
Integration of Probabilistic Information

Fereidoon Sadri(B) and Gayatri Tallur

Department of Computer Science, University of North Carolina,
Greensboro, NC, USA
f sadri@uncg.edu

Abstract. We study the problem of data integration from sources
that contain probabilistic uncertain information. Data is modeled by
possible-worlds with probability distribution, compactly represented in
the probabilistic relation model. Integration is achieved efficiently using
the extended probabilistic relation model. We study the problem of deter-
mining the probability distribution of the integration result. It has been
shown that, in general, only probability ranges can be determined for
the result of integration. We show that under intuitive and reasonable
assumptions we can determine the exact probability distribution of the
result of integration. Our methodologies are presented in possible-worlds
as well as probabilistic-relation frameworks.
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1 Introduction

Information integration and modeling and management of uncertain information
have been active research areas for decades, with both areas receiving significant
renewed interest in recent years (e.g., [8,11]). The importance of information
integration with uncertainty, on the other hand, has been realized more recently
(e.g., [2,12]). In a world with ever increasing data generated by both humans
and machines alike, the field of computer science has seen a transition from
computation-intensive applications to data-intensive ones. Most of the data,
in particular data discovered through data mining and knowledge discovery, is
uncertain. Hence, integration of uncertain data has become a necessity for many
modern applications. It has been observed that “While in traditional database
management managing uncertainty and lineage seems like a nice feature, in data
integration it becomes a necessity” [12].

The widely accepted conceptual model for uncertain data is the possible-
worlds model [1]. For practical applications, a representation of choice is the
probabilistic relation model [10], which provides a compact and efficient repre-
sentation for uncertain data. It has been shown that integration of uncertain
data represented in the probabilistic relation model can be achieved efficiently
using the extended probabilistic relation model [6].
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In this paper we concentrate on the integration of probabilistic uncertain data.
Integration in the probabilistic relation framework is the most efficient approach
but this approach faces challenges when probabilities are included. There is no
clear way to associate probabilities with extended probabilistic relations (unlike
probabilistic relations). Further, it has been shown that, even in the possible-
worlds model, it is only possible to obtain probability ranges for the result of
data integration [14]. In this paper we study the problem of determining the
probability distribution of the integration result in the two main frameworks:
The probabilistic possible-worlds model, and the probabilistic relation model.
We show that, under intuitive and reasonable assumptions, we can determine
the exact probability distribution of integration in either of the frameworks.
Further, we show that the two approaches are equivalent while the probabilistic
relation approach provides a significantly more efficient method in practice.

2 Preliminaries

Foundations of uncertain information integration were discussed in the seminal
work of Agrawal et al. [2]. The goal of integration is to obtain the best pos-
sible uncertain database that contains all the information implied by sources,
and nothing more. We presented an alternative integration approach in [14].
These approaches are based on the well-known possible-worlds model of uncer-
tain information [1]. The possible-worlds model is widely accepted as the con-
ceptual model for uncertain information, and is used as the theoretical basis
for operations and algorithms on uncertain data. But it is not a suitable repre-
sentation for the implementation of uncertain information systems due to lack
of efficiency. Instead, compact representations, such as the probabilistic relation
model [9,10], are more appropriate for the implementation. We also studied the
problem of integration of information represented by probabilistic relations in
[6], and presented efficient algorithms for the integration. In this section, we will
review some of the observations and results from these works.

2.1 Integration Algorithm for Uncertain Data Represented in the
Possible-Worlds Model

We begin with the following definition of uncertain database from [2].

Definition 1. (Uncertain Database) An uncertain database U consists of
a finite set of tuples T (U) and a nonempty set of possible worlds PW (U) =
{D1, . . . , Dn}, where each Di ⊆ T (U) is a certain database.

