
Selfoptimized Assembly Planning for a ROS
Based Robot Cell

Daniel Ewert, Daniel Schilberg and Sabina Jeschke

Abstract In this paper, we present a hybrid approach to automatic assembly
planning, where all computational intensive tasks are executed once prior to the
actual assembly by an Offline Planner component. The result serves as basis of
decision-making for the Online Planner component, which adapts planning to the
actual situation and unforeseen events. Due to the separation into offline and online
planner, this approach allows for detailed planning as well as fast computation during
the assembly, therefore enabling appropriate assembly duration even in nondeter-
ministic environments. We present simulation results of the planner and detail the
resulting planner’s behavior.

Keywords Assembly Planning · Cognitive Production Systems · ROS

1 Introduction

1.1 Motivation

The industry of high-wage countries is confronted with the shifting of production to
low-wage countries. To slow down this development, and to answer the trend towards
shortening product life-cycles and changing customer demands regarding individ-
ualized and variant-rich products, new concepts for the production in high-wage
countries have to be created. This challenge is addressed by the Cluster of Excellence
“Integrative production technology for high-wage countries” at the RWTH Aachen
University. It researches on sustainable technologies and strategies on the basis of
the so-called polylemma of production [1]. This polylemma is spread between two
dichotomies: First between scale (mass production with limited product range) and
scope (small series production of a large variety of products), and second between
value and planning orientation. The ICD) “Self-optimizing Production Systems”

D. Ewert (B) · D. Schilberg · S. Jeschke
IMA/ZLW & IfU, RWTH Aachen University, Dennewartstr. 27, 52068 Aachen, Germany
e-mail: daniel.ewert@ima-zlw-ifu.rwth-aachen.de

Originally published in “ICIRA 2012”, © Springer 2012.
Reprint by Springer International Publishing AG 2016,
DOI 10.1007/978-3-319-46916-4_2

15



16 D. Ewert et al.

focusses on the reduction of the latter dichotomy. It’s approach for the reduction of
this polylemma is to automate the planning processes that precede the actual pro-
duction. This results in a reduction of planning costs and ramp-up time and secondly
it allows to switch between the production of different products or variants of a
product, hence enabling more adaptive production strategies compared to current
production. Automatic replanning also allows to react to unforeseen changes within
the production system, e.g. malfunction of machines, lack of materials or similar, and
to adapt the production in time. In this paper we present the planning components of
a cognitive control unit (CCU) which is capable to autonomously plan and execute
a product assembly by relying entirely on a CAD description of the desired product.

1.2 Use Case Description

The CCU is developed along a use case scenario for an assembly task in a nondeter-
ministic production environment [2]. This scenario is based on the robot cell depicted
in Fig. 1.

Of the two robots of the robot cell, only Robot2 is controlled by the CCU. Robot1
independently delivers parts in unpredictable sequence to the circulating conveyor
belt. The parts are then transported into the grasp range of Robot2 who then can
decide to pick them up, to immediately install them or to park them in the buffer
area.

Fig. 1 Schematic of the robot cell



Selfoptimized Assembly Planning for a ROS Based Robot Cell 17

Fig. 2 Toy model products for planner evaluation

The scenario also incorporates human-machine cooperation. In case of failure,
or if the robot cannot execute a certain assembly action, the CCU is able to ask a
human operator for assistance. To improve the cooperation between the operator and
the machine, the operator must be able to understand the behavior and the intentions
of the robot [3]. Therefore, machine transparency is a further major aspect in our
concept.

The only sources of information to guide the decision making of the CCU are
a CAD description of the desired product, the number and types of single parts
currently in the buffer and on the conveyor belt and the current state of the assembly
within the Assembly Area. The planner is evaluated with the figures described in
Fig. 2. The pyramid construct (a) serves here as a benchmark for the computational
complexity of our planning approach and has been used in different sizes (base areas
of 2× 2, 3× 3, and 4× 4 blocks). Construct (b) and (c) are used to demonstrate the
planner’s behavior.

2 Related Work

In the field of artificial intelligence planning is of great interest. There exist many
different approaches to planning suitable for different applications. Hoffmann devel-
oped the FF planner, which is suitable to derive action sequences for given problems
in deterministic domains [4]. Other planners are capable to deal with uncertainty
[5, 6]. However, all these planners rely on a symbolic representation based on logic.
The corresponding representations of geometric relations between objects and their
transformations, which are needed for assembly planning, become very complex
even for small tasks. As a result, these generic planners fail to compute any solution
within acceptable time.

