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Abstract. We introduce a novel spatio-temporal deformable part model
for offline detection of fine-grained interactions in video. One novelty of
the model is that part detectors model the interacting individuals in a
single graph that can contain different combinations of feature descrip-
tors. This allows us to use both body pose and movement to model the
coordination between two people in space and time. We evaluate the
performance of our approach on novel and existing interaction datasets.
When testing only on the target class, we achieve mean average preci-
sion scores of 0.82. When presented with distractor classes, the additional
modelling of the motion of specific body parts significantly reduces the
number of confusions. Cross-dataset tests demonstrate that our trained
models generalize well to other settings.

Keywords: Human behavior · Interaction detection · Spatio-temporal
localization

1 Introduction

Action recognition in videos continues to attract a significant amount of research
attention [14]. Starting from the analysis of individuals performing particular
actions in isolation (e.g. [19]), there is a trend towards the contextual analysis
of people in action. There is much interest in the understanding of a person’s
actions and interactions in a social context, with research into the automated
recognition of group actions [2] and human-human interactions [13,17].

This paper contributes to the latter category. We focus on two-person
(dyadic) interactions such as shaking hands, passing objects or hugging. The
type of interaction in which people engage informs us of their activity, the social
and cultural setting and the relation between them. Automated detection of
interactions can improve social surveillance, for example to differentiate between
friendly and hostile interactions or to determine whether a person in an elderly
home is a staff member, family member or unrelated visitor.

Poses of people in different interactions can be visually similar, for exam-
ple when shaking hands or handing over an object (see Fig. 1). To differentiate
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Fig. 1. Hand shake and object pass interactions with similar poses. We introduce a
model to detect interactions that differ slightly in their spatio-temporal coordination
by modeling pose and motion of specific body parts.

between interactions, the coordinated movement of the people provides an addi-
tional cue. Not all body parts play an equally important role in each interaction.
For example, a hand shake is characterized by the movement of the right hands.
The distinction between such interactions requires a fine-grained analysis of the
specific pose and body motion of both persons involved in the interaction.

In this paper, we detect dyadic interactions based on structural models [29]
that combine pose (HOG) and movement (HOF) information. We train clas-
sifiers from videos and focus on those parts of the video that characterize the
interaction. This enables us to distinguish between interactions that differ only
slightly. An advantage of our method is that we can detect where the interaction
occurs in a video in both space and time. This property allows us to identify
who is involved in the interaction, or who hands over an object to whom.

Our contributions are as follows. First, we model the coordinated body move-
ment of the people involved. We introduce a novel model to exploit these cues
and to detect interactions in both space and time. Second, we present a proce-
dure to train a detector from a few examples with pose information. Third, we
demonstrate the performance of our framework on publicly available datasets.
We report spatio-temporal localization performance for models trained only on
the target interaction class.

We discuss related work in the next section. In Sect. 3, we introduce our
model and detail the training and test procedures. The evaluation of our work
appears in Sect. 4. We conclude in Sect. 5.

2 Related Work on Interaction Detection

The progress of vision-based action recognition algorithms is impressive [14]. Ini-
tial success was mainly based on bag-of-visual-word (BoVW) approaches that
map image feature distributions to action labels [19]. Wang et al. [26] link these
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features over time into dense trajectories, allowing for more robust representa-
tions of movement. The work has been extended by clustering the trajectories
to enable the spatio-temporal detection of actions [25].

While these representations have achieved state-of-the-art performance, they
do not explicitly link image features to human body parts. The availability
of body pose and, especially, body movement information has been found to
increase action classification performance [5]. This is because the pose or move-
ment of some body parts is often characteristic. For example, arm movement is
more discriminative than leg movement in a hand shake. Without pose informa-
tion, discriminative patterns of image movement can only be modeled implicitly,
e.g. using clusters of dense trajectories [11] or co-occurring spatio-temporal words
[32]. These approaches are automatic but less reliable in the presence of other
motions, when multiple people interact with each other in close proximity.

