
Chapter 17

Gold Nanoparticles from Plant System:

Synthesis, Characterization and their

Application

Azamal Husen

17.1 Introduction

Nanotechnology is science, engineering and technology conducted at the nanoscale

(at least one dimension between 1 and 100 nm). The unique physicochemical

feature of these nanomaterials is not observed in the corresponding bulk materials

(Nel et al. 2006). Hence, they have gained huge attention in industry and technol-

ogy. Over the past few years, synthesis of nanomaterials and their characterization

has accelerated due to huge applications in various fields of biology, chemistry,

physics and medicine. The main concerns with chemical synthetic routes are

environmental contamination, and physical methods need enormous amount of

energy to maintain the high pressure and temperature. Moreover, chemical and

physical methods are usually expensive processes. Many researchers have diverted

their interest to biological synthesis of nanoparticles. Plants and plant-related

product synthesis of nanomaterials are generally simple, inexpensive, available

and eco-friendly (Husen and Siddiqi 2014a, b, c; Yasmin et al. 2014; Pasca et al.

2014; Prasad 2014; Khan et al. 2015; Yu et al. 2016; Tripathi et al. 2016; Siddiqi

and Husen 2016a). It is understood that in comparison to microorganism-mediated

synthesis of nanoparticles, the use of plants and plant-related products is more

advantageous due to the ease of scaling up, less biohazards on production and

elimination of the elaborate process of maintaining cell cultures. Thus, exploring

plants with high metal accumulation capacity/phytomining, as well as its engineer-

ing, is a need of the hour (Husen and Siddiqi 2014b; Iqbal et al. 2015).

Plants or their extracts/products have been extensively used to produce a range

of metal nanoparticles with well-defined size and shape (Husen and Siddiqi 2014b).
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Gold acquires elite properties, namely, high free electron density, malleability and

conductivity, and favours opportunities to produce stable and adjustable gold

nanoparticles for potential applications, for instance, in diagnostics, biological

imaging, biosensors, therapeutic agent delivery, photodynamic therapy, electronics,

catalytic activity, antioxidant, antibacterial, larvicidal activity, environmental mon-

itoring/cleanup, etc. (Castaneda et al. 2007; Chen et al. 2008; Baruah and Dutta

2009; Yeh et al. 2012; Spivak et al. 2013; Kesik et al. 2013; Kumar et al. 2013;

Husen and Siddiqi 2014b; Li et al. 2014; Kuppusamy et al. 2015; Yu et al. 2016).

It is well known that in the biological process, extracts from the living system

served as reducing and capping agents. Numerous routes have been developed for

the biological or biogenic synthesis of gold nanoparticles from the corresponding

salts. In this connection, plants have been proven to be capable for the rapid intra- or

extracellular synthesis of gold nanoparticles such as Acacia nilotica (Majumdar

et al. 2013), Achyranthes aspera (Tripathi et al. 2016), Azadirachta indica
(Ramezani et al. 2008), Beta vulgaris (97), Brassica juncea (Arora et al. 2012),

Camellia sinensis (Vilchis-Nestor et al. 2008), Cicer arietinum (Ghule et al. 2006),

Cinnamomum camphora (Huang et al. 2007), Citrus maxima (Yu et al. 2016),

Cymbopogon flexuosus (Shankar et al. 2004a), Euphorbia hirta (Annamalai et al.

2013), Hamamelis virginiana (Pasca et al. 2014), Madhuca longifolia (Fayaz et al.

2011), Salicornia brachiata (Ahmed et al. 2014), Vitis vinifera (Ismail et al. 2014),

Zingiber officinale (Kumar et al. 2011) and so on (Fig. 17.1 and Table 17.1). Hence

based on this information, the present review was focused on the plant-mediated

syntheses of gold nanoparticles, possible mechanisms, characterization as well as

the potential applications in various fields, including medicine, industry, agriculture

and pharmaceuticals.

17.2 Phytosynthesis of Gold Nanoparticles

Phytosynthesis of gold nanoparticles depends on several important factors such as

concentration of plant extract or biomass, concentration of metal salt, incubation/

reaction time, temperature and pH of the solution (Fig. 17.2). Thus, by establishing

the relationship of these factors with size and shape of the concerned nanoparticles,

it is possible to obtain nanoparticles of the desired properties in a controlled way.

Plant extract or biomass can be prepared from various parts of plant (leaves, stems,

roots, shoots, barks, seeds, flowers or floral parts) or the whole plant. Usually, for

the extraction procedure, the desired plant parts are soaked in a solvent. The

obtained plant extract contained the reducing and capping agents needed to reduce

metallic ions. The advantage of using dried desired plant parts is that these can be

stored at room temperature for a longer period of time if at all required, while to

prevent deterioration, the fresh plant/plant parts should be stored at �20 �C. In
addition, the variation due to seasonal fluctuations which lead to the variations in

plant constituents is eliminated by using dried materials (Huang et al. 2007; Sheny

et al. 2011). It is well known that plants or their extracts contain different
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biomolecules such as proteins, sugars, amino acids, enzymes and other traces of

metals. These metabolites are strongly involved in the bioreduction process.

The main idea behind the nanoparticle formation is the reduction of metal ion to

elemental metal. It has been reported that due to the limited capacity of plants for

reducing metal ions, the biosynthetic process usually works well for metal ions with

large positive electrochemical potential such as Au and Ag ions (Haverkamp and

Marshall 2009). Synthesis of gold nanoparticles was carried out by Shankar et al.

