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Preface: DLMIA 2016

After the success of the First Deep Learning in Medical Image Analysis (DLMIA)
Workshop, held with MICCAI 2015, where we welcomed hundreds of attendees, we
present the proceedings of the Second DLMIA Workshop. Deep learning methods have
experienced an immense growth in interest from the medical image analysis commu-
nity because of their ability to process very large training sets, to transfer learned
features between different databases, and to analyze multimodal data. DLMIA is a
workshop dedicated to the presentation of work focused on the design and use of deep
learning methods in medical image analysis applications. We believe that this work-
shop is setting the trends and identifying the challenges of the use of deep learning
methods in medical image analysis. For the keynote talks, we invited Prof. Dinggang
Shen from the Department of Radiology and BRIC at UNC-Chapel Hill, and Prof.
Nassir Navab from the Technische Universität München, who are two prominent
researchers in the field of deep learning in medical image analysis. We would like to
acknowledge the financial support provided by the Butterfly Network for the realization
of these keynote talks.

The first call for papers for the Second DLMIA Workshop was released on April 1,
2016, and the last call was on May 24, 2016, with the paper deadline set to July 10,
2016. The submission site of DLMIA received 46 papers registrations, from which 42
papers turned into full paper submissions, where each submission was reviewed by at
least three reviewers. The chairs decided to select 21 out of the 42 submissions, based on
the scores and comments made by the reviewers (i.e., a 50 % acceptance rate). The top
ten papers with the best reviews were selected for oral presentations and the remaining
11 accepted papers had poster presentations. Finally, the workshop chairs voted for the
best paper of the workshop based on the reviewers’ scores and comments, and the best
paper prize of the Second DLMIA Workshop went to Michal Drozdzal, Eugene Vor-
ontsov, Gabriel Chartrand, Samuel Kadoury, and Christopher Pal for the paper “The
Importance of Skip Connections in Biomedical Image Segmentation.” Nvidia gener-
ously offered to sponsor the Best Paper Award. Finally, we would like to acknowledge
the support from the Australian Research Council for the realization of this workshop
(discovery project DP140102794 and ARC Future Fellowship FT110100623). We
would also like to thank the reviewers of DLMIA.

August 2016 Gustavo Carneiro
João Manuel R.S. Tavares

Andrew Bradley
João Paulo Papa

Jacinto C. Nascimento
Jaime S. Cardoso

Vasileios Belagiannis
Zhi Lu



Preface: LABELS 2016

The First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label
Synthesis (LABELS) was held during the MICCAI conference on October 21, 2016, in
Athens, Greece. With this event, we intended to raise awareness of the importance of
training data acquisition in the context of biomedical problems and to promote the
development of algorithms that focus on assisting the annotation process.

Our call for papers resulted in ten submissions. Each of them was reviewed in a
single-blind fashion by at least three members of the Program Committee. Seven sub-
missions were eventually accepted for a poster presentation at the conference venue and
are included in this volume. Following the recommendations of the reviewers, three
of these submissions were additionally invited for an oral presentation. We are very
enthusiastic about the overall diversity of the final program, which includes topics such
as crowdsourcing methods, active learning, transfer learning, semi-supervised learning,
or modeling of label uncertainty. In addition to the contribution of the workshop par-
ticipants, we had the pleasure to invite two keynote speakers who proposed further
developments on these topics: Marco Loog from the Technical University of Delft (The
Netherlands) and Pascal Fua from the Ecole Polytechnique Federale de Lausanne
(Switzerland). We would like to thank them again for their insights and the scientific
exchanges fostered by their talks.

To conclude, we would like to thank the reviewers for their contributions and the
MICCAI Organizing Committee for encouraging and making possible the holding of
this event.

August 2016 Diana Mateus
Loïc Peter

Gustavo Carneiro
Marco Loog

Julien Cornebise
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HEp-2 Cell Classification Using K-Support
Spatial Pooling in Deep CNNs

Xian-Hua Han1(B), Jianmei Lei2, and Yen-Wei Chen3

1 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
han-xhua@aist.go.jp

2 State Key Laboratory of Vehicle Noise Vibration and Safe Technology,
Chongqing, China

leijianmei@caeri.com.cn
3 Ritsumeikan Univeristy, Kusatsu, Shiga, Japan

chen@is.ritsumei.ac.jp

Abstract. This study addresses the recognition problem of the HEp-2
cell using indirect immunofluorescent (IIF) image analysis, which can facil-
itate the diagnosis of many autoimmune diseases by finding antibodies
in the patient serum. Recently, a lot of automatic HEp-2 cell classifica-
tion strategies including both shallow and deep methods have been devel-
oped, wherein the deep Convolutional Neural Networks (CNNs) have been
proven to achieve impressive performance. However, the deep CNNs in
general requires a fixed size of image as the input. In order to conquer the
limitation of the fixed size problem, a spatial pyramid pooling (SPP) strat-
egy has been proposed in general object recognition and detection. The
SPP-net usually exploit max pooling strategies for aggregating all acti-
vated status of a specific neuron in a predefined spatial region by only tak-
ing the maximum activation, which achieved superior performance com-
pared with mean pooling strategy in the traditional state-of-the-art cod-
ing methods such as sparse coding, linear locality-constrained coding and
so on. However, the max pooling strategy in SPP-net only retains the
strongest activated pattern, and would completely ignore the frequency:
an important signature for identifying different types of images, of the acti-
vated patterns. Therefore, this study explores a generalized spatial pooling
strategy, called K-support spatial pooling, in deep CNNs by integrating
not only the maximum activated magnitude but also the response magni-
tude of the relatively activated patterns of a specific neuron together. This
proposed K-support spatial pooling strategy in deep CNNs combines the
popularly applied mean and max pooling methods, and then avoid awfully
emphasizing of the maximum activation but preferring a group of activa-
tions in a supported region. The deep CNNs with the proposed K-support
spatial pooling is applied for HEp-2 cell classification, and achieve promis-
ing performance compared with the state-of-the-art approaches.

1 Introduction

Indirect immunofluorescence (IIF) is widely used as a common methodology to
reveal the presence of autoimmune diseases by finding antibodies in the patient
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-46976-8 1
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serum. Since it is effective for diagnosing autoimmune diseases [1], the demand
for applying IIF image analysis in diagnostic tests is increasing. However, man-
ual analysis of IIF images not only leads to heavy burden to the physicians
but also subjectively results in the inconsistence across laboratories. Therefore,
automatic and reliable HEp-2 cell classification attract a lot of attentions in
the computer vision and machine learning fields. Many attempts to achieve the
automatic recognition of HEp-2 staining patterns have been made, which mainly
includes two procedures: feature extraction and classification. Most works devel-
oped recently [2–6] have focused on effective feature extraction, which greatly
affects the final performance of the HEp-2 cell classification. Perner et al. [2]
proposed the extraction of texture and statistical features for cell image rep-
resentation and then combined the extraction with a decision tree model for
HEp-2 cell image classification. In the first HEp-2 cells classification contest
at ICIP2012, the LBP-based descriptor, rotation invariant co-occurrence LBP
(RICLBP), was proposed for cell image representation, and achieved promising
HEp-2 cell classification performance [3]. In the second HEp-2 cells classifica-
tion contest at ICIP2013, Qi et al. proposed a pairwise rotation invariant co-
occurrence LBP (PRICoLBP) [4], and combined it with Bag-of-Features (BOF)
[5] of Sift descriptors [6] for achieving the best recognition results. The other
empirically selected hand-crafted features such as histogram of orientation [7],
shape index [8] and the statistical features like gray-level. Co-occurrence matrix
[9], gray-level size zone matrix [10] have also been developed for giving the com-
parable and acceptable performances. However, there has still large space for
improving the classification performance of HEp-2 cell.

Very recently, the deep learning framework [11–14], have achieved remarkable
success in different applications such as generic image classification and recogni-
tion, object detection and localization, natural language processing, and so on.
Compared with the traditional state-of-the-art methods such as BOW model in
image representation, MFCC in speech representation, deep framework can learn
the hierarchical features not only including low- and middle- level but also high-
level vision ones, and then obtain an end-to-end learned model, which achieved
outstanding performance with large-scale labeled dataset and have attracted
remarkable attention in both the academic and industrial communities. Therein,
deep convolutional neural networks (CNNs) are most popularly used framework,
and results in comparable or even better performance than human being on a
number of classification benchmarks [15–17]. Several works [18,19] applied deep
CNNs for HEp-2 cell classification, and achieved promising performances. Gao
et al. [18] exploited three convolutional layers combining two fully connecting lay-
ers for HEp-2 cell classification, while Li et al. explored extra cell images to train
the CNN model for cross-specimen analysis, which achieved much better results
than the utilization of the augmented dataset by only employing affine transfor-
mations. However, all the used deep CNNs, in general, needs a fixed size of image
as the input, which would cast the deformation and “artificial” effect on the raw
images and may reduce the recognition accuracy with the re-scaled images. In
order to solve the limitation of the fixed size of images, He et al. proposed a
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spatial pyramid pooling strategy in the CNNs for generic object classification
and detection, called SPP-net [20], which can deal with arbitrary larger size
than the fixed size to extract high-level image representation. The SPP-net can
in general improve classification performances for a variety of CNN architec-
tures on several image datasets such as the ImageNet 2012, Pascal VOC 2007
and Caltech101 datasets. The SPP-net usually exploit max pooling strategies
for aggregating all activated status of a specific neuron in a predefined spatial
region by only taking the maximum activation, which achieved superior perfor-
mance compared with mean pooling strategy in the traditional state-of-the-art
coding methods such as sparse coding, linear locality-constrained coding and so
on. However, the max pooling strategy in SPP-net only retains the strongest
activated pattern, and would completely ignore the frequency: an important sig-
nature for identifying different types of images, of the activated patterns. There-
fore, this study explores a generalized spatial pooling strategy, called K-support
spatial pooling, in deep CNNs by integrating not only the maximum activated
magnitude but also the response magnitude of the relatively activated patterns
of a specific neuron together. This proposed K-support spatial pooling strategy
in deep CNNs combines the popularly applied mean and max pooling methods,
and then avoid awfully emphasizing of the maximum activation but preferring
a group of activations in a supported region. The deep CNNs with the proposed
K-support spatial pooling is applied for HEp-2 cell classification, and achieve
promising performance compared with the state-of-the-art approaches.

2 The Deep CNNs with K-Support Spatial Pooling

In the image classification and object detection community, the most popularly
used deep CNN models are caffe reference model (denoted as CaffeNet) and
Alexnet, which generally include several convolutional layers following two fully
connected (fc) layers and an N-way softmax (fc) layer (N is the number of image
categories). The convolutional layers in the deep CNNs use the slide window
trick by convoluting their input with a much smaller size kernel than the input
size, and thus, in principle, there are no requirement for the fixed size of input
for these layers. However, the last two fc and the final output layers are fully con-
nected, and are mandatory to have a fixed size of input. This study implements
the HEp-2 cell classification based on CaffeNet model, and it is also possible to
be extended for other models with any architecture, In order to conquer the lim-
itation the fixed size problem, a spatial pyramid pooling strategy in the CNNs,
called SPP-net, has been proposed, which can deal with arbitrary larger size
than the fixed size to extract high-level image representation. In SPP-net, the
activations of the convolutional layer, also called feature maps, can considered
as the encoded coefficients similarly in BOW model using sparse coding, LLC,
and GMM on SIFT vectors or image patches, which can be pooled under the
global region or spatial pyramids for generating a fixed size of features. The
SPP-net analogously pooled the activations of the last convolutional layer in a
similar way with BOF model, and thus produce a fixed size output as image
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representation, which in turn can be used as the input of the fc layer. As we
know that the widely used pooling methods for aggregating the encoded coef-
ficient vectors in the traditional BOW model and the SPP-net are mean and
max strategies. Mean pooling aggregates all activated coefficients, which are the
coded coefficients of a pre-learned word in BOW model and the response output
of a neuron in CNN, in a defined region by taking the average value, while max
pooling aggregates these by taking the maximum value. In the vision community,
the max pooling combining the popularly used coding methods such as SC, LLC
manifests promising performance in a variant of image classification applications.
Then, SPP-net in general exploit max pooling strategy. However, the max pool-
ing strategy only retains the strongest activated pattern, and would completely
ignore the frequency: an important signature for identifying different types of
images, of the activated patterns. Therefore, this study explores a generalized
spatial pooling strategy in deep CNNs by integrating not only the maximum
activated magnitude but also the response magnitude of the relatively activated
patterns of a neuron in a spatial region together, also called K-support pooling.
This proposed generalized pooling strategy combines the popularly applied mean
and max pooling methods and can avoid awfully emphasizing of the maximum
activation but preferring a group of activations in a supported region.

Let us denote the activated output of the ith neuron (a convolutional kernel)
and the jth location in a convolutional layer as yi,j , we aim to aggregate all the
activated outputs of the ith neuron in the lth predefined region Φl for getting
the overall activation degree of this region as the following:

zΦl
i = f({yi,j}, j ∈ Φl) (1)

where zφl

i denotes the pooled activation of of the ith neuron in the region Φl.
We can design different transformation function f for aggregating the set of
activations into a indicating value for the lth region. The most simple one just
averages the activation of all locations in this region formulated as:

zΦl
i =

1
Nl

∑

j∈Φl

yi,j (2)

where Nl is location number in the lth region. The mean pooling strategy is
generally used in the original BOW model, which assigns a local feature only
to a nearest word, and thus produces the coded coefficients with only 1 or 0
value. It eventually creates the representative histogram of the learned words
for an image. Motivated by the visual biological study, the maximum activation
would be more related to human cortex response than the average one, and
can give translation-invariant visual representation. Therefore, the max pooling
strategy has widely used accompanied with SC, LLC in BOW model, and also
the SPP-net. In our scenario, the max pooling can be formulated as:

zΦl
i = max

yi,j

({yi,j}, j ∈ Φl) = yi,k, yi,k >= yi,j , k �= j, k, j ∈ Φl (3)

Max pooling takes maximum activated value of all locations in the defined
region as the overall activation degree, and then completely ignore how many
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Fig. 1. The used spatial pyramids for aggregating the activation from each divided
region.

locations are possibly activated. Figure 1 shows an example of two activation
maps. If we equably divided the activation maps into four regions by the blue
lines, and it is obvious the aggregated activation degree of the four regions would
same, as shown in the bottom of Fig. 1, since the only maximum values are taken.
However, from human being the two activation maps are considerably differ-
ent, where the activation degree should also account for the activation number.
Therefore, this study proposes a general spatial pooling strategy.

The proposed general spatial pooling firstly sorts the ith neuron’s activated
values of all locations from the large to small values in the defined region Φl as:

y′
i,j = sort{yi,j},with y′

i,1 >= y′
i,2 >= y′

i,3 >= · · · >= y′
i,Nl

, j ∈ Φl (4)

and then only retains the first K larger activations. The final activation degree of
the region is calculated by averaging the retained K-values, which is the mean of
the selected K-support locations, then named as K-support pooling. The formula
is formed as:

zΦl
i =

1
K

K∑

j=1

y′
i,j (5)

For each neuron, we repeat the above procedure, and produce the activa-
tion degrees of all neurons in a defined regions. For example, there are 256
neuron units (convolutional kernels) of each location (overall N ∗ N 2D-grid
locations, which is different according to the size of input images) in the fifth
convolutional layer of the CaffeNet, and the aggregated activation degree can
be calculated from the ones of N ∗ N locations with the global defined region
for each neuron unit. Then the final representation zΦl = [zΦl

1 , zΦl
2 , . . . , zΦl

256]
T is

a 256-dimensional vector. If we divide the 2D-grid activation maps into differ-
ent rectangle grid, such as in Fig. 1, which is general called spatial pyramids,
the activation vector can be extracted from all grid regions. The concatenated
vector z = [zφ1

T
, zφ2

T
, . . . , zφL

T ]T , where L is the total number of the divided
regions, can be computed for the final image representation.
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3 Experimental Results

We applied the deep CNNs with our proposed K-support spatial pooling strategy
to the open ICIP2013 HEp-2 dataset [21], which includes intermediate and posi-
tive intensity types. This HEp-2 dataset primarily include the following six stain-
ing patterns, with available image numbers for positive and intermediate inten-
sity types shown in parentheses, respectively, for each class: Homogeneous (1087,
1407); Speckled (1457, 1374); Nucleolar (934, 1664); Centromere(1387, 1364);
Golgi(943, 1265); NuMem (347, 377). There are over 10000 images, each show-
ing a single cell, obtained from 83 training IIF images by cropping the bounding
box of the cell. Example images for all six staining patterns of the positive and
intermediate intensity types are shown in the upper portion of Fig. 2.

Since we use the Caffenet architecture as our basic model of deep CNNs, and
then there are five convolutional layers. We consider the feature maps of the
third, fourth and fifth convolutional layers as the encoded vector maps like in
BOW model, and exploit a spatial pyramid pooling as in SPP-net but with the
proposed general spatial pooling strategy instead of the max one. Further, we
spatially divide the feature maps into four (2×2) equally grid regions adding the
center one and the global one as shown in Fig. 1. In the experiments, we ran-
domly divide the HEp-2 cell images in each class into five groups for positive and
intermediate types, respectively, and take four groups from all classes as train-
ing, the remainder for test. This procedure is iterated five times and the average
accuracy is calculated as the final performance measure. In our proposed general
spatial pooling strategy, there is a parameter K, which denotes the K locations
with the first K large activation values in the defined region. We set different K
to extract the deep image representation and simply apply SVM shallow model

(a) Positive type

(b) Intermediate type

Fig. 2. The sample images of HEp-2 cell.
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(a) Positive type

(b) Intermediate type

Fig. 3. The compared performances using the deep CNNs with different spatial pooling
strategyes.

for classification. The compared results on the three convolutional layers are
given in Fig. 3. From Fig. 3, it can be seen that our proposed pooling strategies
can improve the classification accuracies in different layers or at least achieve
the comparable results. Table 1 shows the compared classification accuracies by
our proposed approach without data augmentation, the CNNs w/o data aug-
mentation by Gao et al. [18], and the used features in [22], which manifest our
proposed approach can achieve better and comparable performance even with-
out data augmentation. Since [18] only learned a common classification model
for both positive and intermediate intensity types, the classification results [18]
in Table 1 are the accuracies for both types of intensity.

Table 1. The compared results using our proposed strategy, the used features in [22]
and the CNN framework in [18].

% GLRL SGLD Laws CNN [18] CNN+Augmentation [18] Our

Positive 84.91 90.81 97.90 89.04 97.24 98.41

Intermediate 49.96 58.45 90.49 * * 96.29
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4 Conclusions

This study presented a K-support spatial pooling strategy in deep CNNs for
HEp-2 cell classification. The conventional CNNs requires a fixed size of image
as input, which possibly leads to the structure deformation of the input image.
Therefore, SPP-net were proposed for dealing with arbitrary size of input images.
However, SPP-net usually exploit max pooling strategies for aggregating all acti-
vated status of a specific neuron in a predefined spatial region by only taking
the maximum activation, which only retains the strongest activated pattern,
and would completely ignore the frequency: an important signature for identi-
fying different types of images, of the activated patterns. Therefore, this study
explores a generalized spatial pooling strategy, called K-support spatial pooling,
in deep CNNs by integrating not only the maximum activated magnitude but
also the response magnitude of the relatively activated patterns of a specific
neuron together. The deep CNNs with the proposed K-support spatial pool-
ing is applied for HEp-2 cell classification, and achieve promising performance
compared with the state-of-the-art approaches.
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Abstract. We present a robust algorithm for organ localization from 3D
volumes in the presence of large anatomical and contextual variations.
The 3D spatial search space is decomposed into two components: slice
and pixel, both are modeled in 2D space. For each component, we adopt
different learning architectures to leverage respective modeling power on
global and local context at three orthogonal orientations. Unlike conven-
tional patch-based scanning schemes in learning-based object detection
algorithms, slice scanning along each orientation is applied, which signif-
icantly reduces the number of model evaluations. Object search evidence
obtained from three orientations and different learning architectures is
consolidated through fusion schemes to lead to the target organ location.
Experiments conducted using 499 patient CT body scans show promise
and robustness of the proposed approach.

1 Introduction

Automatic 3D organ localization is essential in a wide range of clinical applica-
tions. It provides seed points to initialize subsequent segmentation algorithms.
It is also useful for visual navigation, automatic windowing, semantic tagging,
and organ-based lesion grouping.

Accurate localization of organs still remains a challenging task. From the local
contextual perspective, the size, shape, and appearance of organs vary signifi-
cantly across patients, even more so when there are pathologies or prior surgeries.
Global context around each organ also varies significantly, although the context
within the entire field of view such as that among multiple anatomical organs
provides a cue for individual organ localization. For example, in the abdominal
region, organs such as the kidney can “float” around with large degrees of free-
dom, therefore leading to varying appearance context. Various sizes of field of
views and different body regions in clinical practice also increase the variation
of global appearance.

Data-driven learning-based approaches have shown success and been widely
deployed in object localization tasks. A typical search strategy in such meth-
ods uses a scanning window based scheme. A model/classifier is trained based
on annotations to determine likelihood of a patch (sub-volume) being the tar-
get object. During online testing, the classifier is applied to each sub-volume
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 12–20, 2016.
DOI: 10.1007/978-3-319-46976-8 2
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by scanning through the entire volume. Target location is calculated by con-
solidating evidence collected from all scanned patches. Conventional scanning
window patch-based approach is more suitable for capturing local appearance
variations given its limited field of view (voxels within the sub-volume), but not
global appearance variations. Many methods have been proposed in this para-
digm; some focus on improving the classifiers, while others improve the scanning
strategy [11], or integrates other modeling methods such as conditional random
field [3] and recursive context propagation network [12].

Another category of method is based on long range regression and voting.
In [1], a regression forest is trained to find the non-linear mapping from voxels to
the desired anatomy location, which extracts features globally from the volume,
and is shown to be effective for resolving local ambiguities. However, it has been
shown in [8] that the precision of such regression methods is not as accurate as
the patch based classification methods due to large context variations.

We propose a framework which models both local and global context with-
out using patch-based scanning schemes, where two emerging learning architec-
tures are exploited to complement each other. We use the convolution neural
network (CNN) [7] to capture global context [13], and the fully convolutional
network (FCN) [10] to capture local context. The local context focuses on the
localization precision, while the global context helps improve robustness such as
resolving ambiguities and eliminating false detections. The global context and
local appearance information are integrated through a probabilistic graphical
model, and we call such a learning scheme as the dual learning architecture. We
show in our experiments that, with explicitly modeling and fusion of both local
and global contextual information, our approach is more robust and achieves a
higher accuracy compared to the state-of-the-art algorithms. In addition to the
object location, a significant amount of positive seeds (within the target organ)
are generated, which are useful for subsequent processes such as segmentation
using graph-cut methods. Furthermore, because both CNN and FCN support
multi-label tasks, our algorithm can be generalized to simultaneous multi-organ
localization with limited extra run-time computational cost.

2 Methodology

2.1 Context Modeling with Dual Learning Architectures

The organ localization task is formulated as a probabilistic graphical model [6],
as shown in Fig. 1. Random variable I denotes a 2D image, E represents the
existence (E = 1) or absence (E = 0) of the organ of interest within image I, and
L is the organ location within image I. Both E and L are hidden variables,
while I is an observed variable. The joint distribution factors according to the
probabilistic graphical model as follows:

P (I, E, L) = P (L|I, E)P (E|I)P (I). (1)
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Fig. 1. Probabilistic graphical models describing the relationship between image I,
the existence (E) of the organ in the image, and the location (L) of the organ in the
image. From left to right: Global image classification (slice-level), local (pixel-level)
classification, and the proposed global-local image classification.

Our goal is to query the organ location given the image, i.e., P (L|I). This
can be expressed as

P (L|I)=P (L, I)/P (I) =
∑

E

P (I, E, L)/P (I)=
∑

E

P (L|I, E)P (E|I)P (I)/P (I)

=
∑

E

P (L|I, E)P (E|I).
(2)

By definition, P (L|I, E = 0) = 0 for all valid locations, and P (L = empty|I,
E = 0) = 1. Therefore

P (L|I) = P (L|I, E = 1)P (E = 1|I) (3)

for all valid pixel locations, and

P (L = empty|I)
= P (L = empty|I, E = 1)P (E = 1|I) + P (L = empty|I, E = 0)P (E = 0|I)
= P (L = empty|I, E = 0)P (E = 0|I).

(4)
The probability distribution function P (E = 0 or 1|I) poses an image cate-

gorization problem. This function is depicted in Fig. 1(a). This was often imple-
mented by extracting global image features and training a classifier on those
features. In recent years, deep Neural Networks have shown superior perfor-
mance in this task. In this paper, we use the Convolutional Neural Network
(CNN) [7].

The probability distribution function P (L|I, E = 1) presents a pixel classifi-
cation task. In contrast to P (E|I), which is a global image classification problem,
P (L|I, E = 1) is a local pixel or patch classification problem, where the patch is
centered at pixel location L. One could again use a CNN to classify each patch,
but in recent literature it has been shown that the fully convolutional networks
(FCN) demonstrate advantages over the CNNs for pixel-level classification. We
therefore adopt the FCN for this local image classification problem. To the best
of our knowledge, this is the first time an FCN is used in conjunction with a CNN
in a “dual learning” architecture for solving the global-local pixel classification
problem.
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While the FCN is described above as a local pixel classifier, it has been used in
the literature to classify pixels into multi-label masks, in which the “background”
class is one of the possible labels. This means, we could have used directly the
FCN to classify all the pixels without using the global CNN classifier at all.
However, as we will show in the experiments, there are significant advantages of
combining the FCN with the CNN, where FCN’s limited receptive field [9,15]
is compensated by CNNs’ response. This is also evident from the above prob-
abilistic formulation: a FCN-only pixel classifier would model directly P (L|I)
as shown in Fig. 1(b) without considering the hidden variable E. Therefore, our
global-local model poses a stronger assumption than a typically FCN-only classi-
fier, which does not have knowledge of the presence of the organ. For multi-organ
localization tasks [4], the proposed method can be extended through multi-label
training with the same architectures.

Compared with patch-based sub-window scanning in conventional object
localization, in our method, one entire slice (not a sub-patch) is used as one
input sample to either CNN and FCN. During online testing on a given volume,
for each CNN or FCN model, the total number of image samples that are passed
through CNN/FCN for evaluation is the number of slices along one orientation.

2.2 Cross-Sectional Fusion and Clustering

The dual learning architectures with respective models operate along each of
the three orthogonal orientations, i.e., axial, sagittal, and coronal, resulting
in three volumetric probability/score maps. These maps are generated from
different orientations with different image context and therefore provide com-
plementary information towards the target localization decision making. Typi-
cal ensemble schemes or information fusion approaches can be applied, such as
majority voting, or sum rule [5], to lead to a consolidated score for each voxel.
We call this scheme cross-sectional fusion.

After the consolidated probability/score map is computed, three-dimensional
connected component analysis is conducted. The centroid of the largest cluster
is computed as the estimated object location.

3 Experiments

Among all the organs with available expert annotations, the right kidney is one
of the most challenging organs [2]. We use the right kidney as an exemplar case
in our experiments. We have collected 450 patient CT body scans, one scan from
each patient. For each scan, right kidney was manually delineated. At the train-
ing stage, 405 scans were selected at random for training and the remaining 45
scans (10 %) for validation. Our training data covers large variations in popu-
lations, contrast phases, scanning ranges, and pathologies. The axial slice reso-
lution ranges between 0.5 mm and 1.5 mm. The inter-slice distance varies from
0.5 mm to 7.0 mm. Scan coverage includes abdominal regions, but can extend
to head/neck and knees. After all models were trained, we collected another
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Fig. 2. Coronal slice samples in the test set. Note that the large context variations with
respect to the right kidney. Red cross indicates the right kidney location automatically
detected by the proposed method. (Color figure online)

49 patient CT scans from clinical sites for independent testing. Right kidney is
also manually delineated in these 49 test cases to compute quantitative mea-
surement for algorithm performance evaluation. Typical test scan samples are
provided in Fig. 2.

Each CT scan contains a stack of axial slices, which were used to reconstruct a
3D volume at an isotropic resolution of 2×2×2mm3. All the algorithms/models
in our subsequent experiments operate at this resolution. Three orthogonal ori-
entations (axial, sagittal, and coronal) are considered for cross-sectional analysis.
Only the right hand side of the body is considered in the experiments (train-
ing and testing) as the right kidney is the target object. The centroid of the
delineated right kidney was used as ground-truth location. A volumetric mask
was generated based on the annotations, where right kidney voxels are labeled

Table 1. Number of training images for each model.

Number of images Axial Sagittal Coronal

CNN 118245 42482 90559

FCN 41276 25938 27378
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as ones and all other background was labeled as zeros. This mask was used to
provide the labels for FCN training. For CNN training, a two-class classification
is defined, i.e., whether or not an image slice contains the right kidney.

Slice-level modeling (CNN): the AlexNet architecture [7], which contains 5
convolution layers and 3 fully connected layers, is adopted. One CNN model is

Table 2. Statistics of Euclidean distance from the automatic localization result to the
ground-truth position at 2mm resolution. Sum rule is applied in cross-sectional fusion.
CS: cross-sectional fusion.

Dist. (voxels) CS-(CNN+FCN) MSL CS-CNN CS-FCN

Mean 3.9 12.8 9.1 9.0

Std 4.7 10.7 11.4 23.0

Median 2.3 10.9 5.4 1.9

Fig. 3. Euclidean distance between the calculated right kidney location and the ground-
truth location for each of the 49 test cases (horizontal axis is case index) in number
of voxels at the isotropic 2mm resolution. Negative distance (case 6 in Top) indicates
that the corresponding localization algorithm does not generate any detection results,
and the absolute distance value in this case is nominal for visualization purposes. Top:
comparison of the proposed method (blue) and MSL (yellow), where a red cross indi-
cates the localization result is out of the actual kidney boundary. Bottom: comparison
of the proposed method (blue), CNN only (green), and FCN only (yellow). Results of
CNN, FCN, and CNN+FCN are all calculated through cross-sectional fusion. (Color
figure online)
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Fig. 4. Example of model responses (color overlaid) from FCNs (a) and CNNs (b) after
cross-sectional fusion. Responses are presented after fusion across three orientations.
Each group contains one sagittal view and one coronal view. Red arrows indicate false
alarms detected by FCNs. CNNs response maps show inferior localization precision on
the same cluster. Combining both responses through fusion leads to successful right
kidney localization. (Color figure online)

trained for each cross-section orientation using the same learning architecture.
Pixel-level modeling (FCN): the VGG-FCN8s architecture [10] is adopted, which
is an end-to-end network with 7 levels of convolution layers, 5 pooling layers and
3 deconvolution layers. One FCN model is learned for each cross-section orien-
tation with the same network architecture. Table 1 lists the number of training
images/slices used for each model.

For comparison, we implemented a 3D patch-based scanning window app-
roach based on the method proposed by Zheng et al. [14], and applied it on
the same test set. We refer to their approach as marginal space learning (MSL).
Quantitative performance evaluation against the ground-truth is provided in
Table 2 and Fig. 3. Figure 4 presents an example to demonstrate complementary
information extraction from the dual learning architectures.

Although the focus of the proposed method is on organ localization, one
typical use case of organ localization is for organ segmentation. We evaluate the
impact of our kidney localization on the accuracy of kidney segmentation. As
the MSL method together with active shape models has shown to provide good
cardiac segmentation results [14], we adopt it for right kidney segmentation. Our
automatic localization led to similar segmentation error rates compared to using
the ground-truth locations. Using our automatic localization results as input
for segmentation, the [mean, std., median, 80 percentile] of point-to-mesh errors
(used in [14]) in mm are [2.32, 1.23, 1.91, 2.22], while the ground-truth locations
led to error rates of [2.00, 0.48, 1.85, 2.20].
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4 Conclusions

We have presented a robust 3D organ localization algorithm. We approach the
3D localization task through cross-sectional 2D modeling, exploiting two learning
architectures that model various context for localizing the target organ. Con-
textual information extracted by the two learning schemes is complementary
and integrated for improved robustness. Because FCN and CNN are capable of
learning multiple targets/labels, our method can be extended for simultaneous
multi-organ localization. Although CT body scans are used in the experiments,
the proposed method is not limited to specific imaging modalities.
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Abstract. Accurate cell segmentation is vital for the development of
reliable microscopy image analysis methods. It is a very challenging prob-
lem due to low contrast, weak boundaries, and conjoined and overlapping
cells; producing many ambiguous regions, which lower the performance
of automated segmentation methods. Cell proposals provide an efficient
way of exploiting both spatial and temporal context, which can be very
helpful in many of these ambiguous regions. However, most proposal
based microscopy image analysis methods rely on fairly simple proposal
generation stage, limiting their performance. In this paper, we propose
a convolutional neural network based method which provides cell seg-
mentation proposals, which can be used for cell detection, segmentation
and tracking. We evaluate our method on datasets from histology, flu-
orescence and phase contrast microscopy and show that it outperforms
state of the art cell detection and segmentation methods.

Keywords: Cell proposals · Cell segmentation · Cell detection · Con-
volutional neural network · Deep learning

1 Introduction

In the last few decades advances in automation and optics of microscopes have
led to rapid growth in the number and resolution of images being captured, with
single experiments in developmental biology producing tera-bytes of data. Often
the processes being investigated are subtle and to obtain biologically meaningful
quantification, it is necessary to analyze large number of cells in multiple samples.
Doing these analyses manually is a very inefficient and tedious use of a biologists
time and is dependent on the skill level of biologists leading to very subjective
and often non-reproducible results. These factors have increased the importance
of automated and semi-automated analysis methods.

Recently, convolutional neural networks (CNNs) have outperformed the state
of the art methods in multiple biomedical instance level segmentation chal-
lenges [5,13]. These methods either prioritize boundary pixels by increasing their
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 21–29, 2016.
DOI: 10.1007/978-3-319-46976-8 3
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weights [13] or detect them explicitly in addition to binary segmentation [5].
These networks have large receptive fields allowing them to utilize large spatial
context and predict very accurate segmentation masks at instance level. How-
ever, since these methods provide only one set of segmentations they can still
fail in some ambiguous regions. When analyzing microscopy sequences, tempo-
ral information can resolve many of these ambiguities. Cell proposals provide a
computationally efficient way of exploiting both temporal and spatial context
by reducing the number of alternative hypothesis for a region. So far, cell pro-
posals have been used for cell detection [3,4] and tracking [2,14]. These methods
rely on MSER [3], superpixels [14] and blob detection [2] for proposal genera-
tion and use hand crafted features to score them. Deep learning has also been
applied recently for proposing cell candidate bounding boxes [1], however they
use thresholding to obtain segmentation masks, which are not very accurate and
it is not trivial to obtain segmentation masks using their approach for images
from other microscopy modalities.

In this paper, we propose a CNN based method which first proposes cell
bounding boxes using a fully convolutional neural network (FCN) [1]. It then
uses a second CNN to predict segmentation masks for each proposed bounding
box. Recently, [6] have shown the effectiveness of similar idea for general object
segmentation. Our novel contributions are: (1) a new network for cell segmenta-
tion proposal generation and (2) a single network model which can segment cells
from multiple microscopy modalities. We compare our method’s proposals with
proposals from two state of the art cell detection methods and our cell detections
with three state of the art cell segmentation/detection methods and show that
our method outperforms them on three different datasets which represent cells
with varying appearance and imaging conditions.

2 Method

Our method has two stages, in the first stage (Sect. 2.1) a convolutional neural
network (CNN) proposes cell bounding boxes along with their scores, i.e. proba-
bility of them being a cell. In the second stage (Sect. 2.2), a second CNN utilizes
the proposed bounding boxes to predict segmentation masks for cells.

2.1 Proposal Bounding Boxes

Our first network, shown in the top half of Fig. 1, is modified from the network
in [1]. Briefly, it predicts k bounding boxes and their scores at each pixel in the
last feature map, removes duplicate proposals using non-maxima suppression and
returns the remaining N bounding boxes as the cell proposals. Details of how this
network proposes bounding boxes [1,12] and how it is trained are available in [1].

2.2 Proposal Segmentation

Network Structure: Our second network, which is used for predicting segmen-
tation masks is shown in the bottom half of Fig. 1. This network takes the image
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Fig. 1. Cell segmentation proposal network: top half shows the first network, which
proposes N bounding boxes and their scores. Bottom half shows the second network
which generate segmentation masks for the N proposals. Convolution (filter size is
shown in the box), max-pooling, and ROI-Pooling + concatenation layers, with the
number of feature maps on top of each layer, are shown. Proposed bounding boxes and
segmentation masks after non-maxima suppression (NMS) are shown for a selected
area from Fluo-N2DL-HeLa dataset.

and N proposed bounding boxes from first network as its inputs and predicts
N segmentation masks of size 25 × 25 each. First part of this network contains
eight convolution layers which are applied to the whole image. Second part uses
region of interest (ROI) pooling layers [7] to extract fixed size (25× 25) features
maps from four sets of feature maps as shown in Fig. 1. ROI-Pooling layer uses
adaptive max pooling of the region inside the bounding box in a given feature
map to extract a fixed sized feature map. The ROI-pooled feature maps are
concatenated to obtain a feature map of size 25× 25× 480 for each proposed
cell bounding box. It is important to select features from layers at different
depth so that the network can use both coarse high level information to predict
which regions belong to the cell being segmented and fine low level information
to predict accurate localization of cell boundaries. The fixed size feature map
extracted for each proposed bounding box is used by a small sub-network, con-
sisting of three convolution layers, which picks the appropriate combination of
features from different depths so that it can better leverage both fine and coarse
information. For each proposed bounding box, this network outputs a 25× 25
probability map, which is resized back to the original bounding box size using
bicubic interpolation, thresholded and largest connected component is used as
the segmentation mask.

All convolutional layers use a stride of 1 pixel and padding to preserve the
feature map size. ReLu non-linearities are used after all convolutional layers
except the last one. Local contrast normalization layers with same normalization
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parameters as ZF model [15] are used after first eight convolutional layers. All
max-pooling layers use a filter of size 3× 3, padding of 1 and stride of 2 to reduce
feature map size and increase the receptive field.

Training: The bounding boxes proposed by the first network are used to train
the segmentation network. The overlap of these bounding boxes with the ground
truth bounding boxes is computed and if the intersection over union (IoU) over-
lap is greater than 0.5, then these boxes are used for training; otherwise, they
are ignored. For each bounding box, a 25× 25 binary segmentation mask is used
as the target output during training. This mask is obtained by cropping the
region inside the predicted bounding box, resizing this region to 25× 25 using
nearest-neighbor interpolation and labeling all pixels except those of the largest
cell within that box as background. The loss function used for training is a
pixel-wise softmax log loss.

Implementation Details: To use the exact same network for all datasets, we
resize the images in each dataset so that the mean cell bounding box is ∼25× 25
pixels. Images in some datasets are quite large so we split these images in equal
sized smaller images so that no image dimension is larger than 500 pixels to
reduce GPU memory requirement. Since there are very few training images, we
use horizontal and vertical flips, and 90 degree rotations to augment training
data.

We initialize our segmentation network by picking weights randomly from
a Gaussian distribution with zero-mean and 0.01 standard deviation. We use
learning rate of 0.0001 for first 40k iterations then it is reduced to 0.00001 for
next 10k iterations.

2.3 Cell Detection and Segmentation

There are not many widely used cell proposal generation method which makes
it difficult to compare our performance. However, there are few popular cell
segmentation and detection methods available publicly. In order to compare
our method against these methods, we use stronger non-maxima suppression to
remove most duplicate proposals and use the selected proposals (Ours-Greedy)
as cell detections and their masks as cell segmentations of our method. The IoU
and score threshold values which maximize average precision and f-score on the
training data are used for each model. Since we use IoU > 0, this can result
in some pixels having multiple labels, we assign these pixels the label of the
cell (proposal) with the highest score. We would like to point out that these
detections can be considered as a weak baseline when using our proposals for
cell detection or segmentation. Better performance can be obtained by using
dynamic programming [3] or integer linear programming [4], which can select
the optimal set of proposals.
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(a) Fluo-N2DL-HeLa (b) PhC-HeLa (c) Hist-BM

Fig. 2. Datasets: ground truth cell markers (•) and boundaries are marked. (Color
figure online)

3 Experiments

3.1 Data-Sets

We evaluate our method on three datasets Fluo-N2DL-HeLa [10], PhC-HeLa [3]
and Hist-BM [8]. Figure 2 shows one sample region from each dataset along with
the Ground Truth (GT) segmentation masks and cell markers.

Fluo-N2DL-HeLa data-set is from ISBI cell tracking challenge [10] and it
contains 2 time-lapse sequences (92 frames each) of fluorescent HeLa cells cul-
tured and imaged on two dimensional surface. The GT for this data-set contains
markers for all 34,060 cells in all frames and segmentation masks for all 874 cells
in 4 frames. It also includes segmentation masks for few cells in other frames but
since those frames are not exhaustively segmented, we do not use them. Some of
the challenges with this data-set are: many cell clusters, frequent cell divisions,
low contrast, variation in cell sizes and intensities.

PhC-HeLa data-set [3] consists of 22 phase contrast images of cervical can-
cer colonies of HeLa cells, split in 2 sets (training and test). The GT for this
dataset consists of cell markers for all 2,228 cells. Challenges with this dataset
include high variation in cell shapes and sizes, missing cell boundaries, and high
cell density.

Ground truth segmentation masks for this dataset are obtained by greedily
selecting the largest MSER region for each ground truth marker under the con-
straints that the selected MSER region contains only one cell marker, has little
overlap with previously selected regions and markers which are inside smaller
regions are processed first.

Hist-BM data-set [8] consists of 11 images stained with Hematoxylin and
Eosin of human bone marrow from eight different patients. The ground truth for
this dataset consists of markers for all 4,202 cell nuclei and ambiguous regions.
We split this dataset in two sets, with first five images in set 1 and rest in set 2.

Ground truth segmentation masks for this dataset are generated using multi-
label graph cuts. Terminal edge costs are set using cell and background Gaussian
mixture models, learnt from pixels within radius of 6 from markers and pixels
outside radius of 20 from all markers respectively. Cells are divided into 7 sets
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so that cells adjacent to each other have a different label. Then pixels within
radius of 6 from a marker are fixed to the terminal node representing that cell’s
label to separate cells in contact with each other.

3.2 Evaluation Criteria

Average Precision (AP): We use average precision (AP) - area under
precision-recall curve - to evaluate segmentation proposals. Proposals are first
sorted by their score, then a proposal is counted as true positive (TP) if it has
intersection over union overlap (IoU) > 0.5 with any unmatched ground truth
(GT) cell segmentation mask, otherwise it is counted as false positive (FP). GT
cells which remain unmatched are counted as false negative (FN). We obtain a
pair of recall (R = TP

TP+FN ) and precision (P = TP
TP+FP ) values after evaluating

each proposal.

F-Score (F1): To evaluate detection performance we use same criteria as above
to obtain recall (R) and precision (P) using all cell detections and compute F-
Score (F1 = 2·P ·R

P+R ).

SEG: We evaluate accuracy of segmentation masks using the SEG measure,
based on Jaccard similarity index, used in ISBI cell tracking challenge [10]. A
detection (D) is matched with a GT cell (G) if and only if it contains more
than half pixels of that GT cell, i.e. |D ∩G| > 0.5 · |G|. For each GT cell and its
matched detection, Jaccard similarity index is computed using J(G,D) = |D∩G|

|D∪G| .
SEG is the mean of Jaccard similarity index of all GT cells and ranges between
0 to 1.

We use the SEG measure as defined above to evaluate proposal masks. When
evaluating proposals, some pixels can be inside multiple proposals and as a result
there might be multiple proposals which satisfy |D∩G| > 0.5 · |G|. We compute
Jaccard similarity index for these proposals and match the GT cell with the best
proposal, i.e. one having the highest Jaccard similarity index.

Implementation Details: All three datasets are split in two sets as described
in Sect. 3.1. One set is used for training the methods and the other for testing;
this is repeated for both sets. Same non-maxima suppression settings (IoU=0.5)
are used for all methods to remove duplicate proposals. The proposals from both
sets are combined, sorted by their score and evaluated as either TP or FP. The
detection results are combined similarly and SEG and F-Score computed for the
whole dataset.

3.3 Baseline

We compare our method (Ours) with two cell proposal generation methods
MSER [3,11] and CPN [1], and three cell detection and segmentation methods,
KTH [9], CellDetect1[3] and CPN-Greedy [1]. CPN uses a method similar to

1 http://www.robots.ox.ac.uk/∼vgg/software/cell detection/.

http://www.robots.ox.ac.uk/~vgg/software/cell_detection/
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our first stage to propose cell candidates and CPN-Greedy uses stronger non-
maxima suppression to obtain cell detections from CPN proposals. CellDetect
uses MSER regions [11] as proposals, represents each proposal using hand crafted
features, and uses structured SVM to score them. We use these scores to rank
MSER regions during evaluation of MSER proposals. CellDetect then selects
optimal set of MSER regions using dynamic programming and uses these selected
regions as cell detections. KTH uses a band pass filter followed by thresholding
to segment cells, watershed transform is then used to split cell clusters, and
finally tracking is used to correct errors in segmentation. KTH software2 does
not provide access to segmentation results so we use their segmentation masks
after the tracking stage during evaluation.

3.4 Results

Figure 3 shows the precision-recall curves for the proposal generation methods
and precision-recall values for cell detection methods. Precision-recall curve for
our proposals not only remains significantly above the curve for MSER proposals,
it is even slightly above the precision-recall values of CellDetect detections for
all datasets. For Fluo-N2DL-HeLa dataset, CPN has better precision for all but
very high recall values, however it has slightly lower recall than our method. Even
though CPN uses simple thresholding, it is able to obtain good performance at
IoU=0.5 as thresholding can provide a coarse mask. For higher IoU values, its
performance degrades and gap in our method and CPN increases.

Table 1 compares the segmentation quality (SEG) of our method’s proposals
against other baselines and shows that our method’s proposal masks are consis-
tently better than MSER and CPN proposals for all three datasets. Table 1 also
lists SEG and F-Score (detection performance) values for all cell detection meth-
ods. Our method has better detection and segmentation performance compared
to other detection methods. The difference in both detection and segmentation
performance of our method and CellDetect is quite large for all three datasets.
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Fig. 3. Precision vs Recall (at IoU = 0.5) for all three datasets. Average precision (AP)
and F-Score (F1) are shown in the legend.

2 http://codesolorzano.com/celltrackingchallenge/Cell Tracking Challenge/KTH-SE.
html.

http://codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/KTH-SE.html
http://codesolorzano.com/celltrackingchallenge/Cell_Tracking_Challenge/KTH-SE.html
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Table 1. Cell segmentation (SEG) and detection (F-Score) results.

Fluo-N2DL-HeLa PhC-HeLa Hist-BM

SEG F-Score SEG F-Score SEG F-Score

Detections

Ours-Greedy 0.858 0.969 0.761 0.932 0.804 0.828

Ours-S-Greedy 0.815 0.953 0.769 0.924 0.789 0.821

CellDetect [3] 0.734 0.906 0.717 0.901 0.682 0.816

KTH [9] 0.852 0.954 - - - -

CPN-Greedy [1] 0.808 0.958 - - - -

Proposals

Ours 0.874 - 0.818 - 0.823 -

Ours-S 0.865 - 0.807 - 0.823 -

MSER [3] 0.757 - 0.779 - 0.768 -

CPN [1] 0.831 - - - - -

Our method also outperforms KTH method slightly, which has the best segmen-
tation performance on Fluo-N2DL-HeLa dataset in ISBI cell tracking challenge
[10] and uses tracking stage to correct errors in segmentation.

Cell boundaries produced by our method are quite accurate; most segmenta-
tion errors are due to (1) errors in localization of bounding boxes, which sometimes
clips parts of cells and (2) the failure of segmentation stage to ignore parts of other
cells in the proposed bounding box. We tried using a dilated proposal bounding
box but it led to lower performance as even though it reduced clipping errors, the
errors due to failure to ignore other cells increased. We also experimented with a
fully connected layer at the end of the network, which was able to ignore other
cells better but it produced coarse masks and did not improve performance.

Two of the challenges of biomedical image analysis are the large variation
between sequences and lack of ground truth. Often a method is trained or
designed for a particular set of sequences and works well for images captured in
a narrow range of imaging conditions. Having a general method which can cope
with a wider range of imaging settings is very important as it is not always fea-
sible to design or tweak existing methods for the sequences being analyzed. As a
small step towards achieving this goal, we train a single network model (Ours-S)
using all three datasets. Equal number of training samples were used from each
dataset. This model has slightly lower performance on two of the three datasets
but on Fluo-N2DL-HeLa dataset its performance decreases considerably. Even
with this lower performance it outperforms CellDetect on all three datasets.

4 Conclusions

In this paper, we have presented a deep learning based method for proposing
cell segmentation candidates and demonstrated that it can produce excellent
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proposals for three different microscopic modalities. We have compared our
method against state of the art cell detection and segmentation methods and
shown that our method outperform them on common evaluation metrics. We
have also presented a single model trained on all three datasets and shown that
its performance does not degrade significantly, which is promising and indicates
that a single model for cell detection and segmentation can be trained without
compromising too much on performance. Performance of such a model may even
improve if it is trained on datasets which are imaged in somewhat similar imag-
ing conditions; this is something we plan to investigate in future. We also plan
to use our method’s proposals for cell detection and tracking. Code is available
at https://github.com/SaadUllahAkram/CellProposalNetwork.
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Abstract. Deep convolutional neural networks have achieved great
results on image classification problems. In this paper, a new method
using a deep convolutional neural network for detecting blood vessels in
B-mode ultrasound images is presented. Automatic blood vessel detec-
tion may be useful in medical applications such as deep venous thrombo-
sis detection, anesthesia guidance and catheter placement. The proposed
method is able to determine the position and size of the vessels in images
in real-time. 12,804 subimages of the femoral region from 15 subjects
were manually labeled. Leave-one-subject-out cross validation was used
giving an average accuracy of 94.5 %, a major improvement from previ-
ous methods which had an accuracy of 84 % on the same dataset. The
method was also validated on a dataset of the carotid artery to show
that the method can generalize to blood vessels on other regions of the
body. The accuracy on this dataset was 96 %.

1 Introduction

Blood vessel segmentation in ultrasound images may be useful in medical appli-
cations such as deep venous thrombosis detection [5], anesthesia guidance [12]
and catheter placement. The goal of vessel detection in this work, was to iden-
tify the position and size of blood vessels in the image. Several segmentation and
tracking methods require this as an initialization [1,6]. In [12], a real-time vessel
detection method was introduced, removing the need for manual initialization.
This method performs an ellipse fitting at each pixel in the image using a graphic
processing unit (GPU). However, this method has problems distinguishing ves-
sels from non-vessels when varying user settings, such as gain, on the ultrasound
scanner, and on individuals with more subcutaneous fat tissue, due to increased
amounts of reverberation artifacts. Also, this method was only made to detect
a single vessel for each image.

In this paper, we propose to use a similar ellipse fitting method to find ves-
sel candidate regions which are passed on to a deep neural network classifier
which determines if the region contains a vessel or not. As the proposed detec-
tion method provides both position and size, it may also be used as a vessel
segmentation method, assuming the vessel has an elliptical shape. The proposed
method also enables detection of multiple vessels at the same time.
c© Springer International Publishing AG 2016
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2 Methods

The next section will introduce the elliptic vessel model, which was used to find
vessel candidate regions in the ultrasound image. Subimages were created from
the ultrasound image for each vessel candidate. A deep convolutional network
determines if each subimage is of an actual blood vessel. Figure 1 provides an
overview of the steps involved in the proposed method.

Fig. 1. Overview of the proposed method. The first step finds vessel candidates and
creates subimages for each. The subimages are then passed on to a deep neural network
which identifies the subimages belonging to vessels, and discards those that are not of
vessels.

2.1 Vessel Model

Each vessel is modelled as an ellipse with center c = [cx, cy] and major and
minor radius a and b. The point pi and its normal ni of point i on an ellipse of
N evenly distributed points can be calculated with the following equations.

αi =
2πi

N
(1)

di = [a cos(αi), b sin(αi)] (2)
pi = c + di (3)

ni =
[b cos(αi), a sin(αi)]
|[b cos(αi), a sin(αi)]| (4)

2.2 Vessel Candidate Search

First, the image is blurred using convolution with a Gaussian mask (σ = 0.5mm)
and then the image gradients G are calculated using a central difference scheme.
For a given radii a and b, the vessel score S is calculated as the average dot
product of the outward normal ni and the corresponding image gradient at N
points on the ellipse, as shown in (5).

S(c, a, b) =
1
N

N−1∑

i=0

ni ·G(pi) (5)
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For each pixel, ellipses of different major radius a ranging from 3.5 to 6 mm,
flattening factor f from 0 to 0.5 (minor radius b = (1−f)a) and N = 32 samples
were used to calculate the vessel score. An increment of 0.25 mm was used for
the radius, and 0.1 for the flattening factor. The ellipse with the highest score
is selected for each pixel. The best score and the values a and b is stored for
each pixel. Any vessel candidate with a score below 1.5 is discarded. This is
a low threshold, which will not discard vessels with low contrast, but will also
allow several non-vessel regions. Next, the vessel candidates are sorted according
to their score from high to low. These are then processed in order, and a vessel
candidate is accepted if the center is not inside another vessel candidate structure
already accepted. Any vessel candidates which overlap with previously accepted
vessel candidates are discarded.

For each vessel candidate, a square subimage is created from the ultrasound
images as shown in Fig. 1. Examples of vessel candidates images are shown in
Fig. 2. The vessel candidate image is centered at the vessel center c and the size
of the image is determined by the major radius a so that the width and height
of the image is 4a× 4a converted to pixels. This image size will thus include the
vessel as well as some surrounding tissue.

2.3 Vessel Classifier

The next step of the proposed method is to send each vessel candidate image
through a deep convolutional neural network classifier to determine if the image
belongs to a blood vessel. Caffe [7] was used as the underlying framework both
for training and testing of the classifier, while the vessel candidate search was
implemented with the FAST medical image computing framework [11].

Data: The data used for training and validation was acquired by first scanning
the femoral region of both legs of 15 subjects with varying image quality and
different ultrasound acquisition settings. Every tenth frame was run through
the vessel candidate search step and the resulting images were stored on disk.
This resulted in 12,804 images in total. All images were resized to 128 × 128,
and classified manually as either vessel or non-vessel. Figure 2 show some image
examples of both blood vessels and non-vessel structures. The ultrasound system
used was an Ultrasonix SonixMDP (Analogic, Boston, USA) with L14-5 linear
array probe. To increase the amount of training data, all vessel candidate images
were flipped horizontally, effectively doubling the amount of training data.

The Network: The AlexNet [8] network was used initially, and gradually sim-
plified by removing convolution-pooling blocks and reducing the number of con-
volutions, while maintaining the validation accuracy. The network was simplified
mainly to improve the test runtime speed, which was important in order to
achieve real-time performance. The final vessel classification network consisted
of two convolution layers, one normalization layer, two max pooling layers and
three fully connected layers. Additionally, rectified linear units (ReLU), which
have shown to improve training [4], was used as non-linear activation units both



Vessel Detection in Ultrasound Images Using Deep CNN 33

(a) Blood vessel (b) Blood vessel (c) Blood vessel

(d) Muscle (e) Bone (f) Shadow

Fig. 2. Vessel candidate images of blood vessels and other non-vessel structures used
for training the neural network.

for the convolution layers and the fully connected (FC) layers. Thus, including
ReLU layers, the network consisted of 13 layers in total, as shown in Fig. 3. Addi-
tionally, a softmax loss layer was used for the training of the network. The data
layer size was fixed to 110× 110 pixels. During training, random patches of size
110 × 110 were cropped from the 128 × 128 vessel candidate images to prevent
overfitting. This technique increased accuracy with about 1 %. The mean image
was calculated from the training data and subtracted from the input image. The
first convolution layer had 9 convolutions of size 11 × 11 pixels and the second
had 32 convolutions of size 15 × 15. The max pooling was done over patches of
3×3. Local response normalization (LRN) [8] was used after the first convolution
layer with the same parameters as in [8]. Dropout was used on the fully con-
nected layers with a probability of 0.5. The network was trained with stochastic
gradient descent, batch size 128, momentum 0.9 and weight decay 0.0005. The
base learning rate was 0.01 with a sigmoid learning rate decay.

2.4 Performance Optimizations

Ultrasound is a real-time imaging modality, delivering typically 10–20 images
per second. The proposed method thus have to find vessels in each image in less
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Fig. 3. The vessel detection network. A fixed-size input image of size 110× 110 is feed
into two convolution-pooling stages with 9 and 32 convolutions respectively. This is
followed by three fully connected (FC) layers with dropout to reduce overfitting. A
local response normalization (LRN) is performed after the first convolution. Rectified
linear units (ReLU) are used as non-linear activation units in all stages.

than 100 ms to be able to process the ultrasound image stream in real-time. The
vessel candidate search, subimage creation and resizing were all implemented
on the GPU using the FAST framework. Caffe was run in GPU mode and all
vessel candidates for a given image frame were batch processed, which signifi-
cantly boosts performance. Additionally, the vessel candidate search was only
performed on every fourth pixel.

3 Results

Figure 4 show the convolutions learned by the neural network. These figures
show that the first convolutional layer learns to detect horizontal edges, and
the second layer learns to identify different patterns of horizontal edges. The
trained neural network does not seem to find vertical edges as important in the
ultrasound images. This seems sensible, as vertical edges are often weaker or
missing in ultrasound images.

Leave-one-subject-out cross validation was used, thus 14 subjects were used
for training and 1 subject kept for validation. The average classification accuracy
for the cross validation was 94.5 %, with a standard deviation of 2.9. This was
calculated using a discrimination threshold of 0.5 on the softmax output of the
vessel classifier. Figure 5a shows the result of the vessel detection on an image
of the femoral region.

This dataset was only from a single area of the body, the femoral region
covering the femoral artery and vein. To see how well the proposed method can
generalize to other parts of the body, a dataset of the left and right carotid
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(a) First convolutional layer (b) Second convolutional layer.

Fig. 4. Features learned by the neural network. The first layer has learned several
horizontal edge detectors, while the second convolutional layer has learned to recognize
patterns of horizontal edges.

(a) Femoral region (b) Carotid artery

Fig. 5. Vessel detection result on two ultrasound images.

artery was acquired from two subjects and used as validation data, while the
dataset with the 15 subjects of the femoral region was used as training data.
The dataset was created with the same method described in Sect. 2.3. With this
data, the method achieved an accuracy of 96 %. Figure 5b shows the result of
the vessel detection on an image of the carotid artery.
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Fig. 6. ROC curve of the proposed method and the method in [12].

The proposed method was compared to a another state of the art vessel
detection method [12]. This method achieved an average accuracy of 84 % on
the femoral region dataset. The receiver operating characteristics (ROC) curves
in Fig. 6 show how the two methods perform when varying the discrimination
threshold for the same dataset.

Training time was about 10 min on a laptop computer with an NVIDIA GTX
980M GPU with 8 GB of memory. The average runtime of all steps including
the vessel candidate search and vessel classification was 46 ms, enabling the
ultrasound images to be processed in real-time.

4 Discussion

The vessel model used in the proposed method assumes that the vessels are
elliptical, while this often holds true for arteries, it may not be ideal for veins
which often have a more irregular shape. Thus, the proposed method is more
suited for arteries than veins. The vessel model also does not consider rotation
of the ellipse. However, in our experiments this has not been an issue as ves-
sels usually are compressed in the vertical direction, due to pressure from the
ultrasound probe applied by the user. Including rotation in the vessel candidate
search would significantly reduce runtime performance.