Other planners have been designed especially for assembly planning and work
directly on geometric data to derive action sequences. A widely used approach is the
Archimedes systembyKaufman et al. [7] that usesAnd/Or-Graphs and an “Assembly
by Disassembly” strategy to find optimal plans. U. Thomas [8] follows this strategy,



18 D. Ewert et al.

too, but where the Archimedes system relies on additional operator-provided data
to find feasible subassemblies, Thomas uses only the geometric information about
the final product as input. However, both approaches are not capable of dealing with
uncertainty.

Other products for assembly planning focus on assisting product engineers set up
assembly processes. One example is the tool Tecnomatix from Siemens [9], which
assists in simulating assembly steps, validates the feasibility of assembly actions etc.
All of the mentioned works do not cover online adaption of assembly plans to react
on changes in the environment. One exception is the system realized by Zaeh et al.
[10], which is used to guide workers through an assembly process. Dependent on the
actions executed by the worker, the system adapts its internal planning an suggests
new actions to be carried out by the worker. The CCU uses the same technique for
plan adaption.

3 Autonomous Assembly Planning

3.1 Hybrid Assembly Planning

The overall task of the CCU is to realize the autonomous assembly in a nondeter-
ministic environment: Parts are delivered to the robot cell in random sequence and
the successful outcome of an invoked assembly action cannot be guaranteed. While
assembly planning is already hard even for deterministic environmentswhere all parts
for the assembly are available or arrive in a given sequence [8], the situation becomes
worse for this unpredictable situation. One approach to solve the nondeterministic
planning problem would be to plan ahead for all situations: Prior to the assembly all
plans for all possible arrival sequences are computed. However, this strategy soon
becomes unfeasible: A product consisting of n parts allows for n! different arrival
sequences, so a product consisting of 10 parts would already result in the need to
compute more than 3.6 million plans. Another approach would be to replan dur-
ing the assembly every time an unexpected change occurs in the environment. This
strategy, however, leads to unacceptable delays within the production process.

Therefore, our approach follows a hybrid strategy. All computational intensive
tasks are executed once before the actual assembly. This is done by anOffline Planner
component. The results of this step serve as basis of decision-making for the Online
Planner component, which adapts planning to the actual situation and unforeseen
events. Due to this separation, our approach (see Fig. 3) allows for detailed plan-
ning as well as fast computation during the assembly, therefore enabling appropriate
assembly duration even in nondeterministic environments. The Offline Planner con-
tains a CAD Parser which derives the geometric properties. The currently supported
format is STEP [11]. This data is then processed by the graph generator. The details
of this process are explained in Section 3.2. The Online Planner consists of the com-
ponents Graph Analyzer, Parallelizer and Cognitive Control, which are detailed in
Section 3.3.



Selfoptimized Assembly Planning for a ROS Based Robot Cell 19

Online Planner

Offline Planner

Graph Generator

CAD Parser

geometric data

state graph

assembly seq. Robot 
Cell

current
system
state

geometric data

CAD

command

Graph Analyzer

Cognitive Control

Parallelizer
assembly sets

Fig. 3 System overview of the hybrid approach

3.2 Offline: Graph Generation

The Offline Planner receives a CAD description of the desired final product. From
this input it derives the relations between the single parts of the product via geometri-
cal analysis as described in 0. The results are stored in a connection graph. Assembly
sequences are now derived using an assembly-by-disassembly strategy: Based on the
connection graph, all possible separations of the product into two parts are computed.
The feasibility of those separations is then verified using collision detection tech-
niques. Unfeasible separations are discarded. The remaining separations can then be
evaluated regarding certain criteria as stability, accordance to assembly strategies of
human operators or similar. The result of this evaluation is stored as a score for each
separation. This separation is recursively continued until only single parts remain.
The separation steps are stored in an and/or graph [12], which is then converted
into a state graph as displayed in Fig. 4 using the method described in Ewert D., D.
Schilberg, and S. Jeschke [13]. Here nodes represent subassemblies of the assembly.
Edges connecting two such nodes represent the corresponding assembly actionwhich
transforms one state into the other. Each action has associated costs, which depend
on the type of action, duration, etc. Also, each edge optionally stores information
about single additional parts that are needed to transform the outgoing state into the
incoming state.