Part-based models such as Deformable Part Models (DPM, [3]) and poselets
[1] can detect people in an image and localize their body parts. These models
employ body part detectors and impose spatial constraints between these parts.
DPMs are sufficiently flexible to describe articulations of the body [29]. This
enables the detection of key poses representative of an action [15]. Often, two
actions cannot be distinguished based on a single key pose, see Fig. 1. Movement
can then be used to distinguish between classes [23]. Yao et al. [30] represent
actions as a combination of a pose and a mixture of motion templates.

In this paper, we follow this line of research, but extend it to the detection
of interactions. Researchers have started to analyze behavior of multiple people
[2,9]. Here, we focus on the recognition of two-person interactions. Recent work
in this area has used gross body movement and proximity cues for the detection
of interactions. A common approach is to first detect faces or bodies using off-the-
shelf detectors [13,18]. Detections of individuals can be paired and the resulting
bounding volume can be used to pool features in a BoVW approach [10].

The relative distances and orientations between people can also be used to
characterize interactions. Patron-Perez et al. [13] use coarse distance labels (e.g.,
far, overlap) and differences in head orientation. They also include local features
around each person such as histograms of oriented gradients (HOG) and flow
(HOF). Sener and İkizler [21] take a similar approach but cast the training as
multiple-instance learning, as not all frames in an interaction are considered
informative. For the same reason, Sefidgar et al. [20] extract discriminative key
frames and consider their relative distance and timing within the interaction.

Kong and Fu [7] observe that not all body parts contribute equally. Their
method pools BoVW responses in a coarse grid. This allows them to identify spe-
cific motion patterns relative to a person’s location but the level of detail of the
analysis is limited by the granularity of the patches and the accuracy of the per-
son detector. Yang et al. [28] found that a sequential approach of first detecting
individuals and then recognizing their interaction does not perform well when
there is physical contact. They significantly improve classification performance
by building detectors for various types of physical interactions such as hand-hand
and hand-shoulder touches. Here we also focus on physical interactions, but we
look at the fine-grained differences between visually similar classes.
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Proximity and orientation are good cues for detection of coarse interaction
classes, but less so to detect fine-grained interactions such as those in social
encounters. These are characterized by body movements that are visually similar,
but differ slightly in the temporal coordination. To distinguish between such
interactions, we need to more effectively model the coordination between the
people involved.

Kong et al. [8] train detectors for attributes such as “outstretched hands”
and “leaning forward torso” and consider their co-occurrences. Given sufficiently
detailed attributes, fine-grained interactions could be detected. However, as
each detector is applied independently, false detections are likely to occur. van
Gemeren et al. [24] use interaction-specific DPMs to locate people in characteris-
tic poses. They then describe the coordinated movement in the region in between
DPM detections. As there can be significant variation in how people pose, this
two-stage approach strongly relies on the accuracy of the pose detection.

In this paper, we address this issue by combining the detection of the peo-
ple and their interaction in a single step. We diverge from Yao et al. [30], by
constraining how pose and motion are coordinated in a dyadic scenario, so we
can model spatio-temporal coordination at a much more fine-grained level. Yao
et al. train and test their model on human-object interaction tasks, whereas we
focus specifically on dyadic human interactions.

3 Modeling Fine-Grained Coordinated Interactions

We model two-person interactions based on DPMs for pose recognition in images,
introduced by Yang and Ramanan [29]. We solve three limitations. First, parts
are not locally centered on body joints but are specific for an interaction and
typically encode the relative position and articulation of a body part, similar
to poselets [1]. Second, we allow each part detector to contain multiple image
cues. We explicitly enable the combination of static and temporal features. We
can thus decide per body part whether pose, motion or a combination is most
discriminative for a specific interaction. Third, we consider two persons simulta-
neously. Our formulation models the spatial and temporal coordination between
their poses and movements at a fine scale. We discuss the model, training algo-
rithm and detection procedure subsequently.

3.1 Model Formulation

Our model is motivated by the observation that many interactions are charac-
terized by a moment where the poses of two people are spatially coordinated
and the movement of a specific part of the body is temporally coordinated.