(2003) using geranium (Pelargonium graveolens) leaf extract. The shape of the

gold nanoparticles was spherical, triangular, decahedral and icosahedral. This

reaction was completed within 48 h. Authors proposed that the terpenoids in the

leaf extract may be responsible for the reduction of gold ions and formation of gold

nanoparticles. Synthesis of gold nanoparticles using Fourier transform infrared

(FTIR) spectroscopy exhibited that the flavanones and terpenoids which are abun-

dant in Azadirachta indica leaf broth have probably been adsorbed on the surface of
the nanoparticles and led to their stability for 4 weeks (Shankar et al. 2004b). In this

Acacia nilotica - Leaves Angelica archangelica - Root Camellia sinensis - Leaves or Tea Bag

Cuminum cyminum - Seed Emblica officinalis - Fruits Hamamelis virginiana - Bark

Morinda citrifolia 

Sesbania drummondii - Seed Rosa hybrid - Petal Terminalia arjuna - Bark 

- Root Nyctanthes arbortristis - Flower Pistacia integerrima - Gall

Fig. 17.1 Plants and their parts used for fabrication of gold nanoparticles
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Table 17.1 Phytosynthesis of gold nanoparticles with their size and shape

Plant

Part

used Size Shape References

Acacia
nilotica

Leaves 6–12 nm Spherical Majumdar et al.

(2013)

Aegle
marmelos

Leaves 38.2� 10.5 nm Spherical Rao and Paria

(2014)

Aerva lanata Leaves 17.97 nm – Joseph and

Mathew (2015)

Aloe vera Leaves – Crystalline Chandran et al.

(2006)

Angelica
archangelica

Root 3–4 nm Spherical, ovals, polyhedral Pasca et al.

(2014)

Azadirachta
indica

Leaves 5.5�7.5 nm Crystalline Ramezani et al.

(2008)

Beta vulgaris Sugar

beet

pulp

Spherical, rod-shaped

nanowires

Castro et al.

(2011)

Brassica
juncea

Leaves 10�20 nm Near spherical Arora et al.

(2012)

Cacumen
platycladi

Leaves 2.2�42.8 nm Face-centred cubic (fcc)

crystalline

Zhan et al.

(2011)

Camellia
sinensis

Leaves

(tea

bag)

40 nm Spherical, triangular, irregular Vilchis-Nestor

et al. (2008)

Chenopodium
album

Leaves 10–30 nm Quasi-spherical Dwivedi and

Gopal (2010)

Cicer
arietinum

Bean – Triangular Ghule et al.

(2006)

Cinnamomum
camphora

Leaves 80, 23.4,

21.5 nm

Spherical, triangular Huang et al.

(2007)

Cinnamomum
zeylanicum

Leaves 25 nm Spherical, prism Smitha et al.

(2009)

Coleus
amboinicus

Leaves 4.6–55.1 nm Spherical, triangular, trun-

cated triangular, hexagonal,

decahedral

Narayanan and

Sakthivel

(2010)

Coriandrum
sativum

Leaves 6.7�57.9 nm Spherical, triangular, trun-

cated, triangular, decahedral

Narayanan and

Sakthivel

(2008)

Cuminum
cyminum

Seed 1�10 nm Spherical Krishnamurthy

et al. (2011)

Cymbopogon
flexuosus

Leaf 12–30 nm Triangular Shankar et al.

(2004a)

Diopyros kaki Leaves 5�300 nm Spherical, triangular, pentag-

onal, hexagonal

Song et al.

(2009)

Emblica
officinalis

Fruit 15�25 nm – Ankamwar

et al. (2005a)

(continued)
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Table 17.1 (continued)

Plant

Part

used Size Shape References

Eucalyptus
camaldulensis

Leaves 5.5�7.5 nm Crystalline Ramezani et al.

(2008)

Euphorbia
hirta

Leaves 6–71 nm Spherical Annamalai

et al. (2013)

Hypericum
perforatum

Bark 4–6 nm Spherical, polyhedral Pasca et al.

(2014)

Hamamelis
virginiana

Bark 4–6 nm Spherical, polyhedral Pasca et al.

(2014)

Madhuca
longifolia

Leaves – Triangular, spherical, hexag-

onal nanoplates

Fayaz et al.

(2011)

Magnolia
kobus

Leaves 5�300 nm Spherical, triangular, pentag-

onal, hexagonal

Song et al.

(2009)

Mangifera
indica

Leaves 17�20 nm Spherical Phillip (2010)

Memecylon
edule

Leaves 10�45 nm Circular, triangular,

hexagonal

Elavazhagan

et al. (2011)

Menta piperita Leaves 150 nm Spherical Ali et al. (2011)

Momordica
charantia

Fruit 500–600 nm – Pandey et al.

(2012)

Morinda
citrifolia

Root 12.17–38.26 nm Cubic Suman et al.

(2014)

Murraya
koenigii

Leaves 20 nm Spherical, triangular Philip et al.

(2011)

Nyctanthes
arbor-tristis

Flower 19.8 nm Spherical, triangular,

hexagonal

Das et al.

(2011)

Pelargonium
graveolens

Leaves 20�40 nm Decahedral, icosahedral Shankar et al.

