and monitors can be connected
on multiple abstraction layers to the agents they should observe. To achieve
such extension, we need to be able to model single agents of the distributed
system and connect their actions with each other such that we can model their
communication. Our goal is to increase the applicability of existing approaches of
RV for asynchronous distributed systems like the ones in [13,17,18] by combining
them with DSMLs as presented in this paper.

References

1. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Softw.
Syst. Model. 7(3), 345–359 (2008)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

3. Callow, G., Watson, G., Kalawsky, R.: System modelling for run-time verifica-
tion and validation of autonomous systems. In: Proceedings of System of Systems
Engineering (SoSE), pp. 1–7. IEEE (2010)

4. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Softw. Tools
Technol. Transf. (STTT) 18(2), 205–225 (2016)

5. Falcone, Y., Jaber, M., Nguyen, T.H., Bozga, M., Bensalem, S.: Runtime verifi-
cation of component-based systems in the BIP framework with formally-proved
sound and complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2015)

6. Fowler, M.: Domain-Specific Languages. Pearson Education, Essex (2010)
7. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling

and analysis using GROOVE. Softw. Tools Technol. Transf. (STTT) 14(1), 15–40
(2012)

8. Lehmann, G., Blumendorf, M., Trollmann, F., Albayrak, S.: Meta-modeling run-
time models. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627,
pp. 209–223. Springer, Heidelberg (2011)

9. Leucker, M.: Teaching runtime verification. In: Khurshid, S., Sen, K. (eds.) RV
2011. LNCS, vol. 7186, pp. 34–48. Springer, Heidelberg (2012)

10. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

11. Macias, F., Rutle, A., Stolz, V.: A property specification language for runtime
verification of executable models. In: Nordic Workshop on Programming Theory
(NWPT). pp. 97–99, Technical report. RUTR-SCS16001, School of Computer Sci-
ence, Reykjavik University (2015)

1 www.eclipse.org/modeling/emf.
2 www.ev3dev.org.
3 www.isp.uni-luebeck.de/lamaconv.

www.eclipse.org/modeling/emf
www.ev3dev.org
http://www.isp.uni-luebeck.de/lamaconv

Integration of Runtime Verification and Metamodeling 461

12. Mellor, S.J.: MDA Distilled: Principles of Model-driven Architecture. Addison-
Wesley Professional, Boston (2004)

13. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL specifi-
cations in distributed systems. In: Proceedings of Parallel and Distributed Process-
ing Symposium (IPDPS), pp. 494–503. IEEE (2015)

14. Raskin, J., Schobbens, P.: The logic of event clocks - decidability, complexity and
expressiveness. J. Autom. Lang. Comb. 4(3), 247–286 (1999)

15. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep
metamodelling. Formal Aspects Comput. 26(6), 1115–1152 (2014)

16. Rutle, A., MacCaull, W., Wang, H., Lamo, Y.: A metamodelling approach to
behavioural modelling. In: Proceedings of Behaviour Modelling-Foundations and
Applications, pp. 5:1–5:10. ACM (2012)

17. Scheffel, T., Schmitz, M.: Three-valued asynchronous distributed runtime verifica-
tion. In: Proceedings of Formal Methods and Models for Codesign, MEMOCODE,
pp. 52–61. IEEE (2014)

18. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings of Software Engineering (ICSE), pp.
418–427. IEEE (2004)

19. Stolz, V.: Temporal assertions with parametrized propositions. J. Log. Comput.
20(3), 743–757 (2010)

20. Wang, H., Rutle, A., MacCaull, W.: A formal diagrammatic approach to timed
workflow modelling. In: Proceedings of Theoretical Aspects of Software Engineering
(TASE), pp. 167–174. IEEE (2012)

Applying Runtime Monitoring for Automotive
Electronic Development

Konstantin Selyunin1(B), Thang Nguyen2, Ezio Bartocci1, and Radu Grosu1

1 Vienna University of Technology, Treitlstr.3, Vienna, Austria
{konstantin.selyunin,ezio.bartocci,radu.grosu}@tuwien.ac.at
2 Infineon Technologies Austria AG, Siemenstrasse 2, Villach, Austria

thang.nguyen@infineon.com

Abstract. This paper shows how runtime monitoring can be applied at
different phases of electronic-product development in automotive indus-
try. Starting with concept development, runtime monitors are generated
from the product requirements and then embedded in a chip simulation
to track the specification compliance at an early stage. In the later phase
when a prototype or a product is available, the runtime monitors from the
concept development are reused for synthesis into FPGA for monitoring
the implementation correctness of the product/system during runtime
tests at real-time speeds. This is advantageous for long-term test scenar-
ios where simulation becomes impractical or where evaluation of large
amounts of data is required. For example, about 480K frames/min are
exchanged between a sensor and an ECU. This is beyond the capability
of an engineer to check the specification conformance of every frame even
for one minute of the system run. We embed monitors in a real-world
industrial case study, where we runtime-check the requirements of an
automotive sensor interface both in simulation and for the test chip.

1 Introduction

Electronic components and software systems in the automotive industry are
increasingly prominent: They already encompass up to 35 % of the costs of a car
and they will continue to expand [1]. The compliance with the stricter safety
standards (e.g. ISO 26262 [2]), the increase in the number of functions that
the electronic systems of a vehicle must fulfill (ADAS [3], X-by-wire [4]), the
tight time-to-market schedule, and the enlarged system complexity challenge
the automotive electronic industry as never before. To overcome these challenges,
chip manufacturers strive for solutions that help capture errors at all stages of
the development cycle.

Sensors build up the front-end between the analog world and the digital
electronic systems. They provide the required level of safety and comfort while
driving: E.g., they detect the rotation angle of a steering wheel, the position of
pedals, the pressure for launching airbags [5], the distance to surrounding objects
(high-speed radar sensor), air pressure in tires (tire pressure monitor sensor,
TPMS), etc. In this paper we show how runtime verification [6], a light-weight
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 462–469, 2016.
DOI: 10.1007/978-3-319-46982-9 30

Applying Runtime Monitoring for Automotive Electronic Development 463

Motor

ECU

Steering Gear

Velocity

Wheel

Runtime Monitor
of communication

requirements between
the sensor and the ECU

Fig. 1. Electronic power steering: two magnetic sensors measure the rotation angle of
the steering wheel. The rotation angle is then sent to the electronic control unit (ECU).
Based on the speed and the sensor data, the ECU activates the motor. The lower the
speed, the more the motor is activated. This affects the ease of rotating the steering
wheel.

state-of-the-art technique for checking compliance between a specification and a
system at runtime, can be applied during sensor chip development. We consider
a sensor that measures a magnetic field, from which the angle of the steering
wheel can be calculated in an electronic power-steering application (Fig. 1).

The contributions of this paper can be summarized as follows:

1. To the best of our knowledge, we are the first to showcase runtime verifica-
tion techniques in automotive sensor chip design and provide two use cases:
Simulation and lab measurement.

2. In the first use case, the runtime monitors which are formalized and gener-
ated from product requirements are embedded in the test bench of a chip
concept simulation. The implementation’s correctness with respect to the
requirements is then possible to monitor during simulation runtime.

3. In the second use case, the runtime monitors are reused and synthesized into
an FPGA hardware for monitoring implementation correctness in the lab.

4. We demonstrate our approach on a real-world industrial case study, checking
the communication protocol between a magnetic sensor and an ECU.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work. Section 3 elaborates on the use cases of runtime verification during chip
design. Section 4 presents the case study and the experimental results. Section 5
offers our concluding remarks.

2 Related Work

Evaluating a temporal-logic specification ϕ over a trace or a signal is usually
associated with either an automaton construction [7,8] or with the concept of a

464 K. Selyunin et al.

temporal tester [9]. In [7] the authors present a technique to build a deterministic
timed automaton that accepts traces that satisfy an MTL formula ϕ. In [9] the
authors proposed a compositional, transducer-like way of evaluating temporal
logic formulas, threafter applied in hardware runtime monitoring [10].

Hardware runtime monitors for temporal logic properties [10–12] are usually
generated directly in HDL languages (VHDL or Verilog). In this paper we apply
High-Level Synthesis for RTL generation from the C/C++ code. Moreover, the
application domains of hardware temporal logic monitoring in [11,12] are quite
different from the chip design for the automotive industry.

FPGA-based development and emulation [13–15] are increasingly used in
safety critical automotive electronic system development, as accelerated hard-
ware models support real-time testing of both hardware and software at an early
stage of the development and help overcome simulation bottlenecks.

3 Industrial Use Case

In this section we ellaborate on how runtime monitoring of signal-temporal-logic
(STL) [16] requirements can be applied for both checking the conformance of a
chip model and for testing the chip later on against the formalized requirements.

Figure 2 shows the flow of the runtime-monitors generation for the two use
cases at Infineon Technologies Austria AG. In a first step, we formalize time-
invariant product requirements, and obtain a set of temporal logic formulas. We
use bounded-time STL as a specification language, due to its ability to handle
analog-mixed-signal properties. In a next step we produce an equisatisfiable past
STL formula [17], which will be used as formal specification for the use cases.

3.1 Use Case 1: Runtime Monitors in Simulation

The first use case, Runtime Monitors in Simulation, checks the implementation
correctness of the developing electronic product. The use case draws inspiration
from the offline monitoring framework [13]. However, simulation traces are simul-
taneously generated and checked against the product’s requirements during the
simulation runtime. Monitors are embedded in the toplevel test bench and are
being simulated together with the Design-Under-Test. This allows one to run
the chip model and the monitors at once and observe whether the chip model
satisfies its formalized specification for different test cases (that correspond to
various environmental conditions, power supply quality or fault injections).

We use the SystemC implementation of the STL temporal-operators (“behav-
ior” Fig. 2). This allows us to speed up the implementation and to use the facil-
ities of the SystemC and C++ libraries.

3.2 Use Case 2: Runtime Monitors for Lab Evaluation

At a later phase of the development, the chip is taped-out in the so-called engi-
neering samples. These samples still need to be verified in the lab environment.

Applying Runtime Monitoring for Automotive Electronic Development 465

Behavioral
Temporal Operators

Lib C++STL Temporal
Operators Modeling

Formalized System
Properties in STL

STL Formula Sets

System
Requirements

HW Runtime
Monitors TopLevel

Offline Monitoring
framework

ST
L

Va
lid

at
io

n

Fo
rm

al

Sy
st

em
 E

va
lu

at
io

n

HW Runtime
Monitors Generation

Realization on a
specific HW platform

High-level Synthesis

UC1: Runtime
Lab Evaluation

Time Invariant

Simplification

Pastification

Sim_Past

Synthesizable
Temporal Operators

Lib C++

UC2: Runtime
Monitoring in SIM

Post-SI Verification Support

Fig. 2. Runtime monitoring generation flow

The key concept of use case 2 is to synthesize the monitors from use case 1
into FPGAs, to be used as an extended lab-equipment support for lab evaluation
activities. This is especially true for the scenarios in which errors can be seen
only after a certain test time. For example, hardware runtime errors, or scenarios
including large amounts of data exchange between sensor and ECU. The aim
is to guarantee that the implementation satisfies the requirements, under its
operational condition, and sometimes under a stress condition.

In this use case runtime monitors are synthesized in an FPGA and run in
parallel with the test hardware to keep up with the real-time sensor-ECU data
exchange requirements. The C++ code (“synthesizable” in Fig. 2) is supplied to
High-Level Synthesis [18] to generate RTL that can be put in FPGA. To be able
to obtain efficient hardware implementation the code must use hardware precise
data types and must not dynamically allocate memory.

4 Case Study: Automotive Sensor Interface

This section describes the runtime monitoring, both in simulation and in hard-
ware, of the magnetic sensor used in electronic power steering (Fig. 1).

We monitor the temporal requirements of the communication protocol (PSI5)
between the sensor and the ECU. To demonstrate our approach we build STL
monitors for checking the shape of the data and synchronization pulses. The
ECU sends synchronization pulse to the sensor via the voltage line. The sensor
produces the reply by modulating the current. We monitor both, the voltage from

466 K. Selyunin et al.

Magnetic
Field
Source

Magnetic
Field
Source

Sensor
Model
Sensor
Model

PSI5

Signal

Signal

Signal

GND
ECU

Model
ECU

Model

Rutime
Monitor
Rutime
Monitor

1

1 2-4

7-12, 13

5

6

2

3

4

5

6

7

8

9

10

11

12

langiS 31

Signal

Signal

Signal

Signal

Signal
Signals

Signals

Signal

Fig. 3. The runtime monitor in simulation: setup and results

the ECU and the current from the sensor: raise and fall time of these pulses must
not exceed trise. These requirements can be written in the past-STL:

rise req: enter(high) → transS [0,trise]exit(low)
fall req: enter(low) → transS [0,trise]exit(high),

where enterϕ and exitϕ are syntactic sugar for �¬ϕ ∧ ϕ and �ϕ ∧ ¬ϕ.
Figure 3 shows the simulation setup and the result of a run of the chip model.

A magnetic field - Signal 1 in Fig. 3 - is supplied to the sensor. Then the field
values are sampled by an ADC and passed through a filter for internal processing
in a sensor, Signals 2–4. After powering the chip and a passed stabilization
time, the ECU sends synchronization pulses to the sensor (Signal 5, Fig. 3). In
synchronization mode, each synchronization pulse sent by the ECU is responded
by modulated sensor frames: Signal 6. Signals 7–12 in Fig. 3 are intermediate
outputs of the sub-formula of the specification “rise req” (“fall req” is omitted
from the picture for conciseness). Signal 13 is the output of the monitor, which,
in this case, indicates that the requirement has been met.