We presented a logic-based approach to the representation and integration of
uncertain data in the possible-world model in [14], and showed it was equivalent
to the integration approach of [2]. Algorithm 1 below is an alternative integration
algorithm. It is easy to show it is equivalent to the aforementioned algorithms.
First, we need the following definition:
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Definition 2. (Compatible possible-world relations). Let S and S′

be information sources with possible worlds {D1, . . . , Dn} and {D′
1, . . . , D

′
n′},

respectively. Let T and T ′ be the tuple-sets of S and S′. A pair of possible-world
relations Di and D′

j are compatible if for each tuple t ∈ T ∩ T ′ either both Di

and Dj contain t, (i.e., t ∈ Di and t ∈ D′
j), or neither Di nor D′

j contain t (i.e.,
t �∈ Di and t �∈ D′

j). Otherwise Di and D′
j are not compatible.

Given information sources S and S′, the integration algorithm (Algorithm1)
considers all possible-world pairs from the two sources. If they are compatible,
their union forms a possible-world of the integration.

Algorithm 1. Integration of uncertain data represented in the possible-worlds
model
Given information sources S and S′ with possible worlds {D1, . . . , Dn} and
{D′

1, . . . , D
′
n′} and tuple sets T and T ′

For every pair of possible-world relations Di ∈ S,D′
j ∈ S′

if Di and D′
j are compatible then let Qij = Di ∪ D′

j

The possible-worlds model of the result of integrating S and S′ has the set of possible-
world relations Qij for every compatible pair Di and D′

j, and the tuple set T ∪ T ′.

3 Integration of Probabilistic Uncertain Data

3.1 Probabilistic Possible-Worlds Model

Definition 3. A probabilistic uncertain database U consists of a finite set of
tuples T (U) and a nonempty set of possible worlds PW (U) = {D1, . . . , Dn},
where each Di ⊆ T (U) is a certain database. Each possible world Di has a
probability 0 < P (Di) ≤ 1 associated with it, such that

∑n
i=1 P (Di) = 1.

Our goal is to integrate information from sources containing probabilistic
uncertain data, and to compute the probability distribution of the possible-
worlds of the result of the integration. It has been shown that, in general, exact
probabilities of the result of integration can not be obtained [14]. Rather, only a
range of probabilities can be computed for each possible world in the integration.
In this paper, we show that, under intuitive and reasonable assumptions, it is
possible to obtain exact probabilities for the result of integration.

3.2 Integration in the Probabilistic Possible-Worlds Framework

Let S and S′ be sources with possible worlds {D1, . . . , Dn} and {D′
1, . . . , D

′
n′},

respectively. Consider the bi-partite graph G defined by the relation (Di,D
′
j): Di

and D′
j are compatible (See Definition 2). The graph G is called the compatibility

graph for sources S and S′: There is an edge between Di and D′
j if they are

compatible. It has been shown that [14]
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– Each connected component of G is a complete bipartite graph.
– Let H be a connected component of G. Then

∑
Di∈H P (Di) =

∑
D′

j∈H P (D′
j).

These conditions have been called probabilistic constraints in [14].

Probabilistic constraints are imposed by the semantics of probabilistic inte-
gration. But it is unlikely that they hold in practice. We regard these constraints
as important means to adjust (or revise) the original probabilities of the sources
when the constraints are violated [15]. Henthforth we assume the probabilities
have been adjusted and probabilistic constraints hold.

Example 1. Consider the possible worlds of information sources S and S′ shown
in Figs. 1 and 2.

The compatibility bipartite graph G for the possible-world relations of these
sources is shown in Fig. 3. Note that we have P (D1) +P (D2) = P (D′

1) +P (D′
2)

and P (D3) = P (D′
3) + P (D′

4) by the probabilistic constraints. ��

student course
Bob CS100

D1

student course
Bob CS100
Bob CS101

D2

student course
Bob CS101

D3

Fig. 1. Possible Worlds of source S

student course
Bob CS100

D’1

student course
Bob CS100
Bob CS201

D’2

student course
Bob CS201

D’3

student course
Bob CS201
Bob CS202

D’4

Fig. 2. Possible Worlds of source S′

Fig. 3. Compatibility Graph for Example 1

There are 6 possible-world relations in the result of integration, corresponding
to the two connected components of the compatibility graph. These 6 relations
are shown in Fig. 6. Let us concentrate on the top connected component portion
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of the compatibility bipartite graph G. This connected component gives rise to
4 possible-world relations corresponding to D1 ∧ D′

1, D1 ∧ D′
2, D2 ∧ D′

1, and
D2 ∧D′

2. We want to compute the probabilities of these possible-world relations,
P (D1 ∧ D′

1), P (D1 ∧ D′
2), P (D2 ∧ D′

1), and P (D2 ∧ D′
2), given the probability

distribution of the possible worlds of the sources, P (D1), P (D2), P (D′
1), p(D

′
2).