(2003)

Pelargonium
roseum

Leaves 5.5�7.5 nm Crystalline Ramezani et al.

(2008)

Pistacia
integerrima

Gall 20–200 nm – Islam et al.

(2015a)

Psidium
guajava

Leaves 25�30 nm Spherical Raghunandan

et al. (2009)

Punica
granatum

Juice 23–36 nm Triangular, pentagonal, hex-

agonal, spherical

Dash and Bag

(2014)

Rosa hybrida Petal ~10 nm Spherical, triangular,

hexagonal

Noruzi et al.

(2011)

Rosa rugosa Leaves 11 nm Triangular and hexagonal Dubey et al.

(2010a)

Salix alba Leaves 50–80 nm – Islam et al.

(2015b)

Sesbania
drummondii

Seed 6–20 nm Spherical Sharma et al.

(2007)

Sphaeranthus
amaranthoides

Leaves 39 nm Spherical Nellore et al.

(2012)

(continued)
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study, the morphology of the gold nanoparticles was predominantly planar (trian-

gular and a few hexagonal) along with spherical shapes. Control over shape and size

of gold nanoparticles has been achieved using Cymbopogon flexuosus extract.

Anisotropic gold nanotriangles have been synthesized by the reaction of lemon-

grass extract with aqueous gold ions. In this study, 45% of the population of total

gold nanoparticles was triangular in shape in the range of 0.05–1.8 μm, while other

shapes were spherical, hexagonal and cubic. Triangle size was controlled by

varying the concentration of the lemongrass extract in the reaction medium.

Authors have claimed that with increasing amounts of extract added to the

HAuCl4 solution, the average size of the triangular and hexagonal particles

decreased, while the ratio of the number of spherical nanoparticles to triangular/

hexagonal particles increased (Shankar et al. 2004a). Transmission electron micros-

copy (TEM) analysis revealed that the most polar fraction produces only triangular

shapes similar to that produced by the total extract, while the most non-polar

fraction produces only cubic shapes. The study of the FTIR and nuclear magnetic

resonance (NMR) spectroscopy of the most polar reaction exhibited that aldehydes

and ketones were responsible for the stabilization and formation of gold

nanoparticles. These gold nanotriangles might be building blocks for the synthesis

of electrically conductive thin films (coatings), which can be used effectively in

vapour sensing. Bioreduction of HAuCl4 using tamarind leaf extract led to the

formation of flat and thin single crystalline gold nanotriangles with unique and

highly anisotropic planar shapes. These gold nanotriangles may find application in

Table 17.1 (continued)

Plant

Part

used Size Shape References

Stevia
rebaudiana

Leaves 8�20 nm Octahedral Mishra et al.

(2010)

Salicornia
brachiata

Plant 22–35 nm Spherical Ahmed et al.

(2014)

Tanacetum
vulgare

Fruit 11 nm Triangular Dubey et al.

(2010b)

Terminalia
catappa

Leaves 10�35 nm Spherical Ankamwar

(2010)

Terminalia
arjuna

Fruit 20–50 nm Spherical Gopinath et al.

(2014)

Terminalia
arjuna

Bark 15–20 nm Triangular, tetragonal, pen-

tagonal, hexagonal, rod-like,

spherical

Majumdar and

Bag (2012)

Trigonella
foenum-
graecum

Seeds 15�25 nm Spherical Aromal and

Philip (2012)

Vitis vinifera Leaves 18–25 Triangular, pentagonal,

spherical

Ismail et al.

(2014)

Zingiber
officinale

Roots 5–15 nm Spherical Kumar et al.

(2011)
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photonics, optoelectronics and optical sensing (Ankamwar et al. 2005b). Proteins

and other biomolecules from Cicer arietinum mediate the bioreduction of aqueous

Au (III) ions directing the formation of microscale triangular gold prisms (Ghule

et al. 2006). Control of the morphology of gold nanoparticles has been achieved by

varying compositions of C. arietinum extract and aqueous Au (III) solution.

The shape and size of the synthesized gold nanoparticles were modulated and

produced by Aloe vera leaf extract (Chandran et al. 2006). The gold nanoparticles

were triangular and ranged from 50 to 350 nm, which was dependent on the

quantity of leaf extract. When a low amount of leaf extract was added to HAuCl4
solution, the fabrications of nanogold triangles were larger in sizes. Moreover,

when the quantity of leaf extract was increased, the ratio of nanogold triangles to

spherical was decreased. In this study, carbonyl functional groups were found to be

responsible for the reduction of gold ions and production of nanoparticles. As

progress is made in green synthesis, instead of using the plant extract by boiling,

the sun-dried leaf powder in water at ambient temperature is used in some studies.

In this type of nanoparticle fabrication, a moderator and accelerator like ammonia

Fig. 17.2 Phytosynthesis of gold nanoparticles from aqueous plant extract/biomass and their

application
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was not needed, but the leaf extract concentration was the rate-determining step. It

was an important move in bioreduction of AuCl4
� that biomolecules of molecular

weight less than 3 kDa can cause its reduction. Cinnamomum camphora sun-dried

powder of leaves was used for the production of gold and silver nanoparticles

(Huang et al. 2007).Mangifera indica leaf (extract and dried powder) was also used
to produce spherical gold nanoparticles at room temperature (Philip 2010). The

author claimed that the smaller and more uniform size of gold nanoparticles can be

produced by driedM. indica leaves. The size of the gold nanoparticles was larger in
lower extract quantities perhaps due to lack of stabilizing biomolecules in small

quantities. These gold nanoparticles were stable for more than 5 months. The FTIR

study exhibited the role of water-soluble compounds, for instance, flavonoids,

terpenoids and thiamine as stabilizing agents in the synthesis of gold nanoparticles.

