
Flexible Distribution of Existing Web Interfaces:
An Architecture Involving Developers and End-Users

Sergio Firmenich1(✉), Gabriela Bosetti1, Gustavo Rossi1, and Marco Winckler2

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata and CONICET,
La Plata, Argentina

{sergio.firmenich,gabriela.bosetti,
gustavo}@lifia.info.unlp.edu.ar

2 ICS-IRIT, University of Toulouse 3, Toulouse, France
winckler@irit.fr

Abstract. This paper presents a novel approach towards the opportunistic
and lightweight distribution of existent Web User Interfaces. We describe an
architecture that allows end-users to collect UI objects into a distributed UI-
Component-oriented PIM, accessible from different user’s devices. Once in the
PIM, the collected UI components are wrapped with different DUI-based behav‐
iours that may be triggered by the user, as PIM’s objects plug-ins. We present an
overview of the architecture; some default DUI-based behaviours are introduced
and illustrated through examples. Besides, we show how the architecture supports
the development of new DUI-based behaviours.

Keywords: Client-side adaptation · DUI · End-user development

1 Introduction

The distribution of user interfaces (DUI) has been a growing trend in the last ten years.
Beyond the understanding about how DUI applications can improve user experience
[12], several works for engineering DUI Web applications have emerged [10, 13]. Even
more, approaches for more specific cross-device interaction support has been defined,
such as the use of Kinect [11]. However, it is still hard to find popular Web sites or
applications supporting DUI.

When applications do not offer features that users may need, experience has shown
that the crowd react trying to satisfy these needs by itself. This is a very common practice
in Web Browsing Augmentation, i.e. using tools (deployed such as Web Browser Exten‐
sions) to augment Web application capabilities. To cite one example, simple solutions
for cross-device interaction such as “Slides – Presentation Remote”1 has more than sixty
thousand users, just offering a remote control for presentations in some well-known Web
applications (Google Drive, SlideShare, Prezi, etc.). Examples like this clearly show
that while ad-hoc developers may create this kind of experience, there are also users
expecting them.

1 https://chrome.google.com/webstore/detail/slides-presentation-remot/mhfdnafbhfglkcjgk‐
goopjoadaopcomi.

© Springer International Publishing AG 2016
S. Casteleyn et al. (Eds.): ICWE 2016 Workshops, LNCS 9881, pp. 200–207, 2016.
DOI: 10.1007/978-3-319-46963-8_20

https://chrome.google.com/webstore/detail/slides-presentation-remot/mhfdnafbhfglkcjgkgoopjoadaopcomi
https://chrome.google.com/webstore/detail/slides-presentation-remot/mhfdnafbhfglkcjgkgoopjoadaopcomi


We started this work by analyzing how to apply the lessons learned in Web Augmen‐
tation [3] into the field of DUI. Web Augmentation comprises those approaches that aim
to adapt content and functionality of existing (usually third-party) Web applications,
once these are loaded on the client. This technique has been used successfully in different
domains, such as mash-ups [17] or end-user driven Web tuning [4]. Web Browser
Augmentation is a perfect target for some DUI applications, such as supporting oppor‐
tunistic remote control, layout distribution or UI migration.

In this paper, we propose to involve not only developers but also end users in the
process of user interface distribution. The main idea is to provide developers with an
easy way to implement DUI layers over existing Web pages, while end users may decide
how to apply such layers on their preferred Web sites. This is achieved by managing a
UI-Component-oriented PIM, where users may collect the target UI components that
then can be manipulated from the applications defined by developers. The paper presents
the overall architecture and the supporting tools through some case studies.

The paper is structured as follows. First, we present the related works in Sect. 2.
Section 3 introduces our approach and the main components of the underlying archi‐
tecture. The supporting tools are illustrated via case studies in Sect. 4. Finally, we discuss
our contribution in Sect. 5, in conjunction with our future work.

