
TIDAQL: A Query Language Enabling
On-line Analytical Processing of Time
Interval Data

Philipp Meisen, Diane Keng, Tobias Meisen, Marco Recchioni
and Sabina Jeschke

Abstract Nowadays, time interval data is ubiquitous. The requirement of analyzing
such data using known techniques like on-line analytical processing arises more and
more frequently. Nevertheless, the usage of approved multidimensional models and
established systems is not sufficient, because of modeling, querying and processing
limitations. Even though recent research and requests from various types of industry
indicate that the handling and analyzing of time interval data is an important task, a
definition of a query language to enable on-line analytical processing and a suitable
implementation are, to the best of our knowledge, neither introduced nor realized.
In this paper, we present a query language based on requirements stated by business
analysts from different domains that enables the analysis of time interval data in an
on-line analyticalmanner. In addition,we introduce our query processing, established
using a bitmap-based implementation. Finally, we present a performance analysis
and discuss the language, the processing as well as the results critically.

Keywords Time Interval Data ·Query Language ·On-Line Analytical Processing ·
Distributed Query Processing

1 Introduction

Nowadays, time interval data is recorded, collected and generated in various situa-
tions and different areas. Some examples are the resource utilization in production
environments, deployment of personnel in service sectors, or courses of diseases in
healthcare. Thereby, time interval data is used to represent observations, utilizations
or measures over a period of time. Put in simple terms, time interval data is defined
by two time values (i.e. start and end), as well as descriptive values associated to the
interval: like labels, numbers, or more complex data structures. Figure 1 illustrates
a sample database of five records.

P. Meisen (B) · D. Keng · T. Meisen · M. Recchioni · S. Jeschke
IMA/ZLW & IfU, RWTH Aachen University,
Dennewartstr. 27, 52068 Aachen, Germany
e-mail: philipp.meisen@ima-zlw-ifu.rwth-aachen.de

Originally published in “17th International Conference on Enterprise Information
Systems (ICEIS 2015)”, © 2015. Reprint by Springer International Publishing
AG 2016, DOI 10.1007/978-3-319-46916-4_32

411

412 P. Meisen et al.

Fig. 1 A sample time interval database with intervals defined by [start, end), an id, and three
descriptive values

For several years, business intelligence and analytical tools have been used by
managers and business analysts, inter alia, for data-driven decision support on a tac-
tical and strategic level. An important technology used within this field, is on-line
analytical processing (OLAP). OLAP enables the user to interact with the stored data
by querying for answers. This is achieved by selecting dimensions, applying differ-
ent operations to selections (e.g. roll-up, drill-down, or drill-across), or comparing
results. The heart of every OLAP system is a multidimensional data model (MDM),
which defines the different dimensions, hierarchies, levels, and members [1].

The need of handling and analyzing time interval data using established, reli-
able, and proven technologies like OLAP is desirable in this respect and an essential
acceptance factor. Nevertheless, the MDM needed to model time interval data has to
be based on many-to-many relationships which have been shown to lead to summa-
rizability problems. Several solutions solving these problems on different modeling
levels have been introduced over the last years, leading to increased integration effort,
enormous storage needs, almost always inacceptable query performances, memory
issues, and often complex multidimensional expressions [2, 3]. Additionally, these
solutions are, considering real-world scenarios, only applicable to many-to-many
relationships having a small cardinality which is mostly not the case when dealing
with time interval data. As a result, the usage of MDM and available OLAP systems
is not sufficient, even though the operations (e.g. roll-up, drill-down, slice, or dice)
available through such systems are desired.

Enabling such OLAP like operations in the context of time interval data, requires
the provision of extended filtering and grouping capabilities. The former is achieved
bymatching descriptive values against known filter criteria logically connected using
operators like and, or, or not, as well as a support of temporal relations like starts-
with, during, overlapping, or within [4]. The latter is applied by known aggregation
operators like max, min, sum, or count, as well as temporal aggregation operators
like count started or count finished [5].

The application of the count aggregation operator for time interval data is exem-
plified in Fig. 2. The color code identifies the different types of a time interval (e.g.
cleaning, maintenance, room service, miscellaneous). Furthermore, the swim-lanes
show the location. The figure illustrates the count of intervals for each type over one
day across all locations (e.g. POS F5 and POS F6) using a granularity of minutes
(i.e. 1,440 aggregations are calculated).

TIDAQL: A Query Language Enabling On-line Analytical Processing … 413

Fig. 2 On top the time interval data (10 records) shown in a Gantt-Chart, on the bottom the
aggregated time-series

In this paper, we present a query language allowing to analyze time interval data
in an OLAP manner. Our query language includes a data definition (DDL), a data
control (DCL), and a data manipulation language (DML). The former is based on the
time interval data model introduced by Meisen et al. [6], whereby the latter supports
the two-step aggregation technique mentioned in Meisen et al. [5]. Furthermore, we
outline our query processing which is based on a bitmap-based implementation and
supports distributed computing.

This paper is organized as follows: In Section 2, we discuss related work done in
the field of time interval data, in particular this section provides a concise overview
of research dealing with the analyses of time interval data. We provide an overview
of time interval models, discuss related work done in the field of OLAP, and present
query languages. In Section 3, we introduce our query language and processing. The
section presents among other things how amodel is defined and loaded, how temporal
operators are applied, how the two-step aggregation is supported, how groups are
defined, and howfilters are used.We introduce implementation issues and empirically
evaluate the performance regarding the query processing in Section 4. We conclude
with a summary and directions for future work in Section 5.

2 Related Work

Whendefining a query language, it is important to have an underlyingmodel, defining
the foundation for the language (e.g. the relational model for SQL, different interval-
based models for e.g. IXSQL or TSQL2, the multidimensional model for MDX, or
the graphmodel for Cypher). Over the last years several models have been introduced

414 P. Meisen et al.

in the field of time intervals, e.g. for temporal databases [7], sequential patternmining
[8, 9], association rule mining [10], or matching [11].