Let us define graph G = (V,E), with V a set of K body parts and E the
set of connections between pairs of parts [29]. Each body part i is centered on
location li = (xi, yi). For clarity, we omit in our formulation the extent of the
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body part’s area, as well as scaling due to processing an image i at multiple
resolutions. The scoring for a part configuration in image I is given by:

S(I, l) =
∑

i∈P

wi · φi(I, li) +
∑

ij∈E

wij · ψ(li − lj) (1)

The first term models the part appearance with a convolution of image
feature vector φi(I, li) with trained detector wi. The second term contains
the pair-wise deformations between parts ψ(li − lj) =

[
dx dx2 dy dy2

]
, with

dx = rixi − rjxj and dy = riyi − rjyj the relative location of part i with respect
to part j [29]. These distances are defined with respect to root factor r, which
allows for scaling of parts with a different cell resolution as the root part [3]. wij

encodes the rest location and the rigidity of the connections between parts.
We now describe our adaptations of this model for the modeling of fine-

grained dyadic interactions.

Class-specific Part Detectors. While [29] considers different body part orien-
tations as parameters in the model, we learn class-specific detectors that encode
the articulation of the body part directly. Though our method allows for model-
ing multiple mixtures per part, our data only features homogeneous interactions
recorded from a specific viewing angle. Therefore, we use only a single detec-
tor per class, instead of a mixture of part detectors. Aside from having data
that features interactions performed in different ways from multiple viewpoints,
increasing the amount of mixtures would also require a larger amount of samples.

Multiple Features. Our model supports different types of features per part.
For part i with feature representations Di, we replace the first term in Eq. 1 by:

∑

i∈P

∑

j∈Di

bijw
j
i · φj

i (I, li) (2)

φj
i (I, li) denotes a feature vector of type j (e.g., HOG or HOF) for part i.

Bias bij denotes the weight for each feature type. wj
i is the trained detector for

part i and feature type j. Parts can have different combinations of features Di.
As such, our formulation is different from Yao et al. [30], who require one HOG
template and a set of HOF templates per body part. In contrast, our model
allows us to focus on those features that are characteristic for a specific body
part and interaction class. We explicitly also consider features that are calculated
over time such as HOF descriptors.

Two-person Interaction. As there are two persons involved in a dyadic inter-
action, we combine their body parts into the same graph. Each actor’s body
parts form a sub-tree in this (2K + 1)-node graph. The torso parts of both
actors are connected through a virtual root part of the graph. This part does
not have an associated part detector but it allows us to model relative distances
between people. To our knowledge currently no methods exist that model dyadic
interactions as a single part based model.

In the experiments presented in this paper, the sub-tree of each person has
a torso root node with four child parts: head, right upper arm, right lower arm
and right hand.
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3.2 Training

Fig. 2. Frame with super-
imposed pose data. (Color
figure online)

For each interaction class, we learn the model from
a set of training sequences. We describe a sequence
of length n as X = {(Ii, yi, pi)}n

i=1 with Ii an image
frame, yi the interaction label of frame i and pi a
pose vector containing the 2D joint positions of the
two persons performing the dyadic interaction. The
metadata of the training videos contains 3D skele-
ton joint positions, from which we calculate 2D pro-
jections. We use this to place parts on limb loca-
tions. We assume the sequences are segmented in
time to contain the interaction of interest. As the
temporal segmentation relies on human annotations
the start and the end of an interaction are not pre-
cisely marked. Therefore we consider a single short
sequence of frames most representative for the inter-
action in each sequence, as the base of the model.
We call this sequence the epitome. We guarantee
that the epitome is taken from the temporally seg-
mented sequence.

Training consists of three steps. First, we determine the epitome frame per
training sequence. Second, we learn the initial body part detectors. Third, we
simultaneously update the epitome frame and the body part detectors.

Epitome Frame Detection. We intend to find the prototypical interaction
frame of each training sequence. To this end, we pair-wise compare the joint
sets of all frames in two sequences. For our experiments, we consider all joints
in the right arm of both persons in interaction (green parts in Fig. 2). We can
efficiently identify the epitome in each sequence with the Kabsch algorithm [6].
We use it to compare sets of coordinates in a translation, scale and rotationally
invariant way. Based on the Kabsch distance between the video with the lowest
sum distance to all other videos, we label each sequence as prime if this distance
is below 0.5, and inferior otherwise. Essentially we separate the videos in which
the skeleton poses look-alike, from the videos where they don’t.