We have four unknowns. We can write the following four equations:
P (D1 ∧ D′

1) + P (D1 ∧ D′
2) = P (D1),

P (D2 ∧ D′
1) + P (D2 ∧ D′

2) = P (D2),
P (D1 ∧ D′

1) + P (D2 ∧ D′
1) = P (D′

1),
P (D1 ∧ D′

2) + P (D2 ∧ D′
2) = P (D′

2).
But, unfortunately, these equations are not independent. Note that the prob-

abilistic constraint requires that P (D1) + P (D2) = P (D′
1) + P (D′

2). Hence, any
one of the 4 equations can be obtained from the other 3 using the probabilistic
constraint. Hence we can only compute a probability range for each of these four
possible-world relation.

So, how can we obtain exact probabilities for the possible-world relations of
an integration? We make the following partial independence assumption.

Partial Independence Assumption: The only dependencies among the prob-
abilities of possible-world relations are those induced by probabilistic constraints.

Armed with this intuitive and reasonable assumption, we are able to compute
exact probabilities for the result of an integration. We use our example to explain
the approach, then present the solution for the general case.

Example 2. Consider again the top connected component in the compatibility
graph of Example 1. The structure of the graph tells us that if we have the
evidence that the correct database of the first source S is D1, then we know the
correct database of the second source S′ is either D′

1 or D′
2. Similarly, if we have

the evidence that the correct database of the first source S is D2, then we know
the correct database of the second source S′ is either D′

1 or D′
2. But, by the

partial independence assumption, the knowledge of D1 or D2 does not influence
the probability of D′

1. In other words, P (D′
1 | D1) is equal to P (D′

1 | D2). Since
P (D′

1 ∧ D1) = P (D′
1 | D1)P (D1) and P (D′

1 ∧ D2) = P (D′
1 | D2)P (D2) we get

P (D1 ∧ D′
1)

P (D2 ∧ D′
1)

=
P (D′

1 ∧ D1)
P (D′

1 ∧ D2)
=

P (D1)
P (D2)

This serves as an additional equation that enables us to solve for the 4 unknowns.
We get:

P (D1 ∧ D′
1) = P (D1)P (D′

1)/(P (D1) + P (D2))
P (D2 ∧ D′

1) = P (D2)P (D′
1)/(P (D1) + P (D2))

P (D1 ∧ D′
2) = P (D1)P (D′

2)/(P (D1) + P (D2))
P (D2 ∧ D′

2) = P (D2)P (D′
2)/(P (D1) + P (D2))

The observations of the above example can be generalized. Let S1 and
S2 contain information in probabilistic possible-worlds model. Consider a con-
nected component G1 of the compatibility bipartite graph G of S1 and S2. Let
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D1, . . . , Dm and D′
1, . . . , D

′
m′ be the nodes of G1 corresponding to possible worlds

of S1 and S2, respectively. We can write the following m + m′ equations:

m′∑

j=1

P (Di ∧ D′
j) = P (Di), i = 1, . . . ,m; and

m∑

i=1

P (Di ∧ D′
j) = P (D′

j), j = 1, . . . ,m′

But m + m′−1 of these equations are independent. Any one can be obtained
from the rest using the probabilistic constraint

∑m
i=1 P (Di) =

∑m′

j=1 P (D′
j).

On the other hand, we have m × m′ unknowns P (Di ∧ D′
j), i = 1, . . . ,m, j =

1, . . . ,m′. Additional equations are obtained from the independence assumption
P (D1∧D′

j)

P (Di∧D′
j)

= P (D1)
P (Di)

. It can be shown that (m − 1) × (m′ − 1) of these equations
are independent. Together with the m + m′ − 1 equations of the first group we
have the needed m×m′ equations to solve for the unknowns. The solutions are,

P (Di ∧ D′
j) =

P (Di)P (D′
j)

P

where P is the probabilistic constraint constant P =
∑m

i=1 P (Di) =
∑m′

j=1 P (D′
j).

