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Abstract. We propose a novel approach for automatic segmentation of
anatomical structures on 3D CT images by voting from a fully convolutional
network (FCN), which accomplishes an end-to-end, voxel-wise multiple-class
classification to map each voxel in a CT image directly to an anatomical label.
The proposed method simplifies the segmentation of the anatomical structures
(including multiple organs) in a CT image (generally in 3D) to majority voting
for the semantic segmentation of multiple 2D slices drawn from different
viewpoints with redundancy. An FCN consisting of “convolution” and
“de-convolution” parts is trained and re-used for the 2D semantic image seg-
mentation of different slices of CT scans. All of the procedures are integrated
into a simple and compact all-in-one network, which can segment complicated
structures on differently sized CT images that cover arbitrary CT scan regions
without any adjustment. We applied the proposed method to segment a wide
range of anatomical structures that consisted of 19 types of targets in the human
torso, including all the major organs. A database consisting of 240 3D CT scans
and a humanly annotated ground truth was used for training and testing. The
results showed that the target regions for the entire set of CT test scans were
segmented with acceptable accuracies (89 % of total voxels were labeled cor-
rectly) against the human annotations. The experimental results showed better
efficiency, generality, and flexibility of this end-to-end learning approach on CT
image segmentations comparing to conventional methods guided by human
expertise.

Keywords: CT images � Anatomical structure segmentation � Fully
convolutional network (FCN) � 3D majority voting � End-to-end learning

1 Introduction

Three-dimensional (3D) computerized tomography (CT) images are important resources
that provide useful internal information about the human body to support diagnosis,
surgery, and therapy [1]. Fully automatic image segmentation is a fundamental part of
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the applications based on 3D CT images by mapping the physical image signal to a
useful abstraction. Conventional approaches to CT image segmentation usually try to
transfer human knowledge directly to a processing pipeline, including numerous
hand-crafted signal processing algorithms and image features [2–5]. In order to further
improve the accuracy and robustness of image segmentation, we need to be able to
handle a larger variety of ambiguous image appearances, shapes, and relationships of
anatomical structures. It is difficult to achieve this goal by defining and considering
human knowledge and rules explicitly. Instead, a data-drive approach using big image
data—such as a deep convolutional neural network (deep CNN)—is expected to be
better for solving this segmentation problem.

Recently, several studies were reported that applied deep CNNs to medical image
analysis. Many of these used deep CNNs for lesion detection or classification [6, 7].
Studies of this type usually divide CT images into numerous small 2D/3D patches at
different locations, and then classify these patches into multiple pre-defined categories.
Deep CNNs are used to learn a set of optimized image features (sometimes combined
with a classifier) to achieve the best classification rate for these image patches. Simi-
larly, deep CNNs have also been embedded into conventional organ-segmentation
processes to reduce the FPs in the segmentation results or to predict the likelihoods of
the image patches [8–10]. However, the anatomical segmentation of CT images over a
wide region of the human body is still challenging because of the image appearance
similarities between different structures, as well as the difficulty of ensuring global
spatial consistency in the labeling of patches in different CT cases.

This paper proposes a novel approach based on deep CNNs that naturally imitate the
thought processes of radiologists during CT image interpretation for image segmenta-
tion. Our approach models CT image segmentation in a way that can best be described as
“multiple 2D proposals with a 3D integration.” This is very similar to the way that a
radiologist interprets a CT scan as many 2D sections, and then reconstructs the 3D
anatomical structure as a mental image. Unlike previous work on medical image seg-
mentation that labels each voxel/pixel by a classification based on its neighborhood
information (i.e., either an image patch or a “super-pixel”) [8–10], our work uses rich
information from the entire 2D section to directly predict complex structures (multiple
labels on images). Furthermore, the proposed approach is based on an end-to-end
learning without using any conventional image-processing algorithms such as smooth-
ing, filtering, and level-set methods.

2 Methods

2.1 Overview

As shown in Fig. 1, the input is a 3D CT case (the method can also handle a 2D case,
which can be treated as a degenerate 3D case), and the output is a label map of the same
size and dimension, in which the labels are a pre-defined set of anatomical structures.
Our segmentation process is repeated to sample 2D sections from the CT case, pass
them to a fully conventional network (FCN) [11] for 2D image segmentation, and stack
the 2D labeled results back into 3D. Finally, the anatomical structure label at each
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voxel is decided based on majority voting at the voxel. The core part of our seg-
mentation is an FCN that is used for the anatomical segmentation of the 2D sections.
This FCN is trained based on a set of CT cases, with the human annotations as the
ground truth. All of the processing steps of our CT image segmentation are integrated
into an all-in-one network under a simple architecture with a global optimization.