An alternative to the proposed ellipse fitting method would be to use more
general object detection methods, such as R-CNN [3,10]. However, these meth-
ods are more complex and bounding boxes would have to be created manually
around each vessel in each image, which is time consuming. With the ellipse
fitting method, the user only have to choose between the classes “vessel” and
“non-vessel” for each vessel candidate subimage. Thus, the proposed ellipse fit-
ting method aids in the labeling of the data.
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Another alternative can be to use a fully convolutional neural network [9].
Such as network would provide a classification of each pixel. The ground truth
data could be created by a user selecting the center of each blood vessel. Using
such as network may be more robust in terms of rotation and deformation of
the blood vessels. However, it would not provide the radius of the vessels and a
segmentation as shown in Fig. 5.

The validation accuracy was 94.5 %, which is a major improvement from
the vessel detection method in [12] which got an accuracy of 84 % on the same
validation dataset. The accuracy may be improved by adding more training data,
including the temporal dimension of the data with recurrent neural networks, and
including Doppler data in a separate image channel. In the proposed network,
the weights were initialization using Gaussian noise with standard deviation
0.01. Unsupervised pre-training has shown to be a good way to initialize the
weights of deep neural networks [2]. With ultrasound imaging, a large amount
of unlabeled data can easily be acquired from the target body regions. Thus,
we believe unsupervised pre-training of deep networks will be a useful technique
within ultrasound imaging.

5 Conclusion

A robust real-time vessel detection method for ultrasound images was presented.
The method uses a deep convolutional neural network to classify subimages.
Although the neural network was only trained on images of the femoral artery
and vein, it is able to generalize to other vessels such as the carotid artery.

References

1. Abolmaesumi, P., Sirouspour, M., Salcudean, S.: Real-time extraction of carotid
artery contours from ultrasound images. In: Proceedings 13th IEEE Symposium
on Computer-Based Medical Systems, CBMS 2000, pp. 181–186. IEEE Computer
Society (2000)

2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. Adv. Neural Inf. Process. Syst. 19(1), 153–160 (2007)

3. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448. IEEE, December 2015

4. Glorot, X., Bordes, A., Bengio, Y.: Deep Sparse rectifier neural networks. In:
14th International Conference on Artificial Intelligence and Statistics, pp. 315–323
(2011)

5. Guerrero, J., Salcudean, S.E., McEwen, J.A., Masri, B.A., Nicolaou, S.: System
for deep venous thombosis detection using objective compression measures. IEEE
Trans. Biomed. Eng. 53(5), 845–854 (2006)

6. Guerrero, J., Salcudean, S.E., McEwen, J.A., Masri, B.A., Nicolaou, S.: Real-time
vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans.
Med. Imaging 26(8), 1079–1090 (2007)

7. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: Proceedings of the ACM International Conference on Multimedia,
pp. 675–678 (2014)



38 E. Smistad and L. Løvstakken

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 3431–3440 (2015)

10. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. Advances in neural information process-
ing systems, pp. 91–99, June 2015

11. Smistad, E., Bozorgi, M., Lindseth, F.: FAST: framework for heterogeneous medical
image computing and visualization. Int. J. Comput. Assist. Radiol. Surg. 10(11),
1811–1822 (2015)

12. Smistad, E., Lindseth, F.: Real-time automatic artery segmentation, reconstruction
and registration for ultrasound-guided regional anaesthesia of the femoral nerve.
IEEE Trans. Med. Imaging 35(3), 752–761 (2016)



Convolutional Neural Network for
Reconstruction of 7T-like Images from 3T MRI
Using Appearance and Anatomical Features

Khosro Bahrami, Feng Shi, Islem Rekik, and Dinggang Shen(B)

Department of Radiology and BRIC, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA

dinggang shen@med.unc.edu

Abstract. The advanced 7 Tesla (7T) Magnetic Resonance Imaging
(MRI) scanners provide images with higher resolution anatomy than 3T
MRI scanners, thus facilitating early diagnosis of brain diseases. How-
ever, 7T MRI scanners are less accessible, compared to the 3T MRI scan-
ners. This motivates us to reconstruct 7T-like images from 3T MRI. We
propose a deep architecture for Convolutional Neural Network (CNN),
which uses the appearance (intensity) and anatomical (labels of brain
tissues) features as input to non-linearly map 3T MRI to 7T MRI. In
the training step, we train the CNN by feeding it with both appearance
and anatomical features of the 3T patch. This outputs the intensity of
center voxel in the corresponding 7T patch. In the testing step, we apply
the trained CNN to map each input 3T patch to the 7T-like image patch.
Our performance is evaluated on 15 subjects, each with both 3T and 7T
MR images. Both visual and numerical results show that our method
outperforms the comparison methods.

1 Introduction

Magnetic Resonance Imaging (MRI) has widely been used to assist the diagno-
sis of brain diseases. In the past years, tremendous efforts have been made to
improve MR image quality, which is desired for early and more accurate MRI-
based disease diagnosis. This has yielded to 7T MRI that has higher resolution
and contrast than the conventional 3T MRI. Figure 1 shows the respective axial
views of linearly aligned 3T and 7T MR images from the same subject. Due to
higher quality imaging, 7T MRI can potentially help in more accurate diagnosis
of various brain diseases. For example, cortical lesions and atrophies can be bet-
ter characterized with higher resolution and contrast in the 7T MRI compared to
3T MRI [1]. Furthermore, partial volume effect (PVE) affects the 3T MRI more
than 7T MRI, thus reducing the accuracy of post-processing tasks such as MRI
brain tissue segmentation. However, at the current stage, many clinical centers
in the world (≈ 20,000) have just 3T MRI scanners, and only a few (≈ 40) have
been equipped with 7T MRI scanners due to high expenses [2]. Therefore, an
alternative solution is to reconstruct 7T-like images from 3T MR images, which
is the main focus of our paper.
c© Springer International Publishing AG 2016
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Fig. 1. Axial views, along with zoomed regions, of linearly aligned (a) 3T MRI and
(b) 7T MRI of the same subject. 7T MRI has higher resolution and contrast. (Color
figure online)

Recently, many methods have been proposed for the reconstruction of high-
resolution (HR) images from low-resolution (LR) images. One of the most pop-
ular approaches is the learning-based methods, which use pairs of LR and HR
training images. In these methods, the LR testing image is first sparsely repre-
sented by the LR training images and then the same representation is applied to
reconstruct the HR target image by the HR training images. For instance, Rueda
et al. [3] presented a sparse representation based method to generate HR brain
MRI from LR brain MRI. Burgos et al. [4] proposed a method, namely local
image similarity (LIS), for the reconstruction of CT images from MR images.
Bahrami et al. [5,6] also proposed a method for the reconstruction of 7T-like
images from 3T MRI based on multi-level CCA, called M-CCA.

In the last few years, CNN successfully have been used for reconstruction of
HR from LR images by generating a non-linear mapping using paired LR and HR
training images. For instance, Dong et al. [7] proposed a super-resolution method
by learning an end-to-end mapping between LR and HR images. In another
method, Kulkarni et al. [8] proposed a method for reconstruction of HR images
from LR images captured by compressive sensing. Although the proposed CNN
architectures in the previous methods work for super-resolution of 2D natural
images, they may not be suitable for reconstruction of 3D MR images.

However, one main weakness of the previous methods is that they are less
reliable when the testing and training 3T MR images come from different MRI
scanners. This is most likely to happen when collecting data from multiple imag-
ing centers and thus obtaining MR images with different qualities. Since previ-
ous methods often use a predefined set of features (e.g., patch intensities), the
representation of new testing images by the training set with different imag-
ing qualities may be affected by quality inconsistency. To alleviate this prob-
lem, we propose a novel method based on tailoring a deep Convolutional Neural
Network (CNN) architecture. Previously, CNN has been widely proposed to solve
many computer vision tasks such as classification and regression and achieved
remarkable accuracy compared to other methods, due to the following facts:
(1) generating non-linear mapping between input features and target values;
(2) incorporating filters for multi-layer representation of features; and (3) learn-
ing the features from data without manually designing features. Our proposed
framework largely differs from previous methods for HR reconstruction from LR
images in several aspects. First, it does not solely rely on appearance features,
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but also integrates robust anatomical features (labels of brain tissues) to learn
the 3T to 7T mapping. This would help ensure a better anatomical consistency
between neighboring patches, and achieve more robustness than the previous
methods, since the additional anatomical features are less influenced by 3T MR
image quality. Second, our proposed deep CNN architecture uses a large num-
ber of features (both high-frequency and low-frequency features) via different
filters, thus better capturing the variations among 3T MR images with differ-
ent qualities. Third, we do not need to learn optimal dictionaries or manifolds
to map 3T to 7T patches. The convolutional filters are automatically learned
during the CNN feed-forward step, while avoiding the need for extra-learning or
optimization steps.

2 Proposed Convolutional Neural Network (CNN)
Architecture

Overview: Consider a 3T MR image with appearance X and anatomical fea-
tures L. Our goal is to learn a mapping function f(.) using CNN that can
generate the corresponding 7T-like image Y = f(X,L), with quality similar to
the ground-truth 7T MRI. Specifically, we propose a CNN architecture with four
layers as shown in Fig. 2. Details of our four-layer CNN architecture are given
in the following sections.

First Layer Feature Maps. The first layer aims to learn a feature representa-
tion of the input 3T MR image. Let x and l be the appearance and anatomical
maps for a patch of size m × m × m extracted from the input 3T MR image.
The first layer of our network includes N1 convolution filters, each with size
of w1 × w1 × w1, followed by ReLU activation function. The convolution filter

Fig. 2. Our proposed deep CNN architecture for reconstructing 7T-like image from 3T
MRI. The testing and training images are indicated in red and blue colors, respectively.
(Color figure online)
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is the basic component of CNN, which convolves an input patch with a kernel
and then outputs a patch generally with a smaller size. For instance, for an
image with a size of m (in one dimension) and a kernel with a size of w1, the
size of the output will be m − w1 + 1. In addition to linear convolutions, CNN
also includes a non-linear operation encoded by the activation ReLU function.
This is desirable for our proposed CNN, since it is used to estimate a non-linear
mapping from 3T space to 7T space through our multi-layer convolutional archi-
tecture. ReLU is a piecewise linear function, which converts the negative input
to zero and retains the positive input, thus introducing sparsity in the network.
The input to the first layer is the concatenation of the patch appearance x and
the patch anatomical feature l, denoted as s, while the output y1 includes N1

feature maps. Mathematically, our first-layer architecture can be formulated as
y1 = max(0,Conv(F1, s) + B1), where F1 corresponds to N1 filters, and B1

includes N1 bias values, each associated with a filter. Conv(.) denotes the con-
volution operation, which applies each of the N1 filters to the input to generate
the output along with N1 feature maps, which are then filtered using the ReLU
function max(0, .). By applying the N1 filters of the first layer to the input 3T
MRI, the output y1, with N1 feature maps, are generated. Figure 3(a) shows an
example of the trained convolutional filters of the first layer with N1 = 64 filters
and the filter size of w1 = 7.

Second Layer Feature Maps. In this step, as a part of estimating the cas-
caded non-linear mapping from 3T to 7T MRI, we estimate the second-level
feature maps from the output N1 feature maps of the first layer. The second
layer includes N2 filters, followed by ReLU operation. It takes as input the N1

feature maps outputted by the first layer and generates N2 feature maps. Our
second layer is defined as y2 = max(0,Conv(F2,y1)+B2), where F2 corresponds
to the N2 filters with a size of N1 × w2 × w2 × w2. B2 includes N2 bias values,
each associated with a filter. In Fig. 3(b), we visualize the trained convolutional
filters of the second layer for the case of N2 = 128 filters and the filter size of
w2 = 5.

Third Layer Feature Maps. In a similar way, we estimate the third-level fea-
ture maps from the output of the second layer. This comprises N3 filters, followed
by ReLU, which are consecutively applied to the previously estimated N2 feature
maps (from the second layer) to output new N3 feature maps. The convolutional
operation in the third layer is formulated as y3 = max(0,Conv(F3,y2) + B3),
where F3 corresponds to the N3 filters with a size of N2 × w3 × w3 × w3, and
B3 includes N3 bias values. Figure 3(c) shows the trained convolutional filters of
the third layer with N3 = 256 filters and the filter size of w3 = 3.

Last Layer. Finally, in the last layer, we convolve the N3 feature maps of
the third layer with one filter with a size of N3 × w4 × w4 × w4, followed by
ReLU operation to output one voxel value, defined as y = max(0,Conv(F4,y3)+
B4). With such a deep multi-layer CNN architecture, we generate a non-linear
mapping from an input 3T MRI patch with a size of m × m × m to the voxel
intensity at the center of the corresponding 7T MRI patch.
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(a) (b) (c)

Fig. 3. Examples of the trained convolutional filters. (a) First layer with 64 filters of
size 7 × 7 × 7. (b) Second layer with 128 filters of size 5 × 5 × 5. (c) Third layer with
256 filters of size 3× 3× 3.

Loss Function. To automatically estimate the network parameters such as the
filter weights and biases, we train the end-to-end mapping function f(.). This
can be achieved by minimizing the loss, which is defined as a Mean Square
Error (MSE) between the reconstructed 7T MRI and ground-truth 7T MRI, as
MSE = 1

n

∑n
i=1 ||Zi − Yi||2, where n is the number of training MR images, Zi

and Yi denote the i-th ground-truth and reconstructed training 7T MR images,
respectively. The loss is minimized using stochastic gradient descent with the
standard back propagation.

3 Experimental Results

We compare the performance of our proposed CNN with three competing meth-
ods including the histogram-matching, local image similarity (LIS) [4], and M-
CCA [5]. The histogram-matching method is used as a baseline method, which
directly matches the 3T MR image’s histogram to the 7T MR image’s histogram.
We use LIS [4] as a comparison method, which uses patch similarity for recon-
struction. We also compare our method with M-CCA [5], since it is based on the
sparse representation in multi-level CCA space, which generally outperforms the
conventional sparse representation method.

Data and Preprocessing: We used a dataset of 15 pairs of 3T and 7T MRI.
This dataset includes 5 healthy subjects, 8 patients with epilepsy, and 2 patients
with MCI, which were scanned using both 3T MRI and 7T MRI scanners. These
MR images were all linearly aligned and skull-stripped to remove non-brain
regions. The 3T and 7T MR images have the resolution of 1 × 1 × 1 mm3 and
0.65 × 0.65 × 0.65 mm3, respectively.

Experimental Settings: We use MatConvNet to implement the CNN architec-
ture. To generate the mapping from 3T MRI to 7T MRI, we use a patch size of
15×15×15. For CNN, we use a filter size of w1 = 7, w2 = 5, w3 = 3, and w4 = 3,
from the first layer to the last layer, respectively. Also, we consider N1 = 64,
N2 = 128, N3 = 256, and N4 = 1 filters. For CNN training, we extract overlap-
ping patches with an overlap of 1 voxel. To evaluate our proposed method, we
design two experiments. In the first experiment, we only consider the appear-
ance of patches as the input for learning our proposed CNN; while in the second
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experiment, we consider both appearance and anatomical features of patches to
provide richer information for CNN learning. We employed widely-used FAST
in FSL package [9] for tissue segmentation to generate anatomical features. Sim-
ilarly, for the LIS and M-CCA methods, we also consider both appearance and
anatomical features of 3T MRI patches to show the contribution of anatomical
features in improving the performance of each method. For evaluation, we use a
leave-one-out cross-validation by considering one pair of 3T MRI and 7T MRI
for testing and the remaining 14 pairs for training.

Numerical Results: In this experiment, we numerically compare our proposed
method with three competing methods in terms of peak-signal-to-noise ratio
(PSNR), by considering the following two cases:

(1) Training and testing 3T MR images with the same quality. In this
case, we use the dataset of 15 pairs of 3T and 7T MR images with the original res-
olutions, so the testing and training 3T MR images have the same quality. Table 1
compares our proposed method and three competing methods based on the aver-
age PSNR across 15 leave-one-out cross-validations. To evaluate the impact of
using anatomical features, we independently consider (1) appearance features
and (2) both appearance and anatomical features for LIS, M-CCA and our pro-
posed method. Our proposed method has better reconstruction results compared
to all three competing methods. Furthermore, these results also clearly show the
importance of using anatomical features in improving 7T MRI reconstruction.
Figure 4(a) compares the results of different methods in terms of PSNR for 15
leave-one-out cross-validation; for LIS, M-CCA and our proposed method, the
reported results are based on both appearance and anatomical features. Com-
pared to all three competing methods, our method has higher PSNR for each
leave-one-out case (with p < 0.01 in two-sample t-test).

(2) Training and testing 3T MR images with different qualities. In
practice, the quality of the testing and training 3T MR images could be different,
especially if they are scanned with different imaging protocols and scanners. In
this experiment, we simulate this situation by changing the quality of the testing
and training 3T MR images using a re-sampling strategy; in this way, the testing
images will have a different image quality from the training set. We chart our
two simulating scenarios: in the first one we only re-sample the testing images,
while in the second one, we only re-sample the training images. We consider two
different re-sampling rates to change the quality:

Table 1. Comparison of our proposed method and three competing methods using
average PSNR across 15 leave-one-out cross-validations. Two cases, using appearance
features or both appearance and anatomical features, are also compared.

Method Histogram- LIS LIS M-CCA M-CCA Proposed Proposed

matching

Feature Appearance Appearance Appearance+ Appearance Appearance+ Appearance Appearance+

Anatomical Anatomical Anatomical

Average PSNR 21.1 23.9 24.3 25.0 25.4 25.9 26.5
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• Re-sampling Rate of 2 . In the first simulating scenario, we re-sample
the testing 3T MR image with a factor of 2 (i.e., down-sampling by a factor
of 2, followed by up-sampling by a factor of 2), to reduce the quality of 3T
MR image. By doing so, down-sampling decreases the number of voxels and
also lose image details, while up-sampling increases the number of voxels by
interpolation on the existing voxels but will not recover the lost information.
Figure 4(b) compares the result of different methods in terms of PSNR for 15
leave-one-out cases. The experimental results show that, after re-sampling, the
reconstruction performance by three competing method drops significantly, while
our proposed method still achieves good reconstruction quality and regains some
lost anatomical details, thus indicating its robustness to image quality changing.
This can be explained by two facts. First, we extract many features using various
CNN filters from the 3T MR images, thereby obtaining both low-frequency and
high-frequency features, which increases robustness to image quality changing.
Second, by further incorporating the anatomical features (besides appearance
features), our proposed CNN depends less on the resolution and quality of the
3T MR image. In the second simulating scenario, we re-sample the training
3T MR images with a factor of 2. Figure 4(c) compares the result of different
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Fig. 4. Comparison of our proposed method and three competing methods, in terms
of PSNR, for all 15 leave-one-out cross-validations, for the cases where (a) testing and
training 3T MR images have same quality (with no re-sampling); (b) and (c) the testing
and training 3T MR images have been re-sampled with a factor of 2, respectively; (d)
and (e) the testing and training 3T MR images have been re-sampled with a factor of
3, respectively.
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Fig. 5. Performance of our method (for 15 subjects), in the cases of (a) same imaging
quality for both testing and training 3T MR images (with no re-sampling), and reduced
quality of testing 3T MR images by rates of 2 and 3, (b) same imaging quality for both
testing and training 3T MR images (with no re-sampling), and reduced quality of
training 3T MR images by rates of 2 and 3.

methods in terms of PSNR. Our method shows more robustness to image quality
changing compared to the previous methods.

• Re-sampling Rate of 3 . In this experiment, we further reduce the quality
of testing and training 3T MR images by re-sampling by a factor of 3. Figure 4(d)
and (e) compares the results of different methods in terms of PSNR for 15 cross-
validations, for re-sampling of the testing and training 3T MR images, respec-
tively. Clearly, in the case with extremely poor quality, our proposed method
still outperforms all three competing methods. Further, we compare in Fig. 5
the result of our method in three cases: (1) without re-sampling; (2) re-sampling
with a factor of 2; and (3) re-sampling with a factor of 3 for (a) testing and (b)
training images. The results show that, by increasing the re-sampling rate, the
performance of our method does not drop much.

Visual Results: In Fig. 6, we visualize the reconstruction results by our method
and three competing methods. Notably, our reconstructed 7T-like image looks
more similar to the ground-truth 7T MRI. In addition, our result contains bet-
ter anatomical details, which were not recovered in the reconstruction by the
competing methods.

Fig. 6. Comparison of the reconstructed 7T-like images based on histogram-matching,
LIS [4], M-CCA [5], and our proposed method.
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4 Conclusion and Discussion

In this paper, we have proposed a novel deep Convolutional Neural Network
(CNN) architecture for reconstructing 7T-like images from 3T MR images, by
exploiting both appearance and anatomical features of MR images. Besides,
compared to three competing methods, our method has been shown more robust
for the cases with different imaging qualities for the testing and training 3T
MR images. Additionally, experimental results, with 15 pairs of 3T and 7T
MR images, showed that our proposed method is capable of recovering more
structural details than the competing methods.

It should be mentioned that, we used re-sampling to simulate different res-
olutions for testing and training images for initial experiments. Of course, to
claim the robustness against different scanners need acquiring using actual dif-
ferent scanners which is done in the extension of this paper. Since, based on this
simulation our method is more robust than other methods, it is potentially be
would be better than the previous methods in the case of actual scanning by
different method which will remain as our future work.

Of note, the generated brain tissue labels by FAST method are useful in
representation of different tissues, which was used together with the appearance
features to improve the reconstruction of 7T-like images. However, in the case
that the anatomical features are not perfect in representation of different tissues,
our reconstruction results may drops but still it would be better than just using
appearance features.
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Abstract. We present a method to predict image deformations based
on patch-wise image appearance. Specifically, we design a patch-based
deep encoder-decoder network which learns the pixel/voxel-wise mapping
between image appearance and registration parameters. Our approach
can predict general deformation parameterizations, however, we focus on
the large deformation diffeomorphic metric mapping (LDDMM) registra-
tion model. By predicting the LDDMM momentum-parameterization we
retain the desirable theoretical properties of LDDMM, while reducing
computation time by orders of magnitude: combined with patch prun-
ing, we achieve a 1500x/66x speed-up compared to GPU-based optimiza-
tion for 2D/3D image registration. Our approach has better prediction
accuracy than predicting deformation or velocity fields and results in
diffeomorphic transformations. Additionally, we create a Bayesian prob-
abilistic version of our network, which allows evaluation of deformation
field uncertainty through Monte Carlo sampling using dropout at test
time. We show that deformation uncertainty highlights areas of ambigu-
ous deformations. We test our method on the OASIS brain image dataset
in 2D and 3D.

1 Introduction

Image registration is a critical medical image analysis task to provide spatial cor-
respondences. A prominent application is atlas-to-image registration, commonly
used for atlas-based segmentations or population analyses. Image registration
is typically cast as an optimization problem, which can be especially compu-
tationally demanding for non-parametric diffusive, elastic, or fluid models [11]
such as LDDMM [1]. Recently, approaches to predict registration parameters
have been proposed: resulting deformations can be (i) used directly or (ii) to
initialize an optimizer. However, high parameter dimensionality and the non-
linearity between image appearance and the registration parameters makes pre-
dictions challenging. Chou et al. [3] propose a multi-scale linear regressor, which
is restricted to the prediction of affine transformations and low-rank approxi-
mations of non-rigid deformations. For complex deformable registrations, Wang
et al. [17] use image-template key point matching with sparse learning and a
subsequent interpolation to a dense deformation field via radial basis functions.
While effective, this method is dependent on proper key point selection. In [2],
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 48–57, 2016.
DOI: 10.1007/978-3-319-46976-8 6
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a semi-coupled dictionary learning technique is used to jointly model image
appearance and the deformation parameters; however, assuming a linear rela-
tionship between image appearance and deformation parameters only, which is
overly restrictive.

Optical flow [4,18] and affine transforms [10] have been computed via deep
learning. Here, we explore a deep learning regression model1 for pixel/voxel-level
parameter prediction for non-parametric image-registration from image patches.

Contribution. Convenient parameterization: Using the momentum parameter-
ization for LDDMM shooting [16], we retain the mathematical properties of
LDDMM under patch-based prediction, e.g., we guarantee diffeomorphic trans-
forms. Fast computation: Using a sliding window with a large stride and patch
pruning to predict the momentum, we achieve dramatic speed-ups compared
to a direct optimization approach, while maintaining high prediction accuracy.
Atlas-based formulation: In contrast to generic optical flow approaches, we use
an atlas-based viewpoint. This allows us to predict the momentum in a fixed
atlas coordinate system and hence within a consistent tangent space. Uncertainty
quantification: We provide a Bayesian model from which estimates for parameter
uncertainty and consequentially deformation map uncertainty can be obtained.
This information can be used, e.g., for uncertainty-based smoothing [13], surgical
treatment planning, or for direct uncertainty isualizations.

Organization. Section 2 reviews the registration parameterization of LDDMM.
Section 3 introduces our network structure and our strategy for speeding up
deformation prediction. Section 4 presents experimental results for both 2D and
3D brain images from the OASIS [9] brain image data set and discusses the
generality of our approach, as well as possible improvements and extensions.

2 Initial Momentum LDDMM Parameterization

Given a source image S and a target image T , a time-dependent deformation map
Φ : Rd × R → R

d, maps between the coordinates of S and T , at time t = 1, i.e.,
S(Φ−1(x, 1)) = T (x); d denotes the spatial dimension. In the LDDMM shoot-
ing formulation [16], the initial momentum vector field m0 is the registration
parameter from which Φ (and Φ−1) can be computed. In fact, by integrating the
geodesic equations (2), the complete spatio-temporal transformation, Φ(x, t), is
determined. The initial momentum is the dual of the initial velocity v0, which is
an element in the reproducing kernel Hilbert space V , and they are connected by
a positive-definite, self-adjoint smoothing operator K as v = Km and m = Lv,
where K = L−1. The energy for the shooting formulation of LDDMM is [14,16]

E(m0) = 〈m0,Km0〉 +
1
σ2

||S ◦ Φ−1(1) − T ||2, such that (1)

1 Other regression models could of course be used as well.



50 X. Yang et al.

mt + ad∗
vm = 0,

m(0) = m0,

Φ−1
t + DΦ−1v = 0,

Φ−1(0) = id,

m − Lv = 0.

(2)

where id is the identity map, ad∗ is the dual of the negative Jacobi-Lie bracket
of vector fields: advw = Dvw − Dwv, D denotes the Jacobian, and σ > 0. Our
goal is to predict the initial momentum m0 given the source and target images,
in a patch-by-patch manner. We will show, in Sect. 4, that this is a convenient
parameterization as (i) the momentum does not need to be smooth, but is com-
pactly supported at image edges and (ii) the velocity is obtained by smoothing
the momentum via K. Hence, smoothness does not need to be considered in the
prediction step, but is imposed after prediction. K governs the theoretical prop-
erties of LDDMM: in particular, a strong enough K assures diffeomorphic trans-
formations, Φ [1]. Hence, by predicting m0, we retain the theoretical properties of
LDDMM. Furthermore, patch-wise prediction of alternative parameterizations
of LDDMM, such as the initial velocity, or directly predicting displacements, is
difficult in homogeneous image regions, as these regions provide no information
to guide the registration. As the momentum in such regions is zero2, no such
issues arise.

3 Network Structure

Figure 1 shows the structure of our initial momentum prediction network. We
first discuss our deterministic version without dropout layers, then introduce the
probabilistic network using dropout. We focus the discussion on 2D images for
notational simplicity, but also implement and experiment with 3D networks by
using volumetric layers and adding an additional decoder for the 3rd dimension.

3.1 Deterministic Network

In the 2D version of the network, the input is a two layer 15 × 15 image patch,
where the two layers come from the fixed and the moving image, resp., taken at
the same location, and the network output is the initial momentum prediction
patch for x and y directions. Our network consists of two parts: the encoder and
the decoder. In the encoder, we create a VGG-style [12] network with 2 blocks
of three 3 × 3 convolutional layers with PReLU [7] activations (■), and 2 × 2
maxpooling layers (■) with a step size of 2 at the end of each two blocks. The
number of features in the convolutional layers is 128 for the large image scale
block, and 256 for the smaller one. The decoder contains two parallel decoders
sharing input generated from the encoder; each decoder’s structure is the inverse
2 For image-based LDDMM [1,6] the momentum is m = λ∇I, where λ is a scalar-

valued momentum field and I is the image. Hence, m = 0 in uniform areas of I.
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of the encoder, except for using max-unpooling layers with the pooling layers’
indices, and no non-linearity layer at the end (■). Unpooling layers help retain
image boundary detail, which is important for initial momentum prediction.
During training, we use the L1 difference for network output evaluation. To
compute a momentum prediction for the whole image, we use a sliding window
and patch averaging in the overlapping areas. We use two (three) independent
decoders to predict the initial momentum in 2D (3D) as, experimentally, such a
network structure is much easier to train than a network with one large decoder
to predict the initial momentum in all dimensions simultaneously. In our exper-
iments, such a combined network easily got stuck in poor local minima3. Our
independent decoder network can be regarded as a multi-task network, where
each decoder predicts initial momentum for a single dimension.

3.2 Bayesian Probabilistic Network Using Dropout

We extend our network to a Bayesian probabilistic network by using dropout [15].
This can be regarded as approximate variational inference for a Bayesian net-
work with Bernoulli distributions over the network’s weights [5]. Given a 2-layer
image patch X and the corresponding initial momentum patch Y , we determine
the weights W of the convolutional layers so that given input X, our network
is likely to generate the target output Y . We define the likelihood p(Y |W,X) of
the network output via the L1 difference. Our goal is to find the posterior of the
weights W , i.e., p(W |Y,X) ∝ (p(Y |W,X)p(W ))/p(Y ), where p(W ) ∼ N (0, I) is
the prior of W , and p(Y ) is constant. Since this posterior is generally unknown,
we use a variational posterior q(W ) to approximate the true posterior by min-
imizing the Kullback-Leibler (KL) divergence DKL(q(W ) || p(W |X,Y )). When
using dropout for convolutional layers, the variational posterior q(Wi) for the
ith convolutional layer with Ki × Ki weight matrix can be written as [5]

q(Wi) = Wi · diag([zi,j ]Ki
j=1), zi,j ∼ Bernoulli(pi), (3)

where zi,j is a Bernoulli random variable modeling dropout with probability pi,
randomly setting the jth node in the ith layer to 0. The variational parameter
is the network weight Wi. The variational posterior for all network weights W is
then q(W ) =

∏
i q(Wi). According to [5], we minimize KL-divergence by adding

dropout layers (■) after all convolutional layers except for the final output, as
shown in Fig. 1, and train the network using stochastic gradient descent. During
test time, we keep the dropout layers, and evaluate the posterior by Monte Carlo
sampling of the network given fixed input data. We use the sample mean as our
final initial momentum, from which we compute the deformation by integrating
Eq. (2) forward. We calculate the deformation variance by integrating Eq. (2) for
each initial momentum sample separately. We set pi = 0.3.

3 It would also be interesting to investigate predicting the scalar field λ, instead of
m = λ∇I, which would require only one decoder regardless of image dimension.
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Input: stacked patch

Conv + PReLU

Maxpooling/Unpooling Conv

Dropout

Output: y

Output: x

︸︷︷︸

Encoder

︸︷︷︸ Decoder

Fig. 1. Bayesian probabilistic network structure (for 2D images): the inputs are 2-layer
stacked patches from the moving image and fixed image at the same location. The
output is the initial momentum prediction of the patches in x and y spatial directions.
For a deterministic version of the network, we simply remove all dropout layers. For a
3D image network, we increase the number of decoders to 3 and use volumetric layers.

3.3 Speeding up Whole Image Deformation Prediction

As we predict the whole-image initial momentum patch-by-patch, computa-
tion speed is proportional to the number of patches. We use two techniques
to reduce the number of patches/image, thereby increasing computation speed:
First, we perform patch pruning by ignoring all patches from the background
of both the moving and the target image; this can be done, since the initial
momentum for the constant background should be zero. Second, we use a large
pixel/voxel stride (e.g., 14 for 15×15 patches) for the sliding window. This is rea-
sonable, because of the compact support (around edges) of the initial momentum
and the shift-invariance property of pooling/unpooling layers. These two tech-
niques reduce the number of predicted patches/image by 99.5% for the 128×128
2D images and by 99.97% for the 128×128×128 3D images, at a negligible loss
of accuracy (cf. Sect. 4).

4 Experiments

We evaluate our method using 2D (128 × 128) and 3D (128 × 128 × 128) images
of the OASIS longitudinal dataset [9]. We use the first scan of all subjects,
resulting in 150 images. The 2D slices are extracted from the same axial slice
of the 3D images after affine registration. We randomly picked 100 images as
training target images and used the remaining 50 as testing targets. We created
unbiased atlases [8] for 2D and 3D from all the training data using PyCA4 and use
these atlases as our moving image(s). This allows for momentum prediction in a
fixed (atlas) tangent space. We used LDDMM-shooting combined with a sum-
of-squared intensity difference in PyCA to register the atlases to all 150 images.
4 https://bitbucket.org/scicompanat/pyca.

https://bitbucket.org/scicompanat/pyca
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We chose the regularization kernel for LDDMM as K = L−1 = (aΔ2 + bΔ +
c)−1, and set [a, b, c] as [0.05, 0.05, 0.005]([1.5, 1.5, 0.15]) for 2D(3D) images. The
obtained initial momenta for registering the atlas to the training data were used
to train our network using Torch5, the ones for the testing data were used for
validation. We optimized the network using rmsprop, setting the learning rate
to 0.0005, the momentum decay to 0.1 and the number of epochs to 10. We fixed
the patch size to 15 × 15 for 2D and to 15 × 15 × 15 for 3D. For generating
training patches, we used a 1 pixel stride for the sliding window in 2D and a 7
voxel stride in 3D to keep the number of training patches manageable, resulting
in 1, 299, 600 2D patches and 550, 800 3D patches. For the probabilistic network,
we sampled 50 times for each test case to calculate the prediction result and the
variation of the deformation fields.

4.1 2D Data

For the 2D experiment, we compare our method with semi-coupled dictionary
learning (SCDL), which was used to predict initial momenta for LDDMM in [2].
To compare the deformation prediction accuracy using different parameteriza-
tions, we trained networks predicting the initial velocity, v0 = Km0, and the dis-
placement field, Φ−1(1)− id, of LDDMM, respectively. For the initial momentum

Table 1. Test results for 2D (top) and 3D (bottom). SCDL: semi-coupled dictionary
learning; D : deterministic network; P : probabilistic network; stride: stride length for
sliding window for whole image prediction; velocity : predicting initial velocity; displace-
ment : predicting displacement field; PR: patch pruning. The column |J | > 0 shows the
ratio of test cases with positive definite Jacobian determinant of the deformation map.
Our initial momentum networks (and the best results) are highlighted in bold.

2D test case deformation error [pixel] |J| > 0

Data percentile 0.3% 5% 25% 50% 75% 95% 99.7%

Affine 0.0925 0.3779 0.9207 1.4741 2.1717 3.4606 5.4585 N/A

SCDL, 1000 dictionary 0.0819 0.337 0.8156 1.3078 1.9368 3.1285 4.7948 100%

D, velocity, stride 1 0.0228 0.0959 0.2453 0.4343 0.7354 1.4664 2.9768 100%

D, velocity, stride 14+PR 0.027 0.1123 0.2878 0.5075 0.8605 1.75 3.6172 76%

D, displacement, stride 1 0.0215 0.0897 0.2332 0.416 0.7064 1.429 2.9462 90%

D, displacement, stride 14+PR 0.0252 0.107 0.2786 0.4955 0.8047 1.7298 3.7327 0%

D, stride 1 0.0194 0.0817 0.2035 0.3436 0.5618 1.1395 2.473 100%

D, stride 14+PR 0.0221 0.0906 0.2244 0.375 0.6057 1.2076 2.6731 100%

P, stride 1, 50 samples 0.0185 0.0787 0.1953 0.3261 0.5255 1.0745 2.3525 100%

P, stride 14+PR, 50 samples 0.0209 0.0855 0.2123 0.351 0.5556 1.1133 2.5678 100%

3D test case deformation error [voxel] |J| > 0

Data percentile 0.3% 5% 25% 50% 75% 95% 99.7%

Affine 0.0821 0.2529 0.5541 0.8666 1.2879 2.1339 3.7032 N/A

D, stride 7 0.0128 0.0348 0.0705 0.1072 0.1578 0.2663 0.5049 100%

D, stride 14+PR 0.0146 0.0403 0.0831 0.1287 0.194 0.351 0.6896 100%

P, stride 14+PR, 50 samples 0.0151 0.0422 0.0876 0.1363 0.2051 0.3664 0.8287 100%

5 http://torch.ch.

http://torch.ch
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and the initial velocity parameterizations, the resulting deformation map Φ−1(1)
was computed by integrating Eq. (2). We quantify the deformation errors as
the pixel-wise 2-norm of the deformation error with respect to the ground-truth
deformation obtained by PyCA LDDMM. Table 1 shows the error percentiles over
all pixel and test cases. We observe that our initial momentum networks signif-
icantly outperform SCDL and also improve prediction accuracy compared to
the initial velocity and the displacement parameterizations in both the 1-stride
and the 14-stride + patch pruning cases. In contrast to the initial velocity and
the displacement parameterizations, both our deterministic and our probabilis-
tic networks show comparatively small sensitivity to patch pruning and stride,
validating our hypothesis that the momentum-based LDDMM parameteriza-
tion is well-suited for fast predictive image registration. One of the hallmarks
of LDDMM registration is that given a sufficiently strong regularization, the
obtained deformation maps, Φ−1(1), will be diffeomorphic. To assess this prop-
erty, we computed the local Jacobians of the deformation maps. Assuming no
coordinate system flips, a diffeomorphic Φ−1(1) should have a positive definite
Jacobian everywhere, otherwise undesirable foldings exist. Column ‘detJ > 0’ of
Table 1 lists the percentage of test cases with positive definite Jacobian, revealing
that our initial-momentum based networks retain this property in all scenarios,
even for very large strides and patch pruning. Direct displacement prediction,
however, cannot even guarantee diffeomorphic transformations for a stride of
1 (which includes a lot of local averaging) for all our test cases and results in
no diffeomorphic transformations at a stride of 14. Velocity prediction performs
slightly better, but can also not guarantee diffeomorphic maps at large strides,
likely due to more stringent requirements on the numerical integration in this
case. Similarly to existing optical flow prediction methods [4,18], a direct pre-
diction of displacements or velocities cannot encode smoothness assumptions or
enforce transformation guarantees. Our momentum parameterization encodes
these assumptions by design. Figure 2 shows an example of our 2D deforma-
tion prediction with uncertainty. The predicted deformation is close to the one
generated by costly LDDMM optimization. The uncertainty map shows high
uncertainty at the anterior edge of the ventricle and the posterior brain cortex
where drastic shape changes occur, which can be seen in the moving and the
target image.

4.2 3D Data

Similar to the 2D case, we computed the deformation error for every voxel in all
test cases; results are listed in Table 1. Our networks achieve sub-voxel accuracy
for about 99.8 % of all the voxels. Figure 2 shows one 3D registration result using
the predicted deformation from our probabilistic 3D network using the mean of
50 initial momentum samples, as well as the uncertainty of the deformation field.
Our prediction is able to handle large deformations. As in 2D, the uncertainty
map highlights areas with drastic and ambiguous deformations.
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Fig. 2. Test example for 2D (top) and 3D (bottom). From left to right : moving (atlas)
image, target image, deformation result by optimizing LDDMM energy, deformation
result using 50 samples from probabilistic network with a stride of 14 and patch prun-
ing, and uncertainty as square root of the sum of the variances of deformation in all
directions mapped on the predicted registration result. The colors indicates the amount
of uncertainty (red = high uncertainty, blue = low uncertainty). Best viewed in color.
(Color figure online)

4.3 Computation Speed

On an Nvidia Titan X GPU, it took 9 h to train a 2D network, and 72 h to
train a 3D network. By using a 14 pixel stride sliding window + patch pruning,
our network (without repeated sampling) predicts the initial momentum for a
2D image in 0.19 s, and in 7.68 s for a 3D image. Compared to the GPU-based
optimization in PyCA, we achieve an approximate speedup of 1500x/66x for a
2D/3D image. At a stride of 1, computational cost increases about 200-fold in
2D and 3000-fold in 3D, resulting in runtimes of about half a minute/six hours
in 2D/3D. Hence, our momentum representation which is amenable to large
strides is essential for achieving fast registration prediction at high accuracy
while guaranteeing diffeomorphic transformations.

5 Discussion

Our model is general and directly applicable to many other registration
approaches with pixel/voxel-wise registration parameters (e.g., demons or elastic
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registration). For parametric methods (with less registration parameters) and local
control, such as B-splines, we could replace the decoders by fully-connected lay-
ers. Of course, for methods where parameter locality is not guaranteed, using large
stride and patch pruning may no longer be suitable. Future studies should assess
registration accuracy in terms of landmarks and/or segmentation overlaps, com-
pared with optimization-based techniques. Exciting extensions are: fast LDDMM-
based multi-atlas segmentation; multi-modal image registration (where the input
patches are from different modalities); direct image-to-image registration; fast
user-interactive registration refinements (requiring prediction for a few localized
patches only); and multi-patch-scale networks for better prediction. Furthermore,
ambiguous deformations, caused by large deformations or appearance changes, are
highlighted by the uncertainty measure, which could detect pathologies in a net-
work trained on normals.
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Abstract. Automatic segmentation of Multiple Sclerosis (MS) lesions
is a challenging task due to their variability in shape, size, location and
texture in Magnetic Resonance (MR) images. A reliable, automatic seg-
mentation method can help diagnosis and patient follow-up while reduc-
ing the time consuming need of manual segmentation. In this paper,
we present a fully automated method for MS lesion segmentation. The
proposed method uses MR intensities and White Matter (WM) priors
for extraction of candidate lesion voxels and uses Convolutional Neural
Networks for false positive reduction. Our networks process longitudi-
nal data, a novel contribution in the domain of MS lesion analysis. The
method was tested on the ISBI 2015 dataset and obtained state-of-the-
art Dice results with the performance level of a trained human rater.

Keywords: Multiple Sclerosis · CNN · Segmentation · Longitudinal
data

1 Introduction

Multiple Sclerosis is the most common non-traumatic neurological disease in
young adults. It is an inflammatory demyelinating disease associated with the
formation of lesions in the central nervous system, which are characterized by
demyelination, and axonal conduction block. These classically described WM
lesions are visible in conventional MRI. Fluid attenuated inversion recovery
(FLAIR) images have been shown to be sensitive to WM lesions but can also
present other hyper-intensity artifacts [1].

Due to the challenging nature of MS segmentation, several challenges have
been organized, such as the MS lesion segmentation challenge in MICCAI 2008
[2] and the Longitudinal MS lesion segmentation challenge in ISBI 2015, where
competing teams were able to make use of the longitudinal information between
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consecutive MR images. A variety of algorithms have been proposed [3–7]. Top
performing methods are based on supervised classification frameworks. Specif-
ically, current state-of-the-art method in both MICCAI 2008 and ISBI 2015 is
based on a combination of multi-atlas label fusion (MALF) with a Random
Forest classifier for region level lesion refinement [7].

Convolutional Neural Networks (CNNs) have become very popular after Alex
Krizhevsky’s network won the 2012 ImageNet classification competition [8] by
a large margin. Since then, CNNs have been successfully used for additional
applications, such as object segmentation. In recent years, they have also been
used for medical image analysis. A 2.5D CNN, in which 3D volume-of-interest is
decomposed to axial, coronal and sagittal views, achieved state-of-the-art accu-
racy in lymph node detection. This 2.5D framework, compared to 3D CNNs,
reduces the computational burden of training and testing and alleviates the
curse-of-dimensionality problem [9]. 2D and 3D CNNs were also proposed for
the segmentation of MS lesions [5,6].

In this work, we have trained and tested a Longitudinal Multi-View CNN for
MS lesion segmentation. The input are patches from multiple images, multiple
views and multiple time points. To the best of our knowledge, this is the first
CNN that takes advantage of longitudinal data for MS lesion segmentation. We
have evaluated our segmentation method on the dataset provided in the 2015
ISBI challenge, and achieved state-of-the-art accuracy in terms of Dice score on
the test set. Our method, trained on a relatively small number of images, was
able to achieve human level performance.

The rest of the paper is organized as follows: The proposed method is
described in Sect. 2. Experimental evaluation and results on the 2015 ISBI
dataset are presented in Sect. 3. A discussion of the network architecture and
parameter selection follows at Sect. 4. Finally, Sect. 5 offers concluding remarks.

2 Methods

The proposed segmentation method consists of 3 phases: Pre-Processing, Can-
didate Extraction and CNN Prediction. In the Pre-Processing phase, multiple
operations are applied to the set of MR images, including: Co-Registration, Brain
Extraction, Bias Field Correction and Intensity Normalization. In the Candidate
Extraction phase, masks based on FLAIR and WM prior are calculated and
applied to the MR images. In the CNN Prediction phase, the multi-view CNN
outputs a lesion probability for every voxel in the MR image.

2.1 Pre-processing

The input to the segmentation algorithm for every case is a set of MR images:
T2-weighted FLAIR, T1-weighted MPRAGE, T2-Weighted and Proton Density
weighted. Acquired images are not registered and generally have different spacing
and slice thicknesses. Hence, the images are converted to a common space by
rigidly registering the MPRAGE image to MNI space and co-registering the rest
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of the images to it. Secondly, brain extraction is performed on the MPRAGE
image and the corresponding brain mask is then applied to the rest of the images.
In addition, all images are bias field corrected. The output of these pre-processing
steps was supplied by the organizers of the 2015 ISBI challenge.

The final pre-processing operation that we applied to all images is intensity
normalization. Intensity normalization of the FLAIR image is required because
its values are used for candidate extraction and a single constant FLAIR intensity
threshold is used for all cases. In addition, this is an important pre-processing
step to CNN prediction when input images have different intensity ranges. Nor-
malization is carried out by histogram matching each image of every case to
the corresponding image of a single reference case, after its top 1 and bottom 1
percentiles were clamped and its intensity values were scaled to [0, 1].

2.2 Candidate Extraction

Candidate extraction disqualifies the majority of the image voxels as lesions.
This dramatically reduces the computational cost of CNN prediction, which
follows this phase. In addition, because candidate extraction operates on the
voxel level, while CNN prediction operates on a neighborhood around the voxel,
these two phases can be viewed as a multi-scale pipeline where both local (voxel)
and semi-global (voxel neighborhood) are incorporated in order to obtain high
segmentation accuracy.

Candidate extraction is based on two clinical rules [10]:

1. Lesions appear as hyper-intense in FLAIR images; thus they can be roughly
identified by thresholding the FLAIR image.

2. MS lesions tend to be found in the WM or on the border between WM
and Gray Matter (GM). To incorporate this information, a probabilistic WM
template [11] is registered to the FLAIR image with a mutual information
cost function. Due to inter-subject variability, the registered WM template is
greyscale dilated isotropically by a radius R.

The candidate mask is thus defined as:

Mask(x) =
{

1 IFLAIR(x) > θFLAIR ∩ DilateR(WM(x)) > θWM

0 otherwise

}
(1)

Values of the parameters (θFLAIR, θWM , R) are defined by cross-validation. In
our experiments, the optimal parameters, selected as detailed in Sect. 3.1 reduce
97.5 % of the computations from the CNN.

2.3 CNN Prediction

Network Architectures. At this phase, a lesion probability is assigned to
each voxel in the image. To determine the contribution of different aspects in
the data, 4 CNN models were considered. In all models, patches of 32 × 32 pixels
are extracted from axial, coronal and sagittal views for each evaluated voxel. The
principal difference between the various models is the type and number of input
patches to the network:
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1. Single Image, Single Time Point (SISTP): Patches are extracted from the
FLAIR image of current time point.

2. Multiple Images, Single Time Point (MISTP): Patches are extracted from all
images of current time point.

3. Single Image, Multiple Time Points (SIMTP): Patches are extracted from
the FLAIR image of current and previous time points.

4. Multiple Images, Multiple Time Points (MIMTP): Patches are extracted
from all images of current and previous time points. Figure 1 illustrates input
patches in this model for a single lesion voxel sample.

(a) Axial (b) Coronal (c) Sagittal

Fig. 1. Input patches to the MIMTP model. In every view, top and bottom rows
correspond to previous and current time points respectively. Images from left to right
are: FLAIR, T2, MPRAGE and PD

The main building block, common to all 4 models is the Single View CNN
(V-Net), in which a spatial representation for a single view and time point is
generated by a series of convolutions and max pooling layers, as depicted in
Fig. 2a. The input to V-Net is c input patches, where c = 1 for SISTP and
SIMTP and c = 4 for MISTP and MIMTP, corresponding to all 4 available
input images. Number and sizes of convolution filters of the V-Net are 24@5× 5,
32@3× 3, 48@3× 3 to the 1st, 2nd and 3rd convolution layers respectively.

For the longitudinal models (SIMTP, MIMTP) current and previous time
points are processed separately and a 48×4×4 spatial representation is generated
for each of them. The two temporal representations are then concatenated and
processed by a convolution layer with 48@1× 1 filters and a fully connected layer
of 16 neurons, which are the longitudinal representation of a single view. This
Longitudinal Network (L-Net) is depicted in Fig. 2b.

Axial, coronal and sagittal views are processed by separate L-Nets and the
3 corresponding 16 neuron outputs are concatenated and processed by an addi-
tional fully connected layer of 16 neurons which yields the full representation of
all input patches of a single sample. A final fully connected layer of 2 neurons
with Softmax activation yields two output probabilities for non-lesion and lesion
voxel at the center of the input patches. This Multi-View Longitudinal network
is depicted in Fig. 2c.

In the non-longitudinal (SISTP, MISTP), V-Net output is processed by a
fully connected layer of 16 neurons which are concatenated and processed by
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Fig. 2. Network Architectures: (a) V-Net (b) L-Net (c) Multi-View Longitudinal CNN.
Represents SIMTP with c=1 and MIMTP with c=4 (d) Multi-View CNN. Represents
SISTP with c=1 and MISTP with c=4

two additional fully connected layers as in the longitudinal models. This Multi-
View network is depicted in Fig. 2d. The full MIMTP network model graph is
available in the supplementary materials.

Training Details. In order to avoid overfitting, 3 strategies were employed:

1. Weight sharing: Reducing model complexity is known to be an effective way
to generate classifiers that are robust and less prone to overfitting. Hence,
V-Nets of same view and different time points have identical weights.

2. Dropout: A network layer which prevents large networks from overfitting [12].
We use Dropout with 0.25 probability after all network activation layers.

3. Data Augmentation: Random rotation angles in x-y, y-z and x-z planes are
drawn from a Gaussian distribution with μ = 0 and σ = 5 degrees.
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Training was carried out using Keras [13], a modular neural network library
running on top of Theano. All convolution and fully connected layers are followed
by Leaky ReLU activation layers with α = 0.3. Networks weights were optimized
using AdaDelta [14] with a Categorical Cross-Entropy objective. Training was
completed after accuracy saturated on the validation set, which amounted to
500 epochs. On an NVIDIA GeForce GTX 980 Ti GPU, MIMTP model training
amounted to 4 h. The average CNN prediction time of all candidate lesion voxels
in a time point was 27 s.

3 Experimental Evaluation

Our segmentation algorithms were evaluated on the dataset of the 2015 Longitu-
dinal Multiple Sclerosis Segmentation Challenge. The overall data is composed
of two parts: (1) Training data consisting of longitudinal images from 5 patients;
(2) Test data consisting of longitudinal images from 14 different patients. For
each person, the data includes T1-weighted, T2-weighted, PD-weighted, and
T2-weighted FLAIR MRI with 4–6 time points acquired on a 3T MR scanner.
T1-weighted images have approximately a 1 mm cubic voxel resolution, while
the other scans are 1 mm in plane with 3 mm sections. Training data includes
manual delineations performed by 2 trained raters.

Our segmentation algorithm was evaluated by 3 approaches: (1) Cross-
Validation; (2) Visual Inspection; (3) Test results submission and analysis.

3.1 Cross-Validation

Cross patient validation on the training dataset is a reliable estimate to segmen-
tation performance on the test set. We trained 5 identical models, corresponding
to the 5 available training patients in the dataset. Each model was trained on 4
patients and tested on the remaining 5th patient in the training dataset. This
process was repeated for all 4 CNN architectures: SISTP, MISTP, MISTP and
MIMTP. We compared our output segmentation with the delineation of both
trained raters. In this evaluation our testing criteria was the Dice score, calcu-
lated as:

Dice =
2TP

FP + FN + 2TP
(2)

At this stage, we manually optimized lesion mask parameters and the CNN out-
put probability threshold. For each model, we used the parameters that maximize
mean Dice score across all 5 patient models.

Our reference score is the mean Dice score between the two manual delin-
eations. Evaluation results are summarized in Table 1. We can note that: (1) Using
all scanned images improves segmentation accuracy; (2) Using two consecutive
time points improves segmentation accuracy and this improvement is additive to
using multiple images; (3) Segmentation accuracy of the MIMTP model nearly
reaches trained human performance in the cross-validation evaluation.
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(a) (b) (c) (d)

Fig. 3. Candidate extraction and MIMTP prediction. (a) Axial FLAIR (b) Candidate
extraction output (c) CNN prediction output (d) Manual rater delineation

3.2 Visual Inspection

Visualizing candidate extraction and CNN prediction outputs, we can note their
complementary nature: Candidate extraction phase eliminates most of the volume
voxels as possible lesions but has a considerable amount of false positives cases.
The subsequent CNN prediction phase processes a small amount of data and elim-
inates the remaining false positive cases. These results are depicted in Fig. 3.

3.3 Test Results Submission

We applied our segmentation algorithms to the 14 test patients in the following
way: (1) 1st time point of each patient was segmented by the MISTP model,
since there is no previous time point available for these cases; (2) Rest of the time
points were segmented by the MIMTP model, which was evaluated as our best
model in cross validation; (3) All parameters were defined as detailed in Sect. 3.1.
The segmentation volumes were uploaded to the ISBI 2015 Challenge’s official
website, where they were scored and ranked according to:

Sc = 0.125Dice + 0.125PPV + 0.25V C + 0.25LTPR + 0.25(1 − LFPR) (3)

Where PPV is the positive predictive value, VC is Pearson’s correlation coef-
ficient of the volumes, LTPR is the lesion true positive rate and LFPR is the
lesion false positive rate as described in [15]. The score is linearly normalized by
the inter-rater scores such that the lower inter-rater score has a rating of 90.

We also compared mean Dice scores, which is the most common metric for
medical image segmentation. Table 2 summarizes top 5 submitted methods. We
can note that: (1) Our algorithm is ranked 2nd by a small margin; (2) Our
algorithm is state-of-the-art in terms of Dice; (3) Our algorithm achieves a score
of 90.07, which is comparable to the performance of a trained human rater.

4 Discussion

In addition to the comparison between the four suggested CNN architectures, the
selection of different aspects of our method with respect to available alternatives
is worth addressing.
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Table 1. Cross validation evaluation

Method Dice(Rater 1) Dice(Rater 2)

SISTP 0.669 0.649

SIMTP 0.714 0.692

MISTP 0.702 0.672

MIMTP 0.727 0.707

Rater 1 - 0.744

Table 2. ISBI 2015 test results [16]

Rank Method Sc Dice

1 PVG1 [7] 90.137 0.579

2 Ours 90.070 0.627

3 IMI [3] 89.673 0.573

4 VISAGES2 [4] 89.265 0.560

5 IIT [6] 88.536 0.521

4.1 Patch Based

Fully convolutional networks have shown great success in the task of object seg-
mentation [17]. In our method, candidate extraction eliminates the vast majority
of voxels in the volume as lesion candidates. Hence, we considered performing
convolutions on the entire volume as a redundancy of computational resources.

4.2 Multi-View

3D CNNs have been applied successfully in the medical field, where volumetric
data is available. These models, compared to 2D CNNs, require kernels with a
larger amount of coefficients. A multi-view network architecture can make use
of the volumetric nature of the data while requiring less weights and thus being
less prone to overfitting given a small training dataset.

4.3 Fusion Methods

Different Images. MS lesions appear as hyperintense in FLAIR and
hypointense in T1-weighted images [10]. Merging patches from different images
at the first convolutional layer enables it to make use of fine-level intensity values
before any pooling takes place.

Different Time Points. MS lesions can exhibit change in size between con-
secutive scans. Such changes are evident when considering sub-patches of the
input sample. Merging consecutive time points after two stages of pooling, when
each neuron has a receptive field of 8× 8 mm in each orthogonal view, enables
the next layers of the network to process the longitudinal data at an appropriate
scale.

Different Views. In standard CNNs, convolutions process neighboring pixels.
In our architecture different views belong to orthogonal planes in which voxels are
not connected spatially. Hence merging neurons from different views makes sense
after fully connected layers, in which each neuron contains information from the
entire view rather than spatial information. A similar late fusion strategy was
successful in a related work [18].
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4.4 Data Augmentation

Subject brain volumes have been registered to an MNI template. Thus, the brain
orientation is fixed up to registration inaccuracies in the pre-processing pipeline.
Data augmentation with random small angles (σ = 5) enhances the training
dataset while simulating angle errors due to small inaccuracies in registration.

5 Conclusions

In this work we showed that CNNs which make use of longitudinal information
can produce better segmentation results than standard CNNs. In addition, by
careful design of a pre-processing pipeline, network architecture and training
methodology, our algorithm achieved state-of-the-art results on the ISBI 2015
dataset. Finally, it is worth noting that by training on a small dataset of only 5
patients, we have reached trained human level performance on the challenging
task of MS lesion segmentation.
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Abstract. Retinopathy of Prematurity (ROP) is an ocular disease
observed in premature babies, considered one of the largest preventable
causes of childhood blindness. Problematically, the visual indicators of
ROP are not well understood and neonatal fundus images are usually
of poor quality and resolution. We investigate two ways to aid clinicians
in ROP detection using convolutional neural networks (CNN): (1) We
fine-tune a pretrained GoogLeNet as a ROP detector and with small
modifications also return an approximate Bayesian posterior over dis-
ease presence. To the best of our knowledge, this is the first completely
automated ROP detection system. (2) To further aid grading, we train
a second CNN to return novel feature map visualizations of pathologies,
learned directly from the data. These feature maps highlight discrimina-
tive information, which we believe may be used by clinicians with our
classifier to aid in screening.

1 Introduction and Background

Retinopathy of Prematurity (ROP) has entered a third global epidemic [1].
Higher neonatal survival rates in developing countries and new clinical practices
in the West [2] have led to a sharp increase in the number of premature babies at
risk of this iatrogenic, sight-threatening disease. The preterm retina can develop
abnormally at any time up to 36 weeks gestational age [3] and is treatable, thus
screening plays an important role. However, screening is labour-intensive and
challenging, due to insufficient understanding of ROP symptomatology, lack of
gold-standard ground-truth data and poor quality fundus imaging. We inves-
tigate two methods how CNNs can be used to aid in ROP detection. (1) We
detail what we believe to be the first fully automated ROP detector, which can
classify per image and per examination. It harnesses traditional deep learning
and modern variational Bayesian techniques. We provide information on practi-
cal tweaks that did and did not work in achieving our goal. (2) We demonstrate
how the feature maps of deep CNNs can be used to create visualizations of the
pathologies, indicative of disease, learned directly from the data.

