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Abstract. Given a set of positive weighted points, the Maximizing
Range Sum (maxRS) problem finds the placement of a query region
r of given size such that the weight sum of points covered by r is maxi-
mized. This problem has long been studied since its wide application in
spatial data mining, facility locating, and clustering problems. However,
most of the existing work focus on Euclidean space, which is not applica-
ble in many real-life cases. For example, in location-based services, the
spatial data points can only be accessed by following certain underlying
(road) network, rather than straight-line access. Thus in this paper, we
study the maxRS problem with road network constraint, and propose an
index-based method that solves the online queries highly efficiently.
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1 Introduction

In recent years, location-based services that answer queries on spatial databases
have drawn much attention, due to the proliferation of mobile computing devices.
One of the common queries is the Maximizing Range Sum (maxRS) problem
[1–6]. Given a set of positive weighted spatial points and a query shape(eg. rec-
tangular or circular) r of user specified size, the maxRS problem finds an optimal
placement of r such that the total weight of all points covered by r is maximized.
The maxRS problem is widely applied in facility locating problems [8] for finding
the best facility location with maximum number of potential clients, spatial data
mining for extracting interesting locations from log data [9], and point enclosing
problems.

However, most of the existing work adopt Euclidean distance metric in their
method. This is not applicable in many real-life location-based services, where
the spatial data points can only be accessed by following certain underlying
(road) network. For example a tourist service that answers user queries of find-
ing the most attractive places in a city in the sense that it is close to as many
sightseeing spots as possible within a given range (eg. 5 km walking distance).
In such scenarios, the ways to access scenic spots are constrained by the road
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Fig. 1. Road network example

network, hence the actual distance between two locations is probably signifi-
cantly different from their Euclidean distance, for example the distance between
facilities f0 and f3 in Fig. 1(a).

Therefore, in this paper, we study the maxRS problem with a road network
constraint, where the distance between two points in the network is determined
by the length of the shortest path connecting them (i.e. network distance [17]).
That is, given a road network, a set of positive weighted facilities on it, and a
network radius r, we find a location p on the network that maximizes the total
weight of facilities whose network distance to p is no larger than r. Figure 1
shows an example of a road network containing 4 nodes, 3 edges, and 4 weighted
facilities. Given a query radius r = 2, any position between f1 and f2 can be the
answer of the maxRS query, since the total weight of facilities that can reach
these positions within distance 2 is the maximum (i.e. 13).

Currently, the only existing work, as far as we know, that deals with the
maxRS problem in a road network is [14]. The authors proposed an external-
memory algorithm based on segments generation and linesweeping on the road
network. However, their method is not efficient for large radius or road network
databases, as shown in the experimental results in Sect. 6. They take tens or hun-
dreds of seconds to answer one query with specified radius, which is undesirable
for a mobile or web service that copes with the needs of answering millions of
concurrent user queries, each with a different radius parameter. Thus, we propose
a new solution to this problem that answer online queries much more efficient
(around 6–8 orders of magnitude faster) than previous method, by making use
of a tiny precomputed index which is of size linear to the facility number, and
therefore is superior for dealing with large number of concurrent or batch query
workloads.

In the rest of the paper, we formally define the problem in Sect. 2, and intro-
duce the details of our proposed method in Sects. 3 and 4. Two optimizations for
index construction are presented in Sect. 5. Experimental results on various para-
meters demonstrate the superiority of our method compared with existing work
in Sect. 6, and finally followed the related work review in Sect. 7 and conclusion
in Sect. 8.
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2 Problem Definition

We follow the definition in [14] to formally describe the problem. A road network
is represented as an undirected graph G = (V,E), where V is a set of nodes,
and E is a set of edges. We use F to denote the set of facilities, each of which,
denoted as f , is located on an edge and is associated with a positive weight w(f).

Definition 1 (Network Radius and Network Range). The network range
p(r) of a point p in a road network contains all points in the network whose
network distance to p is no greater than r, where r is called the network radius.