Chen et al. [12] introduced the problemofmining time interval sequential patterns.
The defined model is based on events used to derive time intervals, whereby a time
interval is determined by the time between two successive time-points of events. The
definition is based on the sequential pattern mining problem introduced by Agrawal
and Srikant [13]. The model does not include any dimensional definitions, nor does
it address the labeling of time intervals with descriptive values.

Papapetrou et al. [14] presented a solution for the problem of “discovering
frequent arrangements of temporal intervals”. An e-sequence is an ordered set of
events. An event is defined by a start value, an end value and a label. Addition-
ally, an e-sequence database is defined as a set of e sequences. The definition of an
event given by Papapetrou et al. is close to the underlying definition within this paper
(cf. Fig. 1).Nevertheless, facts, descriptive values, anddimensions are not considered.

Mörchen [15] introduced the TSKR model defining tones, chords, and phrases
for time intervals. Roughly speaking, the tones represent the duration of intervals,
the chords the temporal coincidence of tones, and the phrases represent the partial
order of chords. Themain purpose of themodel presented byMörchen is to overcome
limitations of Allen’s [4] temporal model considering robustness and ambiguousness
when performing sequential pattern mining. The model neither defines dimensions,
considers multiple labels, nor recognizes facts.

Summarized, models presented in the field of sequential pattern mining, associa-
tion rule mining or matching do generally not define dimensions and are focused on
generalized interval data, or support only non-labelled data. Thus, these models are
not suitable considering OLAP of time interval data, but are a guidance to the right
direction.

Within the research community of temporal databases different interval-based
models have been defined [7]. The provided definitions can be categorized in weak
and strong models. A weak model is one, in which the intervals are used to group
time-points, whereas the intervals of the latter carry semantic meaning. Thus, a
weak interval-based model is not of further interest from an analytical point of view,
because it can be easily transformed into a point-based model. Nevertheless, a strong
model and the involved meaning of the different operators – especially aggregation
operators – are of high interest from an analytical view. Strong interval-based models
presented in the field of temporal databases lack to define dimensions, but present
important preliminary work.

In the field of OLAP, several systems capable of analyzing sequences of data
have been introduced over the last years. Chui et al. [16] introduced S-OLAP for
analyzing sequence data. Liu andRundensteiner [17] analyzed event sequences using
hierarchical patterns, enabling OLAP on data streams of time point events. Bebel et
al. [18] presented an OLAP like system enabling time point-based sequential data to
be analyzed. Nevertheless, the system neither support time intervals, nor temporal
operators.

Recently, Koncilia et al. [19] presented I OLAP, an OLAP system to analyze inter-
val data. They claim to be the first proposing a model for processing interval data.

TIDAQL: A Query Language Enabling On-line Analytical Processing … 415

Fig. 3 Illustration of the model introduced by Koncilia et al. [19]. The intervals (rectangles) are
created for each two consecutive events (dots). The facts are calculated using the average function
as the compute value function

The definition is based on the interval definition of Chen et al. [12] which defines the
intervals as the gap between sequential events. However, Koncilia et al. assume that
the intervals of a specific event-type (e.g. temperature) for a set of specific descriptive
values (e.g. POS G2) are non-overlapping and consecutive. Considering the sample
data shown in Fig. 1, the assumption of non-overlapping intervals is not valid in gen-
eral (cf. record 2,285,965 and 2,285,971). Figure 3 illustrates the model of Koncilia
et al. showing five temperature events for POS G2 and the intervals determined for
the events. Koncillia et al. mention the support of dimensions, hierarchies, levels,
and members, but lack to specify what types of hierarchies are supported and how
e.g. non-strict relations are handled.

Also recently, Meisen et al. [6] introduced the TIDAMODEL “enabling the usage
of time interval data for data-driven decision support”. The presentedmodel is defined
by a 5-tuple (P,�, τ , M, δ) in which P denotes the time interval database,� the set of
descriptors, τ the time axis, M the set of measures, and δ the set of dimensions. The
time interval database P contains the raw time interval data records and a schema
definition of the contained data. The schema associates each field of the record
(which might contain complex data structures) to one of the following categories:
temporal, descriptive, or bulk. Each descriptor of the set � is defined by its values
(more specific its value type), a mapping- and a fact-function. The mapping-function
is used to map the descriptive values of the raw record to one or multiple descriptor
values. The mapping to multiple descriptor values allows the definition of non-strict
fact-dimension relationships. Additionally, themodel defines the time axis to be finite
and discrete, i.e. it has a start, an end, and a specified granularity (e.g. minutes). The
set of dimensions δ can contain a time dimension (using a rooted plane tree for the
definition of each hierarchy) and a dimension for each descriptor (using a directed
acyclic graph for a hierarchy’s definition). Figure 4 illustrates the modeled sample
database of Fig. 1 using the TIDAMODEL. The figure shows the five intervals, as
well as the values of the descriptors location (cf. swim-lane) and type (cf. legend).
Dimensions are not shown. The used mapping function for all descriptors is the
identity function. The used granularity for the time dimension is minutes.

Another important aspect when dealing with time interval data in the context of
OLAP, is the aggregation of data and the provision of temporal aggregation oper-
ators. Kline and Snodgrass [20] introduced temporal aggregates, for which several

416 P. Meisen et al.

Fig. 4 Data of the sample database shown in Fig. 1 modeled using the TIDAMODEL [6]

Fig. 5 Two-step aggregation technique presented by Meisen et al. [5]

enhanced algorithms were presented over the past years. Nevertheless, the solutions
are focused on one specific aggregation operator (e.g. SUM), do not support multiple
filter criteria, or do not consider data gaps. Koncilia et al. [19] address shortly how
aggregations are performed using the introduced compute value functions and fact
creating functions. Temporal operators are neither defined nor mentioned. Koncilia
et al. point out that some queries need special attention when aggregating the values
along time, but a more precise problem statement is not given. Meisen et al. [5] intro-
duce a two-step aggregation technique for time interval data. The first one aggregates
the facts along the intervals of a time granule and the second one aggregates the val-
ues of the first step depending on the selected hierarchy level of the time dimension.
Figure5 illustrates the two-step aggregation technique. In the illustration, the tech-
nique is used to determine the needed resources within the interval [16:30, 16:34].
Within the first step, the sum of the resources for each granule is determined and
within the second step the maximum of the determined values is calculated, i.e. 14.
Additionally, they introduce temporal aggregation operators like started or finished
count.