Initial Model Learning. We learn body part detectors wj
i (Eq. 2) from the

prime sequences. We determine, for each part, the type, spatial resolution and
temporal extent. In this paper, we consider HOG and HOF features [26] but the
DPM inference algorithm is well suited to incorporate a learned feature extractor
such as convolutional neural networks (CNN) [4]. The spatial resolution indicates
the cell size. For HOF, the temporal extent dictates how many frames around
the epitome frame are used.

For each interaction, we train body part detectors for both persons using Dual
Coordinate Descent SVM (DCD SVM) solvers [22]. After the positive optimiza-
tion round, we perform a round of hard negative detection [3]. Negative examples
are harvested in random frames of the Hannah dataset [12], to avoid overfitting
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Fig. 3. Top row: HOG pose models for fist bump, hand shake, high five and pass object.
Bottom row: HOF features of the right hands. The red rectangle indicates the enclosing
bounding box of the two hands. (Color figure online)

to a particular training set, and to allow for the extraction of realistic motion
patches. After optimizing all part mixtures, we combine all parts into a sin-
gle spatio-temporal DPM (SDPM). The locations of the parts are based on the
average relative center locations in the pose data.

Epitome and Model Refinement. Once an initial SDPM is constructed,
we apply it to both prime and inferior training sequences to detect new latent
positive interaction examples. We search for the highest scoring frame in each
sequence to update the positive example set. Given that the initial epitome
frames are selected solely based on pose, this step allows us to better represent
the motion of the body. The resulting positive example set is used to optimize
the model features and to determine all part biases and deformation parameters
using the DCD SVM solvers. Example models are shown in Fig. 3. Note the
vertical hand movement for the hand shake model and the horizontal movement
for fist bump.

3.3 Spatio-Temporal Localization

With a trained SDPM, we can detect interactions in both space and time. We
specifically avoid 3D feature extraction during training because we want to be
able to apply our model on data that does not contain any depth information. We
first detect interactions in frame sequences that last shorter than a second, and
then link these to form interaction tubes, without the use of depth information.

We generate a feature pyramid for each of the feature types to detect inter-
actions at various scales. We extend the formulation to deal with feature types
with a temporal extent. Based on Eq. 1, we generate a set of detection candidates
spanning the entire video. In practice, we evaluate non-overlapping video seg-
ments. For a temporal HOF size of nine frames, we evaluate every ninth frame.
Overlapping detections are removed with non-maximum suppression.



Spatio-Temporal Detection of Fine-Grained Dyadic Human Interactions 123

Fig. 4. Detected spatio-temporal interaction tube
(red) for a hand shake. The green rectangle shows
the best detection. (Color figure online)

Interaction Tubes. We link
frame detections into interac-
tion tubes (see Fig. 4). We sort
candidate detections on detec-
tion score. Each tube starts
with the best scoring detection.
We then greedily assign the
detections of adjacent frames to
the current tube. A detection is
only added if it satisfies a min-
imum spatial overlap constraint
ρ of 50 % and a maximum area
deviation of 50 % with respect
to the best detection. We iterate
until all candidate detections
have been assigned to a tube.
Finally we remove all tubes with
only a single detection.

4 Experiments and Results

Previous research on interaction recognition has considered assigning labels to
video sequences that have been segmented in both space and time. In contrast, we
focus on spatio-temporal detection of interactions from unsegmented videos. To
address this scenario, we present a novel dataset and our performance measures.
Subsequently, we summarize the setup and results of our experiments.

4.1 Datasets

As available interaction datasets contain behaviors that are visually quite dis-
similar, we introduce a novel dataset ShakeFive2 1 with interactions that differ
slightly in their coordination. We train interaction detection models on this
dataset and present the performance of different settings. In addition, we test
these models on publicly available interaction datasets SBU Kinect [31] and
UT-Interaction [17]. Example frames from each of these datasets can be seen in
Fig. 5.