Definition 2 (MaxRS query in road network). Given G, a set of positive-
weighted facilities F , and a network radius value r, let p(r) be the network range
of a point p in the network, and Fp(r) be the set of facilities covered by p(r). A
Maximizing Range Sum (maxRS) query in a road network finds an optimal point
(i.e. position) p in G that maximizes:

∑
f∈Fp(r)

w(f).1

3 The Proposed Method

The previous method [14] generates segments from each facility f along the net-
work until distance reaches query radius r, then sorts the segments and uses line-
sweeping method to find final answer. This method takes time O(|E||F | log |F |)
in worst case. The performance is undesirable, especially when r is large, which
can be observed from the experimental results in Sect. 6.

Therefore, we hope to accelerate online query via some precomputed index.
A direct idea is to compute the optimal location p and its weight sum w for each
possible query radius r and store <r,w, p> as index entries. This is obviously
impossible since there are infinite number of distinct radius values. However,
we can substantially reduce the index to a feasible size by the following way:
(1) When radius r increases, the maximum weight sum w is non-decreasing.
Thus, we can categorize the naive index entries into equivalent classes, where
each class contains entries whose weights are the same. (2) For each class, store
only the entry with minimum r into index. For example, if for both radiuses r
and r′(r′ > r), the maximum weight sum can be achieved is w, we store only
<r,w, p>, and leave out <r′, w, p′>. The reduced index of previous example
(Fig. 1) is shown in Table 1.2

The reduced index size is upper bounded by
∑

f∈F w(f) since this is the
maximum number of distinct weight sum values. Then we have

∑
f∈F w(f) ≤

maxf∈F w(f) · |F | = O(|F |) when maxf∈F w(f) is constant, which is usually the
case.

The above index structure immediately leads to a simple binary search query
processing method with complexity O(log |F |).
1 W.l.o.g., we assume r and edge length are real numbers, and w(f) is constant integer.
2 Note that there may exist multiple optimal locations, but we store only one in the

index.
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Table 1. Example index

r MaxWeight OptPosition

0 8 [e1, 3]

1 13 [e1, 4]

3 16 [e1, 2]

5 18 [e1, 4]

Theorem 1 Given query radius r, assume r∗ is the largest radius in the index
that is smaller than or equal to r, then maxRS(r) = maxRS(r*).

Therefore, according to Theorem 1, given query r, we use binary search to find
r∗ in the index, and retrieve the index entry as maxRS result for r. For example,
if given r = 4 and the index in Table 1, we will return the entry <3, 16, [e1, 2]>.

4 Index Construction

In this section, we introduce the details of index construction.

Lemma 1 Given radius r, if a point p is in the network range of facility f (i.e.
f(r)), then f is in Fp(r), and vice versa.

Using Lemma 1, we can transfer the problem of finding an optimal location in
the network that can reach facilities with maximum total weight within radius
r to the problem of finding a position that can be reached by facilities with
maximum total weight within radius r.

Unlike the previous method [14] where r is known in advance, we do not
assume r during index construction, thus the aggressively generating segments
until reach length r is not applicable to our case. Therefore, we design an event-
driven algorithm which is essentially a simulation of the following process.

From each facility f , we generate directed cursors carrying weight w(f), and
go to every possible way along the network. We move all the cursors simultane-
ously. Whenever there are cursors meet together, we check at the meet position
(p) the total weight (w) of cursors have passed this position (we call it Location
Weight of p). If w is larger than the last indexed entry, we add new index entry
<R,w, p>, where R is the current total moving distance for each cursor.

The above moving process is driven by the following two kinds of events:

– Meet Event: There are cursors meet, i.e. two or more cursors having different
directions reach the same position on an edge.

– End Event: There are cursors reach the edge ends, i.e. nodes in the network.

Algorithm 1 shows the main construction process. Here we assume all facil-
ities are on edges but not on nodes, for ease of presentation. Thus we generate
two cursors for each f , one goes left (towards startnode) and another goes right
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(towards endnode), we call them reverse cursor of each other. A cursor c is
denoted as [facilityId, direction, position]. After generating all cursors, we orga-
nize them by the edge they belong to, and sort them according to their positions
(Lines 4–5). We call all the edges who have cursors on it as active edges (A).
Then we compute for each active edge the minimum distance required to reach
one of the above events (denoted as dmin), and choose among all the dmins
the global minimum one as the moving distance d (Lines 6–8) to move all the
cursors.