The definition of a query language based on a model and operators (i.e. like
aggregations), is common practice. Regarding time-series, multiple query languages
and enhancements of those have been introduced [21]. In the field of temporal data-
bases time interval-based query languages like IXSQL, TSQL2, or ATSQL have

TIDAQL: A Query Language Enabling On-line Analytical Processing … 417

been defined [7] and within the analytical field, MDX [22] is a widely used language
to query MDMs. Considering models dealing with time interval data in the context
of analytics, Koncilia et al. [19] published the only work the authors are aware of
that mentions a query language. Nevertheless, the query language is neither formally
defined nor further introduced.

Summarized, it can be stated that recent research and requests from industry
indicate that the handling of time interval data in an analytical context is an important
task. Thus, a query language is required capable of covering the arising requirements.
Koncilia et al. [19] and Meisen et al. [5, 6] introduced two different models useful
for OLAP of time interval data. Different temporal aggregation operators, as well
as standard aggregation operators, are also presented by Meisen [5]. Nevertheless,
a definition of a query language useful for OLAP and an implementation of the
processing are, to the best of our knowledge, not formally introduced.

3 The Tida Query Language

In this section, we introduce our time interval data analysis query language
(TIDAQL). The language was designed for a specific purpose; to query time interval
data from an analytical point of view. The language is based on aspects of the pre-
viously discussed TIDAMODEL. Nevertheless, the language should be applicable
to any time interval database system which is capable of analyzing time interval
data. Nevertheless, some adaptions might be necessary or some features might not
be supported by any system.

3.1 Requirements

The requirements concerning the query language and its processing were specified
during several workshops with over 70 international business analysts from different
domains (i.e. aviation industry, logistics providers, service providers, as well as
language and gesture research). We aligned the results of the workshop with an
extended literature research. Table 1 summarizes selected results.

3.2 Data Control Language

The definition of theDCL is straight forward to theDCLknown fromother query lan-
guages e.g. SQL. As defined by requirement [DCL1], the language must encompass
authorization features. Hence, the language contains commands like ADD, DROP,
MODIFY, GRANT, REVOKE, ASSIGN and REMOVE. In our implementation,
the execution of a DCL command always issues a direct commit, i.e. a roll back

418 P. Meisen et al.

Table 1 Summary of the requirements concerning the time interval analysis query language
(selected results)

Requirement Description

Data Control Language (DCL)

[DCL1]: authorization aspects It is expected that the language encompasses
authorization features, e.g. user deletion, role
creation, granting and revoking permissions

[DCL2]: permissions grantable on global and
model level

Permissions must be grantable on a model and
a global level. It is expected that the user can
have the permission to add data to one model
but not to another. For simplicity, it should be
possible to grant or revoke several permissions
at once

Data Definition Language (DDL)

[DDL1]: loading and unloading The language has to offer a construct to load
new and unload models. The newly loaded
model has to be available without any restart of
the system. An unloaded model has to be
unavailable after the query is processed.
However, queries currently in process must still
be executed

[DDL2]: non-onto, non-covering, non-strict
hierarchies

Each descriptor dimension must support
hierarchies which might be non-onto,
non-covering, and / or non-strict [23]

[DDL3]: raster levels A raster level is a level of the time dimension.
For example: the 5-minute raster-level defines
members like [00:00, 00:05) …[23:55, 00:00).
Several raster levels can form a hierarchy (e.g.
5-min → 30-min → 60-min → half-day →
day)

Data Manipulation Language (DML)

[DML1]: raw data records The language must provide a construct to select
the raw time interval data records

[DML2]: time series by time-windows The language must support the specification of
a time-window for which time-series of
different measures can be retrieved

[DML3]: temporal operators It must be possible to use temporal operators
for filtering as e.g. defined by Allen [4].
Depending on the type of selection (i.e. raw
records or time-series) the available temporal
operators may differ

[DML4]: The two-step aggregation technique Meisen et al. [5] present a two-step aggregation
technique which has to be supported by the
language. Both aggregation operators (see
Fig. 5) must be specified by a query selecting
time-series, no predefined measure should be
necessary

(continued)

TIDAQL: A Query Language Enabling On-line Analytical Processing … 419

Table 1 (continued)

Requirement Description

[DML5]: complete time series A time-series is selected by specifying a
time-window (e.g. [01.01.2015, 02.01.2015)
and a level (e.g. minutes). The resulting
time-series must contain a value for each
member of the selected level, even if no time
interval covers the specified member. The value
might be N/A or null to indicate missing
information

[DML6]: insert, update and delete The language must offer constructs to insert,
update and delete time interval data records

[DML7]: open, half-open, or closed intervals The system should be capable of interpreting
intervals defined as open, e.g. (0, 5), closed,
e.g. [0, 5], or half-opened, e.g. (0, 5]

[DML8]: meta-information It is desired that the language supports a
construct to receive meta-information from the
system, e.g. actual version, available users, or
loaded models

[DML9]: bulk load It is desired, that the language provides a
construct to enable a type of bulk load, i.e.
increased insert performance

is not supported. Figure 6 shows the syntax diagram of the commands. Because of
simplicity, a value is not further specified and might be a permission, a username, a
password, or a role.

To fulfill the [DCL2] requirement, we define a permission that consists of a scope-
prefix and the permission itself. We define two permission-scopes GLOBAL and
MODEL. Thus, a permission of the GLOBAL scope is defined by

GLOBAL.<permission>

(e.g. GLOBAL.manageUser). Instead, a permission of the MODEL scope is
defined by

MODEL.<model>.<permission>

(e.g. MODEL.myModel.query).