ShakeFive2 consists of 94 videos with five close proximity interaction
classes: fist bump, hand shake, high five, hug and pass object. Each video con-
tains one two-person interaction, recorded under controlled settings but with
small variations in viewpoint. We note that in the pass object interaction a
small orange object is passed from one person to the other. This is the same
small object for all videos. For each person in each frame, 3D joint position data
obtained using Kinect2 is available.

1 ShakeFive2 is publicly available from https://goo.gl/ObHv36.

https://goo.gl/ObHv36
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Fig. 5. Example frames from the datasets used in this paper: ShakeFive2, SBU Kinect
and UT-Interaction. Top row: hand shake, bottom row: hug.

SBU Kinect involves two actors performing one interaction per video in an
indoors setting. The interactions are: hand shake, high five, hug, pass object, kick,
leave, punch and push. Pose data, obtained with a Kinect, is provided but not
always accurate. From the 260 videos, we exclude 42 with incorrect pose data.

UT-Interaction consists of two sets of 10 videos each. The first set features
two persons in interaction per video, while the second set contains multiple pairs
per video. The following interactions are performed: hand shake, hug, kick, point,
punch and push. No pose data is available but bounding boxes are provided.
These span the entire spatial extent of the interaction. To have a more tight
estimate of the interaction per frame, we use the bounding box data from [21].

4.2 Performance Measurements

As we detect interactions in both space and time, we use the average intersection
over union of the ground truth G and detected tube P as in [25]. G and P are
two sets of bounding boxes and θ is the set of frames in which either P or G is
not empty. The overlap is calculated as:

IoU(G,P ) =
1

‖θ‖
∑

f∈θ

Gf ∩ Pf

Gf ∪ Pf
(3)

We evaluate different minimal overlap thresholds σ for which IoU(G,P ) ≥ σ.
For cross-validation tests, we create one precision-recall diagram per fold. We
report the mean average precision (mAP) scores as the mean of the areas under
the curves of each fold.

We consider two testing scenarios: single-class (SC) and multi-class (MC).
For single-class detection, we apply a detector for a given interaction class to
test videos of that class only. This scenario measures the spatio-temporal local-
ization accuracy. In the multi-class scenario, we test the detector on all available
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test sequences in the dataset. This allows us to determine whether there are con-
fusions with other interactions. In the multi-class scenario, the same interaction
can be detected with models of different classes. This common situation will lead
to false positives as we do not compare or filter these detections. The reported
mAP scores are therefore conservative but demonstrate the performance of our
models without discriminative training.

To assess which pairs of classes are more often confused, we introduce a novel
measure that takes into account the spatio-temporal nature of our problem. We
test a trained detector in the single-class and multi-class detection scenarios
and calculate the difference in mAP (d-mAP) scores between these two settings.
When no false positives have been identified, the d-mAP score is zero. Higher
d-mAP scores are due to the performance loss caused by the false positives for
the particular distractor class.

4.3 Features and Experiment Setup

Our model can be trained using different types of descriptors per part. In our
experiments, we consider HOG and HOF descriptors. For HOG, we use the
gradient description method of [3], which differs slightly from [26]. Optical flow
is calculated with DeepFlow [27]. For the time dimension of HOF, we use three
bins of three frames each. For a 30 fps video, this covers about a third of a second.

We use a HOG model that describes the torso with 4 × 8 cells, the right
upper arm with 7 × 8, right lower arm with 9 × 7 and the right hand and head
with 6 × 6 cells. The number of pixels per cell is 8 × 8 for the torso and 4× 4 for
other body parts. The HOF model is similar but all body parts are encoded as
HOF. The HOGHOF model describes the torso and head as HOG, the right
upper and lower arms as HOG and HOF and the right hand with HOF.

Models are trained on the data of ShakeFive2 using three-fold cross-
validation. In each fold, there are six or seven sequences per class. We there-
fore train on either 12 or 13 sequences only. The performance in the single-class
scenario is calculated as the average performance over the three folds. In the
multi-class scenario, we combine the test folds of the different interaction classes,
creating a set of 30–34 videos of which six or seven are of the target class.