ROP is difficult to detect, but conveniently it co-occurs with plus-disease [4],
which is easier to diagnose. Plus-disease is characterized by increased dilation
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Fig. 1. Standard reference image
for identifying plus-disease [4].

and tortuosity of the retinal vasculature
about the posterior pole (central zone about
optic disc) [5], together called plusness.
Figure 1 shows a reference image of plus-
disease from [4], which very clearly shows
vascular dilation and tortuosity, but has
been criticized for showing these quanti-
ties as more progressed than usually seen
in clinic. In practice, these two quanti-
ties prove difficult to measure systemati-
cally and repeatably. Some common practical
issues are: defining the segmentation bound-
ary for vessel extraction, measuring vessel
dilation/tortuosity, and discerning retinal from choroidal vessels. Other symp-
toms [6,7], are known but their use as indicators in screening are limited.

Most semi-automated techniques for ROP case detection rely on measuring
plusness via a manual registration followed by semi- or fully-automated vessel
segmentation, and by various mechanisms to extract width and tortuousity infor-
mation [8]. Jomier et al. [9] measure width and tortuosity in all four quadrants
of a vessel segmentation, which is then fed into a neural network, returning a
classification of disease presence. Wallace et al. [10] do not seek to build a detec-
tion system and differentiate between arteriolar and venular diameter, finding
that venular diameter is unimportant in classification. Their system requires sig-
nificant hand preprocessing to make this work. Swanson et al. [11] use a custom
vessel segmentation software to semi-automatically measure a tortuosity- and
dilation-index for user-selected vessels. They identify plus-positive images as hav-
ing a tortuosity-index above a certain threshold. In contrast to these methods,
we use automated registration and feed the entire registered image into a CNN
classifier. We are also able to return per-examination classifications; whereas,
existing methods only return per-image classifications.

2 Proposed Method

Neonatal fundus images are usually of poor quality (see Fig. 2), captured from
the unsedated premature babies, on a low resolution (640×480 px RGB) camera.

(a) Partial occlusion (b) Strong fades (c) Choroidal vessels (d) Blurring

Fig. 2. Examples factors impeding detection in the neonatal fundus. Only c) is diseased.



70 D.E. Worrall et al.

They exhibit high levels of variation with different translations and orientations,
high levels of motion blur, illumination artifacts, and strongly visible choroidal
vessels. Compared with adult fundus images, like in the Kaggle diabetic retinopa-
thy competition1, these are much degraded and harder to use for classification.
The existing techniques mentioned depend on reliable vessel segmentation, which
is extremely difficult in the neonatal fundus and sometimes requires some user-
intervention to touch up results. Our images are also few in number (∼ 1500)
with high class-imbalance (∼ 10%). Below we describe our CNN-based classifier
and pathology visualization.

2.1 Classifier

The classifier consists of the traditional deep learning pipeline: preprocessing,
data augmentation, pretrained CNN, finetuning layers. Presently there are vary-
ing gradations of ROP and plus-disease, such as APROP and pre-plus, but we
only distinguish ‘diseased/healthy’, since our dataset was compiled in the late
90s, before these alternatives were used by the mainstream2.

Fig. 3. Fully automated image registration, preprocessing and augmentation pipeline.

Preprocessing and Data Augmentation. Fundus images are translation
registered using [12] and cropped to 240 × 240 px about the posterior pole,
chosen based by cross-validation. The crop size seems small, but biologically
reasonable [5]. Post-registration we high pass filter the RGB channels, remov-
ing low frequency illumination changes and global color information. This also
removes retinal pigmentation, but we assume ethnicity plays a negligible role in
plus screening. For variations in the data, which we cannot ‘normalize out’, we
use data augmentation, such that the particular variation is uniformly sampled.
In our case we randomly flip, rotate and take subcrops of 96 % of the original
image size. The pipeline is shown in Fig. 3.

The Per-Image Classifier. Our per-image classifier consists of a 2-way soft-
max classifier with affine layer, stacked on top of an ImageNet pretrained

1 https://www.kaggle.com/c/diabetic-retinopathy-detection.
2 Neonatal fundus imaging quality has not improved since, only the labels are different.

https://www.kaggle.com/c/diabetic-retinopathy-detection


Automated Retinopathy of Prematurity Case Detection 71

Fig. 4. (a) An inception module consists of a combination of multiscale convolutions.
Lettered blocks contain learnable parameters. The GoogLeNet contains 9 inception
modules laid end-to-end. (b) The beta distribution is used in the per-exam classifier.
It is biased towards healthy images. Solid line: PDF, dashed line: mean.

GoogLeNet [13]. The GoogLeNet is formed of a stack of 9 inception modules,
which are a combination of convolutional layers and max-pooling (see Fig. 4(a)).
Please refer to [13] for more details. For training we minimize a binary cross-
entropy loss over the model output and target labels using RMSProp [14].

It is common to just retrain the linear classifier on the end of the network,
but we found improved performance, if we included some of the convolutional
layers within the 9th inception module. Retraining too many layers led to severe
overfitting, however, and so we used an iterative procedure of finetuning the final
n layers, and if compared to the previous n − 1 layers validation performance
increased, then we proceeded to n+1 layers, and so on. With parallel layers, we
tried all combinations, for instance A, B and A & B in Fig. 4(a). In the end, we
retrained layers ACDEF of inception module 9 with the 2-way softmax classifier.

Bayesian CNNs. CNNs return point-estimate class predictions y∗ ∈ R
D,

where
∑D

d=1 y∗,d = 1 given an input image X∗ ∈ R
N×M×C . These are overconfi-

dent, and a more informative prediction is the posterior predictive distribution
p(y∗|X∗,D) where D is the training data. This can be found from the marginal

p(y∗|X∗,D) =
∫

p(y∗|X∗,w)p(w|D) dw, (1)

where p(y∗|X∗,w) represents the CNN output given image X∗ and weights w,
and p(w|D) is a posterior over the weights, given D. Standard CNN training
follows the maximum likelihood priniciple, or maximum a posteriori when reg-
ularlization is involved, so ‘traditional’ predictions are made with p(w|D) =
δ(w−wML) or p(w|D) = δ(w−wMAP), where δ(x) is the Dirac delta function.

Recently it has been shown [15] that training CNNs with sampling behaviour,
such as dropout [16], is equivalent to fitting an approximation q(w;λ), where
λ are referred to as the variational parameters, to the true Bayesian posterior
p(w|D) over the CNN’s weights. Furthermore, these samples are true samples
from the approximate posterior. So to approximate Eq. 1, we replace p(w|D)
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with q(w;λ) and Monte Carlo sample w(k) ∼ q(w;λ). For instance, dropout
corresponds to wi = ziλi, zi ∼ Bernoulli(zi; 0.5), where wi is a set of incoming
weights to a neuron. To yield a classification we can then simply threshold the
cumulative distribution function of the posterior predictive Pr{y∗,d > t} > s%,
which in words means, the probability mass of the dth output above threshold t
is greater than s%. We can optimize s and t to trade sensitivity–specificity.

Failed Experiments. Here we list some of the techniques, we found to hurt
performance. Vesselness features: we tried including Frangi vesselness descriptors
[17] both as a 4th input channel and as a mask on the input, we presume the
network works on a similar representation of the data already. ADAM solver : this
led to severe overfitting. Large crops: increasing the crop size led to underfitting.
More fully-connected layers on output : this led to overfitting, even with dropout.
Loss function reweighting to remedy class-imbalance: We found oversampling the
smaller class better, because with data augmentation this leads to the network
seeing more data per epoch. Training the softmax classifier from lower layer
outputs: this led to underfitting. Interestingly, one would initially suspect that
higher layers are more dataset specific, we found this not to be a problem.
Removing global average pooling (GAP): this increased the dimensionality of the
output and the number of retrainable parameters, leading to overfitting.

Per-Exam Classifier. Each exam consists of different images of the same eye
from differing views and with different artifacts. We build a per-exam classifier
by assuming a Beta distribution p(π|a, b) = Beta(π; a, b) prior over the probabil-
ity π that a given eye is diseased in an examination and a Bernoulli distribution
p(ci|π) = cπ

i (1 − ci)1−π on the probability an image i is classified as diseased ci

given π. The posterior over π is Beta(π;N1 + a,N0 + b), where N1 and N0 are
number of images classified as diseased and healthy, respectively, in that exam-
ination. When using the Bayesian predictive distribution, we use classifications
from the thresholded cumulative distribution. The posterior predictive distrib-
ution is p(c∗ = 1|{ci}N0+N1

i=1 ) = N1+a
N0+N1+a+b , where c∗ is the diseased/healthy

classification for this exam. We found a = 0.8, b = 1.5 through Empirical Bayes
on the training data, which places a prior on images being healthy.

2.2 Visualization

We visualize diseased regions of the fundus, by examining the CNN feature maps.
GoogLeNet feature maps are too small (7 × 7 px), so we trained a separate 7-
layer CNN with 3 × 3 1-padded kernels and 3 × 3 stride 2 max-pooling after
every even convolution with 31 × 31 px output feature maps. There is evidence
[18] that CNNs trained for the same task learn similar representations at the
deepest layers.

For meaningful visualizations, we need to associate activations with a label
(diseased/healthy). For this, we manipulate the GAP-layer, found just before
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Fig. 5. The linearity of GAP and affine layers means we can swap their order, applying
the affine transformation to each stack of pixels in the input.

the softmax classifier. For feature maps Aijk with spatial indices i, j and chan-
nels k, GAP-layers return a spatial mean ak =

∑
i,j Aijk. For GAP-layers feeding

directly into a softmax, we need only look at the associated feature maps, but
if there is an affine layer between the GAP and the softmax, then we swap the
order of the GAP and affine layers,

softmax

⎛

⎝W
∑

i,j

Aij: + b

⎞

⎠ = softmax

⎛

⎝
∑

i,j

(WAij: + b)

⎞

⎠ , (2)

where Aij: is the vector with entries ak. The result is a plusness feature map
and a health feature map. A schematic of the process is in Fig. 5 and examples
of feature maps overlaid on input images are in Fig. 6.

3 Experiments and Results

Here we run experiments on two large and difficult ROP datasets, comparing
results against a baseline and competing methods papers.

Datasets Canada dataset : there are 1459 usable images from 35 patients, and
347 exams of 2–8 images per eye. There is one label per-exam (plus/no-plus)
and per-eye, but not per-image. We assume all images from an examination
share the same label. We used this dataset for training as well as validation.
London dataset : there are 106 individually labelled images with 4 expert labels
per image. For this dataset we cannot group by exam and use this dataset for
testing only.

9-fold validation. Table 1 shows results for 9-fold cross-validation on the
Canada dataset for our system and a näıve baseline, a 9-layer scratch-trained
CNN. Each patient is assigned to a single fold. We contrast the Bayesian model
against the ‘traditional’ maximum likelihood solution CNN. Key statistics are
averaged over the folds. Class-normalized accuracy is the mean of sensitivity and
specificity and Fleiss’ Kappa (FK) [19] is a measure of agreement. FK of 1.0 is
full agreement, 0.0 is random agreement and < 0.0 is no agreement.

Per-exam results are mostly higher than per-image, as expected, since aver-
aging over exams smooths over erroneous per-image labels. For both per-image
and per-exam classification, the Bayesian model adds about 5 % class-normalized
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Table 1. 9-fold cross-validation results on the Canada dataset. Bold denotes the best
result for each row within per-image or per-exam.

Experiment Per-image Per-exam

Bayes. Trad. Base. Jomier[9] Wallace[10] Bayes. Trad. Base.

Raw Acc 0.918 0.892 0.833 - - 0.936 0.919 0.852

Sensitivity 0.825 0.809 0.598 0.800 0.950 0.954 0.852 0.625

Specificity 0.983 0.909 0.846 0.920 0.780 0.947 0.929 0.860

Precision 0.607 0.547 0.295 - - 0.713 0.665 0.322

Norm. Acc 0.904 0.859 0.722 0.860 0.865 0.951 0.890 0.742

Fleiss’ Kappa 0.590 0.547 0.246 - - 0.714 0.657 0.278

accuracy, with significant gains in sensitivity per-exam. Comparing to other
methods, we are competitive, although losing on per-image sensitivity to Wallace
et al.. We note though that the comparison of results is not straight-forward,
since they use smaller test sets (20 images) and Jomier et al. use different
methodology, testing only non-borderline images. Looking at FK, we see agree-
ment is 0.54 − 0.72 for our model, considered “moderate” to “substantial”.

Multigrader Agreement. With the London dataset there is no groundtruth,
so we report the FK score only. For a single prediction, we ensemble the outputs
of the 9 cross-validation trained CNNs, taking a mean and thresholding at 50 %,
results are in Table 2. Among the experts there is an FK of 0.427, but with
our system this drops to 0.366/0.372. It turns out that the system agrees very
strongly with one expert and disagrees strongly with another (see Table 2), and
that the agreement with the closest expert is stronger than amongst the closest
and furthest experts (0.194). For comparison, [20] report an FK of 0.32 for inter-
clinician agreement, albeit on a separate dataset.

Table 2. Multigrader agreement is similar to levels found in [20].

Experiment Experts alone All experts Closest expert Furthest expert

Bayes. Trad. Bayes. Trad. Bayes. Trad.

Fleiss’ Kappa 0.427 0.366 0.372 0.551 0.546 −0.118 −0.084

Pre-GAP Visualization. Figure 6 shows the pre-GAP visualization, where
red indicates diseased and blue healthy. The blue channel has been intensified
for easier visualization. There is a clear indication that the CNN focuses on the
vasculature in its decision-making, and that this is by far the most important
indicator for plus-disease. This agrees with the current guidance for clinicians as
per [4], which focuses on qualitative measurements of the width and tortuosity
of retinal blood vessels.
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(a) Healthy retina (b) Healthy retina (c) Diseased retina (d) Diseased retina

Fig. 6. Visualizations of learned retinal pathologies with the projected pre-GAP acti-
vation layer superimposed. Blue is healthy tissue and red is diseased tissue. The CNN
has learned that wide and tortuous vessels correlate with plus-disease, as we expect.
(Color figure online)

4 Conclusion, Limitations and Future Work

We have presented the first fully automated ROP detection system. We have
listed techniques to finetune a GoogLeNet to small datasets, which did and did
not work for us. We have also demonstrated a simple Bayesian framework to
increase the accuracy of the output of a dropout trained CNN. The system
copes with single images or multiple images from a single examination. For
understanding we have also demonstrated how to return augmented pathology
visualizations from CNNs with large enough feature maps. The code and dataset
are available to download upon request.

Our multigrader experiments show that it is possible to train classifiers on
subjective labels. These classifiers exhibit good agreement with some of the
expert labelers. From a supervised learning perspective, a classifier can only ever
be as good as its training data, as such we need to look to less human-dependent
training data if we are to surpass human performance. This may involve har-
nessing unsupervised and semi-supervised learning. It would also be sensible to
explore building spatio-temporal models of ROP progression, to see if sequences
of images form better predictors of disease than single instances in time.
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Abstract. In this work we explore a fully convolutional network (FCN)
for the task of liver segmentation and liver metastases detection in com-
puted tomography (CT) examinations. FCN has proven to be a very
powerful tool for semantic segmentation. We explore the FCN perfor-
mance on a relatively small dataset and compare it to patch based CNN
and sparsity based classification schemes. Our data contains CT exami-
nations from 20 patients with overall 68 lesions and 43 livers marked in
one slice and 20 different patients with a full 3D liver segmentation. We
ran 3-fold cross-validation and results indicate superiority of the FCN
over all other methods tested. Using our fully automatic algorithm we
achieved true positive rate of 0.86 and 0.6 false positive per case which
are very promising and clinically relevant results.

Keywords: Deep learning · Liver lesions · Detection · CT

1 Introduction

Liver cancer is among the most frequent types of cancerous diseases, responsible
for the deaths of 745,000 patients worldwide in 2012 alone [14]. The liver is one
of the most common organs to develop metastases and CT is one of the most
common modalities used for detection, diagnosis and follow-up of liver lesions.
The images are acquired before and after intravenous injection of a contrast
agent with optimal detection of lesions on the portal phase (60–80 s post injec-
tion) images. These procedures require information about size, shape and precise
location of the lesions. Manual detection and segmentation is a time-consuming
task requiring the radiologist to search through a 3D CT scan which may include
multiple lesions. The difficulty of this task highlights the need for computerized
analysis to assist clinicians in the detection and evaluation of the size of liver
metastases in CT examinations. Automatic detection and segmentation is a very
c© Springer International Publishing AG 2016
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challenging task due to different contrast enhancement behavior of liver lesions
and parenchyma. Moreover, the image contrast between these tissues can be low
due to individual differences in perfusion and scan time. In addition, lesion shape,
texture, and size vary considerably from patient to patient. This research prob-
lem has attracted a great deal of attention in recent years. The MICCAI 2008
Grand Challenge [3] provided a good overview of possible methods. The winner
of the challenge [11] used the AdaBoost technique to separate liver lesions from
normal liver based on several local image features. In more recent works we see
a variety of additional methods trying to deal with detection and segmentation
of liver lesions [1,9].

In recent years, deep learning has become a dominant research topic in numer-
ous fields. Specially, Convolutional Neural Networks (CNN) have been used for
many challenges in computer vision. CNN obtained outstanding performance on
different tasks, such as visual object recognition, image classification, handwrit-
ten character recognition and more. Deep CNNs introduced by LeCun et al. [5],
is a supervised learning model formed by multi-layer neural networks. CNNs are
fully data-driven and can retrieve hierarchical features automatically by building
high-level features from low-level ones, thus obviating the need to manually cus-
tomize hand-crafted features. CNN has been used for detection in several medical
applications including pulmonary nodule [10], sclerotic metastases, lymph node
and colonic polyp [8] and liver tumours [6]. In these works, the CNN was trained
using patches taken out of the relevant region of interest (ROI).

In this paper we used a fully convolutional architecture [7] for liver segmen-
tation and detection of liver metastases in CT examinations. The fully convo-
lutional architecture has been recently used for medical purposes in multiple
sclerosis lesion segmentation [2]. Fully convolutional networks (FCN) can take
input of arbitrary size and produce correspondingly-sized output with efficient
inference and learning. Unlike patch based methods, the loss function using this
architecture is computed over the entire image segmentation result. Our network
processes entire images instead of patches, which removes the need to select rep-
resentative patches, eliminates redundant calculations where patches overlap,
and therefore scales up more efficiently with image resolution. Moreover, there
is a fusion of different scales by adding links that combine the final prediction
layer with lower layers with finer strides. This fusion helps to combine across
different lesion sizes. The output of this method is a lesion heatmap which is
used for detection.

Since our dataset is small we use data augmentation by applying scale trans-
formations to the available training images. The variations in slice thickness are
large in our data (1.25 to 5 mm) and provides blurred appearance of the lesions
for large slice thickness. The scale transformations allows the network to learn
alter local texture properties.

We use a fully convolutional architecture for liver segmentation and detec-
tion of liver metastases in CT examinations using a small training dataset and
compare it to the patch based CNN. To the best of our knowledge, this is the
first work that uses fully convolutional neural network for liver segmentation
and liver lesions detection.
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2 Fully Convolutional Network Architecture

Our network architecture uses the VGG 16- layer net [12]. We decapitate the net
by discarding the final classifier layer, and convert all fully connected layers to
convolutions. We append a 1×1 convolution with channel dimension 2 to predict
scores for lesion or liver at each of the coarse output locations, followed by a
deconvolution layer to upsample the coarse outputs to pixel-dense outputs. The
upsampling is performed in-network for end-to-end learning by backpropagation
from the pixelwise loss. The FCN-8s DAG net was used as our initial network,
which learned to combine coarse, high layer information with fine, low layer
information as described in [7]. Our initial network architecture is presented in
Fig. 1. We also explored the additional value of adding another lower level linking
layer creating an FCN-4s DAG net. This was done by linking the Pool2 layer in
a similar way to the linking of the Pool3 and Pool4 layers in Fig. 1.

Fig. 1. Initial network architecture. Each convolution layer is illustrated by a straight
line with the receptive field size and number of channels denoted above. The ReLU
activation function and drop-out are not shown for brevity.

2.1 3D Information

The input in our task are axial CT slices. In order to use the information from
z-axis we modified the input image to have three CT slices, the relevant slice and
two adjacent slices (above and below). Due to a very high slice spacing in some
of our data we had to interpolate the adjacent slices, using linear interpolation,
to be with a fixed spacing of 1 mm.
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2.2 Training

Input images and their corresponding segmentation maps are used to train the
network with the stochastic gradient descent implementation of MatConvNet
[13] with GPU acceleration. Two networks were trained, one for the liver seg-
mentation task and one for the lesion detection tasks. For the lesions detection
training the areas surrounding the liver including the different organs and tissues
were ignored. Note that one network trained on both lesions and liver was not
used in our work since we had two different datasets for each task. The softmax
log-loss function was calculated pixel-wise with different weights for each class
pixels as in Eq. (1):

L = −
∑

ij

wij(xijc − log
D∑

d=1

exp(xijd)) (1)

Where c ∈ [1...D] is the ground-truth class and x is the prediction scores matrix
(before softmax) and w is the per-pixel weight matrix. As most of the pixels in
each image belong to the liver, we balanced the learning process by using fixed
weights that are inversely proportional to the population ratios. The learning
rate was chosen to be 0.0005 for the first 20 epochs and 0.0001 for the last 30
epochs (total of 50 epochs). The weight decay was chosen to be 0.0005 and the
momentum parameter was 0.9.

2.3 Data Augmentation

The lesion detection dataset was much smaller than the liver segmentation
dataset since the manual segmentation masks were only in 2D for this dataset so
data augmentation was appropriate. Data augmentation is essential to teach the
network the desired invariance and robustness properties, when only few training
samples are available. We generate different scales from 0.8 to 1.2 as lesion size
can change significantly. The scales are sampled using uniform distribution and
new images are re-sampled using nearest-neighbour approach. For each image in
our dataset, four augmentations were created in different scales.

3 Experiments

3.1 Data

The data used in the current work includes two datasets. The lesion detection
dataset includes CT scans from the Sheba medical center, taken during the
period from 2009 to 2014. Different CT scanners were used with 0.71–1.17 mm
pixel spacing and 1.25–5 mm slice thickness. Each CT image was resized to obtain
a fixed pixel spacing of 0.71 mm. The scans were selected and marked by one
radiologist. They include 20 patients with 1–3 CT examinations per patient and
overall 68 lesion segmentation masks and 43 liver segmentation masks. The data
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includes various liver metastatic lesions derived from different primary cancers.
The liver segmentation dataset includes 20 CT scans with entire liver segmenta-
tion masks taken from the SLIVER07 challenge [4] and was used only for training
the liver segmentation network.

3.2 Liver Segmentation

We evaluated the liver segmentation network using the lesion detection dataset
(43 slices of livers). Two framework variations were used: adding two neighbour
slices (above and below), and linking the Pool2 layer for the final prediction
(FCN-4s). We evaluated the algorithm’s segmentation performance using the
Dice index, and calculated the Sensitivity and Positive predictive values (PPV).
The results are shown in Table 1. The best results were obtained using the FCN-
8s architecture with the addition of the adjacent slices. We obtained an average
Dice index of 0.89, an average sensitivity of 0.86 and an average positive pre-
dictive value of 0.95. The fusion of an additional low level layer (FCN-4s) did
not improve the results, probably since the liver boundary has a smooth shape
and there is no need for a higher resolution. Adding the adjacent slices slightly
improved the segmentation performance.

Table 1. Liver segmentation performance using algorithm variations

Features Dice Sensitivity PPV

FCN-8s 3 slices 0.89 0.86 0.95

FCN-8s 0.88 0.85 0.95

FCN-4s 3 slices 0.87 0.82 0.95

3.3 Detection-Comparative Evaluation

To evaluate the detection performance independent of the liver segmentation
results we constrained the training and the testing sets to the liver area cir-
cumscribed manually by a radiologist. One of our goals was to examine the
behaviour of the lesion detection network compared to the more classical patch
based method. We designed a patch-based CNN similar to the one introduced
by Li et al. [6]. The liver area is divided into patches of 17X17 pixels which
are fed to the CNN for classification into lesion/normal area. We used a CNN
model with seven hidden layers which included three convolutional layers, two
max-pooling layers, fully connected layers, ReLU and a softmax classifier. We
implemented the CNN model with MatConvNet framework [13] with GPU accel-
eration. We ran 50 epochs with a learning rate of 0.001. In each epoch a batch
of 100 examples is processed simultaneously.

Another comparison made was to a recent work using sparsity based learned
dictionaries which achieved strong results [1]. In this method each image was
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clustered into super-pixels and each super-pixel was represented by a feature
vector. The super-pixels are classified using a sparsity based classification method
that learns a reconstructive and discriminative dictionary.

As in the liver segmentation evaluation we tried the same two variations by
adding two neighbour slices (above and below), and linking the Pool2 layer for
the final prediction (FCN-4s). The detection performance was visually assessed
considering the following two metrics: True positive rate (TPR)- the total num-
ber of detected lesions divided by the total number of known lesions; False posi-
tive per case (FPC)- the total number of false detections divided by the number
of livers. Each lesion was represented by a 5 mm radius disk in its center of mass
for the detection evaluation. The same was done for each connected component
in our method results. We define a detected lesion when its center of mass over-
lap with the system lesion candidate center of mass. A 3-fold cross validation
was used (each group containing different patients) using the lesion detection
dataset. Results are presented in Table 2. To make this clinically interesting the
highest TPR is presented with an FPC lower than 2.

Table 2. FCN, patch based CNN and sparsity based method detection performance
given the liver boundary.

Method TPR FPC

FCN-4s 3 slices 0.88 0.74

FCN-8s 3 slices 0.86 1.1

FCN-8s 0.85 1.1

Patch based 0.85 1.9

Sparsity Based 0.82 1.1

The FCN-4s with the addition of neighbour slices performed better than the
other methods with better TPR and better FPC. Figure 2 shows example results
using the FCN. Seem that for lesions the FCN-4s is more appropriate than the
FCN-8s because of the lesions size (smaller objects).

Fig. 2. Example results. In red - false positives; In green - false negatives; in blue -
true positives (Color figure online)
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3.4 Fully Automatic Detection results

Finally, we tested the combination of the liver segmentation network (FCN-8s
with neighbours) and the lesion detection network (FCN-4s with neighbours) to
automatically extract the liver and detect the lesions in the liver segmentation
result. We achieved a TPR of 0.86 and an FPC of 0.6 using the fully automatic
algorithm. These results are close to the detection results achieved using the
manual segmentation of the liver with a lower TPR but a better FPC. The liver
automatic segmentation output usually did not include some of the boundary
pixels which are darker and less similar to the liver parenchyma. These dark
boundary pixels can be falsely detected as a lesion. This was the main reason for
the improvement in FPC when using the automatic segmentation in comparison
to the manual one.

3.5 Synthetic Data Experiments

Trying to understand the FCN discriminative features we created three synthetic
images: (1) The lesion filled with a fixed value equal to its mean Hounsfield
Units (HU) value; (2)The boundary of the lesion blurred by giving it a fixed
value equal to the mean parenchyma HU; (3) The lesion mean HU value equal
to the parenchyma mean HU. By using a fixed value to all of the pixels inside the
lesion we eliminate the lesion’s texture. Figure 3 shows that most of the pixels
inside the lesion were misclassified as normal liver tissue. The pixels around the
lesion’s boundary can look different than normal parenchyma, even if they are
not part of the lesion. They are sometimes marked by the experts as part of
the lesion and this causes false positives around the boundary of the lesion. The
blurred boundary of the lesion reduced the amount of false positives around
the lesion’s boundary by making it similar to the liver parenchyma. By making
the mean HU value of the lesion equal to that of the mean HU value of the
parenchyma we eliminate gray levels difference. In that case the lesion was not

Fig. 3. Synthetic data experiments: (a) Original image; (b) The lesion filled with a
fixed value equal to it’s mean Hounsfield Units (HU) value; (c) The boundary of the
lesion blurred by giving it a fixed value equal to the mean parenchyma HU; (d) The
lesion mean HU value equal to the parenchyma mean HU.
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detected at all. These results indicate that the network learned the texture of
the lesion and mostly relies on the gray level difference between the lesion and
the liver parenchyma.

4 Conclusions

To conclude, we showed automated fully convolutional network for liver segmen-
tation and detection of liver metastases in CT examinations. Several approaches
were tested including state of the art sparse dictionary classification techniques
and patch based CNN. The results indicate that the FCN with data augmenta-
tion, addition of neighbour slices, and appropriate class weights provided the best
results. Note that we have a small dataset and testing was conducted with 3-fold
cross-validation. The detection results are promising. Note that no significant
pre-processing or post-processing was implemented in the suggested method.
Adding these steps may increase lesion detection accuracy and enable more
accurate segmentation as well. Future work entails expanding to 3D analysis
on larger datasets.
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Abstract. Multiple sclerosis (MS) is a neurological disease with an early
course that is characterized by attacks of clinical worsening, separated
by variable periods of remission. The ability to predict the risk of attacks
in a given time frame can be used to identify patients who are likely to
benefit from more proactive treatment. In this paper, we aim to deter-
mine whether deep learning can extract, from segmented lesion masks,
latent features that can predict short-term disease activity in patients
with early MS symptoms more accurately than lesion volume, which is
a very commonly used MS imaging biomarker. More specifically, we use
convolutional neural networks to extract latent MS lesion patterns that
are associated with early disease activity using lesion masks computed
from baseline MR images. The main challenges are that lesion masks are
generally sparse and the number of training samples is small relative to
the dimensionality of the images. To cope with sparse voxel data, we
propose utilizing the Euclidean distance transform (EDT) for increas-
ing information density by populating each voxel with a distance value.
To reduce the risk of overfitting resulting from high image dimension-
ality, we use a synergistic combination of downsampling, unsupervised
pretraining, and regularization during training. A detailed analysis of
the impact of EDT and unsupervised pretraining is presented. Using
the MRIs from 140 subjects in a 7-fold cross-validation procedure, we
demonstrate that our prediction model can achieve an accuracy rate of
72.9 % (SD = 10.3 %) over 2 years using baseline MR images only, which
is significantly higher than the 65.0 % (SD = 14.6 %) that is attained
with the traditional MRI biomarker of lesion load.
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1 Introduction

Multiple sclerosis (MS) is an immune mediated disorder characterized by inflam-
mation, demyelination, and degeneration in the central nervous system. There is
increasing evidence that early detection and intervention can improve long-term
prognosis. However, the disease course of MS is highly variable, especially in its
early stages, and it is difficult to predict which patients would progress more
quickly and therefore benefit from more aggressive treatment. The McDonald
criteria [1,2], which are a combination of clinical and magnetic resonance imag-
ing (MRI) indicators of disease activity, facilitate the diagnosis of MS in patients
who present early symptoms suggestive of MS.

However, predicting which patients will meet a given set of criteria for dis-
ease activity within a certain time frame remains a challenge. MRI is invaluable
for monitoring and understanding the pathology of MS in vivo from the ear-
liest stages of the disease, but the commonly computed MRI biomarkers such
as brain and lesion volume are not strongly predictive of future disease activ-
ity [3], especially when only baseline measures are available, which is often the
case when a patient first presents. Researchers have attempted to define more
sophisticated MRI features that are more predictive. Recently, Wottschel et al.
employed a support vector machine trained on user-defined features to predict
the conversion of clinically isolated syndrome (CIS), a prodromal stage of MS,
to clinically definite MS [4]. The features included demographic information and
clinical measurements at baseline, and also MRI-derived features such as lesion
load (also known as burden of disease, BOD) and lesion distance measurements
from the center of the brain.

User-defined features typically require expert domain knowledge and a sig-
nificant amount of trial-and-error, and are subject to user bias. An alternate
approach is to automatically learn patterns and extract latent features using
machine learning. In recent years, deep learning [5] has received much atten-
tion due to its use of automated feature extraction to achieve breakthrough
success in many applications, in some cases from high-dimensional data with
complex content such as neuroimaging data. For example, deep learning of neu-
roimaging data has been used to perform various tasks such as the classification
between mild cognitive impairment and Alzheimer’s disease (e.g., [6]) and to
model pathological variability in MS [7].

In this work, using the baseline MRIs of patients with early symptoms of
MS but not yet meeting the McDonald 2005 criteria for MS diagnosis, we aim
to predict which patients worsened to meet the conversion criteria within two
years. MS exhibits a complex pathology that is still not well understood, but it
is known that change in spatial lesion distribution may be an indicator of disease
activity [8]. Our clinical motivation is to discover white matter lesion patterns
that may indicate a faster rate of worsening, so that patients who exhibit such
patterns can be selected for more personalized treatment. We investigate whether
latent MRI lesion patterns extracted by deep learning can predict disease status
conversion to meet the McDonald 2005 criteria with greater accuracy than BOD.
The main idea is to employ convolutional neural networks (CNNs) to identify
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latent lesion pattern features whose variability can maximally distinguish those
patients at risk of short-term disease activity from those who will remain rela-
tively stable.

2 Materials and Preprocessing

The baseline T2-weighted (T2w) and proton density-weighted (PDw) MR images
of 140 subjects were used to predict each patient’s disease status at two years.
The dataset consists of 60 non-converters and 80 converters. The image dimen-
sions are 256×256×60 with a voxel size of 0.937×0.937×3.000 mm. Preprocess-
ing consisted of skull stripping and linear intensity normalization. The T2w and
PDw scans were segmented via a semi-automated multimodal method to pro-
duce lesion masks. The mask images were then downsampled to 128 × 128 × 30
with Gaussian pre-filtering as a first dimensionality reduction step.

3 Methods

Prior to feature extraction, all images were spatially normalized to a standard
template (MNI152) [9] using affine registration. Our CNN architecture is a 9-
layer model (Fig. 1), consisting of three 3D convolutional layers interleaved with
three max-pooling layers, followed by two fully connected layers, and finally a
logistic regression output layer.

Fig. 1. The proposed convolutional neural network architecture (fc = fully connected
layer) for predicting future disease activity in patients with early symptoms of MS. The
Euclidean distance transform is used for increasing information density from sparse
lesion masks.

3.1 Euclidean Distance Transform of Lesion Masks

MS lesions typically occupy a very small percentage of a brain image, and as
a result the binary lesion masks contain mostly zeros. From our preliminary
experiments, we observed that the CNN model learns mostly noisy patterns from
the binary lesion masks, which is likely due to the fact that sparse lesion voxels
can be ignored or deformed into noise spikes by various stages of convolution
and pooling operations during training. As described in Sect. 4, the training and
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test results show that the binary lesion masks are not appropriate as the input
to the CNN model. We could have also used raw MR images as the input, but
the lesion voxels would almost certainly be lost in the learning process due to
their sparsity. To overcome this problem, we propose increasing the density of
information in the lesion masks by the Euclidean distance transform (EDT) [10],
which measures the Euclidean distance between each voxel and the closest lesion.
The EDTs of the binary lesion masks form the input to our CNN model. From
Fig. 1, we can see examples of how the spatial distribution of the lesions is densely
captured and better amplified than those in the original binary masks. The
impact of the transform on training a deep learning network will be presented
in Sect. 4. We used the ITK-SNAP’s Convert3D tool [11] for applying the EDT.

3.2 CNN Training

It has been shown that pretraining can improve the optimization performance of
supervised deep networks when training sets are limited, which often happens in
the medical imaging domain [12], but the gains are dependent on data proper-
ties. We investigated the impact of using a 3D convolutional deep belief network
(DBN) for pretraining to initialize our CNN model. Our convolutional DBN has
the same network architecture as the convolutional and pooling layers of our CNN.
For our DBN and CNN, we used the leaky rectified non-linearity [13] (negative
slope α = 0.3), which is designed to prevent the problem associated with non-
leaky units failing to reactivate after encountering certain conditions due to large
gradient flow. Our convolutional DBN was initialized using a robust method [14]
that particularly considers the rectified non-linearity and has been shown to allow
successful training of very deep networks on natural images, and trained using
contrastive divergence [15]. To analyze the influence of EDT and pretraining on
supervised training, we trained our CNN under four conditions: no EDT and no
pretraining, no EDT with pretraining, with EDT and no pretraining, with both
EDT and pretraining. For all four experiments, we used negative log-likelihood
maximization with AdaDelta [16] (conditioning constant ε = 1e−12 and decay
rate ρ = 0.95) and a batch size of 20 for training. Since there are more converters
than non-converters in the dataset, the class weights in the cost function (cross
entropy) for supervised training were automatically adjusted in each fold to be
inversely proportional to the class frequencies observed in the training set. We
used Theano [17] and cuDNN [18] for implementing the CNN models.

3.3 Data Augmentation and Regularization

Due to the high dimensionality of the input images relative to the number of
samples in the dataset, even after downsampling, the proposed network can suf-
fer from overfitting. Data augmentation is one of the most popular approaches to
reduce the risk of overfitting by artificially creating training samples to increase
the dataset size. To generate more training samples, we performed data aug-
mentation by applying random rotations (±3 degrees), translations (±2 mm),
and scaling (±2 percent) to the mask images, which increased the number of
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training images by fourfold. To regularize training, we applied dropout [19] with
p = 0.5, weight decay (L2-norm regularization) with penalty coefficient 2e−3
and L1-norm regularization with penalty coefficient 1e−6. Finally, we applied
early stopping, which also acts as a regularizer to improve the generalization
ability [20], with a convergence target of negative log-likelihood of 0.6. The con-
vergence target was used to stop training when the generalization loss (defined
as the relative increase of the validation error over the minimum-so-far during
training) started to increase, which was determined by cross-validation.

4 Results and Discussion

To see the impact of EDT on unsupervised pretraining, we computed the root
mean squared (RMS) reconstruction error with and without EDT for each epoch
during training of the convolutional DBN. The reconstruction error remaining
after each epoch during pretraining of the first convolutional layer is shown in
Fig. 2. We observed that pretraining with EDT converged faster and produced
lower reconstruction error at convergence than pretraining without EDT.

To analyze the impact of EDT and pretraining on supervised training, we
compared four different scenarios which were described in Sect. 3.2 and shown
in Fig. 3. Without EDT, the CNN converged much faster with pretraining, but
the prediction errors at convergence were similar between those obtained with
and without pretraining. In both cases, the training made little progress on the
prediction error on the training set, and no progress on the test error, which
remained high. Using EDT, the optimization did not converge without pretrain-
ing even after 500 epochs, but did converge with pretraining. Without pretrain-
ing, the prediction errors fluctuated early for both the training and test datasets,
but soon remained constant, and training made no further progress. In contrast,
with both EDT and pretraining, the prediction errors on both training and test
data decreased fairly steadily up to about 200 epochs.

Figure 4 shows visualizations of the manifolds produced by the CNN out-
puts, reduced to two dimensions using t-distributed stochastic neighbor embed-
ding (t-SNE) [21]. When EDT and pretraining were not used, the two groups

Fig. 2. The influence of EDT on unsupervised pretraining for a convolutional layer.
Pretraining with EDT converged faster and produced lower reconstruction error after
convergence.
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Fig. 3. The influence of EDT and pretraining on supervised training. The left 4 images
show training costs and the right 4 images show prediction errors on both training and
test datasets for each epoch during supervised training in a selected fold of cross-
validation.

(converters and non-converters) showed poor linear separability in the learned
manifold space. The two groups were more distinguishable in the manifold space
learned from the CNN with EDT and pretraining.

Table 1. Performance comparison (%) between 5 different prediction models for pre-
dicting short-term (2 years) clinical status conversion in patients with early MS symp-
toms. The same training parameters were used for all the CNNs. We performed a 7-fold
cross-validation on 80 converters and 60 non-converters and computed the average per-
formance for each prediction model.

Prediction model Accuracy Sensitivity Specificity AUC

Logistic regression with BOD 65.0 ± 14.6 54.3 80.9 67.6 ± 14.9

CNN (no EDT, no pretraining) 57.9 ± 4.9 94.9 8.3 51.6 ± 4.4

CNN (no EDT, pretraining) 57.9 ± 5.9 98.7 3.6 51.1 ± 4.9

CNN (EDT, no pretraining) 54.3 ± 6.2 71.4 28.6 50.0 ± 0.0

CNN (EDT, pretraining) 72.9 ± 10.3 78.6 65.1 71.8 ± 10.2

For evaluating prediction performance, we used a 7-fold cross-validation pro-
cedure in which each fold contained 120 subjects for training and 20 subjects.
Note that the number of training images for each fold was increased to 480 by
data augmentation. For comparison to the established approach used in clinical
studies, a logistic regression prediction model applied to the classic MRI bio-
marker of BOD was used. The results of the comparison are shown in Table 1.
When EDT was not used, the CNN (with and without pretraining) produced
lower prediction accuracy rates than those attained by the logistic regression
model with BOD. In addition, these cases produced very high sensitivity but
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Fig. 4. Visualizations to show the influence of EDT and pretraining on the learned man-
ifold space, reduced to two dimensions using t-SNE [21]. Each subject in the dataset is
represented by a two-dimensional feature vector. The axes represent the feature element
values of each two-dimensional feature vector in the learned low-dimensional map. The
converter and non-converter groups are more linearly separable in the manifold space
when using the EDT and pretraining.

low specificity, possibly due to overfitting on the sparse lesion image data. When
EDT was used without pretraining, the CNN did not converge for every fold
in the cross-validation and also produced lower prediction accuracy rates than
lesion volume. The gap between sensitivity and specificity was reduced but still
remained large. The CNN with EDT and pretraining improved the prediction
performance by approximately 8 % in accuracy and 4 % in AUC when compared
to the logistic regression model with BOD. In addition, the SDs for both accu-
racy and AUC decreased by approximately 4–5%, showing a more consistent
performance across folds. This model also achieved the best balance between
sensitivity and specificity.

5 Conclusion

We have presented a CNN architecture that learns latent lesion features useful
for identifying patients with early MS symptoms who are at risk of future disease
activity within two years, using baseline MRIs only. We presented methods to
overcome the sparsity of lesion image data and the high dimensionality of the
images relative to the number of training samples. In particular, we showed that
the Euclidean distance transform and unsupervised pretraining are both key
steps to successful optimization, when supported by a synergistic combination of
data augmentation and regularization strategies. The final results were markedly
better than those obtained by the clinical standard of lesion volume.
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Abstract. Dynamic contrast-enhanced MRI (DCE-MRI) is an imag-
ing protocol where MRI scans are acquired repetitively throughout the
injection of a contrast agent. The analysis of dynamic scans is widely
used for the detection and quantification of blood brain barrier (BBB)
permeability. Extraction of the pharmacokinetic (PK) parameters from
the DCE-MRI washout curves allows quantitative assessment of the BBB
functionality. Nevertheless, curve fitting required for the analysis of DCE-
MRI data is error-prone as the dynamic scans are subject to non-white,
spatially-dependent and anisotropic noise that does not fit standard noise
models. The two existing approaches i.e. curve smoothing and image de-
noising can either produce smooth curves but cannot guaranty fidelity
to the PK model or cannot accommodate the high variability in noise
statistics in time and space.

We present a novel framework based on Deep Neural Networks
(DNNs) to address the DCE-MRI de-noising challenges. The key idea
is based on an ensembling of expert DNNs, where each is trained for
different noise characteristics and curve prototypes to solve an inverse
problem on a specific subset of the input space. The most likely recon-
struction is then chosen using a classifier DNN. As ground-truth (clean)
signals for training are not available, a model for generating realistic
training sets with complex nonlinear dynamics is presented. The pro-
posed approach has been applied to DCE-MRI scans of stroke and brain
tumor patients and is shown to favorably compare to state-of-the-art de-
noising methods, without degrading the contrast of the original images.

1 Introduction

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of the
brain is a noninvasive, in vivo tool to detect and quantify pathologies based
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 95–110, 2016.
DOI: 10.1007/978-3-319-46976-8 11
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t = 0[sec] t = 70[sec] t = 100[sec] t = 1000[sec]

Fig. 1. Left: DCE-MRI scans at different time points of a patient with brain tumor.
Right: A plot along 100 frames of the intensity levels of 3 voxels corresponding to the
three typical WoCs: vessel (red), pathology (blue) and healthy tissue (green) (Color
figure online)

on contrast agent (CA) accumulation [18]. The acquisition technique involves
repeated T1 weighted imaging of tissues before, during and after the injection of
a CA. The CA changes the tissue’s T1 relaxation time, which manifests as signal
enhancement (see Fig. 1).

Numerous brain pathologies (e.g., stroke, tumor, epilepsy) are associated
with the disruption of the blood brain barrier (BBB). The BBB is a tightly-
regulated barrier that controls the passage of substances into the central nervous
system (CNS). When the BBB does not function well, the CA penetrates the
extravascular-extracellular space resulting in a gradual enhancement of the sur-
rounding brain tissues. The voxel-wise variations of the CA concentration over
time can be grouped into three different types of washout curves (WoCs), charac-
terizing blood vessels, healthy tissues and pathologies (Fig. 1). The detection of
BBB disruption is performed by fitting a pharmacokinetic (PK) model [17] (e.g.,
Tofts [20], Brix [3], Vexler et al. [21]), to the CA WoCs. Accurate assessment of
the disruption is important for various clinical applications [1,21].

Curve fitting required for the analysis of DCE-MRI data is error-prone as
the dynamic scans are subject to non-white, spatially-dependent and anisotropic
noise that does not fit standard noise models. Current methods either perform
curve fitting regardless of the noise (e.g., [14]) or assume a particular noise model
[16]. In [13] a low dimensional space using principle component analysis (PCA)
is constructed with curves generated by the Tofts model [19]. Then, the PK
parameters of the real DCE-MRI are recovered by a projection of the noisy
WoCs on this space. Nevertheless, the projection is a linear operation, while the
data is non-linear. In [6] a method called dynamic non-local means (DNLM),
which extends the algorithm in [4] for spatio-temporal de-noising is suggested.
However, the de-noising operation may distort the data due to differences in the
PK characteristics of the different image regions.

We propose a new method for noise reduction and reconstruction of the
WoCs, without assuming a particular noise distribution and without reducing
the quality of the contrast of the original scans. In addition, our approach allows
decreasing the temporal resolution of the DCE-MRI scans (and thereby poten-
tially enabling to increase the spatial resolution), while preserving the implicit
PK information. This is accomplished by the construction and the training of
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an ensemble of Deep Neural Networks (DNNs). DNNs are increasingly used for
solving regression problems. Recently, it has been used for signal and image de-
noising, e.g. [5] for speech recognition and [22] for image processing. A deep learn-
ing method was suggested for diffusion weighted imaging (DWI) de-noising [7].

DCE-MRI de-noising introduces several challenges since clean signals cannot
be acquired (no ground truth); the spatio-temporal noise model is unknown, and
the signal to noise ratio (SNR) spatially varies. These issues are addressed by
two key contributions: the construction and the training of an ensemble of expert
DNNs for the different signal prototypes and noise levels, and the generation of
realistic noisy signals for training. A block diagram of the proposed framework
is shown in Fig. 2.

The proposed approach is applied to DCE-MRI sequences of stroke and brain
tumor patients. Our method is shown to outperform state-of-the-art de-noising
methods, such as the Beltrami filtering (extended for 3D grayscale videos) [12]
and the DNLM [6]. Accurate reconstruction of the PK parameters from noisy
data, without contrast degradation, is demonstrated for both the original and
down-sampled data.

2 Method

2.1 Problem Formulation

Let I = {It}T
t=1 denote a temporal series of patient-specific MR brain scans,

where It : Ω → R denotes intensities of the scan acquired at a time point t
defined on Ω ⊂ R

3. We assume that the scans are aligned, equally spaced
apart in time, and are acquired after the injection of a CA. Let ct : Ω → R

denote the concentration of the CA associated with It. A temporal series,
c(x) = [c1(x), c2(x), . . . , cT (x)]T associated with a voxel x ∈ Ω, is called a
washout curve (WoC). An observed WoC co(x) ∈ R

T is a set of noisy observa-
tions of the latent, clean signal cc(x) ∈ R

T , distorted by a noise n(x) ∈ R
T with

an unknown probability density function (PDF). The relation between co(x) and
cc(x) can be described by: co(x) = h(cc(x),n(x)), where h (·) : R

T → R
T is

an unknown noise model. The de-noising task can be formulated as an inverse
problem, as follows:

g∗ = arg min
g

Eco(x)

[‖g (co(x)) − cc(x)‖22
]

(1)

where g∗ is the function that best approximates h−1 (·).

2.2 Deep Neural Network

We use an ensemble of deep neural networks (DNNs) for solving the inverse prob-
lem defined by Eq. 1. We denote by fl(· ) the activation function of the artificial
neurons (ANs) in layer l and by wl

i the vector of weights connecting the i-th AN
in layer l + 1 to Kl ANs in layer l, where l ∈ [0, L − 1] and Kl is the number
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of ANs in layer l. The output yl+1
i of the i-th AN in layer l + 1 is calculated as

follows: yl+1
i = fl(

Kl∑
j=1

wl
i,jy

l
j) = fl(< wl

i,y
l >) where yl � [1, yl

1, . . . , y
l
Kl

]T . The

DNN’s input is the augmented vector y0 = c̃o =
[
1, cT

o

]T . Given a training set of
N input-output pairs {co,yGT}n we look for a set of weights W∗ that minimizes
the cost function: W∗ � arg min

W
Eco

[‖yL − yGT‖22
]

where yGT is synthetically

generated, as will be explained in Sect. 2.6. Given W∗ one can solve the inverse
problem g � (fL ◦ . . . ◦ f1)(c̃o;W∗) and apply it to new noisy sequences. How-
ever, training a clinically applicable de-noising DNN is challenging. First, the
SNR level of DCE-MRI changes spatially. In addition, different tissues have dif-
ferent PK patterns. While these issues might be addressed by using an extremely
deep network, the number of weights to be optimized and the training exam-
ples required, renders the training of such a network impractical. Instead, we
suggest using an ensemble of expert DNNs, as we discuss in Sects. 2.3 and 2.4.
Second, the usability of the DNN ensemble depends on having an appropriate
optimization process, which is unique for each of the expert DNNs. We use a
set of stacked restricted Boltzmann machines (RBMs) to facilitate the initializa-
tion [9], see Sect. 2.5. The training problem is further complicated since ground
truth (GT) data, i.e., clean WoCs, cannot be extracted from real DCE-MRIs
and therefore are not available. In Sect. 2.6 we present a model for generating
realistic training sets that address this issue.

Fig. 2. A block diagram of the proposed DNN ensemble. Given a noisy WoC (a), each
expert DNN generates a reconstruction hypothesis (b). The corresponding hypotheses (c)
are ensembled using a classification DNN (d) that selects the most likely hypothesis (e).

2.3 Expert DNN: Architecture and Training

We construct a DNN as a non-linear deep autoencoder following [8], which is
suitable for de-noising. The architecture and the training process of an expert
DNN are illustrated in Fig. 3. The lower L/2 layers are designed to expand and
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Fig. 3. Training an expert DNN: (a) Pre-training using stacked RBMs, (b) Weights
initialization of an expert DNN, (c) Fine tuning using stochastic gradient descent.

then to reduce the dimensionality of the noisy input data. The weights {Wl}L/2
l=1

are initialized by the stacked RBMs, see Sect. 2.5. The upper L/2 layers of the
DNN are designed to restore the original dimensionality of the data, allowing
reconstruction of a clean observation from the compressed data extracted from
layer l = L/2. We train the layers of the DNN simultaneously using stochastic
gradient descent [15] to minimized the cost Eco

[‖yL − yGT‖22
]
.

The entire framework is based on three arrays of DNNs, corresponding to
different types of WoCs (healthy, pathology, blood vessel). Each array consists
of M expert DNNs that are trained on data with different SNR levels, as is illus-
trated in Fig. 2b. We next explain how the reconstruction hypotheses provided
by the DNNs are ensembled to extract the final output.

2.4 Ensembling Hypotheses

Since each expert DNN is trained on a mutually exclusive subset of the train-
ing data (of a specific SNR level and WoC type), the DNN that is trained on
data similar to a given test example, is more likely to have the best perfor-
mance. Therefore, we boost our system confidence by ensembling the experts’
hypotheses. Let gk(co) be the hypothesis of the k-th DNN expert with respect
to an observed input co. We define five measures that allow the evaluation of the
experts’ performances as follows: the L1 and L2 norms of the deviation from the
original WoC (gk(co) − co), the cosine similarity and correlation between gk(co)
and co, and total variation of the hypothesis. We, then, use an additional clas-
sification DNN with a softmax activation function [2], that is trained to select
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the most likely hypothesis based on these measures. For further details on the
architecture and the training of the classification DNN see Appendix C1.

2.5 Restricted Boltzmann Machine

We now address the initialization of the expert DNNs’ weights using stacked
RBMs [8], see Fig. 3a. An RBM is a generative stochastic artificial neural net-
work with a visible layer and a single hidden layer, that together form a bipar-
tite graph. It can learn a probability distribution over its set of inputs in an
unsupervised manner. The process is carried out in an aggregative manner,
where the weights of each layer l = 0 . . . L

2 − 1 of a given DNN are pre-trained
using a single RBM (denoted by RBM l) such that the hidden units realiza-
tions of an RBM l−1 are used as the visible units of an RBM l, denoted by
vl(see Fig. 3a). The realizations of the input layer of RBM l=0 are the N train-
ing examples {co(i)}N

i=1. The RBM training algorithm [10] learns the graph
weights Wl

0, for each layer l = 0 . . . L
2 − 1, such that the sum of the log likeli-

hood probability of the visible units with respect to training examples is maxi-

mized: Wl
0 = arg max

W

N∑
n=1

log
(
p

(
vl

n

))
. The reader is referred to [10,11] and to

Appendix B for further details on RBM and the optimization process. Once the
weights of the RBM are learned it can be used to initialize the weights of an
expert DNN as follows: Wl = W l

0 for l = 0, . . . , L
2 − 1 and Wl = (WL−l−1

0 )T

for l = L
2 , . . . , L − 1, see Fig. 3b.

2.6 Synthetic Training Data Generation

We train each expert DNN with synthetic data emulating real noisy WoCs as
follows. Synthetic WoCs {cs} are generated according to the Tofts model [19]:

cs(t) = vpcp(t) + ktrans

t∫

0

cp(τ) exp(−kep(t − τ))dτ, (2)

where cs(t) is the t-th time point within the curve and the triplet of the PK
parameters vp, kep, ktrans is randomly sampled based on typical values associ-
ated with healthy, pathological, and blood vessel WoCs. The value of the arterial
input function, cp(t), is pre-defined. Since noiseless images are not available, we
used “signal-less” sequences to construct realizations of the noise. Noise exam-
ples {n(x)} are extracted, automatically, from MRI sequences of healthy brains
without CA injection. We construct training noisy curves cn = cs + An(x),
where A is a constant that simulates different SNR levels. Note that here we
assume an additive noise model. Since, cs = 0, in the absence of CA, even if a
multiplicative component exists, it could not be detected. However, the inverse
1 The appendix is avilable in the electronic version of the manuscript and

at: https://drive.google.com/file/d/0B vghaLYgXRKTnAwSU5oLUNDWmc/view?
usp=sharing.

https://drive.google.com/file/d/0B_vghaLYgXRKTnAwSU5oLUNDWmc/view?usp=sharing
https://drive.google.com/file/d/0B_vghaLYgXRKTnAwSU5oLUNDWmc/view?usp=sharing
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Fig. 4. ktrans maps reconstructed from: raw (noisy) data (a) and de-noised data (b–
e). We compared the ktrans reconstruction for proposed de-noising algorithms: (b) the
proposed DNN, (c) MA, (d) Beltrami, (e) DNLM. The upper row refers to ktrans maps
of a single 2D slice generated from the entire dynamic sequence. The lower row presents
ktrans maps using 2-down-sampled sequence (50 scans).

problem formulation, in Eq. (1), can be applied to a more general noise model
for other dynamic imaging sequences.

3 Experimental Results

We tested our method on both synthetic and real data. Synthetic data
results are presented in Appendix E. Real data includes 13 DCE-MRI acqui-
sitions (3.0T Philips Ingenia MRI scanner) of stroke and tumor patients (see
Appendix G for experimental setup). Videos of the original and cleaned
DCE-MRI for all patients can be found at https://www.youtube.com/playlist?
list=PLdzBc0Ozw1KBz5YOrs97bIZ4qQ vQ7C68. The proposed DNNs ensem-
ble includes 24 expert DNNs for three WoC types and 8 noise levels
(3,5,8,10,13,15,17,20 dB). Each expert DNN consists of 10 layers. The lower lay-
ers were pre-trained with five stacked RBMs. The architecture of the expert
DNNs are illustrated in Fig. 3.

We compared our algorithm with three different de-noising methods: spatio-
temporal Beltrami (st-Beltrami), DNLM, and moving average (MA). The st-
Beltrami method is our extension to the Beltrami framework [12], for DCE-MRI
(see Appendix D). For 200,000 synthetic curves generated from triplets of ran-
domly samples PK parameters an average mean squared error (MSE) of 2.56 ×
10−4 was obtained compare to average MSE of 0.001 for the MA, see Appendix E,
Fig. 5. Figure 4a–e visually demonstrates the reconstructed ktrans maps using the

https://www.youtube.com/playlist?list=PLdzBc0Ozw1KBz5YOrs97bIZ4qQ_vQ7C68
https://www.youtube.com/playlist?list=PLdzBc0Ozw1KBz5YOrs97bIZ4qQ_vQ7C68
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Fig. 5. (a) De-noising of a representative WoC (black) by the proposed DNN-based
method (red) versus the st-Beltrami (cyan), DNLM (magenta), MA (green). A WoC
with PK parameters that were calculated directly from the noisy WoC is in yellow.
(b-c) Box-plot of the MSE between the cleaned WoCs obtained by each of the methods
the original noisy WoC. (c) Boxplot of the MSE between the cleaned WoCs and curves
which are generated using the PK model based on the PK parameters calculated from
the respective de-noised WoCs. The upper panel refers to results obtained from full-
length dynamic sequences (100 scans each). The lower panel presents results using
2-down-sampled sequences. (Color figure online)

raw data (a) and de-noised data obtained by the proposed and three other de-
noising methods (b–e). The upper row of Fig. 4 refers to ktrans maps of a single
2D slice generated from the entire dynamic sequence (100 scans). The lower row
of Fig. 4 presents ktrans maps using 2-down-sampled sequence (50 scans). It can
be seen that the map generated by the proposed DNN framework (Fig. 4b) is less
affected by the down-sampling. Figure 5a presents a quantitative comparison of
all the de-noising methods for a single representative noisy WoC (pathology). In
the absence of GT WoCs, we tested the compatibility of the de-noising methods
with the PK model by estimating the PK parameters from the cleaned WoCs and
using those parameters to generate synthetic, model-based WoCs (see Appendix
E). Box-plots of the MSE of 360,000 WoCs for all the methods are shown on in
Fig. 5b. The MSE between the cleaned (de-noised) curves and the input noisy
WoCs are shown in Fig. 5c. The upper panel refers to results obtained from full-
length dynamic sequences (100 scans each). The lower panel presents results using
2-down-sampled sequences (50 scans each). It can be seen that the DNN-based
method demonstrates compatibility with both the PK model and the original
(noisy) WoCs. We note that the run-time of the proposed DNN-based method
is much shorter than the others, see Table 1 in Appendix F.
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4 Summary and Future Work

A method for DCE-MRI de-noising using an ensemble of DNNs is presented.
Promising results are demonstrated on both full length and down-sampled data.
The latter suggests that the DCE-MRI analysis might be applied to sequences
with lower temporal resolution, which can potentially allow finer spatial reso-
lution. The proposed model can be extended to account for voxel-wise spatial
dependencies by adding convolutional layers to the DNNs. In addition, the mod-
ularity of the ensemble enables combining different PK models. We believe that
the key concepts introduced here have great potential for de-noising of other
dynamic sequences such as dynamic susceptibility contrast MRI (DSC-MRI)
and functional MRI (fMRI).
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Framework Program (FP7/2007–2013; grant agreement 602102, EPITARGET; A.F.),
the Israel Science Foundation (A.F.) and the Binational Israel-USA Foundation (BSF;
A.F.).