For query processing, we use the Apache Shiro authentication framework (http://
shiro.apache.org/). Shiro offers annotation driven access control. Thus, the permis-
sion to e.g. execute a DML query is performed by annotating the processing query
method.

http://shiro.apache.org/
http://shiro.apache.org/

420 P. Meisen et al.

Fig. 6 Commands of the DCL query language

3.3 Data Dafinition Language

The DDL is used to define, add, or remove the models known by the system. [DDL1]
requires a command within the DDL which enables the user to load or unload a
model. The syntax diagram of the LOAD and UNLOAD command is shown in
Fig. 7. A model can be loaded by using a model identifier already known to the
system (e.g. if the model was unloaded), or by specifying a location from which the
system can retrieve a model definition to be loaded. Additionally, properties can be
defined (e.g. the autoload property can be set, to automatically load a model when
the system is started). In the following subsection, we present an XML used to define
a TIDAMODEL.

3.3.1 The XML TIDAMODEL Definition

As mentioned in Section 2, the TIDAMODEL is defined by a 5-tuple (P, �, τ , M,
δ). The time interval database P contains the raw record inserted using the API or the
INSERT command introduced later in Section 3.4.1. From a modelling perspective

TIDAQL: A Query Language Enabling On-line Analytical Processing … 421

Fig. 7 Commands of the DDL query language

it is important for the system to retrieve the descriptive and temporal values from the
raw record. Thus, it is essential to define the descriptorsΣ and the time axis τ within
the XML definition. Below, an excerpt of an XML file defining the descriptors of
our sample database shown in Fig. 1 is presented:

<model id="myModel">

<descriptors>

<string id="LOC" name="location" />

<string id="TYPE" name="type" />

<int id="RES" null="true" />

</descriptors>

</model>

The excerpts shows that a descriptor is defined by a tag specifying the type (i.e.
the descriptor implementation to be used), an id-attribute, and an optional name-
attribute. Additionally, it is possible to define if the descriptor allows null values
(default) or not. To support more complex data structures (and one’s own mapping
functions), it is possible to specify one’s own descriptor-implementations:

<descriptors>

<ownImpl:list id="D4" />

</descriptors>

Our implementation scans the class-path automatically, looking for descriptor
implementations. An added implementation must provide an XSLT file, placed into
the same package and named as the concrete implementation of the descriptor-class.
TheXSLTfile is used to create the instance of the own implementation using a Spring
Bean configuration (http://spring.io/).

http://spring.io/

422 P. Meisen et al.

<!– File: my/own/desc/List.xslt –>

<xsl:template match="ownImpl:list">

<xsl:call-template name="beanDesc">

<xsl:with-param name="class">

my.own.desc.List
</xsl:with-param>

</xsl:call-template>

</xsl:template>

The time axis of the TIDAMODEL is defined by:

<model id="myModel">

<time>

<timeline start="20.01.1981"
end="20.01.2061"
granularity="MINUTE" />

</time>

</model>

The time axis may also be defined using integers, i.e. [0, 1000]. Our implemen-
tation includes two default mappers applicable to map different types of temporal
raw record value to a defined time axis. Nevertheless, sometimes it is necessary to
use different time-mappers (e.g. if the raw data contains proprietary temporal val-
ues) which can be achieved using the same mechanism as described previously for
descriptors.

Due to the explicit time semantics, the measures M defined within the
TIDAMODEL are different than the ones typically known from an OLAP defin-
ition. The model defines three categories for measures, i.e. implicit time measures,
descriptor bound measures, and complex measures. The categories determine when
which data is provided during the calculation process of the measures. Our imple-
mentation offers several aggregation operators useful to specify ameasure, i.e. count,
average, min, max, sum, mean, median, or mode. In addition, we implemented two
temporal aggregation operators started count and finished count, as suggested by
Meisen et al. [5]. We introduce the definition and usage of measures in Section 3.4.2.

The TIDAMODEL also defines the set of dimensions δ. The definition differs
between descriptor dimensions and a time dimension, whereby every dimension
consists of hierarchies, levels, and members. It should be mentioned that, from a
modelling point of view, each descriptor dimension fulfills the requirements formal-
ized in [DDL2] and that the time dimension supports raster-levels as requested in
[DDL3]. The definition of a dimension for a specific descriptor or the time dimension
can be placed within the XML definition of a model using:

TIDAQL: A Query Language Enabling On-line Analytical Processing … 423

<model id="myModel">

<dimensions>

<dimension id="DIMLOC" descId="LOC">

<hierarchy id="LOC">

<level id="HOTEL">

<member id="DREAM" rollUp="∗" />

<member id="STAR" rollUp="∗" />

<member id="ADV" reg="TENT"
rollUp="∗" />

</level>

<level id="ROOMS">

<member id="POSF" reg="POS F".
rollUp="DREAM" />

<member id="POSG" reg="POS G".
rollUp="DREAM" />

</level>

<level id="STARROOMS">

<member id="POSA" reg="POS A".
rollUp="STAR" />

</level>

</hierarchy>

</dimension>

</dimensions>

</model>

Figure 8 illustrates the descriptor dimension defined by the previously shown
XML excerpt. The circled nodes are leaves which are associated with de-scriptor
values known by the model (using regular expressions). Additionally, it is possible
to add dimensions for analytical processes to an already defined model, i.e. to use it
only for a specific session or query. The used mechanism to achieve that is similar
to the loading of a model and will not further be introduced.

The definition of a time dimension is straight forward to the one of a descriptor
dimension. Nevertheless, we added some features in order to ease the definition.
Thus, it is possible to define a hierarchy by using pre-defined levels (e.g. templates

Fig. 8 Illustration of the
dimension created with our
web-based
dimension-modeler as
defined by the XML

424 P. Meisen et al.

like 5 min raster, day, or year) and by defining the level to roll up to, regarding the
hierarchy. The following XML excerpt exemplifies the definition:

<model id="myModel">

<dimensions>

<timedimension id="DIMTIME">

<hierarchy id="TIME5TOYEAR">

<level id="YEAR" template="YEAR"
rollUp="*" />

<level id="DAY" template="DAY"
rollUp="YEAR" />

<level id="60R" template="60RASTER"
rollUp="DAY" />

<level id="5R" template="5RASTER"
rollUp="60R" />

<level id="LG" template="LOWGRAN"
rollUp="5R" />

</hierarchy>

</timedimension>

</dimensions>

</model>

A defined model is published to the server using the LOAD command. The fol-
lowing subsection introduces the command, focusing on the loading of a model from
a specified location.