4.4 Detection Results

We first investigate the added value of using motion information for interaction
detection. We test the HOG, HOF and HOGHOF models on the ShakeFive2
dataset. We refer to the five interactions as FB (fist bump), HS (hand shake),
HF (high five), HU (hug) and PO (pass object). Results for the single-class (SC)
and multi-class (MC) scenarios are shown in Table 1. We use a minimal overlap
σ between the detected tube and the ground truth volume (Eq. 3) of 10 %.

When tested on only videos of the same class (SC), we see that theHOGHOF
model outperforms both HOG and HOF. This demonstrates that interactions
are most accurately detected by a combination of pose and motion information.
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Table 1. Single-class (SC) and multi-class (MC) mAP scores on ShakeFive2.

SC/MC FB HS HF HU PO Avg.

HOG SC 0.74 0.79 0.75 0.61 0.95 0.77

HOF SC 0.55 0.75 0.70 0.65 0.55 0.64

HOGHOF SC 0.83 0.95 0.83 0.61 0.88 0.82

HOG MC 0.32 0.55 0.39 0.37 0.63 0.45

HOF MC 0.23 0.60 0.48 0.51 0.28 0.42

HOGHOF MC 0.54 0.88 0.50 0.34 0.57 0.57

The lower performance of HOF indicates that movement information alone is not
sufficient to robustly detect interactions from video. When additional sequences
of other interaction classes are available (MC), we notice a significant drop for all
models but less so for HOGHOF. Especially the lack of pose information in the
HOF model appears to cause misclassifications between interactions. The com-
bination of pose and motion in the HOGHOF model appears to work best. Note
that all models are trained on at most 13 positive training sequences and that the
other interactions are not provided as negative samples. The models are therefore
not trained to discriminate between interaction classes.

Table 2. d-mAP scores for the HOG (left) and HOGHOF (right) models on Shake-
Five2. In columns the true class, in rows the tested class.

FB HS HF HU PO
FB 0.41 0.24 0.16 0.44
HS 0.22 0.15 0.15 0.31
HF 0.32 0.31 0.20 0.25
HU 0.23 0.26 0.23 0.19
PO 0.15 0.27 0.07 0.05

FB HS HF HU PO
FB 0.19 0.16 0.13 0.28
HS 0.04 0.04 0.04 0.09
HF 0.26 0.19 0.11 0.16
HU 0.29 0.18 0.24 0.22
PO 0.19 0.25 0.09 0.05

There are some differences in performance between the interaction classes.
Hand shakes can be detected relatively robustly by all models, whereas espe-
cially hugs are often not detected. In the multi-class setting, we can investigate
how often interaction classes are confused. We present the d-mAP multi-class
detection scores on ShakeFive2 for the HOG and HOGHOF models in Table 2.
For the HOG model, there are many confusions. Apparently, the pose informa-
tion alone is not sufficiently informative to distinguish between interactions that
differ slightly in temporal coordination: hand shake, fist bump and pass object.
The number of confusions for the HOGHOF model is much lower. The addi-
tional motion information can be used to reduce the number of misclassification
between visually similar interactions.
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We note that especially fist bump and hand shake have fewer confusions with
the HOGHOF model compared to the HOG model. However, the HOGHOF
model for pass object has more confusions. We expect that the variation in the
performance of this interaction leads to a suboptimal model during training.
This can be seen in Fig. 3 as well. The HOG description of the pose is somewhat
ambiguous, while the HOF descriptor of the hands is similar for the pass object
and fist bump interactions. Indeed, many pass object interactions are detected
as fist bumps.

4.5 Parameter Settings

Next, we investigate the influence on the detection performance of the most
important parameters of our models: the minimal tube overlap (σ), the minimal
spatial overlap (ρ) and the number of training sequences.

Minimal tube overlap is a measure of how accurate the detections are in
both space and time. A higher threshold σ requires more accurate detection.
In line with [25], we vary this threshold from 0.1 to 0.5. Figure 6 shows the
performance of the three models for increasing σ. We note that HOG (Fig. 6a)
shows a better performance than HOF (Fig. 6b) when σ increases. When HOG
and HOF are combined (HOGHOF, in Fig. 6c), we observe a significant increase
in performance and mAP scores that remain higher for larger values of σ.