4 Integration in the Probabilistic Relation Framework

A number of models have been proposed for the representation of uncertain
information such as the “maybe” tuples model [7,13], set of alternatives or block-
independent disjoint model (BID) [4,5], the probabilistic relation model [9,10],
and the U-relational database model [3]. The probabilistic relation model has
been widely accepted for compact representation of uncertain and probabilistic
data. It is a complete model: Any uncertain data in the (probabilistic) possible-
worlds model can be represented in an equivalent probabilistic relation [10].
Intuitively, this representation is based on the relational model where each tuple
t is associated with a propositional logic formula f(t) (called an event in [9].)
The Boolean variables in the formulas are called event variables. A probabilistic
relation r represents the set of possible-world relations corresponding to truth
assignments to the set of event variables. A truth assignment µ defines a possible-
world relation rµ = {t | t ∈ r and f(t) = true under µ}.

In the previous section we presented an approach for the integration of
probabilistic uncertain data in the probabilistic possible-worlds framework. As
mentioned earlier, the possible-worlds framework is not suitable for practical
applications. The size of the input, namely the possible-worlds relations, can
be exponential in the size of the equivalent representation in the probabilistic
relation framework. Further, we have a very efficient integration algorithm in
the probabilistic relation framework. In this section we concentrate on the prob-
lem of determining the probability distribution for the integration result in the
probabilistic relation framework.
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4.1 Probabilistic Data

A probabilistic relation can represent probabilistic possible-worlds data by asso-
ciating probabilities with event variables. Let r be a probabilistic relation. We
can compute the probabilities associated with possible-world relations repre-
sented by r as follows. Let V = {a1, a2, . . . , ak} be the set of event variables of
r. Let µ be a truth assignment to event variables. µ defines a relation instance
rµ = {t | t ∈ r and f(t) = true under µ}. The probability associated with rµ is∏

µ(aj)=true P (aj)
∏

µ(aj)=false(1−P (aj)). Note that this formula is based on the
assumption that event variables are independent of each other. A possible-world
relation ri of r can result from multiple truth assignments to event variables, in
which case the probability of ri, P (ri) is the sum of probabilities of rµ for all
truth assignments µ that generate ri.

Example 3. Consider the possible worlds of information sources S and S′ from
Example 1, shown in Figs. 1 and 2. Assume the probability distributions are
P (D1) = 0.3, P (D2) = 0.5, P (D3) = 0.2, P (D′

1) = 0.35, P (D′
2) = 0.45, P (D′

3) =
0.05, and P (D′

4) = 0.15. Algorithms for producing probabilistic relations for
uncertain probabilistic databases have been presented in [6,10]. We have used
the algorithm of [6] to obtain the probabilistic relations r1 and r2 of Fig. 4
for the uncertain probabilistic databases of Figs. 1 and 2. In Fig. 4, b1, b2, b3, c1
and c2 are event variables, and column E records the event formulas associated
with each tuple. Probabilities of the event variables are also computed by the
algorithm and are: P (b1) = 0.35, P (b2) = 9

13 , P (b3) = 0.25, P (c1) = 0.2, and
P (c2) = 0.625. ��

student course E

Bob CS100 ¬c1
Bob CS101 c1 ∨ c2

pr-relation r

student course E

Bob CS100 b1 ∨ b2
Bob CS201 ¬b1
Bob CS202 ¬b1 ∧ ¬b2 ∧ ¬b3

pr-relation r′

Fig. 4. Probabilistic relations for sources S and S′ of Example 1

4.2 Integration of Uncertain Data Represented in the Probabilistic
Relation Model

As mentioned earlier, for efficiency reasons a compact representation of uncertain
data is utilized in practice. We will summarize an algorithm for the integration
of uncertain data represented in the probabilistic relation model from [6]. First
we need the following definition.