3.3.2 Processing the Load Command

The loading of a model can be triggered from different applications, drivers, or
platforms. Thus, it is necessary to support different loaders to resolve a specified
location. In the following, some examples illustrate the issue. When firing a LOAD
query from a web-application, it is necessary that the model defi nition was uploaded
to the server, prior to executing the query. While running on an application server, it
might be required to load the model from a database instead of loading it from the
file-system. Thus, we added a resource-loader which can be specified for each con-
text of a query. Within a servlet, the loader resolves the specified location against the
upload-directory, whereby our JDBC driver implementation is capable of sending a
client’s file to the server using the data stream of the active connection. After retriev-
ing and validating the resource, the implementation uses a model-handler to bind
and instantiate the defined model. As already mentioned, the bitmap-based imple-
mentation presented by Meisen et al. [5] is used. The implementation instantiates
several indexes and bitmaps for the defined model. After the instantiation, the model
is marked to be up and running by the model-handler and accepts DML queries.

TIDAQL: A Query Language Enabling On-line Analytical Processing … 425

Fig. 9 Example of a loaded model [5] filled with the data shown in Fig. 1

Figure 9 exemplifies the initialized bitmap-based indexes filled with the data from
the database of Fig. 1.

3.4 Data Manipulation Language

Considering the requirements, it can be stated that the DML must contain com-
mands to INSERT, UPDATE, and DELETE records. In addition, it is necessary
to provide SELECT commands to retrieve the time interval data records, as well as
results retrieved from aggregation (i.e. time-series). Furthermore, a GET command
to retrieve meta-information of the system is needed.

426 P. Meisen et al.

Fig. 10 Syntax diagrams of the commands INSERT, UPDATE and DELETE

3.4.1 INSERT, UPDATE, and DELETE

Figure 10 illustrated the three commands INSERT, UPDATE, and DELETE using
syntax diagramswhich fulfill the requirement [DML6]. The INSERT command adds
one or several time interval data records to the system. First, it parses the structure
of the data to be inserted. The query-parser validates the correctness of the structure,
i.e. the structure must contain exactly one field marked as start and exactly one field
marked as end even though the syntax diagram suggest differently. Additionally,
the parser verifies if a descriptor (referred by its id) really exists within the model.
Finally, it reads the values and invokes the processor by passing the structure, as well
as the values. The processor iterates over the defined values, validates those against
the defined structure, uses the mapping functions of the descriptors to receive the
descriptor values, and calls the mapping function of the time-axis. The result is a so-
called processed record which is used to update the indexes. The persistence layer of
the implementation ensures that the raw record and the indexes get persisted. Finally,
the tombstone bitmap is updated which ensures that the data is available within the
system.

A deletion is performed by setting the tombstone bitmap for the specified id to
0. This indicates that the data of the record is not valid and thus the data will not
be considered by any query processors anymore. The internally scheduled clean-up
process removes the deleted records and releases the space.

An update is performed by deleting the record with the specified identifier and
inserting the record as described above.

To support bulk load, as desired by [DML9], an additional statement is introduced.
The statement SET BULK TRUE is used to enable the bulk load, whereby SET
BULK FALSE stops the bulk loading process. When enabling the bulk load, the
system waits until all currently running INSERT, UPDATE, or DELETE queries
of other sessions are performed. New queries of that type are rejected across all

TIDAQL: A Query Language Enabling On-line Analytical Processing … 427

sessions during the waiting and processing phase. When all queries are handled, the
system responds to the bulk-enabling query and expects an insert-like statement,
whereby the system directly starts to parse the incoming data stream. As soon as the
structure is known, all incoming values are inserted. The indexes are only updated
in memory. If and only if the memory capacity reaches a specified threshold, the
persistence-layer is triggered. In this case, the current data in memory is flushed
and persisted using the configured persistence-layer (e.g. using the file-system, a
relational database, or any other NoSQL database). The memory is also flushed and
persisted whenever a bulk load is finished.

3.4.2 SELECT Raw Records and Time-Series

The SELECT command is addressed by the requirements [DML1], [DML2],
[DML3], [DML4], [DML5], and [DML7]. Figure 11 illustrates the select statements
to select records and time-series. Because of space limitations, we removed more
detailed syntax diagrams for the LOGICAL and GROUP EXPRESSION. The
non-terminalMEASURES is specified later in this subsection when introducing the
SELECT TIMESERIES in detail.

As illustrated, the intervals can be defined as open, half-open or closed (cf.
[DML7]). The processing of the intervals is possible, thanks to the discrete time-
axis used by the model. Using a discrete time-axis with a specific granularity makes
it easy to determine the previous or following granule. Thus, every half-open or open
interval can be transformed into a closed interval using the previous or following
granule. Hence, the result of the parsing always contains a closed interval which is
used during further query processing.

As illustrated in Fig. 11, the SELECT RECORDS statement allows to retrieve
records satisfying a logical expression based on descriptor values (e.g.LOC=“POS
F5” OR (TYPE=“cleaning” AND DIMLOC.LOC.HOTEL=“DREAM”))
and/or fulfilling a temporal relation (cf. [DML3]). Our query language supports ten
different temporal relations following Allen [4]: EQUALTO, BEFORE, AFTER,
MEETING,DURING,CONTAINING,STARTINGWITH,FINISHINGWITH,

Fig. 11 Syntax diagrams of the SELECT RECORDS and SELECT TIMESERIES commands

428 P. Meisen et al.

OVERLAPPING, andWITHIN. The interested reader may notice that Allen intro-
duced thirteen temporal relationships. We removed some inverse relationships (i.e.
inverse of meet, overlaps, starts, and finishes). When using a temporal relation-ship
within a query, the user is capable of defining one of the intervals used for compar-
ison. Thus, the removed inverse relationships are not needed, instead the user just
modifies the self-defined interval. In addition, we added the WITHIN relationship
which is a combination of several relationships and allows an easy selection of all
records within the user-defined interval (i.e. at least one time-granule is contained
within the user-defined interval).

