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Abstract In most hydrocarbon reservoir development projects, geological models

are fully rebuilt on a regular basis to integrate new data, in particular observations

from new wells, for up-to-date forecasts. Not only this common practice is very

time consuming as rebuilding models can take weeks or even months, but it also

leads to major, hard-to-justify, fluctuations in reservoir volume or flow performance

forecasts, especially when the modeling staff changes or a new modeling technol-

ogy, workflow, or software is adopted. Rationalizing the geological model updating

process is required to provide stable and reliable forecasting and make timely, well-

informed, reservoir management decisions. This paper presents an innovative

methodology to quickly reassess model forecasts, such as reservoir oil-in-place or

oil recovery, without rebuilding any geological models provided that the new data

observations are reasonably consistent with the current models. The proposed

methodology uses a Bayesian framework whereby the multivariate probability

joint distribution of new data predictions and forecast variables needs to be

modeled. Assuming that this joint distribution is multi-Gaussian, the first step

consists in computing proxies, e.g., response surfaces using experimental design,

to estimate from the set of current geological models the distribution (mean and

variance) of new data predictions and forecast variables as a function of the input

modeling parameters (e.g., property variograms or training images, trends, histo-

grams). Because the model stochasticity (i.e., spatial uncertainty away from wells)

typically entails significant uncertainty in the prediction of new local data obser-

vations, computing the previous proxies requires generating multiple stochastic

realizations for each combination of input modeling parameters. Then, using those

proxies and Monte Carlo simulation, the full multivariate probability joint distri-

bution of new data predictions and forecast variables is estimated. Plugging the

actual new data values into that joint distribution finally provides new updated
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probabilistic distributions of the forecast variables. This new methodology is

illustrated on a synthetic case study. In addition to quickly reassess reservoir

volume and flow performance predictions, this new approach can be used to select

new data observation types and impact maps to assess potential well locations that

would optimally reduce forecasting uncertainties.

1 Introduction

Most reservoir modeling projects involve updating current models with new infor-

mation (e.g., logs from new wells, new seismic processing, or early production

data). Models are typically rebuilt from scratch, with very little quantitative effort

to check the consistency of the new data with the current models and to estimate the

impact of those same new data on the project forecasts (e.g., oil-in-place or ultimate

recovery). Yet, if the new data are consistent with the current models, i.e., if the new

data values could have been predicted by some of the current models, there may be

no need to rebuild models; a relationship between new data measurements

predicted from current models and corresponding forecasts could be developed

and used to update current forecasts with the actual new data measurements. This

would not only save a considerable amount of time, allowing rapid reservoir

management decisions in response to new information, but it would also reduce

the risk of irrational fluctuations of the model forecast uncertainty range due to

successive subjective reinterpretations of the data, arbitrary changes in modeling

decisions, and/or introduction of new modeling technologies.

The proposed approach identified as “direct forecast updating” is quite similar to

“direct forecasting,” a new reservoir modeling methodology that aims at making

reservoir forecasts by integrating data without performing any complex condition-

ing or inversion (Scheidt et al. 2015a; Satija and Caers 2015); the main difference is

that prior models, which are fully unconstrained in direct forecasting, are replaced

with reservoir models constrained by previously collected data. One particular

focus of this paper is the direct updating of reservoir forecasts using new well

data or, to be more specific, using statistical measures computed from those new

well data, for example, well net-to-gross or well hydrocarbon pore column. When

building models to make global forecasts, modelers only assess and model global

uncertainties, such as reservoir facies proportions or porosity and permeability

distributions. However, to be able to build a relationship between new well data

predictions and global forecasts, local variability at the new well locations also

needs to be captured in the current models. That local variability is derived from

both geostatistical simulation stochasticity (seed number) and local input modeling

parameter uncertainties, for example, local petrophysical property trends. In this

paper a new methodology is proposed to account for such local variability when

updating current forecasts directly with new well data.