Appendices

A Artificial Neuron and Deep neural network

Neural Networks (NNs) are modeled as collections of computational units called
artificial neurons (ANs) that are connected in an acyclic graph. An AN is a
computational unit with multiple inputs, denoted by an augmented input vector
c̃o =

[
1, cT

o

]T and a single output scalar, y ∈ R, such that y = f(x) = f
(
wTx

)
,

where f : R → R is called the activation function of the neuron.
Let wl

i = [wl
i,0, w

l
i.1, . . . , w

l
i,Kl

]T define the weights of the graph edges con-
necting the i − th AN in layer l + 1 to the Kl ANs in layer l , l ∈ [0, L − 1]. Let
us also define by fl(· ) the activation function of the ANs in layer l. The output
yl+1

i of the i − th AN in layer l + 1 is calculated as follows:

Fig. 6. The output of an Artificial neuron is obtained by applying an activation func-
tion, f(· ), on the weighted sum of the augmented input c̃.
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Fig. 7. A Deep neural network with L = 3 layers and a sigmoid activation function.
Hidden layers are marked in red. (Color figure online)

yl+1
i = fl(

Kl∑

j=1

wl
i,jy

l
j) = fl(< wl

i,y
l >) (3)

where yl = [1, yl
1, . . . , y

l
Kl

]T . The DNN’s input is the augmented vector

y0 = c̃o =
[
1, cT

o

]T

B Expert DNN

We set L = 10 layers for each of our expert DNNs. Each layer contains 100-175-
150-120-80-30-80-120-150-175-100 neurons, respectively, where the input and
output layers are of size l0 = l10 = 100. The pre-training process is carried
out in an aggregative manner where the weights Wl

0 of each layer l = 1 . . . 5
of a given DNN are pre-trained using a single RBM (denoted by RBM l) such
that the hidden units realizations hl−1 of an RBM l−1 are used as the visible
units vl of an RBM l, i.e. hl−1 = vl (see Fig. 8a). The weights of the DNN
are initialized by setting Wl = Wl

0 for the lower L/2 layers (l = 1 . . . 5) and
Wl = (WL−l+1

0 )T for the upper layers (l = 6, . . . , 10) (see Fig. 8b). The calcu-
lation of the final weights of the DNN is done simultaneously using stochastic
gradient decent (SGD) with linear activation function in the output layer.

For the initialization of the input layer we assume {v0
i } are random variables

sampled from a normal distribution N (ai, σi), where ai, σi is the mean and the
standard deviation (respectively) associated with unit i and are estimated from
the training set. Therefore, it is trained as a Gaussian-Bernoulli RBM, with an
energy function:

E (v,h) = −
Kl−1∑

i=1

(vi − ai)2

σi
−

Kl∑

j=1

bjhj −
∑

i,j

vi

σi
hjwij (4)

The entire training set was scaled such that each entry of input has zero
mean and a unit variance. The learning rate of the first RMB1 was set to 0.001
(0.01 for all the others) and pre-training proceeded for 300 epochs. In addition,
we used more binary hidden units than the size of the input vector because
real-valued data contains more information than a binary feature activation.
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Fig. 8. Training an expert DNN: (a) Pre-training using stacked RBMs, (b) Weights
initialization of an expert DNN, (c) Fine tuning using stochastic gradient descent.

C Classification DNN

The classification DNN contains an input layer, two hidden layers and an out-
put layer; each layer has 120-180-180-24 neurons, respectively. The input of the
DNN is defined as follows. Let gk(co) be the hypothesis of the k − th DNN
expert with respect to an observed input co, where k = 1, . . . , 24. We define
five measures that allow the evaluation of the experts’ performances as follows:
z1;k = ‖gk(co) − co‖1, z2;k = ‖gk(co) − co‖2, are the L1 and L2 norm of of the
deviation from the original WoC; z3;k = <gk(co),co>

‖gk(co)‖‖co‖2
, z4;k = cov(gk(co),co)

var(gk(co))var(co)
,

are the cosine similarity and correlation between the reconstruction and input
signals; and z5;k = ‖∇gk(co)‖1 is the hypothesis total variation. The input fea-
ture vector is therefore:

z = [z1;1, z2;1, z3;1, z4;1, z5;1, . . . , z1;24, z2;24, z3;24, z4;24, z5;24]T ∈ R
120. (5)

A “softmax” activation function, which is commonly used for multi-class
classification problems, was assigned to neurons in the last layer. The softmax
activation function takes into account not only the entry value of a specific AN
but also the entries to all the other ANs at this layer:

f(αi) =
exp(αi)∑

j

exp(αj)
, (6)

where αi denotes the entry value at the i − th neuron.
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Seventy percent of each DNN’s training set were picked at random to create
the training set of the classification DNN where for each training example the
feature vector z was calculated and a label y was assigned according to the origin
of the training example. Namely, a training example that originally belongs to
the training set of the k − th expert is assigned a label y = ek such that all the
coefficients are 0 except for the k − th coefficient which is 1.

D The Beltrami Framework

In this section we briefly describe the Beltrami framework for de-noising
grayscale videos and our extension to modify it to DCE-MRI scans. We con-
sider a grayscale video to be a 3D Riemannian manifold embedded in D = d
+ 3 dimensional space where d = 1 for grayscale images. The embedding map
Q : Σ → M is given by:

Q(x, y, τ) = (x, y, τ, I(x, y, τ)) (7)

where I is the image intensity map. Both Σ and M are Riemannian manifolds
and hence are equipped with metrics G and H, respectively, which enable mea-
surement of lengths over each manifold. We require the lengths as measured on
each manifold to be the same, i.e.,

ds2 = (dx, dy, dτ, dI) H (dx, dy, dτ, dI)T = (dx, dy, dτ)G(dx, dy, dτ) (8)

where dI = Ixdx + Iydy + Iτdτ , according to the chain rule. A natural choice
for gray-level videos is a Euclidean space-feature manifold with the metric:

H =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 β2

⎞

⎟⎟⎠ (9)

where β is the relative scale between the space coordinates and the intensity
component. Using (2) the induced metric tensor G = {guv} is:

G =

⎛

⎝
1 + β2I2x β2IxIy β2IxIτ

β2IxIy 1 + β2I2y β2IyIτ

β2IxIτ β2IyIτ 1 + β2I2τ

⎞

⎠ (10)

The Beltrami flow is obtained by minimizing the area of the image manifold:

SX,G =
∫∫∫ √

gdxdydτ (11)

where g = det (G). Using the methods of variational calculus with the resulting
Euler-Lagrange relation, the minimization is given by:

− d

dx

(
Ix√
g

)
− d

dy

(
Iy√
g

)
− d

dτ

(
Iτ√
g

)
= −div

(√
gG−1∇I

)
(12)
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Multiplying both sides by g−1/2 we get :

It = 	gI = − 1√
g
div

(√
gG−1∇I

)
(13)

where 	g is the Laplace-Beltrami operator. The discretized version of Eq. (10)
allows us to perform iterative traversal through this scale space on a computer
and produces a very effective technique for denoising grayscale videos when using
the metric in (7):

It+1 = It + dt
1√
g
(Dx + Dy + Dτ ) (14)

where D =
√

gG−1∇I, div(D) = Dx + Dy + Dτ , and dt ∝ β−2. Note that
the output depends on two hyper parameters: the number of iterations of the
update, and the parameter β.

The above framework assumes similar physical measures of the x, y, and τ
coordinates. In reality, the space domain coordinates x and y do not possess
the same physical measure as the time domain coordinate τ . Hence, we need to
introduce another scaling factor,γ, into the space-time-intensity metric:

H =

⎛

⎝
I2×2 0 0

0 γ2 0
0 0 β2Iw3×w3

⎞

⎠ . (15)

The new induced metric tensor for the 3D image manifold is computed using
the constraint in Eq. (5) :

G =

⎛

⎝
1 + β2I2x β2IxIy β2IxIτ

β2IxIy 1 + β2I2y β2IyIτ

β2IxIτ β2IyIτ γ + β2I2τ

⎞

⎠ (16)

In addition we modified the numerical update step so it would fit the new scaling
as follows:

It+1 = It + dt1g
−1/2(Dx + Dy) + dt2g

−1/2Dτ (17)

where dt1 ∝ β−2 and dt2 ∝ γ−2.

E Results on Synthetic Data

The performance evaluation of our DNN-based de-noising method on synthetic
data is done using 10-fold cross-validation (10-CV) method. 200,000 noisy WoC
were generated using the Tofts model. The training data is randomly divided into
ten groups (20,000 training examples in every CV group) such that nine groups
are used for training and the remaining set is used for testing. The experiment is
performed for different signal to noise ratio (SNR) values independently. Fig. 9
demonstrates successful denoising of a single representative WoC using our DNN-
based method (red) and using moving average (MA) method (green) along with
the synthetic, clean and noisy WoCs (blue and black, respectively). In Fig. 10
the mean MSE values and standard deviation intervals are plotted for different
SNR levels.
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Fig. 9. De-noising of synthetic WoC (black) using DNN (red) and MA (green) SNR =
10[dB]. Ground truth (GT) is in blue.

Fig. 10. Mean values and standard deviation intervals of the MSE between the clean
(ground-truth) WoC and the cleaned curves using the DNN-based method (red) and
MA (green) as a function of the SNR of the simulation (synthetic) curves.

F Run-time Comparison

We measured the run-time of the different algorithms for the 13 DCE-MRI scans.
Table 1 presents the average run-time of each de-noising algorithm in minutes.
The measured run-time did not include any pre-processing procedures and mea-
sured only the run-time of the de-noiosng algorithms. The algorithms were tested
on MatLab 2014b (64-bit) using Intel(R) core(TM) i-7-4470, 3.4 GHz CPU with
16 GB RAM.
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Table 1. Average run-time of the different de-noising methods for a single DCE-MRI
scan (4D volume with dimentions 255 × 255 × 22 × 100).

st-Beltrami Moving average (MA) DNLM DNN-based

Run-time [min] 88.65 1.45 4631.35 3.75

G Experimental Setup for Real Data

In the absence of ground-truth washout curves, in addition to visual assessment,
we estimated the de-noising algorithms’ success using two measures: the fidelity
of the output of the de-noising methods to the noisy data and to the PK model.
Fig. 11 shows a block diagram of our performance assessment method. Given
a noisy DCE-MRI scan we apply a de-noising algorithm. The fidelity of the
cleaned curves to the noisy data is measured by calculating the mean squared
error (MSE) between the noisy curve and the de-noised curve. Then, we extract
the PK-parameters from the cleaned curves by applying the standard DCE-MRI
curve fitting algorithm. Next, we use the estimated PK-parameters to generate
synthetic washout curves according to the Tofts model. The MSE between the
model-based synthetic curve and the de-noised curve measure the fidelity of the
de-noised curves to the PK-model.
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Abstract. We propose a novel approach for automatic segmentation of
anatomical structures on 3D CT images by voting from a fully convolutional
network (FCN), which accomplishes an end-to-end, voxel-wise multiple-class
classification to map each voxel in a CT image directly to an anatomical label.
The proposed method simplifies the segmentation of the anatomical structures
(including multiple organs) in a CT image (generally in 3D) to majority voting
for the semantic segmentation of multiple 2D slices drawn from different
viewpoints with redundancy. An FCN consisting of “convolution” and
“de-convolution” parts is trained and re-used for the 2D semantic image seg-
mentation of different slices of CT scans. All of the procedures are integrated
into a simple and compact all-in-one network, which can segment complicated
structures on differently sized CT images that cover arbitrary CT scan regions
without any adjustment. We applied the proposed method to segment a wide
range of anatomical structures that consisted of 19 types of targets in the human
torso, including all the major organs. A database consisting of 240 3D CT scans
and a humanly annotated ground truth was used for training and testing. The
results showed that the target regions for the entire set of CT test scans were
segmented with acceptable accuracies (89 % of total voxels were labeled cor-
rectly) against the human annotations. The experimental results showed better
efficiency, generality, and flexibility of this end-to-end learning approach on CT
image segmentations comparing to conventional methods guided by human
expertise.

Keywords: CT images � Anatomical structure segmentation � Fully
convolutional network (FCN) � 3D majority voting � End-to-end learning

1 Introduction

Three-dimensional (3D) computerized tomography (CT) images are important resources
that provide useful internal information about the human body to support diagnosis,
surgery, and therapy [1]. Fully automatic image segmentation is a fundamental part of
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the applications based on 3D CT images by mapping the physical image signal to a
useful abstraction. Conventional approaches to CT image segmentation usually try to
transfer human knowledge directly to a processing pipeline, including numerous
hand-crafted signal processing algorithms and image features [2–5]. In order to further
improve the accuracy and robustness of image segmentation, we need to be able to
handle a larger variety of ambiguous image appearances, shapes, and relationships of
anatomical structures. It is difficult to achieve this goal by defining and considering
human knowledge and rules explicitly. Instead, a data-drive approach using big image
data—such as a deep convolutional neural network (deep CNN)—is expected to be
better for solving this segmentation problem.

Recently, several studies were reported that applied deep CNNs to medical image
analysis. Many of these used deep CNNs for lesion detection or classification [6, 7].
Studies of this type usually divide CT images into numerous small 2D/3D patches at
different locations, and then classify these patches into multiple pre-defined categories.
Deep CNNs are used to learn a set of optimized image features (sometimes combined
with a classifier) to achieve the best classification rate for these image patches. Simi-
larly, deep CNNs have also been embedded into conventional organ-segmentation
processes to reduce the FPs in the segmentation results or to predict the likelihoods of
the image patches [8–10]. However, the anatomical segmentation of CT images over a
wide region of the human body is still challenging because of the image appearance
similarities between different structures, as well as the difficulty of ensuring global
spatial consistency in the labeling of patches in different CT cases.

This paper proposes a novel approach based on deep CNNs that naturally imitate the
thought processes of radiologists during CT image interpretation for image segmenta-
tion. Our approach models CT image segmentation in a way that can best be described as
“multiple 2D proposals with a 3D integration.” This is very similar to the way that a
radiologist interprets a CT scan as many 2D sections, and then reconstructs the 3D
anatomical structure as a mental image. Unlike previous work on medical image seg-
mentation that labels each voxel/pixel by a classification based on its neighborhood
information (i.e., either an image patch or a “super-pixel”) [8–10], our work uses rich
information from the entire 2D section to directly predict complex structures (multiple
labels on images). Furthermore, the proposed approach is based on an end-to-end
learning without using any conventional image-processing algorithms such as smooth-
ing, filtering, and level-set methods.

2 Methods

2.1 Overview

As shown in Fig. 1, the input is a 3D CT case (the method can also handle a 2D case,
which can be treated as a degenerate 3D case), and the output is a label map of the same
size and dimension, in which the labels are a pre-defined set of anatomical structures.
Our segmentation process is repeated to sample 2D sections from the CT case, pass
them to a fully conventional network (FCN) [11] for 2D image segmentation, and stack
the 2D labeled results back into 3D. Finally, the anatomical structure label at each
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voxel is decided based on majority voting at the voxel. The core part of our seg-
mentation is an FCN that is used for the anatomical segmentation of the 2D sections.
This FCN is trained based on a set of CT cases, with the human annotations as the
ground truth. All of the processing steps of our CT image segmentation are integrated
into an all-in-one network under a simple architecture with a global optimization.

2.2 3D-to-2D Image Sampling and 2D-to-3D Label Voting

In the proposed approach, we decompose a CT case (a 3D matrix, in general) into
numerous sections (2D matrices) with different orientations, segment each 2D section,
and finally, assemble the outputs of the segmentation (labeled 2D maps) back into 3D.
Specifically, each voxel in a CT case (a 3D matrix) can lie on different 2D sections that
pass through the voxel with different orientations. Our idea is to use the rich image
information of the entire 2D section to predict the anatomical label of this voxel, and to
increase the robustness and accuracy by redundantly labeling this voxel on multiple 2D
sections with different orientations. In this work, we select all the 2D sections in three
orthogonal directions (axial, sagittal, and coronal-body); this ensures that each voxel in
a 3D case is located on three 2D CT sections.

After the 2D image segmentation, each voxel is redundantly annotated three times
from these three 2D CT sections. The annotated results for each voxel should ideally be
identical, but may be different in practice because of mislabeling during the 2D image
segmentation. A label fusion by majority voting for the three labels is then introduced
to improve the stability and accuracy of the final decision. Furthermore, a prior for each
organ type (label) is estimated by calculating voxel appearance frequency of the organ
region within total image based on training samples. In the case of no consensus
between three labels during the majority voting process, our method simply selects the
label with the biggest prior as the output.

Fig. 1. Pipeline of proposed anatomical structure segmentation for 3D CT scan. See Fig. 2 for
the details of FCN structure.
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2.3 FCN-Based 2D Image Segmentation via Convolution
and de-Convolution Networks

We use an FCN for semantic segmentation in each 2D CT slice by labeling each pixel.
Convolutional networks are constructed using a series of connected basic components
(convolution, pooling, and activation functions) with translation invariance that
depends only on the relative spatial coordinates. Each component acts as a nonlinear
filter that operates (e.g., by matrix multiplication for convolution or maximum pooling)
on the local input image, and the whole network computes a general nonlinear trans-
formation from the input image. These features of the convolutional network provide
the capability to adapt naturally to an input image of any size and any scan range of the
human body, producing an output with the corresponding spatial dimensions.

Our convolutional network is based on the VGG16 net structure (16 layers of 3 × 3
convolution interleaved with maximum pooling plus 3 fully connected layers) [12], but
with a change in the VGG16 architecture by replacing its fully connected layers (FC6
and 7 in Fig. 2) with convolutional layers (Conv 6 and 7 in Fig. 2). Its final fully
connected classifier layer (FC 8 in Fig. 2) is then changed to a 1 × 1 convolution layer
(Conv 8 in Fig. 2) whose channel dimension is fixed at the number of labels (the total
number of segmentation targets was 20 in this work, including the background). This
network is further expanded by docking a de-convolution network (the right-hand side
in Fig. 2). Here, we use idea of the de-convolution in [11], and reinforce the network
structure by adding five de-convolution layers, each of which consists of up-sampling,
convolution, and crop (summation) layers as shown in Fig. 2.

FCN training: The proposed network (both convolution and de-convolution layers) is
trained with numerous CT cases of humanly annotated anatomical structures. All of the
2D CT sections (corresponding to the label maps) along the three body orientations are
shuffled, and used to train the FCN. The training process repeats feed-forward com-
putation and back-propagation to minimize the loss function, which is defined as the
sum of the pixel-wise losses between the network prediction and the label map
annotated by the human experts. The gradients of the loss are propagated from the end
to the start of the network, and the method of stochastic gradient descent with
momentum is used to refine the parameters of each layer.

The FCN is trained sequentially by adding de-convolution layers [11]. To begin
with, a coarse prediction (by a 32-pixel stride) is trained for the modified VGG16
network with one de-convolution layer (called FCN32s). A finer training is then added
after adding one further de-convolution layer at the end of the network. This is done by
using skips that combine the final prediction layer with a lower layer with a finer stride
in the modified VGG16 network. This fine-training is repeated with the growth of the
network layers to build FCN16s, 8s, 4s, and 2s which are trained from the predictions
of 16, 8, 4, 2 strides on the CT images, respectively. The output of FCN 2s acts as the
2D segmentation result.

2D CT segmentation using trained FCN: The density resolution of the CT images is
reduced from 12 to 8 bits using linear interpolation. The trained FCN is then applied to
each 2D section independently, and each pixel is labeled automatically. The labels from
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each 2D section are then projected back to their original 3D locations for the final
vote-based labeling, as described above.

3 Experiment and Results

Our experiment used a CT image database that was produced and shared by a research
project entitled “Computational Anatomy [13]”. This database included 640 3D vol-
umetric CT scans from 200 patients at Tokushima University Hospital. The anatomical
ground truth (a maximum of 19 labels that included Heart, right/left Lung, Aorta,
Esophagus, Liver, Gallbladder, Stomach and Duodenum (lumen and contents), Spleen,

Fig. 2. Semantic image segmentation of 2D CT slice using fully convolutional network
(FCN) [11]. Conv: convolution, Deconv: deconvolution, and FC: fully connected.
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left/right Kidney, Inferior Vein Cava, region of Portal Vein, Splenic Vein, and Superior
Mesenteric Vein, Pancreas, Uterus, Prostate, and Bladder) in 240 CT scans was also
distributed with the database. Our experimental study used all of the 240 ground-truth
CT scans, comprising 89 torso, 17 chest, 114 abdomen, and 20 abdomen-with-pelvis
scans. Furthermore, our research work was conducted with the approval of the Insti-
tutional Review Boards at Gifu and Tokushima Universities.

We picked 10 CT scans at random as the test samples, using the remaining 230 CT
scans for training. As previously mentioned, we took 2D sections along the axial,
sagittal, and coronal body directions. For the training samples, we obtained a dataset of
84,823 2D images with different sizes (width: 512 pixels; height: 80–1141 pixels). We
trained a single FCN based on the ground-truth labels of the 19 target regions.
Stochastic gradient descent (SGD) with momentum was used for the optimization.
A mini-batch size of 20 images, learning rate of 10−4, momentum of 0.9, and weight
decay of 2−4 were used as the training parameters. All the 2D images were used directly
as the inputs for FCN training, without any patch sampling.

We tested the proposed FCN network (Fig. 1) using 10 CT cases that were not used
in the FCN training. An example of the segmentation result for a 3D CT case covering
the human torso is shown in Fig. 3. The accuracy of the segmentation was evaluated
per organ type and per image. We measured the intersection over union (IU) (also
known as the Jaccard similarity coefficient) between the segmentation result and the
ground truth. Because each CT case may contain different anatomical structures—with
the information about these unknown before the segmentation—we performed a
comprehensive evaluation of multiple segmentation results for all the images in the test
dataset by considering the variance of the target numbers and volume. Two measures
(voxel accuracy: true positive for multiple label prediction on all voxels in a CT case;
frequency-weighted IU: mean value of IUs that normalized by target volumes and
numbers in a CT case [11]) were employed for the evaluations. The evaluation results

Fig. 3. Left: example of segmentation in 3D CT case, with segmented regions labeled with
different colors for one 2D CT slice and 3D visualization based on surface-rendering method.
Right: corresponding ground truth segmentation.
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for the voxel accuracy, frequency-weighted IU were 0.89 and 0.84, respectively, when
averaged over all the segmentation results of the test dataset. These results show that
89 % of the voxels within the anatomical structures (constructed using multiple target
regions) were labeled correctly, with a mean overlap ratio of 84 % for 19 target regions
in the test dataset. The mean IU values in each organ type are listed in Table 1 for both
training and test data.

4 Discussion

We found that the target organs were recognized and extracted correctly in all the test
CT images, except for oversights of the portal vein, splenic vein, and superior
mesenteric vein in two CT cases. Because our segmentation targets covered a wide
range of shapes, volumes, and sizes, either with or without contrast enhancement, and
at different locations in the human body, these experimental results demonstrated the
potential capability of our approach to recognize whole anatomical structures appearing
in CT images. The IUs of the organs with larger volumes (e.g., liver: 0.91, heart: 0.87)
were comparable to the accuracies reported from the previous state-of-the-art methods

Table 1. Accuracy evaluations in terms of mean value of IUs per target type between
segmentation results of FCN-8s and ground truth in 230 training and 10 test CT scans after
voting in 3D [14].

Target name Mean value of IUs
Training samples
(230)

Test samples
(10)

Right Lung 0.92 0.87
Left Lung 0.91 0.88
Heart 0.87 0.87
Aorta 0.72 0.63
Esophagus 0.18 0.27
Liver 0.91 0.91
Gallbladder 0.58 0.48
Stomach and Duodenum (2nd pos.) 0.48 0.43
Stomach and Duodenum Lumen 0.59 0.61
Contents inside of Stomach and Duodenum 0.21 0.10
Spleen 0.85 0.86
Right Kidney 0.85 0.86
Left Kidney 0.85 0.84
Inferior Vena Cava 0.56 0.51
Portal Vein, Splenic Vein, and Superior
Mesenteric Vein

0.32 0.03

Pancreas 0.48 0.45
Uterus 0.23 0.09
Prostate 0.48 0.35
Bladder 0.67 0.72
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[2–5]. For some smaller organs (e.g., gallbladder) or line structures (e.g., portal vein,
splenic vein, and superior mesenteric vein) that have not been reported in previous
work, our segmentation did not show particularly high IUs, but this performance was
deemed reasonable because the IU tends to be lower for those organs with smaller
volumes. The physical CT image resolution is the major cause of this limited perfor-
mance, rather than the segmentation method. Our evaluation showed that the average
segmentation accuracy of all the targets over all the test CT images was approximately
84 % in terms of the frequency weighted IUs. The segmentation result of each
deconvolution layer (FCN 32 s to FCN 2 s) was also investigated. We confirmed the
frequency weighted IUs were monotonically increasing (about 0.16, 0.03 and 0.01)
from FCN 32s, 16s, 8s and 4s, and no further improvement was observed by FCN 2s.
This result showed diminishing returns of gradient descent from the training stage of
FCN 8s, which was also mentioned in [11]. From experimental results, we see that our
approach can recognize and extract all types of major organs simultaneously, achieving
a reasonable accuracy according to the organ volume in the CT images. Furthermore,
our approach can deal automatically with segmentation in 2D or 3D CT images with a
free scan range (chest, abdominal, whole body region, etc.), which was impossible in
previous work [2–5].

Our segmentation process has a high computational efficiency because of its simple
structure and GPU-based implementation. The segmentation of one 2D CT slice takes
approximately 30 ms (roughly 1 min for a 3D CT scan with 512 slices) when using the
Caffe software package [15] and CUDA Library on a GPU (NVIDIA GeForce
TITAN-X with 12 GB of memory). The efficiency in terms of system development and
improvement is much better than that of previous work that attempted to incorporate
human specialist experience into complex algorithms for segmenting different organs.
Furthermore, neither the target organ type, number of organs within the image, nor
image size limits the CT images that are used for the training process.

For the future work, network performance by using different training parameters as
well as cost functions needs to be investigated, especially for de-convolution network.
We plan to expand the range of 3D voting process from more than three directions of
2D image sections to improve the segmentation accuracy. Furthermore, bounding box
of each organ [16] will be introduced into the network to overcome the insufficient
image resolution for segmenting small-size of organ types. A comparison against 3D
CNNs will also be investigated.

5 Conclusions

We proposed a novel approach for the automatic segmentation of anatomical structures
(multiple organs and interesting regions) in CT images, by majority voting the results
from a fully convolutional network. This approach was applied to segment 19 types of
targets in 3D CT cases, demonstrating highly promising results. Our work is the first to
tackle anatomical segmentation (with a maximum of 19 targets) on scale-free CT scans
(both 2D and 3D images) through a deep CNN. Compared with previous work [2–5,
8–10], the novelty and advantages of our study are as follows. (1) Our approach uses an
end-to-end, voxel-to-voxel labeling, with a global optimization of parameters, which
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has the advantage of better performance and flexibility in accommodating the large
variety of anatomical structures in different CT cases. (2) It can automatically learn a
set of image features to represent all organ types collectively, using an “all-in-one”
architecture (a simple structure for both model training and implementation) for image
segmentation. This approach leads to more robust image segmentation that is easier to
implement and extend. Image segmentation using our approach has more advantages in
terms of usability (it can be used to segment any type of organ), adaptability (it can
handle 2D or 3D CT images over any scan range), and efficiency (it is much easier to
implement and extend) than those of previous work.
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Abstract. Automatic detection and classification of lesions in medical images
remains one of the most important and challenging problems. In this paper, we
present a new multi-task convolutional neural network (CNN) approach for
detection and semantic description of lesions in diagnostic images. The pro-
posed CNN-based architecture is trained to generate and rank rectangular
regions of interests (ROI’s) surrounding suspicious areas. The highest score
candidates are fed into the subsequent network layers. These layers are trained to
generate semantic description of the remaining ROI’s.
During the training stage, our approach uses rectangular ground truth boxes; it

does not require accurately delineated lesion contours. It has a clear advantage
for supervised training on large datasets. Our system learns discriminative
features which are shared in the Detection and the Description stages. This
eliminates the need for hand-crafted features, and allows application of the
method to new modalities and organs with minimal overhead. The proposed
approach generates medical report by estimating standard radiological lexicon
descriptors which are a basis for diagnosis. The proposed approach should help
radiologists to understand a diagnostic decision of a computer aided diagnosis
(CADx) system. We test the proposed method on proprietary and publicly
available breast databases, and show that our method outperforms the competing
approaches.

Keywords: Deep learning � Mammography � Computer aided diagnosis �
Semantic description � Lesion detection � Multi-task loss

1 Introduction

Automatic annotation and description of natural images became recently a very popular
topic in computer vision. Various approaches are proposed in a number of papers
dealing with the problems of automatic semantic tagging [1], and of automatic
description generation of images [2–4]. However, in medical imaging domain, this
topic is yet to gain popularity. Obviously, medical image description poses its own set
of problems. In particular, specifics of medical images require a pragmatic choice of
semantic descriptors. In contrast to natural images, it is important that such semantic
description would be standardized. The need for standardized was already recognized
in breast imaging in the late 1980s.
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The American College of Radiology developed the Breast Imaging Reporting and
Data System (BI-RADS) [5] that standardizes the assessment and reporting of breast
lesions. The BI-RADS system has proved to be efficient in quality assurance. It aided
for the comprehension of a non-radiologist report reader, and standardized the com-
munication between clinicians and radiologists. In the past decade, standardization has
been implemented in other domains, such as the Pi-RADS in prostate lesions [6],
Li-RAD in liver lesions [7]. Other domains (for example, brain tumors or lung dis-
eases) are yet to have fixed standard lexicon, but use similar semi-standardized
description systems.

Tumor lesions in different organs and modalities are described by radiologists in
similar terms of high level semantic descriptors. The most important semantic
descriptors include shape, boundary type, density and other characteristics that are
organ or modality specific. Based on these characteristics, a radiologist makes the most
vital diagnostic decision about malignancy or benignancy of a tumor. Therefore,
automatic classification of lesions requires either explicit or implicit representation of
the above semantic descriptors by corresponding image measurements used during the
classification process. Typically, Computer Aided Detection (CADe) and Diagnosis
(CADx) systems use hand-crafted features such as histograms of intensity values,
shape-related features (s.a., aspect ratio), texture descriptors, and others (see [8] for an
overview of such systems). Using such features, these systems are able to segment and
characterize lesions, and to make a diagnosis (e.g., benign or malignant).

The existing methods can be categorized into two main groups. The first (e.g. [9,
10]) performs independent estimation of semantic descriptors using supervised clas-
sification methods. The second (e.g. [11]) is based on unsupervised clustering using
k-Nearest Neighbours (KNN) approach. All the above methods assume either given
lesion contour or a region of interest (ROI) around the lesion, provided by a radiologist.
Recently, a structured learning approach to the problem of semantic description of
lesions was proposed in [12]. Hand-crafted features were calculated from
semi-automatically segmented lesion contours, and were used to predict semantic
descriptors using Structured Support Vector Machine (SSVM) approach.

In this work, we propose a cardinally different approach. Our system is completely
based on the Convolutional Neural Network (CNN) which is trained (1) to generate
ROI candidates and to rank them, and (2) based on the best candidates, to generate
semantic description of lesions inside of the ROIs. Our approach does not require
accurately delineated lesions, which is a laborious work usually done by radiologists.
We use rectangular ROI’s instead, which has a clear advantage for supervised training
on large datasets. Our system learns discriminative features shared for both detection
and description tasks, eliminating the need for hand-crafted features. The deep network
models individual representations and dependencies of the semantic descriptors using
novel joint multi-loss training. The main mode of operation of our system is depicted in
Fig. 1.
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2 Methodology

We define the problem of ROI detection and of semantic description of a lesion as
learning of discriminative features which are partially shared in both detection and
description steps. To achieve this, we use CNN-based architecture shown in Fig. 2, and
described in details below.

The detection step finds ROI candidates by estimating their bounding box coor-
dinates and the probability of an ROI being a valid lesion. The semantic description
step solves a multi-attribute prediction problem; each valid candidate from the detec-
tion stage is described by multiple labels (semantic descriptors). In this stage, fully
connected layers are trained to map the set of learned convolutional features, to a set of
semantic descriptors. We deploy a multi-task loss and jointly train classifiers for all
semantic descriptors.

Each ROI is described by a set of J semantic descriptors. The semantic description
of the i-th ROI is an assignment: yi ¼ yi;j

� �
; j ¼ 1. . .J where each j-th semantic

descriptor yi;j can have one of the Vj possible discrete values, Yj 2 1; . . .;Vj
� �

, cor-
responding to the categories in each one of the semantic labels of the radiological
lexicon. For example, in mammography, there are J = 3 semantic descriptors: shape,
margin, and density. For shape descriptor, V1(shape) = 3 categories: {oval, round,
irregular}.

Multi-task-loss CNN for Semantic Description of Medical Images The proposed
system architecture is depicted in Fig. 2. Our system is based on the recently proposed
Faster R-CNN architecture whose details can be found in [14]. We explain the main
differences of our implementation below.

(a) (b)                               (c)

Fig. 1. An example of the output of the proposed multi-task-loss CNN based system.
(a) cropped-out mammogram with 2 marked rectangular ground truth areas containing lesions,
(b) corresponding top-4 automatically detected bounding box (BB) candidates, (c) automatically
generated textual description of lesions in the BB’s. The estimated semantic values (in blue) are
embedded into predefined sentence templates. The three lower BB’s have the same estimated
description. (Color figure online)
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The first module (the left rectangle in Fig. 2) is a deep fully convolutional network
that produces feature maps from the input image. We use this module as in [14] with a
few minor changes. This module consists of 5 fully convolutional layers which are
shared between the Detection and the Description stages.

The Region Proposal Network (RPN) module (the upper right rectangle in Fig. 2)
generates candidates, and is trained to predict the ROI bounding box (BB) coordinates
and its score. The 2 sibling sub-branches of RPN are responsible for the BB coordi-
nates regression and for the ‘objectness’ score estimation. To accommodate the variety
of lesion sizes, we generate BB’s at several scales. The above two modules comprise
the detection stage of our system.

The second stage of our system (the lower right rectangle in Fig. 2) accepts the
candidate ROI’s from the first stage as the inputs. In [14], the second stage is a multi-
class classifier into one of the possible object categories. It uses single softmax loss
layer. In contrast to [14], the second stage in our architecture is trained to jointly predict
multiple labels that represent semantic descriptors. We call this branch the Multi-
Attribute Description Network (MA-DN). It solves a multi-class-multi-label prediction
problem. The learning is implemented in a multi-task manner, wherein our network has
J sibling output layers as described below.

During the training of the network, we use a mini-batch of positive and negative
ROI candidates, taken from 2 images, randomly chosen from the training set. The loss
function is defined as the multi-class-multi-label loss, and is calculated for each
mini-batch as:

Fig. 2. The proposed multi-task loss CNN architecture for detection and description tasks
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L pij
� �� � ¼ 1

N

X

i

X

j

wjlðpij; cijÞ ð1Þ

Here, i is the index of an ROI, N is the normalization constant according to the
mini-batch size (N * 128 in most of the cases), wj are the weights of the J terms
corresponding to the different semantic descriptors. These weights are used to balance
the contributions of different descriptors to the loss, and are chosen empirically in our
current implementation.

The log loss for the true class cij is l pij; cij
� � ¼ �P

1...Vj
tij;cij log pij;cij where tij is 1 if

j-th descriptor of i-th ROI is in the class cij, and 0 otherwise; pij;cij is the predicted
probability that the ROI is in the class cij. The probability pij for the sample -i and the
label j is computed as the softmax over the Vj + 1 outputs of the fully connected layers.
In order to implement (1), we create branches of fully connected layers for each one of
the semantic descriptors, and sum the corresponding log loss terms.

During the joint training of the network branches, the proposed architecture imposes
dependencies on the descriptors. In the Experiments section, we show that this archi-
tecture improves the accuracy of the descriptor estimation, as compared to the inde-
pendent training of the separate branches responsible for each one of the descriptors.

Implementation details. The module of the shared convolutional network (the left
branch in Fig. 2) processes the whole image with several convolutional (conv) and max
pooling layers to produce conv feature maps. This branch follows the AlexNet
architecture with five convolutional layers. In the RPN module, we use bounding boxes
of the three aspect ratios of 1:1, 1:2 and 2:1, and of the three scales corresponding to the
box sides of 32, 96, and 256 pixels. These parameters are chosen based on the statistics
of the lesion sizes in the data bases that we use in our experiments.

The MA-DN network (the lower right branch in Fig. 2) accepts as an input the entire
image and the RPN-generated bounding boxes (the proposals). The ROI max-pooling
layer in the MA-DN branch converts the features inside of any valid ROI into a small
feature map with a fixed spatial extent. As a result, each object proposal is represented
by a fixed-length feature vector from the feature map of the last fully convolutional
layer. Each feature vector is then fed into a sequence of 2 fully connected (fc) layers,
each with 4096 neurons that finally branch into J-attribute softmax sibling output
layers.

The MA-DN network is trained end-to-end by backpropagation and stochastic
gradient descent (SGD) with momentum. Each SGD mini-batch is constructed from 2
images, chosen uniformly at random (we iterate over permutations of the dataset). We
use mini-batches of size R = 128, sampling 64 ROI’s from each image. During the
training of MA-DN, we use object proposals (ROI’s) that have intersection over union
(IoU) with a ground truth BB of at least 0.5. These ROI’s are the examples labelled as
the positive class (lesion object). The remaining ROIs are sampled from object pro-
posals that have a maximum IoU with a ground truth BB in the interval [0.05; 0.2].
These are the negative class examples (the background). During the training, we apply
data augmentation by shifting the ROI’s at random horizontally and vertically by up to
15 pixels. During the testing, we use the BB proposals whose score is greater than 0.85.
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Optimization parameters. We use a learning rate of 0.001 for the first 12 K
mini-batches, and 0.0001 for the next 16 K mini-batches generated from our datasets.
We use a momentum of 0.9 and a weight decay of 0.0005.

We implemented the proposed architecture using the Caffe software framework
[15]. Our system is trained on a TitanX GPU with 12 GB memory, and i7 Intel CPU
with 64 GB RAM. Training times using around 400 images, each containing 256
ROI’s (total about 100 K samples), are as follows. The candidate Detection stage
training takes 6 h; the Description stage training takes 4 h.

3 Experiments

Our system is capable of performing end-to-end detection and semantic description of
medical findings. However, the main goal of our experiments in this paper is to test
thoroughly the proposed description rather than the detection stage. Also, because of
the lower performance figures of CADe systems, detection is frequently performed in a
semi-automatic manner. In this case, a radiologist marks the suspicious areas around a
lesion.

We compare the proposed method, that uses a rectangular ROI’s and their corre-
sponding learned discriminative CNN-based features, to the methods based on accu-
rately delineated lesion contours and hand-crafted features calculated from them. We
also compare the performance of the proposed MA-DN architecture for joint estimation
of semantic descriptors to the performance of independently trained classifiers per each
descriptor. The independent classifier training was implemented using the same system
but with a single semantic descriptor at a time. The results of these comparisons are
summarized in Tables 1, 2 and 3, and explained in details below.

Datasets. We apply the proposed method to the breast mammography (MG) and the
ultrasound (US) modalities. We used the public DDSM [13] and our proprietary data
sets. In the DDSM dataset, we chose mass containing MG images with breast density
of BI-RADS 1 and 2. The masses are annotated with semantic descriptors of shape and
margin. The final set contains 974 images from 512 (232 benign, and 280 malignant)
cases. Our proprietary dataset contains 408 US images from 330 cases, and 646 digital
MG images from 281 cases. The proprietary datasets were processed by our trained
radiologist who drew accurate lesion boundaries and annotated the lesions with their
semantic descriptor values according to the BIRADS.

Experimental methodology. The following three approaches for the lesion descrip-
tion can be considered competing: (1) independent estimation of semantic descriptors
(e.g., [10]); we used multiclass SVM classifiers with RBF kernel for each one of
descriptors, (2) the KNN based approaches; we implemented the method from [11], and
(3) the SSVM based approach of [12] which is easily implemented as well. The
objective comparison of various methods for lesion detection and description is diffi-
cult. The papers conduct their experiments on different datasets or their subsets. In
addition, there are very few publicly available datasets that are sufficiently large for
training of deep neural networks. For that reason, we use DDSM, and our proprietary
datasets.
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All the competing methods for lesion description, apart from ours, require accurate
lesion contours. We therefore used a semi-automatic segmentation with a bounding box
around a lesion chosen by the radiologist. We then used an active contour algorithm to
extract the contours. In DDSM, we used the original annotated contours to define the
ROI, and applied the active contour algorithm to refine the ground truth by extracting
more accurate contours. We used the contours to compute standard image features
usually deployed in detection and segmentation methods (see e.g. in [8, 11]). The
groups of features include pixel intensity-, shape- and texture-related descriptors that
are combined into a bag of words vector used during the training of classifiers. We used
the same set of features in all the experiments. In contrast, our method did not require
accurate lesion delineation, and only uses a rectangular ROI.

In all the experiments, we used the following methodology. The set of cases with
corresponding images was divided (with stratification) into three equal parts (denoted

Table 2. Proprietory mammography dataset: semantic descriptor estimation; mean performance
(bold is the best result). The STDs of the metrics are all under 5.1 % of the mean values.

Semantic descriptor Estimation method Shape ACC Margin ACC Density ACC

Independent SVM’s 0.73 0.72 0.81
k-NN based [11] 0.74 0.76 0.80
SSVM based [12] 0.79 0.78 0.82
Ours, independent 0.84 0.82 0.81
Ours, multi-task 0.88 0.86 0.84

Table 3. Proprietary ultrasound dataset: semantic descriptor estimation; mean performance
(bold is the best result). The STDs of the metrics are all under 7.5 % of the mean values.

Semantic descriptor
Estimation method

Shape
ACC

Orient.
ACC

Margin
ACC

Echo
ACC

Transm.
ACC

Boundary
ACC

Independent SVM’s 0.62 0.98 0.6 0.75 0.79 0.74
k-NN based [11] 0.64 0.92 0.63 0.76 0.78 0.76
SSVM based [12] 0.68 0.94 0.69 0.78 0.81 0.76
Ours, independent 0.77 0.96 0.75 0.77 0.82 0.78
Ours, multi-task 0.82 0.95 0.81 0.78 0.82 0.8

Table 1. DDSM dataset: semantic descriptor estimation; mean performance (bold is the best
result). The STDs of the metrics are all under 5 % of the mean values.

Semantic descriptor estimation method Shape Margin
ACC PPV TPR ACC PPV TPR

Independent SVM’s 0.64 0.64 0.66 0.62 0.63 0.63
k-NN based [11] 0.67 0.67 0.68 0.64 0.65 0.67
SSVM based [12] 0.71 0.71 0.72 0.69 0.68 0.69
Ours, independent 0.78 0.76 0.75 0.74 0.74 0.75
Ours, multi-task 0.82 0.79 0.78 0.77 0.78 0.76
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by segments A, B and C). Segment C was reserved as a testing set. Every algorithm
was trained on segment A. The optimal values of parameters, evaluated on the segment
B (the validation segment) were picked, and the algorithm was retrained on both
segment A and B. Then, the algorithm was tested on segment C. This process was
repeated with reversed roles for segments A and B, namely with segment B as the
training set and segment A as the validation. This procedure was repeated five times
(5 × 2 cross validation), and concluded with 10 trials. For each one of the semantic
descriptors, we calculated the means and the standard deviations (STD) of the fol-
lowing performance metrics: (1) the accuracy, ACC = (TP + TN)/M, (2) the positive
predictive value, PPV = TP/(TP + FP), and (3) the true positive rate, TPR = TP/
(TP + FN). Here M is the total number of samples, TP, TN, FP, and FN are the number
of true positives, true negatives, false positives, and false negatives, respectively, and
we calculate these in a one-versus-all manner.

In DDSM experiments, we used the following descriptors and their corresponding
values: shape {round; oval; irregular}, margin {circumscribed; indistinct; spiculated;
microlobulated; obscured}. Because of the relatively small number of examples, we used
a reduced set of semantic values. In particular, in US experiments, we used 3 classes for
margin, shape, and echo, and 2 classes for the rest. In MG experiments, we used 3 classes
for shape and margin, and 2 classes for density. We report only the accuracy for these
experiments, since these numbers represent well the overall tendency.

As explained above, our main goal in this paper is to test the Description stage.
However, we discuss briefly the Detection stage performance as well. In particular, we
test the detection rate for the top ROI proposals. Applying the Detection stage of our
system to the proprietary breast MG dataset, results in the following figures. The true
lesion is detected: in 46 % of the top-1, in 64 % of the top-4, 74 % of the top-10, and
82 % of the top-50 candidates. We obtain similar figures on other datasets.

For the Description stage, the mean figures of the performance metrics for the
DDSM dataset are given in Table 1. The STD’s of the metrics were under 5 % of the
mean values. The mean figures of the performance metrics for the proprietary breast US
and MG datasets are summarized in Table 2 and Table 3 respectively. In this case, the
STD’s of the metrics were all under 5.1 % and 7.5 % of the mean values, respectively.

The proposed method outperforms all the competing methods in the accuracy of
semantic description by up to 10 % margin. Furthermore, it is clear from the experi-
mental results, that the proposed MA-DN architecture for joint estimation of semantic
values has advantage over the independently trained classifiers per each descriptor.

4 Conclusions

This paper presents a new multi-task-loss CNN based approach for joint automatic
detection and semantic description of lesions in diagnostic images. The proposed
approach outperforms the competing methods by up to 10 % margin. We attribute this to
the ability of deep network to learn good discriminative high level features from data.
The learned features are shared in the Detection and the Description stages. The method
accepts simple rectangular ground truth boxes, and, therefore, most suitable for super-
vised training on large datasets. The proposed approach generates standard radiological
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lexicon description which should help radiologists in understanding of the decision
making process of CADx systems. To that end, we plan to concentrate on improving the
Detection stage performance, and making the proposed method sufficiently robust to be
deployed as an end-to-end detection and description system. We also plan to extend the
proposed framework and explore the use of recurrent neural networks in our system.
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Abstract. Developmental dysplasia of the hip (DDH) is a condition
affecting up to 1 in 30 infants. DDH is easy to treat if diagnosed early,
but undiagnosed DDH can result in life-long hip pain, dysfunction and
an increased risk of early onset osteoarthritis, and accounts for around
30% of all hip replacements in patients under 60. The gold standard for
diagnosis in infants is an ultrasound scan, followed by an analysis proce-
dure known as Graf’s method. The application of Graf’s method is notori-
ously operator-dependent, requiring years of training to reach reasonable
and reproducible performance. We describe a novel deep-learning based
pipeline that applies Graf’s method to ultrasound scans of the hip. We
use a convolutional network with an adversarial component to segment the
image into relevant landmarks, and define a set of post-processing rules to
translate the segmentations into Graf’s metrics. Comparing our pipeline
to estimates made by experts in DDH diagnosis shows promising results.

1 Introduction

Developmental dysplasia of the hip (DDH) is a neonatal hip developmental con-
dition that is common (affecting up to 1 in 30 infants) and in most cases is
relatively easy to treat if identified in a timely manner (e.g. by applying a har-
ness). Treatment at a later age is considerably harder as secondary anatomical
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changes have occurred and the hip joint becomes irreducible. Undiagnosed DDH
impacts quality of life, causing pain and dysfuction, and increasing the risk of
early onset osteoarthritis. Indeed, DDH accounts for 30% of hip replacements in
patients under 60 [1]. Due the high cost of undiagnosed DDH compared to the
relatively high prevalence and ease of treatment if detected early, some countries
sponsor universal screening of any newborn around the age of six weeks (e.g.
Germany, Israel).

The gold standard for DDH diagnosis is by an ultrasound scan of the hip joint.
The scan involves identifying a plane where key landmarks are visible (Fig. 1),
and analysing the relative positions of the landmarks in the image. The most
common analysis for DDH ultrasound is the Graf method [2]. A key step of the
Graf method involves measuring the α angle – the angle between two imaginary
lines corresponding to the ilium and the acetabular roof. A properly located
femoral head is located within the acetabulum and contacts the acetabular roof,
resulting in an α angle of 60◦ or more which indicates a normally developing
hip joint. Lower α angle values indicate increasingly severe degrees of DDH from
minor dysplasia to a completely dislocated hip.

Fig. 1. A cartoon of a newborn’s hip joint (left) and an ultrasound image (right)
presenting the same anatomy. The ilium and acetabular roof are marked in blue and
red, respectively. Graf’s method involves drawing a horizontal line corresponding to
the ilium (in blue), and a second line corresponding to the acetabular roof (in red).
The α angle is the angle between the two lines. (Color figure online)

The application of Graf’s method is extremely difficult and operator depen-
dent, for a number of reasons including low image quality, anatomically inade-
quate images, high variability in the shape of the relevant anatomical features
and lack of sufficient training and expertise. Several studies show considerable
inter-operator variability, which could change the diagnosis from dysplastic to
normal or vice-versa, or change the degree of dysplasia, thus altering the rec-
ommended treatment. Importantly, the inter-observer and intra-observer error
is lower for normal hips but higher for borderline and abnormal hips [3,4].
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Deep learning has been tremendously successful in image processing in gen-
eral [5,6] and medical imaging analysis in particular [7,8]. Motivated by the
success of deep learning in other modalities, we sought to develop an analy-
sis pipeline to automate Graf’s method. Both the problem and the solution we
suggest have several unique characteristics. First, training data are scarce as
images are not typically saved or stored, only reported. Even those images that
are saved usually have the markings made by the physician embedded in the
image, rendering them of minimal value for training. Second, aiming for a clini-
cal application we were not interested in a black-box classification method where
the input is an image and the output is the α angle, but rather in a set of inter-
mediate outputs allowing the visualization and interpretation of the results by
a clinician. Third, ultrasound images are notoriously noisy compared to other
medical imaging modalities such as CT, X-Ray or MRI.

We designed our pipeline to overcome these issues. To overcome the lack
of training data, we first set out to solve a segmentation problem – identifying
the ilium and acetabular roof in an image. This allowed us to draw inspiration
from other segmentation architectures [9–11] in our network design, and more
importantly, to generate training data using crowdsourcing. The second novelty
of the pipeline is the adversarial part of the network, which was planned to take
advantage of the fact that the problem at hand is not general segmentation,
but rather segmentation of well-defined structures. Intuitively, the adversarial
network acts as a regularizer, making sure the segmentations are anatomically
feasible. Adversarial networks are typically used in generative contexts and we
are not aware of studies using them in this manner. The third part is a set
of simple heuristics drawing the lines based on the segmentations. These were
designed to mimic the expert’s process of drawing the lines and generating the
α angle, and are based on in-clinic interviews and observations. Finally, we test
our pipeline and show that it reaches expert-level accuracy, and discuss future
applications of our approach.

2 Methods

2.1 Data

We collected 1, 056 ultrasound scans of infant hips with no annotations. The
black frame and text surrounding the images were cropped. We wrote illustrated
guidelines explaining how to tag the ilium and the acetabular roof and used
a popular crowdsourcing platform – CrowdFlower – to recruit workers to tag
the images. Each tagging task was performed by three different workers and
the pixel-wise majority vote was taken as the final segmentation. Inspection by
experts confirmed that this process produces segmentation results of reasonable
quality (see, e.g., Fig. 2).

To validate our method we obtained a set of 100 images where physician
annotations were already embedded in the image, for which we could measure
the α angles estimated by the expert and compare them to the pipeline’s esti-
mates. We note, however, that the embedded annotations (as well as some text,



Fully Automating Graf’s Method for DDH Diagnosis Using DCNN 133

Fig. 2. Examples of bone segmentation by crowdsourcing. The ilium is marked in blue
and the acetabular roof in red. Each bone was segmented by three different individuals,
and a majority vote over pixels is displayed. (Color figure online)

embedded at the bottom-left corner of the image) may hurt the performance of
the network, since it did not observe such inputs at training. We thus refer to
this data-set as our “bronze standard”.

2.2 Network Architecture

We implemented the segmentation network as a DCNN with multiple down-
sampling and upsampling layers for processing the input image at four different
scales. During the downwards pass, convolutions are applied with stride-2 result-
ing in an output half the size of the input. During the upward pass, the output
of the previous lower-resolution scale is upsampled using a fractionally-strided
convolution and concatenated to the current layer.

The input is a 64×64 grayscale image. A sequence of three 3×3 convolutions is
applied at each scale, and the output is upsampled by a fractionally strided 3×3
convolution and joined by filter concatenation to the scale above. Concatenation
temporarily increases the number of filters, and the following convolution restores
the previous number of filters to keep the complexity constant per scale. Each
convolution is followed by batch normalization [12] and ReLU activation. A final
convolution with sigmoid activation produces the output. The loss function for
the base segmentation network is the mean pixel-wise log-loss. The network
architecture is depicted in Fig. 3.

Since the segmentation network processes the image at multiple scales, it
captures both local and global context. However, due to the pixel-wise loss func-
tion, some global constraints on the output may still not be satisfied, and in
practice we have observed that in few cases the outputs included small patches
of noise in addition to the correct ilium and acetabular roof. Although these
cases were not common, we further improved the base segmentation network to
produce outputs that are indistinguishable from actual segmented images to a
discriminator network, similar to generative adversarial networks (GAN) [13].

The discriminator network maps 64× 64× 2 input images (the two channels
correspond to the ilium and acetabular roof) to probabilities. It is trained with



134 D. Golan et al.

Fig. 3. A diagram of the segmentation DCNN (image dimensions and number of filters
not drawn to scale). The input is processed at four scales. At each scale, three 3 × 3
convolutions with 256 filters are applied, and the output is concatenated to the scale
above.

real segmentations as positive examples and outputs of the segmentation network
as negative examples. As with GAN, it is trained to minimize the log-loss.

We implemented the discriminator network as a DCNN similar to [14], with
a sequence of 3 × 3 strided convolutions. Unlike [14], we follow each stride-2
convolution with an additional stride-1 convolution. The number of filters is 16
for the first stride-2 convolution and is doubled with every additional downsam-
pling step. After five downsampling steps, the 2 × 2 × 256 layer is flattened,
dropout of 0.5 is applied, and a linear layer with sigmoid activation produces
the discriminator output probability.

As with GAN, the two networks are trained together, alternating between
training steps for the segmentation network and for the discriminator net-
work. The loss function for the discriminator network is the discrimina-
tion log-loss −E(x,y)∈pdata(x,y) [log D (y) + log (1 − D (S (x)))], and the term
−λ log (D (S (x))) is added to the base segmentation network loss function
− 1

642

∑
1≤i,j≤64

(
yi,j log S (x)i,j + (1 − yi,j) log

(
1 − S (x)i,j

))
, where xi,j is the

pixel at position (i, j) in the input image, yi,j is the true segmentation label for
the pixel at position (i, j), S is the segmentation network, D is the discriminator
network and λ is a weight balancing the pixel-wise log-loss and the adversarial
loss set such that both losses are on roughly the same scale. We note that while
adding the adversarial network did not improve the pixel-wise log-loss, it qual-
itatively improved the segmentations dramatically. The effect of including the
adversarial component in the training phase is illustrated in Fig. 4.
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Fig. 4. Comparison of segmentations with (left) and without (right) adding the adver-
sarial loss to the overall loss. While including the adversarial loss did not improve the
pixel-wise loss, the results were qualitatively improved from an anatomical correct-
ness perspective, which is not directly captured by the pixel-wise loss, as seen in this
example.

3 Results

3.1 Training

Implementation was done in TensorFlow [15], using the Adam algorithm [16]
for training over 200 epochs with a batch size of 8 images. Training images
were augmented with probability 0.5 by rotations drawn uniformly in [−15, 15]
degrees and horizontal or vertical stretches by a factor drawn uniformly in [1, 2].

Weight decay was set to 10−3 and λ to 10−4. The segmentation network
learning rate was 5×10−3 initially and multiplied by 0.98 in each training epoch.
The discriminator learning rate was set to 0.1 of the segmentation learning rate.
Weights were initialized as in [17].

3.2 Post-processing

The outputs of the network were treated as probability maps, one for the ilium
and one for the acetabular roof. We denoised the output by first zeroing all
entries smaller than the mean activation, and then identifying the largest region
of interest using regionprop from skimage [18], and setting all activations outside
of that region to zero. We have found that this simple denoising step is hugely
beneficial for downstream analysis. However, more training data might render it
unnecessary.
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A line � = (a, b) describes the set of points (x, y) for which y = ax + b. We
define the sum of squared distances as

ssd(�) =
∑

i,j

d((i, j), �)2Pij

where d denotes the distance from a point to a line, the summation is over all
of the pixels of the relevant output image and Pij is the activation probability
of the appropriate pixel. We also define

f(�) =
∑

i,j

PijI{ia + b < j}

as the fraction of probability map that is found below the line. We then solve
� = arg min ssd(�) s.t. f(�) = c with c = 0.85. The value of c was chosen to
yield lines that are most visually similar to those typically drawn by doctors
by visualizing on a small subset of the training images to avoid overfitting. We
note that we have found the α angle to be fairly robust to changes in c, as small
changes in c mostly affect the intercept of the line. However, the actual position
of the line seemed to be closest to what physicians are expecting with c = 0.85.
The entire analysis pipeline is illustrated in Fig. 5.

Fig. 5. Analysis pipeline for DDH: (1) A cropped hip ultrasound image is rescaled
and (2) fed through our DCNN, resulting in two output images – the segmented ilium
and segmented acetabular roof. (3) The output images are then post-processed to
reduce noise and lines are drawn as detailed in Subsect. 3.2. (4) Finally, the results are
combined to a single image containing the segmentation information, the lines drawn
and the computed α angle.



Fully Automating Graf’s Method for DDH Diagnosis Using DCNN 137

4 Results

We applied our pipeline to our bronze-standard test set. The results demon-
strated a correlation of 0.76 between the α angle computed by our pipeline and
the human-computed angle, with 77% of images displaying a discrepancy of less
than 5◦ between the pipeline and the expert. The standard deviation of differ-
ences was 4.0◦, which is in the range of documented inter-observer variability
(3.9◦ and 3.2◦ in [19] and [4], respectively. The results are portrayed in Fig. 6.

Fig. 6. Comparison of our pipeline’s estimates with the expert’s. We applied our
pipeline to our bronze-standard and plot here the estimated α angle of the pipeline
(y-axis) and the estimated α angle of the expert (x-axis). For easy comparison we plot
the y = x line (dashed line), and a band of ±5 degrees around it (dotted lines). The
estimated αs display a high correlation (0.76) and 77% fall within a < 5◦ difference.
In terms of hypothetical clinical classification as normal vs. dysplastic, the expert and
the pipeline agree in 86 % of cases (marked as black dots), and disagree on 14% of
cases (marked as red crosses). An in-depth examination of the obvious outliers can be
found in Fig. 7.