2 Background and Related Works

Since the early years of Web Augmentation [2] (WA) and Mash-Ups applications [5],
several approaches have emerged for adapting or integrating existing Web contents.
Diverse communities of users, both developers and amateur end users with technical
know-how, set up the basis and contributed in the creation of new repositories of
augmentation artefacts, which improved the Web with extra features that original Web
applications did not contemplate. Such is the case of Greasyfork, or Mozilla addons.
Some End User Development [9] (EUD) works arose later in those fields, to empower
users to solve their particular needs by themselves. Concerning DUI in conjunction with
the WA and EUD fields, and as pointed out in [14], we can appreciate that it is not easy
to provide DUI for existing and third party Web content, although some approaches
have tackled isolated specific dimensions, specifically involving end-users. User-Driven
DUI was previously defined in [15]; however, although this approach does not consider
third-party existing Web sites as potential targets, other approaches do. For instance, [7]
lets users to annotate some parts of exiting Web UI in order to migrate components under
user demand. The main idea is to allow users to access a Web application from a desktop
environment, and then to continue the interaction with it from a mobile device, migrating
those annotated portions of the UI. Other similar approaches using proxies are Proxy‐
work [16] and WebSplitter [8]. And there are also approaches addressing flexible inter‐
face migration [1].

In this paper, we present an architecture to apply DUI layers over existing Web
content. But in contrast with the existing works, we do not provide an end-user tool for
performing specific DUI applications, but an architecture to enable developers from
Web Augmentation communities to easily define new kind of DUI applications, by

Flexible Distribution of Existing Web Interfaces 201



taking advantage of the underlying distributed UI-Component-oriented PIM. However,
since we share the philosophy behind empowering end-users with specific tools, our
approach lets them to instantiate a DUI application in their preferred Web sites.

Our approach may support several kinds of DUI dimensions, such as light interface
migration, remote control, distributed layout, etc. We have designed a client-site visual
tool that lets users to specify how to distribute the UI of any existing Web site.

3 Distributing Web UI Objects

The main idea behind our approach is to provide end users with a specialized PIM with
extra WA and DUI capabilities. Instead of collecting and structuring personal data such
as traditional PIMs, we propose a UI-component-oriented PIM. This allows users to
collect arbitrary DOM elements from existing Web sites. A DOM element represents a
particular component of the user interface. These UI components are collected into the
PIM and materialized as UIObjects. Our approach rests on the idea that a UIObject may
be used by the end-user for triggering different behaviours supporting DUI. We call this
kind of actions DUI behaviour. For instance, the user may activate the DUI behaviour
“Close on other devices…” for a UIObject. This action would hide that UIObject in any
other device registered in the platform by the user, and it would be functional only in
the current device. Furthermore, although users may use some predefined “DUI behav‐
iours”, developers may create new ones. We call them behaviours because these are
performed individually for a UIObjects; however, if several UIObjects are collected for
a specific Web site, and different behaviours are executed with each of them, then a more
complex DUI experience (involving combinations of objects) could be defined. In this
way, at the end, the addition of several DUI behaviours may abstract a specific kind of
distributed use of a Web site. For instance, a simple distributed layout could be supported
if, after collecting several UIObjects, the user executes the “Close on other views…”
behaviour for different UIObjects running in different devices/monitors. Meanwhile,
other combined use of these behaviours may be oriented to control the UI displayed on
a desktop computer from a mobile device. Since it is not our purpose to foreseen every
possible DUI behaviour we propose instead a flexible architecture based on this UI-
object PIM. The architecture was designed with two premises in mind: (1) users should
be able to collect UIObjects into the PIM and use a specific DUI behaviour with them,
and (2) developers should be able to create new kinds of DUI behaviours that may be
added to the collected UIObjects. If the user does not select a behaviour, this is set by
default according to the type of DOM element that was collected.

The overall idea is that by triggering some behaviour, the user is enriching an existing
Web site with DUI features. In order to do that, users are allowed to annotate some
existing DOM elements as UIObjects, that will be collected into the PIM and then,
presented in another view. In this section, we introduce the components and concepts
of the approach and some aspects about the architecture. Then we show how end-users
may create and use UIObjects.