2.2 3D-to-2D Image Sampling and 2D-to-3D Label Voting

In the proposed approach, we decompose a CT case (a 3D matrix, in general) into
numerous sections (2D matrices) with different orientations, segment each 2D section,
and finally, assemble the outputs of the segmentation (labeled 2D maps) back into 3D.
Specifically, each voxel in a CT case (a 3D matrix) can lie on different 2D sections that
pass through the voxel with different orientations. Our idea is to use the rich image
information of the entire 2D section to predict the anatomical label of this voxel, and to
increase the robustness and accuracy by redundantly labeling this voxel on multiple 2D
sections with different orientations. In this work, we select all the 2D sections in three
orthogonal directions (axial, sagittal, and coronal-body); this ensures that each voxel in
a 3D case is located on three 2D CT sections.

After the 2D image segmentation, each voxel is redundantly annotated three times
from these three 2D CT sections. The annotated results for each voxel should ideally be
identical, but may be different in practice because of mislabeling during the 2D image
segmentation. A label fusion by majority voting for the three labels is then introduced
to improve the stability and accuracy of the final decision. Furthermore, a prior for each
organ type (label) is estimated by calculating voxel appearance frequency of the organ
region within total image based on training samples. In the case of no consensus
between three labels during the majority voting process, our method simply selects the
label with the biggest prior as the output.

Fig. 1. Pipeline of proposed anatomical structure segmentation for 3D CT scan. See Fig. 2 for
the details of FCN structure.

Three-Dimensional CT Image Segmentation 113



2.3 FCN-Based 2D Image Segmentation via Convolution
and de-Convolution Networks

We use an FCN for semantic segmentation in each 2D CT slice by labeling each pixel.
Convolutional networks are constructed using a series of connected basic components
(convolution, pooling, and activation functions) with translation invariance that
depends only on the relative spatial coordinates. Each component acts as a nonlinear
filter that operates (e.g., by matrix multiplication for convolution or maximum pooling)
on the local input image, and the whole network computes a general nonlinear trans-
formation from the input image. These features of the convolutional network provide
the capability to adapt naturally to an input image of any size and any scan range of the
human body, producing an output with the corresponding spatial dimensions.

Our convolutional network is based on the VGG16 net structure (16 layers of 3 × 3
convolution interleaved with maximum pooling plus 3 fully connected layers) [12], but
with a change in the VGG16 architecture by replacing its fully connected layers (FC6
and 7 in Fig. 2) with convolutional layers (Conv 6 and 7 in Fig. 2). Its final fully
connected classifier layer (FC 8 in Fig. 2) is then changed to a 1 × 1 convolution layer
(Conv 8 in Fig. 2) whose channel dimension is fixed at the number of labels (the total
number of segmentation targets was 20 in this work, including the background). This
network is further expanded by docking a de-convolution network (the right-hand side
in Fig. 2). Here, we use idea of the de-convolution in [11], and reinforce the network
structure by adding five de-convolution layers, each of which consists of up-sampling,
convolution, and crop (summation) layers as shown in Fig. 2.

FCN training: The proposed network (both convolution and de-convolution layers) is
trained with numerous CT cases of humanly annotated anatomical structures. All of the
2D CT sections (corresponding to the label maps) along the three body orientations are
shuffled, and used to train the FCN. The training process repeats feed-forward com-
putation and back-propagation to minimize the loss function, which is defined as the
sum of the pixel-wise losses between the network prediction and the label map
annotated by the human experts. The gradients of the loss are propagated from the end
to the start of the network, and the method of stochastic gradient descent with
momentum is used to refine the parameters of each layer.

The FCN is trained sequentially by adding de-convolution layers [11]. To begin
with, a coarse prediction (by a 32-pixel stride) is trained for the modified VGG16
network with one de-convolution layer (called FCN32s). A finer training is then added
after adding one further de-convolution layer at the end of the network. This is done by
using skips that combine the final prediction layer with a lower layer with a finer stride
in the modified VGG16 network. This fine-training is repeated with the growth of the
network layers to build FCN16s, 8s, 4s, and 2s which are trained from the predictions
of 16, 8, 4, 2 strides on the CT images, respectively. The output of FCN 2s acts as the
2D segmentation result.