When processing a SELECT RECORD query, the processor initially evaluates
the filter expression and retrieves a single bitmap specifying all records fulfilling
the filter’s logic [5]. In a second phase, the implementation determines a bitmap of
records satisfying the specified temporal relationship. The two bitmaps are combined
using the and-operator to retrieve the resulting records. Depending on the requested
information (i.e. count, identifiers, or raw records (cf. [DML1])), the implementation
creates the response using bitmap-based operations (i.e. count and identifiers) or
retrieving the raw records from the persistence layer. Figure 12 depicts the evaluation
of selected temporal relationships using bitmaps and the database shown in Fig. 1.

TheSELECTTIMESERIES statement specifies a logical expression equal to the
one exemplified in the SELECT RECORDS statement. In addition, the statement
specifies a GROUP EXPRESSION which defines the groups to create the time-
series for (e.g.GROUP BYDIMLOC.LOC.ROOMS). Furthermore, the measures

Fig. 12 Examples of the processing of temporal relationships using bitmaps (and the sample
database of Fig. 1)

TIDAQL: A Query Language Enabling On-line Analytical Processing … 429

Fig. 13 Syntax diagrams of the MEASURES definition

to be calculated for the time-series and the time-window (cf. [DML2]) are specified.
It is also possible to specify several comma-separated measures. Figure 13 shows
the syntax used to specify measures (cf. MEASURES in Figure 11).

A simple (considering the measures) example of a SELECT TIMESERIES
query is as follows:

SELECT TRANSPOSE(TIMESERIES)
OF MAX(SUM(RESOURCES)) AS "needed Res"
ON DIMTIME.TIME5TOYEAR.5RASTER
FROM myModel
IN [01.01.2015, 02.01.2015)
WHERE DIMLOC.LOC.HOTEL="DREAM"
GROUP BY TYPE

As required by [DML4], a measure can be defined using the two-step aggrega-
tion technique. The first aggregation (in the example SUM) is specified for a spe-
cific descriptor and the second optional aggregation function (in the example MAX)
aggregates the values across the stated level of the time-dimension.

430 P. Meisen et al.

When processing the query, the system retrieves the bitmaps for the filtering and
the grouping conditions. The system iterates over the bitmaps of the specified groups
and the bitmaps of the granules of the selected time-window. For each iteration,
the implementation combines the filter-bitmap, group-bitmap, and the time-granule-
bitmap and applies the first aggregation function. The second aggregation function is
appliedwhenever all values of amember of the specified time-level are determined by
the first step (cf. Fig. 6). This processing technique ensures that for each time-granule
a value is calculated, even if no interval covers the granule (cf. [DML5]).

3.4.3 GET Meta-Information

[DML8] demands the existence of a command which enables the user to retrieve
meta-information, like the version of the system. This requirement is fulfilled by
adding a GET command to the query language. A statement like GET VERSION,
GET USERS, or GETMODELS enables the user to retrieve information provided
from the system. Filtering is currently not required and thus, not supported.

4 Implementation Issues

This section introduces selected implementation aspects of the language and its query
processing. First, we introduce processing implementations for the most frequently
used query-type SELECT TIMESERIES and show performance results for the
different algorithms. In addition, we present considerations of analysts using the
language to analyze time interval data and address possible enhancements.

4.1 SELECT TIMESERIES Processing

In Section 3, we outlined the query processing based on the TIDAMODEL and its
bitmap-based implementation (cf. Sections 3.3.2 and3.4.2). For a detailed description
of the bitmap-based implementation we refer to Meisen et al. [5]. In this section,
we introduce three additional algorithms which are capable to process the most
frequently used SELECT TIMESERIES queries, introduced in Section 3.4.2.

Prior to explaining the algorithms, it should be stated, that we did not imple-
ment any algorithm based on AGGREGATIONTREEs [20], MERGESORT, or
other related aggregation algorithms defined within the research field of temporal
databases. Such algorithms are optimized to handle single aggregation operators
(e.g. count, sum, min, or max). Thus, the implementation would not be a generic
solution usable for any query. Nevertheless, such algorithms might be useful to
increase query performance for specific, often used measures. It might be reasonable

TIDAQL: A Query Language Enabling On-line Analytical Processing … 431

to add a language feature, which allows to define a special handling (e.g. using an
AGGREGATIONTREE) for a specific measure.

Next,we introduce our naive implementation.All three presented algorithmdo not
support queries using group by, multiple measures, nor multi-threading scenarios. To
support these features, commonly used techniques (e.g. iterations and locks) could
be used.

01 TimeSeries naive(Query q, Set r) {
02 TimeSeries ts = new TimeSeries(q);
03 // filter time def. by IN [a, b]
04 r = filter(r, q.time());
05 // filter records def. by WHERE
06 r = filter(r, q.where());
07 // it. ranges def. by IN and ON
08 for (TimeRange i : q.time()) {
09 // filter records for the range
10 r’ = filter(r, i);
11 // det. measures def. by OF
12 ts.set(i, calc(i, r’, q.meas());
13 }
14 return ts;
15 }

The algorithm filters the records of the database, which fulfill the defined criteria
of the IN (row 04) andWHERE clause (row 06). Next, it calculates the measure for
each defined range (row 10). The calculation of each measure depends mainly on its
type (i.e. measure of lowest granularity (e.g. query #1 in Table 2), measure of a level
(e.g. query #2), or two-step measure (e.g. query #3)). Because of space limitations,
we state the complexity of the calc-method instead of presenting it. The complexity
is O(k·n), with k being the number of granules covered by the TimeRange and n
being the number of records.