To demonstrate the second use case, we generate the runtime monitors in
FPGA and check the test chip. Figure 4 illustrates the lab setup: To emulate
the ECU we use a signal generator that sends synchronization pulses to the
test chip. The sensor replies with data packets, which are handled by an Analog
Front-End (AFE). In the FPGA the transmission line between the sensor and the
ECU is modeled (Fig. 1) to facilitate an evaluation of various system integration
scenarios. We generate hardware monitors using Vivado HLS and integrate them
to the output of the transmission line, where we check the same requirements as
in the chip simulation (i.e. “req rise”). We use the Xilinx debug core to observe
the communication between the sensor and the ECU and the outputs of our
monitors on the ChipScope (Fig. 5).

Applying Runtime Monitoring for Automotive Electronic Development 467

Magnetic
Field
Source

Magnetic
Field
Source

PSI5

Line Emulator®

GND

Signal
Generator

(ECU
Sync pulse)

Signal
Generator

(ECU
Sync pulse)

Test
Chip
Test
Chip

EFA EFA

AGPF AGPF

Runtime
Monitor
Runtime
Monitor

Transmission
Line

Model

Transmission
Line

Model

Fig. 4. Runtime monitor in hardware: lab setup

Fig. 5. Runtime monitor in hardware: chip scope results

468 K. Selyunin et al.

5 Conclusion

In this paper we proposed and illustrated the two use cases of runtime monitoring
in the automotive electronic development, and demonstrated their usefulness by
checking the communication interface requirements of a steering-wheel magnetic
sensor. We showed that runtime monitors can be included in a chip-concept
simulation and that they can be later reused for requirements-monitoring in-
the-lab after applying High Level Synthesis. Runtime monitoring in automotive
electronic industry promises to speed up the verification process and can be
considered as an additional tool to capture runtime bugs which could be very
challenging to catch by classical in-the-lab approaches.

Acknowledgment. This research is supported by the project HARMONIA (845631),
funded by a national Austrian grant from FFG (Österreichische Forschungsförder
ungsgesellschaft) under the program IKT der Zukunft and the EU ICT COST Action
IC1402 on Runtime Verification beyond Monitoring (ARVI).

References

1. Kolbe, M., Schoo, J.: Industry overview the automotive electronics industry in
Germany. Germany Trade and Invest (2014)

2. ISO 26262: road vehicles Functional safety. International Organization for Stan-
dardization (ISO) (2011)

3. Okuda, R., Kajiwara, Y., Terashima, K.: A survey of technical trend of adas and
autonomous driving. In: Proceedings of International Symposium on VLSI Design,
Automation and Test (VLSI-DAT) 2014, pp. 1–4, April 2014

4. Sans, M.: X-by-wire park assistance for electric city cars. In: Proceedings of World
Electric Vehicle Symposium and Exhibition (EVS27) 2013, pp. 1–9, November 2013

5. Infineon Technologies AG: Sensing the world: sensor solutions for automotive,
industrial and consumer applications. Infineon Technologies AG (2016)

6. Leucker, M.: Teaching runtime verification. In: Khurshid, S., Sen, K. (eds.) RV
2011. LNCS, vol. 7186, pp. 34–48. Springer, Heidelberg (2012)

7. Ničković, D., Piterman, N.: From Mtl to deterministic timed automata. In:
Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
152–167. Springer, Heidelberg (2010)

8. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006)

9. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer,
Heidelberg (2008)

10. Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Nickovic, D.: From
signal temporal logic to FPGA monitors. In: Proceedings of 13 ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign, pp. 218–227
(2015)

11. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian net-
work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 215–230. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 18

http://dx.doi.org/10.1007/978-3-319-11164-3_18

Applying Runtime Monitoring for Automotive Electronic Development 469

12. Reinbacher, T., Függer, M., Brauer, J.: Runtime verification of embedded real-time
systems. Formal Meth. Syst. Des. 44(3), 203–239 (2014)

13. Nguyen, T., Ničković, D.: Assertion-based monitoring in practice–checking correct-
ness of an automotive sensor interface. In: Lang, F., Flammini, F. (eds.) FMICS
2014. LNCS, vol. 8718, pp. 16–32. Springer, Heidelberg (2014)

14. Nguyen, T., Wooters, S.N.: FPGA-based development for sophisticated automotive
embedded safety critical system. SAE Int. J. Passeng. Cars Electron. Electr. Syst.
7, pp. 125–132 (2014)

15. Nguyen, T., Basa, A., Hammerschmidt, D., Dittfeld, T.: Advanced mixed-signal
emulation for complex automotive ICs. In: AIRBAG Conference, pp. 1–8 (2014)

16. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On tem-
poral logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, vol. 7561, pp. 92–106. Springer, Heidelberg (2012)

17. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-
response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 95–107. Springer, Heidelberg (2007)

18. Vivado High-Level Synthesis. http://www.xilinx.com/products/design-tools/
vivado/integration/esl-design.html. Accessed 25 May 2016

http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

Regular Tool Papers

A Monitoring Tool for a Branching-Time Logic

Duncan Paul Attard(B) and Adrian Francalanza

CS, ICT, University of Malta, Msida, Malta
{duncan.attard.01,adrian.francalanza}@um.edu.mt

Abstract. We present the implementation of an experimental tool that
automatically synthesises monitors from specifications written in mHML,
a monitorable subset of the branching-time logic μHML. The synthesis
algorithm is compositional wrt the structure of the formula and follows
closely a synthesis procedure that has been shown to be correct. We dis-
cuss how this compositionality facilitates a translation into concurrent
Erlang monitors, where each individual (sub)monitor is an actor that
autonomously analyses individual parts of the source specification for-
mula while still guaranteeing the correctness of the overall monitoring
process.

1 Introduction

Runtime Verification (RV) is a lightweight verification technique that compares
the execution of a system against correctness specifications. Despite its advan-
tages, this technique has limited expressivity and cannot be used to verify arbi-
trary specifications such as (general) liveness properties [6]. These limits are
further explored in [3] wrt. the branching-time domain for a logic called μHML,
describing properties about the computational graph of programs. The work iden-
tifies a syntactic logical subset called mHML, and shows it to be monitorable
and maximally-expressive wrt. the constraints of runtime monitoring.

This paper discusses the implementation of a prototype tool that builds on
the results of [3]. A pleasant by-product of these results is the specification of a
synthesis procedure that generates correct monitor descriptions from formulas
written in mHML. Our tool investigates the implementability of this synthesis
procedure, instantiating it to generate executable monitors for a specific general-
purpose programming language. This instantiation follows closely the procedure
described in [3], thereby giving us higher assurances that the generated exe-
cutable monitors are indeed correct. Furthermore, we exploit the compositional
structure of the procedure in [3] and refine the synthesis so as to enable it
to produce concurrent monitors wherein (sub)monitors autonomously analyse
individual parts of the global specification formula while still guaranteeing the
correctness of the overall monitoring process. Through our tool, we show how
these concurrent components can be naturally mapped to Erlang [2] actors that
monitor a running system with minimal instrumentation efforts.

This work was partly supported by the project “TheoFoMon: Theoretical Founda-
tions for Monitorability” (nr.163406-051) of the Icelandic Research Fund.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 473–481, 2016.
DOI: 10.1007/978-3-319-46982-9 31

474 D.P. Attard and A. Francalanza

This paper is structured as follows. Section 2 reviews the logic and synthesis
procedure from [3]. Subsequently, Sect. 3 presents changes by which this synthe-
sis procedure can achieve higher detection coverage. The challenges encountered
while implementing a synthesis procedure that follows closely the formal descrip-
tion developed in Sect. 3, are discussed in Sect. 4. Finally, Sect. 5 concludes and
briefly reviews related work.

2 Preliminaries

The syntax of ψ ∈ mHML, a monitorable subset of μHML, is given in Fig. 1.
It consists of two syntactic classes, sHML, describing invariant properties, and
cHML, describing properties that hold eventually after a finite number of events.
The logical formula [α]θ states that for all system executions producing event
α (possibly none), the subsequent system state must then satisfy θ, whereas the
formula 〈α〉π states that there exists a system execution with event α whereby
the subsequent state then satisfies π. E.g., [α]ff describes systems that cannot
produce event α, whereas 〈α〉tt describes systems that can produce event α.
maxX.θ and minX.π resp. denote maximal and minimal fixpoints for recursive

Fig. 1. The logic mHML, the monitor syntax, and compositional synthesis function

A Monitoring Tool for a Branching-Time Logic 475

formulas; these act as binders for X in θ (resp. π), where we work up to α-
conversion of bound variables while assuming recursive formulas to be guarded.

Monitors are expressed as a standard process calculus where m
α−−→ m′

denotes a monitor in state m observing event α and transitioning to state m′. The
action τ denotes internal transitions while μ ranges over α and τ . For instance,
m1 + m2 denotes an external choice where m1 + m2

μ−−→ m′ if either m1
μ−−→ m′

or m2
μ−−→ m′ (Fig. 1 omits the symmetric rule). The only novelty is the use

of verdicts v: persistent states that do not change when events are analysed,
modelling the irrevocability of a verdict v (see [3] for details).

The synthesis function �−� from mHML formulas to monitors is also given
in Fig. 1. Although the function covers both sHML and cHML, the syntactic
constraints of mHML mean that synthesis for a formula ψ uses at most the first
row (i.e., the logical constructs common to sHML and cHML) and then either
the first column (in the case of sHML) or the second column (in case of cHML).
It is worth noting that the monitor synthesis function is compositional wrt. the
structure of the formula, e.g., the monitor for ψ1 ∧ ψ2 is defined in terms of the
submonitors for the subformulas ψ1 and ψ2. Finally, we highlight the fact that
conditional cases used in the synthesis of conjunctions, disjunctions, necessity
and possibility formulas, and maximal and minimal fixpoints are necessary to
handle logically equivalent formulas and generate correct monitors.

Example 1. The sHML formula ϕ1 describes the property stating that “after
any sequence of service requests (req) and responses (ans), a request is never
followed by two consecutive responses”, i.e., subformula [ans][ans]ff. The synthesis
function in Fig. 1 translates ϕ1 into the monitor process m1.

ϕ1 = max X.
(
[req]([ans]X ∧ [ans][ans]ff)

)
m1 = rec x.

(
req.(ans.x + ans.ans.no)

)
ϕ2 = min X.

(〈ping〉X ∨ 〈cls〉tt ∨ (min Y.ff ∨ 〈cls〉ff)
)

m2 = rec x.
(
ping.x + cls.yes

)
The cHML formula ϕ2 describes a property where after a (finite) sequence of
ping events, the system closes a channel connection cls. The subformula minY.ff∨
〈cls〉ff is semantically equivalent to ff; accordingly the side conditions in Fig. 1
take this into consideration when synthesising monitor m2. �

Note that although the synthesis employs both acceptance and rejection ver-
dicts, it only generates uni-verdict monitors that only produce acceptances or
rejections, never both; [3] shows that this is essential for monitor correctness.

3 Refining the Monitor Synthesis

The first step towards implementing our tool involved refining the existing syn-
thesis function to improve monitor detections. Specifically, there are cases where
the synthesis function in Fig. 1 produces monitors with non-deterministic behav-
iour. For instance, monitor m1 of Example 1 may exhibit the following behaviour:

recx.req.
(
ans.x + ans.ans.no

) τ−→ · req−−→ ans.m1 + ans.ans.no

476 D.P. Attard and A. Francalanza

at which point, upon analysing action ans, it may non-deterministically transi-
tion to either m1 or ans.no. The latter case can raise a rejection if it receives
another ans event but the former case, i.e., m1, does not — this results in a
missed detection. Although this behaviour suffices for the theoretical results
required in [3], it is not ideal from a practical standpoint. The problem stems
from a limitation in the choice construct semantics, m1 + m2, which forces a
selection between submonitor m1 or m2 upon the receipt of an event.

We solve this problem by replacing external choice constructs with a parallel
monitor composition construct, m1×m2 that allows both submonitors to process
the event without excluding one another. The semantics of the new combinator
is defined by the following rules (again we omit symmetric cases):

The first rule states that both monitors proceed in lockstep if they can process
the same action. The second rule states that if only one monitor can process the
action and the other is stuck (i.e., it can neither analyse action α, nor transition
internally using τ), then the able monitor transitions while terminating the stuck
monitor. Otherwise, the monitor is allowed to transition silently by the third rule.
The last rule terminates parallel monitors once a verdict is reached.

We define a second synthesis function �−� by structural induction on the
formula. Most cases are identical to those of �−� in Fig. 1 with the exception of
the two cases below, substituting the choice construct for the parallel construct:

�ψ1 ∧ ψ2�
def=

⎧⎪⎨
⎪⎩

�ψ1� if �ψ2�=yes

�ψ2� if �ψ1�=yes

�ψ1� × �ψ2� otherwise
�ψ1 ∨ ψ2�

def=

⎧⎪⎨
⎪⎩

�ψ1� if �ψ2�=no

�ψ2� if �ψ1�=no

�ψ1� × �ψ2� otherwise

The two monitor synthesis functions correspond in the sense of Theorem 1.
In [3], verdicts are associated with logic satisfactions and violations, and thus
Theorem 1 suffices to show that the new synthesis is still correct.

Theorem 1. For all ψ ∈ mHML, �m�
α1−−→ . . .

αn−−→ v iff �m�
α1−−→ . . .

αn−−→ v.

Proof. By induction on the strucure of ψ. Most cases are immediate because
the resp. translations correspond. In the case of ψ1 ∧ ψ2 where the synthesis
yields �ψ1� + �ψ2�, a verdict is reached only if �ψ1�

α1−−→ . . .
αn−−→ v or �ψ2�

α1−−→
. . .

αn−−→ v. By I.H. we obtain �ψ1�
α1−−→ . . .