The graph generation process has huge computational requirements for time as
well for space. Table 1 shows the properties of resulting state graphs for different
products. The results show the extreme growth of the graph regarding the number of
parts necessary for the given product. However, as can be seen when comparing the



20 D. Ewert et al.

Fig. 4 State graph
representation of the
assembly of a four blocks
tower

Table 1 State graph properties for different products

Product # Parts # Nodes of graph # Edges of graph

Construct (a) (size 2× 2) 5 17 33

Construct (c) 6 16 24

Construct (b) 14 361 1330

Construct (a) (size 3× 3) 14 690 2921

Construct (a) (size 4× 4) 30 141,120 1,038,301

state graphs of both constructs with 14 parts, the shape of a product affects the graph,
too: The more possible independent parts are from each other, the more different
assembly sequences are feasible. Therefore the graph of the construct (a) with 14
parts has almost twice the size of the state graph resulting from construct (b).

3.3 Online: Graph Analysis

The state graph generated by the Offline Planner is then used by the Online Planner to
derive decisionswhich assembly actions are to be executed given the current situation
of an assembly. The Online Planner therefore executes the following process itera-
tively until the desired product has been assembled: The Graph Analyzer perceives



Selfoptimized Assembly Planning for a ROS Based Robot Cell 21

the current situation of the assembly and identifies the corresponding node of the
state graph. In earlier publications [13] we suggested an update phase as next step. In
this phase all costs of the graphs edges reachable from that node were updated due to
the realizability of the respective action. The realizability depends on the availability
of the parts to be mounted. Unrealizable actions receive penalty costs which vary
depending on how close in the future they would have to be executed. This cost
assignment makes the planning algorithm avoid currently unrealizable assemblies.
Additionally, due to the weaker penalties for more distanced edges, the algorithm
prefers assembly sequences that rely on unavailable parts in the distant future to
assemblies that immediately need those parts. Preferring the latter assembly results
in reducedwaiting periods during the assembly sincemissing parts havemore time to
be delivered until they are ultimately needed. Using the A* algorithm [14] the Online
Planner now derives the cheapest path connecting the node matching the actual state
with a goal node, which presents one variant of the finished product. This path repre-
sents the at that time optimal assembly plan for the desired product. The Parellelizer
component now identifies in parallel or arbitrary sequence executable plan steps and
hands the result to the Cognitive Control for execution. Here the decision which
action is actually to be executed is made. The process of parallelization is detailed
in [13].

However, updating all edge cost reachable from the node representing the current
state is a computational intensive task.Toovercome this problem, the edge cost update
can be combined with the A* algorithm, so that only edges which are traversed byA*
are updated. This extremely reduces the computational time, since only a fraction
of the graphs node is examined. So even for large graphs, the Online Planner is
able to derive a decision in well under 100ms in worst case. Figure 5 shows the
nodes reachable and examined by the Online Planner during the assembly of a 4×4
construct. Plateaus in the graph depict waiting phases where the assembly cannot
continue because crucial parts are not delivered.

3.4 Planner Behaviour

Figure 6 shows the course of the assembly for the construct (c). Newly arrived parts
are shown in the third column. They can either be used for direct assembly (first
column) or otherwise are stored in a buffer shown in column 2. The right column
depicts the plan that is calculated based on the parts located. Here the number of
a given block denotes the position where that block is to be placed. In step 0, no
parts have been delivered. The planner therefore has no additional information and
produces an arbitrary but feasible plan. In step 1 a new green block is delivered,
which matches the first plan step. The related assembly action is therefore executed
and the new block is directly put to the desired position. In step 2 a new red block is
delivered. Given the current state of the assembly and the new red cube, the planner
calculates an improved plan which allows to assemble this red block earlier than
originally planned: Now it is more feasible to first mount two green blocks on top



22 D. Ewert et al.

Fig. 5 Number of nodes reachable from the node representing the given situation and number of
nodes that are examined by the A*-algorithm. Number of nodes is shown using a logarithmic scale

Fig. 6 Exemplary assembly flow for construct (c)



Selfoptimized Assembly Planning for a ROS Based Robot Cell 23

of each other (positions 1 and 3), because then the red block can be assembled, too
(position 5). This plan step is executed in step 3 when a second green block becomes
available. Now, in step 4, it is possible to mount a red block. From that step on only
one feasible assembly sequence is possible, which is then executed.