The other algorithms we implemented are based on INTERVALTREEs
(INTTREE) as introduced by Kriegel [24]. The first one (A) – of the two INTTREE
– based implementations – uses the tree to retrieve the relevant records considering

Table 2 The shortened queries used for testing

Query

1 OF COUNT(TASKTYPE IN [01.JAN, 01.FEB)

WHERE WA.LOC.TYPE=’Gate’

2 OF SUM(TASKTYPE) ON TIME.DEF.DAY

IN [01.JAN, 01.FEB) WHERE WORKAREA=’SEN13’

3 OF MAX(COUNT(WORKAREA)) ON TIME.DEF.DAY

IN [01.JAN, 01.FEB) WHERE TASKTYPE=’short’

432 P. Meisen et al.

the IN-clause (row 05 of the naive algorithm). Further, the algorithm proceeds as the
naive algorithm.

The second implementation (B) differs from the first one, by created a new
INTTREE for every query.

01 TimeSeries iTreeB(Query q, Set r) {
02 TimeSeries ts = new TimeSeries(q);
03 // filter records def. by WHERE
04 IntervalTree iTree =
05 createAndFilter(r, q.in(),
06 q.where());
07 // it. ranges def. by IN and ON
08 for (TimeRange i : q.time()) {
09 // use iTree to filter by i
10 r’ = filter(iTree, i);
11 // det. measures def. by OF
12 ts.set(i, calc(i, r’, q.meas());
13 }
14 return ts;
15 }

As shown, the algorithm filters the records according to the IN- and WHERE-
clause and creates an INTTREE for the filtered records (row 04). When iterating
over the defined ranges, the created iTree is used to retrieve the relevant records for
each range (row 08).

4.2 Performance

We ran several tests on an Intel Core i7-4810MQ with a CPU clock rate of 2.80
GHz, 32 GB of main memory, an SSD, and running 64-bit Windows 8.1 Pro. As Java
implementation, we used a 64-bit JRE 1.6.45, with XMX 4,096 MB and XMS 512
MB. We tested the parser (implemented using ANTLR v4) and processing consider-
ing correctness. In addition, we measured the runtime performance of the processor
for the three introduced algorithms (cf. Section 4.2), whereby the data and struc-
tures of all algorithms were held in memory to obtain CPU time comparability. We
used a real-world data set containing 1,122,097 records collected over one year. The
records have an average interval length of 48 minutes and three descriptive values:
person (cardinality: 713), task-type (cardinality: 4), and work area (cardinality: 31).
The used time-granule was minutes (i.e. time cardinality: 525,600). We tested the
performance using the SELECT TIMESERIES queries shown in Table 2. Each
query specifies a different type of query (i.e. different measure, usage of groups, or
filters) and was fired 100 times against differently sized sub-sets of the real-world
data set (i.e. 10, 100, 1,000, 10,000, 100,000, and 1,000,000 records).

TIDAQL: A Query Language Enabling On-line Analytical Processing … 433

Fig. 14 The measured average CPU-time performance (out of 100 runs per query)

Table 3 Statistics of the test results

in DB Number of records Selectivity

Selected by query Selected / in DB

#1 #2 #3 #1 #2 #3

101 1 0 0 0.1000 0.0000 0.0000

102 5 0 7 0.0500 0.0000 0.0700

103 12 2 46 0.0120 0.0020 0.0460

104 147 9 480 0.0147 0.0009 0.0480

105 1.489 121 5.148 0.0149 0.0012 0.0515

106 15.378 1.261 51.584 0.0154 0.0013 0.0516

The results of the runtime performance tests are shown in Fig. 14. As illustrated,
the bitmap-based implementation performs better than the naive and INTTREE algo-
rithms when processing query #1 and #3. Regarding query #2 the INTTREE-based
implementations perform best. As stated in Table 3, the most important criterion
to determine the performance is the selectivity. Regarding a low selectivity the
INTTREE-based algorithm (B) performs best.

Nevertheless, considering persistency and reading of records from disc the algo-
rithm might perform worse. We would also like to state briefly, that other factors
(e.g. kind of aggregation operators used) influence the performance of the bitmap
algorithm, so that it outperforms the INTTREE-based implementation, even if a low
selectivity is given.

4.3 Considerations

The query language and processing introduced in this paper, is currently used
within different projects by analysts and non-experts of different domains to ana-
lyze time-interval data. In the majority of cases, the introduced language and
the processing is capable of satisfying the user’s needs. Nevertheless, there are

434 P. Meisen et al.

limitations, issues, and preferable enhancements. In the following, we introduce
selected requests/improvements:

1. The presented query language and its processing do not support any type of
transactions. A record inserted, updated, or deleted is processed by the system
as an atomic operation. Nevertheless, roll-backs needed after several operations
have to be performed manually. This generally increases implementation effort
on the client-side.

2. The presented XML definition of dimensions (cf. Section 3.3.1) uses regular
expressions to associate a member of a level to a descriptor value. Regular expres-
sions are sometimes difficult to be formalized (especially for number ranges). An
alternative, more user-friendly expression language is desired.

3. The UPDATE and DELETE commands (cf. Section 3.4.1) need the user to
specify a record identifier. The identifier can be retrieved from the resultset of an
INSERT-statement or using the SELECT RECORDS command. Nevertheless,
users requested to update or delete records by specifying criteria based on the
records’ descriptive values.

4. When a model is modified, it has to be loaded to the system as new, the data of
the old model has to be inserted and the old model has to be deleted. Users desire
a language extension, allowing to update models. Nevertheless, the implications
of such a model update could be enormous.

5 Conclusion

In this paper, we presented a query language useful to analyze time interval data in
an on-line analytical manner. The language covers the requirements formalized by
several business analyst from different domains, dealing with time interval data on a
daily basis. We also introduced four different implementations useful to process the
most frequently used type of query (i.e. SELECT TIMESERIES).

An important task for future studies is to confirm, or define new models and
present novel implementations solving the problemof analyzing time interval data. In
addition, future work should focus on distributed and incremental query processing
(e.g. when rolling-up a level). The mentioned considerations (cf. Section 4.3) of
our introduced language and its implementation should be investigated. Another
interesting area considering time-interval data is on-line analytical mining (OLAM).
Future work should study the possibilities of analyzing aggregated time series to
discover knowledge about the underlying intervals. Finally, an enhancement of the
processing of the two-step aggregation technique should be considered. Depending
on the selected aggregations an optimized processing strategy might be reasonable.