αn−−→ v (or �ψ2�
α1−−→ . . .

αn−−→ v)
which suffices to show that �ψ1� × �ψ2�

α1−−→ . . .
αn−−→ v. A dual argument can

be constructed for the implication in the opposite direction. �	
Example 2. For ψ1 in Example 1, we now only have the following monitor behav-
iour:

rec x.req.
(
ans.x × ans.ans.no

) τ−→ · req−→ ans.m1 × ans.ans.no
ans−−→ m1 × ans.no

ans−−→ no

�

A Monitoring Tool for a Branching-Time Logic 477

4 Implementation

We implement a RV tool which analyses the correctness of concurrent programs
developed in Erlang. Actions, in the form of Erlang trace events, consist of two
types: outputs i ! d and inputs i ? d, where i corresponds to process (i.e., actor)
identifiers (PID), and d denotes the data payload associated with the action in
the form of Erlang data values (e.g., PID, lists, tuples, atoms, etc.). Specifica-
tions, defined as instantiations of mHML terms, make use of action patterns
which possess the same structure as that of the aforementioned actions, but
may also employ variables (alphanumeric identifiers starting with an uppercase
letter) in place of values; these are then bound to values when pattern-matched
to actions at runtime. Action patterns require us to synthesise a slightly more
general form of monitors with the following behaviour: if a pattern e matches a
trace event action α, thereby binding a variable list to values from α (denoted
as σ), the monitor evolves to the continuation m, substituting the variables in
m for the values bound by pattern e (denoted by mσ); otherwise it transitions
to the terminated process end.

match(e, α) = σ

e.m
α−−→ mσ

match(e, α) = ⊥
e.m

α−−→ end

mHML formulas are synthesised into Erlang code, following closely the syn-
thesis function discussed in Sect. 3. In particular, we exploit the inherent con-
currency features offered by Erlang together with the modular structure of the
synthesis to translate submonitors into independent concurrent actors [2] that
execute in parallel. An important deviation from the semantics of parallel com-
position specified in Sect. 3 is that actors execute asynchronously to one another.
For instance, one submonitor may be analysing the second action event whereas
another may forge ahead to a stage where it is analysing the fourth event. The
moment a verdict is reached by any submonitor actor, all others are terminated,
and said verdict is used to declare the final monitoring outcome. This alterna-
tive semantics still corresponds to the one given in Sect. 3 for three main reasons:
(i) monitors are univerdict, and there is no risk that one verdict is reached before
another thereby invalidating or contradicting it; (ii) processing is local to each
submonitor and independent of the processing carried out by other submoni-
tors; (iii) verdicts are irrevocable and monitors can terminate once an outcome
is reached, safe in the knowledge that verdicts, once announced, cannot change.

Monitor recursion unfolding, similar to the work in [4], constitutes another
minor departure from the semantics in Sect. 3, as the implementation uses a
process environment that maps recursion variables to monitor terms. Erlang
code for monitor recx.m is evaluated by running the code corresponding to the
(potentially open) term m (where x is free in m) in an environment with the
map x
→ m.

Figure 2 outlines the compilation steps required to transform a formula script
file (script.hml) into a corresponding Erlang source code monitor implementa-
tion (monitor.erl). To be able to adhere the compositional synthesis of Sect. 3

478 D.P. Attard and A. Francalanza

Fig. 2. The monitor synthesis process pipeline

the tool had to overcome an obstacle attributed to pattern bindings. Specifi-
cally, in formulas such as [e]ψ or 〈e〉ψ, subformula ψ may contain free (value) vari-
ables bound by the pattern e. For instance, in [Srv ? {req, Clt}][Clt ! ans]ff,
the Erlang monitor code for the subformula [Clt ! ans]ff would contain the
free variable Clt bound by the preceding pattern Srv ? {req, Clt}. Since Erlang
does not support dynamic scoping [2], the synthesis cannot simply generate open
functions whose free variables are then bound dynamically at the program loca-
tion where the function is used. To circumvent this issue, the synthesis generates
an uninterpreted source code string composed using the util:format() string
manipulation function. Compilation is then handled normally (using the static
scoping of the completed monitor source code) via the standard Erlang compiler.

The Monitor constructs and the corresponding Erlang code (excerpt)
The tool itself, written in Erlang, is organised into two main modules. The

synthesis in Fig. 2 is carried out by the function synth in module compiler.erl.
This relies on generic monitor constructs implemented as function macros inside
the module formula.erl (Fig. 2). Table 1 outlines the mapping for two of these
constructs. Parallel composition is encoded by spawning two parallel actors
(lines 2–3) followed by forking trace events to these actors for independent
processing (line 4). Action prefixing for pattern e is encoded by generating a

Table 1. The Monitor constructs and the corresponding Erlang code (excerpt).

A Monitoring Tool for a Branching-Time Logic 479

pattern-and-continuation specific function ActMatcher that takes a trace event
Act, pattern-matches it with the translation of pattern e (line 8) and executes
the continuation monitor returned by ActMatcher in case of a successful match
(line 9). Note that the execution of a monitor always takes a map environment
Env as argument.

The function synth in module compiler.erl consumes the formula parse-
tree (encoded as Erlang tuples), generates the Erlang source code string of the
respective monitor and writes it to monitor.erl. Table 2 outlines the tight cor-
respondence between this compilation and the synthesis function of Sect. 3. To
encode the branching cases of the synthesis function, the compilation returns
a tuple where the first element is a tag ranging over yes, no and any, and the
second element, the monitor source code string. The correspondence is evident
for �ψ1 ∧ ψ2�, where the code on line 7 performs the necessary string process-
ing and calls the function mon and presented in Table 1. For formula �[e]ψ�, the
translation inserts directly the function corresponding to ActMatcher (lines 13–
15) alluded to in Table 1 — this is passed as an argument to mon nec from
formula.erl (line 17), thereby addressing the aforementioned limitation asso-
ciated with open functions and dynamic scoping. Pattern Pat is extracted from
the parse tree (line 9), while the continuation monitor source code string Mon is
synthesised from the subtree of Phi (line 10).

The tool instruments the generated monitors to run with the system in asyn-
chronous fashion, using the native tracing functionality provided by the Erlang
Virtual Machine (EVM). Erlang directives instruct the EVM to report events of

Table 2. The monitor synthesis function cases and corresponding compiler functions.

480 D.P. Attard and A. Francalanza

interest from the system execution to a tracer actor executing in parallel; this in
turn forwards said events to the monitor (also executing in parallel). Crucially,
this type of instrumentation requires no changes to the monitor source code (or
the target system binaries) increasing confidence of its correctness. In the tool,
compiled monitor files together with their dependencies (e.g., formula.erl) are
placed alongside other system binary files. Instrumentation is then handled by
a third module, launcher.erl, tasked with the responsibility of launching the
system and corresponding monitors in tandem.

The initial distribution of the tool is available from https://bitbucket.org/
duncanatt/detecter-lite, and requires a working installation of Erlang.

5 Conclusion

We discuss the implementation of a tool that synthesises and instruments asyn-
chronous monitors from specifications written in mHML, a monitorable subset
of the logic μHML. The implementation follows very closely a correct monitor
synthesis specification described in [3]. This tight correspondence gives us high
assurances that the executable monitors generated by our tool are also correct.

Discussion and Related work: Monitors form part of the trusted computing
base of a system and generally, their correctness is sine qua non [5]. Despite
its importance, tools prioritising this aspect often prove correctness for a high
level abstraction of the monitor but do not put much effort towards showing
that the resp. monitor implementation corresponds to this abstraction. To our
knowledge, the closest work that attempts to bridge this correctness gap is [4],
wherein the authors formalise an operational semantics of a subset of the tar-
get language and then show monitor correctness within this formalised language
subset. Their tool shares a number of common aspects with our work (e.g., they
also synthesise subsets of μHML, use Erlang as a target language and also asyn-
chronous instrumentation), but differs in a few main aspects: (i) we consider a
substantially larger syntactic monitorable subset of μHML (e.g., we can specify
positive properties such as “the system can perform action α”); (ii) our notion of
monitor correctness is formalised in terms of a language agnostic abstraction —
a process calculus; (iii) we consider action patterns, which complicate the mod-
ularity of the synthesis process. In other related work, [1] explores synchronous
monitor instrumentations within a similar setting to ours; this requires changes
to the monitor and system code, which can potentially affect correctness.

References

1. Cassar, I., Francalanza, A.: On synchronous and asynchronous monitor instrumen-
tation for actor-based systems. In: FOCLASA, pp. 54–68 (2014)

2. Cesarini, F., Thompson, S.: Erlang Programming. O’Reilly, Sebastopol (2009)
3. Francalanza, A., Aceto, L., Ingolfsdottir, A.: On verifying Hennessy-Milner logic

with recursion at runtime. In: Bartocci, E., et al. (eds.) RV 2015. LNCS, vol. 9333,
pp. 71–86. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23820-3 5

https://bitbucket.org/duncanatt/detecter-lite
https://bitbucket.org/duncanatt/detecter-lite
http://dx.doi.org/10.1007/978-3-319-23820-3_5

A Monitoring Tool for a Branching-Time Logic 481

4. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors.
Formal Met. Syst. Des. 46(3), 226–261 (2015)

5. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., et al.
(eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-23820-3 6

6. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83(1),
97–130 (1991)

http://dx.doi.org/10.1007/978-3-319-23820-3_6
http://dx.doi.org/10.1007/978-3-319-23820-3_6

SMEDL: Combining Synchronous
and Asynchronous Monitoring

Teng Zhang(B), Peter Gebhard, and Oleg Sokolsky

University of Pennsylvania, Philadelphia, PA 19104, USA
{tengz,pgeb,sokolsky}@cis.upenn.edu

Abstract. Two major approaches have emerged in runtime verification,
based on synchronous and asynchronous monitoring. Each approach has
its advantages and disadvantages and is applicable in different situations.
In this paper, we explore a hybrid approach, where low-level proper-
ties are checked synchronously, while higher-level ones are checked asyn-
chronously. We present a tool for constructing and deploying monitors
based on an architecture specification. Monitor logic and patterns of
communication between monitors are specified in a language SMEDL.
The language and the tool are illustrated using a case study of a robotic
simulator.

Keywords: Monitor generation · Synchronous monitoring · Asynchro-
nous monitoring

1 Introduction

Runtime verification(RV) [1] has emerged as a powerful technique for correct-
ness monitoring of critical systems. Numbers of approaches have been proposed
among which synchronous monitoring [2] and asynchronous monitoring [3] are
broadly used. Synchronous monitoring will block the execution of the system
being monitored until validity of an observation is confirmed, ensuring that
potentially hazardous behavior is not propagated to the system environment.
This makes this method suitable for safety- and security-related contexts. How-
ever, synchronous monitoring incurs high execution overhead for the target sys-
tem, and less critical properties may not require such strict guarantees. On the
other hand, asynchronous monitoring may allow to check the properties with less
overhead for the target system, but as the system continues its execution while
checking is performed, it may not be suitable for some critical properties. More-
over, the error point is hard to locate: when the monitor reports the violation
of the property, the target system may have already left the position causing
the problem. Most RV tools target one of these two approaches. Furthermore,
synchronous monitoring may not be suitable for distributed systems. In many
practical cases, it is desirable to combine the two approaches to get the benefits
of both and reduce effects of drawbacks.

The contribution of this paper is a tool for construction and deployment
of hybrid monitoring. The tool uses the language SMEDL to specify monitoring
c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 482–490, 2016.
DOI: 10.1007/978-3-319-46982-9 32

SMEDL: Combining Synchronous and Asynchronous Monitoring 483

architecture and individual monitors. Properties to be checked are represented in
a state-machine style in monitors. Generated monitors can be integrated with the
target system or deployed separately, according to the architecture specification.
Execution within a monitor is synchronous while the communication among
monitors is asynchronous. This allows us to monitor properties on multiple time
scales and levels of criticality.

Related work. MaC (Monitoring and Checking) [4] is an architecture for asyn-
chronous runtime monitoring. A distributed version of MaC, DMaC [5], is pro-
posed mainly for monitoring the properties of network protocols. MOP (Mon-
itoring Oriented Programming) [6] is a generic framework for properties spec-
ification and the checking of the properties at runtime. Based on the work of
MOP, RV-Monitor [7] can monitor hundreds of properties of Java API specifi-
cations at the same time. Using the concepts of AOP [8] and MOP, MOVEC [9]
is compiler supporting the parametric runtime verification for systems written
in C. [10] proposes an architecture allowing for switching between synchronous
and asynchronous monitoring but it is not clear how to use synchronous and
asynchronous monitoring simultaneously. [11] proposed PT-DTL, a temporal
logical to describe the temporal properties of distributed system, and a decen-
tralized monitoring algorithm for PT-DTL. However, the proposed tool, DIANA,
only supports the asynchronous monitoring for distributed program with a fixed
architecture. [12] presents a method for monitoring multi-threaded component-
based systems described in BIP but it is not suitable for distributed systems. [13]
proposes a primitive condition rule-based system RuleR which supports the hier-
archy architecture of monitors but asynchronous monitoring is not supported.
Thus, despite the variety of available tools, there is presently no support for
combining synchronous and asynchronous monitoring.

The paper is organized as follows. Section 2 gives an overview of SMEDL.
Section 3 introduces the implementation of the SMEDL tool. Section 4 uses the
case study of simple robot simulator to evaluate the performance of the tool.
Section 5 concludes the paper and presents the future work.