Definition 4. An extended probabilistic relation (epr-relation, for short) is a
probabilistic relation with a set of event constraints. Each event constraint is a
propositional formula in event variables.
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Semantics of an extended probabilistic relation is similar to that of proba-
bilistic relation, with the exception that only truth assignments that satisfy event
constraints are considered. More specifically, A truth assignment µ to event vari-
ables is valid if it satisfies all event constraints. A valid truth assignment µ defines
a relation instance rµ = {t | t ∈ r and f(t) = trueunder µ}, where f(t) is the
event formula associated with tuple t in r. The extended probabilistic relation r
represents the set of relations, called its possible-world set, defined by the set of
all valid truth assignments to the event variables. We will use the abbreviation
epr-relation for extended probabilistic relation henceforth.

Given information sources S and S′, let r and r′ be the probabilistic relations
that represent the data in S and S′, respectively. We represent a tuple in a proba-
bilistic relation as t@f , where t is the pure tuple, and f is the propositional event
formula associated with t. Let r = {t1@f1, . . . , tn@fn}, where fi is the event for-
mula associated with the tuple ti. Similarly, let r′ = {u1@g1 . . . , um@gm}. We
assume the set of event variables of r (i.e., event variables appearing in for-
mulas f1, . . . , fn) and those of r′ (i.e., event variables appearing in formulas
g1, . . . , gm) to be disjoint. If not, a simple renaming can be used to make the two
sets disjoint. r and r′ can have zero or more common tuples. Assume, without
loss of generality, that r and r′ have p tuples in common, 0 ≤ p ≤ min(n,m),
t1 = u1, . . . , tp = up. The integration algorithm is represented in Algorithm 2.
In Algorithm 2, fi ≡ gi is equivalent to the logical formula (fi → gi)∧ (gi → fi).
We will use the notation q = r � r′ to mean that q is the epr-relation that is the
result of integration of probabilistic relations r and r′.

Algorithm 2. Integration of uncertain data represented by probabilistic rela-
tions
Given information sources S and S′, let r and r′ be the probabilistic relations that
represent the data in S and S′. The result of integration of S and S′ is represented by
an epr-relation q obtained as follows:

– Copy to q the tuples in r that are not in common with r′

– Copy to q the tuples in r′ that are not in common with r For each of the common
tuples, copy to q the tuple either from r or from r′.

– For each common tuple ti, add a constraint fi ≡ gi, to the set of event constraints of
q, where fi and gi are the event formulas associated with ti in r and r′, respectively.

It has been shown in [6] that Algorithm 2 is correct. That is, when q = r� r′

is obtained by this algorithm, then the possible-worlds of q coincide with
the possible-worlds obtained by integrating possible-worlds of r and r′ by
Algorithm 1.

The complexity of Algorithm 2 is O(n log n), where n is the size of input (pr-
relations of the sources). While the complexity of the possible-worlds integration
algorithm (Algorithm 1) is quadratic in the size of its input (possible-world
relations of the sources) which itself can be exponential in the size of the input
of Algorithm 2.
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student course E

Bob CS100 ¬c1
Bob CS101 c1 ∨ c2
Bob CS201 ¬b1
Bob CS202 ¬b1 ∧ ¬b2 ∧ ¬b3

¬c1 ≡ b1 ∨ b2
epr-relation q = r � r′

Fig. 5. Extended Probabilistic relation for the integration of sources S and S′

Example 4. The result of integration of probabilistic relations of Example 3
(which themselves are equivalent to the possible-worlds relations of Example 1)
is the epr-relation of Fig. 5, obtained using Algorithm 2. �

4.3 Determining Probabilities for Extended Probabilistic Relations

While probability computation is straightforward for probabilistic relations as
discussed in Sect. 4.1, we do not have a general approach for probability compu-
tation for extended probabilistic relations. The reason is that we can no longer
assume event variables are independent. Event constraints impose certain depen-
dencies among event variables. Indeed, if we assume event variables are inde-
pendent, the sum of the probabilities calculated for the possible-worlds of an
epr-relation is not equal to 1. This is due to the fact that only a subset of
all possible-world relations, those that correspond to valid truth assignments
to event variables, are taken into account. We need an approach for probabil-
ity computation for extended probabilistic relations. If not, we are forced to
use the highly inefficient probabilistic possible-worlds approach for the inte-
gration of probabilistic data. Further, our probability computation approach
for epr-relations must be equivalent to the possible-worlds approach. In other
words, we have two conceptually equivalent methodologies for probabilistic data:
the possible-worlds (highly inefficient) and probabilistic relation (efficient). But
whatever we achieve in the probabilistic relation domain must coincide with the
possible-worlds domain.