722 S. Strebelle et al.



2 Methodology

To explain the methodology proposed in this paper, the following simple case study

is considered: the original oil-in-place (OOIP) forecasts of a reservoir need to be

updated after a new well was drilled and an average net-to-gross value NTG ¼
NTGm was estimated from the logs at the new well location. Statistically speaking,

we want to computePfOOIPjNTG ¼ NTGmg, which can be rewritten using Bayes’
formulation as:

PfOOIP��NTG ¼ NTGmg ¼ PfOOIP and NTG ¼ NTGmg
PfNTG ¼ NTGmg ð1Þ

Let θ be the set of input modeling parameters representing the major global

geological uncertainties identified in the reservoir, for example, the global reservoir

rock volume or the reservoir porosity distribution.

The numerator and denominator of Eq. 1 can be rewritten using integrals over

the whole input modeling parameter uncertainty space:

PfOOIP��NTG ¼ NTGmg ¼

Z

PfOOIP and NTG ¼ NTGm

�
� θgdθ

Z

PfNTG ¼ NTGm

�
� θgdθ

ð2Þ

The input modeling parameter uncertainty space can be sampled by drawing

n equiprobable combinations θi i ¼ 1 . . . nð Þ of global input modeling parameters:

PfOOIP��NTG ¼ NTGmg ¼
1
n

X

PfOOIP and NTG ¼ NTGm

�
� θig

1
n

X

PfNTG ¼ NTGm

�
� θig

ð3Þ

For each combination θi of global input modeling parameters, multiple realizations

can be generated to capture local uncertainties. Very often, generating multiple

stochastic realizations by changing the random seed numbers of the geostatistical

simulations is sufficient to capture local variability. However, in more complex

cases, additional local variability such as local property trends may need to be

accounted for.

One solution to compute PfOOIP and NTG ¼ NTGmj θig for any combination

θi of input parameters is to use a multi-Gaussian model, in which case only the

means and standard deviations of the NTG and OOIP, as well as the correlation

coefficient between NTG and OOIP, need to be estimated as a function of θi. The
multi-Gaussian assumption can be tested using various methods (Mecklin and

Mundfrom 2005) by generating a large number of realizations for some represen-

tative combinations θi of input parameters. Provided that the multi-Gaussian

assumption is not rejected, the NTG and OOIP means and standard deviations, as
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well as the correlation coefficient between NTG and OOIP, can be modeled using a

design of experiments built for the global input modeling parameters space θ:

1. For each of the N experimental design runs, which correspond to a specific

combination θi i ¼ 1 . . .Nð Þ of global input modeling parameters, generate

L stochastic realizations.

2. For each of the L realizations, compute the OOIP and NTG value at the new well

location.

3. Calculate the means and standard deviations of the L values of NTG and OOIP,

as well as the correlation coefficient between the NTG and OOIP values.

4. Using the N experimental design runs, model a response surface for the NTG and

OOIP means and standard deviations, as well as the correlation coefficient

between NTG and OOIP.

Using the previous response surfaces, under the multi-Gaussian assumption,

PfOOIP and NTG ¼ NTGmj θig and PfNTG ¼ NTGmj θig can be computed for a

very large number n of combinations θi randomly drawn from Monte Carlo

simulation; this provides a new updated OOIP probability distribution according

to Eq. 3.

The proposed approach has several advantages:

• First, the multi-Gaussian assumption, combined with the use of response sur-

faces to estimate the parameters of the multi-Gaussian model for any combina-

tion θi of input parameters, allows fully determining the bivariate distribution P
{OOIP and NTG}; there is no need to use any arbitrary interpolation technique

such as the traditional Kernel smoothing (Park et al. 2013; Scheidt et al. 2015b).

• Then, the exact NTGm value can be directly plugged into the multi-Gaussian

functionPfNTG ¼ NTGmj θig for any combination θi of input parameters; there

is no need to determine a quite arbitrary bandwidth around the new data

measurements (Scheidt et al. 2015a).