(a) HOG (b) HOF (c) HOGHOF

Fig. 6. mAP scores over all interaction classes in the single-class (solid line) and multi-
class (dashed) scenarios of ShakeFive2 for increasing values of σ.

Minimal Spatial Overlap. Subsequent detections in time are linked provided
that they sufficiently overlap spatially. The default threshold ρ of 50 % is in line
with object detection research but Fig. 7a shows the mAP scores for different
values of ρ, with best results for ρ = 58%. A higher value for ρ results in fewer
links and, consequently, smaller tubes. With a lower threshold, noisy detections
are more often linked to the tube, also resulting in a lower mAP.

Amount of Training Data. We noticed that the HOGHOF models
achieve good detection performance despite being trained on a small num-
ber of example sequences. Here we test the performance of the model when
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(a) mAP per ρ (b) mAP and # videos (c) mAP per τ

Fig. 7. mAP scores for different parameter settings in the single-class (solid line) and
multi-class (dashed) scenarios. (a) shows the influence of the minimal spatial overlap on
the performance. (b) shows the performance with different amounts of training videos:
2 (red), 12–13 (blue) or 15–16 (green). (c) shows the influence on the minimal tube
overlap for different datasets: ShakeFive2 (blue), SBU Kinect (red) and UT-Interaction
(green). (Color figure online)

trained on different numbers of sequences. Figure 7b shows the mAP scores
when training on 2, 12–13 (3 folds), and 15–16 (6 folds) sequences. For the
first setting, we sampled pairs of training sequences. Clearly, performance is
lower when training on just two training sequences. The difference between
12–13 and 15–16 sequences is very small. This suggests that saturation occurs at
a very low number of training data. This is advantageous as obtaining training
sequences with associated pose data might be difficult, especially when many
interaction classes are considered.

4.6 Performance on SBU Kinect and UT-Interaction

To compare our method to previous work, we also evaluate the performance on
publicly available interaction datasets SBU Kinect and UT-Interaction. We train
HOGHOF models on all available sequences in ShakeFive2. Results reported
are for cross-dataset evaluation. In the single-class scenario, we only report the
interactions are shared between ShakeFive2 and the other two datasets. We
evaluate all available videos in the dataset in the multi-class scenario.

Even though the three datasets are similar in the type of interaction, there
are several notable differences. First, there is variation between the datasets
in the viewpoint and the performance of the interactions (see also Fig. 5). For
example, the average durations of hand shakes in ShakeFive2 and UT-Interaction
are 27 and 100 frames, respectively, both at 30 frames per second. Also, the
percentage of positive interaction frames differs. For UT-Interaction, 5 % of the
frames contain the interaction of interest. This is 12 % for ShakeFive2, and all
frames of SBU Interact contain the target interaction.

To account for differences in interaction length, we introduce minimal tube
length τ . Tubes shorter than τ segments are removed. This is beneficial for
datasets with significantly longer interactions than in the training data. Figure 7c
summarizes the performance of the HOGHOF model on the evaluated datasets.
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Table 3. Single-class (SC) and multi-class (MC) mAP scores for SBU Kinect.

SC/MC HS HU PO

HOGHOF SC 0.94 0.68 0.87

HOGHOF MC 0.71 0.53 0.24

ShakeFive2 and SBU Kinect have similar profiles, UT-Interaction scores better
for τ values around 4. For SBU Kinect and UT-Interaction, we set τ = 2.

SBU Kinect. Table 3 summarizes the performance on SBU Kinect. We have
tested the “noisy” variation of this dataset using our HOGHOF model with
σ = 0.1, ρ = 0.5 and τ = 2. We observe high scores in the single-class scenario,
even though we did not train on this dataset. For comparison, Yun et al. [31]
report classification performance on the dataset when using the pose features.
They obtain 75 %, 61 % and 85 % recognition accuracy for the hand shake, hug
and pass object interactions, respectively. While these scores cannot be compared
directly, it is clear that classification of segmented sequences already presents
challenges. Detecting the interaction in space and time adds to the challenge.