2 Overview of SMEDL

2.1 SMEDL Concepts

A SMEDL monitoring system can be divided as four parts: target system, moni-
toring specification, SMEDL code generator and runtime checkers, as illustrated
in Fig. 1. Target system is the system to be monitored and checked. The SMEDL
specification contains a set of monitoring objects and an architecture that cap-
tures patterns of communication between them. A monitoring object can be an
abstraction of a system object or an abstract entity that represents interactions
between multiple system objects. Objects can include a set of parameters whose
values are fixed when the object is instantiated. Internal state can be maintained
in an object to reflect the history of its evolution. SMEDL events are instanta-
neous occurrences that ultimately originate from observations of the execution

484 T. Zhang et al.

Fig. 1. SMEDL overview

of target system. Events can also be raised by monitors in response to other
events. Raised events can be delivered to other monitors for checking or serve as
alarms. A SMEDL specification is independent from the system implementation
so that the monitoring specification does not need to be changed as long as the
specification remains the same, even if the implementation has been changed.
Instead, the definition of events in terms of observations on the target system is
modified. Each monitoring object is converted to executable code by the SMEDL
code generator and can be instantiated multiple times with different parameters,
either statically during the target system startup or dynamically at run time,
in response to system events such as the creation of a new thread in the target
system.

2.2 Brief Description of the Language

The SMEDL specification contains two parts: a definition for each monitor object
and a description of the monitor network that specifies monitor instances and
connections between them.

Monitoring objects. A SMEDL monitoring object is a collection of extended
finite state machines (EFSMs) sharing a set of internal state variables and events.
More precisely, a monitoring object is a tuple 〈interface, implementation〉,
where interface contains the name, unchangeable identity parameters and event
declarations; implementation contains state variables and state machines of the
monitor. In SMEDL syntax, illustrated in the case study, state machines are rep-
resented as scenarios. Three kinds of events, imported, exported and internal,
can be specified in the event declaration. Imported events of a monitor can
be received and used to trigger the execution of the monitor; exported events
are raised in the monitor and are sent to other monitors; internal events are
processed within the monitor instance. State machines are used to define the
behavior of the monitor. Transitions of the state machines are labelled with
events that trigger the transition. In addition to an event, each transition may
also be labeled by a guard, which is a predicate over state variables and event
attributes, and a set of actions, each action is either an assignment to a local
variable, or a statement that raises an event. Semantics for single monitors deter-
mines macro-steps, that is, synchronous compositions of individual transitions

SMEDL: Combining Synchronous and Asynchronous Monitoring 485

of state machines (referred to as micro-steps) in response to an imported event
from delivered from the environment. After finishing all enabled transitions, the
monitor will output the exported events raised during the macro-step and wait
for the next imported environment. Formal description of the semantics can be
found in [14].

Architecture. A monitor network is a directed tree G = 〈V,E〉 where V con-
tains the target system and a set of monitor instances which can receive or raise
events; E is a set of directed edges connecting event ports from the target system
to the monitors or between monitors. Monitors may receive events either from
the target system or from other monitors. Monitors directly connecting with the
target system will execute synchronously with the target system, while all others
have their own execution threads and can be deployed locally or over a network.
Events are delivered to monitor instances based on the values of instance parame-
ters or event attributes. Thus, an architecture description language is provided
for specifying event connection patterns between monitor instances. Apart from
the source and target monitoring objects and events, connection patterns also
specify matching rules between source and target monitor instances according to
instance parameters or attributes of the event. [15] gives a detailed description
of the language.

3 Tool Implementation

We have developed a toolchain for deploying monitors based on SMEDL spec-
ifications, shown in Fig. 2. The tool contains two parts: monitor generator and
configurator. The monitor generator generates the code for a single monitor
object, while the configurator is responsible for integrating monitor instances
and target program, based on the SMEDL architecture specification.

The monitor generator produces C code for the monitor object. The monitor
API consists of a set of function calls corresponding to imported events of the

Fig. 2. SMEDL toolchain

486 T. Zhang et al.

monitor object. Calls to event functions trigger execution of the monitor state
machines. To support the asynchronous communication between monitors, we
use the publish-subscribe mechanism of the RabbitMQ middleware [16]. Each
event in the architecture specification is represented as a topic. Events raised by
a monitor are published to a topic according to the architecture specification.
Topic names include information about names of parameters of raising monitors
and event attributes. We rely on filtering provided in RabbitMQ subscriptions:
monitor instances subscribing to an event can specify values of parameters and
attributes that are relevant for them, according to the architecture specification.

We have developed a prototype of SMEDL toolchain which can generate the
C code of single monitors. The toolchain and the case study used in this paper
is available for downloading.1

4 Explorer: A Case Study

Explorer is a multi-threaded program for simulating robots locating and retriev-
ing targets on a two-dimensional map. Each robot, running in its own thread,
will start in a specified position on the map and has to retrieve a number of
targets in a limited number of moves across the map. The goal of monitoring for
this program is twofold. First, we want to check that each robot is following the
search-and-retrieve protocol and, second, we collect statistics about the number
of moves needed to retrieve the target. We thus define two monitor objects: one
checks behavior of each robot thread and another is a statistic monitor that col-
lects events from all behavior checking monitors. The behavior checking monitor
is deployed synchronously with each new thread, while the statistic monitor is
asynchronous.

Monitor specification. ExplorerMon, defined in Listing 1.1, directly connects
to each robot for synchronous checking. The monitor has three scenarios Main,
Explore and Count. Main is used to check whether robot has found the target
in its view and begun to retrieve it. Explore is used to describe the behavior of
robots. Count is used to count the number of moves of robots. There are four
imported events, view, drive, turn and count. Event view will be sent to the
monitor whenever the view of the robot has been updated. If the target is in
the robot’s view, the monitor will raise the internal event found indicating that
the robot has found the target. Event turn is used to check the current heading
direction of the robot and update the state variable mon heading accordingly.
Event drive is triggered whenever the robot is trying to move. If the helper
function check retrieved returns true, the exported event retrieved will be raised
carrying the number of moves that the robot has taken to retrieve this target.
Event count is used to count the number of robots having taken so far. Every
time count is triggered, the state variable move count is increased by 1. Once a
target has been retrieved, move count will be reset.

1 https://gitlab.precise.seas.upenn.edu/tengz/SMEDLTool.

https://gitlab.precise.seas.upenn.edu/tengz/SMEDLTool

SMEDL: Combining Synchronous and Asynchronous Monitoring 487

Listing 1.1. SMEDL specification for ExplorerMon

ob j ec t ExplorerMon
i d en t i t y

opaque id ;
s t a t e

i n t mon x , mon y , mon heading , move count ;
events
imported view (po in te r) , d r ive (int , int , i n t) , turn (i n t) , count () ;
i n t e r n a l found () ;
exported r e t r i e v ed (in t) ;

s c ena r i o s
Main :
Explore −> found () −> Retr i eve
Retr i eve −> r e t r i e v ed (cnt) −> Explore

Explore :
Look−>view (v i ew po in te r) when con t a i n s ob j e c t (v i ew po in te r) { r a i s e found();}−>Move

e l s e −> Move
Move −> turn (f a c i ng) when f a c i ng != heading{mon heading = fa c i ng ;} −> Look

e l s e −> Move
Move −> dr ive (x , y , heading , map) when che ck r e t r i e v ed (map , x , y)
{ r a i s e r e t r i e v ed (move count) ; mon x = x ; mon y = y ; move count = 0 ; } −> Look

e l s e {mon x = x ; mon y = y ;} −> Look
Count :

Star t −> count (){ move count=move count+1;}−>Start
}

To check if all robots retrieve all targets in the map and calculate the average
number of moves the robots have used, asynchronous monitor ExplorerStat is
defined in Listing 1.2. In the system, there is only one instance of ExplorerStat
which will receive events retrieved from instances of ExplorerMon. Whenever
retrieved is delivered into the monitor, state variable sum will be increased by 1
and the number of moves will also be added to the variable count. If the sum is
equal to the overall number of targets, the exported event output will be raised
with the average number of moves of a robot as an attribute.

Listing 1.2. SMEDL specification for ExplorerStat

ob j ec t ExplorerStat
s t a t e

i n t sum , count , targetNum ;
events

imported r e t r i e v ed (in t) ;
i n t e r n a l reachNum () ;
exported output (f l o a t) ;

s c ena r i o s
s t a t :

Star t −> r e t r i e v ed (move count){sum=sum+1; count=count+move count
; r a i s e reachNum();}−> Start

check :
CheckSum −> reachNum () when (sum < targetNum) −> CheckSum

e l s e { r a i s e output (count/sum) ; sum=0; count=0;}−>CheckSum

Figure 3a, shows the corresponding runtime architecture. The two moni-
toring objects communicate via a single event retrieved. Figure 3b, shows a
runtime view of the architecture, where ex mon 1, . . . , ex mon k are instances
of ExplorerMon associated with threads robot 1, ldots, robot k simulating k
robots. The single instance of ExplorerMon receive events from all instances
ex mon i. The implementation introduces an additional thread sender that pub-
lishes events from all instances to the broker of RabbitMQ.

Performance evaluation. The experiment is done on a single core virtual
machine with CPU of speed 2.5 GHz and memory of 4 GB. The operating system
is Ubuntu 14.04LTS and RabbitMQ is used as the communication middleware
API. Overhead is one of the most important measurements that can show the
performance of the monitoring system. There are three sources of overhead for
synchronous monitoring: instantiation of monitors, checking of observations, and

488 T. Zhang et al.

Fig. 3. Monitor network of explorer

communication. Communication overhead is incurred only when asynchronous
monitors are present and events need to be sent to the asynchronous monitors
via the middleware. The overhead of publishing events depends on the choice
of middleware. Note that the initialization of connection in the main thread
is incorporated into the communication overhead. Checking overhead increases
with the number of observations produced by the target system. In our case
study, the number of observations depend on two tunable factors: the number
of robot threads in the system and the size of the map. We expect overhead to
increase linearly with the number of threads, since the number of observations
from each thread is independent of others. Increasing the size of the map tends
to reduce overhead, since robots tend to move straight over longer distances on
a larger map, without generating observations. This reduces the frequency of
events, on average. In this experiment, the size of map is fixed to 40 × 80 and
there are 5 targets in the map.

We describe two experiments that consider these factors separately. The first
experiment varies the number of threads, with the size of map is fixed to 40×80
and 5 targets on the map. Figure 4 shows that the overhead is approximately lin-
ear with the number of threads. The overall relative overhead of monitor instan-
tiation and synchronous checking is about 2 %, while communication overhead
is approximately 3 %, respectively. In absolute terms, processing of an average
event with and without communication overhead is 2.11µs vs. 1.93µs.

The second experiment considers the overhead as a function of the map size.
Table 1 shows that overhead quickly becomes negligible with the size of map

Fig. 4. Execution time vs. number of threads

SMEDL: Combining Synchronous and Asynchronous Monitoring 489

Table 1. Relation between input size and overhead

Input size # Avg moves Checking Communication

30 × 60 43306 3.2 % 6 %

40 × 80 75205 1.9 % 3.3 %

50 × 100 112943 < 1% 2 %

60 × 120 161918 < 1% 2 %

increasing. However, communication overhead remains about twice as high as
checking overhead.

We discuss results of the case study in the next section.

5 Discussion and Conclusions

We presented a tool to support generation and deployment of hybrid, i.e., syn-
chronous and asynchronous, monitors specified in the language SMEDL. The
SMEDL specification describes a network of monitors. Within the single mon-
itor, the execution is synchronous while the communication between monitors
is asynchronous. A prototype of the tool has been implemented. The paper
describes evaluation of the tool using the case study of a robot simulator.

We first discuss some of our design decisions. We implement asynchronous
communication using middleware, which allows us to exchange events across
the network. This restricts synchronous monitoring to a single computing node.
It is possible that some security-critical applications may require synchronous
monitoring of multiple nodes. However, in our experience, such configurations
are subject to high overhead and should be avoided when possible. In our tool,
extension to synchronous monitoring over a network would be a simple extension
to consider in the future. We assume that each monitor object in the architecture
is deployed either synchronously or asynchronously. That is, either all imported
events are supplied by the target system, or all are supplied by other moni-
tors through the middleware. Potentially, deployments could be mixed, however
implementation of the monitor becomes substantially more complicated.

From the case study, we note the choice balance between synchronous and
asynchronous monitors in an architecture is not straightforward. The most sur-
prising lesson from the case study, for us, was that the overhead of sending an
event to a separate monitor can be larger than checking the event synchronously
within the same monitor. Thus, intuitively, delegating checking to an asynchro-
nous monitor makes sense only if it involves complex computation.

The presented toolset remains in active development. We are working on
automatic instrumentation of C code, using an approach similar to [9]. We are
also improving automatic deployment of asynchronous monitors, as well as reduc-
ing both checking and communication overheads.