The while loop simulates the continuous moving process. During each itera-
tion, an optimization applied here is that (1) if an edge entry ee’s dmin(ee) > d,
we say its a general case edge. We just accumulate d to its need move distance m,
rather than actually move all the cursors on it. The new dmin(ee) is computed
as dmin(ee) − d (Lines 13–14); (2) if the edge’s dmin(ee) = d, we say it’s an
exact case edge. We know there must be at least one event occur on this edge
after moving all the cursors. Therefore, we check after moving:

– All the meet positions to see if a new index entry has to be added (Lines
17–19).

– All the cursors that reach edge ends, to see if they have fully passed through
this edge. If so, we add the facility this cursor belongs to to the edge’s fully
passed list FP (Line 22). We also need to erase the end cursors, and add new
ones onto the adjacent edges (Lines 23).

– Remove this edge from the active edges list if there’s no cursors on it.

Lemma 2 We say a facility f has fully passed edge e only if the total track of
all cursors generated from f has fully covered edge e. For example in Fig. 2(a),
c and c′ are the two cursors generated from f , and the dotted line represents the
total track of the two cursors. Although c′ has reached the edge end, the track
has not fully covered edge e yet, so we do not add f to e’s fully passed list until
c reaches edge end.

f

c c'

(a) Not Fully Pass

f2

c2 c2'

f3

c3c1'

(b) Compute dmin

Fig. 2. Examples

Lemma 3 To avoid redundant edge visiting, we only add a facility f ’s cursor c
to an edge e if the following conditions meet:

1. f is not in e’s fully passed list FP [e].
2. There is no other cursors of f that has same direction with c on e.
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Algorithm 1. IndexConstruction(E, V , F )
Input : The list of edges E, vertices V , and facilities F .
Output: The list of index entries I.

1 R ← 0; I,A, FP ← ∅ ;
2 d ← ∞; /* the global dmin */;

3 I ← I ∪ <0, fmax.w, fmax.pos>; /* fmax:the facility with max weight */;
4 for each f in F do

5 A ← A ∪ <f.eid,∞, 0, [f.id, left, f.pos], [f.id, right, f.pos]> ;

6 for each edge entry ee in A do

7 ee.dmin ← GetDmin(ee) ;
8 d ← ee.dmin < d ? ee.dmin : d; /* update global dmin */;

9 while I.back.weight <
∑

f∈F w(f) do

10 R ← R+ d; d ← ∞ ;
11 for each ee in A do

12 if ee.dmin > d then

13 ee.dmin ← ee.dmin − d ;
14 ee.m ← ee.m+ d; /* accumulate need move dist */;

15 else /* exact case edge */

16 move all cursors on ee with distance (ee.m+ d); ee.m ← 0 ;
17 for each meet position p on ee do

18 if GetLocationWeight(p, ee) > I.back.weight then

19 I ← I ∪ <R, p.weight, p.pos> ;

20 destroy meet cursors at p belonging to common facility ;

21 for each end cursor c on ee do

22 add c.fid to ee’s fully passed list FP[ee] with precheck ;
23 add c to adjacent edges with precheck; destroy c ;

24 destroy ee if no cursor on it; ee.dmin ← GetDmin(ee) ;

25 d ← ee.dmin < d ? ee.dmin : d; /* update global dmin */;

26 return I;

In the above processes, there are two technical problems:

– Given an edge entry ee with a list of cursors on it, how to compute dmin(ee).
– Given a position in the road network, how to compute its current location

weight.

We solve these two problems in the following sections.

4.1 Compute dmin for Each Edge

Algorithm 2 shows the process to compute dmin for an active edge. Recall that
dmin is the minimum distance required to reach one of the above events. We
first consider the distances that will trigger End Event: (1) the distance between
the leftmost go-left cursor and startnode (Line 4); (2) the distance between the
rightmost go-right cursor and endnode (Line 5).

Next, we consider the distances that will trigger Meet Event: Choose the
shorter list between go-left cursors list and go-right cursors list as S. For each
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cursor c in S, find its closest but not yet meet cursor c′ in another list. The meet
distance is computed as dist(c, c′)/2 (Lines 7–9).