Phyllanthin an important ingredient of the plant was separated from the extract

of Phyllanthus amarus by liquid–liquid extraction and chromatography. Thereafter,

a purified component was used to synthesize gold nanoparticles. Further, cyclic

voltammetry and thermogravimetry were used to verify the conversion of gold ions

to zero-valent nanoparticles (Kasthuri et al. 2009). Although pure nanoparticles

were obtained, this procedure was more complicated than the traditional plant-

mediated methods. Rapid gold nanoparticle synthesis within a short duration has

also been shown using marine alga, Sargassum wightii (Singaravelu et al. 2007), in
which the powder of marine alga with gold ions exhibits the colour change of the

medium to ruby red after 15 h of incubation. The algal biomass kinetics was

observed between 300 and 800 nm using UV–Vis spectroscopy. The bands

corresponding to the surface plasmon resonance (SPR) were found at 527 nm

during this gold ion reduction process. Gold nanoparticles were fabricated by

using Gnidia glauca flower extract and were used as a chemocatalytic agent in

the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium boro-

hydride (Ghosh et al. 2012). The formation of gold nanoparticles was observed by

the change in colour from yellow to dark red in the visible range of the spectrum

from 450 to 600 nm (Fig. 17.3). Further, the UV–Vis spectrum of gold

nanoparticles as a function of time showed that the reaction was completed within

20 min. It has been observed that the fabrication of gold nanoparticles starts 2 min

after the interaction of G. glauca flower extract with HAuCl4. This method of gold

nanoparticle synthesis (Ghosh et al. 2012) was faster and more efficient than that

reported earlier (Vankar and Bajpai 2010) which took about 2 h for the completion

of the reaction.

Freshly cut leaves of Hibiscus rosa-sinensis were exposed to microwave heating

for 3 min, and rapidly gold nanoparticles were synthesized. The SPR at 520 nm

confirmed the synthesis of gold nanoparticles. TEM study exhibits the spherical-

shaped nanoparticles in the size range of 16–30 nm. The nanoparticles’ stability
was proved during in vitro stability tests. It was found that alkaloids and flavonoids

played a crucial role in the nanoparticle synthesis which was identified using the

FTIR (Yasmin et al. 2014). In an experiment, leaf extract of two plants (Magnolia
kobus and Diopyros kaki) were used to fabricate gold nanoparticles (Song et al.

2009). They observed that the reaction temperature and the leaf extract
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concentration influenced the shape and the size of the gold nanoparticle formation.

At higher temperatures and extract concentrations, smaller and mainly spherical

nanoparticles were fabricated, whereas a variety of other morphologies in larger

sizes were achieved at lower temperatures and extract concentrations. When an

aqueous extract of Dysosma pleiantha was added to a solution of gold ions, it gave

gold nanoparticles in a spherical shape of 127 nm in size (Karuppaiya et al. 2013).

Interestingly, in this investigation gold nanoparticles were produced at boiling

temperature. The average particle size of gold nanoparticles was inversely depen-

dent on temperature in the range of 30–60 �C. Further, the antimetastatic activity of

nanoparticles against human fibrosarcoma cancer cell line HT-1080 was tested.

These gold nanoparticles had no toxic effect on cell proliferation. Moreover, these

gold nanoparticles exhibited a high potential for the inhibition of cell migration of

human fibrosarcoma cancer cell line HT-1080.

Pasca et al. (2014) reported that the reduction of Au (III) to Au(0) with plant

extracts of Angelica archangelica, Hamamelis virginiana and Hypericum
perforatum was rapid at room temperature, and for high dilutions of the plant

extract, indicating the presence of a reducing substance in large amounts. In this

study, the stability of the gold nanoparticles was more at high pH (8–10). It was

suggested that the stabilization of nanoparticles was due to the adsorption of

stabilizing substances present in the same plant extracts or perhaps also due to

their oxidation products (quinones). Moreover, besides this extract, other sub-

stances are capable to mediate the self-assembly of nanoparticles. The best stability

Fig. 17.3 UV–Vis spectra recorded as a function of reaction time of 1 mM chloroauric acid

solution with Gnidia glauca flower extract at 40 �C (Ghosh et al. 2012)

17 Gold Nanoparticles from Plant System: Synthesis, Characterization and. . . 463



was found by using Angelica extract, whereas self-aggregation tendency was higher
in the presence of the Hypericum extract. Here a common trend was also observed;

as such at a lower concentration of the plant extract, larger particles were formed.

The tendency to self-aggregation was increased as a result of the dilution of

protecting substances.

