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Abstract We present a novel approach to characterize multiple sclerosis

(MS) from brain magnetic resonance imaging (MRI) with geostatistics. Brain

MRI provides excellent, exhaustive input data to geostatistical analysis, typically

several million voxels per MRI scan. A dataset of 259 spatially normalized binary

MS white matter lesion (WML) patterns covering very mild to extremely severe

MS cases was subject to directional variography. Using an exponential variogram

model function, the observed spatial variability in x,y,z directions can be expressed

by geostatistical parameters range and sill which perfectly correlate with WML

pattern surface complexity and lesion volume. A scatterplot of ln(range) vs. ln(sill),

classified by pattern anisotropy, enables a consistent and clearly arranged presen-

tation of MS-lesion patterns based on their geometry. The geostatistical approach

and the graphical representation of results are considered efficient exploratory data

analysis tools for longitudinal, cross-sectional, and medication impact studies.
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1 Introduction

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system

(CNS) that causes inflammatory demyelinating lesions in the brain and in the spine.

MS affects over 2.5 million people worldwide and is the primary nontraumatic

cause of neurologic disability in young adults, with an associated socioeconomic

impact. The individual course of MS is highly variable – while some patients may

acquire severe and irreversible disability within a few years, others may follow a

mild course with almost no disability even after decades (Compston and Coles

2008).

2 MRI Data

The introduction of magnetic resonance imaging (MRI) for MS diagnosis and

monitoring the disease course was a milestone in MS patient’s care (Filippi and

Rocca 2011). Recent diagnostic criteria allow setting MS diagnosis on the basis of

MRI (Polmann et al. 2011). The hallmark of MS is hyperintense sclerotic lesions

within cerebral white matter, as indicated in Fig. 1 which is a T2-weighted (FLAIR)

axial slice through an MS patient’s brain.
Traditionally, MRI scanners yield stacks of parallel images from which 3D

models can be derived; more recent MRI scanners provide voxel models which

directly represent the volume of interest. Before single-patient follow-upMRI scans

(longitudinal studies) or multiple-patient MRI scans (cross-sectional studies) can be

Fig. 1 MRI of MS-affected

brain. Arrows indicate
bright, hyperintense MS

lesions (FLAIR MRI

sequence, axial slice at top
of ventricle system)

968 R. Marschallinger et al.



compared, the individual brain scans need to be geometrically matched to a

standard brain template like the Montreal Normal Brain (“MNB,” Collins et al.

1998; Penny et al. 2007). This approach compensates for varying head positions in

follow-up MRI scans and ensures reference brain geometry when working with

group data (Fig. 2).

From MRI data, 3D MS-lesion patterns can be extracted with semiautomatic or

automatic lesion extraction software that outputs binary MS-lesion models (Garcia-

Lorenzo et al. 2012).

3 The Geostatistical Approach

WML presents rather heterogeneously across patients not only with regard to the

number and overall volume but also with regard to spatial pattern, predilection

sites, and shape of single lesions. Routine radiological evaluation reports the

number of WML, the total lesion load (volume), and the associated changes as

from follow-up investigations. Our goal is to describe the spatial structure of a

WML pattern in MNB geometry with standard geostatistical parameters

(Marschallinger et al. 2014, 2016).

Variogram function γ hð Þ ¼ 1

2n hð Þ �
Xn
i¼1

z xið Þ � z xi þ hð Þðð Þ2 ð1Þ

Fig. 2 Geometrical transformation of individual brain geometry (left) to MNB geometry (right).
Axial slice of MS-affected brain at top of ventricle level
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Exponential variogram model γ hð Þ ¼ c � 1� e �3� hj jð Þ

a

� �
ð2Þ

Since the MNB can be considered a Euclidean space which is then dissected into

equally sized voxels, the constant extent and support of the MNB enable rapid, grid-

based variography (Eq. 1), variogram modeling (Eq. 2), and the sensitive compar-

ison of longitudinal and cross-sectional studies.

For efficient characterization of WML from MRI, we developed the following,

fully automatic processing pipeline that builds on a pair of T1 and FLAIR MRI

images, acquired on a 3-tesla scanner:

1. From FLAIR and T1 sequences of a single MRI investigation, automatically

derive a binary 3D model of the WML pattern in MNB geometry (e.g., Fig. 3

right). Software used is Lesion Segmentation Tool (LST) (Schmidt et al. 2012).

2. Compute directional empirical variograms (Eq. 1) in x,y,z directions (dextral-

sinistral, caudal-rostral, dorsal-ventral orientations). Variograms are confined to

lag distances from0 to 15mm, because this area holds themost relevant correlation

information and a variogram model can be fitted straightforwardly. Software used

is Geostatistical Software Library (GSLIB) (Deutsch and Journel 1997).