We show that under an intuitive and reasonable assumption regarding the
correlation of event variables of epr-relations we are able to compute the proba-
bilities of the result of integration. Further, this assumption is closely related to
the Partial Independence Assumption in the possible-worlds domain (discussed
in Sect. 3.1).

Partial Independence Assumption for Extended Probabilistic
Relations: Event variables are independent except for the relationships induced
by the event constraints.

The following example shows how this assumption allows us to compute
probabilities for the extended probabilistic relation framework. We will discuss
the correctness of this approach in the next section (Sect. 5).
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student course
Bob CS100
(D1,D’1)

student course
Bob CS100
Bob CS201
(D1,D’2)

student course
Bob CS100
Bob CS101
(D2,D’1)

student course
Bob CS100
Bob CS101
Bob CS201
(D2,D’2)

student course
Bob CS101
Bob CS201
(D3,D’3)

student course
Bob CS101
Bob CS201
Bob CS202
(D3,D’4)

Fig. 6. Possible-world relations of the result of integration of sources S and S′

Example 5. Let’s go back to Example 4. The result of integration is the epr-
relation shown in Fig. 5. The possible-worlds relations of this epr-relation are
shown in Fig. 6.

How can we calculate the probability distribution of the result of integra-
tion (possible-world relations of Fig. 6)? The event-variable formulas for the
6 possible-world relations of the integration in this case are ¬c1 ∧ ¬c2 ∧ b1,
¬c1 ∧ ¬c2 ∧ ¬b1 ∧ b2, ¬c1 ∧ c2 ∧ b1, ¬c1 ∧ c2 ∧ ¬b1 ∧ b2, c1 ∧ ¬b1 ∧ ¬b2 ∧ b3, and
c1 ∧ ¬b1 ∧ ¬b2 ∧ b3.

By the partial independence assumption event variables are independent
except for the relationships induced by the event constraints. The constraint
¬c1 ≡ b1 ∨ b2 induces a relationship between c1 on one hand, and b1 and b2
on the other. The rest are still independent. So, for example, c1 and c2 are
independent, and so are c2 and b1; etc. In particular, b1 and b2 are also inde-
pendent. To compute the probability associated with an event-variable formula,
we rewrite the formula so that it only contains mutually independent event vari-
ables. For example, ¬c1 ∧ ¬c2 ∧ b1 is simplified to ¬c2 ∧ b1 using the equivalence
¬c1 ≡ b1 ∨ b2. Then we are able to compute the probabilities. In this example,
we obtain the following probabilities for the 6 possible-world relations: 0.13125,
0.16875, 0.21875, 0.28125, 0.05, and 0.15.

Let us compare this approach with the integration in the probabilistic
possible-worlds framework (Sect. 3.1). It is easy to verify that the probabilis-
tic distribution of the result of the integration computed by the formula
P (Di ∧ D′

j) = P (Di)P (Dj)/P is exactly the same as the distribution obtained
above. For example, the probability of the possible world corresponding to
(D1,D

′
1) is 0.3 × 0.35/(0.3 + 0.5) = 0.13125. ��

5 Correctness of Probability Computation

In this section we present an overview of theoretical issues that form the basis
of probability computation algorithms presented in previous sections. Interested
readers are referred to the full paper which contains detailed discussions and
proofs [16].
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An important issue that we must address is the following:
Let a source S contain uncertain data in the probabilistic possible-worlds

model, and r be an equivalent representation in the probabilistic relation model
for data contained in S. It is well known that r is not unique. There can be many
probabilistic relations representing the data in S.