In several other studies, the size and shape of fabricated nanoparticles can be

manipulated by adjusting the pH of the reaction mixtures. The main effect of the pH

was in its ability to change the electrical charges of biomolecules which might have

affected their capping and stabilizing abilities and subsequently the growth and

production rate of nanoparticles. This may resulted in the favourable formation of

nanoparticles of certain shapes at a specific pH range so that a greater stability can

be obtained. For instance, in another study the pH-dependent fabrication of gold

NPs by Avena sativa biomass was also performed (Armendariz et al. 2004) where

face-centred cubic (fcc), tetrahedral, hexagonal, decahedral, icosahedral and irreg-

ular rod-shaped gold nanoparticles were produced. The yield was more at low pH

(3). It was found that at higher pH, the gold nanoparticles of small size are

produced. On the other hand, the rod-shaped gold nanoparticles were produced at

all pH which has been reported to be formed mainly by electrodeposition in the

presence of KAuCl4 which produced AuCl4
- anion in water. Oat biomass has

exhibited the ability to bind AuCl4
- and its subsequent reduction to gold

nanoparticles. An available protein from Macrotyloma uniflorum was used to

produce gold nanoparticles as capping and stabilizing agents (Aromal et al.

2012). UV–Vis spectrum of the produced gold nanoparticles in different extract

quantities from 0.5 to 2 mL demonstrated a shift to shorter wavelengths, which

shows the decrease in particle size, when the temperature was increased from room

temperature to the 373 K at the same extract quantity SPR bands became broader

and shifted to the longer wavelengths; this indicated the increment of particle size.

Similarly, gold nanoparticles were synthesized using Anacardium occidentale
extract where the pH of the reaction mixture was varied from 3 to 8 at room

temperature. At pH 5 and 8, the SPR bands were broad, which shows that

polydispersed nanoparticles were synthesized, while at pH 4, 6 and 7, the SPR

bands were sharper; and at pH 6 a narrow band was recorded which was the

characteristic of monodispersed spherical nanoparticles that was confirmed by

TEM images (Sheny et al. 2011).

In a recent study, an enzymatic digestion process was developed for the simul-

taneous determination of nanoparticle size, distribution, particle concentration, and

dissolved gold concentration in tomato plant tissues (Dan et al. 2015). The authors

suggested that tomato plants can uptake gold nanoparticles of 40 nm diameter and

transport them to various parts of the plant. It was suggested that the macerozyme

R-10 enzyme can be used to extract the gold nanoparticles from the plant tissue

system. Plant organ-dependent yield of gold nanoparticles has been also reported in

Cucurbita pepo (Gonnelli et al. 2015). Gold nanoparticle one-pot synthesis was

carried out at 40 �C for 30 min with diluted HAuCl4. Shoot extracts produced a high

number of spherical nanoparticles with lower size than gold nanoparticles as

obtained from root extracts of C. pepo. Further, when root extracts grown in the
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presence of Cu (II), Ag (I) or Au (III) produced nanoparticles with treatment-

dependent shape, while using shoot extracts, this phenomenon was not recorded.

This may be due to metal-imposed specific changes in the cell antioxidant pool, as

the total polyphenol concentration in the extracts was correlated with the differ-

ences achieved in nanoparticle production. In another recent study, Tetgure et al.

(2015) have reported the synthesis and properties of silver and gold nanoparticles

using Ficus racemosa latex as reducing agent. The colloidal solutions of the

nanoparticles exhibited characteristic absorption peaks in the UV-vis region of

spectra containing a mixture of nanoparticles of varying size. As suggested by

Tetgure et al. (2015) that under acidic condition COOH and NH3+ groups of amino

acids binds with nanoparticles but under basic conditions the COO� and NH2 of the

same acids cannot bind the nanoparticles. It is very strange obsession of these

workers who have hypothesized such imaginary chemical binding of nanoparticles

with amino acids under acidic condition. First the nanoparticles are neutral atoms

which can associate themselves under both acidic and basic conditions. Second

only two charged species may be bonded such as a metal ion and an electron donor.

They have mistaken the agglomeration with complexation.

17.3 Characterization of Synthesized Gold Nanoparticles

Characterization of nanoparticles is an important process to understand the reaction

mechanism and its subsequent applications. Quite often used techniques for the

characterization of nanoparticles, viz. UV–Vis spectroscopy, TEM, scanning elec-

tron microscopy (SEM), X-ray diffraction (XRD), FTIR spectroscopy, atomic force

microscopy (AFM), energy-dispersive X-ray spectroscopy (EDX), dynamic light

scattering (DLS) and zeta potential, are used. These techniques are useful for the

determination of size, shape, surface modification, surface area, crystallinity and

dispersity of nanoparticles. Generally, UV–visible spectroscopy analysis is used

initially for the characterization of noble metallic nanoparticles including gold.

Gold nanoparticles have strong absorption in the visible region with the maximum

in the range of 500–600 nm due to the SPR phenomenon. This is attributed to the

collective oscillation of free conduction electrons induced by an interacting elec-

tromagnetic field with the concerned metallic nanoparticles. The appearance of

extract colour in red, purple, violet or pink-ruby red due to excitation of SPR

vibration in the above-mentioned wavelength confirms the production of gold

nanoparticles. For instance, Solanum melongena leaf extract leads to the production
of a higher quantity of gold nanoparticles followed by Datura metel and Carica
papaya (Rajasekharreddy et al. 2010). When HAuCl4 solution was exposed to

Tridax procumbens, Jatropha curcas, Calotropis gigantea, S. melongena,
D. metel, C. papaya and Citrus aurantium leaf extract solutions exhibited purple

colours in the reaction mixture which indicated the formation of gold nanoparticles

(Fig. 17.4a–g). For the size and shape of the synthesized nanoparticles, SPR band is

able to provide useful information. SPR wavelength variations with the variations
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in particle size in the extract of various plant species have already been established

by different workers as with Cinnamomum camphora (Huang et al. 2007), Camellia
sinensis (Vilchis-Nestor et al. 2008), cypress (Noruzi et al. 2012), Artocarpus
heterophyllus (Jiang et al. 2013), Hibiscus rosa-sinensis (Yasmin et al. 2014) and

Citrus maxima (Yu et al. 2016).