From all the distances considered above, we choose the minimum one as
dmin(ee) and return it. Consider an illustrative example in Fig. 2(b). To compute
its dmin, we look at:

(1) the distance to reach left end: dist(startnode, c2) = 2.
(2) the distance to reach right end: dist(c′

2, endnode) = 2.
(3) the distance for meet event(assume S is go-right cursors): dist(c′

1, c2)/2 = 1.

Thus, the final dmin is 1.

Algorithm 2. GetDmin(ee)
Input : The edge entry ee.
Output: The minimum moving distance dmin to trigger an event.

1 d ← ∞ ;
2 GL ← sorted list of go-left cursors on ee ;
3 GR ← sorted list of go-right cursors on ee ;
4 d ← GL[first].dist < d ? GL[first].dist : d; /* trigger End Event */;
5 d′ ← ee.length − GR[last].dist; d ← d′ < d ? d′ : d; /* trigger End Event */;
6 S ← the shorter list between GL and GR ;
7 for each cursor c in S do
8 c′ ← the closest but not meet yet cursor in the other list ;
9 d′ ← dist(c, c′)/2; d ← d′ < d ? d′ : d; /* trigger Meet Event */;

10 return d;

4.2 Compute Location Weight

Algorithm 3 addresses the problem of retrieving the current location weight of a
given position in the network. Given a position p on edge entry ee, its location
weight is composed by two parts:

1. The weights of facilities that fully passed edge ee. This can be obtained by
checking ee’s fully passed list FP [ee] (Line 1).

2. The weights of facilities that passed p, but not in ee’s fully passed list, which
means they must have active cursors on ee. Thus, we retrieve them by looking
at all the go-left cursors on the left of p, and all the go-right cursors on the
right of p. For each such cursor c, assume its facility is f , we check if they
actually passed p in the following way:

– If f is not on edge ee, then we know c must get on ee from one end and
moving towards another end, so c must have passed p.

– If f is on edge ee: (1) if p is in between the positions of f and c, then c
must have passed p; (2) If p is not in between, then the possible positions
of p must be in case p1 or p2 shown in Fig. 3(a). We can judge whether c or
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its reverse cursor c′ passed p by checking whether dist(c, f) ≥ dist(f, p),
if so, we add f as a passed facility. (This comparison is to address the
special case in Lemma 2 where f is added to fully passed list only if its
cursors’ moving track fully covers the edge.)

We use set F ′ to store passed facilities to avoid redundant weight accumula-
tion.

For example, the location weight of p in Fig. 3(b) is computed as w(f2) +
w(f3).

Algorithm 3. GetLocationWeight(p, ee)
Input : The edge entry ee, and a position p on it.
Output: The current location weight of p.

1 F ′ ← ∅; w ←∑f∈FP [ee] w(f) ;

2 for each cursor c on ee do
3 if c.pos ≤ p.pos and c.dir = left then
4 if f not on ee or f.pos ≥ p.pos or dist(c, f) ≥ dist(f, p) then
5 F ′ ← F ′ ∪ f ; /* f: the facility c belongs to */;

6 else if c.pos ≥ p.pos and c.dir = right then
7 if f not on ee or f.pos ≤ p.pos or dist(c, f) ≥ dist(f, p) then
8 F ′ ← F ′ ∪ f ;

9 w ← w +
∑

f∈F ′ w(f) ;

10 return w;

c c
f

p1

f

p2

(a) Possible Positions

f2

c2 c2'

f3

c4c1'

p

c3'

(b) Compute Location Weight

Fig. 3. Examples

4.3 Running Example

The running of Algorithm 1 on the road network in Fig. 1 is shown in Table 2.
At the beginning (Round 0), the total moving distance R is 0, and the initial
index entry <0, 8, [e1, 3]> is added into index I. Two opposite cursors from each
facility are generated and organized by edges (shown in column 2). For each
edge entry, its need move distance m is initialized as 0, and dmin is computed
by Algorithm 2 (equal to 1 for all edges in this example). Thus, the global dmin
d is 1.