Three images displayed an unreasonable discrepancy of > 10◦ between the
expert and the pipeline (Fig. 7, bottom row). However, inspection of these results
by an expert confirmed that the error in these cases is on the expert’s side and
that the pipeline results are indeed better.
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In terms of clinical decision support, great importance is given to the cut-
off of 60◦, distinguishing normal from dysplastic anatomy. Assuming the expert
opinion as ground truth, our pipeline yields no false-negative results, and 14%
false-positive results, similar to the 15% disagreement between experts docu-
mented in [4].

a. Δα < 0.1◦ b. Δα < 0.1◦ c. Δα < 0.1◦

d. Δα = 12.6◦ e. Δα = 10.3◦ f. Δα = 10.2◦

Fig. 7. Examples where the results of the pipeline match (top) or don’t match (bot-
tom) those of the expert. The top row shows three examples where the pipeline and
the expert’s estimate of α are effectively the same. The bottom row shows the three
examples where the difference between the α angles estimated, denoted Δα, is greater
than 10◦. Network activations for the ilium and acetabular roof and the corresponding
lines are highlighted in blue/red respectively. The expert’s annotations are the dotted
white lines. In some of the images a third white line is visible. This line is used for
other routine calculations and can be ignored. (Color figure online)

5 Discussion

In this paper we described a novel pipeline for automatically estimating Graf’s
alpha angle in ultrasound images of infants’ hips based on deep learning. Graf’s
method is notoriously operator-dependent and requires many years of training to
reach a reasonable level of expertise, and automating it would be of great med-
ical and social value. One of the major challenges we faced was the lack of good
training data – images with known α angles but with no embedded annotations.
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To overcome this challenge, we divided the problem into two parts: segmenta-
tion and annotation. This allowed us to harness the power of crowdsourcing to
generate good training data for the segmentation problem, while formulating
relatively simple rules for performing the annotations on top of the segmenta-
tions. We find the results very promising: there is generally a good agreement
between the pipeline’s estimate and the expert’s and in those cases with most
disagreement, external expert opinion is in favor of the pipeline’s result.

We used two strategies to capture global information. First, our DCNN
processes the image at multiple scales. Second, we complement the pixel-wise
loss with an adversarial loss to produce outputs that are globally consistent.
Adversarial networks have been proposed for unsupervised and semi-supervised
learning, but in this work, the adversarial network is used to refine the outputs
of fully supervised learning. This approach may be beneficial for other segmen-
tation tasks, and more generally supervised learning tasks where the output has
complex structure that may be well-captured by a neural network.

We view our work here as a first step, mostly due to the relatively small
amounts of data used as more data is likely to improve the performance of the
segmentation. New data should also cover a wider range of ultrasound machines
and probe configurations to allow better generalization. One of the considerable
advantages of deep learning approaches compared to more “classic” computer
vision approaches is it’s ability to continue learning as data accumulates. For
example, [20] use traditional filters followed by active contours to segment the
ilium. We experimented with similar methods and found that they are very
sensitive to image quality, and require a considerable amount of fine-tuning.

Another important task is the establishment of a proper gold-standard test
set: a large collection of images without annotations, which are then annotated
by a number of experts. Ideally follow-up scans should be performed to set
the ground-truth in borderline cases. Such data are unfortunately harder to
obtain. Once such data are available, current part of the pipeline which are
more heuristic (such as setting the value of c) could be automated as well.

Automating DDH diagnosis could have considerable medical and economical
implications. Nowadays, many DDH cases go undetected due to lack of universal
screening practices in most countries, mostly due to the high cost and low avail-
ability of sufficient expertise. Our pipeline provides a step towards universally
accessible DDH screening, capturing DDH cases early, when medical intervention
is easy and effective. Such universal screening would result in great improvement
in the quality of life of millions, as well as a reduction the financial burden caused
by early onset osteoarthritis.

Lastly, we believe our approach can be applied to other use-cases beyond
DDH, and more importantly, beyond ultrasound, with the ultimate goal of fully
automating the analysis of medical imaging data across clinical use-cases and
imaging modalities.
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Abstract. We present a supervised deep learning method to automati-
cally segment 3Dvolumes of biomedical image data.The presentedmethod
takes advantage of a neural network with the main layers consisting of
multi-dimensional gated recurrent units. We apply an on-the-fly data aug-
mentation technique which allows for accurate estimations without the
need for either a huge amount of training data or advanced data pre- or
postprocessing. We show that our method performs amongst the leading
techniques on a popular brain segmentation challenge dataset in terms
of speed, accuracy and memory efficiency. We describe in detail advan-
tages over a similar method which uses the well-established long short-
term memory.

Keywords: Deep learning · GRU · Multi-dimensional RNN ·
Segmentation

1 Introduction

With the rapid advancements of imaging technologies, their ubiquitous availabil-
ity and dropping prices, vast amounts of data are collected. This is particularly
true for medical imaging. Accurate segmentation and delineation of e.g. patholo-
gies in this medical data, however, pose real challenges as this is still mainly a
manual process. In late phase drug studies with thousands of patients, multiple
3d datasets with different MR sequences are often collected per patient. If quan-
titative analysis of the immense amount of data is required, the time that has
to be spent on the data by trained experts is enormous. A successful automated
segmentation technique would decrease manual work to a minimum, cutting the
costs and time spent on developing new treatments.

Automatic segmentation of biomedical volumetric data is, however, a chal-
lenging problem due to its high dimensionality, imaging noise, artifacts and other
factors. Recent advances in the field of deep learning, especially the enabling
effect of modern GPUs along with the advent of general purpose GPU com-
puting, led to a revival of convolutional neural networks [9]. These feed-forward
networks show great promise, but need a large number of layers to solve a diffi-
cult task accurately. A recurrent neural network (RNN), in contrast, can become
arbitrarily deep due to its additional temporal dimension. Each timestep com-
puted in an RNN corresponds roughly to one layer in a feed-forward network,
c© Springer International Publishing AG 2016
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with the weights in one RNN being the same for each timestep. This property
allows defining substantially more complexity very elegantly without the need
for a huge number of layers or parameters.

The multi-dimensional Long Short-Term Memory (MD-LSTM) proposed by
Stollenga et al. [13], called PyraMiD-LSTM, applied these insights to the Long
Short-Term Memory (LSTM) [6]. It defines two LSTMs for each spatial dimen-
sion, using said spatial dimension as temporal dimension. The first one processes
the data along that dimension, the second one in the opposite direction. In order
to make full use of the spatial information, not only the direct predecessor along
the temporal direction is taken into account, but also its local neighborhood.
This can be neatly expressed using convolutions.

A relatively new RNN called Gated Recurrent Unit (GRU) [2] grew popu-
lar in recent years and became a strong competitor for the LSTM. It can be
seen as a simplified version of the LSTM, which uses an update gate instead
of a forget and input gate and combines the hidden and cell state [11]. It has
been shown that it performs comparably to the LSTM in the task of sequence
modeling [3]. Another study suggests that GRU and LSTM report similar per-
formance on selected tasks [5]. An empirical search among more than 10 000
RNN architectures showed that on the selected tasks, although not the best
performing RNN on every task, the GRU outperformed the standard LSTM
architecture [8]. A larger time dimension in an RNN can mean that larger time
dependencies can be represented. The lower memory requirement of the GRU
means that larger volumes can be fed into the network and larger networks can
be designed for the same volume size.

For all these reasons, a modification of the GRU to be able to process vol-
umetric data seems compelling. We propose the multi-dimensional GRU (MD-
GRU), which is capable of accurate segmentation of 3d data. We hint at the
theoretical memory savings compared to the MD-LSTM and show that the per-
formance of MD-GRU is comparable if not superior. Furthermore, we show that
its convergence rate, computation time and combination of fewer gates favor
the MD-GRU. We apply our method on a popular brain segmentation challenge
dataset, achieving a score among the top 3 best performing methods.

2 Methods

2.1 Data

We used the publicly available MrBrainS [10] challenge dataset, which was one
of the datasets used to evaluate the PyraMiD-LSTM. The MrBrainS challenge
data consists of 5 labeled samples and 15 testing samples, where each sample
has a T1 weighted, T1 inversion recovery and a FLAIR scan. The additional
high-resolution T1 scan was not used, as the labeling was performed on the low
resolution data. The training data contained two different label maps, one for
training and one for testing. The training map consists of classes for cortical gray
matter (GM), basal ganglia, white matter (WM), WM lesions, cerebrospinal fluid
(CSF), ventricles, cerebellum, brainstem and background. The testing map only
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Fig. 1. Slice 19 of the 5th training sample. Top row (left to right): T1, T1 IR and
T2 FLAIR. Bottom row: respective highpass filtered versions.

defines classes for GM, WM and CSF, the respective classes of the training map
are merged. Brainstem and cerebellum are not included in the evaluation and
do therefore not appear labeled in the testing map.

2.2 Convolutional Gated Recurrent Unit

The standard GRU as proposed in [2] is defined as

rj = σ([Wrx]j + [Urht−1]j), (1)

zj = σ([Wzx]j + [Uzht−1]j), (2)

h̃j
t = φ([Wx]j + [U(r � ht−1)]j), (3)

hj
t = zj � hj

t−1 + (1 − zj) � h̃j
t , (4)

where x is the input data, rj is the reset gate, zj is the update gate of the
hidden unit j and the activation is performed in hj . The operator � represents
an elementwise multiplication. The functions σ(·) and φ(·) stand for the logistic
function and the hyperbolic tangent. W and U are the weight matrices for the
current input and last step’s output data respectively. Along the lines of Stollenga
et al. [13], we adapt these equations to be able to process 3D volumes and
introduce our convolutional GRU (C-GRU):

rj = σ

(
I∑

i

(xi ∗ wi,j
r ) +

J∑

k

(hk
t−1 ∗ uk,j

r ) + bjr

)
, (5)

zj = σ

(
I∑

i

(xi ∗ wi,j
z ) +

J∑

k

(hk
t−1 ∗ uk,j

z ) + bjz

)
, (6)
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h̃j
t = φ

(
I∑

i

(xi ∗ wi,j) + rj �
J∑

k

(hk
t−1 ∗ uk,j) + bj

)
, (7)

hj
t = zj � hj

t−1 + (1 − zj) � h̃j
t , (8)

where ∗ represents a convolution. Compared to the vanilla GRU, we introduced
slight changes. We decided to use a bias b on each gate. We factored rj out of the
convolution operation between u and ht−1. This change was motivated by the
fact that an additional convolution would require r to have twice the support
it needs now because of the chained convolution. Moreover, we reorder the data
for each C-RNN such that the two spatial dimensions are closest to memory,
and the temporal dimension is ordered according to the temporal direction,
as explained in the next paragraph. We motivated that decision with faster
possible processing speeds on the GPU, since all convolutions now require data
that lies close in memory. The computations of one C-GRU are visualized as a
computational graph in Fig. 2a.

The MD-GRU consists of two times D C-GRUs, where D is the dimensional-
ity of the image data and we need one C-GRU for each of the two directions. We
set the input data of channel i as xi ∈ R

S1×···×SD . For each spatial dimension d,
we create the copies xi,d,−1, xi,d,+1 ∈ R

Sd×S1×···×SD of x and apply the following
data transformations:

xi,d,+1(sd, s1, . . . , sD) = xi(s1, . . . , sd, . . . , sD), (9)

xi,d,−1(Sd − sd, s1, . . . , sD) = xi(s1, . . . , sd, . . . , sD), (10)

where sd is the index of the assigned dimension of the C-GRU and Sd is the size of
dimension d. The inverse operation is applied to hj,d,+1, hj,d,−1 ∈ R

Sd×S1×···×SD

to gather the final output hj :

hj(s1, . . . , sD) =
D∑

d=1

(
hj,d,+1(sd, s1, . . . , sD) + hj,d,−1(Sd − sd, s1, . . . , sD)

)
.

(11)

Figure 2b details this process for the MD-GRU. We apply the same technique
for our implementation of the MD-LSTM.

2.3 Experiments

Network. We model our network similar to [13]. We include three
multi-dimensional RNN (MD-RNN) layers of 16, 32 and 64 channels which are
connected with pixelwise fully connected hidden layers of 25 and 45 channels
respectively, each followed by a hyperbolic tangent activation function. The last
MD-RNN is attached to a pixelwise fully connected layer with c channels, the
same number as classes in the data. We estimate the probabilities for each class
using a softmax in the last layer and consequently choose the multinomial logis-
tic loss for the training of our network. Figure 2c shows our network setup for
the case of MD-GRU.
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Fig. 2. (a) Directed graph denoting the computations in one C-GRU. The variables
xd,o, hd,o with o ∈ {−1,+1} represent the input and output data across all I and
J channels respectively. The � operator denotes here the sum per channel j over the
convolutions with each channel i or k, as used in Eqs. (5)–(7). (b) Proposed arrangement
of 6 C-GRUs in a MD-GRU for three-dimensional data. (c) Setup of our network.

Setting. All experiments were calculated on an NVIDIA GTX Titan X GPU
with 12 GB global memory. Our implementation of MD-LSTM and MD-GRU
relied on the fast convolution routines provided by NVIDIA’s cuDNN [1]. For
other layers, the already available implementations of the CAFFE1 framework [7]
were used.

Preprocessing. For all volumes, unsharp masking was done using a Gaussian
smoothed image (σ = 5 voxels) which was then subtracted from the original
images to produce highpass filtered volumes. The original images and the high-
pass filtered images were normalized to σ = 1 and μ = 0, assuming normally
distributed values. In this way we followed a procedure similar to [13], but omit-
ted the histogram equalization. Figure 1 shows the original and preprocessed
data for training sample 5 at slice 19.

Data Augmentation. In the training stage, at each iteration, a random loca-
tion in the training data was selected and a deformation field was generated and
applied to the subvolumes, which were then fed into the network. We used a
procedure similar to [12], but made the grid size dependent on the data. We did
not use random deformations in the feasibility study mentioned in Sect. 3.1. For
the testing phase, no deformations were applied.

1 Version 1.0.0-rc3, commit 9c46289.
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Training. In three training steps we iteratively increase the subvolume size from
64 × 64 × 8 voxels to 128 × 128 × 12 and finally to 200 × 200 × 15, keeping the
third dimension smaller to account for the anisotropic MR volume resolution.
We relied on AdaDelta [15] to omit the manual tuning of a learning rate. For the
challenge, we additionally used DropConnect [14] of 0.5 on the input connections
of each C-GRU to prevent overfitting. Training took around two days.

Testing. In the testing phase, we divided the volume into a grid of equally sized
subvolumes of 120×120×8, which were padded by 50, 50 and 4 voxels respectively
on all sides of the volume. The padding was later used to stitch the results
together using a Gaussian (μ = 0, σ = (10, 10, 0.8)) to produce interpolation
weights, since the borders contain starting artifacts from the individual RNNs
and do not contain adequate results. Since we trained for nine classes, but only
four classes were needed for the final evaluation, we simply combined the binary
labels for the CSF with the ventricles, the cortical GM with the basal ganglia
and the WM with the WM lesions. Everything else was considered background.
Testing one volume of the MRBrainS data required 32 iterations, which needed
around two minutes.

3 Results

3.1 Feasibility Study

To point out differences between the MD-GRU and the MD-LSTM, we ran the
same setup with the multi-dimensional RNN layers either being an MD-GRU or
an MD-LSTM. We used the first four volumes in the training set of the MrBrainS
challenge and trained both networks for 3 000 iterations on the largest possible
resolution which was feasible for both (limited to 192 × 192 × 14 by our MD-
LSTM implementation). On average, one training iteration for MD-GRU and
MD-LSTM took 9.1 and 12.8 s, respectively. The Dice coefficients for CSF, GM,
WM and ICV between the computed segmentation of the 5th training volume
and the provided reference segmentation are shown in Table 1 for both the MD-
GRU and MD-LSTM. Slice 19 of the computed segmentations and the reference
segmentation are displayed in Fig. 3 together with a plot of a running average of
100 iterations of the loss function for each iteration of the training procedure.

Table 1. Feasibility study. Dice coefficients in percent for gray and white matter
(GM/WM), cerebrospinal fluid (CSF) and intracranial volume (ICV).

GM WM CSF ICV

MD-LSTM 88.09 90.08 82.62 97.56

MD-GRU 87.88 90.15 83.19 97.73
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Fig. 3. Feasibility study. Top row: slice 19 of the 5th training volume used for the
evaluation. The images from left to right represent the results of the MD-LSTM, the
MD-GRU and the manual labeling. Bottom row: convergence rates for the feasibility
study of both MD-GRU and MD-LSTM.

3.2 MD-GRU on MRBrainS

In our attempt to beat the highscore of the MRBrainS challenge, we used our
described data augmentation method. Each subvolume was deformed randomly
throughout all three training phases. We used all provided low resolution vol-
umes and their highpass filtered versions. Table 2 lists our performance according
to the Dice coefficients, 95th-percentile of the Hausdorff distance and average
volume difference of the GM, WM, CSF and ICV. Nine measures were relevant

Table 2. MrBrainS challenge. Results of the six best performing methods for GM,
WM, CSF and ICV of all three used metrics (Dice, 95th-percentile of the Hausdorff
distance (HD) and average volume difference (AVD)). A bold number means best out
of these six. The results reflect the state on August 12, 2016.

Team name Rank GM WM CSF ICV

Dice HD AVD Dice HD AVD Dice HD AVD Dice HD AVD

CU DL2 1 86.15 1.45 6.60 89.46 1.94 6.05 84.25 2.19 7.69 98.10 2.75 1.54

CU DL 2 86.12 1.47 6.42 89.39 1.94 5.84 83.96 2.28 7.44 97.99 3.16 1.83

MD-GRU

[proposed]

3 85.40 1.55 6.09 88.98 2.02 7.69 84.13 2.17 7.44 98.15 2.37 0.86

PyraMiD-

LSTM2

4 84.89 1.67 6.35 88.53 2.07 5.93 83.05 2.30 7.17 98.04 2.86 0.69

FBI/LMB

Freiburg [4]

5 85.44 1.58 6.60 88.86 1.95 6.47 83.47 2.22 8.63 97.98 2.51 1.06

IDSIA [13] 6 84.82 1.70 6.77 88.33 2.08 7.05 83.72 2.14 7.09 98.15 2.44 0.95
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Fig. 4. MrBrainS challenge. Rows (top to bottom): 5th, 10th and 15th test sample.
Columns (left to right): slice 19 of our segmentation results, T1, T1 IR and T2 FLAIR.

for the final evaluation: Dice, modified Hausdorff distance and average volume
distance in each of the categories GM, WM and CSF. The sum of the ranks in
these nine categories is used as the performance score and determines the final
rank. Figure 4 shows the computed segmentation at slice 19 of samples 5, 10 and
15 of the test data.

4 Discussion

The feasibility study has shown that MD-GRU has great potential for the seg-
mentation of volumetric images, since it achieved comparable results to the MD-
LSTM in less time with the same settings.

Using deformation as a data augmentation strategy and DropConnect for
regularization in the challenge, we ranked 3rd out of 37. Unfortunately, none of
the results in the top five of the challenge highscore are published so far. The 4th
and 6th entries are both incarnations of the already discussed MD-LSTM, where
only the latter was described in [13] and the former likely contains unpublished
improvements to their method. In contrast to [13], we did not omit the original
T1 IR images. Yet some obvious misclassifications could be traced back to strong
bias field artifacts in the T1 IR images. Given the small training size, using the
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T1 IR images leads to apparent fitting to the bias field. Furthermore, we were
not able to replicate the training volume size of Stollenga et al. [13] due to a
higher memory requirement of our implementation, since we decided to copy the
input and output data for each RNN layer, as detailed in Sect. 2.2. This has
to be kept in mind when comparing the two approaches. Relationships between
areas that are located at a certain distance in the data could therefore not be
modeled in our network, where [13] was able to use the full spatial context in
two dimensions as well as a larger third dimension. In their last training step
more than half of the data was covered while we could only fit a bit more than
a fifth in our memory.

The contribution on rank five was computed using the 3D U-Net [4]. It
consists of a hierarchical convolutional neural network with shortcut connec-
tions, which is trained using various on-the-fly data augmentation techniques,
including the deformation strategy used in this paper. The challenge results and
corresponding adaptations of the algorithm to fit the challenge data are, how-
ever, not yet published. We believe that data augmentation is key for successful
applications to problems with such a small training size.

Conclusion. With the MD-GRU, we combined the enormous expressive power
of RNNs with a highly beneficial data augmentation strategy, resulting in a
powerful supervised automatic segmentation technique. With a memory-savvy
implementation that omits the initial reordering of the data, results surpassing
the state of the art should be possible with MD-GRU.
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Abstract. Thermal imaging is a non-invasive and marker-free approach
for intraoperative measurements of small temperature variations. In this
work, we demonstrate the abilities of active dynamic thermal imaging
for analysis of tissue perfusion state in case of cerebral ischemia. For
this purpose, a NaCl irrigation is applied to the exposed cortex dur-
ing hemicraniectomy. The caused temperature changes are measured by
a thermal imaging system whilst tissue heating is modeled by a dou-
ble exponential function. Modeled temperature decay constants allow
us to characterize tissue perfusion with respect to its dynamic thermal
properties. As intraoperative imaging prevents the usage of computa-
tional intense parameter optimization schemes we discuss a deep learning
framework that approximates these constants given a simple temperature
sequence. The framework is compared to common Levenberg-Marquardt
based parameter optimization approaches. The proposed deep parameter
approximation framework shows good performance compared to numer-
ical optimization with random initialization. We further validated the
approximated parameters by an intraoperative case suffering acute cere-
bral ischemia. The results indicate that even approximated temperature
decay constants allow us to quantify cortical perfusion. Latter yield a
standardized representation of cortical thermodynamic properties and
might guide further research regarding specific intraoperative therapies
and characterization of pathologies with atypical cortical perfusion.

Keywords: Neurosurgery · Intraoperative thermal imaging · Deep
learning · Parameter approximation

1 Introduction

Thermal imaging is a contactless, marker-free, white-light independent and non-
invasive method for online measurement of temperature variations up to 30μK.
c© Springer International Publishing AG 2016
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Current uncooled devices use infrared microbolometer focal plane array detectors
measuring a field of view of 16 × 12 cm with an underlying spatial resolution of
250µm per pixel at a framerate of 50 Hz. The detected infrared radiation arriving
at the microbolometer array is processed and stored as two-dimensional image.

In brain tissue, temperature variations are primarily caused by heat transfers
originating from cerebral perfusion. Note, that the local cerebral blood flow
correlates with cell metabolism and can be used as marker for tissue state and
neural activity. Intraoperative thermal neuroimaging now allows online inference
of diagnostic information about perfusion- and neural activity related disorders.
[1] demonstrated an approach to distinguish cancerous from healthy tissue based
on thermal imaging. [2] evaluated the cortical blood flow by analysing the spatial
distribution of a cold bolus applied through a central line with multivariate
analysis tools.

In the remaining, the thermal behavior in case of ischemic strokes is ana-
lyzed. Latter denote the shortage of substrates of delimited areas of the brain by
blockage of vessels (embolism or thrombosis). Severe strokes lead to a swelling
of brain tissue, which raises intracranial pressure (ICP) leading to bad or fatal
prognosis if not treated appropriately. Hemicraniectomy can be considered as
last resort to decrease ICP. We extend the approach of Steiner et al. [2] by com-
bining deep learning and active dynamic thermal imaging during decompressive
hemicraniectomy to characterize the perfusion state of cortical tissue. The pro-
posed method integrates seamlessly into typical intraoperative workflows and is
not limited to perfused areas in contrast to the Cold Bolus approach of Steiner
et al. We also extend prior findings of Gorbach et al. [3] by a sound mathe-
matical model with efficient approximation of tissue thermodynamics yielding
standardized parameters of cortical perfusion.

2 Intraoperative Reasoning About Cortical Perfusion

Gorbach et al. [3] proposed irrigating the surface of cortical tissue for some time
to propagate heat through several tissue layers. In contrast, we employ available
intraoperative tools to prevent the need for additional sterile tools. The surgeon
typically has a tool (e.g. syringe) to purge sterile sodium chloride (NaCl) onto
tissue. Hereby, it is possible to selectively apply NaCl to a delimited area of
the exposed cortex for a specific duration. This irrigation induces a steep drop
in temperature followed by a temperature increase caused by heat transfers.
In human tissue, this heating correlates with thermodynamic properties of the
underlying tissue, thermal conductivity and tissue perfusion state. By modeling
this behavior and estimating respective parameters, it is possible to characterize
the imaged tissue.

2.1 Modelling Tissue Perfusion

In 1948, Pennes [4] proposed the biologically inspired “Bioheat equation”. He
proposed the following model to describe internal as well as external influences
to the heat distribution in living tissue:
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cpρ
δT (x, y, z)

δt
= κ∇2T (x, y, z, t) + qb + qm + qex (1)

with the specific heat cp, material density ρ, temperature distribution T (x, y, z)
at time t T (x, y, z, t) and thermal inductivity κ. He further added biological
parameters describing the heat power density of qb blood flow, qm metabolism
and external power density qex.

Several authors have shown the discretization of Penne’s equation (see for
example Gutierrez et al. [5]). In our case, we are facing several a priori unknown
parameters whose estimation schemes would introduce significant computational
complexity and potentially inaccurate estimates. To counter these challenges,
we propose to employ Nowakowski’s approach to approximate tissue’s thermal
behavior by a double exponential function [6] at time t

T (t, θ) = Tequ + ΔT1exp(−tγ1) + ΔT2exp(−tγ2) (2)

θi = (ΔT1,ΔT2, γ1, γ2, Tequ) denotes the set of all model parameters with Tequ

resembling the tissue’s equilibrium temperature, ΔT1 and ΔT2 being the scaling
coefficients of both exponential functions. Decay constants γ1 and γ2 (unit s−1)
denote the amplitude of the tissue’s temperature change rate.

By applying a cold liquid to the exposed cortex, we expect at least two orthog-
onal components that explain subsequent heating. One component represents the
temperature changes of the applied cool fluid. The other component describes
the temperature change of the affected underlying tissue. Latter gets dominant
after the fluid drained from the surface. Since the cortex can be regarded as
convex shape with high curvature, it is reasonable to expect the fluid to drain
continuously and fast. We therefore expect γ2 of the fluid to be larger than γ1 of
the imaged tissue allowing a reliable distinction and therefore estimation of both.

2.2 Levenberg-Marquardt Algorithm

Non-linear least squares is a standard approach for solving Eq. 2. Given n data
samples yi and time points ti (1 ≤ i ≤ n) the problem formulation reads

θ̃ ∈ argmin
θ

n∑

i=1

||yi − T (ti, θ)||22 :=
n∑

i=1

||fi||22 (3)

Minimizing this equation yields an estimate of thermal perfusion parameters
θ̃. As the optimization problem is non-linear, iterative optimization schemes
are required for minimization. The (damped) Levenberg-Marquardt algorithm
(LMA) depicts a fast iterative scheme to estimate θ̃ by only relying on the
model’s Jacobian J = [JT

1 . . . JT
n ]T . Given sample i, row vector Ji = δfi/δθ

denotes the gradient of fi with respect to θ

Ji = [−tiΔT1exp(tiγ1) − tiΔT2exp(tiγ2) − exp(tiγ1) − exp(tiγ2) − 1]

In each iteration, θ is replaced by θ + ν whereas ν is determined by solving

(JT J + λI)ν = JT (y − T (θ))
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with identity matrix I, some (non-negative) damping factor λ, y = [y1 . . . yn]T

and T (θ) = [T (t1, θ) . . . T (tn, θ)]T . Depending on the target function and initial
values LMA can achieve quadratic convergence [7]. A detailed discussion of LMA
can be found elsewhere (see for example [7,8]).

2.3 Approximating Thermal Process Parameters by Deep Neural
Networks

As we have to estimate θ for each pixel of our thermal video sequence even
efficient numerical optimization schemes can be time consuming or require a
vast amount of computational resources. In order to tackle both challenges, we
trained a deep parameter approximation network (DPA) that learns the under-
lying manifold so that it approximates θ given a length k thermal sequence
(T (t1), T (t2), . . . , T (tk)). The network is described by some η : R

k → R
5. In

order to catch non-linear dependencies a regularized (using dropout layers [9])
multi-layer neural network topology is employed. S-shaped rectified linear acti-
vation layer [10] further allow to catch non-convex effects. The whole topology of
the proposed network is shown in Fig. 1 and is trained by adaptive moment esti-
mation [11]. As we are approximating the parameter space of an a priori known
model, supervised training data is generated by sampling Eq. 2. This yields a
training set X = (Tj , θj) of m samples with Tj ∈ R

k, θj ∈ R
5 and 1 ≤ j ≤ m.

3 Results and Discussion

We performed several experiments to evaluate the performance of the proposed
irrigation analysis framework. All intraoperative procedures were approved by
the Human Ethics Committee of the Technische Universität Dresden (no. EK
323122008). Informed consent was obtained postoperatively in accordance with
the approved scheme. In the following, we evaluate the detector’s performance
in experimental test and training datasets. Afterwards, the approach is used
to analyze exemplary intraoperative data. All computations were done on a
workstation with dual Intel Xeon E5-2630, 128 GB Ram and Nvidia Geforce
GTX Titan Black graphics card.

3.1 Deep Parameter Approximation

DPA training data was generated by sampling 1 million normal distributed
instances (θ∗) ∼ N(μ,Σ) (see Eq. 2) with μ = (−0.5,−1,−6,−6, 28)T and 5 × 5
diagonal matrix Σ = diag(0.5, 0.5, 6, 6, 4). Thermal time series can now be gener-
ated by T ∗ = T (tk, θ∗) with 0 ≤ tk ≤ 4 and 1 ≤ i ≤ 400. In order to quantify the
performance of the proposed optimization schemes with respect to groundtruth
parameter θ∗ and synthetic temperature series T ∗ = (T ∗

1 , . . . , Tk)∗ 10000 sam-
ples were drawn from the same distribution. The baseline method was chosen
to be a damped Levenberg-Marquardt optimizing scheme given three parameter
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Fig. 1. This figure shows the deep neural network used to approximate thermal perfu-
sion parameters of Eq. 2.

initialization strategies: uninformed guess (RAND) of θ0 is acquired by sam-
pling θRAND

0 ∼ N([0 0 0 0 28]T ,Σ) whereas near-optimal initializations (NO)
are realized by sampling θNO

0 ∼ N(θ∗, 0.1Σ). The latter is expected to yield
best performance as it is initialized near to the optimal solution. Both strate-
gies employ Σ = I5 with I5 being a 5 × 5 identity matrix. The last strategy
initializes LMA by the output of the deep parameter approximation network
given T ∗ denoted by LMA-DPA: θDPA

0 = η(T ∗). Latter should be close to the
optimal solution for what reason we expect better performance than by random
initialization.
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Table 1. This table shows the achieved performance of the proposed deep parame-
ter approximation (DPA) scheme compared to traditional Levenberg-Marquardt based
numerical optimization given three different initialization schemes.

Method Iterations Runtime [s] ε εγ

DPA 1 0.00001 1.384 ± 0.742 0.098 ± 0.061

LMA-NO 31.64 ± 96.7 0.006 0.63 ± 3.13 0.001 ± 0.006

LMA-DPA 37 ± 81 0.005 0.026± 0.181 0.0001± 0.0006

LMA-RAND 130 ± 147 0.014 2.913 ± 5.325 0.282 ± 0.292

The accuracy of the parameter estimates θ̃ = [γ̃1 γ̃2 Δ̃T1 Δ̃T2 T̃equ] is quan-
tified by two measures ε = ||θ̃ − θ∗||22 and εγ = ||[γ∗

1 γ∗
2 ]T − [γ̃1 γ̃2]T ||22. Latter is

particularly interesting as the temperature decay constants correlate with corti-
cal perfusion and denote the most important parameters for subsequent analysis.
Runtime denotes the time required to optimize a single temperature sequence of
length k. The results are shown in Table 1. The results suggest that DPA approx-
imates the model parameters more accurately than Levenberg-Marquardt opti-
mization with random initialization and significantly reduced overall runtime.
When used as initialization for LMA it is interesting to note that the approx-
imated parameters seem to lie close to the actual parameters as LMA-DPA
achieves better performance than LMA-NO with less variation. The standard
deviation of the resulting number of iterations as well as accuracy ε, εγ fur-
ther suggests that the convergence behaviour of employed optimization scheme
strongly correlates with the initial parameter estimate θ0. One reason for this
behaviour is the non-convex nature of the stated optimization problem (Eq. 3).
This puts further emphasisis on parameter initialization especially when subse-
quent analysis requires accurate parameter estimates. As we have shown, deep
parameter approximation networks might be one approach to this challenge.

3.2 Case Study

The examined case suffered an acute ischemic stroke of middle cerebral artery
requiring a decompressive hemicraniectomy to decrease intracerebral pressure.
Accompanying and without influencing the surgical intervention we performed
thermographic measurements of the exposed cortex and recorded intraoperative
irrigations of cold NaCl. Latter causes a steep temperature drop and subsequent
heating. These irrigations are common in neurosurgery in order to prevent corti-
cal drying. We further segmented the infarct demarcation in postoperative com-
puted tomography (CT) scans and mapped thermal image sequences onto the
cortex for easier orientation (Fig. 2b). Heating parameters were approximated
by the discussed DPA approach being applied to the heating sequence caused by
the cortical irrigation. Figure 2c visualizes the approximated values of γ1. Low
values of γ1 indicate reduced perfusion and metabolism which also explains the
clear correlation with the infarct demarcation in postoperative CT (see Fig. 2a).
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(a) (b)

(c)

Fig. 2. (A) visualizes the infarct demarcation as green-blue object in a post-operative
CT recording with the convex shape being the trepanation. (B) depicts the tempera-
ture distribution at equilibrium temperature after the cortical irrigation. Blue visualizes
temperatures at 22 ◦C and red resembles temperatures at 32 ◦C. (C) shows the spatial
distribution of γ1. Black represents ischemic/low perfusion state whilst the brighter
colors denote stronger perfusion. Note that op towel got hit by cold NaCl irrigation
as well causing some heating off the trepanation. The estimated underperfused tis-
sue state correlates with post-operative infarct demarcation. Compared to equilibrium
temperature, thermal decay constant γ1 allows to infer standardized and more detailed
information regarding tissue perfusion. The transition between healthy and ischemic
tissue (orange to red colors) might be subject for further inspections and therapies.
(Color figure online)
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4 Conclusion

Thermography is an emerging whitelight-independent, non-invasive method to
measure the temperature distribution of surfaces. By application of temperature
gradients, this method is extended to active dynamic thermography. In medical
domain this enables analysis of abnormal tissue and vascular pathologies by
dynamic thermal properties.

We employ active dynamic thermography to analyze the perfusion of the
exposed human cortex during neurosurgical interventions in case of ischemic
strokes. Our approach requires the application of a temperature gradient to the
exposed cerebral cortex in order to quantify cortical perfusion. These gradients
are induced by applying a cold NaCl irrigation to the exposed cerebral cor-
tex. Subsequent tissue heating is modeled by a double exponential function and
its parameter’s are approximated efficiently by a novel deep parameter learn-
ing framework. The parameters include thermal decay constants that quantify
the rate of tissue heating. We demonstrated that these decay constants corre-
late with tissue perfusion state and allow to draw conclusions regarding infarct
demarcations as imaged by pre/post-operative CT measurements. This enables
the surgeon to inspect the progression of cerebral ischemia and allows inferring
further diagnostic information. In order to improve clinical significance of our
results and enhance the accuracy of our deep parameter approximation net-
work further research on larger cohorts is required. A more advanced parame-
ter approximation network might allow to reliably estimate the parameters of
Penne’s bioheat equation and therefore infer fine-grain information about tissue
composition. We further expect that other pathologies can be characterized by
their dynamic thermal behavior as well especially if they correlate with atypical
metabolism or perfusion.
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Abstract. Identification of anatomical regions of interest is a prerequi-
site in many medical image analysis tasks. We propose a method that
automatically identifies a slice of interest (SOI) in 3D images with a con-
volutional neural network (ConvNet) regressor.

In 150 chest CT scans two reference slices were manually identified:
one containing the aortic root and another superior to the aortic arch. In
two independent experiments, the ConvNet regressor was trained with
100 CTs to determine the distance between each slice and the SOI in a
CT. To identify the SOI, a first order polynomial was fitted through the
obtained distances.

In 50 test scans, the mean distances between the reference and the
automatically identified slices were 5.7 mm (4.0 slices) for the aortic root
and 5.6 mm (3.7 slices) for the aortic arch.

The method shows similar results for both tasks and could be used
for automatic slice identification.

Keywords: Slice identification · Localization · Detection ·
Convolutional neural network · Regression · Deep learning

1 Introduction

Manual and automatic localization of organs, anatomical structures, or points,
is a prerequisite for many tasks in medical image analysis. Hence, several auto-
matic methods for localization of organs have been described in literature (e.g.
[4,11]). These methods typically indicate a region around the organ of inter-
est and enable dedicated analysis of this region only. Similarly, several methods
have been proposed that describe automatic localization of anatomical landmark
points (e.g. [5,9]). Moreover, clinical work often requires localization of specific
anatomical regions that are visualized in a specific image slice. For example spe-
cific slices are chosen to analyze body composition in population studies to e.g.
quantify sarcopenia, myopenia, or visceral obesity [10]. This requires an expert to
scroll through a 3D medical image to identify the slice of interest before analysis.
Such cases would benefit from automatic slice identification.
c© Springer International Publishing AG 2016
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In this work we propose a method to automatically identify a single slice
of interest (SOI) in a 3D medical image with a convolutional neural network
(ConvNet) regressor. The ConvNet regressor is trained to compute a distance
between every slice of a given image and the SOI. To obtain a smooth result,
a first order polynomial is fitted through the obtained distances. The slice with
zero distance indicates the SOI. Negative distances indicate slices located inferior
to the SOI and positive distances indicate slices located superior to the SOI.

In this work the method was evaluated in two independent experiments in a
set of 150 chest CT scans. In the first experiment the method was evaluated on
identification of the axial slice that visualizes the aortic root, and in the second
experiment on identification of the axial slice superior to the aortic arch.

2 Data

In this work 150 low-dose chest CT scans were randomly selected from a set of
scans acquired at baseline in the National Lung Screening Trial (NLST) [1]. The
scans were made during inspiratory breath-hold in supine position with the arms
elevated above the head and without contrast enhancement. Scans were acquired
on multiple scanners from four CT scanner vendors (General Electrics, Philips,
Siemens, and Toshiba) and were reconstructed with soft or sharp reconstruction
kernels and with varying image resolution (see Table 1). No ECG synchronization
and no contrast enhancement were applied.

Table 1. Characteristics of the chest CT scans. Note the variability in resolution and
number of slices per scan.

Number of scans 150

In plane voxel size (mm) 0.50–0.86

Slice increment (mm) 1.00–2.50

In plane matrix size 512 × 512

Number of slices 108–363

To define the reference, in each scan two slices of interest were manually
identified (Fig. 1): the slice containing the aortic root, and the first slice superior
to the aortic arch. The aortic root is a landmark that separates the heart from
the aortic arch and can be used to e.g. locate the coronary ostia. The slice above
the aortic arch is typically used as a landmark for body composition analysis.

3 Method

To automatically identify a SOI, a ConvNet regressor is trained with a set of
CT scans. From every scan, all slices are extracted and provided to the ConvNet
with its distance to the SOI. To identify a SOI in a test scan, all slices from
the scan are extracted and evaluated by the ConvNet that outputs the relative
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Fig. 1. Examples of CT slices adjacent to the slice of interest in localization of the
aortic root (top) and slice superior to the aortic arch (bottom). For both examples,
four consecutive slices are shown. The first two columns show slices two and one inferior
to the slice of interest, respectively. The middle column shows the slice of interest. The
last two columns show one and two slices superior to the slice of interest, respectively.
Note the similarity in consecutive slices; this illustrates the difficulty of identifying a
single slice of interest.

distance to the SOI. The SOI receives zero distance, slices inferior have a negative
distance, and slices superior to the SOI have a positive distance. To ensure a
smooth result, a first order polynomial is fitted through the ConvNet outputs
(Fig. 2).

The employed ConvNet regressor consists of five convolutional layers and
two fully connected layers, and a single node as output. It uses (2 × 2) strided
convolutions to reduce feature-map sizes, batch normalization [6] in each layer to
speed up training, and it uses exponential linear units [3] for activation (except
for the output layer). The output layer provides the distance (in mm) to the SOI
without providing image resolution to the network. See Fig. 3 for the complete
architecture.

The CT scans used in this study were randomly divided into a training set
of 75 scans (14,707 slices) and a validation set of 25 scans (3,784 slices). An
independent set of 50 scans (10,100 slices) was used to test the method and it
was not used during development of the method.

Before analysis, slices were downsampled by a factor of four with linear inter-
polation. Resampling the slices to a lower resolution reduced the number of nec-
essary parameters of the ConvNet, but it still allowed to distinguish anatomy in
the slices. In addition, during training, slices were randomly cropped to 112×112
pixels and randomly rotated between −10◦ and 10◦ to allow the ConvNet to learn
plausible variations of the positions of a subject in the scanner. During validation
and testing the slices were evenly cropped around all borders, but not rotated.
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Fig. 2. Result of automatic slice identification. The plot shows slice indices on the
x-axis and distances to the target slice in mm on the y-axis. The reference distance to
the target slice is plotted in green. The target slice index is located at the intersection
of the green line with the x-axis. The predicted distances are indicated as blue dots,
with the fitted polynomial as a blue line. Note that negative distances indicate slice
positions inferior to the target slice, and positive distances indicate positions superior
to the target slice. (Color figure online)

During training, the ConvNet regressor was randomly presented axial slices
in mini-batches of 100 slices in 100 epochs. Per epoch, all slices of the training
set were presented once to the ConvNet. The distance of the extracted slice to
the target slice was given as the target regression value. Adam [7] was used with
a learning rate of 0.001 to minimize the mean squared distance to the target
regression value. After each epoch the mean squared distance was evaluated on
the validation set and the best performing model was chosen.

Fig. 3. Architecture of the convolutional neural network regressor. The network expects
input image slices of 128×128 pixels. It consists of five layers with strided convolutions,
two layers that are fully connected, and a single output node. In each layer batch
normalization and exponential linear units are used, except in the output layer. The
output layer provides the relative distance to the slice of interest (SOI) in mm.
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4 Results

Table 2 lists the obtained results of the method on the independent test set of
50 scans. The results show that for both tasks the automatic methods find slices
that are on average less than 4 slices from the SOI. For both tasks, the method
tended to automatically select slices slightly inferior to the reference slice. This
bias is also shown in Fig. 4, which shows boxplots of all automatic results. Using
distance (in mm) as an evaluation criterion, the results of identification of the
slice that visualizes the aortic root show a narrower distribution than localization
of the slice superior to the aortic arch, but it also has two outliers. When using
number of slices as evaluation criterion, the distribution of the results is similar
for both tasks. This difference in the distributions is caused by the difference
in image resolution, caused by variation in slice increment among the analyzed
images.

Table 2. Mean distances and standard deviations (std) between the automatically
identified slices and the reference slices. Distances are given in millimeters and number
of slices. The first and second rows show the mean of the relative distances of the esti-
mated slice to the slice of interest (SOI), with negative numbers indicating estimations
inferior to the SOI, and positive numbers indicating estimations superior to the SOI.
The third and fourth rows show the mean of absolute distances of the estimated slices
to the SOI.

Aortic root Aortic arch sup

Distance in mm (std) −1.51 (8.00) −1.78 (7.03)

Distance in slices (std) −0.82 (6.26) −1.37 (5.20)

Absolute distance in mm (std) 5.74 (5.65) 5.59 (4.55)

Absolute distance in slices (std) 4.02 (4.83) 3.72 (3.85)

In 12 % of the scans the method identified the correct slice, the method was
one slice off in 19 %, and two slices off in 16 %. Furthermore, in the case of larger
errors the method still produced sensible results: see Fig. 5 showing the four
largest errors of the method. All these errors were caused by the offset of the
fitted polynomial with respect to the reference.

5 Discussion

The results show that automatic slice identification is feasible with the proposed
method in chest CT.

The chest CTs used in this study show large variability with respect to image
acquisition (e.g. CT scanner and patient positioning) and reconstruction (e.g.
reconstruction kernel and image resolution). In addition, the scans are part of a
screening study and were therefore acquired with low radiation dose and without
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Fig. 4. Boxplots of the distances in mm (left) and in number of slices (right) between
the automatically identified slices and the reference slices of interest. Negative distances
indicate that the predicted slice is inferior to the reference slice. Positive distances
indicate that the predicted slice is located superior to the reference slice.

contrast enhancement. Hence, the scans contained high noise levels and low
soft tissue contrast. Furthermore, no ECG-synchronization was applied, so scans
contained cardiac motion artifacts, especially in the slices that visualize the
aortic root. Nevertheless, the results are comparable between the two tasks and
showed that in 47 % of the scans the distance to the target slice was within
2 slices. The tasks were not very stringently defined, and given the variation
in anatomy among subjects and slice thickness, the obtained results are likely
similar to the interobserver variability (see Fig. 1). In this study, only a single
observer defined the reference standard. In the future work, we aim to establish
agreement among observers.

Our ConvNet follows the architecture of popular networks like AlexNet [8]
and VGG-net [2]; it has an increasing number of kernels and two fully connected
layers. Different architecture could also be used, but likely performance would
not change dramatically if the same training set would be employed. Further-
more, in our experiments a relatively small set of 75 CT scans, each scan con-
taining about 150 slices was used for training. ConvNets are known for achieving
excellent results when trained with a large set of images. Possibly, performance
could be further improved by increasing the training set size that would cover a
range of anatomical variations and variotions in image acquisition. Also, in future
work, we will investigate whether performance could reach an expert level when
trained with a substantially larger data set.

Even though Fig. 5 shows the largest errors, it illustrates the most common
errors in the experiments. Either the fitted polynomial runs parallel to the ref-
erence, which indicates a correct estimation of the subject’s length, or the fitted
polynomial has a different slope, which indicates incorrect estimation of the
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Fig. 5. Examples of the largest errors found in automatic slice identification. The left
column shows predicted (blue) and reference distances (green). The middle column
shows the reference slices of interest (SOIs). The right column shows the automatically
selected slices. The two largest errors in detecting the slices of interest that visualize
the aortic root are shown in (a) (−30.44 mm) and (b) (2.40 mm). The two largest errors
in selecting the slice superior to the aortic arch are shown in (c) (−20.29 mm) and (d)
(−16.92 mm). Except for the results in (a), the fitted slopes run parallel to the reference
slope. Both errors (b) and (d) occured in the same scan. (Color figure online)
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subject’s length. Different slopes can be explained by the incorrect assumption
that a slice with a certain anatomy always has the same distance to a slice of
interest. Even though subjects bear an anatomical resemblance, they are often
of different size and length. The here used chest CTs are acquired so that the
subject’s chest is shown in the full field of view, regardless of patient size. Also,
slice increment varied among the used scans. These may have caused incorrect
estimation of a subject’s size and therefore length, which results in an incorrect
estimation of distance to the slice of interest. Adding voxel sizes as parame-
ters to the ConvNet could resolve this issue. Nevertheless, incorrect estimation
of size would only affect the slope of the polynomial and not the offset of the
polynomial.

The only cause for erroneous slice detection is an incorrect offset of the
fitted polynomial with respect to the reference. An incorrect offset may have two
underlying causes. First, the fitting procedure could generate the error as shown
in Fig. 5d, where determined distances closer to the SOI are more precise, which
could be resolved by weighing distant slices differently during fitting. Second, the
ConvNet could have learned to also respond on other anatomical landmarks that
are spatially related, but not always in the same position. Guiding the attention
of a ConvNet towards anatomical landmarks of interest would be an interesting
extension and will be addressed in future work.

As illustrated in Fig. 5a, the output of the ConvNet regressor is not nec-
essarily strictly monotonically increasing. To compensate for this, a first order
polynomial was fitted through the output values. In future work other options
could be considered, especially those taking into account the sequential aspect
of image slices. E.g., in manual slice identification, experts use their knowledge
of anatomy and memorize information of previously analyzed slices to evaluate
subsequent slices. In contrast, a ConvNet can only be trained to evaluate a cur-
rent state and lacks memory. Future work could therefore benefit from the use
of recurrent neural networks which have an inherent property that resembles
memory.

Finally, the algorithm has been tested in chest CT scans only. We expect
that the method could be applied for identification of slices that contain different
anatomies or have different orientation, in scans of different anatomical coverage,
and in different modalities.

6 Conclusion

Automatic identification of slices of interest in 3D medical images can be achieved
with a convolutional neural network regressor. For each slice extracted from an
image the regressor determines the distance to the slice of interest. The proposed
method might be used for slice identification in medical image analysis.
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Abstract. Computed tomography (CT) is critical for various clinical
applications, e.g., radiotherapy treatment planning and also PET atten-
uation correction. However, CT exposes radiation during CT imaging,
which may cause side effects to patients. Compared to CT, magnetic
resonance imaging (MRI) is much safer and does not involve any radi-
ation. Therefore, recently researchers are greatly motivated to estimate
CT image from its corresponding MR image of the same subject for the
case of radiotherapy planning. In this paper, we propose a 3D deep learn-
ing based method to address this challenging problem. Specifically, a 3D
fully convolutional neural network (FCN) is adopted to learn an end-
to-end nonlinear mapping from MR image to CT image. Compared to
the conventional convolutional neural network (CNN), FCN generates
structured output and can better preserve the neighborhood informa-
tion in the predicted CT image. We have validated our method in a real
pelvic CT/MRI dataset. Experimental results show that our method is
accurate and robust for predicting CT image from MRI image, and also
outperforms three state-of-the-art methods under comparison. In addi-
tion, the parameters, such as network depth and activation function, are
extensively studied to give an insight for deep learning based regression
tasks in our application.

1 Introduction

Computed tomography (CT) imaging is widely used for both diagnostic and
therapeutic purposes in various clinical applications. In the cancer radiation
therapy, CT image provides Hounsfield units, which is essential for dose calcu-
lation in treatment planning. Besides, CT image is also of great importance for
attenuation correction of positron emission tomography (PET) in the popular
PET-CT scanner [8].

However, patients are exposed to radiation during CT imaging, which can
damage normal body cells and further increase potential risks of cancer. Brenner
and Hall [1] reported that 0.4 % of cancers were due to CT scanning performed
c© Springer International Publishing AG 2016
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Fig. 1. A pair of corresponding pelvic MR (left) and CT (right) images from the same
subject.

in the past, and this rate will increase to as high as 1.5 to 2 % in the future.
Therefore, the use of CT scan should be with great caution. Magnetic resonance
imaging (MRI) is a safe imaging protocol. It also provides more anatomical
details than CT for diagnostic purpose, but unfortunately cannot be used for
either dose calculation or attenuation correction. To reduce unnecessary imaging
dose for patients, it is clinically desired to estimate CT image from MR image
in many applications.

It is technically difficult to directly estimate CT image from MR image. As
shown in Fig. 1, CT and MR images have very different appearances. For exam-
ple, in CT image, the intensity difference between the prostate and bladder is
much smaller than that in MR image. Besides, MR image contains richer texture
information than CT image. Therefore, it is challenging to directly estimate a
mapping from MRI intensity to CT intensity.

Recently, many researches focus on estimating one modal image from another
modality image, e.g., estimating CT image using MRI data. (a) The first category
is atlas-based method. These methods first register an atlas (with the attenu-
ation map) to the new subject MR image, and then warp the corresponding
attenuation map of atlas to the new MR image as its estimated attenuation map
of atlas to the new MR image as its estimated attenuation map [2,3]. However,
the performance of these atlas-based methods highly depends on the registration
accuracy. (b) The second category is learning-based method, in which non-linear
model is learnt from MRI to CT image. Huynh et al. [5] presented an approach
to predict CT image from MRI using structured random forest. Such methods
often have to first represent the input MR image by features and then map fea-
tures to output CT image. Thus, the performance of these methods is bound to
the quality of feature extraction.

On the other hand, recently the convolutional neural network (CNN) [9]
becomes popular in both computer vision and medical imaging fields. As a multi-
layer and fully trainable model, CNN is able to capture the complex non-linear
mapping from the input space to the output space. For the case of 2D image, 2D
CNN has been widely used in many applications. However, it is unreasonable to
directly apply 2D CNN to process 3D medical images because 2D CNN considers
the image appearance slice by slice, thus potentially causing discontinuous pre-
diction results across slices. To address this issue, 3D CNNs have been proposed.
Ji et al. [6] presented a 3D CNN model for action recognition in an uncontrolled
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environment. Tran et al. [13] used 3D CNN to effectively learn spatio-temporal
features on a large-scale video dataset. Li et al. [11] applied deep learning models
to estimate the missing PET image from the MR image of the same subject.

In this paper, we propose to learn the non-linear mapping from MR to CT
images through a 3D fully convolutional neural network (FCN), which is a varia-
tion of the conventional CNN. Compared to CNN, FCN generates the structured
output, which can better preserve the neighborhood information in the predicted
CT image [12]. Specifically, an input MR image is first partitioned into overlap-
ping patches. For each patch, FCN is used to predict the corresponding CT patch.
Finally, all predicted CT patches are merged into a single CT image by averag-
ing the intensities of overlapping CT regions. The proposed method is evaluated
on a real pelvic CT/MR dataset. Experimental results demonstrate that our
method can effectively predict CT image from MR image, and also outperforms
three state-of-the-art methods under the comparison. Besides, extensive exper-
iments have been conducted to validate the choice of several key parameters in
the FCN, such as network depth and activation function. These parameter eval-
uation results provide good insight for other regression applications using deep
learning.

2 Methods

Deep learning model can learn a hierarchy of features, i.e., high-level features
built upon low-level features. CNN [4,9] is one popular type of deep learning
models, in which trainable filters and local neighborhood pooling operations are
applied in an alternating sequence starting with the raw input images. When
trained with appropriate regularization, CNN can achieve superior performance
on visual object recognition and image classification tasks [10]. However, most of
CNNs are designed for 2D natural images. They are not well suited for medical
image analysis, since most of medical images are 3D volumetric images, such as
MRI, CT and PET. Compared to 2D CNN, 3D CNN can better model the 3D
spatial information due to the use of 3D convolution operations. 3D convolu-
tion preserves the spatial neighborhood of 3D image. As a result, 3D CNN can
solve the discontinuity problem across slices, which are suffered by 2D CNN.
Mathematically, the 3D convolution operation is given by Eq. 1

aij(x, y, z) = f

(
C∑

c=1

Pi−1∑

p=0

Qi−1∑

q=0

Ri−1∑

r=0

Wijc(x, y, z)a(i−1)c(x + p, y + q, z + r)

)

(1)
where x, y, z denotes the 3D voxel position. W is a 3D filter. a is a 3D feature
map from the previous (i−1)-th layer. Initially, a is the input MRI patch. c and
C is the index and number of feature maps in the previous layer. i and j are the
layer index and filter index, respectively. Pi, Qi and Ri are the dimensions of
the i-th filter in 3D space, respectively. f is an activation function that encodes
the non-linearity in the CNN.
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Fig. 2. Illustration of difference between FCN and CNN. The left column shows MR
slices, and the right one shows corresponding CT slices.

Structured CNN - FCN: The output of conventional CNN is a single tar-
get value, which is unable to preserve neighborhood information in the output
space. In this paper, we propose to use FCN to produce the structured output.
Instead of predicting the CT intensity voxel by voxel, we use FCN to estimate
the CT image in a patch-by-patch manner, as shown in Fig. 2. Compared to
using CNN for voxel-wise CT prediction, using FCN for patch-wise CT predic-
tion has several obvious advantages. First, the neighborhood information can be
preserved in each predicted CT patch. Second, the prediction efficiency can be
greatly improved since a entire CT patch can be predicted by a single pass of
forward propagation in the neural network.

In the following paragraphs, we will describe the network architecture of
FCN used in the MRI-to-CT prediction. Compared to the conventional CNN,
the pooling layers are not used in this application. This is because the pooling
layers often reduce the spatial resolution of feature maps. Although this property
is desirable for tasks, such as image classification, since the pooling over local
neighborhood could enhance invariance to certain image distortions, it is not
desired in the task of image prediction, where subtle image distortions need to
be precisely captured in the prediction process.

3D FCN for Estimating CT Images from MRI Data: Based on the 3D
convolution described above, a variety of FCN architectures can be devised.
In the following, we describe a 3D FCN architecture, as shown in Fig. 3, for
estimating CT patch from MR patch. The training data for this CNN model
consists of patches extracted from subjects with both MR and CT images. The
size of input MRI patch is 32 × 32 × 16 and the size of output CT patch is
24× 24× 12. The input and output patches are in correspondence, which means
that they share the same center position in their aligned image space. To generate
training samples for FCN, we randomly extracted a large number of patches from
3D MRI volume as inputs, and the corresponding CT image patches as outputs.
Patches that cross the boundaries or locate completely in the background were
removed. The total number of patches extracted from each volume was 6000,
which was sufficient to cover majority of the 3D image volume.
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Fig. 3. The 3D FCN architecture for estimating CT image from MRI image.

In the FCN architecture, we first apply 3-D convolution with a filter size of
7×7×3 on the input MRI patch to construct 32 feature maps in the first hidden
layer. One voxel is padded along the first two dimensions. In the second layer, the
outputs of the first layer are fed into another convolutional layer with 64 filters
of size 5×5×3. The third convolutional layer contains 32 feature maps. Each of
the feature maps is connected to all the input feature maps through filters of size
3 × 3 × 3. The output layer contains only one feature map generated by 1 filter
of size 3 × 3 × 3, and it corresponds to the predicted CT image patch. To keep
the same image size, one voxel is padded along three dimensions in the last two
layers. In all layers, we set stride as one voxel. The latent nonlinear relationship
between MR and CT images is encoded by the large number of parameters in
the network.

Caffe [7] is modified to implement the architecture shown in Fig. 3. The net-
work parameters of FCN are updated by back-propagation using stochastic gra-
dient descent algorithm. To train the network, the model hyper-parameters need
to be appropriately determined. Specifically, the network weights are initialized
by xavier algorithm [4], which can automatically determine the scale of initial-
ization based on the number of input and output neurons. For the network bias,
we initialize it to be 0. The initial learning rate and weight decay parameter are
determined by conducting a coarse line search, followed by decreasing the learn-
ing rate during training. In particular, we have approximately 200,000 training
patches. A Titan X GPU is utilized to train the network.

3 Experiments and Results

Data Acquisition and Preprocessing: Our pelvic dataset consists of 22 sub-
jects, each with MR and CT images. The spacings of CT and MR images are
1.172 × 1.172 × 1 mm3 and 1 × 1 × 1 mm3, respectively. In the training stage,
CT image is manually aligned to its corresponding MR image to build voxel-wise
correspondences. After alignment, CT and MR images of the same subjects have
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the same image size and spacing. Since only pelvic regions are concerned in this
study, we further crop the aligned CT and MR images to reduce the compu-
tational burden. Finally, each preprocessed image has a size of 153 × 193 × 50
and a spacing of 1× 1× 1 mm3. A typical example of preprocessed CT and MR
images is given in Fig. 1.

Parameter Selection of FCN: We evaluate the proposed method on 22 sub-
jects in a leave-one-out cross validation. In our implementation, we adopt FCN
to learn the nonlinear mapping from MR image to CT image. There are sev-
eral factors that could affect the learning process, such as activation function,
network depth, the number of filters in each layer and so on. In this paper, we
evaluate the effect of different network depths and activation functions in learn-
ing this nonlinear mapping. In particular, three popular nonlinear functions are
explored, which are the rectified linear units (Relu), sigmoid and tanh functions,
respectively. The performance of FCN under different activation functions is
shown in Fig. 4. In addition, we also analyze the impact of FCN under different
network depths in Fig. 4. The experimental results show that with the Relu acti-
vation function, the performance of FCN gradually increases as the increase of
network depth. However, for both sigmoid and tanh activation function, PSNR
decreases with a deeper network. The best results are obtained with a shal-
low network (2-layer/3-layer). A simple interpretation is that sigmoid/tanh may
suffer from gradient vanishing problem in a deep network although layer-wise
training is used, while the Relu does not suffer such problem. The bad perfor-
mance of Relu is due to the limited nonlinearity of Relu compared to two other
activation functions. By increasing the network depth, the nonlinearity can be
effectively increased, which renders the improved performance of Relu as the
depth increases.

Fig. 4. Sensitivity analysis of 3 activation functions with respect to network depth.
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Fig. 5. Visual comparison of original MR images, the estimated CT images by our
method and the ground truth CT images on 2 subjects.