490 T. Zhang et al.

References

1. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

2. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FOSSACS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49630-5 9

3. Francalanza, A., Gauci, A., Pace, G.J.: Distributed system contract monitoring. J.
Logic Algebraic Program. 82(5–7), 186–215 (2013)

4. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: a run-
time assurance approach for Java programs. Formal Methods Syst. Des. 24(2),
129–155 (2004)

5. Zhou, W., Sokolsky, O., Loo, B.T., Lee, I.: DMaC : distributed monitoring and
checking. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 184–
201. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04694-0 13

6. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transfer 14(3), 249–
289 (2012)

7. Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F., Roşu, G.:
RV-Monitor: efficient parametric runtime verification with simultaneous properties.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 285–300.
Springer, Heidelberg (2014)

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997). doi:10.
1007/BFb0053381

9. Chen, Z., Wang, Z., Zhu, Y., Xi, H., Yang, Z.: Parametric runtime verification of
C programs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 299–315. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 17

10. Colombo, C., Pace, G.J., Abela, P.: Compensation-aware runtime monitoring. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 214–228.
Springer, Heidelberg (2010)

11. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings of the 26th International Conference
on Software Engineering, pp. 418–427. IEEE Computer Society (2004)

12. Nazarpour, H., Falcone, Y., Bensalem, S., Bozga, M., Combaz, J.: Monitoring
multi-threaded component-based systems. Technical report TR-2015-5, Verimag
Research Report (2015)

13. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring:
from Eagle to RuleR. J. Logic Comput. 20(3), 675–706 (2010)

14. Zhang, T., Gebhard, P., Sokolsky, O.: Semantics of SMEDL monitor objects. Tech-
nical report MS-CIS-16-02, University of Pennsylvania (2016)

15. Zhang, T., Gebhard, P., Sokolsky, O.: Architecture description language for
SMEDL. Technical report MS-CIS-16-06, University of Pennsylvania (2016)

16. Videla, A., Williams, J.J.: RabbitMQ in Action. Manning, Shelter Island (2012)

http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-642-04694-0_13
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/978-3-662-49674-9_17

Tool Exhibition Papers

Runtime Visualization and Verification in JIVE

Lukasz Ziarek1(B), Bharat Jayaraman1, Demian Lessa1, and J. Swaminathan2

1 Department of Computer Science and Engineering,
State University of New York at Buffalo, Buffalo, USA
{lziarek,bharat}@buffalo.edu, demian@lessa.org

2 Amrita Vishwa Vidyapeetham University, Coimbatore, India
swaminathanj@am.amrita.edu

Abstract. Jive is a runtime visualization system that provides (1) a
visual representation of the execution of a Java program, including UML-
style object and sequence diagrams as well as domain specific diagrams,
(2) temporal query-based analysis over program schedules, executions,
and traces, (3) finite-state automata based upon key object attributes
of interest to the user, and (4) verification of the correctness of program
execution with respect to design-time specifications. In this paper we
describe the overall Jive tool-chain and its features.

Keywords: Runtime visualization · Object · Sequence · State dia-
grams · Finite state model extraction · Runtime verification

1 Introduction and Jive Overview

We present in this paper a tool called Jive for runtime visualization and verifica-
tion of Java and real-time Java programs running on the Fiji VM [9]. Jive pro-
vides visual debugging, visual dynamic analysis through temporal queries, and
visual model synthesis and validation for object oriented programs. The toolchain
and associated tutorials and installation instructions are publicly available at:
http://www.cse.buffalo.edu/jive/. Jive is based upon a model-view-controller
architecture; the controller component interfaces with the Java Platform Debug-
ger Architecture (JPDA), an event-based debugging architecture, in order to
receive debug event notifications such as method entry and exit, field access
and modification, object creation, and instruction stepping. Jive supports two
modes of operation, an interactive mode where the user can debug while the
program is executing, and an offline mode where a program execution trace
(represented as a sequence of events) can be loaded and introspected. Jive’s
form-based queries and its reverse step/jump feature allow past program states
to be explored without restarting the program [5].

Jive has been extend to support offline analysis of real-time Java programs.
The extension is called Ji.Fi [2,3], and takes offline traces of events as input.
Unlike the vanilla version of Jive, Ji.Fi supports precise notions of time and
assumes timestamps present in events are gathered from a real-time clock. The
Ji.Fi system is agnostic to both SCJ and RTSJ, offering support for either spec-
ification’s memory model [4] and linguistic constructs. Our initial work on Ji.Fi

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 493–497, 2016.
DOI: 10.1007/978-3-319-46982-9 33

http://www.cse.buffalo.edu/jive/

494 L. Ziarek et al.

has resulted in some preliminary specialized visual representations of real-time
Java programs, specifically focusing on scoped memory, a region based memory
allocation strategy that is highly error prone. The true power of Ji.Fi lies in its
temporal query analysis engine. By leveraging precise timestamps as well as the
temporal database for storing execution events, Ji.Fi is able to detect schedule
drift of periodic tasks due to contention on shared monitors between threads
of differing priority. The Ji.Fi system does also offer a preliminary sequence
diagram that can illustrate visually contended monitors and schedule drift.

Java Path Finder (JPF) [7] is a specialized virtual machine for Java that
can simulate the nondeterminism inherent in features such as thread scheduling
and selection of random numbers. Although JPF is a very powerful tool and
incorporates several execution efficiencies, its textual output is not always easy
to follow, especially for long executions. Jive provides a visualization mechanism
for JPF’s output, which we call the scheduling tree diagram. The scheduling tree
diagram depicts the choices made (nodes) and the paths traversed by the JPF
virtual machine in order to uncover a bug. The paths of this scheduling tree are
traversed by the JPF virtual machine in a depth-first left-right manner, and the
rightmost leaf node in the search tree corresponds to a property violation. The
edges of the search tree are annotated with the JPF instructions that lead to a
choice generation. The path leading to the property violation is shown by Jive
in more detail using a SD, which summarizes at a high-level the calling sequence
leading to the violation. Thus, the three diagrams (scheduling tree, sequence,
and object) allow the user to progressively explore different levels of detail in
the execution of a concurrent Java program, and together serve as a useful tool
for understanding concurrency bugs.

2 Runtime Models: Visualization and Verification

While object and sequence diagrams are useful in clarifying different aspects
of run-time behavior, they each have some limitations. Sequence diagrams do
not have any state information while object diagrams may be too detailed and
also do not convey a sense of how the state changes over time. To remedy these
shortcomings, a state diagram is proposed as a more concise way to summarize
the evolution of execution than either the object or sequence diagram. A state
diagram is an especially appropriate visualization for the class of programs that
have a repetitive behavior, especially servers and embedded system controllers.

In order to cater to different summarizations of execution, we let the user
specify at a high level which attributes of which objects/classes are of interest.
These are referred to as key attributes and they typically are a subset of the
attributes that get modified in some loop. Given a set of key attributes and
an execution trace of Java program for a particular input, we systematically
construct a state diagram that summarizes the program behavior for that input.
Each field write event in the execution trace could potentially lead to a new
state in the diagram. Since the number of field writes is bounded by the number
of events n, the complexity of state diagram construction is O(n).

Runtime Visualization and Verification in JIVE 495

Fig. 1. (a) Jive user interface showing a fragment of sequence, object, and state dia-
grams, along with execution trace. (b) Jive model-checking view showing the states
for three dining philosophers and the result of checking EG[T1∧T2]. (c) Finite state
model extraction from a Java execution of the three philosophers, with attributes of
interest being the philosopher states. (d) Specifying predicate Abstraction in Jive. (e)
Reduced state machine after performing predicate abstraction WRT ‘p1.action = E and
p2.action = E and p3.action = E’.

We briefly mention some refinements that can help construct more concise
and insightful state diagrams: (1) Predicate Abstraction helps reduce the state
space by reducing the number of possible values for one or more key attributes.
(2) Range Reduction is similar to Predicate Abstraction and is applicable for a
totally-ordered set of values, e.g., integers. By grouping values in ranges, e.g.,

496 L. Ziarek et al.

less than 0, equal to 0, and greater than 0, we can reduce the state space for the
integer-valued attribute to just three values. (3) Masking some attributes allows
us to capture the fact that a key attribute was changed during execution without
regard to the value it was assigned to. (4) Merging Multiple Runs enables us to
obtain more comprehensive state diagrams, as a union of smaller of finite-state
machines.

In order to close the loop between design and execution, Jive provides a
consistency-checking capability. Jive allows the design-time state diagram to be
authored by an open-source UML tool, such as Papyrus UML (which is available
as an Eclipse plug-in), or the state diagram may be defined textually using a sim-
ple notation, referred to as JSL, for JIVE State Language. Given a design-time
state diagram, Jive can check whether the runtime state diagram is consistent
with the design by checking whether every state and every transition in the run-
time state diagram is present in the design-time diagram. Jive will highlight
states and transitions in the runtime diagram that are not present in the design,
thereby signaling a possible error in implementation. Since the runtime state dia-
gram may not exercise all possible states and transitions, the consistency check
is an ‘inclusion’ test rather than an ‘equality’ test of two state diagrams.

3 Conclusions and Future Work

In this paper we presented an overview of Jive and its extensions. We described
the latest additions to the Jive toolchain, including generation and refinement
of runtime models as well as verification and validation of those models against
design time models. The system has been developed over a number of years and
the website http://www.cse.buffalo.edu/jive is a repository of all information
about the system, including instructions for installation and usage. We provide
in Fig. 1 a few screen shots from the latest version of Jive to illustrate the
mechanism described in Sect. 2 of the main paper. For our future work we plan
to extend the runtime models and design time models to include notions of time.
This extensions, coupled with Ji.Fi will be particularly useful for validation of
real-time system designs against execution traces.

TuningFork [1] is a visual debugger for real-time systems, and much like
our Ji.Fi extension it provides basic visualizations over event streams. A num-
ber of tools for enhancing program comprehension of object-oriented programs
have appeared over the last two decades. Jinsight [8] provides dynamic views
for detecting execution bottlenecks (Histogram View), displaying execution
sequences (Execution View), showing interconnections among objects based on
pattern recognition algorithms (Reference Pattern View), and displaying profil-
ing information for method calls (Call Tree View). Shimba [10] represents traces
as scenario diagrams, extracts state machines from scenario diagrams, detects
repeated sequences of events (i.e., behavioral patterns), and compresses con-
tiguous (e.g., loops) and non-contiguous (e.g., subscenarios) sequences of events.
Ovation [6] visualizes traces as execution pattern views, a form of interaction
diagram depicting program behavior; it supports various levels of detail through
filtering, collapsing/expanding, and pattern matching.

http://www.cse.buffalo.edu/jive

Runtime Visualization and Verification in JIVE 497

References

1. Bacon, D.F., Cheng, P., Frampton, D., Pizzonia, M., Hauswirth, M., Rajan, V.T.:
Demonstration: on-line visualization and analysis of real-time systems with Tun-
ingFork. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 96–100.
Springer, Heidelberg (2006)

2. Blanton, E., Lessa, D., Arora, P., Ziarek, L., Jayaraman, B.: JIFI: visual test
and debug queries for hard real-time. Concurrency Comput. Pract. Exper. 26(14),
2456–2487 (2014)

3. Blanton, E., Lessa, D., Ziarek, L., Bharat Jayaraman, J.: Visual test and debug
queries for hard real-time. In: Proceedings of the 10th International Workshop
on Java Technologies for Real-Time and Embedded Systems. ACM, New York,
October 2012

4. Cavalcanti, A., Wellings, A., Woodcock, J.: The safety-critical Java memory model:
a formal account. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 246–261. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 20

5. Czyz, J.K., Jayaraman, B.: Declarative and visual debugging in eclipse. In: Pro-
ceedings of the 2007 OOPSLA Eclipse Technology eXchange Workshop (ETX
2007), pp. 31–35. ACM, New York (2007)

6. De Pauw, W., Lorenz, D., Vlissides, J., Wegman, M.: Execution patterns in object-
oriented visualization. In: Proceedings of the 4th USENIX Conference on Object-
Oriented Technologies and Systems (COOTS 1998), pp. 219–234, April 1998

7. Havelund, K.: Java PathFinder User Guide. NASA Ames Research, California
(1999)

8. Zheng, C.-H., Jensen, E., Mitchell, N., Ng, T.-Y., Yang, J.: Visualizing the execu-
tion of Java programs. In: Diehl, S. (ed.) Software Visualization. LNCS, vol. 2269,
pp. 151–162. Springer, Heidelberg (2002)

9. Pizlo, F., Ziarek, L., Blanton, E., Maj, P., Vitek, J.: High-level programming of
embedded hard real-time devices. In: Proceedings of the 5th European conference
on Computer systems, EuroSys 2010, pp. 69–82. ACM, New York (2010)

10. Systä, T., Koskimies, K., Müller, H.: Shimba–an environment for reverse engineer-
ing Java software systems. Softw. Pract. Exper. 31, 371–394 (2001)

http://dx.doi.org/10.1007/978-3-642-21437-0_20

An Overview of MarQ

Giles Reger(B)

University of Manchester, Manchester, UK
giles.reger@manchester.ac.uk

Abstract. MarQ is a runtime monitoring tool for specifications written
as quantified event automata, an expressive automata-based specifica-
tion language based on the notion of parametric trace slicing. MarQ
has performed well in the runtime verification competition and imple-
ments advanced indexing and redundancy elimination techniques. This
overview describes the basic structure and functionality provided by
MarQ and gives a brief description of how to use the tool.

1 Introduction

Runtime monitoring [3,7] is the process of checking whether an execution trace
produced by a running system satisfies a given specification. This paper gives an
overview of the MarQ tool [12] for monitoring specifications written as quan-
tified event automata (QEA) [1,6,9]. QEA is an expressive formalism for para-
metric properties i.e. those concerned with events parameterised by data.

MarQ is available from

https://github.com/selig/qea

This includes instructions on how to perform online and offline monitoring and
a collection of specifications used in the runtime verification competitions.

This overview briefly describes the QEA formalism (Sect. 2), how to write
and use these to monitor log files and Java programs using MarQ (Sect. 3) and
its performance (Sect. 4). It concludes with remarks about its future (Sect. 5).

2 Quantified Event Automata

Quantified event automata [1] combine a logical notion of quantification with
a form of extended finite state machine. To demonstrate the expressiveness of
this formalism, Fig. 1 gives three (simple) example QEA specifications for the
following properties:

1. SafeIterator. An iterator created from a collection of size size should only be
iterated at most size times.

2. SafeMapIterator. There should not be a map m, collection c and iterator i
such that c is created from m, i is created from c, m is updated and then i is
used. This demonstrates the use of multiple quantifiers.