In Round 1, we move all the cursors with distance 1 and show the current
active edges. The underlined cursors represent a meet event, and a new index
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Table 2. Index construction: running Algorithm 1 on example in Fig. 1

Round# Active Edges (A) FP Index(I) R d

0 < e0, 1, 0, [f0, l, 1], [f0, r, 1] > ∅ 0, 8, [e1, 3] 0 1

< e1, 1, 0, [f1, l, 3], [f1, r, 3], [f2, l, 5], [f2, r, 5] >

< e2, 1, 0, [f3, l, 3], [f3, r, 3] >

1 < e1, 1, 0, [f0, r, 0], [f1, l, 2], [f1, r, 4], [f2, l, 4] > e0 : f0 0, 8, [e1, 3] 1 1

< e2, 1, 0, [f2, r, 0], [f3, l, 2] > 1, 13, [e1, 4]

2 < e1, 1, 0, [f0, r, 1], [f1, l, 1], [f2, l, 3], [f1, r, 5] > e0 : f0 0, 8, [e1, 3] 2 1

< e2, 1, 0, [f2, r, 1], [f3, l, 1] > 1, 13, [e1, 4]

3 < e0, 2, 0, [f1, l, 2] > e0 : f0 0, 8, [e1, 3] 3 2

< e1, 2, 0, [f0, r, 2], [f2, l, 2], [f3, l, 6] > e1 : f1 1, 13, [e1, 4]

< e2, 2, 0, [f1, r, 0], [f2, r, 2] > e2 : f3 3, 16, [e1, 2]

4 < e0, 2, 0, [f2, l, 2] > e0 : f0 0, 8, [e1, 3] 5 -

< e1, 2, 0, [f0, r, 4], [f3, l, 4] > e1 : f1 1, 13, [e1, 4]

< e2, 2, 0, [f1, r, 2] > e2 : f3 3, 16, [e1, 2]

5, 18, [e1, 4]

entry <1, 13, [e1, 4]> is added. f0 as a fully passed facility of e0, is added to FP .
The new global dmin is computed as 1.

We repeat the above moving process, until the weight of last indexed entry
equal to

∑
f∈F w(f). After 4 rounds, the final index is shown in column 4.

5 Optimizations

Next, we present optimization techniques to improve index construction.

The Upper Bound Filter (Opt1). Given the network G and the set of facil-
ities F , the index entries (i.e. the radius r required to reach each distinct weight
sum) are fixed. To obtain the r values, in each while round in Algorithm 1, we
choose the global dmin as the moving distance. Therefore, the total indexing
time is closely related to dmin in each round. The larger moving distance in
each round, the less number of rounds to go through, and the earlier we fin-
ish the index construction. So the goal is to move as long as possible in each
round. Another observation is that around 90 % of edge entries (statistics from
experimental results) achieve dmin at meet events.

Based on these observations, we propose a simple filtering method used dur-
ing computing dmin for each edge e: before checking the meet cases from Line
6 in Algorithm 2, we compute the total weight of all cursors on edge e and all
facilities that have fully passed e. If this weight is no larger than the last indexed
entry, we know even there are meet cases occur in this edge, there will be no
new index entries to be added. Therefore, we can safely skip the Lines 6–10. To
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be more specific, we add the following line before Line 6 in Algorithm 2: return
d if (

∑
c∈e w(c) +

∑
f∈FP [e] w(f) ≤ I.back.weight).

For example, at the Round 1 in Table 2, after checking end event distances
on edge e2, we compute w(f2) + w(f3) = 7 < 13, we know any meet event occur
on e2 will not generate new index entry, so we directly return 2 rather than 1 as
dmin(e2).

The Exact Filter (Opt2). The above filtering method uses an upper bound
to estimate the location weight when meet event occurs. Although it already
achieves good performance improvement (saves 21 % construction time), the
bound is not tight and can be further improved with a bit more expenses.

Using the same example in Table 2, after checking end event distances on
edge e1 in Round 1, if the upper bound filter is applied, we get w(f0) + w(f1) +
w(f2) = 16 > 13, therefore the filter has no effect. However, when f0’s go-right
cursor and f1’s go-left cursor meet, the actual location weight at meet position
is w(f0) + w(f1) = 11 < 13, so we can still skip this meet distance 1.