Experimental Results: To demonstrate the advantage of the proposed method
in terms of prediction accuracy, we compare our method with three widely used
approaches:

– Atlas-based method (Atlas): Here, the MR image of each atlas is first
aligned [15] onto the target MR image, and the resulting deformation field is
used to warp the CT image of each atlas. The final prediction is obtained by
averaging all warped CT images of all atlases.

– Structured Random forest based method (SRF): Structured random forest [5]
was used to learn a nonlinear mapping between MR image and its correspond-
ing CT image.

– Structured random forest and auto-context model (SRF+) based method:
Besides the structured random forest, auto-context model (ACM) [14] is fur-
ther used to iteratively refine the prediction of CT images.

The prediction results by different methods on two typical MR images are
shown in Fig. 5. It can be clearly seen that our results are consistent with the
ground-truth CT. To quantitatively evaluate our method, we use both mean
absolute error (MAE) and peak signal-to-noise ratio (PSNR) to measure the
prediction accuracy, as shown in Table 1.

Quantitative results in Table 1 show that our method outperforms other 3
methods in terms of both MAE and PSNR. Specifically, our method gives an
average PSNR of 33.4, which is obviously better than 32.1 obtained by the state-
of-the-art SRF+ method.

Table 1. Average of MAE and PSNR on 22 subjects by 4 different methods: Atlas,
SRF, SRF+, and FCN (Proposed).
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4 Conclusions

We have developed a 3D FCN model for estimating CT images from MRI images
by directly taking MR image patches as input and CT patches as output. The
nonlinear relationship between two imaging modalities is captured by a large
number of trainable mapping and parameters in the network. We have applied
this model to predict CT images from their corresponding MR images. Experi-
ments demonstrate that our proposed method can significantly outperform the
three state-of-the-art methods. We also conduct a simple exploration for the
important factors in the deep learning regression, which gives an insight of para-
meter selection in other related regression tasks. Although we considered the
FCN model for CT image prediction, this model can also be applied to other
related tasks. In our future works, we will explore ways of expediting the com-
putation and designing more effective deep learning models to improve the pre-
diction speed and accuracy.

References

1. Brenner, D.J., Hall, E.J.: Computed tomography ↪a�lan increasing source of radiation
exposure. N. Engl. J. Med. 357(22), 2277–2284 (2007)

2. Burgos, N., et al.: Robust CT synthesis for radiotherapy planning: application to
the head and neck region. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9350, pp. 476–484. Springer, Heidelberg (2015)

3. Catana, C., et al.: Toward implementing an MRI-based PET attenuation-correction
method for neurologic studies on the MR-PET brain prototype. J. Nucl. Med.
51(9), 1431–1438 (2010)

4. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International Conference on Artificial Intelligence and Statis-
tics, pp. 249–256 (2010)

5. Huynh, T., et al.: Estimating CT image from MRI data using structured random
forest and auto-context model (2015)

6. Ji, S., et al.: 3D convolutional neural networks for human action recognition. IEEE
Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

7. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the ACM International Conference on Multimedia, pp. 675–678.
ACM (2014)

8. Kinahan, P.E., et al.: Attenuation correction for a combined 3D PET/CT scanner.
Med. Phys. 25(10), 2046–2053 (1998)

9. LeCun, Y., et al.: Deep learning. Nature 521(7553), 436–444 (2015)
10. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc.

IEEE 86(11), 2278–2324 (1998)
11. Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning

based imaging data completion for improved brain disease diagnosis. In: Golland,
P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III.
LNCS, vol. 8675, pp. 305–312. Springer, Heidelberg (2014)

12. Nie, D., Wang, L., Gao, Y., Sken, D.: Fully convolutional networks for multi-
modality isointense infant brain image segmentation. In: IEEE 13th International
Symposium on Biomedical Imaging (ISBI), pp. 1342–1345. IEEE (2016)



178 D. Nie et al.

13. Tran, D., et al.: Learning spatiotemporal features with 3D convolutional networks.
arXiv preprint arXiv:1412.0767 (2014)

14. Zhuowen, T., et al.: Auto-context and its application to high-level vision tasks and
3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32(10),
1744–1757 (2010)

15. Vercauteren, T., et al.: Diffeomorphic demons: efficient non-parametric image reg-
istration. NeuroImage 45(1), S61–S72 (2009)

http://arxiv.org/abs/1412.0767


The Importance of Skip Connections
in Biomedical Image Segmentation

Michal Drozdzal1,2(B), Eugene Vorontsov1,2(B), Gabriel Chartrand1,3,
Samuel Kadoury2,4, and Chris Pal2,5

1 Imagia Inc., Montréal, Canada
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Abstract. In this paper, we study the influence of both long and short
skip connections on Fully Convolutional Networks (FCN) for biomedical
image segmentation. In standard FCNs, only long skip connections are
used to skip features from the contracting path to the expanding path in
order to recover spatial information lost during downsampling. We extend
FCNs by adding short skip connections, that are similar to the ones intro-
duced in residual networks, in order to build very deep FCNs (of hundreds
of layers). A review of the gradient flow confirms that for a very deep FCN
it is beneficial to have both long and short skip connections. Finally, we
show that a very deep FCN can achieve near-to-state-of-the-art results on
the EM dataset without any further post-processing.

Keywords: Semantic segmentation · FCN · ResNet · Skip connections

1 Introduction

Semantic segmentation is an active area of research in medical image analy-
sis. With the introduction of Convolutional Neural Networks (CNN), significant
improvements in performance have been achieved in many standard datasets. For
example, for the EM ISBI 2012 dataset [2], BRATS [13] or MS lesions [18], the top
entries are built on CNNs [3,4,7,15].

All these methods are based on Fully Convolutional Networks (FCN) [12].
While CNNs are typically realized by a contracting path built from convolutional,
pooling and fully connected layers, FCN adds an expanding path built with decon-
volutional or unpooling layers. The expanding path recovers spatial information
by merging features skipped from the various resolution levels on the contracting
path.
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Variants of these skip connections are proposed in the literature. In [12],
upsampled feature maps are summed with feature maps skipped from the contrac-
tive path while [15] concatenate them and add convolutions and non-linearities
between each upsampling step. These skip connections have been shown to help
recover the full spatial resolution at the network output, making fully convolu-
tional methods suitable for semantic segmentation. We refer to these skip connec-
tions as long skip connections.

Recently, significant network depth has been shown to be helpful for image
classification [8,9,14,20]. The recent results suggest that depth can act as a reg-
ularizer [8]. However, network depth is limited by the issue of vanishing gradi-
ents when backpropagating the signal across many layers. In [20], this problem is
addressed with additional levels of supervision, while in [8,9] skip connections are
added around non-linearities, thus creating shortcuts through which the gradient
can flow uninterrupted allowing parameters to be updated deep in the network.
Moreover, [19] have shown that these skip connections allow for faster convergence
during training. We refer to these skip connections as short skip connections.

In this paper, we explore deep, fully convolutional networks for semantic seg-
mentation. We expand FCN by adding short skip connections that allow us to
build very deep FCNs. With this setup, we perform an analysis of short and long
skip connections on a standard biomedical dataset (EM ISBI 2012 challenge data).
We observe that short skip connections speed up the convergence of the learn-
ing process; moreover, we show that a very deep architecture with a relatively
small number of parameters can reach near-state-of-the-art performance on this
dataset. Thus, the contributions of the paper can be summarized as follows:

– We extend Residual Networks to fully convolutional networks for semantic
image segmentation (see Sect. 2).

– We show that a very deep network without any post-processing achieves per-
formance comparable to the state of the art on EM data (see Sect. 3.1).

– We show that long and short skip connections are beneficial for convergence of
very deep networks (see Sect. 3.2)

2 Residual Network for Semantic Image Segmentation

Our approach extends Residual Networks [8] to segmentation tasks by adding
an expanding (upsampling) path (Fig. 1(a)). We perform spatial reduction along
the contracting path (left) and expansion along the expanding path (right). As
in [12,15], spatial information lost along the contracting path is recovered in the
expanding path by skipping equal resolution features from the former to the lat-
ter. Similarly to the short skip connections in Residual Networks, we choose to
sum the features on the expanding path with those skipped over the long skip
connections.

We consider three types of blocks, each containing at least one convolution and
activation function: bottleneck, basic block, simple block (Fig. 1(b)–(d)). Each
block is capable of performing batch normalization on its inputs as well as spa-
tial downsampling at the input (marked blue; used for the contracting path) and
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spatial upsampling at the output (marked yellow; for the expanding path). The
bottleneck and basic block are based on those introduced in [8] which include short
skip connections to skip the block input to its output with minimal modification,
encouraging the path through the non-linearities to learn a residual representa-
tion of the input data. To minimize the modification of the input, we apply no
transformations along the short skip connections, except when the number of fil-
ters or the spatial resolution needs to be adjusted to match the block output. We
use 1×1 convolutions to adjust the number of filters but for spatial adjustment we
rely on simple decimation or simple repetition of rows and columns of the input
so as not to increase the number of parameters. We add an optional dropout layer
to all blocks along the residual path.

(a) (b) (c) (d)

Fig. 1. An example of residual network for image segmentation. (a) Residual Network
with long skip connections built from bottleneck blocks, (b) bottleneck block, (c) basic
block and (d) simple block. Blue color indicates the blocks where an downsampling
is optionally performed, yellow color depicts the (optional) upsampling blocks, dashed
arrow in figures (b), (c) and (d) indicates possible long skip connections. Note that all
blocks (b), (c) and (d) can have a dropout layer (depicted with dashed line rectangle).
(Color figure online)

We experimented with both binary cross-entropy and dice loss functions. Let
oi ∈ [0, 1] be the ith output of the last network layer passed through a sigmoid non-
linearity and let yi ∈ {0, 1} be the corresponding label. The binary cross-entropy
is then defined as follows:

Lbce =
∑

i

yi log oi + (1 − yi) log (1 − oi) (1)

The dice loss is:

LDice = − 2
∑

i oiyi∑
i oi +

∑
i yi

(2)
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We implemented the model in Keras [5] using the Theano backend [1] and trained
it using RMSprop [21] (learning rate 0.001) with weight decay set to 0.001. We
also experimented with various levels of dropout.

3 Experiments

In this section, we test the model on electron microscopy (EM) data [2] (Sect. 3.1)
and perform an analysis on the importance of the long and short skip connections
(Sect. 3.2).

3.1 Segmenting EM Data

EM training data consist of 30 images (512 × 512 pixels) assembled from serial
section transmission electron microscopy of the Drosophila first instar larva ven-
tral nerve cord. The test set is another set of 30 images for which labels are not
provided. Throughout the experiments, we used 25 images for training, leaving 5
images for validation.

During training, we augmented the input data using random flipping, sheering,
rotations, and spline warping. We used the same spline warping strategy as [15].
We used full resolution (512 × 512) images as input without applying random
cropping for data augmentation. For each training run, the model version with
the best validation loss was stored and evaluated. The detailed description of the
highest performing architecture used in the experiments is shown in Table 1.

Interestingly, we found that while the predictions from models trained with
cross-entropy loss were of high quality, those produced by models trained with

Table 1. Detailed model architecture used in the experiments. Repetition number indi-
cates the number of times the block is repeated.

Layer name Block type Output resolution Output width Repetition number

Down 1 conv 3 × 3 512 × 512 32 1

Down 2 simple block 256 × 256 32 1

Down 3 bottleneck 128 × 128 128 3

Down 4 bottleneck 64 × 64 256 8

Down 5 bottleneck 32 × 32 512 10

Across bottleneck 32 × 32 1024 3

Up 1 bottleneck 64 × 64 512 10

Up 2 bottleneck 128 × 128 256 8

Up 3 bottleneck 256 × 256 128 3

Up 4 simple block 512 × 512 32 1

Up 5 conv 3 × 3 512 × 512 32 1

Classifier conv 1 × 1 512 × 512 1 1
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(a) (b) (c) (d)

Fig. 2. Qualitative results on the test set. (a) original image, (b) prediction for a model
trained with binary cross-entropy, (c) prediction of the model trained with dice loss and
(d) model trained with dice loss with 0.2 dropout at the test time.

Table 2. Comparison to published entries for EM dataset. For full ranking of all
submitted methods please refer to challenge web page: http://brainiac2.mit.edu/
isbi challenge/leaders-board-new. We note the number of parameter, the use of post-
processing, and the use of model averaging only for FCNs.

Method Vrand Vinfo FCN Post-processing Average over Parameters (M)

CUMedVision [4] 0.977 0.989 YES YES 6 8

Unet [15] 0.973 0.987 YES NO 7 33

IDSIA [6] 0.970 0.985 NO - - -

motif [23] 0.972 0.985 NO - - -

SCI [11] 0.971 0.982 NO - - -

optree-idsia [22] 0.970 0.985 NO - - -

PyraMiD-LSTM [17] 0.968 0.983 NO - - -

Ours (LDice) 0.969 0.986 YES NO Dropout 11

Ours (Lbce) 0.957 0.980 YES NO 1 11

the Dice loss appeared visually cleaner since they were almost binary; borders that
would appear fuzzy in the former (see Fig. 2(b)) would be left as gaps in the lat-
ter (Fig. 2(c)). However, we found that the border continuity can be improved for
models with the Dice loss by implicit model averaging over output samples drawn
at test time, using dropout [10] (Fig. 2(d)). This yields better performance on the
validation and test metrics than the output of models trained with binary cross-
entropy (see Table 2).

Two metrics used in this dataset are: Maximal foreground-restricted Rand
score after thinning (Vrand) and maximal foreground-restricted information theo-
retic score after thinning (Vinfo). For a detailed description of the metrics, please
refer to [2].

Our results are comparable to other published results that establish the state of
the art for the EM dataset (Table 2). Note that we did not do any post-processing
of the resulting segmentations. We match the performance of UNet, for which pre-
dictions are averaged over seven rotations of the input images, while using less

http://brainiac2.mit.edu/isbi_challenge/leaders-board-new
http://brainiac2.mit.edu/isbi_challenge/leaders-board-new
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(a) (b) (c)

Fig. 3. Training and validation losses and accuracies for different network setups: (a)
model 1: long and short skip connections enabled, (b) model 2: only short skip connec-
tions enabled and (c) model 3: only long skip connections enabled.

Table 3. Best validation loss and its corresponding training loss for each model.

Method Training loss Validation loss

Long and short skip connections 0.163 0.162

Only short skip connections 0.188 0.202

Only long skip connection 0.205 0.188

parameters and without sophisticated class weighting. Note that among other
FCN available on the leader board, CUMedVision is using post-processing in order
to boost performance.

3.2 On the Importance of Skip Connections

The focus in the paper is to evaluate the utility of long and short skip connections
for training fully convolutional networks for image segmentation. In this section,
we investigate the learning behavior of the model with short and with long skip
connections, paying specific attention to parameter updates at each layer of the
network. We first explored variants of our best performing deep architecture (from
Table 1), using binary cross-entropy loss. Maintaining the same hyperparameters,
we trained (Model 1) with long and short skip connections, (Model 2) with only
short skip connections and (Model 3) with only long skip connections. Training
curves are presented in Fig. 3 and the final loss and accuracy values on the training
and the validation data are presented in Table 3.

We note that for our deep architecture, the variant with both long and short
skip connections is not only the one that performs best but also converges faster
than without short skip connections. This increase in convergence speed is con-
sistent with the literature [19]. Not surprisingly, the combination of both long
and short skip connections performed better than having only one type of skip
connection, both in terms of performance and convergence speed. At this depth,
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a network could not be trained without any skip connections. Finally, short skip
connections appear to stabilize updates (note the smoothness of the validation
loss plots in Figs. 3(a) and (b) as compared to Fig. 3(c)).

We expect that layers closer to the center of the model can not be effectively
updated due to the vanishing gradient problem which is alleviated by short skip
connections. This identity shortcut effectively introduces shorter paths through
fewer non-linearities to the deep layers of our models. We validate this empirically
on a range of models of varying depth by visualizing the mean model parameter
updates at each layer for each epoch (see sample results in Fig. 4). To simplify the
analysis and visualization, we used simple blocks instead of bottleneck blocks.

(a) (b) (c) (d)

Fig. 4. Weight updates in different network setups: (a) the best performing model with
long and short skip connections enabled, (b) only long skip connections enabled with
9 repetitions of simple block, (c) only long skip connections enabled with 3 repetitions
of simple block and (d) only long skip connections enabled with 7 repetitions of simple
block, without batch normalization. Note that due to a reduction in the learning rate
for Figure (d), the scale is different compared to Figures (a), (b) and (c).

Parameter updates appear to be well distributed when short skip connections
are present (Fig. 4(a)). When the short skip connections are removed, we find that
for deep models, the deep parts of the network (at the center, Fig. 4(b)) get few
updates, as expected. When long skip connections are retained, at least the shal-
low parts of the model can be updated (see both sides of Fig. 4(b)) as these con-
nections provide shortcuts for gradient flow. Interestingly, we observed that model
performance actually drops when using short skip connections in those models
that are shallow enough for all layers to be well updated (eg. Figure 4(c)). More-
over, batch normalization was observed to increase the maximal updatable depth
of the network. Networks without batch normalization had diminishing updates
toward the center of the network and with long skip connections were less stable,
requiring a lower learning rate (eg. Figure 4(d)).

It is also interesting to observe that the bulk of updates in all tested model
variations (also visible in those shown in Fig. 4) were always initially near or at the
classification layer. This follows the findings of [16], where it is shown that even
randomly initialized weights can confer a surprisingly large portion of a model’s
performance after training only the classifier.
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4 Conclusions

In this paper, we studied the influence of skip connections on FCN for biomedical
image segmentation. We showed that a very deep network can achieve results near
the state of the art on the EM dataset without any further post-processing. We
confirm that although long skip connections provide a shortcut for gradient flow
in shallow layers, they do not alleviate the vanishing gradient problem in deep
networks. Consequently, we apply short skip connections to FCNs and confirm
that this increases convergence speed and allows training of very deep networks.
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Abstract. The ability to automatically learn task specific feature repre-
sentations has led to a huge success of deep learning methods. When large
training data is scarce, such as in medical imaging problems, transfer
learning has been very effective. In this paper, we systematically investi-
gate the process of transferring a Convolutional Neural Network, trained
on ImageNet images to perform image classification, to kidney detection
problem in ultrasound images. We study how the detection performance
depends on the extent of transfer. We show that a transferred and tuned
CNN can outperform a state-of-the-art feature engineered pipeline and a
hybridization of these two techniques achieves 20% higher performance.
We also investigate how the evolution of intermediate response images
from our network. Finally, we compare these responses to state-of-the-art
image processing filters in order to gain greater insight into how transfer
learning is able to effectively manage widely varying imaging regimes.

1 Introduction

Automated organ localization and segmentation from ultrasound images is a
challenging problem because of specular noise, low soft tissue contrast and wide
variability of data from patient to patient. In such difficult problem settings, data
driven machine learning methods, and especially deep learning methods in recent
times, have found quite a bit of success. Usually, a large amount of labeled data
is needed to train machine learning models and a careful feature engineering is
required for each problem. The question of how much data is needed for satisfac-
tory performance of these methods is still unanswered, with some recent works in
this direction [7]. However, transfer learning has been successfully employed in
data scarce situations, with model knowledge being effectively transferred across
(possibly unrelated) tasks/domains. It is fascinating that a model, learnt for an
unrelated problem setting can actually solve a problem at hand with minimal
retraining. In this paper, we have attempted to demonstrate and understand
the effectiveness and mechanism of transfer learning a CNN, originally learnt on
camera images for image recognition, to solve the problem of automated kidney
localization from ultrasound B-mode images.

c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 188–196, 2016.
DOI: 10.1007/978-3-319-46976-8 20
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Kidney detection is challenging due to wide variability in its shape, size
and orientation. Depending upon the acquisition scan plane, inconsistency in
appearance of internal regions (renal sinus) and presence of adjacent structures
like diaphragm, liver boundaries, etc. pose additional challenges. This is also a
clinically relevant problem as kidney morphology measurements are essential in
assessing renal abnormalities [13], planning and monitoring radiation therapy,
and renal transplant.

There have been semi-automated and automated kidney detection approaches
reported in literature. In [22], a texture model is built by an expectation maxi-
mization algorithm using features inferred from a bank of Gabor filters, followed
by iterative segmentation to combine texture measures into parametric shape
model. In [16], Markov random fields and active contour methods have been used
to detect kidney boundaries in 3D ultrasound images. Recently, machine learn-
ing approaches [1,17] based on kidney texture analysis have proven successful for
segmentation of kidney regions from 2-D and 3-D ultrasound images.

2 State of the Art

CNNs [15] provide effective models for vision learning tasks by incorporating
spatial context and weight sharing between pixels. A typical deep CNN for a
learning task has, as input, N channel image patches Pk of size n1 × n2, where
Pk : {1, 2, · · · , n1} × {1, 2, · · · , n2} → D ⊂ R, k = 1, 2, · · · , N . The output is
M feature maps, Gj ∈ R

m1×m2 , j = 1, 2, · · · ,M , defined as convolutions using
MN filters vj

k, (j = 1, 2, · · · ,M), (k = 1, 2, · · · , N) of size S = s1 × s2, and M
scalars bj , j = 1, 2, · · · ,M . We then have:

Gj = S↓

(
σ

(
∑

k

Pk ∗ vj
k + bj

))
, j = 1, 2, · · · ,M. (1)

Here, ∗ denotes convolution, σ is a non-linear function (sigmoid or a linear cutoff
(ReLU)). S↓ is a down sampling operator. The number of feature maps, filter
size, and size of the feature maps are hyperparameters in the above expression,
with a total of M(NS + 1) parameters that one has to optimize for a learning
task. A deep CNN architecture is multi-layered, with the above expression being
hierarchically stitched together, given the number of input/output maps, sizes
of filters and maps for each layer, resulting in a huge number of parameters to
be optimized. When data is scarce, the learning problem is under-determined
and therefore transferring CNN parameters from a pre-learned model helps.

For medical image problems, transfer learning is additionally attractive due
to the heterogeneity of data types (modalities, anatomies, etc.) and clinical chal-
lenges. In [4], the authors perform breast image classification using a CNN model
trained on ImageNet. Shie et al. [18] employ the CaffeNet, trained on ImageNet,
to extract features and classify Otitis Media images. In [6], a pre-trained CNN
is used to extract features on ultrasound images to localize a certain standard
plane that is important for diagnosis.
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Studies on transferability of features across CNNs include [23] and more
specifically [19,21] for medical images. While our work demonstrates yet another
success of transfer learning for medical imaging and the tuning aspects of transfer
learning, we

1. Reason out the effectiveness of transfer learning by methodically comparing
the response maps from various layers of transfer learnt network with tradi-
tional image processing filters.

2. Investigate the effect of level of tuning on performance. We demonstrate that
full network adaptation leads to learning problem specific features and also
establishes the superiority over off-the-shelf image processing filters.

3. Re-establish the relevance and complementary advantages of state-of-the-art,
hand-crafted features and merits of hybridisation approaches with CNNs, to
help us achieve next level performance improvement [24].

3 Methods

From a set of training images, we build classifiers to differentiate between kidney
and non-kidney regions. On a test image, the maximum likelihood detection
problem of finding the best kidney region of interest (ROI) S∗ from a set of
candidate ROIs {S} is split into two steps, similar to [3,17]. The entire set {S}
is passed through our classifier models and the candidates with positive class
labels (Y ) are retained (Eq. (2)). The ROI with highest likelihood (L) from the
set {S+} is selected as the detected kidney region (Eq. (3))

{Y,L} = MLClassifier(S) and {S+ ∈ S | Y = 1}, (2)

S∗ = arg max(L+), where {L+ = L(S+)}. (3)

We propose to employ CNNs as feature extractors similar to [10] to facilitate
comparisons with traditional texture features. We also propose to use a well-
known machine learning classifier, to evaluate performance of different feature
sets, thereby eliminating the effects of having soft-max layer for CNNs and a
different classifier on traditional features as our likelihood functions.

3.1 Dataset and Training

We considered a total of 90 long axis kidney images acquired on GE Health-
care LOGIQ E9 scanner, split into two equal and distinct sets, for training and
validation. The images contained kidney of different sizes with lengths varying
between 7.5 cm and 14 cm and widths varying between 3.5 cm and 7 cm, demon-
strating wide variability in the dataset. The orientation of the kidneys varied
between −25◦ and +15◦. The images were acquired at varying depths of ultra-
sound acquisition ranging between 9 cm and 16 cm. Accurate rectangular ground
truth kidney ROIs were manually marked by a clinical expert.

To build our binary classification models from training images, we swept
the field of view (FOV) to generate many overlapping patches of varying sizes
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(a) (b) (c)

Fig. 1. (a) Sample generation (b) Positive patches (c) Negative patches

(see Fig. 1) that satisfied clinical guidelines on average adult kidney dimensions
and aspect ratio [8]. We downsampled these ROIs to a common size and were
further binned into two classes based on their overlap with ground truth anno-
tations. We used Dice similarity coefficient (DSC) as the metric and a threshold
of 0.8 (based on visual and clinical feedback) was used to generate positive
and negative class samples. This was followed by feature extraction and model
building.

3.2 Transfer Learned Features

Our study on transfer learning was based on adapting the popular CaffeNet [11]
architecture built on ImageNet database to ultrasound kidney detection, whose
simplified schematic is in Fig. 2. We extracted features after the ‘fc7’ layer from
all the updated nets, resulting in 4096 features. The features extracted were:

1. Full Network adaptation (CaffeNet FA) - Initialized with weights from
CaffeNet parameters, the entire network weights were updated by training on
kidney image samples from Sect. 3.1. The experiment settings were: stochastic
gradient descent update with a batch size of 100, momentum of 0.5 and weight
decay of 5 × 10−4.

2. Partial Network adaptation (CaffeNet PA) - To understand the per-
formance difference based on level of tuning, we froze the weights of ‘conv1’
and ‘conv2’ layers, while updating the weights of other layers. The reason-
ing behind freezing the first two layers was to evaluate how sharable were
the low-level features and also to help us in interpret-ability (Sect. 5). The
experiment settings were same as those for full network adaptation.

3. Zero Network adaptation (CaffeNet NA) - Finally, we also extracted
features from the original CaffeNet model without modifying the weights.

3.3 Traditional Texture Features

Some of the well-studied texture features used for ultrasound images include
(i) Haar features [3] for fetal anatomy studies, (ii) Gray Level Co-Occurrence
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Fig. 2. Simple schematic of CaffeNet architecture [40]

Matrix (GLCM) [20], (iii) Histogram of oriented gradient (HoG) (for automatic
view classification of echocardiogram images [12]).

Haar features have been reported to have the best performance for kidney
detection n [17]. For our study, we extracted Haar features similar to [3], yielding
a total of ∼2000 features.

3.4 Gradient Boosting Machine (GBM)

Ensemble classifiers have been shown to be successful in ultrasound organ detec-
tion problems. In [3], authors have used probabilistic boosting tree classifier
for fetal anatomy detection. In [17], it has been noted that gradient boosting
machine (GBM) have outperformed adaboost classfiers. In an empirical com-
parison study of supervised learning algorithms [5] comparing random forests
and boosted decision trees, calibrated boosted trees had the best overall per-
formance with random forests being close second. Motivated by these successes,
we have chosen to use Gradient boosting tree as our classifier model. We build
GBM classifiers for all the feature sets explained in Sects. 3.2 and 3.3 using GBM
implementation inspired by [2], with parameters: shrinkage factor and sampling
factor set to 0.5, maximum tree depth = 2 and number of iterations = 200.

3.5 Hybrid Approach

Investigation of the failure modes of baseline method (Haar + GBM) and Caf-
feNet FA revealed that they had failed on different images (Sect. 4). To exploit
the complementary advantages, we propose a simple scheme of averaging the
spatial likelihood maps from GBMs of these two approaches and employing it
in (2), which yields dramatic improvement.

4 Results

To quantitatively evaluate the performance on 45 validation images, we used two
metrics: (1) Number of localization failures - the number of images for which
the dice similarity coefficient between detected kidney ROI and ground truth
annotation was < 0.80. (2) Detection accuracy - average dice overlap across 45
images between detection results and ground truth, which. From Table 1, we see
that CaffeNet features without any adaptation outperformed baseline by 2 % in
average detection accuracy with same number of failures. This improvement is
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consistent with other results reported in literature [18], where CaffeNet features
outperform state-of-the-art pipeline. However, by allowing these network weights
to get adapted to the kidney data, we achieved a performance boost of 4 %
over the baseline method, with number of failure cases reducing to 10 from
12. Interestingly, tuning with the first two convolutional layers frozen yielded
intermediate performance, suggesting that multiple levels of feature adaptation
are important to the problem.

Table 1. Performance comparison on unseen 45 validation images

Method Haar
features

CaffeNet NA CaffeNet PA CaffeNet FA Haar + Caf-
feNet FA

Average dice
overlap

0.793 0.825 0.831 0.842 0.857

# of failures 12/45 12/45 11/45 10/45 3/45

Figure 3(a) and (b) shows a case in which the baseline method was affected by
the presence of diaphragm, kidney and liver boundaries creating a texture simi-
lar to renal-sinus portion, while CaffeNet had excellent localization. Figure 3(c)
and (d) illustrate a case where CaffeNet resulted in over-segmentation contain-
ing the diaphragm, clearly illustrating that in limited data problems careful
feature-engineering incorporating domain knowledge still carries a lot of rele-
vance. Finally, we achieved a best performance of 86 % average detection accu-
racy using the hybrid approach (Sect. 3.5). More importantly, the number of
failures of the hybrid approach was 3/45, which is 20 % better than either of the
methods.

(a) Haar (b) CaffeNet FA

(c) Haar (d) CaffeNet FA

Fig. 3. Visual comparison of baseline method with CaffeNet transfer
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(a) Sample Kidney
patch

(b) Phase Congruency (c) Frangi Vesselness

(d) CaffeNet NA L1 1 (e) CaffeNet NA L1 2 (f) CaffeNet NA L2 1

(g) CaffeNet FA L1 1 (h) CaffeNet FA L1 2 (i) CaffeNet FA L2 1

Fig. 4. Filter responses for learned &hand-engineered features for a sample patch (Caf-
feNet FA(NA) LX Y denotes response image from Y th filter of layer X)

Table 2. No. of filters in each layer that changed by more than 40% in �2 norm

Layer

Conv1 Conv2 Conv3 Conv4 Conv5

# of filters with ≥ 40 % change 0 5 125 22 62

5 Discussion

It is indeed very interesting to see that features learnt on camera images were able
to outperform careful feature engineering on sharply different detection prob-
lems, in modalities whose acquisition physics are distinctly different. Figure 4
compares some of the response images generated from layers 1 and 2 of the
learned network with traditional image processing outputs like Phase Congru-
ency [14] and Frangi vesselness filter [9] for an example patch.

Here, we would like to highlight two main points: (1) Visually, we find the
output has intriguing similarities with the outputs of hand crafted feature extrac-
tors optimized for Ultrasound. The response maps of Fig. 4(g) and (i) are sim-
ilar to 4(b) and (c). This is very encouraging because of the fact that CNNs
learns features that are equivalent to some of these widely used non-linear
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feature extractors. (2) The second important observation here is the reduction in
speckle noise on CaffeNet FAL1 1, compared to CaffeNet PAL1 1. By carefully
tuning CaffetNet features on ultrasound data, the model was able to learn the
underlying noise characteristics, while preserving edges, and this resulted in a
much improved response map as shown in Fig. 4(g) and (i).

Further, we quantitatively analyzed changes (% in �2 norm) in filter weights
in each layer to identify significant trends. Table 2 shows a large number of filters
have significantly changed in the 3rd layer, with filters in the 1st and 2nd layer
showing minimal change. This is possibly due to the lower level features being
fairly the same for both natural and ultrasound images. We also noted that
the use of ReLU as the activation function also avoided the vanishing gradient
problem, resulting in this skew in distribution of weight changes across layers.
The response images past layer 2 proved to be difficult to interpret, and may
require more intensive techniques. Our quantitative results and the literature in
the field show that a great deal of the power of deep networks lies in these layers,
and so we feel this is an important area for our future investigation.

In a clinical context, the interpretability of models is crucial and we feel this
insight into why the deep CNN was able to outperform hand-crafted features is
as important as the results demonstrated in Sect. 4. We also see this as opening
up new ways of understanding and utilizing deep networks for medical problems.
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Abstract. This paper addresses the problem of detection and classification of
tumors in breast mammograms. We introduce a novel system that integrates
several modules including a breast segmentation module and a fibroglandular
tissue segmentation module into a modified cascaded region-based convolu-
tional network. The method is evaluated on a large multi-center clinical dataset
and compared to ground truth annotated by expert radiologists. Preliminary
experimental results show the high accuracy and efficiency obtained by the
suggested network structure. As the volume and complexity of data in health-
care continues to accelerate generalizing such an approach may have a profound
impact on patient care in many applications.

1 Introduction

Breast cancer is the second leading cause of death for women [1]. Despite the advances in
imaging technology, Mammography (MG), X-ray imaging of the breast, remains the
primary modality for screening and diagnosis of breast cancer. In current practice,
screening for early detection is performed for asymptomatic individuals, where an expert
radiologist examines the images and performs detection and classification of potential
abnormalities. Nevertheless, MG analysis is challenging, due to the subtle fine-grained
(FG) visual categories and large variability of appearance in abnormalities (e.g. different
sizes, shapes, boundaries, and intensities) [2], making abnormalities difficult to detect and
classify, even by an expert radiologist. The problem is further complicated by the
non-rigidity of the breast, and the varying viewing conditions, leading to significant
intra-expert and inter-expert variability. Still, due to the accelerated advances in tech-
nology, the information overload, the limited amount of expert time, and diagnosis errors,
it is essential to augment the radiologist with decision supporting computational tools
utilizing image processing and machine learning (ML) technology.

The objective of this paper is to introduce a novel algorithm for detection and
classification of abnormalities based on a powerful region-based convolutional net-
works approach. Classification is performed according to the Breast Imaging-Reporting
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and Data System (BI-RADS) score [3]. The BI-RADS score ranges from 0 to 6 and is
defined as (0 more information is needed,1 negative, 2 benign finding, 3 probably
benign <2 % likelihood of cancer, 4 suspicious abnormality, 5 highly suggestive of
malignancy, and 6 proven malignancy). This study dealt only with scores 1 to 5 based
on radiological features and without correlation with clinical information. We
demonstrate our results on tumor detection and classification where due to the small
amount of training data in some of the score classes, we include the three major clinical
classes of normal {1}, benign {2} and malignant {3, 4, 5}. Figure 1, demonstrates
examples of tumors with different BI-RADS score.

Deep Neural Networks (DNN) have shown outstanding performance in image
recognition tasks such as classification and detection and have been applied success-
fully in many fields [4]. Recently deep learning methods have also been utilized in
medical imaging tasks where an additional difficulty stems from the limited number
large labeled datasets, which are required for efficient training and avoiding parameter
over fitting. Nevertheless, several deep learning algorithms for breast mammography
lesion and calcification classification have been reported, for detailed report see [5, 6].

Prominent work in the field, include [7], where a multi-view convolutional neural
network (CNN) based approach was developed. First a separate CNN model was
trained for each unregistered view and each segmentation map fine tuning from an
Imagenet pre-trained model. Then, using the features obtained the authors trained
another CNN classifier that estimated the BI-RADS score. Arevalo et al. [8] used
convolutional architectures within a supervised learning framework taking advantage
of expert knowledge represented by previously manually segmented lesions by radi-
ologists in both mammographic views. Most of the previous work has focused on
binary classification of micro-calcification (MC) or tumors which is different than
performing detection localization and classification of abnormalities. The study of [9] is

(a) BI-RADS 2 (b) BI-RADS 3 

(c) BI-RADS 4 (d) BI-RADS 5 

Fig. 1. Examples of tumors with different BI-RADS score.
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closely related to our Region-Based CNN (R-CNN) work. The authors present a system
consisting of four modules, the first is a multi-scale deep belief nets (DBN) with a
Gaussian mixture model (GMM) classifier for region proposal generation, the second is
a cascade of R-CNNs, the thirds is a cascade of two random forests and finally, a post
processing step merges regions with a high overlap ratio.

A variety of methods have been reported in the computer vision literature for region
proposals. Classically, R-CNN [10], solves the detection problem by two modules, the
first generates generic region proposals (image regions likely to contain objects) using
low level cues such as color and texture, while the second computes CNN features and
classifies them into object categories. Fast R-CNN [11] modified some of the draw-
backs of R-CNN, by replacing the extraction of region proposal images by direct
pooling of region features within a single CNN operating on the entire image and also
introducing a regression stage for region box refinement. Recently, Faster R-CNN [12],
introduced end-to-end joint training of both the region proposal module and the region
classification module, both represented by CNNs with significant weight sharing. This
also led to much higher detection speeds and higher detection quality than the original
R-CNN [10]. The advantage of joint end-to-end training is that it allows avoiding
sequentially-trained tasks and also that it may improve results since the shared repre-
sentation allows the tasks to influence each other.

Our contribution is twofold: First the best of our knowledge this is the first work to
utilizing state-of-the-art Faster-R-CNN in a full efficient pipeline for tumor detection
and classification tasks in mammography images. Second we modify the original CNN
architecture used in Faster-R-CNN in order to adapt the deep learning process to the
specific problem domain, training and testing on a large multi-center dataset for both
detection and classification tasks.

2 Methods

The system takes as input a Mammography (MG) image of *4k × 3k pixel and begins
by segmenting the breast tissue automatically, removing the background and pectoral
muscle and cropping image accordingly. In the second step a priori anatomical image is
generated detecting the Fibro-glandular tissue based on a fuzzy logic approach [13]. The
third step divides the images based on a grid representation to multiple overlapping sub
images (parts) which are then used to train and test a modified Faster-RCNN [12]. The
fourth step integrates the results obtained from the parts onto the entire image. Finally the
output produces the detection and classification results represented by bounding-boxes
with a confidence/probability score where pixels that were not detected are defined as
normal breast tissue class. Figure 2 shows the outline of the system.

2.1 Breast Anatomical Segmentation and Candidate Extraction

To obtain accurate detection of tumors it is essential to perform segmentation of the
breast and the pectoral muscle. Additionally, we generate an anatomical prior identi-
fying the fibroglandular tissue to be used for reduction of FP. The fibroglandular
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segmentation is based on the approach described in [13]. Due to the lack of space we
refer the reader to the paper for details.

As a result of GPU memory limitations a grid was defined on the image, dividing
the image to overlapping parts of fixed size 800 × 800. The use of overlapping parts
can also be seen as a data augmentation technique as each lesion appears in several
overlapping parts. This allows us to create several samples from each lesion appearing
in the original data.

2.2 Modified Faster-R-CNN

The system is composed of two main components: (1) a region proposal network
(RPN), a deep fully convolutional network that is trained to detect windows on the
input image that are likely to contain objects of interest regardless of their class.
The RPN simultaneously predicts objects bounds and objectness scores at each position
on a wide range of scales and aspect ratios, following which top scoring 500 predic-
tions are kept. (2) Fast R-CNN detection network that is trained to classify candidate
object windows returned by the RPN, each window is classified into one of the classes
of interest or rejected as a false alarm. Both RPN and Fast-RCNN share a large
common set of bottom layers allowing computation re-use and hence a significant
speed-up at test time.

Faster-R-CNN training is a four-step alternating algorithm consisting of the fol-
lowing steps: (1) Train RPN, initialized with an ImageNet pre-trained model. (2) Train
a separate classification network using the proposals generated in step 1. As proposed
in [11], the network operates on the entire image and uses pooling from the proposal
regions in order to generate deep features for classification. (3) Use the network from
stage 2 to initialize the RPN but freeze the parameters of the shared bottom layers and

Fig. 2. (a) System outline. Given an MG Input (1) Breast tissue segmentation removal of
background and pectoral muscle (2) Fibro-glandular tissue extraction. (3) The image is divided to
multiple overlapping subparts utilized in the Faster-RCNN training and testing. (4) Composition:
the bounding boxes detected are projected on image grid. The process ends with tumor detection
and the corresponding BI-RADS classification.
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only fine-tune the top RPN layers (non-shared). (4) Keep the shared layers frozen and
repeat stage 2 using the proposals generated in step 3. We have modified the original
Faster-RCNN net of [12] to include information from the finer bottom levels during
classification (Fast-RCNN) stage. This allows to consider low level (higher resolution)
information such as color and texture during the classification stage and improves the
classification results. When considering visually similar objects such as malignant
lesions and patches of suspicious normal tissue, intricate visual details need to be taken
into account in order to make the distinction. In other words, the problem addressed in
this paper is inherently fine grained and significantly different than the one of classi-
fying visually dis-similar objects as in many visual challenges such as PASCLA-VOC
used for testing in [12]. Therefore, features from lower levels of the CNN need to be
taken into the account when making the decision as they are the only ones looking on
the considered region proposals in the high enough resolution. Figure 3, provides a
schematic view of the modification in the network.

Fig. 3. Schematic zoomed view of the modified layers in the Faster R-CNN architecture. The
boxes connected to conv4_3 and conv3_3 represent additional layers in the modified network.
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Given a training set of images and RoIs Ii; r1i; c1i; r2i; c2if g, where each RoI is
defined by a four-tuple that specifies its top-left corner (r; c) and bottom right corner
and the class and a test set of images Ij

� �
. The output includes all the objects in the test

set and their bounding boxes represented in a six-tuple ( Ij; r1j; c1j; r2j; c2j
� �

, class, and
score). Namely, given a test input the system will automatically detect and classify into
one of three classes including normal tissue (BI-RADS 1), benign (BI-RADS 2), and
malignant tumors (BI-RADS 3, 4, 5).

Our implementation is based on the Faster R-CNN architecture [12] using VGG-16
architecture [14] and caffe implementation [15]. The system was trained on a single
TitanX GPU with 12 GB on chip memory, and i7 Intel CPU with 64 GB RAM.
Training times required *36 h, while testing takes 0.2 s per image. During training
2000 top-scoring boxes are sampled from the RPN, during testing top scoring 500
boxes are sampled using standard non-maximal suppression (NMS) based on box
overlap. We used the SGD solver with learning rate of 0.001, batch size 2, momentum
0.99, and 60 epochs.

3 Experiments and Results

The experiments were conducted on a large multicenter hospital data set annotated and
examined by expert radiologists (the fourth author). The data sets consists of
approximately 850 images distributed in terms of BI-RADS to 400, 200, 150, 100
corresponding to classes 2, 3, 4, 5 respectively.

The dataset was split into training (80 %), and testing (20 %) sets following a
stratified sampling per patient. Such that a particular patient belongs to only one of the
subsets. The total number of patients in experiment (1) was *300, where training and
testing of the model were performed with 4000 and 750 image parts respectively. In
experiment (2), we excluded from both sets images corresponding to BI-RADS {3}, to
demonstrate the recognition difficulties which the intermediate class brings. The
number of patients in experiment (2) was *220, where training and testing were
performed with 3000 and 700 image parts respectively.

Results in the field are commonly evaluated on the DDSM-BCRP [16] and INBreast
[17] datasets. The INBreast comprises a set of 115 cases containing 410 images, where
only 116 images contain benign or malignant masses. The DDSM-BCRP dataset con-
tains 79 images of malignant masses, where commonly 39 cases are used for training and
40 cases for testing. State of the art results in this domain were reported in [7] which
produced an Area under curve (AUC) for the receiver operating characteristics (ROC) of
0.91 ± .05 on INBreast and 0.97 ± .0.03 on DDSM. [8] obtained an AUC score of
0.826. Finally [9] present a table comparing previous results showing that their approach
produces the best results to date in both datasets: with TPR 0.96 ± .0.03 @ 1.2 FPI (false
positive per image) and TPR = 0.87 ± .0.14 @ 0.8 FPI for INBreast; and TPR = 0.75
@ 4.8 FPI and TPR = 0.70 @ 4 FPI for DDSM-BCRP. They also obtained the best
results reported in respect to running time of 20 s. Table 1 and Figs. 4 and 5. It is difficult
to compare to previously published results in the field as most of the previous work
focused on binary classification of masses. Also previous work mainly report on DDSM
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and INBreast which are limited in size. Our method is evaluated on a large multi-center
data set, while most methods report results on smaller data sets of tumors. Also we
evaluate both the detection, localization and classification of tumors and report the AUC
of precision recall, commonly used in computer vision literature [4, 10]. Nevertheless,
examining only classification results, the methodology can be considered as promising in
terms of accuracy and extremely efficient in terms of time (Table 1) and Figs. 4 and 5.

4 Summary

In this paper we introduced a novel approach for detection and classification of breast
tumors based on the state-of-the-art approach of Faster-RCNN. Our preliminary results
show the promise of this approach to efficiently and accurately detect and classify

Table 1. Results of two experiments for Detection and Classification of tumors.

Experiment Detection AUC
(average precision)

Classification
accuracy

#images Running
time

(1) benign BI-RADS- 2
& malignant {345}

0.6 0.78 850 0.2 s

(2) benign BI-RADS- 2
& malignant {45}

0.72 0.77 850 0.2 s

Fig. 4. Illustration of bounding box composition on full breast images. Ground truth annotation
is highlighted in green while automatic detection can be viewed in red. (Color figure online)
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breast abnormalities on real up-to-date data. Future work will extend this work to a
multi-view approach, take into account associated features, such as breast density,
perform segmentation in boxes, and evaluate on publically available dataset.

(a) Benign  - correctly classified

(b)Malignant - wrongfully classified as 

benign 

(c) Malignant - correctly classified

Fig. 5. Detection and Classification results on parts. We show typical detection and
classification results, where benign and malignant masses are in cyan and magenta respectively.
Ground truth annotation are marked by a solid line and automatic detection are marked in dashed
line. (Color figure online)
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Abstract. Measuring airways in chest computed tomography (CT)
images is important for characterizing diseases such as cystic fibrosis, yet
very time-consuming to perform manually. Machine learning algorithms
offer an alternative, but need large sets of annotated data to perform
well. We investigate whether crowdsourcing can be used to gather air-
way annotations which can serve directly for measuring the airways, or
as training data for the algorithms. We generate image slices at known
locations of airways and request untrained crowd workers to outline the
airway lumen and airway wall. Our results show that the workers are
able to interpret the images, but that the instructions are too com-
plex, leading to many unusable annotations. After excluding unusable
annotations, quantitative results show medium to high correlations with
expert measurements of the airways. Based on this positive experience,
we describe a number of further research directions and provide insight
into the challenges of crowdsourcing in medical images from the perspec-
tive of first-time users.

1 Introduction

Respiratory diseases are a major cause of death and disability and are responsible
for three out of the top five causes of death worldwide [12]. Chest computed
tomography (CT) is an important tool to characterize and monitor lung diseases.
Quantification of structural abnormalities in the lungs, such as bronchiectasis,
air trapping and emphysema, is needed to track disease progression or to predict
patient outcomes. We have recently shown that, the airway-to-vessel ratio (AVR)
is an objective measurement of bronchiectasis which is sensitive to detect early
c© Springer International Publishing AG 2016
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lung disease [7,11]. Unfortunately, manual measurements of the airways and
adjoining arteries suffer from intra- and inter-observer variation and are very
time-consuming (8–16 h per chest CT).

Computer algorithms can be used to improve accuracy and efficiency of the
measurements. The first step is to extract the airways and vessels from the
scan. Machine learning techniques learn from example images which have been
manually annotated, and have shown to be very effective for such extraction
tasks [4]. However, these techniques require a large amount of annotated images,
which is also expensive and time-consuming.

We therefore propose to use the wisdom of the crowd to gather annotations.
In crowdsourcing, untrained internet users (knowledge workers or KWs) carry
out human intelligence tasks (HITs), such as annotating images1. The KWs
are unpaid volunteers, or receive a small financial reward for each task. Early
research into crowdsourcing for medical images [1,5,6,8] showed that non-expert
workers were able to carry out a range of HITs relatively well; our goal is to
investigate whether this is true for airway measurement in chest CT.

In this paper we describe our early experiences with crowdsourcing airway
measurements in chest CT images. In Sect. 2 we describe how we generate 2D
slices, how we collect annotations from the KWs and how the annotations are
processed. Section 3 describes the data and the number of annotations collected,
followed by a presentation of the results in Sect. 4. We discuss our findings,
lessons learnt as first-time users of crowdsourcing and steps for future research
in Sect. 5, followed by a conclusion in Sect. 6.

2 Methods

Our main question for this study was whether non-expert workers would be
able to annotate airways in chest CT images. By “an airway annotation” we
understand two outlines: one of the airway lumen (inner airway) and one of
the airway wall (outer airway). Annotating an airway consists of two steps:
localizing an airway, and creating the outlines. In this study we focused on the
second question only. We therefore acquired annotations using already existing
3D voxel coordinates and orientations as a starting point.

We used 3D voxel coordinates, at which experts have previously annotated
airways using the MyrianTM software. As we could not reproduce how this soft-
ware determines the orientations, we used orientations obtained with an airway
segmentation algorithm. This algorithm starts with an initial volumetric seg-
mentation of the airways, rescales it isotropically and uses front propagation to
obtain airway centerlines [10], which give us the orientations. Using these 3D
coordinates and orientations, we generate 2D slices (described in more detail
in Sect. 2.1), which are annotated by the KWs. This allows for a comparison of
airway measurements between the experts and the KWs. Figure 1 shows a global
overview of our method.

1 We adopt the terminology used by Amazon MTurk platform.
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Fig. 1. Overview of the method. A 3D image is annotated by experts. The locations
and orientations of the annotations are then used to generate 2D slices of the image,
which are then annotated by the workers. Lung image by Noeska Smit.

2.1 Image Generation

Given a 3D location and an orientation vector, we generated a slice of 50 × 50
voxels, perpendicular to that orientation. Because of possible segmentation errors,
an airway was not always visible. We therefore also generated slices in axial, coro-
nal and saggital views, in total generating four different images per airway. We
used cubic interpolation and an intensity range between −950 and 550 Hounsfield
units for better contrast, as recommended by the experts. An example is shown
in Fig. 2.

Fig. 2. Slices of 50 × 50 voxels showing four views of an airway, from left to right:
original orientation, saggital, coronal and axial views. An airway cross-section appears
as a dark circle (airway lumen, indicated by dashed line) with a light ring (airway wall,
indicated by solid line) around it

2.2 Annotation Software

Amazon Mechanical Turk or MTurk [2] is an internet-based crowdsourcing plat-
form that allows untrained internet users, known as knowledge workers (KWs)
to perform tasks, known as human intelligence tasks (HITs), for a small (in the
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order of $0.05) financial reward. To extend the functionality of MTurk to annota-
tion of airways, we integrated a custom-built annotation interface by supplying
a dynamic webpage, built with HTML5 and Javascript. The interface originally
contained a freehand tool for creating annotations, which was later replaced by
an ellipse tool, which more closely resembled the tool used by the experts.

The details of our HIT, which the KWs could see when searching for HITs,
are shown in Table 1, and a screenshot of the instructions is shown in Fig. 3. The
KWs were instructed to draw two ellipses outlining the airway lumen and the
airway wall, or to draw a small circle in the corner of the image, if no airway is
visible. For each HIT, the software recorded an anonymized ID of the KW and
the coordinates of the annotations.

Table 1. Details of HIT on Mechanical Turk

Title Save lives by annotating airways!

Description Draw two contours to annotate an airway (dark circle or ellipse)
in image from a lung scan

Keywords image, annotation, contour, draw, drawing, segmentation, medical

Fig. 3. Screenshot of (part of) the instructions given to the KWs for the task with the
ellipse tool. The scrollbar on the right shows that there are more instructions than are
visible in one screen. In the second part, incorrect annotations are shown as well.

2.3 Airway Measurement

We applied a simple filtering step to discard unusable annotations. The following
annotations are discarded:

– no ellipses
– an odd number of ellipses
– an even number of ellipses, but the distance between centers of paired ellipses

(pairs were assigned based on center distance) is larger than 10 voxels
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For the remaining usable annotations, we measured the areas of the inner and
outer ellipse, in order to compare them to the expert annotations. We perform
the comparisons for each KW annotation individually, as well as for a combined
measurement of the KWs. To obtain the combined measurements, we used only
images with at least three usable annotations, and took the median of the areas.

3 Experiments

3.1 Data

For this preliminary experiment we used 1 inspiratory pediatric CT scan from a
cohort of 24 subjects from a study [3,9], collected at the Erasmus MC - Sophia
Children’s Hospital. In this scan, 76 airways were annotated by an expert using
Myrian software. The expert localized an airway, outlined the inner and outer
airway, and recorded the measurements of the areas.

3.2 Crowd Annotations

We generated a total of 76 × 4 = 308 images using the method described in
Sect. 2.1. We randomly created HITs with 10 images per HIT. A KW could
request a HIT, annotate 10 images, and then submit the HIT. The KWs were
paid $0.10 per completed HIT. Only KWs who had previously done at least
100 HITs with an acceptance rate of 90 % could request the HITs. We accepted
all HITs, i.e. no additional quality control was performed after the HITs were
carried out.

We first collected 1 annotation per image with freehand tool. As we will
describe in Sect. 4, it became clear that an ellipse tool was needed. With the
ellipse tool, we collected 10 annotations per image.

4 Results

4.1 Annotations

We first collected 1 annotation per image with the freehand tool. A selection of
the results is shown in Fig. 4 (top). Most of the workers attempted to annotate
something in the image (i.e., were not spammers), but many annotations were
not usable. For example, many workers misunderstood the instructions, anno-
tated vessels instead of airways, drew only one contour or drew non-ellipsoidal
contours. We concluded that this tool allowed too many degrees of freedom, and
opted for the more controlled ellipse tool.

With the ellipse tool, we collected 10 annotations per image. However, based
on our experience with the freehand tool, to reduce costs we did not gather
annotations for all the images. In the end, with the ellipse tool 90 of the 308
images were annotated, resulting in 900 annotations.

A selection of the results with the ellipse tool in shown in Fig. 4 (bottom).
Using the tool eliminated the problem of non-ellipsoidal airways. However, the
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Fig. 4. Top: Annotations acquired with the freehand tool for four different images:
correct annotation and three incorrect annotations. Bottom: Annotations acquired with
the ellipse for the same image: correct annotations and three incorrect annotations.
The incorrect annotations shown here are indicative of worst-case annotations that are
presumably not spam

problems of either a single contour, or workers annotating vessels, were still
present. While the annotations still were not perfect, we decided to do proceed
with an initial analysis of the annotations.

4.2 Airway Measurement

We filtered unusable annotations as described in Sect. 2.3. Out of 900 annota-
tions, 610 were found to be unusable. Of these 610, 133 annotations contained
no ellipse, and 445 annotations contained only a single ellipse. For annotations
with a single ellipse, there are three possible causes: spam, the worker indicating
“no airway visible”, or the worker misunderstood the instructions. To better dif-
ferentiate between these causes, we looked at whether the ellipse was adjusted,
indicating that the worker tried to annotate something. This was the case for
244 of the 445 annotations with a single ellipse. Although we do not analyse
these annotations in this preliminary study, we note that these annotations still
could be used to measure airways.

Next we focus on the the 290 usable annotations, i.e. where the worker placed
ellipses in pairs. Of these, 256 annotations contained a single pair, 25 annotations
contained two pairs, and a further 6 annotations contained three pairs. For this
preliminary study, we only consider the annotations with a single pair for further
analysis.

To assess correctness of the annotations, we create expert-vs-worker plots of
two quantities: area of the airway lumen and area of the airway wall. We show
the annotations for the original orientation in Fig. 5 (top), and the annotations
for the saggital, coronal and axial orientations in Fig. 5 (bottom). The correla-
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Fig. 5. Scatter plots of expert vs individual worker measurements of the areas. Top:
original orientation, bottom: axes-parallel orientations. Left: airway lumen, right: air-
way wall. r indicates Pearson’s correlation.

tions for the original orientations are medium to high, although workers tend to
overestimate the airway lumen. The correlations for the other orientations are,
understandably, weaker. Possibly here workers annotate other structures that
are visible in the images.

Note that analysis above is performed on a per-annotation, not per-image
basis. By aggregating the annotations obtained per image, we can get better
estimates of the measurements from the crowd. In Fig. 6 we show the median
areas for the images for which at least three workers produced usable annota-
tions. The correlations are now medium to high for both types of orientations,
although the sample size is lower, because for many images there were too few
usable annotations. This motivates collecting more annotations per image in the
future.

5 Discussion

Our results show that untrained KWs are able to interpret the CT images and
attempt to annotate airways in the images. However, many KWs did not follow
the instructions, resulting in unusable annotations. For example, in 244 out of
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Fig. 6. Scatter plots of expert vs crowd (at least 3 workers) measurements of the areas.
Top: original orientation, bottom: axes-parallel orientations. Left: airway lumen, right:
airway wall. Left: airway lumen, right: airway wall. r indicates Pearson’s correlation.

900 annotations the workers did attempt create an annotation, but only placed
a single ellipse in the image. The usable annotations show medium to high corre-
lations with expert measurements of the airways, especially if the worker anno-
tations are aggregated. The results are not convincing enough to say that the
workers can annotate the airways as well as experts (as more analysis is needed
to test such claims), but the collected annotations could already be useful for
training machine learning algorithms. Overall we feel that the results encourage
further investigation. The next step is to collect annotations for all 24 subjects
in the cohort, after a number of changes we describe below.

Based on our results, the next logical step is to increase the amount of usable
annotations per image. There are several ways in which this can be achieved. One
possibility is to improve the interface, for example by only accepting annotations
that contain two ellipses. Alternatively, we could include a tutorial, showing
workers step by step how to create the annotations. However, both of these
options require custom-made adjustments to the interface, which is costly/time-
consuming for novice users of MTurk such as ourselves.

In the short term, more feasible solutions for us are to simplify the instruc-
tions, increase the number of collected annotations per image to 20 (20 is also the
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choice in other crowdsourcing literature [6,8]), and to improve the postprocess-
ing of the annotations. Here we used very simple rules to filter and aggregate
the annotations with reasonable results. An alternative would be to use unsu-
pervised outlier detection, or train a supervised classifier to detect outliers. Such
a classifier could be based only on the characteristics of the annotations (such
as size of the ellipse), or could also include characteristics of the image.

If our future research demonstrates that the crowd can reliably annotate
airways, we will need to address the question of localizing the airways, and of
using the annotations in machine learning algorithms. For localizing airways, we
could show larger slices, and ask the KWs to click all locations where airways are
visible. Such clicks can then be used to learn to recognize good voxel positions,
at which airway measurements can be collected. Alternatively, we could use the
already collected annotations (both usable and unusable) to learn the appearance
of “annotatable” slices, bypassing the localizaton step.

Overall our first experiences with crowdsourcing are positive, but also teach
us a number of important lessons: (i) there is more to setting up a crowdsourcing
task than we thought, and (ii) the task itself needs to be simpler than we thought.
With regard to setting up the task, a challenge was to make a choice between
different annotation tools, and how such tools might influence the results. With
regard to the task itself, the number and the wording of instructions are likely to
affect how well the instructions will be carried out. While it is widely known that
the task should be “as simple as possible”, it is difficult to estimate the com-
plexity of a novel task in advance, without performing preliminary experiments
such as the ones described here.

For both the annotation interface and the instructions, it would be interesting
to investigate how exactly different choices influence the final results. However,
this “parameter space” is too large, and it is not feasible to explore it. This calls
for more “rules-of-thumb” when designing large-scale data annotation tasks, as
well as more interaction between researchers in medical image analysis, and
researchers in fields where crowdsourcing is a more established technique.