This means that the result of integration of two sources S and S′ in the
possible-worlds domain is unique, but it is not unique in the probabilistic rela-
tion domain. For example, let r1 and r2 be alternative probabilistic relation
representations for S, and r′

1 and r′
2 be alternative representations for S′. The

result of integration of S and S′ in the possible-worlds domain is unique. But in
the probabilistic relation domain we can get (extended probabilistic relations)
r1 � r′

1, r1 � r′
2, r2 � r′

1, and r2 � r′
2, where � is the integration operator (e.g.,

using Algorithm 2). We must prove that, by our probability computation algo-
rithm for epr-relations, all these epr-representations are indeed equivalent in the
sense that they correspond to the probabilistic possible-worlds representation
of the integration of S and S′ (e.g., using Algorithm 1) where the probability
distribution is obtained according to the approach of Sect. 3.2.

To address the above issues, we have shown the following [16].

– Given a probabilistic (or extended probabilistic) relation r, we associate a
logical formula in terms of the event variables of r with each possible-world
relation represented by r.

– We considered a subclass of extended probabilistic relations, namely, those
that can be obtained through integration of sources represented by proba-
bilistic relations.

– We prove that when the result of integration can be obtained by multiple
epr-relations, these relations are equivalent in the following sense:

• All epr-relations have exactly the same set of possible-worlds relations.
• The logical formulas associated with each possible-world relation in dif-

ferent epr-relations are (logically) equivalent when event constraints are
taken into account.

– Since the probability computation for epr-relations uses the logical formulas
plus event constraints, different epr-relations for the integration of the same
two sources have exactly the same probability distribution.

– Further, we also show that in the possible-worlds integration approach, the
probabilities computed for the possible-world relations are exactly the same
as those computed in the equivalent probabilistic relations framework.

Interested readers are referred to [16] for detailed discussions.

6 Conclusion

We focused on data integration from sources containing probabilistic uncertain
information, in particular, on computing the probability distribution of the result
of integration. We presented integration algorithms for data represented in two
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frameworks: The probabilistic possible-worlds model and the probabilistic rela-
tion model. In the latter case the result of integration is represented by an
extended probabilistic relation. We showed that under intuitive and reasonable
assumptions the exact probability distribution of the result of integration can
be computed in the two frameworks. Alternative approaches to the computation
of the probability distribution were presented in the two frameworks.
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8. Dalvi, N.N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Com-
mun. ACM 52(7), 86–94 (2009)

9. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In:
Proceedings of International Conference on Very Large Databases, pp. 864–875
(2004)

10. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB
J. 16(4), 523–544 (2007)

11. Haas, L.: Beauty and the beast: the theory and practice of information integra-
tion. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 28–43.
Springer, Heidelberg (2006). doi:10.1007/11965893 3

12. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years.
In: Proceedings of International Conference on Very Large Databases, pp. 9–16
(2006)

13. Liu, K.C., Sunderraman, R.: On representing indefinite and maybe information in
relational databases. In: Proceedings of IEEE International Conference on Data
Engineering, pp. 250–257 (1988)

14. Sadri, F.: On the foundations of probabilistic information integration. In: Proceed-
ings of International Conference on Information and Knowledge Management, pp.
882–891 (2012)

15. Sadri, F.: Belief revision in uncertain data integration. In: Sharaf, M.A., Cheema,
M.A., Qi, J. (eds.) ADC 2015. LNCS, vol. 9093, pp. 78–90. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-19548-3 7

16. Sadri, F., Tallur, G.: Integration of probabilistic uncertain information (2016).
CoRR, abs/1607.05702

http://dx.doi.org/10.1007/11965893_3
http://dx.doi.org/10.1007/978-3-319-19548-3_7

	Integration of Probabilistic Information
	1 Introduction
	2 Preliminaries
	2.1 Integration Algorithm for Uncertain Data Represented in the Possible-Worlds Model

	3 Integration of Probabilistic Uncertain Data
	3.1 Probabilistic Possible-Worlds Model
	3.2 Integration in the Probabilistic Possible-Worlds Framework

	4 Integration in the Probabilistic Relation Framework
	4.1 Probabilistic Data
	4.2 Integration of Uncertain Data Represented in the Probabilistic Relation Model
	4.3 Determining Probabilities for Extended Probabilistic Relations

	5 Correctness of Probability Computation
	6 Conclusion
	References