Thus, instead of using total weight of cursors and fully passed facilities as an
estimation, we compute the exact location weight at future meet positions, and
compare it with last indexed entry to decide whether to use this dmin or not.
Algorithm 4 presents the details. It is similar to Algorithm 3 with the difference
that Algorithm 3 computes the current location weight given a position p, while
Algorithm 4 computes the future location weight at the meet position given two
will meet cursors.

Continue with the above example, if exact filter is applied, we get dmin(e1) =
2, therefore, the global dmin after Round 1 is increased to 2, which effectively
reduces one round. This optimization technique reduces nearly half of the total
round number and index time, and if used together with upper bound filter,
achieves further speed-up as shown in Sect. 6.

Algorithm 4. ExactFutureLocationWeight(ee, c1, c2)
Input : The edge entry ee, and two will meet cursors c1 and c2 on it.
Output: The location weight of middle position p between c1 and c2 after meet.

1 F ′ ← ∅; w ←∑f∈FP [ee] w(f) ;

2 for each cursor c on ee do
3 if c.pos < c1.pos and c.dir = left then
4 if f not on ee or f.pos ≥ c1.pos or dist(c, f) ≥ dist(f, c1) then
5 F ′ ← F ′ ∪ f ; /* f: the facility c belongs to */;

6 else if c1.pos ≤ c.pos and c.pos ≤ c2.pos then /* cursors in between */

7 F ′ ← F ′ ∪ f ;
8 else if c.pos > c2.pos and c.dir = right then
9 if f not on ee or f.pos ≤ c2.pos or dist(c, f) ≥ dist(f, c2) then

10 F ′ ← F ′ ∪ f ;

11 w ← w +
∑

f∈F ′ w(f) ;

12 return w;
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6 Experiment

In this section, we perform empirical experiments to confirm the substantial
query performance improvement by our proposed method in practice.

Experiment Setting. In the experiment, we use two real network datasets,
the North American (NA) and San Francisco (SF) road network, same as the
previous work [14]. The NA dataset is obtained from [15] and SF from [16].
The facilities are generated randomly in the network with uniform distribution
in terms of road network distance, and their weights are within range (0, 50].3

The cardinalities of datasets are shown in Table 3. The default facility number
is 12500 if not explicitly mentioned. The maximum moving radius is set to 1000
while index construction.

We compare our method with the segment generation based algorithm [14]
(denoted as SEG) mentioned before; our index-based algorithm is denoted as
IND. Both methods are implemented in C++, and experiments are conducted
on a server with Quad-Core 2.4 GHz Processor and 96 GB RAM. Although the
method described in [14] generates segments in a DFS fashion, we implemented
both the DFS and BFS versions. The results show that the DFS version is
much slower than BFS due to the significant amount of redundant segments
generation, therefore, in the following demonstrations, we compare our method
with the BFS version result.

Table 3. Dataset statistics

Dataset Nodes Edges Avg.EdgeLength Facilities

NA 175813 179179 4.028 12500, 25000, 50000, 100000

SF 174956 223001 8.782 12500, 25000, 50000, 100000

Varying Query Radius Size. The first set of experiments compares the per-
formance of both methods on various query radiuses. The four groups of radius
ranges are (0, 50], (50, 100], (100, 200] and (200, 400]. We produce 100 queries
with lengths generated uniformly from each group, and show the total query
time for each group in Fig. 4.

It can be seen that our method is around 6+ orders of magnitude faster than
SEG. This demonstrates the substantial advantage of our index-based method to
efficiently support large or batch query workloads. When query range increases,
the running time of our method stays steady due to the high performance of sim-
ple binary search, while SEG takes much more time when query radius rises since
they need to generate and process more segments with longer radius. This is more
obvious on the SF dataset as the density of edges in SF is higher than NA.
3 We also test on another popular real dataset(California road network) from [15],

where the 87635 facilities are carefully generated using the real-life facility distrib-
ution. The result trend is similar with other datasets hence omitted due to space
limitation.
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Vary Facility Number. The second group tests method scalability. We start
with a set of 12500 facilities, and increase its size till 4x, i.e. 100000, and measure
the total query time of both methods on 100 queries randomly generated within
length (0,100]. The result is plotted in Fig. 5. Clearly, our method has much
better scalability than SEG as SEG’s query time climbs up quickly when the data
size increases. This is expected as our query time increases only logarithmically
with facility number, while SEG’s increases superlinearly.
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Fig. 5. Vary facility number