TIDAQL: A Query Language Enabling On-line Analytical Processing … 435

References

1. E. Codd, S. Codd, C. Salley, Providing OLAP (On-Line Analytical Processing) to User-
Analysts: An IT Mandate. 1993. E. F. Codd and Associates (sponsored by Arbor Software
Corp.)

2. J. Mazón, J. Lichtenbörger, T. J., Solving summarizability problems in fact-dimension relation-
ships for multidimensional models. In: 11th Int. Workshop on Data Warehousing and OLAP
(DOLAP ’08). Napa Valley, California, USA, 26.–30. October. 2008, pp. 57–64

3. R.Kimball,M.Ross,The datawarehouse toolkit: The definitive guide to dimensionalmodeling,
3rd edn. Wiley Computer Publishing, 2013

4. J. Allen, Maintaining knowledge about temporal intervals. Communication ACM 26 (11),
1983, pp. 832–843

5. P. Meisen, D. Keng, T. Meisen, M. Recchioni, S. Jeschke, Bitmap-based on-line analytical
processing of time interval data. In: 12th Int. Conf. on Information Technology. Las Vegas,
Nevada, USA, 13.–15. April. 2015

6. P. Meisen, T. Meisen, M. Recchioni, D. Schilberg, S. Jeschke, Modeling and processing of
time interval data for data-driven decision support. In: IEEE Int. Conf. on Systems, Man, and
Cybernetics, San Diego, California, USA, 04.–08. October. 2014

7. M. Böhlen, B. R., J. C. S., Point-versus interval-based temporal data models. In: 14th Int. Conf.
on Data Engineering, Orlando, Florida, USA, 23.-27. Feburary. 1998, pp. 192–200

8. P. Papapetrou, G. Kollios, S. S., G. D., Mining frequent arrangements of temporal intervals,
knowledge and information systems 21 (2), 2009, pp. 133–171

9. F. Mörchen, Temporal pattern mining in symbolic time point and time interval data. In: IEEE
Symp. on Computational Intelligence and Data Mining (CIDM 2009), Nashville, Tennessee,
USA, 30. March–2. April. 2009

10. F. Höppner, F. Klawonn, Finding informative rules in interval sequences. In: IDA2001. LNCS,
vol. 2189, ed. by F. Hoffmann, N. Adams, D. Fisher, G. Guimarães, D. Hand, Springer, Hei-
delberg, 2001, pp. 123–132

11. A. Kotsifakos, P. Papapetrou, V. Athitsos, Ibsm: Interval-based sequence matching, 13th siam
int. conf. on data mining (sdm13), austin, texas, usa, 02.–04. may. 2013

12. Y. Chen, M. Chiang, M. Ko, Discovering time-interval sequential patterns in sequence data-
bases. Expert Systems with Applications 25 (3), 2003, pp. 343–354

13. R. Agrawal, R. Srikant, Mining sequential patterns. In: Int. Conf. Data Engineering, Taipei,
Taiwan. 1995, pp. 3–14

14. P. Papapetrou, G. Kollios, S. S., D. Gunopulos, Discovering frequent arrangements of temporal
intervals. In: 5th IEEE Int. Conf. on Data Mining (ICDM’05), IEEE Press. 2005, pp. 354–361

15. F. Mörchen, A better tool than allen’s relations for expressing temporal knowledge in interval
data. In: 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Philadel-
phia, Pennsylvania, USA. 2006

16. C. Chui, B. Kao, E. Lo, D. Cheung, S-olap: An olap system for analyzing sequence data. In:
ACM SIGMOD International Conference on Man-agement of Data, Indianapolis, Indiana,
USA. 2010

17. M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, A. Mehta, E-cube: multi-
dimensional event sequence analysis using hierarchical pattern query sharing. In: ACM SIG-
MOD International Conference on Management of Data, Athens, Greece. 2011

18. B. Bebel, M. Morzy, T. Morzy, Z. Królikowski, R. Wrembel, Olap-like analysis of time point-
based sequential data. In: Advances in Conceptual Modeling, ed. by S. Castano, P. Vassiliadis,
L. Lakshmanan, M. Lee, 2012. 978-3-642-33998-1

19. C. Koncilia, T. Morzy, R. Wrembel, E. J., Interval OLAP: Analyzing Interval Data, Data
Warehousing and Knowledge Discovery (DaWaK 2014), vol. 8646. Springer Int., 2014

20. N. Kline, R. Snodgrass, Computing temporal aggregates. In: 11th Int. Conf. on Data Engineer-
ing (ICDE 1995), Taipei, China, 06.–10. March. 1995, pp. 222–231

21. D. Rafiei, A. Mendelzon, Querying time series data based on similarity. IEEE Transactions on
Knowledge and Data Engineering 12 (5), 2000

436 P. Meisen et al.

22. G. Spofford, S. Harinath, C. Webb, D.H. Huang, F. Civardi, MDX-Solutions: With Microsoft
SQL Server Analysis Services 2005 and Hyperion Essbase. John Wiley & Sons, 2006

23. T. Pedersen, Aspects of data modeling and query processing for complex multidimensional
data. Ph.D. thesis, Aalborg Universitetsforlag, Aalborg, Department of Computer Science,
Aalborg Univ., 2000. No. 4

24. H. Kriegel, M. Pötke, T. Seidl, Object-relational indexing for general interval relationships. In:
7th Int. Symposium on Spatial and Temporal Databases (SSTD 2001), Los Angeles, California,
12.–15. July. 2001, pp. 522–542

	TIDAQL: A Query Language Enabling On-line Analytical Processing of Time Interval Data
	1 Introduction
	2 Related Work
	3 The Tida Query Language
	3.1 Requirements
	3.2 Data Control Language
	3.3 Data Dafinition Language
	3.4 Data Manipulation Language

	4 Implementation Issues
	4.1 SELECT TIMESERIES Processing
	4.2 Performance
	4.3 Considerations

	5 Conclusion
	References