Microscopic techniques, for example, SEM, TEM and AFM, are mostly used for

morphological studies of the concerned nanoparticles. The use of these microscopic

techniques in morphological studies of nanoparticles has been mentioned previ-

ously. TEM is used for greater magnification and resolution than SEM. TEM is also

used to differentiate the crystalline structures from amorphous structures using the

electron diffraction pattern for a selected area (SAED) (Kasthuri et al. 2009;

Tripathi et al. 2016) (Fig. 17.5). AFM is used to study the shape of gold

nanoparticles (Ghodake et al. 2010; Pasca et al. 2014).

The XRD technique is used to establish the structural information of crystalline

metallic nanoparticles and confirms the formation of zero-valent nanoparticles (Jun

et al. 2014). X-rays are electromagnetic radiation with typical photon energies in

the range 100 eV–100 keV. Only short-wavelength X-rays in the range of a few

angstroms to 0.1 Å (1–120 keV) are used for diffraction applications. Since the

X-ray wavelength is comparable to the atom size, they are perfectly suitable for

probing the structural arrangement of atoms and molecules in a wide range of

materials. The energetic X-rays are able to penetrate deep into the materials and

provide valuable information about the bulk structure (Putnam et al. 2007). The

XRD technique is also used to calculate the crystallite sizes by the use of the

Debye–Scherrer equation (Dubey et al. 2010b). Reports are available on the use of

Fig. 17.4 UV–Vis absorption spectra of colloidal gold nanoparticles synthesized using (a)

Calotropis gigantea, (b) Jatropha curcas, (c) Tridax procumbens, (d) Citrus aurantium, (e) Carica
papaya, (f) Datura metel and (g) Solanum melongena leaf extracts (the inset of the figure shows
glass vials of the gold nanoparticle solution formed at the end of the reaction) (Rajasekharreddy

et al. 2010)

466 A. Husen



XRD pattern/peaks during fabrication of gold nanoparticles (Rajasekharreddy et al.

2010; Jun et al. 2014; Yu et al. 2016).

FTIR spectroscopy is used to measure infrared intensity against wavelength

(wave number) of light. It is used to identify the biomolecules involved in the

reduction and formation of the concerned nanoparticles. On the basis of wave

number, infrared light can be considered as far infrared (4–400 cm�1), mid infrared

(400–4000 cm�1) and near infrared (4000–14,000 cm�1). Several studies have

compared the FTIR spectrum during fabrication of gold nanoparticles and produced

the information about the reducing and capping agents such as proteins, poly-

saccharides, flavonoids, terpenoids, phenols, ascorbic acids and so on. For instance,

FTIR pattern of the gold nanoparticles synthesized using C. maxima fruit extracts

exhibited bands at 617, 1125, 1376, 1658 and 3278 cm�1 (Yu et al. 2016). Aromal

et al. (2012) have reported the presence of intense band at 1729 and 1642 cm�1

which indicates that the gold nanoparticles are probably bound to proteins present

in the aqueous extract of M. uniflorum through amine group. The FTIR spectra

comparison of plants before and after reaction, the functional groups, such as—

OCH3 of phyllanthin (Kasthuri et al. 2009) and polyols of the C. camphora leaf

extract (Huang et al. 2007) were identified. In another study, Jiang et al. (2013)

demonstrated that the FTIR spectra (Fig. 17.6a) of the biomass of A. heterophyllus
leaf extract before reduction exhibits bands at 3402, 2931, 1606, 1518, 1402, 1260

and 1076 cm�1. The bands at 3402, 1606 and 1518 cm�1 were given to the aromatic

hydroxyl and benzene ring, which indicated that there are phenols in the extract

(Andrei et al. 2012). Bands at 2931 and 1402 cm�1 are stretching vibrations of the

methylene and deformation vibration of the methyl, while bands at 1260, 1113 and

1076 cm�1 are assigned to epoxy bond, semi-acetal and primary alcohol indicated

the presence of sugars in the extract. Further, FTIR spectra of the biomass

A. heterophyllus leaf extract after reduction (Fig. 17.6b) exhibits analogous bands

at 2931, 1615, 1509, 1385 and 1068 cm�1. The main variation between the two

Fig. 17.5 TEM and SAED image showing the size, morphology and texture of gold nanoparticles

as obtained from the aqueous leaf extract of Achyranthes aspera and gold chloride solution

(Tripathi et al. 2016)
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waves lies in the fact that, original peaks at 3402 and 1260 cm�1 disappeared,

whereas new peaks at 3383, 1719 and 1225 cm�1 appeared after the reaction, which

meant that the epoxy band was broken and aromatic hydroxyl was oxidized to

carbonyl. Hence, these FTIR studies suggested that the reducing sugars and the

phenols are responsible for Au(III) reduction and gold nanoparticle stabilization.