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 498–503, 2016.
DOI: 10.1007/978-3-319-46982-9 34

https://github.com/selig/qea

An Overview of MarQ 499

1 2

∀i
iterator(i, size)

next(i) size>0
size=size−1

1 2 3 4 5

¬∃m∃c∃i
create(m, c) create(c, i) update(m) use(i)

1 2 3

∀pub ∃sub ∀msg

publish(pub,msg) receive(sub,msg)

Fig. 1. Example quantified event automata.

3. PublisherSubscriber. For every publisher there exists a subscriber that receives
all of that publisher’s messages. This demonstrates how alternating quantifi-
cation can be used to concisely capture a complex property about related
objects.

See related publications [1,6,9] for further examples and a full description of
their semantics. Note that QEA have a (may valued) finite-trace semantics so
liveness properties (like PublisherSubscriber) are implicitly bounded by an end
of trace event.

3 Using MarQ

Here we briefly describe how to use MarQ. These examples (and others) are
available online. We describe how to construct QEAs and their corresponding
monitor objects and then how to use these objects to monitor log files and Java
programs.

3.1 Creating QEAs and Monitors

Currently MarQ provides a builder API for constructing QEA properties. Event
names are specified as integers and there is a library of predefined guards and
assignments that can be used in transitions. Below is an example of how the
SafeIterator QEA can be constructed in this way. Sect. 5 discusses future plans
to improve this.

QEABuilder q = new QEABuilder (” s a f e i t e r ”) ;

int ITERATOR = 1; int NEXT = 2;
f ina l int i = −1;
f ina l int s i z e = 1 ;
q . addQuant i f i cat ion (FORALL, i)

q . addTrans it ion (1 ,ITERATOR, i , s i z e , 2) ;
q . addTrans it ion (2 ,NEXT, i , isGreaterThanConstant (s i z e , 0) , decrement (s i z e) , 2) ;

q . addFina lStates (1 , 2) ; q . s e tSk ipS ta t e s (1) ;

QEA qea = q .make () ;

500 G. Reger

Here there are two event names (which must be consecutive positive integers
starting from 1) and two variables, the quantified variable i (which must be a
negative integer) and the free variable size (which must be a positive integer).
Two states are used (again positive integers) with 1 being the implicit start
state.

Once we have constructed a QEA we create a monitor object by a call to the
MonitorFactory. This will inspect the structure of the QEA and produce an
optimised monitor object. Optionally, we can also specify garbage and restart
modes on monitor creation (some of these are still experimental).

Monitor monitor = MonitorFactory . c r ea t e (qea) ;
Monitor monitor = MonitorFactory . c r ea t e (qea , GarbageMode .LAZY, RestartMode .REMOVE) ;

The garbage mode indicates how the monitor should handle references to
monitored objects e.g. should weak references be used. By default the garbage
mode is off, which is optimal for offline monitoring. The restart mode tells the
monitor what should be done with a binding that fails the specification. For
example, the REMOVE value here allows a signal-and-continue approach to moni-
toring safety properties.

Fig. 2. Two different monitoring modes.

3.2 Monitoring a Trace Offline

To monitor a trace we construct an appropriate FileMonitor (which reads in the
trace) and call monitor() to produce a verdict. As illustrated in Fig. 2, offline
monitoring of traces makes use of an optional Translator object to produce events
in the form expected by the monitor constructed above. This allows parameters
to be parsed as integers, reordered or filtered.

MarQ accepts trace files in the formats specified by the runtime verification
competition [4]. Therefore, any system that can be intrusmented to produce such
traces can be monitored offline. The following code can be used to construct a
monitor for a CSV trace for the SafeIterator property. The translator object
will parse the size parameter as an integer and other parameters as (interned)
strings (objects with a notion of equality).

Str ing t race = ‘ ‘ t r a c e d i r / t race . csv ’ ’ ;
QEA qea = bu i l d e r . make () ; // s e e a b o v e
Of f l i n eTran s l a t o r t r an s l a t o r = Trans latorFactory . makeParsingTranslator (

event (” i t e r a t o r ” , param (0 ,OBJ) , param (1 , INT)) ,
event (”next ” , param (0 ,OBJ))) ;

CSVFileMonitor m = new CSVFileMonitor (trace name , qea , t r a n s l a t o r) ;
Verdict v = m. monitor () ;

An Overview of MarQ 501

3.3 Monitoring Online via AspectJ

For monitoring Java programs MarQ is designed to be used with AspectJ
i.e. using a pointcut for each event and submitting the necessary information
directly to the monitor object as in the following extract. For other examples
of how instrumentation and monitoring using AspectJ can be achieved see the
online examples and [12].

after (Co l l e c t i on c) returning (I t e r a t o r i) :
ca l l (I t e r a t o r Co l l e c t i on +. i t e r a t o r ()) && target (c) {
synchronized (monitor){ check (monitor . s tep (ITERATOR, i , c . s i z e ())) ; }

}
before (I t e r a t o r i) : ca l l (∗ I t e r a t o r . next ()) && target (i) {

synchronized (monitor){ check (monitor . s tep (NEXT, i)) ; }
}
private void check (Verdict v e rd i c t){

i f (v e rd i c t==Verdict .FAILURE){ <r epor t e r r o r here> }
}

4 Performance

We briefly discuss the performance of MarQ, see [9,12] for experiments.

Implementation. MarQ has a number of features related to efficiency:

– Structural specialisation. MarQ analyses the QEA and constructs a mon-
itoring algorithm suited to its structure. For example, particular indexing
mechanisms can be employed. This is an ongoing area of research.

– Symbol-based indexing. Whilst other tools for parametric trace slicing use
value-based indexing to lookup monitoring state, MarQ uses a symbol-based
technique inspired by discrimination trees from automated reasoning.

– Redundancy elimination. MarQ analyses the QEA to determine which states
are redundant and eagerly discards redundant information during monitoring.

– Garbage removal. As mentioned earlier, MarQ can be configured to weakly
reference monitored objects and remove these from indexing structures when
they become garbage. It is an ongoing area of research to extend these ideas
to offline monitoring.

See [12] for further details.

Competitions. MarQ performed well in the 2014, 2015 and 2016 iterations of
the runtime verification competition. It came joint first in the Java division in
20141 with JavaMOP [8] and in 20152 and 2016 [13] it came second to Mufin
[2] (which is very efficient on certain forms of connected properties). In 2014 and
2016 it came first in the Offline division and in 2015 it came second to LogFire
[5] (although performed better on benchmarks jointly entered).

1 See http://rv2014.imag.fr/monitoring-competition/results.html.
2 See https://www.cost-arvi.eu/?page id=664.

http://rv2014.imag.fr/monitoring-competition/results.html
https://www.cost-arvi.eu/?page_id=664

502 G. Reger

5 Conclusion

MarQ is an efficient tool for parametric runtime verification of QEA. The devel-
opment of MarQ is an ongoing project and the tool will continue to be updated
and improved. The current planned areas for improvement are as follows:

– Improve the current method for defining QEA to remove the dependency
on arbitrary details such as quantified variables being negative integers. Fur-
thermore, providing a more general purpose method for defining guards and
assignments rather than the current pre-defined library.

– Implement alternative front-end specification languages that compile into
QEA. For example, a form of first-order temporal logic [14].

– Incorporate methods for explaining violations in terms of edits to the trace
[10].

– Explore integration with specification mining techniques [11].

Please contact the author with comments or suggestions.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9

2. Decker, N., Harder, J., Scheffel, T., Schmitz, M., Thoma, D.: Runtime moni-
toring with union-find structures. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 868–884. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 54

3. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy,
M., Peled, D. (eds.) Summer School Marktoberdorf - Engineering Dependable Soft-
ware Systems (2012). IOS Press (2013, To appear)

4. Falcone, Y., Nickovic, D., Reger, G., Thoma, D.: Second international competition
on runtime verification. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol.
9333, pp. 405–422. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23820-3 27

5. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transf. (STTT) 17(2), 143–170 (2014)

6. Havelund, K., Reger, G.: Formal modeling and verification of cyber-physical sys-
tems. In: Drechsler, R., Kühne, U. (eds.) Specification of parametric monitors.
Springer, Wiesbaden (2015). doi:10.1007/978-3-658-09994-7 6

7. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2008)

8. Meredith, P., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. J. Softw. Tools Technol. Transf. 1–41 (2011)

9. Reger, G.: Automata based monitoring and mining of execution traces. PhD thesis,
University of Manchester (2014)

10. Reger, G.: Suggesting edits to explain failing traces. In: Bartocci, E., Majumdar,
R. (eds.) RV 2015. LNCS, vol. 9333, pp. 287–293. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-23820-3 20

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-662-49674-9_54
http://dx.doi.org/10.1007/978-3-662-49674-9_54
http://dx.doi.org/10.1007/978-3-319-23820-3_27
http://dx.doi.org/10.1007/978-3-658-09994-7_6
http://dx.doi.org/10.1007/978-3-319-23820-3_20

An Overview of MarQ 503

11. Reger, G., Barringer, H., Rydeheard, D.: A pattern-based approach to parametric
specification mining. In: Proceedings of the 28th IEEE/ACM International Con-
ference on Automated Software Engineering, November 2013

12. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 55

13. Reger, G., Hallé, S., Falcone, Y.: Third international competition on runtime veri-
fication CRV. In: Falcone, Y., Sánchez, C. (eds.) Runtime Verification - 16th Inter-
national Conference. RV 2016. LNCS, pp. 21–37, Springer, Switzerland (2016, to
appear)

14. Reger, G., Rydeheard, D.: From first-order temporal logic to parametric trace
slicing. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 216–
232. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23820-3 14

http://dx.doi.org/10.1007/978-3-662-46681-0_55
http://dx.doi.org/10.1007/978-3-319-23820-3_14

Runtime Analysis with R2U2:
A Tool Exhibition Report

Johann Schumann1(B), Patrick Moosbrugger2, and Kristin Y. Rozier3

1 SGT, Inc., NASA Ames, Moffett Field, Mountain View, CA, USA
Johann.M.Schumann@nasa.gov

2 Vienna University of Technology, Vienna, Austria
moosbrugger@cps.tuwien.ac.at

3 Iowa State University, Ames, IA, USA
kyrozier@iastate.edu

Abstract. We present R2U2 (Realizable, Responsive, Unobtrusive
Unit), a hardware-supported tool and framework for the continuous mon-
itoring of safety-critical and embedded cyber-physical systems. With the
widespread advent of autonomous systems such as Unmanned Aerial
Systems (UAS), satellites, rovers, and cars, real-time, on-board decision
making requires unobtrusive monitoring of properties for safety, per-
formance, security, and system health. R2U2 models combine past-time
and future-time Metric Temporal Logic, “mission time” Linear Temporal
Logic, probabilistic reasoning with Bayesian Networks, and model-based
prognostics.

The R2U2 monitoring engine can be instantiated as a hardware solu-
tion, running on an FPGA, or as a software component. The FPGA real-
ization enables R2U2 to monitor complex cyber-physical systems with-
out any overhead or instrumentation of the flight software. In this tool
exhibition report, we present R2U2 and demonstrate applications on sys-
tem runtime monitoring, diagnostics, software health management, and
security monitoring for a UAS. Our tool demonstration uses a hardware-
based processor-in-the-loop “iron-bird” configuration.

1 Introduction and Tool Overview

The Realizable, Responsive, Unobtrusive Unit (R2U2) is a framework for run-
time System Health Management (SHM) of cyber-physical systems. R2U2 is
unique in that it combines several different runtime reasoning “building blocks”
to provide a more effective runtime analysis than can be accomplished via any
one of them alone; [10,11] give an overview of the building block architecture
and provide ideas and examples for tool configurations. Building blocks include
temporal logic runtime observers, Bayes Net (BN) decision-makers, and sensor
filters; the framework is extensible in that it is easy to connect the inputs and
outputs of different types of reasoning blocks. Other notable advantages of R2U2
are its zero-overhead hardware implementation, dual-encodings of temporal logic
observers to include both time- and event-triggered results, implementations of

c© Springer International Publishing AG 2016
Y. Falcone and C. Sanchez (Eds.): RV 2016, LNCS 10012, pp. 504–509, 2016.
DOI: 10.1007/978-3-319-46982-9 35

Runtime Analysis with R2U2: A Tool Exhibition Report 505

future-time and past-time observers, and efficient use of Bayesian reasoning over
observer outputs to provide temporal diagnostics.

R2U2 reasons efficiently about temporal behaviors using temporal logic run-
time observers. These observers encode Metric Temporal Logic (MTL) [5] and
Mission-Time Linear Temporal Logic (LTL) [6] formulas. MTL adds discrete
time bounds to the temporal operators of LTL formulas; for R2U2 we bound
operators in units of ticks of the system clock, so a singular bound of [100]
designates the operator holds for the next 100 clock ticks and a paired bound
of [5, 20] designates that the operator holds from 5 to 20 clock ticks from
now. We defined Mission-Time LTL [6] in recognition that many requirements
for missions of air- and spacecraft, for example, are most naturally written in
LTL but there is an (often unspecified) assumption that the eventualities guar-
anteed by strong operators (♦ and U) are fulfilled during the mission. Therefore,
we consider such formulas to be in Mission-Time LTL, where we automatically
fill in MTL-like time bounds on eventualities to give an appropriate finite-trace
semantics that guarantees satisfaction during the current mission, or mode of
flight. Uniquely, R2U2 encodes every future-time temporal logic specification
twice: once as an asynchronous observer and once as a synchronous observer.
Asynchronous, or event-triggered, observers return a verdict (true or false) in
the first clock-tick that the formula can be evaluated. Their output is a tuple
including the clock-tick(s) they have a verdict for and that verdict, where the
clock-tick(s) may be in the past in the case of future-time formulas for which
there was not previously sufficient information to evaluate fully. Asynchronous
observers resemble traditional runtime monitors with one important difference:
they always report both success and failure of the formula (rather than just
reporting failures) as both evaluations provide valuable information to influ-
ence the probabilistic evaluations of the BNs. Synchronous, or time-triggered,
observers return a three-valued verdict (true, false, or maybe) at every tick of
the system clock. This is useful to provide intermediate information for proba-
bilistic BN reasoning as well as a “liveness” check that the monitoring framework
is responsive. We defined and proved correct FPGA-based implementations of
asynchronous and synchronous runtime observers [6].