• PfNTG ¼ NTGmj θig provides the probability that the NTG value measured at

the new well location will be observed for the specific combination θi of global
input modeling parameters. Typically, one would expect the correlation between

NTG and OOIP over multiple stochastic realizations to be quite low. If this is

indeed the case, i.e., if NTG and OOIP are conditionally independent, which can

be tested, Eq. 3 can be rewritten as:

PfOOIP��NTG ¼ NTGmg ¼
1
n

X

PfOOIP�� θigPfNTG ¼ NTGm

�
� θig

1
n

X

PfNTG ¼ NTGm

�
� θig

ð4Þ

In that new Eq. 4, the updated OOIP forecasts can be interpreted as the linear

combination of the OOIP forecasts corresponding to each possible combination θi
of input parameters weighted by the probabilities that the NTG value at the new

well location be observed in the stochastic model realizations generated for θi.
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Extending the previous methodology to multiple new measurements, e.g., the

NTG values from several new wells, is straightforward, provided that the multi-

Gaussian assumption holds.

3 Illustrative Case Study

As an illustrative example, the following synthetic data set mimicking an actual

Chevron reservoir is used with a reference model corresponding to a tidal domi-

nated reservoir with 25% sandbars. The synthetic example was generated using the

multiple-point statistical simulation program snesim (Strebelle 2002). There is no

horizontal facies proportion trend, but a significant vertical trend; see the three

horizontal sections of the model displayed in Fig. 1.

The tidal sandbar porosity distribution is approximatively normal, with a 19%

mean, and the permeability distribution is lognormal with a 50 md mean. Porosity

was simulated using SGS, while permeability was simulated from porosity using

SGS with collocated cokriging and a 0.9 correlation coefficient. The background

shale porosity and permeability are assumed to be close to 0. The reference OOIP is

about 80 M bbl.

Table 1 provides the list of global input modeling parameters and their

corresponding uncertainties.

The reference model is consistent with the uncertainty ranges defined for the

different global input modeling parameters. A D-optimal design of experiments

(Atkinson et al. 2007) was used to generate 99 models, and a quadratic response

surface was computed to estimate the initial OOIP probabilistic distribution

displayed in Fig. 2. The initial P50 value (93 M bbl.) significantly overestimates

the OOIP from the reference model, while the uncertainty range is relatively broad

with a P10 value of 61 M bbl. and a P90 value of 128 M bbl.

Three wells were used to condition all the initial models. The objective of this

case study is to update the initial OOIP forecasts using the NTG values measured at

two alternative new well locations. The first location was randomly selected and has

a relatively low NTG of 4%, whereas the second location is very close to an

existing well and has a NTG value of 20% similar to the NTG of that well (see

Fig. 3).

The methodology presented in the previous section was applied by generating

10 stochastic realizations for each of the 99 runs of the D-optimal experimental

design. For each alternative new well location, the NTG and OOIP means and

standard deviations, as well as the correlation coefficient between NTG and OOIP,

were computed for the 99 experimental design runs, and quadratic response sur-

faces were computed as a function of the input modeling parameters.

Then, 10,000 combinations θi of input modeling parameters were generated

from Monte Carlo simulation. Figure 4 shows the histograms of predicted NTG

values for each new well location. The actual NTG value observed at the first new

well location corresponds to the 9th percentile of the prediction distribution, while

Integrating New Data in Reservoir Forecasting Without Building New Models 725



the actual NTG value observed at the second new well location corresponds to the

64th percentile. Therefore, in both cases, the new NTG measurements can be

considered as consistent with the existing models, and the previously described

forecast updating process can be applied.

Figure 5 provides a bubble graph displaying the bivariate distribution P
{OOIP and NTG} resulting from Eq. 3 for the first new well location.

Table 2 provides the P10, P50, and P90 OOIP values for the two alternative new

well locations.