202 S. Firmenich et al.



3.1 Underlying Architecture

As shown in Fig. 1, our approach mostly works at client-side. The UIObject-PIM is a
Web Browser extension that, once installed in different devices, it allows users to share
a unique space of information among them. In order to maintain the UIObjects synchron‐
ized, we provide a synchronization server (accessible from our Web Browser extension)
that allows an instance (UIObject) of a particular UI component to be synchronized, by
acting as a mediator among all the contexts where such instance is running. The approach
is no constrained to a centralized server, the browser extension may be configured to
work with any specific deployment of that server.

Fig. 1. Architecture schema of the UIObject-PIM platform

In this paper, we focus on the client-side features of this architecture, in which we
can find three main artefacts:

• UI Component: in this way, we refer to the native UI components or widgets that
compose a particular Web site. For instance, a UI Component could be a form, a
video, a part of the DOM tree, etc. The main idea is that end-users may select under
demand those UI Components of their interest. Through this selection, a UIObject is
generated from a UI Component.

• UI Objects: these are representations of UI Components enriched with some behav‐
iour that they do not have associated by default (in the original Web page). These UI
Objects live in the UIObject-PIM.

• UI-Component-oriented PIM: this is a PIM oriented to maintain references to those
UIObjects created by end users. This PIM requires authentication, so the user may
collect and retrieve his preferred UIObjects from any of his devices. The UIObjects
collected into the PIM are not just façades of UI Components, but managers of
UIComponents with specific DUI-based behaviour added to its corresponding UIOb‐
ject. This behaviour is materialized as operations that are executed for a particular
UIObject, and it is executable directly by the user. For instance, if the user wants to
render a UI Component only in one of his devices, then he must run the “Show only

Flexible Distribution of Existing Web Interfaces 203



in…” operation, that will ask the user which is the target device and then it will carry
on the desired UI effect.

In this way, the PIM maintain the current state of the DUI model based on the oper‐
ations (DUI-based behaviour) that were executed for the collected objects. In this way,
the UI Component is like a view (in the same way as in the MVC pattern).

3.2 UIObjets and DUI-Based Behaviours in Detail

UIObjects are JavaScript objects abstracting UIComponents. During the abstraction
process, the user may choose a target UIComponent. Figure 2 shows in (1), a user
enabling the DOM selection and, in (2), a DOM element being highlighted for selection,
with a proper context menu enabling the harvesting. Once selected, he can configure
some of its aspects. For instance, give it a name and associate it some properties, as
shown in (3). One of the most relevant properties is the UIComponentStereotype. This
property allows users to choose among different kinds of UI widgets, such as images,
text, forms, videos, etc. Once defined, all the UIObjects are available in the PIM, as the
one in (4), so the user can interact with the offered behaviour.

Fig. 2. Defining a UIObject

When a UIObject is collected into the PIM, the matching DUI-based behaviours
(those preferred by the user) are attached to it under the basis of the decorator pattern
[6]. There are two kinds of DUI-based behaviours. First, we can have stereotype-
agnostic behaviours that may be attached to every UIObject since their goals are
compatible with all kind of UIComponents. For instance, showing a particular UIObject
only in a particular device. On the other hand, stereotype-specific behaviours are
attached only to those UIObject that were collected as a specific UI stereotype, such as
a YouTube Video. In this case, more specific operations such as “Play video on…” can
be defined.

204 S. Firmenich et al.



It is worth mentioning that the set of decorators applied to the UIObject can be
configured by the end-user, by clicking the gear icon shown in Fig. 1; after doing this a
context menu opens and the user has to select «manage» and finally «applied behaviour».
The list of decorators is presented, and a series of parameters can be set.