Raman spectroscopy is a molecular spectroscopy that is observed as inelastically

scattered light that allows for the interrogation and identification of vibrational

(phonon) states of molecules. Thus, this spectroscopy provides an invaluable

analytical tool for molecular finger printing as well as monitoring changes in

molecular bond structure. In this technique, very little sample preparation and a

rapid, non-destructive optical spectrum are easily achieved. Raman spectra are

normally carried out with green, red or near-infrared lasers. Gold nanoparticles

enhance the intensity of Raman scattering of adjacent molecules. Thus, they are

usually employed in surface-enhanced Raman scattering (SERS) for the detection

and quantitative study of Raman active materials such as some organic and inor-

ganic species at low concentration. The uses of SERS in new material characteri-

zation, identification and their applications have been already reported (Dieringer

et al. 2006; Alvarez-Puebla et al. 2007; Kalmodia et al. 2013; Sun et al. 2014;

Prasad et al. 2016). NMR spectroscopy has also been used to confirm the

functionalization of gold nanoparticles (Shankar et al. 2004a; Das et al. 2011).

Zeta potential is a potential difference between the two suspended particles

present in colloidal suspension. It is a physical property which confirms the stability

of nanoparticles. Zeta potential values may be positive or negative but values above

than �30 mV or +30 mV favour the good quality and stability of nanoparticles and

such nanoparticles can be stored for a longer period of time. Zeta potential strongly

depends on the pH of the solution. For instance, in a fixed temperature (25 �C) at pH
6, zeta potential is �9.62 mV that exhibits poor quality, unstable gold

nanoparticles. At pH 7 zeta potential value is �25.7 mV, with zeta deviation

Fig. 17.6 FTIR spectra of

the biomass Artocarpus
heterophyllus leaf extract
before (a) and after (b)

reaction (biomass,

2.965 mg mL�1; HAuCl4:

1 mM; 30 �C; 180 min)

(Jiang et al. 2013)
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6.68 mV and conductivity 0.588 mS cm�1 which represents good quality but

unstable nanoparticles (Fig. 17.7a). Whereas at pH 10 zeta potential value is –

35.9 mV, with zeta deviation 7.41 mV and conductivity 3.19 mS cm�1 which

exhibits good quality and comparatively better stability of gold nanoparticles

(Fig. 17.7b). Tripathi et al. (2016) claimed that the gold nanoparticles that have

zeta potential of �35.9 mV can be stored for up to 2 months without compromising

their quality and stability.

Fig. 17.7 Zeta potential value and zeta potential distribution graph of Achyranthes aspera gold

nanoparticles at pH 7 (a) and 10 (b) (Tripathi et al. 2016)
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17.4 Applications of Gold Nanoparticles

Surprisingly, the applications of nanoparticles have a long history. Though, in

recent years different metal nanoparticles with unique properties have been syn-

thesized and applied in many research areas. Among these, gold nanoparticles have

attracted intense interests due to their unique optical and electrical properties, high

stability and good biocompatibility. Since the ancient civilizations, gold has been

used to treat various types of diseases such as smallpox, skin ulcers, syphilis and

measles (Tanaka 1999; Huaizhi and Yuantao 2001; Richards et al. 2002; Gielen and

Tiekink 2005; Kumar 2007; Chen et al. 2008). Moreover, the Romans in the fourth

century used gold for adding a striking red colour to glass (Lycurgus Cup); it

appears with a green colour in daylight but changes to red, when illuminated

from the inside (Leonhardt 2007; Freestone et al. 2007) (Fig. 17.8). Currently,

advances in synthesis and surface functionalization of nanoparticles (effective

manipulation) have led to numerous promising and diverse applications of gold

nanoparticles as mentioned in Fig. 17.2. Gold nanoparticles are competent of

delivering large biomolecules, without restricting themselves as carriers of only

small molecular drugs. Facile tunable size and functionality make them a valuable

scaffold for efficient recognition and delivery of biomolecules. Gold nanoparticles

have shown success in the delivery of peptides, proteins or nucleic acids like DNA

or RNA (Verma et al. 2004; Bhumkar et al. 2007; Ghosh et al. 2008; Rana et al.

2012; Ding et al. 2014). They were used as a carrier in the preparation of the

anticancer agent, paclitaxel (Gibson et al. 2007), and attached with vascular

endothelial growth factor antibodies which are employed in treating B-chronic

lymphocytic leukaemia (Mukherjee et al. 2007). Biosensors are generally defined

as sensors that consist of biological recognition elements, often called bioreceptors

or transducers (Vo-Dinh and Cullum 2000). SERS by gold nanoparticles has been

used to identify tumours in cancer research (Huang and El-Sayed 2010), immuno-

assays (Grubisha et al. 2003; Neng et al. 2010), study of living cells (Kneipp et al.

2002), detection of Alzheimer’s disease markers (Neely et al. 2009), determination

Fig. 17.8 The Lycurgus

Cup in reflected (left) and in
transmitted (right) light.
© Trustees of the British

Museum
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of protease activity (Guarise et al. 2006) and several other purposes (Dykman and

Khlebtsov 2012).