R2U2 expands upon the failure reporting of traditional runtime monitors
to provide advanced diagnostics by combining the temporal logic observers with
light-weight Bayesian Networks (BNs) that reason over the observer outputs and
(possibly filtered) sensors signals. Our R2U2 model can have modular, usually
rather small Bayesian networks for groups of highly-related faults that might
occur for one hard- or software component. We designed and experimentally
evaluated efficient FPGA-based encodings of our BNs in [4], demonstrating their
ability to perform efficient diagnostics for safety and performance requirements.
Recognizing that violations of security properties that occur through tampering
with sensor inputs may also have unique temporal patterns, we expanded on this
work with a series of case studies for UAS in [8]. A possibly innocuous off-nominal
reading or event, followed by a specific temporally-displaced pattern of behavior
is often indicative of a hard-to-diagnose security threat, such as dangerous MAV

506 J. Schumann et al.

(Micro Air Vehicle) commands, ground station denial-of-service attempts, or
GPS spoofing; [8] defines and demonstrates R2U2 configurations that efficiently
diagnose these during runtime.

2 Tool Architecture

In its usual configuration, R2U2 obtains data from sensors, actuators, and the
flight software using a read-only (serial) interface (Fig. 1A). This enables R2U2
to continuously monitor multiple signals during runtime with minimal instru-
mentation of the flight software. Altering safety-critical software or hardware
components can cause difficulties maintaining flight certification. R2U2 itself is
implemented in VHDL that is compiled into an FPGA configuration. For our
experiments, we use an Adapteva Parallella board [1] that provides a suitable
FPGA and runs a Linux system for data logging and development. Software-
only versions of R2U2 are available and can be executed on any Linux-based
system, preferably on a separate hardware unit to avoid interaction with the
flight software and hardware.

R2U2 models consist of temporal logic formulas, Bayesian networks, and
specifications of signal-preprocessing and filtering. These models can be designed
in a modular and hierarchical manner to enable the designer to easily express
properties containing temporal, model-based, and probabilistic aspects. For
graphical modeling of the Bayesian networks, we use the freely available tool
SamIam [2]. With the other parts of the model in textual format, our tool-chain
(Fig. 1C) compiles temporal formulas and Bayesian network reasoners into a
compact and efficient binary format. The compiled model then can be directly
downloaded onto the R2U2 execution engine without having regenerate code or
configuration, which could take considerable time for an FPGA.

MTL and LTL formulas are compiled into code for a special purpose processor
that is instantiated on the FPGA or emulated in software. Efficient and correct

A

RF−Rx

A
ct

ua
to

rs

Se
ns

or
s

Flight Computer

R
2U

2

UAS

GPS

B m
on

ito
re

d
si

gn
al

s

da
ta

 lo
gg

in
g

Memory Interface
Control Unit

te
m

po
ra

l l
og

ic

R
R

−
U

ni
t

B
N

 r
ea

so
ni

ng

SP
−

U
ni

t

si
gn

al
 p

ro
ce

ss

R
V

−
U

ni
t

C

system specification
& description

Bayesian network

Γ > 0 → ♦[0,2s]Δβ > θ,
(cmd = do) → �[0,40](x ≥ 600),. . .

LTL formulas

parser,
compiler &

assembler script

ACE compiler*

*3rd party tool

01001001
01001100
01001111
01010110
01000101

binary file

+

× ×

+ +

× × × ×

θα θα

λβλβ θβθβ

arithmetic circuit

parser,
compiler &
assembler

GUI

01010101
01000010
01000001
01000010
01010011

binary file

in
te

rf
ac

e

FPGA

synthesis,
placement
& route*

*3
r

d
pa

rt
y

to
ol

.

VHDL sources

Fig. 1. A: Schematics of R2U2 for a small UAS. B: R2U2 architecture C: R2U2 tool
chain

Runtime Analysis with R2U2: A Tool Exhibition Report 507

algorithms for the temporal operators [6] avoid the construction of potentially
large finite state machines. The Bayesian network is compiled into an arithmetic
circuit [3], which can be efficiently evaluated in bounded time using a special pur-
pose processor on the FPGA. Filtering and thresholding of the (floating-point)
input signals is done by the SP-Unit. Figure 1B shows the high-level architecture
of the R2U2 engine. All algorithms of R2U2 are fully static, do not require any
dynamic structures or memory allocation, and have known and bounded runtime
behavior, making the tool suitable for execution on embedded architectures.

3 Examples and Applications

R2U2 has been used for UAS to continuously monitor numerous properties and
perform root cause analysis [4]. These properties typically address safety (“Is the
airspeed always higher than the stall-speed?”), performance (“Have we reached
our desired waypoint within 10 s of ETA?”), or security (“Has our GPS system
be spoofed?”).

S BaroAlt
(S)

H BaroAlt
(H)

S LaserAlt
(S)

H LaserAlt
(H)

S Sensors
(S)

U Altimeter
(U)

Fig. 2. Sensor failure detection BN from [6]

For example, the relationship
property “A pitch-up should cause
the UAS to climb within 5 s”
can be expressed by the follow-
ing MTL formula: �(pitchup →
♦[0,5](�[2](vbz > 20 ft/min))), where
vbz is the vertical speed measured by
the baro-altimeter. Here, we have
refined the requirement that within
the last 5 s, we have to encounter

at least a 2 s stretch of uninterrupted climbing in order to filter out short-term
effects like turbulence.

Checking the consistency of several sensors can be an important help to
figure out if a sensor is broken, and if so, which one. In our example (see [6]), the
UAS is equipped with a barometric altimeter, a laser altimeter, and an inertial
measurement unit (IMU) for navigation. Because of sensor noise, it would be
hard to directly compare the values. We rather abstract the readings from each
sensor into “climbing” and “descending”. We feed these data to the sensor nodes
of our the Bayesian network model (Fig. 2, bottom row). Given this information,
R2U2 can calculate, in real-time, the posteriors of the health nodes (H LaserAlt
and H BaroAlt) indicating their most likely health status. This Bayesian network
allows us to incorporate domain knowledge (e.g., the laser altimeter is more likely
to fail than the barometric altimeter) and complex interrelationships between
components. For details of this example see [6,7].

The tool demonstration website [7] contains a number of relevant examples
illustrating the monitoring of safety and performance properties, monitoring a
UAS for possible cyber-attacks [8], and incorporating battery prognostics [9]. We
will demonstrate multiple examples with R2U2 on our “iron-bird,” which con-
tains the Arduino flight hardware including sensors and servos, and the Parallella
board with R2U2 running on FPGA or in software.

508 J. Schumann et al.

4 Summary

R2U2 is designed for continuous runtime analysis of safety-critical and embedded
cyber-physical systems, for example, UAS. The modeling framework uses a syn-
ergistic combination of past- and future-time MTL, mission-time LTL, Bayesian
Networks, and prognostics models. The R2U2 framework and tool is demon-
strated on our UAS iron-bird, a processor-in-the-loop setup for a small UAS.
R2U2 can be instantiated on an FPGA or as a software application and can
be used for monitoring safety, security, and performance properties, as well as
performing diagnostics for wide ranges of software and cyber-physical systems.

Detailed information about R2U2, documentation, examples, and demo
scripts can be found at [7]; we are in the application process for a NASA Open
Source License.

Acknowledgments. The development of R2U2 was in part supported by NASA
ARMD grant NNX14AN61A, ARMD 2014 I3AMT Seedling Phase I NNX12AK33A,
and NRA NNX08AY50A.

References

1. Adapteva: The Parallella System (2016). http://adapteva.com
2. Automated Reasoning Group, UCLA: SamIam Sensitivity Analysis, Modeling,

Inference and More (SamIam) (2016). http://reasoning.cs.ucla.edu/samiam/
3. Darwiche, A.: A differential approach to inference in Bayesian networks. J. ACM

50(3), 280–305 (2003)
4. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and Bayesian net-

work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol.
8734, pp. 215–230. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11164-3 18

5. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

6. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 357–372.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 24

7. Schumann, J., Moosbrugger, P., Rozier, K.Y.: Runtime Analysis with R2U2: A Tool
Exhibition Report (Tool Demonstration Website) (2016). http://temporallogic.
org/research/RV16/

8. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-23820-3 15

9. Schumann, J., Roychoudhury, I., Kulkarni, C.: Diagnostic reasoning using prog-
nostic information for unmanned aerial systems. In: Proceedings of PHM 2015
(2015)

http://adapteva.com
http://reasoning.cs.ucla.edu/samiam/
http://dx.doi.org/10.1007/978-3-319-11164-3_18
http://dx.doi.org/10.1007/978-3-642-54862-8_24
http://temporallogic.org/research/RV16/
http://temporallogic.org/research/RV16/
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_15

Runtime Analysis with R2U2: A Tool Exhibition Report 509

10. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. In: Proceedings of PHM 2013, pp. 381–
401 (2013)

11. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. Int. J. Prognostics Health Manage.
(IJPHM) 6(1), 1–27 (2015)

Author Index

Akazaki, Takumi 439
Artho, Cyrille 386
Attard, Duncan Paul 473

Bartocci, Ezio 201, 462
Binder, Walter 219
Bonakdarpour, Borzoo 41, 251

Cerna, David M. 135
Chaki, Sagar 185
Challen, Geoffrey 351
Chandra, Ranveer 351
Colombo, Christian 17, 285

Daian, Philip 46
Demirbas, Murat 420

Edmondson, James 185
Elliott, Trevor 302

Falcone, Yliès 17, 21
Faymonville, Peter 152
Finkbeiner, Bernd 41, 152
Fischmeister, Sebastian 251, 268
Francalanza, Adrian 473

Gebhard, Peter 482
Goubault-Larrecq, Jean 169
Grosu, Radu 201, 462
Guth, Dwight 46

Hagiya, Masami 386
Hallé, Sylvain 21, 68
Hansen, Jeffery P. 185
Hathhorn, Chris 46
Havelund, Klaus 235
Hickey, Pat 302
Hissam, Scott 185

Inoue, Jun 386

Jakšić, Stefan 201
Javed, Omar 219

Jayaraman, Bharat 493
Joshi, Rajeev 235
Joshi, Yogi 251

Kauffman, Sean 235
Kosmatov, Nikolai 92
Kulkarni, Sandeep S. 420
Kutsia, Temur 135
Kyle, David 185

Lachance, Jean-Philippe 169
Lahiri, Shuvendu K. 351
Lessa, Demian 493
Li, Yilong 46

Ma, Lei 386
Macias, Fernando 454
Maler, Oded 3
Medhat, Ramy 251
Mertens, Eric 302
Moosbrugger, Patrick 504
Moreno, Carlos 268
Moreno, Gabriel A. 185

Nguyen, Duong N. 420
Nguyen, Thang 462
Ničković, Dejan 201

Pace, Gordon J. 285
Pardo, Raúl 285
Pek, Edgar 46
Peled, Doron 116
Pike, Lee 302

Rapin, Nicolas 447
Reger, Giles 21, 498
Rosà, Andrea 219
Rosenberg, Carl Martin 318
Roşu, Grigore 46, 333
Rozier, Kristin Y. 504

Sarkar, Vivek 368
Saxena, Manasvi 46

Scheffel, Torben 454
Schirmer, Sebastian 152
Schmitz, Malte 454
Schneider, Gerardo 285
Schreiner, Wolfgang 135
Schumann, Johann 504
Selyunin, Konstantin 462
Şerbănuţă, Traian Florin 46
Shi, Jinghao 351
Signoles, Julien 92
Sistla, A. Prasad 404
Sokolsky, Oleg 482
Steffen, Martin 318
Stolz, Volker 318
Sun, Haiyang 219
Surendran, Rishi 368
Swaminathan, J. 493

Tanabe, Yoshinori 386
Tomb, Aaron 302
Torfah, Hazem 152

Valapil, Vidhya Tekken 420

Wang, Rui 454

Yamagata, Yoriyuki 386
Yamamoto, Mitsuharu 386
Yavolovsky, Andrey 404
Yingchareonthawornchai, Sorrachai 420

Žefran, Miloš 404
Zhang, Teng 482
Zheng, Yudi 219
Ziarek, Lukasz 493

512 Author Index

	Preface
	Organization
	Invited Papers
	Building Dependable Concurrent Systems Through Probabilistic Inference, Predictive Monitoring and Self-adaptation (Abstract)
	Why Tags Could be It? Keynote Lecture Extended Abstract
	Contents
	Invited Paper
	Some Thoughts on Runtime Verification
	1 Introduction
	2 Words Speak Louder Than They Should
	3 Runtime Verification as Simulation Plus Formal Specification
	4 Runtime as More Real
	5 Monitoring During the System's Lifetime
	6 From Quality to Quantity
	References

	Satellite Events Papers
	First International Summer School on Runtime Verification
	References

	Third International Competition on Runtime Verification
	1 Introduction
	2 Format of the Competition
	2.1 Tracks
	2.2 Phases
	2.3 Timeline
	2.4 Benchmark Submission Format
	2.5 Monitor Submission Format
	2.6 Scoring