6 Conclusions

We presented our early experiences with setting up a crowdsourcing task for
measuring airways in chest CT images. Our results show that the KWs were
able to interpret the images, but that the instructions were too complex, leading
to many unusable annotations. For the usable annotations, quantitative results
show medium to high correlations with expert measurements of the airways,
especially if measurements of the KWs are aggregated. Our results are encour-
aging, we therefore intend to continue this research direction, by simplifying the
instructions and collecting more annotations for an in-depth analysis. As begin-
ner users of crowdsourcing, we describe several challenges we encountered during
this research, and we hope our experiences will help other researchers in medical
image analysis considering crowdsourcing for annotating their data.
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Abstract. Cell and nuclear morphology, as observed from histopathol-
ogy microscopy images, have long been known as important indicators of
disease states. Due to the large amount of data, obtaining expert pathol-
ogists annotations at the individual cell level is impractical in many
applications, however. Thus the majority of the approaches currently
available for automated classification and cancer detection are based on
utilizing the patient label for each segmented cell, and patient classifica-
tion is performed by classifying single morphological exemplars (e.g. cells
or subcellular features) in combination with a majority voting procedure.
Here we propose a new hierarchical method for classifying sets of nuclei.
The method can be interpreted as a type of multiple instance learning
(MIL) method in that it embeds data from each patient into a hierar-
chical feature space. The feature space, and classification boundary, are
alternatively optimized utilizing the support vector machine (SVM) cost
function. We demonstrate the application of the method in the diag-
nosis of thyroid lesions and compare to existing MIL methods showing
significant improvements in classification accuracy.

1 Introduction

Cell and nuclear morphology alterations, as observed under light microscopy
with routine staining (e.g. H&E), are often associated with tumor progression
and visible nuclear changes are the prime interests of pathologists for cancer
diagnosis [1]. Numerous approaches for quantitative measurements of cell and
nuclear morphology have been reported as powerful tools in automated diagnosis
systems for a wide variety of lesion types [2–6]. Though often implicitly, the
majority of methods in nuclei-based cancer detection share the assumption that
the nuclei are independent to each other and therefore utilize the Naive Bayes
model [2–6]. In other words, each cell or nucleus is classified individually and
independently. The class label for a patient is then assigned using a majority
voting (MV) strategy.
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 219–227, 2016.
DOI: 10.1007/978-3-319-46976-8 23
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Fig. 1. Illustration of the proposed hierarchical feature extraction framework: (a) cell
nuclei segmentation, (b) nuclei feature extraction, and (c) hierarchical feature extrac-
tion and label prediction for individual patients. We allow a bag (blue box) to have a
set of sub-bags (green boxes) composed of multiple instances (black dots). The upper
right window shows how bag level features are extracted via a set of prototypes (red
dots). xijk, vij and fi are defined in Sect. 2.1 (Color figure online)

We note two potential limitations of these cancer detection methods. First, the
statistical morphology dependencies between nearby cells and nuclei are not fully
explored. Intercellular communication between living cells allows cells to work
together to perform necessary biological processes [7]. Therefore, it is reasonable
to expect that the morphology of one cell nucleus closely depends on its nearby
cell nuclei. As shown in [8], neglecting interdependencies between nearby nuclei
can lead to sub-optimal classification results. Second, in many important applica-
tions, given the difficulties with annotating massive amounts of data, only patient-
level labels are available. Thus in many classification approaches [3–5,9] labels for
individual nuclei extracted from lesional regions in pathology images are usually
propagated from the patient label. However, there are always cell nuclei in the
region of interest that don’t contain discriminative information about their class,
or even contain information about other counterpart classes [10].

Multiple instance learning (MIL) serves as a remedy for such weak super-
vision problems when only a set of feature vectors (bag) is labeled without
knowing the labels for individual feature vectors (instances). In general, existing
MIL methods can be categorized into two classes according to how information
in the data is extracted [11]. In the first category (instance-space, IS), methods
consider the discriminative information at the local, instance-level [12–14]. The
goal of these methods is to build an instance-level classifier to predict labels for
individual instances. The bag label is usually determined by a voting strategy.
In the second category (bagspace, BS), methods consider the global, bag-level
information by defining the distance metrics between pairwise bags [8,15] or
by extracting bag features by a mapping function summarizing the character-
istics of the entire bag [16]. The distance metric between two bags can be gen-
erally defined such as aggregation of the instance-level distances, kernel-based
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comparisons for bags or distances in embedded bag feature space. The bag label
is then predicted using distance-based classifiers, e.g. k-NN, SVM.

The MIL framework has been adopted in the domain of medical diagno-
sis, such as identification of cerebral small vessel disease in CT brain images
[17], colon histopathological image classification [18], Barrett’s cancer diagnosis
[19], to name a few. In nuclei-based cancer detection, data exhibits hierarchical
structure where tissue samples under microscopy are composed of image patches
taken at different fields of view, which are further composed of many cell nuclei
to be analyzed. However, few MIL frameworks in the literature are designed for
such hierarchical data structure facilitating classification.

Here we propose a supervised hierarchical feature extraction approach which
allows a bag to have a set of sub-bags composed of different numbers of instances.
We adapt the MIL idea to include information specific to local neighborhoods
of cells in histopathology images, as nearby cells have greater likelihood to be
related in morphology than cells far away from each other. Our approach, named
mi-hSVM, formulates MIL as a SVM maximum soft-margin problem in a new
feature space. It consists of three steps. First, a collection of feature vectors (pro-
totypes) are initialized in the instance feature space with a clustering method.
Each of these prototypes represents a subclass of instances. Second, with those
prototypes, each bag is hierarchically embedded as a point in a new feature
space which is obtained via a nonlinear mapping. This effectively transforms the
MIL problem into a standard supervised learning problem. Third, the decision
boundary and instance prototypes are jointly optimized by maximizing the soft-
margin in the SVM classifier. We apply mi-hSVM along with six widely-used
MIL methods in the literature to two thyroid diagnostic challenges. We show
that a better performance is possible by capturing hierarchical data structure
information and exploiting dependencies among instances in our method.

2 Methodology

2.1 Hierarchical Feature Extraction Model

Given fields of view (windows of a pre-determined size), nuclei from each image
patch can be located and segmented as described below. The method we now
describe is based on the idea of constructing spatially local bags of nuclear
features. Such hierarchical composition provides a way to formulate the patient
level diagnosis in MIL framework with two layers of instance-bag relationship.
In the first layer, image patches are bags and the detected cell nuclei within
them are instances. In the second layer, a bag is defined as the set of image
patches pertaining to one patient and individual image patches are instances.
The overview of the proposed framework is shown in Fig. 1.

Mathematically, the dataset can be represented as D = {Pi, yi}N
i=1, where

Pi is the ith patient, yi ∈ {−1, 1} is the class label, and N is the number of
patients in the dataset. Each patient Pi consists of ni image patches, denoted as
Pi = {Iij}ni

j=1, and each image patch Iij has nij detected cell nuclei, denoted as
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Iij = {xijk}nij

k=1, where xijk ∈ R
d×1 is a feature vector describing the morphology

of a nucleus. The goal of the framework is to learn two layers of prototypes (points
in feature space) and the decision boundary that maximizes the soft-margin in
the SVM classifier. The algorithm discovers the discriminative prototypes to
build the nested function fi = χ(φ(·)) for feature extraction, where φ(·) and
χ(·) are nonlinear mappings and will be defined in the sections below. Assume,
momentarily, we have fixed prototypes in two layers, the hierarchical feature
extraction proceeds as follows.

Layer 1: The set of prototypes in the first layer is denoted as U1 = {u1
t }m1

t=1,
containing m1 elements u1

t ∈ R
d×1. Given the image patches Iij = {xijk}nij

k=1,
the mapping function φ(Iij) returns a vector vij that is a concatenation of a
set of sub-vectors: vij = [vT

ij1, · · · , vT
ijt, · · · , vT

ijm1
]T , where vijt summaries the

attributes of nuclei in Iij corresponding to the tth prototype u1
t . The similarity

between instance xijk and u1
t is measured by the function ht(xijk) ∈ [0, 1] defined

below. The vector vijt is the weighted mean of all nuclei feature vectors according
to their matching degrees to u1

t , computed as:

vijt =

∑
xijk∈Iij

ht(xijk)xijk∑
xijk∈Iij

ht(xijk)
(1)

where ht(xijk) = e− ‖xijk−u1
t ‖2

2
σ1 using radial basis function (RBF) kernel.

Layer 2: Repeating the process outlined above, let the output for patient Pi

in the first layer be Oi = {vij}ni
j=1. A set of prototypes in the second layer is

denoted as U2 = {u2
t }m2

t=1, consisting of m2 elements u2
t ∈ R

m1d×1. The mapping
function χ(Oi) generates vector fi that is a concatenation of a set of sub-vectors:
fi = [fT

i1, · · · , fT
it , · · · , fT

im2
]T . The vector fit is a linear combination of patch-

level features with weights gt(vij) measuring the similarity to the tth prototype
u2

t , denoted as:

fit =

∑
vij∈Oi

gt(vij)vij∑
vij∈Oi

gt(vij)
(2)

where gt(vij) = e− ‖vij−u2
t ‖2

2
σ2 using an RBF kernel.

2.2 Training and Optimization

The hierarchical feature extraction algorithm described above extracts global
information regarding each bag by the nested mapping function χ(φ(·)) in an
explicit way. With bag labels, the method transforms MIL into a conventional
classification problem. Our goal is to maximize the pattern margin jointly over
two layers of prototypes and the discriminant function. Suppose we have feature
representation f = {fi}N

i=1 for the training data D = {Pi, yi}N
i=1, maximizing

the SVM soft-margin equals minimizing the corresponding negative Lagrange
dual function L(D) [20]:
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min
β

L(D) = min
β

−
N∑

i=1

βi +
1
2

N∑

i=1

N∑

j=1

yiyjβiβj〈fi, fj〉

s.t. ∀i : 0 ≤ βi ≤ C,
N∑

i=1

βiyi = 0

(3)

where 〈fi, fj〉 is the inner product between fi and fj and C is a regularization
parameter. The optimal parameters β∗ for the decision boundary in SVM and
the prototypes {U∗

1 , U∗
2 } can be jointly optimized by finding the minimum of

L(D), {β∗, U∗
1 , U∗

2 } = argminβ,U1,U2L(D).
The optimization problem above is not jointly convex in β and {U1, U2}.

Thus we opt to perform a heuristic optimization by two alternating steps: (1)
given {U1, U2} and feature vectors fi, optimal parameters β∗ for the decision
boundary can be solved by quadratic programming (QP); (2) given β, prototypes
{U1

∗, U2
∗} can be updated by minimizing L(D). Therefore, β and {U1, U2} are

alternatively optimized via coordinate descent approach. The minimization of
L(D) over {U1, U2} can be performed using a standard gradient descent scheme.

With β fixed, the gradient of L with respect to u2
t can be written using the

chain-rule of differentiation:

∂L

∂u2
t

=
N∑

i=1

∂L

∂fit

∂fit

∂u2
t

∂L

∂fit
= yiβi

N∑

j=1

yjβjfjt
∂fit

∂u2
t

=

⎡

⎢⎢⎢⎣

∂fit,1

∂u2
t,1

. . .
∂fit,m1d

∂u2
t,1

...
. . .

...
∂fit,1

∂u2
t,m1d

. . .
∂fit,m1d

∂u2
t,m1d

⎤

⎥⎥⎥⎦

T

∂fit,r

∂u2
t,s

=
2
∑

vij∈Oi
(vij,s − u2

t,s)(vij,r − fit,r)gt(vij)

σ2

∑
vij∈Oi

gt(vij)
, r, s = 1, · · · ,m1d

(4)

where fit,r and u2
t,s are the rth and sth elements in fit and u2

t respectively.
Similarly, the gradient of L with respect to u1

t can be obtained using the
chain-rule.

The initialization of {U1, U2} are cluster centers by the k-means method
performed in instance space across all bags, which was able to yield good results
in our experiment. The feature representation of the dataset is recomputed after
each update of {U1, U2}, followed by the optimization of the decision boundary.
Such alternative steps proceed for a predefined number of iterations niter.

3 Experiments and Results

Dataset. The performance of our method was tested on two thyroid diag-
nostic challenges where the goal is to differentiate follicular adenoma (FA)
from nodular goiter (NG), as well as follicular variant papillary carcinoma
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Fig. 2. (a-c) show randomly selected segmented nuclei converted to grayscale from
patients diagnosed with FA, FVPC and NG respectively; (d) average Spearman’s rho
for two groups in three types of thyroid lesions.

(FVPC) vs. NG from nuclear morphology. Under an Institutional Review Board
approval, tissue blocks for each type were obtained from the archives of the
University of Pittsburgh Medical Center (UPMC). All images in the thyroid
dataset were acquired using an Olympus BX51 microscope (100X UIS2 objec-
tive and 2 mega pixel SPOT Insight camera) with 0.074 microns/pixel image
resolution and 118 × 89 μm field of view. Our study included 78 patients
(28 FA, 28 NG, and 22 FVPC) with 609, 584 and 572 fields of view for FA, NG
and FVPC respectively. All cases were reviewed by more than one pathologist,
and only cases with a clear diagnosis (gold standard) were selected for this study.

Cell Nuclei Segmentation and Feature Extraction. Cell nuclei were seg-
mented using a supervised learning approach [21] from image patches taken at
different fields of view. Briefly, the segmentation method constructs a statistical
model describing the texture and shape variations of nuclei exemplars selected
by users. For any new field of view, each nucleus is segmented by finding the
model parameters that maximizes the normalized cross correlation between the
model and the local neighborhood. Finally, 28137 cell nuclei were segmented
in the dataset, including 10958 nuclei for FA, 6997 nuclei for FVPC and 10182
nuclei for NG. Sample segmented nuclei for each of the thyroid lesions are shown
in Fig. 2(a, b, c).

We represented the morphology of each nucleus using a 256-dimensional
numerical feature vector described in [9], including 6 morphological features
(area, convexity, circularity, perimeter, eccentricity and equivalent diameter),
220 texture features (intensity-based features, Haralick features and Gabor
features) and 30 wavelet features. The standard principle component analysis
(PCA) technique was then applied to the entire feature set and the top 20 fea-
ture directions that captured more than 95% variations were retained to describe
each nucleus.

Existence of Dependency Between Nuclei. The existence of morphological
dependency between cell nuclei in the dataset was determined by the correlation
degrees in two nuclei groups, including nuclei pairs randomly selected within the
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same field of view (Group 1) and nuclei pairs randomly selected from two differ-
ent fields of view (Group 2). The Spearman correlation coefficient was calculated
for each group using the first PCA-derived feature direction. The experiment was
repeated 100 times and the average Spearman’s rho is reported in Fig. 2(d). It
can be seen that the correlation degrees are relatively high in both two groups. In
addition, the correlation coefficients for Group 1 are higher compared to Group 2
in three types of thyroid lesions, indicating that the correlation degree for nuclei
in the same field of view is statistically different (p-value ≈ 0) from nuclei from
two separate fields of view, confirming the hypothesis that nuclei locally close to
each other are more correlated in terms of morphology.

Cross Validation. We have utilized a leave one out validation scheme whereby
one patient is removed from the dataset and kept as testing data. In the train-
ing stage the training data is further split into training and validation sets to
search for the optimal parameters of the proposed MIL framework. The usual
parameters setting is: m1 = 8,m2 = 3, σ1 = 1.2, σ2 = 1.8.

Table 1. Evaluation of different approaches on two thyroid diagnosis challenges

Methods FVPC vs. NG FA vs. NG

Ave. acc Cohen’s kappa Ave. acc Cohen’s kappa

Naive Bayes+MV [3] 82.00 % 0.6400 69.64 % 0.3928

mi-SVM [12] 72.00 % 0.4427 60.71 % 0.2142

MI-SVM [12] 68.00 % 0.3691 62.50 % 0.2500

Group KNN [8] 75.53 % 0.5211 76.67 % 0.5334

EMDD [13] 74.00 % 0.4849 64.29 % 0.2858

mi-Graph [15] 84.00 % 0.6815 78.78 % 0.5356

mi-hSVM1 82.00 % 0.6434 78.57 % 0.5347

mi-hSVM2 85.33% 0.7010 80.35% 0.6070

Comparison of Classification Results. We compared the classification per-
formance of our method with six existing approaches, including the frequently
used label inheritance plus majority voting strategy (Naive Bayes+MV)[3],
mi-SVM [12], MI-SVM [12], Group-KNN [8], EM-DD [13] as well as mi-Graph
[15]. In these comparison methods, the entire cell nuclei set belonging to one
patient was viewed as a bag and individual segmented nuclei were instances.

For a fair comparison, similar to the proposed method, linear SVM was uti-
lized as the instance-level classifier in Naive Bayes+MV approach. The average
accuracy and Cohen’s kappa were used to evaluate the classification performance
(Table 1). To demonstrate the effectiveness of the hierarchical structure in pro-
posed MIL framework (mi-hSVM2), we also tested the method using one layer
(mi-hSVM1) using the same bag-instance definition as the comparison methods.

The proposed method (mi-hSVM2) outperforms other approaches with
85.33 % and 80.35 % average accuracy in FVPC vs. NG and FA vs. NG respec-
tively. From Table 1, we find that mi-hSVM1 provides better accuracy compared
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to existing methods except mi-Graph in both diagnostic challenges. Moreover,
it can be seen that adding another layer will further increase the accuracy and
provides the best performance compared to other methods, indicating that the
hierarchical structure helps improve the classification performance. In the exper-
iment, the performance of mi-hSVM2 is statistically different from mi-Graph
with p-values 0.0101 and 0.0366 in FVPC vs. NG and FA vs. NG respectively in
10 runs.

4 Discussion and Conclusion

We have described a novel hierarchical multiple instance learning method for
clinical thyroid cancer detection based on cell nuclei morphology. The method
provides a solution to the problem of massive nuclei-level diagnostic annotations
by pathologists in nuclei-based cancer detection pipelines. Moreover, our method
addresses the issue of making use of spatial statistical dependency between
instances from the same bag in MIL framework, in addition to showing that
if this is done classification results can be improved.

The method extracts hierarchical feature representations for bags to match
bag-level labels in a supervised way. In this work, the SVM classifier was uti-
lized to tune the prototypes in each layer for discriminativeness. We note that
other types of classifiers can be alternative options in our framework, e.g. neural
network classifier for multi-classification appplications.

As far as computational complexity, our method only needs to compute the
distance between each instance and each prototype in two layers. Given a patient
with m image patches and n nuclei in total, the computational complexities are
O(niternm1) and O(niter(nm1 + mm2)) for mi-hSVM1 and mi-hSVM2 respec-
tively. For mi-Graph, treating instances within a bag as non-iid, the computation
complexity is O(n(n − 1)/2) to construct a graph for each bag, which increases
quadratically with n.

The proposed method is a general MIL framework that accounts for data
structure by being stacked in a repeatable fashion. The better performance of the
proposed feature extraction framework compared to other MIL approaches relies
on the fact that statistical dependencies among instances are exploited implicitly
and hierarchically in supervised feature extraction. The improved performance
is likely to manifest itself in other types of pattern recognition tasks.
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Abstract. Information analysis or retrieval for images in the biomed-
ical literature needs to deal with a large amount of compound figures
(figures containing several subfigures), as they constitute probably more
than half of all images in repositories such as PubMed Central, which
was the data set used for the task. The ImageCLEFmed benchmark
proposed among other tasks in 2015 and 2016 a multi-label classification
task, which aims at evaluating the automatic classification of figures into
30 image types. This task was based on compound figures and thus the
figures were distributed to participants as compound figures but also
in a separated form. Therefore, the generation of a gold standard was
required, so that algorithms of participants can be evaluated and com-
pared. This work presents the process carried out to generate the multi-
labels of ∼ 2650 compound figures using a crowdsourcing approach.
Automatic algorithms to separate compound figures into subfigures were
used and the results were then validated or corrected via crowdsourcing.
The image types (MR, CT, X–ray, ...) were also annotated by crowd-
sourcing including detailed quality control. Quality control is necessary
to insure quality of the annotated data as much as possible. ∼ 625 h
were invested with a cost of ∼ 870$.

Keywords: Multi-label annotation · Compound figures ·
Crowdsourcing

1 Introduction

Probably more than 50 % of the figures in the biomedical literature in PubMed
Central (PMC)1 are compound figures (figures consisting of several subfigures)
based on estimations of analysing a subset of the data [11]. In total, PMC in
2016 contains over 4 million images, so the extent of the knowledge stored in com-
pound figures is important. A few simple examples of compound figures are shown

1 http://www.ncbi.nlm.nih.gov/pmc/.
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(a) Mixed modalities in a single figure

with 3 subfigures labeled as 2 (A and B).

(b) Mixed modalities in a single figure with no

visual gaps between most subfigures.

Fig. 1. Examples of compound figures in the biomedical literature.

in Fig. 1 but not all images are as easy to separate. Information indexing and
information retrieval (IR) systems for images should be capable of distinguish-
ing the parts of compound figures that are relevant to a given query to deliver
focused retrieval results. Identifying the image types of subfigures can help to
characterize compound figures, either by using the subfigures separately or the
entire compound figure. In addition, image modality is an important piece of infor-
mation that can be integrated into any retrieval system to enhance or filter its
results [12,17]. Therefore, the ImageCLEFmed2 image classification and retrieval
benchmark proposed in 2015 and 2016 a multi-label task aiming at labeling all
compound figures with each of the modalities of the subfigures contained with-
out knowing the subfigure separations that are contained in the image [10,11]. It
provides a useful scenario to compare the effectiveness of systems to access the
detailed content of compound figures. This article presents the work carried out
to generate a high quality ground truth for the evaluations in the task.

Image sharing sites like Flickr3 offer a large number of images often with sev-
eral tags describing the images added by the user, even though the quality can
vary. Sometimes the content of the images is described but sometimes also what
the image is about or what the image evokes, for example in terms of feelings.
Some studies [14,15] have shown the great potential of crowdsourcing in the con-
text of medical imaging. However, in the medical open access literature almost
no meta-data exist for figures and subfigures besides the free text captions.

Work has been done for multi-label annotation in the past. In NUS-WIDE [4],
a small set of images from Flickr is manually annotated with 81 concepts. Wang
et al. [18] encode each image into a vector and then a sparse label coding based on
subspaces is applied to harness multi-label information. Nowak et al. [16] assessed
ground truth of 99 multi-label images by using experts and mechanical turk.
However, to the best of our knowledge, no previous work deals with multi-label
annotation of compound figures or similar images from the medical literature.

2 http://imageclef.org/.
3 https://www.flickr.com/.

http://imageclef.org/
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This paper presents the methodology followed to annotated the collection
created for the 2016 ImageCLEFmed task. The remainder of the article is orga-
nized as follows. Section 2 describes the database and methods used. Results
obtained are presented in Sect. 3. The article concludes in Sect. 4.

2 Methods

This section describes the methods used to multi-label compound figures. The
Crowdflower4 platform was used for the crowdsourcing [5].

2.1 Dataset

The database used is a subset of 231,000 images from PMC that contained over
4,200,000 images in 2016. Figure 2 shows that hierarchy of images classes that
was used [10,11] to classify all subfigures into types.

Fig. 2. The image class hierarchy proposed by ImageCLEFmed.

2.2 Overview

To simplify the evaluation of the multi-label annotation of compound figures and
optimize the knowledge gained, the task was divided into several subtasks. The
following tasks were carried out to evaluate all steps of the process of analysing
content in compound figures:

1. automatic compound figure detection (decide whether a figure is a compound
or non–compound figure);

2. automatic compound figure separation (find the lines that cut compound
figures into their parts);

4 http://www.crowdflower.com/.

http://www.crowdflower.com/
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3. manual compound figure separation verification (check whether images were
correctly separated);

4. automatic subfigure classification (automatic determination of the type of
image in a subfigure);

5. manual subfigure classification verification (validate the results of the previous
step);

6. manual subfigure classification (manually classify the images incorrectly clas-
sified automatically);

7. manual class balancing (assure that all classes are represented);
8. compound figure multi-label assignment.

Details on each of the steps are given below.

Automatic Compound Figure Detection. The procedure described in [6] was used
to automatically classify the figures into image types including a ‘compound or
multipane figure’ class. Figures classified as ‘compound or multipane figure’ were
then randomly selected for the next steps in the classification to be able to take
as many figures as possible into account.

Automatic Compound Figure Separation. Compound figures were automatically
separated into subfigures using the approach proposed by Chhatkuli et al. [3].
Figure 3 shows two compound figures automatically separated into subfigures
using this approach. However, not all selected compound figures were correctly
separated into subfigures (see Fig. 4 for examples that were incorrectly sepa-
rated). Both missing lines occurred and additional lines within single subfigures.
Therefore, a verification step was implemented to identify incorrect separations
and then correct them.

Manual Compound Figure Separation Verification. In this step, a crowdsourcing
task was run where the following simple question was proposed:

(a) Compound figure containing 3

subfigures.

(b) Compound figure con-

taining 8 subfigures.

Fig. 3. Examples of compound figures correctly separated into subfigures automati-
cally. The blue lines show the detected separators (Color figure online).
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(a) Compound figure containing 5 subfig-

ures but separated only into 3 subfigures.

(b) Compound figure con-

taining 3 subfigures but sep-

arated into 4 subfigures.

Fig. 4. Examples of compound figures incorrectly separated into subfigures
automatically.

– Is the compound figure correctly separated?:
• Yes;
• No.

The figures marked as correctly separated were used for the following step. Incor-
rectly separated figures were manually separated in a subsequent step.

Automatic Subfigure Classification. The subfigures obtained using the automatic
separation from the previous step were automatically classified into image types
using an approach based on k–Nearest Neighbors (k–NN) and multiple visual
features (see Garćıa et al. [8,9]). On a past database a good performance of 68 %
was obtained for the same task.

Manual Subfigure Classification Validation. Similar to [6] a figure classification
validation step was carried out to assure the data quality. In this case the sub-
figures were presented together with the automatically labeled class in a crowd-
sourcing task. The question asked to the contributors was the following:

– Does the figure correspond to the stated category?:
• Yes, perfect classification;
• No, wrong category;
• Not sure.

Manual Subfigure Classification. One last crowdsourcing task was created to
classify the figures not marked as correctly classified in the previous step. This
task was slower than the previous steps. Contributors were asked to classify
each of the images according to the full hierarchy shown in Fig. 2. A hierarchy
was proposed in the interface to simplify the task (see Fig. 5), so more than
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one click was necessary for the classification, with three levels for diagnostic
images and two levels for general illustrations. In a similar task in 2015 we
realized for crowdsourcing the contributors used the categories requiring few
clicks much more often, which led to changes in the setup. As crowdsourcing
pays per annotated image there is a risk to have people use the fastest way to
categorize if there are differences. Thus the structure was slightly changed to
have the same number of clicks for each of the classes in 2016, which avoided
this bias.

Fig. 5. Screenshot of a crowdsourcing task that aims at classifying biomedical figures
from the literature into image types.

Manual Class Balancing. After the previous step several of the classes were
not represented or contained only very few images. Therefore, compound figures
containing the image types that were underrepresented were manually selected
from the database to better represent these classes.

Compound Figure Multi-label Assignment. To finalize the annotation process,
each compound figure was assigned with the labels of all subfigures that it con-
tains. Like this we can validate not only images that separate and then classify
subfigures but also multi-class labeling based on entire figures.

2.3 Crowdsourcing Quality Control

A quality control (QC) is needed when using crowdsourcing to ensure the success
of the annotation task [13], particularly with medical images where some domain
knowledge is very benefitial [1]. QC approches were applied during design–time
and runtime [2].
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First, tasks were designed to be as simple as possible to make sure the per-
sons understand the tasks quickly and correctly. This is the reason to divide the
process into several subtasks. Automatic steps were added to limit the manual
tasks where possible and reducing the number of figures to be manually classified
since this is the most challenging step of the process. A detailed and unambigu-
ous description of the tasks was provided to the participants and in case of doubt
the participants could access this description at any moment. In particular, the
description included several figure examples of each case or modality. In addi-
tion, Crowdflower provides feedback from several experts on the task design.
Contributors were limited to the internal team of biomedical imaging experts or
contributors with specified reputation level to optimize the quality.

For runtime QC, the following tools provided by Crowdflower were used:

– Output agreement: two contributors had to independently provide the same
result to consider an answer as correct.

– Control with known ground truth: tasks of the same type with known answers
are proposed at the beginning and randomly during the job execution to check
the quality of the answers of each contributor. A 70% accuracy was the mini-
mum required to be maintained throughout the job as Crowdflower suggests;
a few images can be subjective and could be added to more than one class
and for this reason the threshold was not stricter.

– Monitor answer patterns: specific answers such as ‘not sure’ or ‘other’ were
monitored; 17% was the acceptable range of answers like “Not sure” or
“Other” and otherwise a contributor was removed.

Allahbakhsh et al. [2] propose that domain experts check the contribution
quality. Therefore, to finalize the QC, an expert review was carried out. An
expert in biomedical imaging manually checked the contributions quickly to
ensure the high quality of the annotations.

3 Results

This section describes the results obtained in the data classification and anno-
tation steps described in Sect. 2.

15,403 compound figures were initially selected and automatically separated
from the ImageCLEFmed 2013 database [7]. After the compound figure sepa-
ration step, ∼ 57% of the figures were correctly separated based on a manual
validation. This task was carried out using the free internal Crowdflower inter-
face that can be used for a known set of people. Eight experts in biomedical
imaging verified the separation of the figures in ∼ 98 h. A subset was selected to
be separated into subfigures and the subfigures were automatically classified. In
the subfigure classification validation process ∼ 56% were defined as correctly
classified into the correct figure type. More than 100 contributors validated the
classification in ∼ 49 h with a cost of 396.68$. The incorrectly classified sub-
figures were manually classified into exact figure types via crowdsourcing. To
evaluate the correct design of the task, the first 1,149 subfigures were classified
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using the internal interface by 5 experts in ∼ 5 h. Then, the remaining sub-
figures (∼ 9800) were classified by more than 100 contributors in 427 h with a
cost of 472.66$. After this process, a manual expert review was needed to solve
subfigure classification mistakes.

As the final selection of subfigures did not contain all figure types and was
very unbalanced it was decided to manually add additional compound figures
that contain relatively rare subfigure types. 122 compound figures containing
the following categories were added and then manually separated and classified:
angiography; computerized tomography; magnetic resonance; ultrasound; elec-
troencephalography; mathematics program listing; and combined modalities in
one image. Even with this balancing step, the class distribution remains uneven,
as it is in the biomedical literature, even though it was slightly more balanced.

In total, 2,651 compound figures were annotated with multiple labels of their
subfigures, containing 8,397 subfigures. These figures were distributed for the
ImageCLEFmed 2016 multi-label and subfigure classification tasks5 [11] together
with the figure captions. In 2015, 1,568 were distributed for the ImageCLEFmed
multi-label task [10]. These figures were distributed as a training set (contain-
ing 1,071 figures) and a test set (containing 497 figures). Their subfigures were
released for the ImageCLEFmed 2015 subfigure classification task. The train-
ing set contained 4,532 subfigures and the test set 2,244 subfigures. In 2016,
ImageCLEFmed used all the figures distributed in 2015 as training set and the
additional annotated figures were distributed as test set. As a result, 1,568 fig-
ures were provided as training set and 1,083 as test set in the ImageCLEFmed
2016 multi-label tasks. The ImageCLEFmed 2016 subfigure classification task
contained 6,776 subfigures in the training set and 4,166 subfigures in the test set.

In 2016, ImageCLEFmed proposed 5 tasks: compound figure detection; com-
pound figure separation; multi-label classification; subfigure classification and
caption prediction. This work describes the generation of the data for the multi-
label classification task and therefore the subfigure classification tasks. The
ImageCLEFmed multi-label classification task aims at labeling each compound
figure with each of the modalities (see Fig. 2) of the subfigures contained with-
out knowing where the separation lines are. Furthermore, the ImageCLEFmed
subfigure classification aims at classifying figures into the 30 image types of the
proposed hierarchy.

Research groups could participate in these tasks and compare their research
tools with those of other researchers on the same data and the same evaluation
scenario. Four groups submitted 15 runs to the ImageCLEFmed multi-label task
and ten groups submitted 45 runs to the ImageCLEFmed subfigure classification
task. More information can be found in the working notes of CLEF 2016 [11].

4 Conclusions

This article presents the steps used to annotate compound figures from the bio-
medical literature with figure type information and to separate compound figures
5 http://imageclef.org/2016/medical/.

http://imageclef.org/2016/medical/
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with separation lines to cut them into all subfigures. As a result 2,651 compound
figures were annotated with figure type information and all figures were made
available for the ImageCLEFmed 2016 multi-label task. To ensure the quality of
the annotation, the process was divided into multiple steps combining automatic
tools (e.g. for figure separation and figure modality classification) and manual
work to validate or label data. Crowdsourcing was used to accelerate the tasks
with a limited cost. Therefore, it was very important to carry out QC. Thanks
to the described process it was possible to annotate the figures automatically
and thus limit the manual control to verify and correct the annotations. The
created resources are now available for the medical image analysis and image
retrieval community. This is a manually created gold standard to build tools to
create more metadata for the over four million figures in PMC and the likely
over 2 million compound figures containing an estimated 6–7 million additional
subfigures. Providing detailed metadata for these figures can well help to make
the knowledge contained in the figures accessible for research and clinical work.
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Abstract. Image quality assessment is fundamental as it affects the
level of confidence in any output obtained from image analysis. Clin-
ical research imaging scans do not often come with an explicit eval-
uation of their quality, however reports are written associated to the
patient/volunteer scans. This rich free-text documentation has the poten-
tial to provide automatic image quality assessment if efficiently processed
and structured. This paper aims at showing how the use of Semantic Web
technology for structuring free-text documentation can provide means for
automatic image quality assessment. We aim to design and implement
a semantic layer for a special dataset, the annotations made in the con-
text of the UK Biobank Cardiac Cine MRI pilot study. This semantic
layer will be a powerful tool to automatically infer or validate quality
scores for clinical images and efficiently query image databases based
on quality information extracted from the annotations. In this paper we
motivate the need for this semantic layer, present an initial version of our
ontology as well as preliminary results. The presented approach has the
potential to be extended to broader projects and ultimately employed in
the clinical setting.

1 Introduction

UK Biobank is a large scale population study at the national level aimed at
improving the understanding, diagnosis and treatment of a wide range of dis-
eases, such as cancer, stroke or cardiac pathologies [1]. In 2006 the recruitment
began of 500,000 volunteers aged 40–69 across UK who underwent a number of
clinical tests and agreed to have their health followed. UK Biobank is a complex
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 238–248, 2016.
DOI: 10.1007/978-3-319-46976-8 25
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project addressing multiple organs by means of various clinical tests, includ-
ing different imaging modalities. The outcome of this study will be available to
researchers worldwide.

Within UK Biobank, Cardiovascular Magnetic Resonance Imaging (CMR)
plays a fundamental role in the assessment of cardiac function. Each volun-
teer participating to the UK Biobank imaging arm undergoes a series of MRI
sequences to image the heart: Cine MRI, tagged MRI, T1-mapping and Phase-
contrast imaging [2,3]. A pilot study of 5,000 CMR scans has been released and
is shared for data analysis with affiliated researchers analysing Cine MRI, the
most common CMR sequence in clinical practice.

The topic of automatic image quality assessment is of particular importance
in relation to the management and post-processing of large scale datasets, such
as the UK Biobank pilot study, and more generally in clinical research. Con-
sistent image quality assessment provides means to evaluate how reliable the
parameters values obtained from the image analysis are. However, image quality
assessment is seldom carried out in an organised and structured way. Clinicians
and radiographers might repeat a scan if they detect technical problems in real-
time, otherwise, the sub-optimal quality goes undetected and is not recorded.
In post-processing, image analysts often discard images with technical problems
without further feedback to the image acquisition team. In the context of the
UK Biobank CMR pilot study, one of the main aims was to address this lack of
cross-talk between the acquisition and post-processing phase. Data analysis of
the pilot study was in fact based on two key aspects: quality assessment of the
imaging data and manual contour delineation. Figure 1 highlights the two com-
ponents of the analysis. Quality assessment of the Cine MRI scans was carried
out through a combination of free-text comments and numerical quality scores.
Manual delineation of contours (also known as segmentation) was carried out
for the four chambers of the heart, which then results in the computation of
fundamental parameters of cardiac function. As per UK Biobank protocols, all
such derived data will be returned to UK Biobank for inclusion in the central
database, whence they can be disseminated to other groups with appropriate
research approvals.1

For the purposes of our work, we focus only on the quality assessment data,
which is the combination of free-text annotation and numerical quality scores.
The quality scores provide a quick overall classification of the images, for exam-
ple, for statistical purposes. The free-text annotation is rich in information but
cannot be processed in an easy and efficient manner as the numerical scores.
A promising efficient solution can be sought in the field of Semantic Web. The
semantics of the free-text annotations, which describe the quality of the image
analysis, will be defined via a structured vocabulary or ontology, which we are
going to call CMR-QA (Cardiovascular Magnetic Resonance Quality Assess-
ment). An ontology is an explicit specification of a conceptualisation provid-
ing an unambiguous and formal representation of a given domain or field of
knowledge [4,5]. In other words, ontologies provide a controlled vocabulary about

1 http://www.ukbiobank.ac.uk/register-apply/.

http://www.ukbiobank.ac.uk/register-apply/
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Fig. 1. Example of analysis pipeline restricted to the case of HLA view. Quality scores
are 1 = optimal, 2 = sub-optimal and 3 = unreliable or non-analysable.

the relevant terms in that domain and their relationships. Ontologies are exten-
sively used in biomedicine (e.g., [6]) and in other domains like the energy sector
(e.g., [7]). There have also been recent efforts in using ontologies to describe the
information within a biobank (e.g., [8–11]).

Generating a semantic layer for the annotations provides the means to struc-
ture them in a formal and unambiguous way while retaining all the descriptive
power of natural language. This semantic layer will provide machine-readable
data and will be a powerful tool for (i) fast and efficient processing of the free-
text comments; (ii) automatic image quality assessment from such comments
and generation of quality scores; (iii) evaluation of the quality of the free-text
comments in terms of information completeness, ambiguity and variability; (iv)
training purposes (e.g., showing preferred annotation styles for different types of
images); (v) efficient semantic access (i.e. database querying) to the images by
the UK Biobank target users, such as researchers in the field of automatic seg-
mentation, or clinical researchers who need a specific subset as a control group
in their study.

2 Methodological Approach

Data analysis for the 5,000 CMR pilot study was carried out by a team of eight
observers from two clinical research centres. The observers were professionals
experienced in this type of analysis but with different backgrounds and expertise.
Quality assessment and general data analysis progress was managed through a
shared spreadsheet by the team.
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2.1 The Imaging Data

Each individual CMR dataset included in the 5,000 CMR pilot study for the UK
Biobank project contains a series of MRI scans of the heart aiming at imaging
different aspects of cardiac function and structure. However, for the purposes
of the first release of data, only a subset of the images acquired were analysed.
Data analysis was initially restricted to the following Cine MRI views:(i) Short
axis (SA). Left and right ventricle (LV and RV) are contoured in this view at two
phases of the cardiac cycle, end-diastole and end-systole. For the left ventricle
both endocardial and epicardial contours are drawn. For the right ventricle only
the endocardial contour is considered. (ii) Horizontal long axis (HLA or 4Ch),
also referred to as four chamber view. Left and right atrial (LA and RA) endo-
cardium are contoured in this view at two phases. The first phase is ventricular
end-diastole and it provides the minimal atrial volume. The second phase is iden-
tified by the opening of the mitral valve, and it is used to obtain the maximal
atrial volume. (iii) Vertical long axis (VLA or 2Ch), or two chamber view. Only
left atrium is contoured at the same phases of the cardiac cycle as HLA.

2.2 Quality Assessment of the Data

The individual dataset for each participant in the pilot study thus contained the
three aforementioned Cine MRI views. Data analysis of each dataset was sub-
divided into two phases, quality assessment and manual contouring of anatom-
ical structures. The quality assessment part is the focus of this paper. Quality
assessment addressed the three views individually, as they are acquired sepa-
rately. Therefore, for example, a good quality SA image can be paired with a
poor quality HLA or VLA images. Figure 1, shows the pipeline of data analysis
and output for the HLA view.

The observers were required to evaluate each subset of images according
to certain aspects likely to affect image quality. The level of detail provided
also varied with the experience and background of the observer. For example,
those with clinical experience were able to suggest the presence of a specific
pathology, only when this was considered to affect the quality of the image.
Those with knowledge of MRI physics provided more insight on the nature of
artefacts. Figure 2 shows a diagram of the different aspects of quality assessment
the observer were taking into account, divided into technical issues (left-side
panel) and patient-related issues (right-side panel). Examples of possible issues
are provided for each sub-area of quality assessment.

For those images flagged as sub-optimal or unreliable, the observers were
asked to write a short free-text comment summarising, for the three imaging
views, the reasons for such decision. This resulted in a wide variability in the
level of detail provided, but also in the vocabulary employed. In combination
to comments, the observers were also asked to provide a numerical score (1 =
optimal, 2 = sub-optimal, 3= unreliable) to summarise how reliable the contours
of each cardiac chamber was in the light of the quality assessment given to the
images.
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Fig. 2. Quality assessment parameters with examples.

2.3 Definition of the Semantic Layer

We aim at providing a formal description or semantic layer for our domain,
that is the quality assessment (both free-text annotations and quality scores)
of the cardiovascular Cine MRI views as performed in the UK Biobank CMR
pilot study. The semantic layer will be composed by: (i) an ontology, containing
concepts relevant to our domain (i.e., vocabulary occurring in the free-text anno-
tations or terms relevant to the image analysis) and relationships among those
concepts; (ii) ontology data which is the re-formulation of the information con-
tent of the free-text annotations according to the ontology; (iii) ontology rules to
infer knew knowledge in combination with the ontology and the ontology data.

Ontology Development. The ontology development is still ongoing and greatly
benefits from the close collaboration with the observers involved in the image
analysis and quality assessment phase. Given the highly theoretical nature of
ontology development, in this section we are only providing some key examples,
described in plain text, of the key components of an ontology.

Concepts in biomedical ontologies are typically organised in a hierarchy
according to (i) a broader-narrower relationship, that is classifying concepts
from general to more detailed ones, e.g., the heart is an organ; (ii) a part-whole
relationship, e.g., the left atrium is part of the heart. In addition, ontology con-
cepts may also be related to each other by means of other relationships, e.g.,
arrhythmia affects the heart.

With this framework in mind, we have started developing the CMR-QA (Car-
diovascular Magnetic Resonance Quality Assessment) ontology to include both
general knowledge about the domain and more concrete aspects about the image
quality assessment.2 For example, CMR-QA encodes general knowledge about
concepts such as Cine MRI Scan is a kind of MRI Scan; but it also encodes more
specific knowledge such as wrong image plane orientation is a kind of technical
issue or RA off axis is a specific type of wrong image plane orientation (please
refer to Fig. 2). Although the relationship specifying that Cine MRI Scan is a

2 CMR-QA ontology and related assets can be downloaded from https://github.com/
ernestojimenezruiz/CMR-QA-Semantic-Layer.

https://github.com/ernestojimenezruiz/CMR-QA-Semantic-Layer
https://github.com/ernestojimenezruiz/CMR-QA-Semantic-Layer
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kind of MRI Scan may not be seen as an interesting piece of knowledge, this
knowledge will not be otherwise known by a computer and thus it should be spec-
ified. Furthermore, this top-level knowledge will facilitate the integration with
other established domain ontologies that do not contain concepts as fine-grained
and specific to our domain as the ones provided in CMR-QA.

Concepts and relationships belong to the logical realm. However, non-logical
knowledge can also be added to the ontology in the form of lexical information
(synonyms, comments, cross-references). For example, CMR-QA includes that
LA out of plane is an alternative label or synonym for LA off axis, which captures
some of the variability observed in the free-text comments (refer to Table 1 for
the complete list of variants).

Ontology Data via Free-text Comment Mining. We are developing named entity
recognition (NER) techniques to transform the free-text comments into seman-
tically rich data according to CMR-QA (see [12,13] for a survey). In other
words, each free-text comment is decomposed using text-mining techniques into
chunks, which will be then associated to statements or triples in the form of
<subject predicate object> expressions. For example, suppose we have a com-
posite comment “Basal slice missing, wrong plane RA”. The text-mining process
identifies two quality issues by breaking the sentence into two parts: “Basal slice
missing” and “wrong plane RA”. Focussing on the latter, the chunk of text
“wrong plane RA” in the free-text comment is then associated to the triple:
< issuei rdf:type RA off-axis>; this is a computer-friendly representation of
the fact that there is a quality issue (the subject), uniquely identified here by
issuei where i is a counter. This subject belongs to a certain type (the predicate
rdf:type), the type being RA off-axis (the object).

Ontology Rules. Ontology rules are being developed together with the ontol-
ogy to infer additional knowledge about the data via automatic reasoning (e.g.,
[14]). The rules are implications between an antecedent and a consequent, that is,
whenever the antecedent holds then the consequent must hold as well. For exam-
ple, if the free-text annotation includes the comment RA off-axis (antecedent)
then the comment is necessarily referred to the HLA view (consequent). Analo-
gously, the free-text comment basal slice is missing (antecedent) implies a lack
of coverage associated to the SA view (consequent). One of the key points of
carefully developing such rules in our work is that they can be used to infer
numerical quality scores from the comments. For example, the presence of Lack
of coverage (antecedent) will always lead to a sub-optimal quality score associ-
ated to the right and left ventricle (consequent). In addition, we aim to use rules
to reveal potential incompleteness or ambiguity. For example, we can classify a
comment such as LA off axis as incomplete, because neither the imaging view
or the cardiac cycle phase are indicated.
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Table 1. Variability for the LA
off axis example in numbers. The
synonyms with asterisk take into
account variations (abbreviations
and most common typos) associated
to them.

Synonyms Occurrence

foreshortened* 2

off axis* 179

off-axis 13

off axis 145

off axes 21

off plane 0

out of axis 26

wrong plane 7

Table 2. Ambiguity in the annotation
of HLA (4Ch) when it is not explicitly
explained if either left or right atrium or
both atria are affected by the off axis tech-
nical issue (highlighted in bold in the table).

Off axis subset Occurrence

Total off axis sentences 515

Only referring to LA 173

Only referring to RA 27

Reference to both atria 53

HLA (4Ch) without reference 226

Other annotations 36

3 Preliminary Results

The free-text annotations provide a rich source of information for target users of
UK Biobank that goes beyond the simple classification provided by the numerical
scores. However, free-text is prone to variability and ambiguity which hinders the
efficient use of its information content for querying and access of Cine MRI scans
according to the quality assessment outcomes. In this section we provide two
examples to motivate the need for a formal structuring of quality assessment by
means of the design and implementation of a semantic layer for the annotations.

3.1 Example 1: Variability

Variability is due to natural human variability, for example there is difference
in the used terminology or different opinions about the quality of the image.
This variability can be limited only in part by the use of a standardised analysis
protocol. For example, different observers can correctly flag as LA off axis, LA
out of plane, wrong LA plane, 2Ch out of plane, or LA foreshortened an image
where the plane chosen to acquire a long axis view was not optimally aligned
to measure left atrial (LA) volumes. Table 1 shows the occurrence of the set of
synonyms used by the observers for the case of LA off axis in a total of 214 com-
ments referring to wrong image plane affecting left atrium. In the development of
the semantic layer with respect to this specific example, we made a first decision
to define as preferred label LA off axis, because it is the most commonly used.
Then we have defined as accepted synonyms all the other variants in the table.
Figure 3 shows a fragment of CMR-QA with the preferred label and a subset of
the accepted synonyms of the concept LA off axis.
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Fig. 3. Example fragment of the CMR-QA ontology showing the scope of the concept
LA off axis and its synonyms.

3.2 Example 2: Ambiguity

Ambiguity is typically due to missing information in the annotations which may
lead to an ambiguous interpretation. For example, within the UK Biobank pilot
study analysis protocol, the annotation 2Ch out of plane will always refer to a
left atrium that is off-axis since in VLA (2Ch) only the left atrium is contoured.
However, 4Ch out of plane would represent an ambiguous annotation since in
HLA (4Ch) both left and the right atria are contoured. Table 2 describes the
occurrence of ambiguous HLA (4Ch) related comments, with respect to missing
reference about which atrium is affected. On a total of 515 sentences generally
relating to off axis issues (could be for any imaging view), 226 address HLA (4Ch)
without the explicit reference to LA, RA or atria. Detailed knowledge of the UK
Biobank pilot CMR dataset helps addressing such ambiguity, as the observers
came to realise that in most of the cases where 4Ch out of plane applies, the
left atrium is most affected. Hence, we have created project-specific ontology
rules that (i) raise a warning of incompleteness for the comment, and (ii) assign
LA off axis (consequent) as the most likely outcome to such comments where a
wrong plane is observed in the HLA view (antecedent).

4 Discussion

In this paper we have presented the first steps in defining a semantic layer within
the quality assessment of UK Biobank Cardiac Cine MRI scans with the main
aim of automatically inferring image quality scores from free-text annotations.
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In this section we comment on the motivating examples shown in the previous
section, summarise the future work and emphasise the likely benefits for UK
Biobank users and clinical research.

Motivating Examples. In Sect. 3 we have presented two cases in the evaluation
of the quality assessment of image analysis where the benefit of introducing a
semantic layer can be appreciated. The first example on the lexical variabil-
ity naturally encountered in free-text comments demonstrates that adding a
semantic layer to complement the free-text annotations would be extremely use-
ful to extract commonalities. In particular, the semantic layer will allow us to
(i) group annotations that describe the same concept under the same preferred
label, and (ii) find analogies among similar annotations. The second example is
about ambiguity due to incompleteness in the comments. The use of semantics
will help find patterns in the annotation procedure and define ontology rules
to partially resolve such ambiguity. In the context of these two examples we
have also shown how the structured vocabulary associated to the quality assess-
ment information is being designed. Preliminary intuition of the development of
domain-specific ontology rules has also been provided.

Related Work. Ontologies are extensively used in biomedicine. Prominent exam-
ples are BioPortal, a comprehensive repository containing more than 500 bio-
medical ontologies [6], and SNOMED CT [15], the reference ontology of choice
across National Health Service (NHS) information systems.3 There have also
been recent efforts in adding a semantic layer to describe the information within
a biobank. Andrade et al. [8] envisaged the benefits of using ontologies for query-
ing and searching the information in a biobank and across biobanks. Muller
et al. [11] presents and updated overview of the state of the art and open chal-
lenges for the description and interoperability across biobanks where the use of
Semantic Web technologies will play a key role. Examples of concrete Semantic
Web-based solutions in biobanks can also be found in [9,10]. Although state-
of-the-art ontologies include the description of concepts relevant to our domain,
we could not find any ontology meeting all our requirements (e.g., complete
description of Cine MRI technical issues) which evidences the necessity of a
more specific ontology in this particular domain.

Future Work. As immediate future work, we plan to complete the CMR-QA
ontology, define the necessary ontology rules and finalise the implementation
of the techniques to text mine the comments to extract ontology data. In this
way it will be possible to automatically infer numerical quality scores from the
annotations. Validation will be carried out by comparing the automatic scores
with those manually assigned by the observers as part of their quality assessment.
We also aim to design a prototype software for query and retrieval of Cine MRI
scans according to certain semantic characteristics to be later embedded in the
UK Biobank CMR pilot study available tools. Furthermore, we will perform an

3 http://systems.hscic.gov.uk/data/uktc/snomed.

http://systems.hscic.gov.uk/data/uktc/snomed
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extensive evaluation to analyse the correctness of our approach. In the long-
term, the definition of semantics will enable integration at different levels within
UK Biobank and with external vocabularies: (i) integration with other parts
of UK Biobank where different ontologies and controlled vocabularies may be
used; (ii) integration with other existing biobank ontologies (e.g., [9,10]); and
(iii) integration with medical vocabularies in order to be compliant with state-
of-the-art standards, for example SNOMED CT [15]. The integration with other
ontologies will allow the interoperability among different group of experts relying
on different ontologies and the creation of a broader semantic layer.

Expected Benefits for Training Purposes. An important related application is the
development of training material for future observers analysing clinical imaging
data. CMR-QA will provide a controlled set of preferred quality assessment
comments, together with alternative expressions, so that observers can be more
systematically trained in image quality assessment. This will result in a signifi-
cant reduction of variability and improved quality of the information content of
the comments provided.

Expected Benefits of Semantic Access for UK Biobank Users. The use of a con-
trolled vocabulary provided by the CMR-QA ontology will ease the retrieval of
Cine MRI scans according to their quality and reliability of the analysis out-
comes. For example, a clinical researcher interested in building a control group
for a study on pathologies affecting the atria, might want to query only for those
images whose atrial volumes have been reliably estimated. Therefore, he/she will
exclude scans where atria were off axis or the image quality was sub-optimal.
A different example coming from the biomedical engineering world: an expert in
development of algorithms for automatic contouring of the left ventricle might
be interested in testing a newly developed tool on those Cine MRI scans where
it was most difficult to define the basal slice. He/she will specifically query for
cases whose image analysis was annotated as having difficult definition of the
basal slice for the left ventricle.

List of abbreviations

CMR: Cardiovascular Magnetic Resonance imaging CMR-QA: Cardiovascular
Magnetic Resonance Quality Assessment HLA: Horizontal Long Axis LA: Left
Atrium LV: Left Ventricle MRI: Magnetic Resonance Imaging NER: Named
Entity Recognition NHS: UK’s National Health Service RA: Right Atrium RV:
Right Ventricle SA: Short Axis VLA: Vertical Long Axis.
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Abstract. Identifying complex neural circuitry from electron micro-
scopic (EM) images may help unlock the mysteries of the brain. How-
ever, identifying this circuitry requires time-consuming, manual tracing
(proofreading) due to the size and intricacy of these image datasets, thus
limiting analysis to small brain regions. Potential avenues to improve
scalability include automatic image segmentation and crowdsourcing, but
current efforts have had limited success. In this paper, we propose a new
strategy, focused proofreading, that works with automatic segmentation
and aims to limit proofreading to areas that are most impactful to the
resulting circuit. We then introduce a novel workflow, which exploits bio-
logical information such as synapses, and apply it to a large fly optic lobe
dataset. Our techniques achieve significant tracing speedups without sac-
rificing quality. Furthermore, our methodology makes proofreading more
accessible and could enhance the effectiveness of crowdsourcing.

1 Introduction

EM reconstruction is the process of extracting a connectome from an EM dataset.
A structural connectome derivable from EM data typically consists of neurons
and their connections/synapses. To decipher the intricacy of neuronal structures
in a brain, the imaging is at nanometer resolution generating vast amounts of
data to be analyzed. Because of this, reconstruction is very time consuming (and
costly) and significant advances are needed to handle larger volumes [10].

Two main approaches exist for reconstructing connectomes from an EM
dataset: manual skeletonization and refinement of automatic segmentation.
Skeletonization requires a proofreader to manually trace the shape of the cell
[1,13]. CATMAID [13] achieves some scalability success by making collabora-
tive, web-based tracing very accessible to interested, well-trained biologists. In
[1], skeletonization is accomplished through a consensus of, generally, less well-
trained students. Segmentation-driven tracing has been successfully deployed in
partial reconstructions of the fly optic lobe [16] and mouse retina [4]. Recon-
struction is achieved by merging and splitting incorrect segments. In prac-
tice, it is much easier to refine an oversegmented label volume than an under-
segmented volume. Notably, [16] generates a comprehensive connectome but does
not achieve 100 % accuracy. Perfect reconstruction is seemingly unnecessary and
also generally untenable due to image ambiguity.
c© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, pp. 249–258, 2016.
DOI: 10.1007/978-3-319-46976-8 26
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Ideally, automatic segmentation would produce a perfect connectome. While
recent advances in EM segmentation, such as [8], produce very good results, the
segmentations are still far from perfect as shown in Fig. 1. If the initial segmen-
tation is poor, extensive effort must be spent correcting it. This correction effort
could be captured by some kind of nuisance metric. However, even with 100 %
correct segmentation (zero nuisance), verifying correctness on a large dataset
could still require thorough inspection by several proofreaders. Better segmen-
tation, alone, will not solve scalability.

Fig. 1. Automatic segmentation of one image from an EM dataset. While
segmentation correctly determines most neuronal profiles, there are still many errors.
However, some oversegmentation mistakes in the highlighted neuron are unimportant
as it does not significantly alter the shape or connectivity of that neuron.

Crowdsourcing has been pursued in different ways [1,4,13] as a potential
solution. However, these strategies are fundamentally unscalable. Traditionally,
EM tracing requires a high-level of expertise requiring weeks of training (or
more), unreasonable for a general crowdsource community. CATMAID [13] tries
to expand the expert base through its accessibility but still requires training to be
proficient. Consensus tracing, as in [1] can access a wider pool but requires even
more proofreaders to account for errors. Also, an averaged result could lead to a
sub-optimal connectome or require extensive expert verification. The approach
in [4] attempts to make proofreading accessible to the novice community. Despite
tremendous involvement from the community, the efforts were primarily used for
validation, and the reconstruction still required a group of trained proofreaders.

To address these scalability challenges, we propose focused proofreading.
Focused proofreading is a segmentation-driven proofreading that attempts to
discern the regions of the segmentation that are both relevant to the connectome
and least-likely to be correct. In the process, it distills the task of proofreading
to a more digestible series of yes/no decisions. By redefining proofreading, we
hope to expand the base of potential proofreaders. Our work has some similar-
ities to the uncertainty-driven proofreading suggested in [11]. However, we pro-
pose a more practical approach that uses efficiently computed local constraints
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to guide proofreading rather than a global strategy. Furthermore, we exploit
synapse information and other biological priors to greatly enhance proofreading
efficiency and the quality of the final reconstruction. We apply focused proof-
reading techniques to comprehensively reconstruct seven medulla columns in the
Drosophila optic lobe [15]. Our best estimates indicate 3–5x speedup in recon-
struction with improved accuracy compared to similar efforts [16]. As datasets
get bigger and manual effort dominates connectomic budgets, focused proof-
reading could yield significant financial savings. Figure 2 shows our high-level
workflow.

Fig. 2. Connectome reconstruction methodology with focused proofreading.
Fixing disconnected (orphan) fragments and final validation ensure a good final result.

2 Uncertainty-Driven Focused Proofreading

We consider the case where a proofreader is given segmentation S and must
revise it to S′, so that it is reasonably close to a ground truth G. The differences
between S and G can be quantified with the variation of information (VI) [5]:

V I(S,G) = H(S|G) + H(G|S) (1)

where H is the entropy function. The first term, H(S|G) gives the informa-
tion of the underlying segmentation compared to ground truth and indicates
over-segmentation. Likewise, H(G|S) indicates under-segmentation. 0 informa-
tion means high similarity. Compared to other similarity metrics, such as Rand
Index [2,12] and Warping Index [3], VI is both simple to compute and has inter-
pretability advantages as highlighted by the authors in [6].

Since image segmentation is generally tuned to limit under segmentation,
we assume, for simplicity, that a proofreader is restricted to merge-only opera-
tions. Therefore, we consider the proofreading problem as an assignment of yes
or no for edges in S, where an edge connects two neighboring s. In practice
under-segmentation errors occur but are often easily detectable during or after
proofreading. We can define an optimal similarity (sim) after m decisions as:

sim(m) = minSπ(m)(H(Sπ(m)|G)) (2)
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where π(n) denotes an optimal ordering of m yes, no decisions. Since we are
starting from an oversegmented S, π(m) consists of an ordering of only m no
(merge) decisions (yes decisions will not change the current segmentation). We
define m∗ as the optimal number of decisions to achieve some desired level of
completeness or accuracy.

We do not attempt to solve π(m) optimally. Instead we favor greedy-based
orderings that have the greatest impact on H(S|G). However, simple, greedy-
based approaches have two problems. First, explicit G is unavailable for mea-
suring impact. Second, an impactful edge decision might not exist until a less
impactful merge is first performed. We address these concerns in the following
two sections.