Index Construction. We show statistics about index construction in Table 4
to demonstrate the performance of different optimizations introduced in Sect. 5.
The results are obtained on NA dataset with 12500 facilities. Results for other
settings are similar and therefore omitted. In the table, Original means no opti-
mization, and Opt12 means both optimizations are adopted. It is shown that
Opt1 itself reduces 25 % of the Original round number, and achieves a 21 %
acceleration of the index construction. While Opt2, if used alone, leads to 50 %
reduction of the round number and 46 % of the total construction time. This is
expected since Opt2 uses a tighter bound and thus achieves a larger global dmin
in each round compared with Opt1. Finally, if both optimizations are applied,
although the round number is still decreased by 50 % (as it depends on the
tighter bound), the total time is further reduced to 51 % of the Original time.
This is because in the cases where both Opt1 and Opt2 take effects, Opt12 uses
Opt1 which requires less processing time than Opt2.
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Table 4. Index construction optimizations

Original Opt1 Opt1/orig Opt2 Opt2/orig Opt12 Opt12/orig

Round# 199928 150421 75 % 101246 50 % 101246 50 %

Time(s) 37661 29893 79 % 20404 54 % 19274 51 %

Size 76 KB

The index size is 76 KB despite what optimizations are used to construct it.
The small index size further confirms the superiority and practicability of our
method.

7 Related Work

Facility location optimization problem finds the optimal location by maximiz-
ing/minimizing some objective functions such as location influence (i.e. total
weight of its RNNs) [10], average min-dist (distance from each object to its nearest
facility) [11], total weighted distance to RNNs [12], and so on (see [13] for survey).

The maxRS problem can been seen as another instance of the facility loca-
tion problem. Considering the axis-parallel rectangular query range, Nandy
et al. [2] proposed an O(n log n) time algorithm to solve it using the plane-
sweeping technique [1] with interval trees. Choi et al. [3] proposed an external
memory solution following the distribution sweep paradigm [7], and the work was
further extended in [5] by providing solutions to the AllMaxRS problem, which
retrieves all optimal locations achieving the maximum total covered weight. Tao
et al. [4] studied the approximate maxRS problem, and obtained a (1 − ε)-
approximate answer with high confidence in time O(n log 1

ε + n log log n) via
grid sampling.

Another variation of maxRS problem is maximizing circular range
sum(maxCRS) problem, meaning that query range is a circle. Chazelle et al. [18]
solved the maxCRS problem in time O(n2). Aronov et al. [19] proposed a (1−ε)-
approximate algorithm with complexity O(nε−2 log n) for unweighted points, and
O(nε−2 log2 n) for weighted case. Choi et al. [3] solved the maxCRS problem by
first converting it to the maxRS problem.

All the above maxRS related work assume Euclidean space. The only existing
work, as far as we know, that studied the maxRS problem in road network
is [14]. Their proposed method finds answer for a particular query radius r in
time O(|E||F | log |F |), which is very time-consuming when the network or r is
large. We devise an index-based method that answers queries in time O(log |F |)
with O(|F |) index size, hence provides significant speed-up to existing method
and is beneficial to frequent queries.

8 Conclusion

In this paper, we study the maximizing range sum problem in road network.
The only existing work [14] proposed an external-memory algorithm that solves
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one specific query with O(|E||F | log |F |) time. It is not satisfactory for mobile
or web services dealing with millions of concurrent user queries or batch queries.
We propose an index-based method that results in O(log |F |) online query time
(6+ orders of magnitude faster than existing method in practice), with a tiny
index of size linear in facility number |F |. Besides, we propose optimization
techniques that achieve around 50 % reduction of the offline index construction
time. Experiments on various settings verify the efficiency and scalability of our
method.
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