Although we provide some basic behaviours, new ones may be defined by devel‐
opers. To develop a new behaviour requires programming with client-side Web technol‐
ogies (HTML, JavaScript, CSS), specially using a JavaScript API that allow developers
to access, manage and add behaviour to UIObjects collected into PIM, considering that the
communication mechanism among devices is solved transparently.

New behaviours may address new kind of DUI applications (for instance a particular
kind of distributed layout), but may also perform specific operations wrapped in
messages that the objects into the PIM may respond to. For instance, a developer may
define a new behaviour for controlling a YouTube player by defining messages such as
«stop» and «play». Then, if a user collects this object into the PIM and apply the deco‐
rator, then these messages could be sent from any device transparently. In these cases,
developers are benefited with the underlying synchronization mechanism among PIMs
state from different devices.

4 Case Study and Prototype

Although the approach lets developers to create new DUI behaviours, we have defined
some predefined ones. So far we have identified: (1) opportunistic and volatile interface
migration, (2) multi-monitor layout, (3) distributed layout, (4) messaged-based remote
control, (5) navigation control and (6) remote UI Effect. For the sake of space, we are
covering just one of them, in order to depict the feasibility of the approach.

At the time of this publication, we have partially implemented two prototype client-
side tools supporting the approach. The first one is a Firefox 44 extension for desktop
edition, the second one is a Firefox for Android extension, for version 42.0a1. At server-
side, we implemented a minimal functionality to synchronize changes of the UIObjects
both tools manage.

Consider a scenario where Máximo is living abroad for some months and he wants
to write about every detail of his experiences in his blog. There are moments when he
can write an entire entry from his computer, but he must migrate the task to his phone
often, because his job requires constant mobility. His mother tongue is Spanish, but he
is writing the blog in English. Sometimes, he have some doubts about language expres‐
sions, so he checks it out in linguee.com. It is desirable for him to have a mean for
distributing some elements of the Linguee and Blogger Web sites.

Figure 3 shows our tool sidebar, with some UIObjects created from both sites; a
search box and a results box from Linguee, and then a Blogger’s entry main options,
and a text area. So, when Máximo has to leave his house, he may open such elements
in his mobile, the«XT1021» listed device, as shown in the left-bottom area of Fig. 3.
Then, from his device, the browser extension will be notified to open the same URL and
just open the defined UIObjects the user has defined for such URL.

Flexible Distribution of Existing Web Interfaces 205



Fig. 3. Distributing UI components from a web application to mobile

While the user changes the document, such modifications are notified to our server
module, who asks every registered listener to update the view of the proper element. As
we can see, the site functionality is not altered by our adaptation: the blog is still func‐
tional (you can see the automatic saving being executed in the right screen of Fig. 3).
The advantages of accessing the blog through our platform is that: (1) Blogger does not
provide a mobile version, so the same interface elements are presented in small devices;
(2) While Blogger offers the ability to save changes in the entry, it does not offer the
ability to keep the content up-to-date from two or more devices, and without our plat‐
form, it is required for every device to refresh the Web page every time they want to see
the changes from another device.

5 Conclusions and Future Works

In this paper, we have presented an architecture for supporting the development of Web
Browser Augmentation artefacts for the field of distributed user-interfaces. Browser
augmentation oriented to DUI was also propose in previous works [7, 16]. We share the
philosophy behind them, but we think that providing developers with an architecture
that abstracts the more complicated technical issues underlying to DUI applications may
help to create several kinds of new experiences by developing new DUI-based behav‐
iours. Besides that, the same architecture contemplates a mechanism to allow end-users
to instantiate those behaviours opportunistically in any Web site.

Currently, we are completing the implementation of the support system, which is
partially operative. Once it is finished, we plan to carry on an evaluation with end-users
in order to measure how useful and easy is for them to use our tools. We also plan to
analyse new possible behaviours and study how this approach may raise new possibil‐
ities in the context of Web Augmentation, mash-ups and collaborative environments.