For the first well, the P50 value of the updated forecasts is closer to the reference

OOIP value (80 M bbl.), while the uncertainty forecast range significantly

decreased: the new P10-P90 difference is 46 M bbl. vs. 67 M bbl. initially. In

contrast, as expected, because the second well is very close to an existing well, its

Fig. 1 Facies proportion curve and three horizontal sections of the reference model

Table 1 Global input modeling parameters, uncertainty ranges, and reference model

Input modeling parameters P10 P50 P90 Reference

Reservoir sand proportion 20% 30% 40% 25%

Sand geobody shapes Ellipses Variogram-based Channels Ellipses

Vertical trend None Medium High Medium

Horizontal trend None Medium High None

Porosity average 15% 17% 19% 19%

Permeability average 10 md 50 md 250 md 50 md

Poro/perm correlation 0.5 0.7 0.9 0.9
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Fig. 2 Initial forecasts and horizontal sections of two models generated using the D-optimal

experimental design

Fig. 3 NTG map from reference model, with locations of the three existing wells (black dots) and
two alternative new wells (white dots)

Fig. 4 Histograms of the NTG predictions for both new well locations. The red line corresponds
to the actual observed NTG value
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impact on OOIP forecasts is extremely limited; thus the P10, P50, and P90 values of

the updated forecasts (66, 97, and 125 M bbl.) are very close to the initial forecasts

(61, 93, and 128 M bbl.).

The same methodology based on Eq. 3 can be applied to the case where both

wells 1 and 2 are drilled. This requires the computation of an additional response

surface: the correlation between NTG values at wells 1 and 2 for any combination θi
of global input parameters. Figure 6 provides the scatterplot of predicted NTG

values at well location 1 versus predicted NTG values at well location 2 for 10,000

combinations θi of input modeling parameters. The actual NTG values (0.04 for the

first well and 0.2 for the second well) are in the predicted ranges. Thus the

combination of the two new NTG measurements can be considered as consistent

with the existing models, which confirms that the previously described forecast

updating process can be applied. Note that several methods exist to quantitatively

check that consistency between new observed values and predictions, in particular

the Mahalanobis distance (Mahalanobis 1936).

When both new well locations are used, the P10, P50, and P90 values of the

updated forecasts are 65, 86, and 105 M bbl. The new P10-P90 difference is 40 M

Fig. 5 Bivariate distribution P{OOIP and NTG} for the first new well location. Each bubble

corresponds to a particular combination θi of global input modeling parameters; it is centered at the

estimated NTG and OOIP mean values, and its size is proportional to the estimated NTG standard

deviation (only 200 bubbles are displayed). The red line corresponds to the actual NTG value

observed at that first new well location

Table 2 Updated forecasts

for the two alternative new

well locations

New well location P10 P50 P90

1 (random) 57 79 103

2 (close to existing well) 66 97 125

Initial forecasts 61 93 128
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bbl., which is, as expected but not guaranteed, smaller than the P10-P90 difference

obtained for each well considered individually.

4 Discussion

The results obtained in the case study above show that reservoir forecasts can be

directly updated in the presence of new information without rebuilding any models

provided that the new information is consistent with the existing reservoir models.

It should be noted that there is no guarantee for the P50 value of the updated

forecasts to be closer to the true reservoir value or for the updated uncertainty range

to systematically decrease; it all depends on the new data measured value. How-

ever, getting more accurate and precise forecasts is expected on average as the

number of additional new wells increases.

In most cases, the previous methodology can be simplified by replacing some

response surface with constant values or straightforward functions. For example, in

the previous case study, it can be observed that, as expected, OOIP varies very little

across multiple stochastic realizations for any particular combination θi of global
input parameters. On average over the 99 experimental design runs, the coefficient

of variation (ratio between standard deviation and mean) is only 0.004. This means

that only the response surface for the OOIP mean need be modeled; the OOIP

standard deviation could be directly estimated by multiplying the OOIP mean by

0.004. This simplification provides updated P10, P50, and P90 OOIP values very

close (less than 0.5% relative difference) to the updated forecasts obtained using a

full response surface for the OOIP standard deviation. Ignoring completely the

Fig. 6 Scatterplot of predicted NTG values at well location 1 versus predicted NTG values at well

location 2 for 10,000 combinations θi of input modeling parameters. The red dot corresponds to the
actual NTG values observed at the new well location (0.04 for well location 1 and 0.2 for well