3. Fit an exponential variogram model function (Eq. 2) to each directional empir-

ical variogram to yield associated range and sill parameters. These characterize

overall surface smoothness, total lesion volume (TLL, total lesion load), and

preferred spatial continuity of a white matter lesion (WML) pattern. Software

used is R (R development core team 2008).

4. Derive scatterplots of ln(range) vs. ln(sill) to portray WML patterns in a space

defined by total pattern surface smoothness vs. total lesion volume. For the

current purpose, “surface smoothness” is defined as the ratio of total WML

pattern volume/total WML pattern surface. This space, making up the so-called

Fig. 3 Left: 3D model of white matter of MS-affected brain, normalized to MNB geometry (white

matter visualized in translucent style to show some MS lesions for orientation in 3D). Right:
associated WML model, white matter striped off, and axial slicing plane at ventricle level

indicated for orientation. MNB geometry
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MS-Lesion Pattern Discrimination Plot (LDP), enables a clear presentation of the

spatial characteristics of a WML pattern. Scatterplots involving individual x,y,z

directions account for anisotropy in WML geometry. Calculating mean center

(e.g., De Smith et al. 2007) for a WML from x,y,z directional ln(range) and ln

(sill) data, the overall x,y,z geometry of a WML can be expressed. Since all

parameters are derived from geometrically standardized data (i.e., MNB geom-

etry), in the course of longitudinal and cross-sectional studies,WML patterns can

be immediately related: On the one hand, data can be compared synoptically; on

the other hand, they are ready for automatic processing, e.g., for deriving

evolution paths in single-patient follow-up from mean center data (Fig. 6).

The LDP conveniently combines class symbols indicating the number of indi-

vidual lesions (Fig. 4) or standard distance (De Smith et al. 2007) to express overall

Fig. 4 Combining geostatistical Range ln(a) and geostatistical Sill ln(C) of 259 MS-affected,

geometrically normalized brains in the MS-Lesion Pattern Discrimination Plot (LDP). Four WML

pattern 3D models and their associated positions in the LDP are indicated. nLesions: number of

individual lesion objects per WML pattern, coded by symbols. See text for details (After

Marschallinger et al. 2016)
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WML anisotropy. Working through Fig. 4 shows that complex patterns with many

lesions or patterns with a “rough”/“complex” surface generally are positioned at the

left fringe of the point cloud while patterns with few, big, and “smooth” lesions are

placed toward the right border. Patterns around the long axis of the elliptic cloud

mediate between rough and smooth extremes.

More clinically relevant, the LDP can be used to portray the evolution of WML

during single-patient follow-up. Figure 5 shows WML patterns from MRI follow-

ups of three patients. Each patient was scanned three times at 6-month intervals,

yielding a total observation period of 1.5 years per patient. Patients are arranged in

rows, and columns represent MRI investigations (time series advancing from left to

right, also indicated by WML colors red-yellow-green). Using the abovementioned

processing pipeline, the evolution of the three individual WML patterns can be

Fig. 5 WML evolution in three MS patients, three time steps each chronology from left to right,
time interval 6 months each. (See text for details, compare with Fig. 6)
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visualized and quantitatively described by means of the LDP (Fig. 6). In Fig. 5,

Patient 1 shows a decrease in MS lesion sizes and concurrent decrease in surface

smoothness due to decomposition of big MS lesions into smaller ones; accordingly,

in the LDP, the evolution path arrows point to lower volumes and a less smooth

overall surface (Fig. 6). About the same is due for Patient 3; the WML pattern of

which shows volume loss at the cost of lesion pattern smoothness. This is more

pronounced between scans two and three where the biggest lesion continues to

decrease but new small lesions show up, yielding approximately constant volume.

Patient 2 shows increasing lesion volume at increasing WML pattern surface

smoothness caused by confluence of small lesions into bigger ones.

4 Conclusions

A workflow and processing pipeline has been established that enables the charac-

terization of MS-related white matter lesion (WML) patterns from MRI data by

estimation of geostatistical parameters’ range and sill. These are the bases for

representing a WML pattern in the MS-Lesion Pattern Discrimination Plot

Fig. 6 WML pattern evolution paths of three MS patients in the LDP. Arrows indicate evolution
direction. Compare Fig. 5 (See text for details)
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(LDP). The LDP is a versatile framework that combines WML pattern volume,

WML pattern surface smoothness, and geometrical anisotropy information in a

single, well-arranged plot. Major changes as well as subtle fluctuations in

MS-lesion pattern geometry can be visualized straightforwardly. The LDP provides

precise insight into the spatial development of WML patterns (i.e., selective

growth/shrink in specific directions) without requiring object-based characteriza-

tion. The LDP is considered an EDA tool that informs on the spatial/spatiotemporal

properties of WML patterns in cross-sectional and longitudinal studies and in

monitoring medication efficacy.
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