	3 Participating Teams
	4 Benchmarks
	4.1 Offline Track
	4.2 Java Track

	5 Results
	5.1 Detailed Results
	5.2 Scores and Winners

	6 Discussion of Trace Formats
	7 Feedback and Reflection
	7.1 Engagement and the Missing C Track
	7.2 A Benchmark Repository
	7.3 A Common Specification Language
	7.4 Achieving Better Coverage
	7.5 Beyond (or Ignoring) Performance

	8 Concluding Remarks
	References

	Tutorial Papers
	Runtime Verification for HyperLTL
	1 Security Policies and Hyperproperties
	2 HyperLTL
	3 Runtime Verification for HyperLTL
	References

	Runtime Verification at Work: A Tutorial
	1 Introduction
	2 RV-MATCH
	2.1 Background: RV-MATCH
	2.2 Running RV-MATCH
	2.3 Finding Undefined Behavior in C Using RV-MATCH
	2.4 Evaluation

	3 RV-PREDICT
	3.1 Background: RV-PREDICT
	3.2 Running RV-PREDICT
	3.3 Detecting Common Data-Race Patterns Using RV-PREDICT
	3.4 The RV-PREDICT Backend: Prediction Power vs. Efficiency
	3.5 Running RV-PREDICT on Tomcat

	4 RV-MONITOR
	4.1 Background: RV-MONITOR
	4.2 Running RV-MONITOR
	4.3 Specifying and Checking Properties with RV-MONITOR

	5 Conclusion
	References

	When RV Meets CEP
	1 Introduction
	2 Complex Event Processing
	2.1 Typical CEP Queries
	2.2 RV vs. CEP�
	2.3 �and Beyond

	3 The BeepBeep 3 Event Processing Engine
	3.1 Events, Functions and Processors
	3.2 Streaming, Piping and Buffering
	3.3 ``Pull'' vs. ``Push'' Mode
	3.4 Creating a Processor Pipe

	4 Built-In Processors
	4.1 Function Processors
	4.2 Trace Manipulating Processors
	4.3 Window Processor
	4.4 Slicer

	5 A Few Palettes
	5.1 LTL-FO+
	5.2 FSM
	5.3 Other Palettes

	6 Some Examples
	6.1 Numerical Function Processors
	6.2 Quantifiers, Trim and XPath Processors
	6.3 Slicers, Generalized Moore Machines and Tuple Builders

	7 Conclusion
	References

	Frama-C, A Collaborative Framework for C Code Verification: Tutorial Synopsis
	1 Introduction
	2 Overview of FRAMA-C
	3 Specification and Deductive Verification with FRAMA-C/Wp
	3.1 Specification of C Programs with ACSL
	3.2 Deductive Verification with FRAMA-C/Wp

	4 Value Analysis with FRAMA-C/VALUE and EVA
	5 Runtime Verification with FRAMA-C/E-ACSL
	5.1 E-ACSL Specification Language
	5.2 E-ACSL Inline Monitoring Tool

	6 Test Case Generation with PATHCRAWLER
	7 Combinations of Analyses
	8 Conclusion
	References

	Using Genetic Programming for Software Reliability
	1 Introduction
	2 Genetic Algorithms
	2.1 Testing Using Genetic Programming

	3 Synthesis Using Genetic Programming
	3.1 Calculating Fitness
	3.2 Genetic Programming Based on Verification

	4 Model Checking as Generalized Testing and Correcting Programs
	5 Conclusions
	References

	Regular Papers
	Predicting Space Requirements for a Stream Monitor Specification Language
	1 Introduction
	2 Core Language
	3 Space Complexity
	4 Dominating Monitor Transformation
	5 Quantifier Trees
	6 Experimental Results
	7 Conclusions
	References

	A Stream-Based Specification Language for Network Monitoring
	1 Introduction
	2 Related Work
	3 Stream-Based Specifications
	4 Example Specifications
	5 Lola 2.0 Semantics
	6 The Monitoring Algorithm
	7 Experimental Results
	8 Conclusion
	References

	On the Complexity of Monitoring Orchids Signatures
	1 Introduction
	2 Related Work
	3 Orchids, and Recurrence Equations
	4 Systems of Recurrence Equations
	5 Graphs
	6 Sccs, and Asymptotics
	7 The Algorithm
	8 Conclusion
	References

	Input Attribution for Statistical Model Checking Using Logistic Regression
	1 Introduction
	2 Related Work
	3 Background
	4 Input Attribution
	4.1 Linear Input Attribution
	4.2 Non-linear Input Attribution

	5 SMC Infrastructure: DEMETER
	6 Results
	6.1 Pursuer/Evader Scenario
	6.2 Target/Threat Scenario
	6.3 Paparazzi Scenario

	7 Conclusion
	References

	Quantitative Monitoring of STL with Edit Distance
	1 Introduction
	2 Preliminaries
	3 Weighted Edit Distance
	3.1 Sampling, Quantization and Weighted Edit Distance

	4 Weighted Edit Robustness for Signal Temporal Logic
	4.1 From STL to Weighted Edit Automata
	4.2 Computing the Value of a Signal in a Weighted Edit Automaton

	5 Implementation and Case Study
	6 Conclusions
	References

	Extended Code Coverage for AspectJ-Based Runtime Verification Tools
	1 Introduction
	2 DiSL Overview
	3 AspectJ-to-DiSL Compiler
	3.1 Overview
	3.2 Implementation
	3.3 Example

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Join Point Executions on the JVM
	4.3 Violations in the Java Class Library
	4.4 Join Point Executions on Android

	5 Related Work
	6 Conclusions
	References

	nfer -- A Notation and System for Inferring Event Stream Abstractions
	1 Introduction
	2 Preliminary Notation
	3 Problem Statement
	3.1 Illustrating Example
	3.2 Desired Features

	4 The nfer Notation
	4.1 Intervals
	4.2 Syntax of the nfer Notation
	4.3 Semantics of the nfer Notation
	4.4 Derived Forms
	4.5 Example

	5 Implementation
	5.1 The Nfer Infrastructure
	5.2 The Internal Scala DSL

	6 Example Application to Warning Analysis
	7 Related Work
	8 Conclusion
	References

	Accelerated Runtime Verification of LTL Specifications with Counting Semantics
	1 Introduction
	2 LTL with Counting Semantics
	2.1 Syntax of LTL4-C
	2.2 Truth Values of LTL4-C
	2.3 Valuation in Ltl4-C
	2.4 Semantics of LTL4-C

	3 Divide-and-Conquer-based Monitoring of LTL4-C
	3.1 Quantifier Submonitors
	3.2 Instantiating Submonitors
	3.3 Evaluating LTL4-C Properties

	4 Parallel RV Algorithm
	4.1 Valuation Extraction
	4.2 Algorithm Steps

	5 Implementation and Experimental Results
	5.1 Case Studies
	5.2 Experimental Setup
	5.3 Results

	6 Related Work
	7 Conclusion
	References

	Non-intrusive Runtime Monitoring Through Power Consumption: A Signals and System Analysis Approach to Reconstruct the Trace
	1 Introduction
	1.1 Our Contributions
	1.2 Organization of the Paper

	2 Background -- Frequency Domain Analysis of Signals and Systems
	3 Proposed Technique
	3.1 Frequency Analysis: Classifying and Determining the Shift in the Power Trace Segments
	3.2 Statistical Pattern Recognition
	3.3 Static Analysis: Using the Control Flow Graph
	3.4 Segmentation of Traces and Fragments of Source Code
	3.5 Instrumenting the Source Code

	4 Experimental Evaluation
	4.1 Workflow

	5 Experimental Results
	5.1 Classifier's Performance
	5.2 A Case-Study: Buffer Overflows

	6 Discussion and Future Work
	7 Conclusions
	References

	An Automata-Based Approach to Evolving Privacy Policies for Social Networks
	1 Introduction
	2 Policy Automata
	2.1 Semantics of Policy Automata
	2.2 Subsumption of Dynamic Privacy Policies
	2.3 Conflicting Policy Automata

	3 Translation of Policy Automata to DATEs
	3.1 Translation

	4 Implementation in Diaspora* Using Larva
	5 Case Studies
	5.1 Case 1: Protecting Pictures During the Weekend
	5.2 Case 2: Disclosing Location at Most 3 Times per Day

	6 Related Work
	7 Conclusions
	References

	TrackOS: A Security-Aware Real-Time Operating System
	1 Introduction
	2 Static Analysis
	3 TrackOS Architecture
	4 Control-Flow Integrity
	4.1 Basic Algorithm
	4.2 Extensions
	4.3 Implementation

	5 Program-Data Integrity
	6 Experimental Results
	7 Related Work
	8 Conclusions and Future Work
	References

	Leveraging DTrace for Runtime Verification
	1 Introduction
	2 DTrace
	3 Design of graphviz2dtrace
	4 Case Studies
	4.1 Verifying a Single Process Program
	4.2 Verifying Interactions Between Programs
	4.3 Performance

	5 Conclusion and Future Work
	References

	Finite-Trace Linear Temporal Logic: Coinductive Completeness
	1 Introduction
	2 Preliminaries
	3 Finite-Trace LTL: Syntax and Semantics
	4 Relationship to Infinite-Trace LTL
	5 Complete Atom Traces
	6 Proof System
	7 Completeness
	8 Conclusion
	References

	Wireless Protocol Validation Under Uncertainty
	1 Introduction
	2 Background and Motivating Example
	3 Prerequisites and Problem Statement
	3.1 Packet, Trace and Monitor State Machine
	3.2 Mutation Trace
	3.3 Problem Statement

	4 Validation Framework
	4.1 Augmented State Machine
	4.2 Problem Hardness
	4.3 Searching Strategies
	4.4 Pruning Heuristics

	5 Case Studies
	5.1 802.11 Data Transmission
	5.2 ARF Rate Control Algorithm

	6 Related Work
	7 Conclusions
	References

	Dynamic Determinacy Race Detection for Task Parallelism with Futures
	1 Introduction
	2 Programming Model
	3 Data Races and Determinacy
	4 Determinacy Race Detection Algorithm
	4.1 Dynamic Task Reachability Graph
	4.2 Shadow Memory
	4.3 Algorithm

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Runtime Monitoring for Concurrent Systems
	1 Introduction
	2 Related Work
	3 Introduction to CSPE
	3.1 Motivating Example
	3.2 CSPE Syntax
	3.3 Comparison with QEA

	4 Formal Semantics
	5 Implementation
	6 Benchmark
	7 Application: Stracematch
	8 Conclusion
	References

	Decision-Theoretic Monitoring of Cyber-Physical Systems
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Definitions and Notation

	3 Decision Theoretic Monitoring
	4 POMDP-Monitor Design
	4.1 POMDP-Monitor Rewards
	4.2 POMDP-Monitor Policy

	5 Experimental Evaluation
	5.1 Example
	5.2 Results

	6 Conclusions
	References

	Precision, Recall, and Sensitivity of Monitoring Partially Synchronous Distributed Systems
	1 Introduction
	2 System Model
	3 Precision and Sensitivity of Asynchronous Monitors
	3.1 Analytical Model
	3.2 Simulation Setup
	3.3 Sensitivity for Point-Based Predicates

	4 Precision, Recall, and Sensitivity of Partially Synchronous Monitors
	4.1 Analytical Model and Its Validation with Simulation Results

	5 Related Work
	6 Conclusion
	References

	Short Papers
	Falsification of Conditional Safety Properties for Cyber-Physical Systems with Gaussian Process Regression
	1 Introduction
	1.1 Falsification
	1.2 Robustness Guided Falsification
	1.3 Our Motivation: Falsification of Conditional Safety Property

	2 Signal Temporal Logic (STL)
	3 Gaussian Process Upper Confidence Bound (GP-UCB)
	4 Our Algorithm: GP-UCB with Domain Estimation
	5 Experiments
	6 Conclusion
	References

	Reactive Property Monitoring of Hybrid Systems with Aggregation
	1 Introduction
	2 Signals
	3 Aggregation Operator
	4 On-Line Monitoring
	5 Conclusion and Future Works
	References

	Integration of Runtime Verification into Metamodeling for Simulation and Code Generation (Position Paper)
	1 Introduction
	2 Background
	3 Combining RV and DSMLs
	3.1 Example of Behavioural DSML
	3.2 Linking a DSML with Temporal Properties

	4 Conclusion and Outlook
	References

	Applying Runtime Monitoring for Automotive Electronic Development
	1 Introduction
	2 Related Work
	3 Industrial Use Case
	3.1 Use Case 1: Runtime Monitors in Simulation
	3.2 Use Case 2: Runtime Monitors for Lab Evaluation

	4 Case Study: Automotive Sensor Interface
	5 Conclusion
	References

	Regular Tool Papers
	A Monitoring Tool for a Branching-Time Logic
	1 Introduction
	2 Preliminaries
	3 Refining the Monitor Synthesis
	4 Implementation
	5 Conclusion
	References

	SMEDL: Combining Synchronous and Asynchronous Monitoring
	1 Introduction
	2 Overview of SMEDL
	2.1 SMEDL Concepts
	2.2 Brief Description of the Language

	3 Tool Implementation
	4 Explorer: A Case Study
	5 Discussion and Conclusions
	References

	Tool Exhibition Papers
	Runtime Visualization and Verification in JIVE
	1 Introduction and Jive Overview
	2 Runtime Models: Visualization and Verification
	3 Conclusions and Future Work
	References

	An Overview of MarQ
	1 Introduction
	2 Quantified Event Automata
	3 Using MarQ
	3.1 Creating QEAs and Monitors
	3.2 Monitoring a Trace Offline
	3.3 Monitoring Online via AspectJ

	4 Performance
	5 Conclusion
	References

	Runtime Analysis with R2U2: A Tool Exhibition Report
	1 Introduction and Tool Overview
	2 Tool Architecture
	3 Examples and Applications
	4 Summary
	References

	Author Index