location 2)
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OOIP standard deviation, i.e., setting it to a constant 0, still provides updated

forecasts with less than 1% relative difference compared to the initial methodol-

ogy. In contrast, the coefficient of variation for the NTG is 0.803 for the first new

well location and 0.243 for the second well location (close to an existing well) on

average over the same 99 experimental design runs, which demonstrates the

importance of capturing all the local variability at new well locations, a quite

challenging exercise. Finally, the correlation coefficient between NTG and OOIP

is systematically low for the 99 experimental design runs, 0.03 on average. Thus

Eq. 4, which assumes the conditional independence of NTG and OOIP for any

combination θi of global input modeling parameters, could have been used. This

simplification would have again yielded very similar updated P10, P50, and P90

OOIP values (less than 0.1% difference).

Expanding the proposed methodology to more than two new measurements

and/or forecast variables is straightforward from a theoretical point of view, but

will need to be tested in future work. In particular, when a large amount of new data

is available, our methodology may require the identification of a limited number of

physical metrics representing or summarizing the new data. For example, in the

illustrative case study presented in this paper, the average NTG at the new well

location was used instead of the whole facies log. If summary physical metrics are

difficult to identify or compute, brute-force dimensionality reduction techniques

such as nonlinear PCA (Scheidt et al. 2015a) could be applied.

Also, the proposed approach calls for the use of experimental design and the

construction of response surfaces, which limits the application to continuous and

ordinal input modeling parameters. However, other direct forecasting methodolo-

gies could reuse the main idea of this paper: explicitly account for local variability

at new measurement locations by modeling new measurement predictions and

global forecasts as the sum of an average value over multiple simulated realizations

and a residual. The average value captures the impact of the global modeling

uncertainty parameters, while the residual captures local variability, especially

geostatistical simulation stochasticity.

5 Conclusions

A simple methodology using a Bayesian framework with a traditional multi-

Gaussian assumption is presented in this paper to update forecasts after acquiring

new well log data, which allows making rapid reservoir management decisions in

response to new information. One main advantage of this methodology is that it

fully accounts for local uncertainties, in particular model stochasticity, when

estimating the impact of new local data on reservoir forecasts.

The proposed methodology was successfully applied to a simple synthetic case

study, but it needs to be further tested on more complex synthetic data sets and

actual reservoir modeling projects. Another next step is to use that methodology to

select what new data should be collected and where it should be collected to
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optimally decrease reservoir forecasts uncertainty similar to the impact map

approach of Zagayevskiy and Deutsch (2013).

Bibliography

Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS. UOP Oxford,

Oxford

Mahalanobis P (1936) On the generalised distance in statistics. Proc Natl Inst Sci India 2(1):49–55

Mecklin C, Mundfrom D (2005) A monte carlo comparison of the type I and type II error rates of

tests of multivariate normality. J Stat Comput Simul 75(2):93–107

Park H, Scheidt C, Fenwick DH et al (2013) History matching and uncertainty quantification of

facies models with multiple geological interpretations. Comput Geosci 17:609–621

Satija A, Caers J (2015) Direct forecasting of subsurface flow response from non-linear dynamic

data by linear least-squares in canonical functional principal component space. Advances in

Water Resources 77:69–81

Scheidt C, Renard P, Caers J (2015a) Prediction-focused subsurface modeling: investigating the

need for accuracy in flow-based inverse modeling. Math Geosci 47(2):173–191

Scheidt C, Tahmasebi P, Pontiggia M et al (2015b) Updating joint uncertainty in trend and

depositional scenario for reservoir exploration and early appraisal. Comput Geosci 19:805–820

Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point

statistics. Math Geol 34(1):1–21

Zagayevskiy Y, Deutsch CV (2013) Impact map for assessment of new delineation well locations.

JCPT 2013:441–462

Integrating New Data in Reservoir Forecasting Without Building New Models 731


	Integrating New Data in Reservoir Forecasting Without Building New Models
	1 Introduction
	2 Methodology
	3 Illustrative Case Study
	4 Discussion
	5 Conclusions
	Bibliography