2D CT segmentation using trained FCN: The density resolution of the CT images is
reduced from 12 to 8 bits using linear interpolation. The trained FCN is then applied to
each 2D section independently, and each pixel is labeled automatically. The labels from
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each 2D section are then projected back to their original 3D locations for the final
vote-based labeling, as described above.

3 Experiment and Results

Our experiment used a CT image database that was produced and shared by a research
project entitled “Computational Anatomy [13]”. This database included 640 3D vol-
umetric CT scans from 200 patients at Tokushima University Hospital. The anatomical
ground truth (a maximum of 19 labels that included Heart, right/left Lung, Aorta,
Esophagus, Liver, Gallbladder, Stomach and Duodenum (lumen and contents), Spleen,

Fig. 2. Semantic image segmentation of 2D CT slice using fully convolutional network
(FCN) [11]. Conv: convolution, Deconv: deconvolution, and FC: fully connected.
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left/right Kidney, Inferior Vein Cava, region of Portal Vein, Splenic Vein, and Superior
Mesenteric Vein, Pancreas, Uterus, Prostate, and Bladder) in 240 CT scans was also
distributed with the database. Our experimental study used all of the 240 ground-truth
CT scans, comprising 89 torso, 17 chest, 114 abdomen, and 20 abdomen-with-pelvis
scans. Furthermore, our research work was conducted with the approval of the Insti-
tutional Review Boards at Gifu and Tokushima Universities.

We picked 10 CT scans at random as the test samples, using the remaining 230 CT
scans for training. As previously mentioned, we took 2D sections along the axial,
sagittal, and coronal body directions. For the training samples, we obtained a dataset of
84,823 2D images with different sizes (width: 512 pixels; height: 80–1141 pixels). We
trained a single FCN based on the ground-truth labels of the 19 target regions.
Stochastic gradient descent (SGD) with momentum was used for the optimization.
A mini-batch size of 20 images, learning rate of 10−4, momentum of 0.9, and weight
decay of 2−4 were used as the training parameters. All the 2D images were used directly
as the inputs for FCN training, without any patch sampling.

We tested the proposed FCN network (Fig. 1) using 10 CT cases that were not used
in the FCN training. An example of the segmentation result for a 3D CT case covering
the human torso is shown in Fig. 3. The accuracy of the segmentation was evaluated
per organ type and per image. We measured the intersection over union (IU) (also
known as the Jaccard similarity coefficient) between the segmentation result and the
ground truth. Because each CT case may contain different anatomical structures—with
the information about these unknown before the segmentation—we performed a
comprehensive evaluation of multiple segmentation results for all the images in the test
dataset by considering the variance of the target numbers and volume. Two measures
(voxel accuracy: true positive for multiple label prediction on all voxels in a CT case;
frequency-weighted IU: mean value of IUs that normalized by target volumes and
numbers in a CT case [11]) were employed for the evaluations. The evaluation results

Fig. 3. Left: example of segmentation in 3D CT case, with segmented regions labeled with
different colors for one 2D CT slice and 3D visualization based on surface-rendering method.
Right: corresponding ground truth segmentation.
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for the voxel accuracy, frequency-weighted IU were 0.89 and 0.84, respectively, when
averaged over all the segmentation results of the test dataset. These results show that
89 % of the voxels within the anatomical structures (constructed using multiple target
regions) were labeled correctly, with a mean overlap ratio of 84 % for 19 target regions
in the test dataset. The mean IU values in each organ type are listed in Table 1 for both
training and test data.

4 Discussion

We found that the target organs were recognized and extracted correctly in all the test
CT images, except for oversights of the portal vein, splenic vein, and superior
mesenteric vein in two CT cases. Because our segmentation targets covered a wide
range of shapes, volumes, and sizes, either with or without contrast enhancement, and
at different locations in the human body, these experimental results demonstrated the
potential capability of our approach to recognize whole anatomical structures appearing
in CT images. The IUs of the organs with larger volumes (e.g., liver: 0.91, heart: 0.87)
were comparable to the accuracies reported from the previous state-of-the-art methods

Table 1. Accuracy evaluations in terms of mean value of IUs per target type between
segmentation results of FCN-8s and ground truth in 230 training and 10 test CT scans after
voting in 3D [14].