Gold nanoparticles possess catalytic activity and are thus widely used for

selective reactions at low temperature such as the water–gas shift reaction and

selective oxidation of carbon monoxide (Andreeva 2002; Grisel et al. 2002;

Hutchings and Haruta 2005), methanol (Hernández et al. 2006), glycerol (Carrettin

et al. 2002), hydrogenation of unsaturated materials (Claus et al. 2000), reduction of

aromatic nitro compounds (Kundu et al. 2009) and a toxic pollutant 4-nitrophenol

to 4-aminophenol (Sharma et al. 2007; Ghosh et al. 2012; Yu et al. 2016).

Gold nanoparticles have shown antimicrobial properties. Cationic and hydro-

phobic functionalized gold nanoparticles are found to effectively suppress the

growth of 11 clinical multidrug-resistant isolates, including both Gram-negative

and Gram-positive bacteria (Li et al. 2014). The nanogold bioconjugate exhibits

antimicrobial activity against several Gram-negative and Gram-positive pathogenic

bacteria as well as Saccharomyces cerevisiae and Candida albicans (Das et al.

2009). The synthesized silver and gold nanoparticles from Mentha piperita
exhibited a strong antibacterial activity against Staphylococcus aureus and

Escherichia coli (Ali et al. 2011). In addition, the antibacterial activities of

honey-mediated gold and silver nanoparticles have been observed (Sreelakshmi

et al. 2011).

Several uses of gold nanoparticles, as biosensor substrates, have been reported

(Liu and Lu 2003; Luo et al. 2004; Li et al. 2010). For instance, they have been

utilized in the biosensor design to improve the performance for the detection of

infectious diseases and biothreats (Lin et al. 2013). Gold nanoparticle-based sensors

are useful to detect toxins, heavy metals and inorganic and organic pollutants in

water rapidly with high sensitivity, and thus they are believed to play an important

role in environmental cleaning and monitoring. They have been used in chemical

sensing such as potassium (Lin et al. 2002), lithium (Obare et al. 2002) and toxic

heavy metals like mercury, lead and cadmium (Kim et al. 2001). This was demon-

strated by using surface-engineered gold nanoparticles. Gold nanoparticles are also

useful for the removal of heavy metals by the formation of alloys with varying

composition, for instance, Au3Hg, AuHg and AuHg3 phases, and therefore they can

be utilized for the removal of Hg ions from the contaminated water (Pradeep and

Anshup 2009). Gold nanoparticle-based sensor for the selective detection of Cr3+ in

aqueous solution, in the presence of 15 other metal ions, has been demonstrated

(Dang et al. 2009). They can also be used for the detection and removal of organic

compounds such as pesticides (Han et al. 2003) endosulfan, malathion and chlor-

pyrifos (Nair et al. 2003). Sulphur-containing compounds bind with gold

nanoparticles, causing a change in the suspension colour (to purple). Aggregation

of the endosulfan bond gold nanoparticles ultimately occurs, which basically

removes the endosulfan into a concentrated, solid form. In the availability of

methanol co-solvent, Bootharaju and Pradeep (2012) found the decomposition of

chlorpyrifos at room temperature in the presence of gold nanoparticles. Salt-

induced aggregation of gold nanoparticles was also used for the detection of

pesticides in drinking water at low concentration (Burns et al. 2006). Moreover,
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Gupta and Kulkarni (2011) have shown the removal of diesel oil droplets floating

on water through swelling and absorption of the gold nanoparticle composite.

Application of fabricated gold nanoparticles in plant growth and production has

shown significant promising potential. Both beneficial and harmful response of gold

nanoparticles in plant system has been reported (Husen and Siddiqi 2014b; Siddiqi

and Husen 2016b). Gold nanoparticles enter into plant system by a size-dependent

mechanism where they may trigger the growth/biomass or inhibit the growth by

leading an imbalance in physiological, biochemical and molecular processes; and

producing oxidative stress. They exhibited inhibition of reactive oxygen species

which suggests the free radical scavenging ability of gold nanoparticle. In addition,

their exposure has also altered microRNA and gene expression in plants. It has been

suggested that the gold nanoparticles may be applied in fruiting plants to increase

the quality and quantity of the fruits and vegetable (Siddiqi and Husen 2016b).

17.5 Conclusion

Owing to reach plant biodiversity, the phytosynthesis of gold nanoparticles is able

to create facile, eco-friendly, inexpensive and stable nanoparticles in comparison to

physical and chemical methods. Available biomolecules in plant systems played a

significant role during bioreduction process. Some studies have shown control over

the shape and size of gold nanoparticles by adjustment of concentration of plant

extract or biomass, concentration of metal salt, incubation/reaction time, tempera-

ture and pH of the solution. However, this fabrication mechanism is not fully

understood and is still in its infancy stage. Development of a highly controllable

fabrication approach is desirable. The stability of synthesized gold nanoparticles is

another concern to achieve a longer time/duration and maximum practical applica-

tion. Thus, more experiments are anticipated to elucidate the reduction mechanism

to control well-defined size and shape and the stability of gold nanoparticles. The

high potential applications of gold nanoparticles in various sectors are worth

exploring specially in biomedicine and catalysis. The recent use of engineered

gold nanoparticles in drug and gene delivery, catalytic activity, infectious diseases

control and environmental monitoring is an established fact. At the same time, the

unique physicochemical properties of gold and other metallic nanoparticles are of

great concern regarding the potential adverse effects as arisen with their increasing

production, use and disposal which unavoidably lead to ecological risk. In addition

to this, another key issue to consider in the use of gold nanoparticles is to calculate

the cost to see as if it is economically viable.
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