The described behaviour results in more rapid assemblies compared to simpler
planning approaches: A purely reactive planner which would follow a bottom up
strategy, would have placed the first two green blocks next to each other (positions 1
and 2). Thus, in step 5 no assembly actionwould have been possible and the assembly
would have to stop until a further green cube would be delivered.

4 Summary

In this paper we presented our hybrid approach for an assembly planner for nondeter-
ministic domains. We described the workflow of the offline planner, which analyses
CAD data describing the desired product. The outcome of the offline planner is a
state graph which holds all possible (and feasible) assembly sequences. This graph
is generated by following an assembly by disassembly strategy: Recursively all pos-
sible separations of the final product are computed until only single parts remain.
During the actual assembly, this state graph is updated to mirror the current situation
of the assembly, specially the availability of newly delivered parts. Using the A*
algorithm, the at that time optimal assembly sequence is derived and handed over
to the cognitive control unit, which then decides which assembly step gets to be
executed. This step is then executed and the outcome of that step is reported back to
the planning system. This process is iterated until the product is completed.

5 Outlook

Future work must optimize the described Planners. Using techniques of parallel
programming and by incorporating specialized databases which can cope efficiently
with large graphs, the planning duration can be improved. Subsequently, the planner
will be extended to be able to deal with industrial applications as well as plan and
control the production process of a complete production network.

References

1. C. Brecher, F. Klocke, G. Schuh, R. Schmitt, eds., Excellence in Production. Apprimus Verlag,
Aachen, Germany, 2007

2. C. Brecher, T. Kempf,W. Herfs, Cognitive control technology for a self-optimizing robot based
assembly cell. In: Proceedings of the ASME 2008 International Design Engineering Technical



24 D. Ewert et al.

Conferences & Computers and Information in Engineering Conference. America Society of
Mechanical Engineers, U.S., 2008, pp. 1423–1431

3. B. Kausch, C.M. Schlick, W. Kabuß, B. Odenthal, M.P. Mayer, M. Faber, Simulation of human
cognition in self-optimizing assembly systems. In: Proceedings of 17th World Congress on
Ergonomics IEA 2009. Beijing, China, 2009

4. J. Hoffmann, FF: the fast-forward planning system. The AI Magazine, 2001
5. J. Hoffmann, R. Brafman, Contingent planning via heuristic forward search with implicit belief

states. In: In Proceedings of ICAPS’05. AAAI, 2005, pp. 71–80
6. C. Castellini, E. Giunchiglia, A. Tacchella, O. Tachella, Improvements to SAT-based confor-

mant planning. In: Proc. of 6th European Conference on Planning. 2001
7. S. Kaufman, R. Wilson, R. Jones, T. Calton, A. Ames, Ldrd final report: Automated planning

and programming of assembly of fully 3d mechanisms. Technical Report SAND96-0433,
Sandia National Laboratories, 1996

8. U. Thomas, Automatisierte Programmierung von Robotern für Montageaufgaben, Fortschritte
in der Robotik, vol. 13. Shaker Verlag, Aachen

9. Tecnomatix, 2011. URL http://www.plm.automation.siemens.com/en_us/products/
tecnomatix/index.shtml

10. M. Zäh, M. Wiesbeck, A model for adaptively generating assembly instructions using state-
based graphs. In: Manufacturing Systems and Technologies for the New Frontier, Springer,
London, 2008

11. F.Röhrdanz,H.Mosemann, F.Wahl,HighLAP: a high level system for generating, representing,
and evaluating assembly sequences. 1996, pp. 134–141

12. L. Homem de Mello, A. Sanderson, AND/OR graph representation of assembly plans. In:
Proceedings of 1986 AAAI National Conference on Artificial Intelligence. 1986, pp. 1113–
1119

13. D. Ewert, D. Schilberg, S. Jeschke, Selfoptimization in adaptive assembly planning. In: Pro-
ceedings of the 26th International Conference on CAD/CAM Robotics and Factories of the
Future. 2011

14. P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics 4 (2), 1968, pp. 100–107

http://www.plm.automation.siemens.com/en_us/products/tecnomatix/index.shtml
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/index.shtml

	Selfoptimized Assembly Planning for a ROS Based Robot Cell
	1 Introduction
	1.1 Motivation
	1.2 Use Case Description

	2 Related Work
	3 Autonomous Assembly Planning
	3.1 Hybrid Assembly Planning
	3.2 Offline: Graph Generation
	3.3 Online: Graph Analysis
	3.4 Planner Behaviour

	4 Summary
	5 Outlook
	References