Target name Mean value of IUs
Training samples
(230)

Test samples
(10)

Right Lung 0.92 0.87
Left Lung 0.91 0.88
Heart 0.87 0.87
Aorta 0.72 0.63
Esophagus 0.18 0.27
Liver 0.91 0.91
Gallbladder 0.58 0.48
Stomach and Duodenum (2nd pos.) 0.48 0.43
Stomach and Duodenum Lumen 0.59 0.61
Contents inside of Stomach and Duodenum 0.21 0.10
Spleen 0.85 0.86
Right Kidney 0.85 0.86
Left Kidney 0.85 0.84
Inferior Vena Cava 0.56 0.51
Portal Vein, Splenic Vein, and Superior
Mesenteric Vein

0.32 0.03

Pancreas 0.48 0.45
Uterus 0.23 0.09
Prostate 0.48 0.35
Bladder 0.67 0.72
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[2–5]. For some smaller organs (e.g., gallbladder) or line structures (e.g., portal vein,
splenic vein, and superior mesenteric vein) that have not been reported in previous
work, our segmentation did not show particularly high IUs, but this performance was
deemed reasonable because the IU tends to be lower for those organs with smaller
volumes. The physical CT image resolution is the major cause of this limited perfor-
mance, rather than the segmentation method. Our evaluation showed that the average
segmentation accuracy of all the targets over all the test CT images was approximately
84 % in terms of the frequency weighted IUs. The segmentation result of each
deconvolution layer (FCN 32 s to FCN 2 s) was also investigated. We confirmed the
frequency weighted IUs were monotonically increasing (about 0.16, 0.03 and 0.01)
from FCN 32s, 16s, 8s and 4s, and no further improvement was observed by FCN 2s.
This result showed diminishing returns of gradient descent from the training stage of
FCN 8s, which was also mentioned in [11]. From experimental results, we see that our
approach can recognize and extract all types of major organs simultaneously, achieving
a reasonable accuracy according to the organ volume in the CT images. Furthermore,
our approach can deal automatically with segmentation in 2D or 3D CT images with a
free scan range (chest, abdominal, whole body region, etc.), which was impossible in
previous work [2–5].

Our segmentation process has a high computational efficiency because of its simple
structure and GPU-based implementation. The segmentation of one 2D CT slice takes
approximately 30 ms (roughly 1 min for a 3D CT scan with 512 slices) when using the
Caffe software package [15] and CUDA Library on a GPU (NVIDIA GeForce
TITAN-X with 12 GB of memory). The efficiency in terms of system development and
improvement is much better than that of previous work that attempted to incorporate
human specialist experience into complex algorithms for segmenting different organs.
Furthermore, neither the target organ type, number of organs within the image, nor
image size limits the CT images that are used for the training process.

For the future work, network performance by using different training parameters as
well as cost functions needs to be investigated, especially for de-convolution network.
We plan to expand the range of 3D voting process from more than three directions of
2D image sections to improve the segmentation accuracy. Furthermore, bounding box
of each organ [16] will be introduced into the network to overcome the insufficient
image resolution for segmenting small-size of organ types. A comparison against 3D
CNNs will also be investigated.

5 Conclusions

We proposed a novel approach for the automatic segmentation of anatomical structures
(multiple organs and interesting regions) in CT images, by majority voting the results
from a fully convolutional network. This approach was applied to segment 19 types of
targets in 3D CT cases, demonstrating highly promising results. Our work is the first to
tackle anatomical segmentation (with a maximum of 19 targets) on scale-free CT scans
(both 2D and 3D images) through a deep CNN. Compared with previous work [2–5,
8–10], the novelty and advantages of our study are as follows. (1) Our approach uses an
end-to-end, voxel-to-voxel labeling, with a global optimization of parameters, which
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has the advantage of better performance and flexibility in accommodating the large
variety of anatomical structures in different CT cases. (2) It can automatically learn a
set of image features to represent all organ types collectively, using an “all-in-one”
architecture (a simple structure for both model training and implementation) for image
segmentation. This approach leads to more robust image segmentation that is easier to
implement and extend. Image segmentation using our approach has more advantages in
terms of usability (it can be used to segment any type of organ), adaptability (it can
handle 2D or 3D CT images over any scan range), and efficiency (it is much easier to
implement and extend) than those of previous work.
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