Acknowledgments. This work was supported by STIC AMSUD project WAMAW-OUR: Web
Augmentation Methods for Adapting Web Sites for Supporting Opportunistic User Requirements

206 S. Firmenich et al.



References

1. Bandelloni, R., Paternò, F.: Flexible interface migration. In: Proceedings of the 9th
International Conference on Intelligent User Interfaces, pp. 148–155. ACM, January 2004

2. Bouvin, N.O.: Unifying strategies for web augmentation. In: Proceedings of the Tenth ACM
Conference on Hypertext and Hypermedia: Returning to Our Diverse Roots: Returning to
Our Diverse Roots, pp. 91–100. ACM, February 1999

3. Díaz, O., Arellano, C.: The augmented web: rationales, opportunities, and challenges on
browser-side transcoding. ACM Trans. Web (TWEB) 9(2), 8 (2015)

4. Díaz, O., Arellano, C., Aldalur, I., Medina, H., Firmenich, S.: End-user browser-side
modification of web pages. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A.,
Zhang, Y. (eds.) WISE 2014, Part I. LNCS, vol. 8786, pp. 293–307. Springer, Heidelberg
(2014)

5. Ennals, R.J., Garofalakis, M.N.: MashMaker: mashups for the masses. In: Proceedings of the
2007 ACM SIGMOD International Conference on Management of Data, pp. 1116–1118.
ACM, June 2007

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Education, Upper Saddle River (1994)

7. Ghiani, G., Paternò, F., Santoro, C.: On-demand cross-device interface components
migration. In: Proceedings of the 12th International Conference on Human Computer
Interaction with Mobile Devices and Services, pp. 299–308. ACM, September 2010

8. Han, R., Perret, V., Naghshineh, M.: WebSplitter: a unified XML framework for multi-device
collaborative web browsing. In: Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work, pp. 221–230. ACM, December 2000

9. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-User Development: An Emerging
Paradigm, pp. 1–8. Springer, Dordrecht (2006)

10. Melchior, J., Vanderdonckt, J., Van Roy, P.: A model-based approach for distributed user
interfaces. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, pp. 11–20. ACM, June 2011

11. Nebeling, M., Teunissen, E., Husmann, M., Norrie, M.C.: XDKinect: development
framework for cross-device interaction using kinect. In: Proceedings of the 2014 ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pp. 65–74. ACM, June
2014

12. Santosa, S., Wigdor, D.: A field study of multi-device workflows in distributed workspaces.
In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pp. 63–72. ACM, September 2013

13. Schreiner, M., Rädle, R., Jetter, H.C., Reiterer, H.: Connichiwa: a framework for cross-device
web applications. In: Proceedings of the 33rd ACM Conference Extended Abstracts on
Human Factors in Computing Systems, pp. 2163–2168. ACM, April 2015

14. Vanderdonckt, J.: Distributed user interfaces: how to distribute user interface elements across
users, platforms, and environments. In: Proceedings of XI Interacción, vol. 20 (2010)

15. Vandervelpen, C., Vanderhulst, G., Luyten, K., Coninx, K.: Light-weight distributed web
interfaces: preparing the web for heterogeneous environments. In: Lowe, D.G., Gaedke, M.
(eds.) ICWE 2005. LNCS, vol. 3579, pp. 197–202. Springer, Heidelberg (2005)

16. Villanueva, P.G., Tesoriero, R., Gallud, J.A.: Proxywork: distributing user interface
components of web applications. In: DUI@ EICS, pp. 58–61, June 2013

17. Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user programming for the
web. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1435–1444. ACM, April 2007

Flexible Distribution of Existing Web Interfaces 207


	Flexible Distribution of Existing Web Interfaces: An Architecture Involving Developers and End-Users
	Abstract
	1 Introduction
	2 Background and Related Works
	3 Distributing Web UI Objects
	3.1 Underlying Architecture
	3.2 UIObjets and DUI-Based Behaviours in Detail

	4 Case Study and Prototype
	5 Conclusions and Future Works
	Acknowledgments
	References