2.1 Prioritizing Decisions

Greedy-based ordering without ground truth requires a formulation of the impact
and likelihood of a given decision. The impact or information associated with a
yes/no between segments ai and aj is given by:

Impact(e(i,j)) = −|ai|log2( |ai|
|ai| + |aj | ) − |aj |log2( |aj |

|ai| + |aj | ) (3)

|ai|, and |aj | could represent the number of voxels or synaptic connections in ai,
and aj respectively (we do not normalize by total volume for convenience).

We define the risk associated with a given edge as:

Risk(e(i,j)) = P (¬e(i,j))Impact(e(i,j)) (4)

The riskiest edges define the edges that will likely have the greatest impact on
this segmentation. To determine P (¬e(i,j)), we first train a classifier on the edges
of an oversegmented volume. The resulting prediction determines the confidence
in the edge. This classifier is trained similarly to those discussed in [6,8]. We
chose the random forest classifier since it achieves good segmentation results [8],
while being fast and easy to deploy. We will evaluate the quality of confidence
predictions in Sect. 4.1.

2.2 Focused Proofreading Algorithm

We define focused proofreading as the examination of a subset of edges where
Risk(e(i,j)) > k, where k is parameter empirically determined for a given dataset
and segmentation. However, the greedy-based strategy introduced previously is
flawed since two labels si and sj might belong to the same neuron but have no
direct edge. As in [11], we avoid this problem by considering the probability that
a set of edges connect si and sj :

P (¬E(i,j)) = Π¬ek,l∈Ei,j
P (ek,l) (5)

where P (¬E(i, j)) is the probability of a path existing between si and sj . Greed-
ily examining risky paths allows for more global awareness.
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Input: Segmentation: S, Threshold: k
Output: Proofread Segmentation: S
foreach sb ∈ S’ do

SE = findNeighbors(sb);
foreach sa ∈ SE do

if risk(E(sa, sb)) > k then
result = decide(E(sa, sb)) ;
S ← result ;
SE = findNeighbors(sb);

end

end

end
Algorithm 1. Focused proofreading algorithm.

We can now present a strategy for proofreading an oversegmentation
(Algorithm 1). The algorithm starts by iterating through all segments consider-
ing the largest first. Then, all potential segments connected to this body (within
some uncertainty threshold) are determined through function findNeighbors.
The proofreader is given edges along the riskiest path in decide. After each
decision, the graph and list of candidate edges are updated.

If the segmentation is good, focused proofreading can still perform poorly. If
the uncertainties favor false merging, the algorithm will lead to inefficiency, as
many true edges will be examined. If the uncertainties favor false splitting, errors
will occur in the final segmentation. Errors are mitigated by our risk measure
since very impactful sites can still be examined even if the true edge probability
is high. The next section discusses how this algorithm is deployed in practice.

3 Workflow to Reconstruct a Large Connectome

In practice, there are many challenges to reconstruction. (1) The initial segmen-
tation will falsely merge some regions. (2) Focused proofreading will miss some
important areas. (3) Proofreaders will make errors. To address these concerns,
we describe the workflow shown in Fig. 2 and used in [15].

We first divide a large dataset in several subvolumes to simplify data man-
agement (though the following could be applied over the entire dataset). For each
subvolume, proofreaders first annotate synapses as described in [9] and then proof-
read. Three rounds of proofreading are performed: (1) volume-threshold focused
proofreading, (2) synapse-threshold focused proofreading, and (3) orphan (small-
body) tracing. The first two rounds closely follow the algorithm in the preceding
section where the size of segment is either the number of voxels or synaptic con-
nections. The orphan (small-body) tracing is a quality control that has the proof-
reader examine disconnected segments that either contain synapses or are of at
least a certain size. Therefore, orphan tracing ensures important areas are exam-
ined even if focused proofreading missed them. We also add some synapse con-
nectivity constraints to eliminate unnecessary work. For instance, in the synapse
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focused proofreading pass we ignore edges that would result in a rare autapse
(a reflexive connection where a neuron drives itself).

A final, accurate connectome is produced after various quality controls. While
proofreading these subvolumes, proofreaders note areas of false merging. These
areas are split in a separate pass after focused proofreading. The subvolumes
are then stitched to create a global segmentation. We then look for large-scale
anomalies of cell shape or connectivity. A reconstruction is generally considered
accurate if most voxels are segregated into a set of neurons that contain most
of the synaptic connections, where each neuron is considered correct by spot
checking and matching to available priors.

4 Experiments

In the following sections, we first evaluate the effectiveness of focused proofread-
ing, in terms of achieving the best accuracy with the fewest decisions, against
other proofreading strategies on a small dataset. We then highlight the role of
focused proofreading in a practical setting on a large-scale, multi-year recon-
struction of the fly optic lobe [15]. This dataset contains around 27, 000µm3 of
proofread neuropil containing hundreds of partial neurons and several hundred
thousand synaptic connections.

We implement the focused algorithms in a publicly available C++ tool called
NeuroProof (https://github.com/janelia-flyem/NeuroProof). The initial segmen-
tation is generated using Ilastik [14] for voxel prediction and algorithms described
in [8]. The synapses were semi-manually annotated before segmentation as in
[9]. All proofreading, including focused yes-no decisions, was performed with the
open-source tool Raveler [7].

4.1 Validation of Focused Proofreading

In this section, we show that the proposed focused proofreading strategies are
more efficient than other proofreading strategies. The results are collected for a
5003 volume with 10× 10× 10 nm voxel resolution from [15]. The difficulty of
producing near-pixel perfect ground truth limits our ability to validate on more
datasets. We effectively increase our test set by running many of the experiments
on 10 random initial segmentations. Segmentation training is performed on two
smaller, disjoint volumes. Before we show the effectiveness of the focused proof-
reading strategies, we validate the quality of uncertainty prediction, as shown
Fig. 3. Lower confidence predictions are generally accurate; higher confidence
predictions underestimate the number of true edges, which will result in more
proofreading work.

We now evaluate the trade-off between proofreading effort and proofreading
quality using different focused proofreading heuristics in Fig. 4. We consider
only the over-segmentation VI since the under-segmentation error is small and
minimally impacted by our merge-only technique (fixing under-segmentation

https://github.com/janelia-flyem/NeuroProof
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Fig. 3. Accuracy of the predicted edge confidences. This plot shows the per-
centage of true edges (y-axis) for a given classifier confidence (x-axis).

will be discussed in the next section). For these tests, proofreading effort is
determined by the number of automatic decisions made.

In Fig. 4a, we show volume VI trends. As expected, the focused strategy that
uses synapses for guidance does not do a good job improving the volume VI.
The two volume-guided focused strategies, volume-local and volume-path, do
much better. Volume-local only considers local bodies when making a decision.
Both perform similarly though volume-path has a slightly lower VI because of
a longer cut-off. We compared these approaches to a straightforward strategy
of only using edge probabilities. The most confident false edges are chosen first,
producing slightly worse, but comparable, results under 2000 decisions. But more
improvements are possible if one is willing to examine more edges.

Does this suggest that simple edge ordering is potentially sufficient? First,
focused proofreading explicitly chooses a stopping condition that trades-off
errors. The simplistic stopping condition for just using edge probability could
result in a lot of unnecessary work. Second, it appears that edges between big
bodies (presumably where there is more boundary evidence) have more confi-
dence. This is apparently not the case for the smaller processes often important
in tracing synapses. The synapse VI plot in Fig. 4b, shows that the synapse-
guided mode is much better than all of the other techniques. We note that ran-
dom decision heuristics (not shown) perform significantly worse than the above
strategies.

4.2 Validation of Production Proofreading

We used focused proofreading to help reconstruct seven columns of Drosophila
medulla optic lobe [15]. The focused proofreading work described here was pri-
marily completed within 6 months with a staff of 5–10 trained proofreaders. We
note that multiple proofreaders on an example subvolume agreed on over 98%
of yes/no decisions. The high consistency is motivation for using only one proof-
reader per subvolume for focused proofreading. Subsequent quality control and
spot check by senior biological experts ensure an accurate final result.
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Fig. 4. Improvements in VI over-segmentation similarity metric as a func-
tion of proofreader decisions. Four ordering strategies are considered. (a) Shows
slightly faster improvement using volume-based decision compared to using only edge
confidence when considering volume VI. (b) Shows significantly faster improvement to
synapse VI using synapse-based decisions.

We report the time to proofread the seven column medulla in Table 1. Proof-
reading was performed over 216 subvolumes each 125 cubic microns and assigned
randomly to the proofreaders. The column session hrs gives the amount time
taken to complete the task. working hrs gives the amount of time that the
proofreader interacts with the proofreading tool (attempts to account for nor-
mal work distractions and circumstances where a proofreader needs to ask for
help). The ratio of working hours to session hours gives the efficiency. In gen-
eral, 100 % efficiency is only possible for a robot. Frustratingly challenging tasks
tend to have a lower efficiency. This could also be seen as a frustration factor.
microns/day gives a rate based on session time.

We show results for the following tasks: focused proofreading (also
includes the effort for orphan tracing), synapse QC, and body split. synapse
QC has proofreaders review synaptic connections that seem suspicious, such as
autapses. body split shows the time required to fix under-segmentation errors

Table 1. Breakdown of proofreading effort in [15] (ignores synapse annotation time and
downstream quality control). Focused proofreading includes both volume and synapse
focusing, as well as, orphan tracing. Synapse QC involves verifying and fixing some local
connectivity anomalies observed in the data. Body split fixes under-segmentation.

Task session hrs working hrs efficiency microns/day

Focused proof 3374 2934 87% 64

Synapse QC 226 198 88% 956

Body split 756 495 66 % 286

Average 49.6
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detected while proofreading. Despite each subvolume requiring only 10 s of splits,
the task is time-consuming and has lower efficiency. While focused proofreading
alone is insufficient to produce a connectome, it is a significant time component.

We assess the reconstruction speedup due to focused proofreading against a
previous reconstruction [16], which did not use focus proofreading but a more
proofreader-directed approach. A comparison is difficult since the quality of ini-
tial segmentation differs. The rate for proofreading subvolumes in [16] is around
10–20 microns per day (unpublished correspondence). We believe the proofread-
ing in this paper to be more comprehensive and results in a rate 3–5 times faster.
While much of the improvement likely stems from improved segmentation, our
methodology is more focused, systematic, and likely less frustrating.

5 Conclusions

The time-consuming nature of EM reconstruction stymies our ability to under-
stand larger, complex neurological systems. This paper introduces a strategy
called focused proofreading to greatly improve reconstruction speed allowing
the analysis of much larger regions. We demonstrated the effectiveness by recon-
structing a complete connectome from a region of the Drosophila optic lobe, the
largest such reconstruction ever performed. The proposed workflow is amenable
to large-scale, crowdsourcing efforts.

This work is one of the first to focus on the quality of the uncertainty esti-
mates of the segmentation engine, rather than just the resulting segmentation.
Future work should be directed at optimizing these confidence intervals. Further-
more, this work pioneers efforts at using biological priors and synaptic connec-
tivity to guide proofreading process. We believe exploiting more biological rules
or priors can lead to great speedups. Finally, this work emphasizes the need to
decompose a complex task (proofreading) into a series of digestible decisions.
Additional work on improving visualization and making the task accessible to
an even larger workforce should be explored.
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Abstract. We propose a novel hands-free method to interactively seg-
ment 3D medical volumes. In our scenario, a human user progressively
segments an organ by answering a series of questions of the form “Is
this voxel inside the object to segment?”. At each iteration, the chosen
question is defined as the one halving a set of candidate segmentations
given the answered questions. For a quick and efficient exploration, these
segmentations are sampled according to the Metropolis-Hastings algo-
rithm. Our sampling technique relies on a combination of relaxed shape
prior, learnt probability map and consistency with previous answers. We
demonstrate the potential of our strategy on a prostate segmentation
MRI dataset. Through the study of failure cases with synthetic exam-
ples, we demonstrate the adaptation potential of our method. We also
show that our method outperforms two intuitive baselines: one based on
random questions, the other one being the thresholded probability map.

1 Introduction

The segmentation of medical images or volumes is a key research topic in medical
image analysis. The segmentation of objects of interest - e.g. organs or tumors -
is a key process for operation planning, navigation or design of personalized pros-
thesis. Interactive segmentation is often a well-suited framework as it allows the
user to actively participate in the segmentation process and correct possible mis-
takes or refine the segmentation. However this interactive aspect can rise issues
when the segmentation has to be made during surgery: (i) the process of zoom-
ing and navigating through slices can be overwhelming and time-consuming, (ii)
the hands of the clinicians are already busy with the operation itself. The use
of hands-free techniques can thus be handy and is in general appreciated by
clinicians [1,2] as they significantly reduce the labelling effort for medical data.

In many popular methods for interactive segmentation the user gives indica-
tions - scribbles, bounding boxes - as an input to the algorithm [3,4]. Once the
c© Springer International Publishing AG 2016
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indications are given, the algorithm runs autonomously without new input from
the user. A example of a hands-free technique in this framework would be Eyegaze
[5] which is based on eye tracking. However this technique still involves much nav-
igation and zooming and needs a calibration.

Another way to perform interactive segmentation is to build an algorithm
which iteratively includes the indications of the user, following a refinement
technique. The simplest way to handle this is to display the resulting segmen-
tation after each interaction. Each input of the user will then be seen as a hard
constraint [6]. Another general idea of this framework is to use the answers
already provided by the user to hint for areas of high uncertainty and guide the
user in the search. One possible way to locate such areas is through segmenta-
tion sampling. State of the art methods of segmentation sampling can be based
on Markov Chain Monte Carlo (MCMC) [7,8] or Gaussian Process [9]. Both
methods [8,9] proved to be effective in 2D but encounter - because of the use of
Geodesic Distance Transform - high running time when performed on 3D data.

In this paper, we propose a novel hands-free interactive segmentation method.
In our scenario a human user segments an object of interest from a 3D medical
volume only by answering questions of the type “Is this voxel inside the object to
segment?”. These answers are binary interactions -“yes”/“no” - and can be easily
recorded trough a pedal or voice recognition system. They provide a set of pos-
itive and negative seeds to compute the final segmentation. In order to choose
the question voxels we sample candidate segmentations thanks to a MCMC
framework. This sampling process relies on an adaptive weighting between a
probability map learnt off-line and the consistency with previous answers. If the
probability map is misleading, the algorithm detects it and changes accordingly.
The answer of the user halves then the space of the sampled candidate segmenta-
tions, following a dichotomic search in this space. We propose a diagram (Fig. 1)
summarizing our technique. We evaluated the performance of our method on
a 3D MRI prostate segmentation dataset. Through the study of failure cases
generated with synthetic examples, we demonstrate the adaptation potential of
our method. Our results demonstrate that our technique can correct inaccurate
annotations or ameliorate imprecise ones in a reasonable time.

2 Methods

In the following paragraphs we start by briefly explaining the learning of
the probability map (Sect. 2.1). In the next section we detail the core of our
method and contribution for the segmentation sampling of the MCMC tech-
nique (Sect. 2.2). Our idea consists in combining a relaxed shape prior, a learnt
probability map and the consistency with previous answers. One of our main
contributions is the adaptation capability of our algorithm, which can iden-
tify misleading probability maps and adapt accordingly. The last paragraphs
briefly review how to propose questions voxels from the sampled segmentations
(Sect. 2.3) and how to compute the final segmentation of the algorithm, once all
K questions have been answered (Sect. 2.4).
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Fig. 1. Diagram summarizing the processes of our method. The user (1) com-
municates for instance via a pedal (2) with the algorithm (3) which outputs question
voxels to the user (4). Using a probability map learnt offline (Sect. 2.1) and previous
answers from the user, the algorithm samples several segmentations (Sect. 2.2) and
finds the area where they disagree the most. The question voxel is taken within this
area (Sect. 2.3). The question is of the form “Is this voxel inside the object to seg-
ment?”. The answer of the user provides a seed which halves the space of candidates
segmentations. The final segmentation is computed from the set of seeds provided by
the user and by running a last segmentation sampling procedure (Sect. 2.4).

Let Γ = {1, ...,H} × {1, ...,W} × {1, ...,D} be a three-dimensional lattice
and V a volume defined on Γ . We call S the space of segmentations, i.e. the set
of functions s : Γ �→ {0, 1}. If the voxel v(x, y, z) is inside the segmented object
then s(x, y, z) = 1, otherwise s(x, y, z) = 0.

2.1 Probability Map

Our method uses as prior knowledge a probability map π defined over Γ . This
probability map is obtained with a classifier trained offline. π(v) is an estimation
of the probability that the voxel v(x, y, z) belongs to the targeted object. We
have no prior information on the quality of this probability map.

To obtain π, we use an AdaBoost classifier [10] based on Haar features [11],
which we more precisely defined and sampled as in [12]. We denote the stumps
ht for t = {1, ..., T}, where T is the number of boosting iterations. We compute
the decision function H as the sum of the ht. In order to rescale the output
values so that 0 < π(x, y, z) < 1 we apply a sigmoid function to the score H [13].

2.2 MCMC Framework

We would like to generate segmentations to approximate the space of probable
segmentations and then use the answer of the user to halve this space, following a
dichotomic search. In this section we present our technique to sample candidate
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segmentations. We follow the MCMC framework proposed and used in [7,8].
The idea is to generate segmentations by running through a Markov Chain.
We define the Markov Chain over a state space X so that from a state x ∈ X
we can compute a unique segmentation s(x). The states are parametrized with
transformation coefficients based on a shape prior (see next paragraph).

The process goes as follows: from a current state x, we induce small vari-
ations using a proposal distribution Q to generate a new proposed state x’.
We can then compute the likelihood of the new underlying segmentation s(x’)
using a posterior probability P . The new state x’ is accepted with a transition
probability α defined as

α(x’|x) = min
{

1,
P (x’)Q(x|x’)
P (x)Q(x’|x)

}
. (1)

If the move if accepted, the proposed state becomes the current one and we
reiterate the process. Otherwise we come back to x and a new state is proposed.

Parametrization of Segmentations. The objective is here to explain how
segmentations are represented. We decided to use shape models for it allows us
to generate 3D segmentations with a very low running time. Following a similar
idea than in [14] we define a relaxed notion of shape based on signed distance
functions. Given a training set of m relaxed shapes Y = {y1, ..., ym}, we can
calculate the mean μ and the n first eigenmodes ψ1, ..., ψn. To create a new
relaxed shape we compute

y = μ +
n∑

i=1

biψi, (2)

where b1, ..., bn are the eigencoefficients of the shape prior. To widen the space
of segmentations we allow as well resizing and rigid transformations such as
translation and rotation. Therefore a state x is defined by 7 + n parameters, as
x = (a, tx, ty, tz, α, β, γ, b1, ..., bn), where a is the size parameter, tx, ty and tz
translation parameters, α, β and γ rotation parameters and b1, ..., bn the eigen-
coefficients of the shape prior. The resulting segmentation s(x) ∈ S is computed
as y(x) thresholded at 0.

Posterior Probability. This probability is encoding how likely a state x - and
its underlying segmentation s(x) - is, given the already provided answers Σ and
the probability map π. We denote it as P (x|Σ) and compute it as

P (x|Σ) ∝ 1
1 − L(x) + βkg(x)

, (3)

where L(x) denotes the likelihood between the probability map π and the pro-
posed segmentation s(x), g(x) is a penalty term including the k previous answers
from the user, and βk a weighting parameter between these two objectives after
k questions. By doing so, we consider as likelier the segmentations that are close
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to the probability map and compatible with the user responses. The relative
weighting βk of these two terms is adjusted after each question by checking
the compatibility of the posterior with the provided answers. Thereby, if the
posterior probability is mistaken, its impact is gradually decreasing. The next
paragraphs expose our model for L, βk and g.

Likelihood - Probability Map. To evaluate whether a candidate segmentation is
close to the probability map, we use a maximum likelihood scheme. To simplify
the following notations, we write v(x, y, z) = v(t) where t is a parameter spanning
the whole volume. For a given voxel v(t) we assume s(t) follows a Bernoulli
distribution B(π(t)). If we consider s(1), ..., s(|Γ |) iid samples, the weighted log-
likelihood is given by

L(x) =
1

|Γ | log(L(S = s|π)) =
1

|Γ |
∑

t∈Γ

s(t) log(π(t))+(1−s(t)) log(1−π(t)). (4)

This quantity is always negative and reaches its maximum - L(x) = 0 - when
perfect match occurs.

Penalty Term. We introduce a penalty term g(x) to include the information
provided by the k previous answers of the user in the estimation of the posterior
probability P . This way, we would like to penalize a candidate segmentation
s(x) which is not compatible with the given answers. We model the answers as
a seed location σ = {xσ, yσ, zσ} and a corresponding label a(σ) ∈ {0, 1}. We
denote Σerr the set of m seeds violated by the candidate segmentation, with
m ≤ k. We consider that a segmentation violates a seed σ when its prediction
for this seed does not match the label provided by the user a(σ).
Following the definition of signed distance functions, |y(x, σerr)| gives a measure
of the distance between the violated seed σerr and the border of the proposed
segmentation s(x). We compute therefore the penalty term as

g(x) =
∑

σ∈Σerr

|y(x, σ)|. (5)

Adaptive Weighting Parameter. For the weighting parameter βk between the
two objective functions L and g we propose an automatic adaptable setting.
The idea consists in updating β at each question to progressively verify whether
the probability map π can be trusted and adapt the loss function −L(x)+βg(x)
accordingly. If the probability map is accurate, β should stay close to 0, otherwise
beta should increase. The setting is inspired from online transfer learning [15].
β is initialized to β0 and a new value βk+1 is computed after each question k
according to

βk+1 = max(βmax, βk ∗ e−εμl(1/2,π(σ))), (6)

where μ is a parameter encoding the amplitude of the update, i.e. the learning
rate, βmax a parameter encoding the maximum value for beta to avoid diver-
gence, ε is the agreement between the answer of the user and the probability
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map and l a loss function encoding the confidence of the probability map in
its prediction. In our case we chose l(x, y) = |x − y| to measure the distance
between the neutral answer 1/2 and the probability π(σ). The closer to 1/2 the
probability π(σ) is, the less it influences the update of β.

Our definition for ε is led by the one of the Dice similarity coefficient. We do
not consider true negative seeds informative. Let πthreshold be the probability
map thresholded at 0.5. We set ε = 1 if πthreshold(σ) = a(σ) = 1; ε = −1
if πthreshold(σ) �= a(σ) and (πthreshold(σ) = 1 or a(σ) = 1); and ε = 0 if
πthreshold(σ) = a(σ) = 0 which is considered as uninformative and therefore
does not update the value of beta.

Fig. 2. Illustration of the steps of our algorithm on a MRI image of the
prostate. From left to right: original image; probability map obtained from boost-
ing; overlapping of the candidate segmentations for the question selection during the
MCMC. The question voxel (green) is taken on the centroid of the selected region
(red). (Source of the original image: Prostate Segmentation Challenge MICCAI09)
(Color figure online)

2.3 Question Voxel

In order to compute the question voxel from the sampled segmentations, we
follow the same framework as [8]. By superposing the accepted sampled segmen-
tations, we divide the volume into several regions. We choose the voxel question
as the centroid of the most unsure of these regions (Fig. 2).

2.4 Final Segmentation

After K question have been asked and the K corresponding seeds have been
collected, we now compute the final segmentation sf . We sample candidate seg-
mentations reusing the MCMC framework and compute their posterior prob-
ability P (x) according to Eq. (3). During this step the weighting parameter is
fixed to βK , i.e. the lastly updated βk. The final segmentation is taken as the
one maximizing P (x).
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3 Experiments

Our experimental evaluation was performed on the dataset of the Prostate Seg-
mentation Challenge MICCAI09. This dataset is a collection of 15 3D MRI
annotated images coming each from a different patient. The voxel resolution is
0.55 × 0.55 × 5mm3. The images have an average voxel size of 256 × 256 × 32.
We used the T2-weighted images for our experiments.

3.1 Experimental Settings

We follow a 5-fold cross-validation framework, where the training set is used to
learn the probability maps and shape models. To generate new shapes, we retain
only the n = 3 first eigenmodes of the shape, which defines our state space X with
10 dimensions. Concerning the weighting parameter βk, we set β0 = 1, μ = 3 and
βmax = 4. During the MCMC we perform a burn-in step of 100 iterations and run
25 iterations between each sampled segmentation. The total number of sampled
segmentations at each question is N = 15. During the exploration of the states
x ∈ X in the segmentation sampling, the proposal distribution Q draws the
parameters of x from Gaussian distributions centered on their current value. We
use the Dice Similarity Coefficient (DSC) [17] to evaluate the performance of our
algorithm. We implemented our algorithms in C++ and ran the experiments on
a Intel i7-4702MQ 2.20GHz CPU. The computation time between each question
is low enough to allow an interactive use of the algorithm. We performed an
experiment to study the time statistics over the dataset. Over 165 questions - 45
per patient - the computation time between two questions was in average 4.2 s,
in median 3.9 s and had a standard deviation of 1 s.

3.2 Results

Synthetic Probability Map. In our first experiments we demonstrate the
adaptation capability of our method through the automatic setting of parameter
βk. Instead of using the learnt probability maps we create synthetic ones to cover
the two extreme case scenarios: (1) the probability map is almost perfect and can
be trusted, (2) the probability map is inaccurate and shouldn’t be considered
to generate segmentations. To simulated these probability maps, we use for (1)
the blurred ground truth and for (2) the translated blurred ground truth such
that the dice overlap with the original ground truth is zero. In Fig. 3 we plot
respectively for (1) and (2) curves showing the evolution of the dice similarity
coefficient (DSC) according to a manual setting of β ranging from 0 to 7. On the
same plot we show the result obtained using the automatic adaptable setting of
beta detailed in Sect. 2.2.

Learnt Probability Map. To assess the quality of our segmentations we com-
pute the DSC after 30 questions. We compare our technique with two intuitive
baselines: the first one corresponds to probability map from boosting thresholded
at 0.5. The second one consists in asking the questions at random voxels instead
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Fig. 3. Evolution of performance of our algorithm on synthetic data with
different values of a fixed β. The straight line shows the performance obtained
using the automatic setting of β. On the left, we use the blurred ground truths as
probability maps (1). We notice that if the probability maps are already performing
well, the answers of the user do not increase the performance. This can be detected in
a very few questions looking at the automatic setting of beta. The segmentation can
then be considered as already too accurate to be improved by our algorithm. The DSC
is capped to 81% because of the lack of freedom of our shape model. On the right, we
use misleading probability maps (2). We notice that increasing beta correlates with a
significantly better performance in this scenario. Note that β has much more influence
over the performance in this case than in (1). Here our algorithm learns to identify and
ignore inaccurate probability maps.

Fig. 4. Automatic setting of β after 30 questions in comparison the Dice
score of the tresholded probability map. The results are displayed for each patient
individually. In this experiment we use the learnt probability maps. As expected, we
notice a trend of the coefficient β to adapt to the quality of the probability maps. Low
beta for trustworthy ones, high beta for the ones of poorer quality. This fits to the
expected behaviour of the coefficient β.

of trying to find the most unsure area with the MCMC framework. The results
are shown in Figs. 4 and 5. If we look more closely, we notice that our algo-
rithm performs better than the random questions baseline for the patients for
which the probability map performed the worst. This fits well our motivation to
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Fig. 5. Comparison of Dice scores on the prostate dataset. Comparison between
our method (blue) and two baselines: random questions (red) and the thresholded
probability map (yellow). The last two columns are the mean and median over patients.
As pictured in Fig. 3 the use of shape models bounds the DSC to 80% in average. (Color
figure online)

retrieve poor segmentations. However we notice for instance that for patient 73,
the thresholded probability baseline performs better than both our method and
the random questions baseline. This could be resulting from a lack of freedom of
our shape-model which therefore impede the mimic of unusual shapes as the one
in patient 73. The algorithm proposed by [8] cannot be applied here because 3D
GDT is not feasible in real time. Dowling et al. [16] report results on the same
dataset and have more heterogeneous results. Our initial model - the probability
map - is in average not as accurate as theirs and we expect better results if this
component is improved via the use of more sophisticated learning techniques.
However, our contribution here is mainly to illustrate the interactive scenario
with a restriction to binary inputs and our initial model has not been optimized
for this specific task. We also believe that there is room for more accurate shape
models on this dataset, since the number of training volumes for this task was
limited here.

4 Conclusion

We presented an interactive hands-free method to segment objects of interest
in medical volumes. Experiments demonstrate the potential of our method to
retrieve inaccurate and misleading segmentations. Using a probability map and
a shape prior we are able to locate informative areas to ask questions. The
use of shape models to generate segmentations allows a quick computational
time between each question. We provided an automatic adaptable setting for
weighting the influence of the probability map. This method could be useful in
surgery, to allow for instance last minute corrections of incorrect segmentations.
Future work could include interactive updates of the probability map with the
answers of the user, combining it for instance with an unsupervised model.
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Abstract. Being considered as a valid solution to the lack of ground
truth data problem, crowdsourcing has recently gained a lot of attention
within the biomedical domain. However, available concepts in life science
domain require expert knowledge and thereby restrict the access to only
very specific communities. In this paper, we go beyond state-of-the-art
and present a novel concept for seamlessly embedding biomedical science
into a common game canvas. Besides introducing the visual saliency con-
cept, we thereby essentially eliminate the requirement for prior knowl-
edge. We have further implemented a game to evaluate our novel concept
in three different user studies.

Keywords: Gamification · Crowdsourcing · Aggregation · Annotation

1 Introduction

With the recent rise of powerful machine learning techniques opening up incred-
ible potential in the biomedical field, crowdsourcing has become a valid option
for creating large amount of annotated image data [11,12]. Two major challenges
have been identified with this strategy: (i) how to adapt state-of-the-art machine
learning methods to learn models from noisy annotations, and (ii) how to moti-
vate the crowd to work on highly specialized datasets [2]? Whereas Albarqouni
et al. [1] have recently introduced a novel adaptation of a convolutional neural
network (CNN) that directly integrates label aggregation into the learning
process, the second challenge has been addressed only very little in the liter-
ature.

The conventional strategy of crowdsourcing as implemented by most web-
based platforms, considers each user as a worker who is reimbursed financially.
Even though this concept has worked well for commercial purposes, it has been
questioned whether its adoption in the field of biomedical sciences yields suf-
ficient interest for players to get seriously involved [1,2]. The immense success
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Fig. 1. Playsourcing framework: Unlabeled data or already classified objects go
through a transformation process to be ready for game space embedding.

of playsourcing games such as Foldit [3], MalariaSpot [9], The Cure [6] and
Dr. Detective [4] have brought up the idea of gamification and game-play in
combination with crowdsourcing. Still, it has been shown that readily available
game designs are not suitable for playsourcing. Besides, most of these games
require a certain degree of prior knowledge in life sciences which restricts the
access to these games to only specific communities.

In order to eliminate the requirement for this prior knowledge, we introduce
a novel visual saliency concept for seamlessly embedding biomedical science, i.e.
detection and classification, into a common game canvas. Afterwards, we try to
answer the following questions: (i) is it possible to transform a medical image to
a visual salient game object?, (ii) does the gamification positively influence the
annotation and performs better than a crowdsourcing platform?, (iii) does the
feature representation influence the saliency of the embedded game object, and
therefore affect the classification performance?

As a proof-of-concept, we have designed and implemented an online game for
detection and classification of mitotic figures in breast cancer histology images.
In the remainder of this paper, we will first introduce our general embedding
concept before stating details on our actual game implementation. The manu-
script is concluded by reporting on three different test cases evaluating the effect
of our game and discussing potential future endeavors.

2 Methodology

Our Playsourcing framework depicted in Fig. 1 is based on the idea to aug-
ment previously learned models from only a few expert annotations with crowd-
sourcing labels [1]. Reducing the amount of “noisy” annotations to a minimum
and having a positive impact on the crowds’ motivation, our playsourcing con-
cept allows collecting annotations for unlabeled data as well as to refine already
detected and miss-/classified objects for high-sensitive applications. We propose
to embed the data into a star shape, employing extracted or previously learned
features, and place resulting star objects into a common games canvas.
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2.1 Object Embedding

Given a database of N RGB images of dimension n, i.e. X = {x1, x2, ..., xN} ∈
R

n×N , each image can be represented by a d-dimensional feature vector fi =
φ(xi), where φ(·) is the feature extraction operator. This operator can vary from
simple hand-crafted features (i.e. color, texture, or shape) to more sophisticated
ones (i.e. deep learned features).

Next, we aim at embedding these d-dimensional features into a known game
object preserving the homogeneity and heterogeneity of our features. We pro-
pose a parametric k-spikes star object, carefully designed to be in line with
well-known necessary games engineering requirements regarding orthogonality,
similarity perception [5] and gestalt perception laws [15], including symmetry,
continuity, proximity and past experience.

In order to encode features into the k-spikes star object, we employ a trans-
formation (embedding) operator

T : Rd → R
k

si = T(fi), s.t. 0 ≤ sji ≤ 1.

Here, si ∈ R
k is the star’s parameters vector, and sji represent the length of spike

j of star si. Ideally, the transformation operator should embed the features into
an orthogonal and lower dimensional space preserving the similarity between
homogeneous features and increasing the separability among heterogeneous ones.

Dimensionality reduction techniques like Principal Component Analysis and
Sparse Coding techniques [13] can be further applied to reduce the amount of
parameters to only a few. However, obtaining a distinct set of parameters relies
mainly on the features per se, i.e. embedding the deep learned features into
three dimensional space shows better separability than embedding handcrafted
features. In this paper, we incorporate feature selection techniques (i.e. Laplacian
score, Fisher score) to select a few distinct features.

To this end, features are transformed and embedded into rather distinct star
shapes that can be collected easily, i.e. positive samples have sharp and lengthy
spikes, however, negative ones show fatty and short spikes (c.f. Fig. 2).

2.2 Game Canvas

The following key requirements have been incorporated into our gaming plat-
form: learning, problem-solving, collecting unpaid annotation, entertainment and
competition.

Introduction and Learning. The game starts with a demo phase (c.f. Fig. 2)
introducing the game objectives, settings and the visual saliency concept. Play-
ers get to steer a plane inside an infinite tunnel, where 3D star objects appear
in regular intervals. For each star object, a corresponding patch is displayed
to provide the original image to the crowd. Gamers are supposed to make a
distinction between correct and wrong stars and collect the relevant stars only,
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Fig. 2. Star representation: Six different patches (left), game interface showing sta-
tus bar and buttons for user actions, a plane flying towards the star and a corresponding
patch at the bottom left corner (right). As this is the first level, star centers indicate
the ground truth by showing a greenish or reddish center. Additional buttons allow to
change game settings like fullscreen or camera view or even pause the game.

while avoiding or even actively pushing away the other ones. During the first
levels, hints are given to the players to build a better understanding of the
relevant stars, i.e. showing a greenish or reddish center for the positive or neg-
ative class respectively. Here, ground truth from respective expert annotations
is employed, initiating learning and knowledge transfer. For every classification,
immediate visual feedback is given to the crowd, additionally supporting the
learning process.

Levels and Entertainment. To keep the players engaged, we design multiple
levels associated with ascending difficulty (c.f. Fig. 3), that includes increasing
the number of stars gradually per level, showing fewer hints, advancing the
speed of the plane and increasing the tunnel length and curvature. If hints are
not displayed, a gray center indicates the user to make a decision.

The player is initially equipped with five bullets, recharging frequently, allow-
ing to push away the irrelevant stars. Further, three backup planes are provided,
allowing the player to resume the game whenever the plane has crashed into the
tunnel wall. A new plane is rewarded after every completed level.

Scoring and Competition. Correct decisions are rewarded with a score, oth-
erwise a penalty is given. The scoring strategy is defined as follows:

p(yj
i |y∗

i , level) =

⎧
⎨

⎩

fixed score new patch

score × level yj
i = y∗

i

−score × level otherwise
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where yj
i is the gamer’s decision for star si. Depending on its availability, y∗

i

can be either the ground truth yGT or the aggregated label from the crowds,
referred to as crowd truth yCT , for the corresponding star. Right now, the crowd
truth was computed offline for validation purpose, therefore, a fixed score has
been assigned online for every decision on the testing dataset. As indicated above,
for new patches in the testing set, no labels are available and consequently a fixed
score is assigned.

Users don’t know if the upcoming star has been labeled already, hence their
decision should be straightforward and solely based on the presented data, i.e.
star and corresponding patch. In order to reduce spammers, players may only
enter a higher level, if they have a certain balance accuracy γ for the training set
in the current level. Since higher levels lead to a higher score, this presents an
additional incentive to make the correct decision. In order to raise the compe-
tition among players, a scoring board is presented on the game website, listing
players with their user name, reached level and score.

2.3 Aggregation

We assume that the players have better balance accuracy scores than their mates
in the crowdsourcing platforms, which should positively influence the aggrega-
tion. Therefore, the weighted majority voting (WMV) algorithm [8] is employed
to aggregate the labels:

yCT = p(y|Y, Γ ) =

∑G
j=1 γjyj

∑G
j=1 γj

,

where Y = {y1, ..., yG} ∈ R
N×G is the players-votes matrix, Γ =

{γ1, ..., γG} ∈ R
1×G is the accuracy score matrix, and G is the number of play-

ers. It should be noted that the crowd truth yCT becomes the simple majority
voting (MV) when the players are handled equally.

3 Experiments and Results

We have validated our proposed methodology on a subset of the publicly avail-
able MICCAI-AMIDA13 challenge dataset1, containing 311 annotated histology
images from 12 breast carcinoma patients [14]. Before extracting patches for
classification, images were stain-normalized [10].

Test Cases and Datasets. Three different test cases were constructed (c.f.
Table 1). Patches in the first one contain either a mitotic figure or random back-
ground and can be considered simple. For the remaining two test cases, the

1 http://amida13.isi.uu.nl/.

http://amida13.isi.uu.nl/
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Fig. 3. Gameline shows the purpose, used datasets, scoring and aggregation per level.

Table 1. Description of test cases

Test case Dataset Difficulty Features Patches

TC1 Simple Handcrafted (HC) 6160

TC2 Challenging Deep Learned (DL) 3496

TC3 Challenging Handcrafted (HC) 3496

challenging crowdsourcing dataset appeared in [1] was chosen. For every test
case, a subset of five features was selected.

While we differentiate between training and testing dataset (ground truth is
still known for evaluation purposes), it should be noted that patches can have
three different functions. In the training dataset, a patch can serve for learning
purpose, i.e. the ground truth is always displayed to the user. Otherwise, a patch
is used for validation, meaning that immediate feedback will be given after the
user has made a decision. Patches in the testing dataset always fulfill the testing
purpose. They are considered unlabeled data intended for augmentation.

Implementation. For immediate accessibility, we have implemented a web-
based game interface, platform-independent, using PHP language on the server
side, and JavaScript and WebGL 1.0 on the client side. Since every game action
can be done by pressing certain keys or by tapping a respective button, the game
can be easily used on mobile devices as well. Our server hosts calculated features
and patches. Once a user visits the website and plays the game, a unique user
id is assigned and kept for return. Decisions made by the crowd are uploaded in
regular intervals during the game and stored on the server.

Evaluation Metrics. We compute different evaluation metrics such as balance
accuracy γ = 1

2 · ( TP
TP+FN + TN

TN+FP ) and F1-score = 2×TP
FP+FN+2×TP , with TP

being true positives, FP false positives, and FN false negatives. Further, we plot
the Receiver Operating Characteristic (ROC) curve together with computing the
area under the curve (AUC).
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Fig. 4. A comparison between the ROC results of aggregated labels using MV (left)
and WMV (middle). A comparison of playsourcing against crowdsourcing (right). The
black circles refer to the operating point (threshold) at 0.5.

Results. Within about three weeks, we have collected around 14000 votes,
distributed among our three test cases, from 86 users with a collective playing
time of 14 hours. Users have been invited through mailing lists and social media
channels. We did not provide any other incentive than having a lot of fun. To
ensure enough votes for aggregation, i.e. three votes per patch, around 3900
votes and related users were removed. The remaining votes were part of training
(learning and validation) and testing sets (c.f. Table 2).

We have employed both WMV and MV as aggregation strategy, for a com-
parison purpose, on the different test cases as shown in Fig. 4. Simple MV cannot
reduce the “noisy” decisions made by spammers. In contrast, employing WMV
shows a good impact on the AUC and consistently improved for all test cases.
This proves the validity of our carefully designed qualitative test together with
the strong assumptions made in Sect. 2.3. As expected, TC1, a simple dataset,
performed best. For the challenging dataset, TC2, with deep learned features
yields an improvement in AUC of 10% and 6% compared to TC3 for valida-
tion and testing votes respectively. Hence, the feature representation significantly
influences the visual perception. Next, playsourcing votes are compared with the
crowdsourcing votes (c.f. Fig. 4). It is obvious that the playsourcing performs bet-
ter than crowdsourcing with a relative gain up to 10% in AUC. Similar to the
previous comparison, the WMV consistently improves the performance.

Table 2. Distribution of remaining player votes

Test case Total Learning Validation Testing Patches

TC1 1524 348 812 364 251

TC2 3883 801 2008 1074 534

TC3 4791 864 2517 1410 658
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4 Discussion and Conclusion

In this paper, we have introduced a novel concept for playsourcing in biomedical
context. Our playsourcing framework is designed to embed different features into
a visual salient game object that can be integrated easily into a game canvas,
efficiently eliminating any requirements for prior knowledge.

The deep learned features show a better embedding than the handcrafted
ones for the challenging patches, however, it has been demonstrated that the
concatenation of both features could improve the performance [16]. Although
we use few ground truth labels for learning and scoring purposes, this can be
replaced by crowd truth for obvious tasks [4].

We have further compared our proposed playsourcing against the crowdsourc-
ing platforms showing a relative gain up to 10% in the AUC. In addition, it has
been shown that playsourcing reduces the cost (i.e. unpaid annotation), time
and false positives. Based on this result, we can answer the question raised by
Hamari et al. [7], “Does gamification work?”, and conclude that “Yes, it works”.
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our game. We are also grateful to Dr. Mitko Veta for giving us the permission to use
the AMIDA13 dataset in our research.
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A., Baker, D., Popović, Z.: Foldit players: predicting protein structures with a
multiplayer online game. Nature 446, 756–760 (2010)

4. Dumitrache, A., Aroyo, L., Welty, C., Sips, R.J., Levas, A.: Dr. detective: combin-
ing gamication techniques and crowdsourcing to create a gold standard in medical
text. In: Proceedings of the 1st International Conference on Crowdsourcing the
Semantic Web-Volume 1030, pp. 16–31. CEUR-WS. org (2013)

5. Fuchs, J., Isenberg, P., Bezerianos, A., Fischer, F., Bertini, E.: The influence of
contour on similarity perception of star glyphs. IEEE Trans. Vis. Comput. Graph.
20(12), 2251–2260 (2014)

6. Good, B.M., Loguercio, S., Griffith, O.L., Nanis, M., Wu, C., Su, A.I.: The cure:
design and evaluation of a crowdsourcing game for gene selection for breast cancer
survival prediction. JMIR Serious Games 2(2), e7 (2014). doi:10.2196/games

7. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?-a literature review of
empirical studies on gamification. In: 2014 47th Hawaii International Conference
on System Sciences (HICSS), pp. 3025–3034. IEEE (2014)

8. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput.
108(2), 212–261 (1994)

http://dx.doi.org/10.2196/games


Playsourcing: A Novel Concept for Knowledge Creation in BR 277

9. Luengo-Oroz, M.A., Arranz, A., Frean, J.: Crowdsourcing malaria parasite quan-
tification: an online game for analyzing images of infected thick blood smears. J.
Med. Internet Res. 14(6), e167 (2012)

10. Macenko, M., Niethammer, M., Marron, J., Borland, D., Woosley, J.T., Guan, X.,
Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quanti-
tative analysis. In: ISBI, vol. 9, pp. 1107–1110 (2009)

11. Maier-Hein, L., Ross, T., Glocker, B., Bodenstedt, S., Stock, C., Heim, E., Wirkert,
S., Kenngott, H., Speidel, S., Maier-Hein, K., et al.: Crowd-algorithm collaboration
for large-scale endoscopic image annotation with confidence

12. Maier-Hein, L., Kondermann, D., Roß, T., Mersmann, S., Heim, E., Bodenstedt, S.,
Kenngott, H.G., Sanchez, A., Wagner, M., Preukschas, A., Wekerle, A.L., Helfert,
S., März, K., Mehrabi, A., Speidel, S., Stock, C.: Crowdtruth validation: a new
paradigm for validating algorithms that rely on image correspondences. Int. J.
Comput. Assist. Radiol. Surg. 10(8), 1201–1212 (2015)

13. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization
and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010)

14. Veta, M., Van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa,
A., Gonzalez, F., Larsen, A.B., Vestergaard, J.S., Dahl, A.B., et al.: Assessment
of algorithms for mitosis detection in breast cancer histopathology images. Med.
Image Anal. 20(1), 237–248 (2015)

15. Wertheimer, M.: Untersuchungen zur lehre von der gestalt. ii. Psychologische
Forschung 4(1), 301–350 (1923). http://dx.doi.org/10.1007/BF00410640

16. Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D.: 3D deep learning
for efficient and robust landmark detection in volumetric data. In: Navab, N.,
Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349,
pp. 565–572. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9 69

http://dx.doi.org/10.1007/BF00410640
http://dx.doi.org/10.1007/978-3-319-24553-9_69


Erratum to: Automated Retinopathy
of Prematurity Case Detection

with Convolutional Neural Networks

Daniel E. Worrall(&), Clare M. Wilson, and Gabriel J. Brostow

Department of Computer Science, University College London, London, UK
d.worrall@cs.ucl.ac.uk

Erratum to:
Chapter “Automated Retinopathy of Prematurity Case
Detection with Convolutional Neural Networks” in:
G. Carneiro et al. (Eds.)
Deep Learning and Data Labeling for Medical Applications, LNCS,
DOI: 10.1007/978-3-319-46976-8_8

In the original version of the chapter ‘Automated Retinopathy of Prematurity Case
Detection with Convolutional Neural Networks’, Acknowledgement section was
revised. The erratum chapter have been updated with the changes.

The updated original version of this chapter can be found at DOI: 10.1007/978-3-319-46976-8_8

© Springer International Publishing AG 2016
G. Carneiro et al. (Eds.): LABELS 2016/DLMIA 2016, LNCS 10008, p. E1, 2016.
DOI: 10.1007/978-3-319-46976-8_29

http://dx.doi.org/10.1007/978-3-319-46976-8_8
http://dx.doi.org/10.1007/978-3-319-46976-8_8


Author Index

Akram, Saad Ullah 21
Akselrod-Ballin, Ayelet 197
Albarqouni, Shadi 269
Alpert, Sharon 197
Amitai, Michal 77
Andermatt, Simon 142
Annangi, Pavan 188
Antani, Sameer 228
Aung, Nay 238

Babu, Narayanan 188
Bahrami, Khosro 39
Barkan, Ella 121, 197
Baust, Maximilian 269
Ben-Ari, Rami 197
Ben-Cohen, Avi 77
Benou, Ariel 95
Birenbaum, Ariel 58
Brosch, Tom 86
Brostow, Gabriel J. 68

Cao, Xiaohuan 170
Carapella, Valentina 238
Cattin, Philippe 142
Chartrand, Gabriel 179
Chen, Yen-Wei 3
Cheplygina, Veronika 209

de Bruijne, Marleen 209
de Jong, Pim A. 161
de Vos, Bob D. 161
Demirci, Stefanie 269
Diamant, Idit 77
Donner, Yoni 130
Drozdzal, Michal 179
Dubost, Florian 259

Eklund, Lauri 21

Friedman, Alon 95
Fujita, Hiroshi 111
Fung, Kenneth 238

Gao, Yaozong 170
Garcia Seco de Herrera, Alba 228

Golan, David 130
Greenspan, Hayit 58, 77
Gutierrez Becker, Benjamin 259

Han, Ligong 219
Han, Xian-Hua 3
Hara, Takeshi 111
Hashoul, Sharbell 121
Hasoul, Sharbell 197
Heikkilä, Janne 21
Hoffmann, Nico 152
Horrocks, Ian 238
Huang, Yue 219

Išgum, Ivana 161
Ito, Takaaki 111

Jaremko, Jacob 130
Jiménez-Ruiz, Ernesto 238

Kadoury, Samuel 179
Kannala, Juho 21
Karlinsky, Leonid 197
Kirsch, Matthias 152
Kisilev, Pavel 121
Klang, Eyal 77
Koch, Edmund 152
Kuo, Wieying 209
Kwitt, Roland 48

Lei, Jianmei 3
Li, David K.B. 86
Liu, Chi 219
Liu, David 12
Løvstakken, Lasse 30
Lu, Xiaoguang 12
Lukaschuk, Elena 238

Mansi, Chris 130
Matl, Stefan 269
Metz, Luanne 86
Müller, Henning 228



Navab, Nassir 259, 269
Neubauer, Stefan 238
Nie, Dong 170
Niethammer, Marc 48

Ozolek, John A. 219

Paiva, Jose 238
Pal, Chris 179
Perez-Rovira, Adria 209
Peter, Loic 259
Petersen, Steffen 238
Petersohn, Uwe 152
Pezold, Simon 142
Piechnik, Stefan 238
Plaza, Stephen M. 249

Ramachandran, Manoj 130
Ravishankar, Hariharan 188
Raviv, Tammy Riklin 95
Rekik, Islem 39
Rohde, Gustavo K. 219
Rupprecht, Christian 259

Sanghvi, Mihir 238
Sason, Eli 121
Schaer, Roger 228
Shen, Dinggang 39, 170
Shi, Feng 39

Smistad, Erik 30
Steiner, Gerald 152
Sudhakar, Prasad 188

Takayama, Ryosuke 111
Tam, Roger 86
Tang, Lisa W. 86
Thiruvenkadam, Sheshadri 188
Tiddens, Harm A.W.M. 209
Traboulsee, Anthony 86

Vaidya, Vivek 188
Veksler, Ronel 95
Venkataramani, Rahul 188
Viergever, Max A. 161
Vorontsov, Eugene 179

Wang, Li 170
Wang, Song 111
Wilson, Clare M. 68
Worrall, Daniel E. 68

Xu, Daguang 12

Yang, Xiao 48
Yoo, Youngjin 86

Zhou, Xiangrong 111

280 Author Index


	Preface: DLMIA 2016
	Preface: LABELS 2016
	Organization
	Contents
	Deep Learning in Medical Image Analysis
	HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNs
	1 Introduction
	2 The Deep CNNs with K-Support Spatial Pooling
	3 Experimental Results
	4 Conclusions
	References

	Robust 3D Organ Localization with Dual Learning Architectures and Fusion
	1 Introduction
	2 Methodology
	2.1 Context Modeling with Dual Learning Architectures
	2.2 Cross-Sectional Fusion and Clustering

	3 Experiments
	4 Conclusions
	References

	Cell Segmentation Proposal Network for Microscopy Image Analysis
	1 Introduction
	2 Method
	2.1 Proposal Bounding Boxes
	2.2 Proposal Segmentation
	2.3 Cell Detection and Segmentation

	3 Experiments
	3.1 Data-Sets
	3.2 Evaluation Criteria
	3.3 Baseline
	3.4 Results

	4 Conclusions
	References

	Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks
	1 Introduction
	2 Methods
	2.1 Vessel Model
	2.2 Vessel Candidate Search
	2.3 Vessel Classifier
	2.4 Performance Optimizations

	3 Results
	4 Discussion
	5 Conclusion
	References

	Convolutional Neural Network for Reconstruction of 7T-like Images from 3T MRI Using Appearance and Anatomical Features
	1 Introduction
	2 Proposed Convolutional Neural Network (CNN) Architecture
	3 Experimental Results
	4 Conclusion and Discussion
	References

	Fast Predictive Image Registration
	1 Introduction
	2 Initial Momentum LDDMM Parameterization
	3 Network Structure
	3.1 Deterministic Network
	3.2 Bayesian Probabilistic Network Using Dropout
	3.3 Speeding up Whole Image Deformation Prediction

	4 Experiments
	4.1 2D Data
	4.2 3D Data
	4.3 Computation Speed

	5 Discussion
	6 Support
	References

	Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks
	1 Introduction
	2 Methods
	2.1 Pre-processing
	2.2 Candidate Extraction
	2.3 CNN Prediction

	3 Experimental Evaluation
	3.1 Cross-Validation
	3.2 Visual Inspection
	3.3 Test Results Submission

	4 Discussion
	4.1 Patch Based
	4.2 Multi-View
	4.3 Fusion Methods
	4.4 Data Augmentation

	5 Conclusions
	References

	Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks
	1 Introduction and Background
	2 Proposed Method
	2.1 Classifier
	2.2 Visualization

	3 Experiments and Results
	4 Conclusion, Limitations and Future Work
	References

	Fully Convolutional Network for Liver Segmentation and Lesions Detection
	1 Introduction
	2 Fully Convolutional Network Architecture
	2.1 3D Information
	2.2 Training
	2.3 Data Augmentation

	3 Experiments
	3.1 Data
	3.2 Liver Segmentation
	3.3 Detection-Comparative Evaluation
	3.4 Fully Automatic Detection results
	3.5 Synthetic Data Experiments

	4 Conclusions
	References

	Deep Learning of Brain Lesion Patterns for Predicting Future Disease Activity in Patients with Early Symptoms of Multiple Sclerosis
	1 Introduction
	2 Materials and Preprocessing
	3 Methods
	3.1 Euclidean Distance Transform of Lesion Masks
	3.2 CNN Training
	3.3 Data Augmentation and Regularization

	4 Results and Discussion
	5 Conclusion
	References

	De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networks
	1 Introduction
	2 Method
	2.1 Problem Formulation
	2.2 Deep Neural Network
	2.3 Expert DNN: Architecture and Training 
	2.4 Ensembling Hypotheses
	2.5 Restricted Boltzmann Machine
	2.6 Synthetic Training Data Generation 

	3 Experimental Results
	4 Summary and Future Work
	A Artificial Neuron and Deep neural network
	B Expert DNN
	C Classification DNN
	D The Beltrami Framework
	E Results on Synthetic Data
	F Run-time Comparison
	G Experimental Setup for Real Data
	References

	Three-Dimensional CT Image Segmentation by Combining 2D Fully Convolutional Network with 3D Majority Voting
	Abstract
	1 Introduction
	2 Methods
	2.1 Overview
	2.2 3D-to-2D Image Sampling and 2D-to-3D Label Voting
	2.3 FCN-Based 2D Image Segmentation via Convolution and de-Convolution Networks

	3 Experiment and Results
	4 Discussion
	5 Conclusions
	Acknowledgments
	References

	Medical Image Description Using Multi-task-loss CNN
	Abstract
	1 Introduction
	2 Methodology
	3 Experiments
	4 Conclusions
	References

	Fully Automating Graf's Method for DDH Diagnosis Using Deep Convolutional Neural Networks
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Network Architecture

	3 Results
	3.1 Training
	3.2 Post-processing

	4 Results
	5 Discussion
	References

	Multi-dimensional Gated Recurrent Units for the Segmentation of Biomedical 3D-Data
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Convolutional Gated Recurrent Unit
	2.3 Experiments

	3 Results
	3.1 Feasibility Study
	3.2 MD-GRU on MRBrainS

	4 Discussion
	References

	Learning Thermal Process Representations for Intraoperative Analysis of Cortical Perfusion During Ischemic Strokes
	1 Introduction
	2 Intraoperative Reasoning About Cortical Perfusion
	2.1 Modelling Tissue Perfusion
	2.2 Levenberg-Marquardt Algorithm
	2.3 Approximating Thermal Process Parameters by Deep Neural Networks

	3 Results and Discussion
	3.1 Deep Parameter Approximation
	3.2 Case Study

	4 Conclusion
	References

	Automatic Slice Identification in 3D Medical Images with a ConvNet Regressor
	1 Introduction
	2 Data
	3 Method
	4 Results
	5 Discussion
	6 Conclusion
	References

	Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks
	1 Introduction
	2 Methods
	3 Experiments and Results
	4 Conclusions
	References

	The Importance of Skip Connections in Biomedical Image Segmentation
	1 Introduction
	2 Residual Network for Semantic Image Segmentation
	3 Experiments
	3.1 Segmenting EM Data
	3.2 On the Importance of Skip Connections

	4 Conclusions
	References

	Understanding the Mechanisms of Deep Transfer Learning for Medical Images
	1 Introduction
	2 State of the Art
	3 Methods
	3.1 Dataset and Training
	3.2 Transfer Learned Features
	3.3 Traditional Texture Features
	3.4 Gradient Boosting Machine (GBM)
	3.5 Hybrid Approach

	4 Results
	5 Discussion
	References

	A Region Based Convolutional Network for Tumor Detection and Classification in Breast Mammography
	Abstract
	1 Introduction
	2 Methods
	2.1 Breast Anatomical Segmentation and Candidate Extraction
	2.2 Modified Faster-R-CNN

	3 Experiments and Results
	4 Summary
	References

	Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
	Early Experiences with Crowdsourcing Airway Annotations in Chest CT
	1 Introduction
	2 Methods
	2.1 Image Generation
	2.2 Annotation Software
	2.3 Airway Measurement

	3 Experiments
	3.1 Data
	3.2 Crowd Annotations

	4 Results
	4.1 Annotations
	4.2 Airway Measurement

	5 Discussion
	6 Conclusions
	References

	Hierarchical Feature Extraction for Nuclear Morphometry-Based Cancer Diagnosis
	1 Introduction
	2 Methodology
	2.1 Hierarchical Feature Extraction Model
	2.2 Training and Optimization

	3 Experiments and Results
	4 Discussion and Conclusion
	References

	Using Crowdsourcing for Multi-label Biomedical Compound Figure Annotation
	1 Introduction
	2 Methods
	2.1 Dataset
	2.2 Overview
	2.3 Crowdsourcing Quality Control

	3 Results
	4 Conclusions
	References

	Towards the Semantic Enrichment of Free-Text Annotation of Image Quality Assessment for UK Biobank Cardiac Cine MRI Scans
	1 Introduction
	2 Methodological Approach
	2.1 The Imaging Data
	2.2 Quality Assessment of the Data
	2.3 Definition of the Semantic Layer

	3 Preliminary Results
	3.1 Example 1: Variability
	3.2 Example 2: Ambiguity

	4 Discussion
	References

	Focused Proofreading to Reconstruct Neural Connectomes from EM Images at Scale
	1 Introduction
	2 Uncertainty-Driven Focused Proofreading
	2.1 Prioritizing Decisions
	2.2 Focused Proofreading Algorithm

	3 Workflow to Reconstruct a Large Connectome
	4 Experiments
	4.1 Validation of Focused Proofreading 
	4.2 Validation of Production Proofreading

	5 Conclusions
	References

	Hands-Free Segmentation of Medical Volumes via Binary Inputs
	1 Introduction
	2 Methods
	2.1 Probability Map
	2.2 MCMC Framework
	2.3 Question Voxel
	2.4 Final Segmentation

	3 Experiments
	3.1 Experimental Settings
	3.2 Results

	4 Conclusion
	References

	Playsourcing: A Novel Concept for Knowledge Creation in Biomedical Research
	1 Introduction
	2 Methodology
	2.1 Object Embedding
	2.2 Game Canvas
	2.3 Aggregation

	3 Experiments and Results
	4 Discussion and Conclusion
	References

	Erratum to: Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks
	Erratum to: Chapter “Automated Retinopathy of Prematurity Case Detection with Convolutional Neural Networks” in: G. Carneiro et al. (Eds.) Deep Learning and Data Labeling for Medical Applications, LNCS, DOI: 10.1007/978-3-319-46976-8_8

	Author Index