Table 4. d-mAP scores for the HOGHOF models on SBU Kinect. In columns the
true class, in rows the tested class.

HS HU KI LV PC PS PO
HS 0.03 0.08 0.06 0.12 0.18 0.14
HU 0.18 0.21 0.14 0.22 0.24 0.26
PO 0.38 0.08 0.22 0.29 0.23 0.40

We note that the detection of the pass object interaction scores particu-
larly low in the multi-class setting compared to the single-class setting. To ana-
lyze confusions, Table 4 presents d-mAP values for all SBU Kinect interactions:
hand shake (HS), hug (HU), kick (KI), leave (LV), punch (PC), push (PS) and
pass object (PO). Many hand shake and push interactions are detected as pass
object. These three interactions are characterized by extended, horizontally mov-
ing arms. The pass object model clearly is not discriminative enough to pick up
on the subtle differences between the interactions.

UT-Interaction. Finally, we evaluate the HOGHOF models on the UT-
Interaction dataset. Results of our model and previously reported results are
summarized in Table 5. A direct comparison with other works is difficult for a
number of reasons. First, we report detection results only for hand shake and
hug, the common interactions between ShakeFive2 and UT-Interaction. Second,
we report spatio-temporal localization results, whereas other works consider a
recognition scenario. In this setting, volumes segmented in space and time are
classified. Third, we train our models on a different dataset.
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Table 5. Single-class (SC) and multi-class (MC) mAP scores for UT-Interaction (left).
Classification accuracies reported on UT-Interaction (right).

(left)

Set HS HU Avg.

SC #1 0.61 0.39 0.57

#2 0.90 0.36

MC #1 0.48 0.38 0.46

#2 0.63 0.36

(right)

Method Avg.

Raptis and Sigal [15] 100 %

Ryoo [16] 85 %

Sener and İkizler [21] 100 %

Zhang et al. [32] 100 %

Table 5 shows the detection results on both sets of UT-Interaction. Our
HOGHOF can detect multiple simultaneous interaction, as witnessed by the
scores on set 2. The detection of hugs is much lower. We attribute this to the
longer duration of the hugs. Many hugs are not detected for a sufficient number
of subsequent frames. As a result, there are missed detections. Higher values for
τ can alleviate this problem.

5 Conclusions and Future Work

We have introduced a novel model for the detection of two-person interactions.
Our spatio-temporal deformable part models combine pose and motion in such
a way that we can model the fine-grained coordination of specific body parts.
For the first time, we address the spatio-temporal detection of interactions from
unsegmented video. Our approach allows us not only to say whether an interac-
tion has occurred, but also to recover its spatial and temporal extent.

Interaction models are trained from only a few videos with pose information.
On the novel ShakeFive2 dataset, we achieve mAP scores of 0.82 when training
on 12–13 sequences. In the presence of visually similar interactions, motion infor-
mation reduces the number of misclassifications. We obtain mAP scores of 0.57
without discriminative training, and without filtering the detections. Moreover,
our cross-dataset evaluations on the publicly available UT-Interaction and SBU
Kinect datasets demonstrate that the model generalizes to different settings.

Despite its good performance, the method has some limitations. Most impor-
tantly, the number of false detections is considerable. Currently, we can have
several detections of the same interaction. By filtering these, we can reduce
the number of false positives. This will allow us to report classification results.
Another improvement is the discriminative training of the interaction models.



Spatio-Temporal Detection of Fine-Grained Dyadic Human Interactions 131

This is likely to improve the detection performance as each model can focus on
those parts of the pose or motion that are discriminative for the interaction.

Pose data is required to train our models. We are considering incremen-
tal training schemes that alleviate this need. Finally, we would like to include
multiple perspectives to improve viewpoint independence. While there is some
variation within and between the datasets that we have evaluated, viewpoint
invariance will further increase the applicability of our work.

Together, we envision that these improvements can bring closer the auto-
mated spatio-temporal detection of a broad range of social interactions in uncon-
strained video material. This will allow for the automated analysis of TV footage
and web videos. Moreover, we aim at the application of our work in dedicated
social surveillance settings such as in public meeting places and elderly homes.
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