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Abstract Deepwater unconfined lobe depositional systems are important reservoir

targets. High drilling cost and subsalt imaging greatly limit the quantity and quality

of data. In the absence of sufficient data, analog architectural studies have identified

a variety of potentially important reservoir quality related geometries and trends

resulting from the well-understood depositional processes. Internal lobe trends

(proximal, dominated by amalgamated sands, to distal, dominated by

non-amalgamated sands) impact horizontal connectivity and coupled with compen-

sational lobe stacking impact vertical connectivity (alternating proximal and distal

lobe components are superimposed locally).

Current geostatistical algorithms, pixel based or object based, using

semivariograms, training images, or geometric parameters, enable the reproduction

of spatial statistics inferred from available conditioning data and analogues but

rarely integrate information related to depositional processes. Indeed, because

conventional geostatistical models are constructed without any concept of time or

depositional sequence, their ability to incorporate sedimentological rules, which

explain facies geobodies interactions and intra-body porosity/permeability hetero-

geneity, is quite limited.

Process-mimicking methods provide an improved ability to honor these flow

unit stacking patterns and trends, but trade-off precise conditioning to [moderate to

dense] well data and detailed seismic informed trend models. To guide

geostatistical reservoir modeling practice, a study assesses the incremental impact

of process-mimicking relative to a common multiple-point statistics (MPS)

approach with respect to reservoir flow response.

A surface-based (a variant of process-mimicking) method coupled with hierar-

chical trends efficiently reproduces realistic deepwater lobe geometry, stacking
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patterns, and internal lobe heterogeneity. A spectrum of deepwater lobe reservoir

models, using archetypal well log data and flow diagnostics and benchmarked with

the current MPS approach, quantifies incremental flow significance of these reser-

voir features. This quantification supports guidance and best practice for

geostatistical reservoir modeling workflow design for unconfined deepwater lobes

reservoirs.

1 Introduction

Current geostatistical algorithms, pixel based or object based, using

semivariograms, training images, or geometric parameters, enable the reproduction

of spatial statistics inferred from available conditioning data and analogues but

rarely integrate information related to depositional processes. Indeed, because

conventional geostatistical models are constructed without any concept of time or

depositional sequence, their ability to incorporate sedimentological rules, which

explain facies geobodies interactions and intra-body porosity/permeability hetero-

geneity, is quite limited (Pyrcz et al. 2012).

While we do acknowledge the value and practical success of the more traditional

geostatistical models mentioned above, there still remains an opportunity for

developing models that incorporate stratigraphic rules that relate to the underlying

geologic processes and hence offer an improved representation of depositional

heterogeneity. Process-mimicking facies models attempt to increase the level of

integration of the geological conceptual model by integrating rules, based on the

geological process. The rules constrain the sequential construction of reservoir

architecture represented by object or, in our experiment, surfaces (Pyrcz and

Deutsch 2014).

Comparisons of modeling approaches are risky and may be misleading. The

purpose of this paper is not to determine that one modeling approach is better than

another. The authors are motivated by their practical experience in mentoring and

directing reservoir modeling on deepwater assets worldwide. The subsurface res-

ervoir modeling teams have consistently asked, “Will more geological process

information and realism impact the connectivity of the reservoir model?” This

paper demonstrates that in some cases the impact is significant, and with connec-

tivity quantification suggests that there are cases where one technique might be

more appropriate than the other, given the reservoir modeling goals aligned with

business need.

In our study we use a surface-based method to generate our geologically realistic

lobe model (see Fig. 1). Surface-based methods are a modified version of object-

based methods that produces and track surfaces that delineate objects. Within a

process-mimicking framework, surface-based methods incorporate aggradation and

erosion of surfaces based on geometric templates. For greater details on this method
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and other process-mimicking approaches, the reader can refer to various publica-

tions including Pyrcz and Deutsch (2005), Wen (2005), Miller et al. (2008),

Michael et al. (2010), Sylvester et al. (2010), and Pyrcz et al. (2015).

This technique allows for inclusion of realistic lobe stacking patterns and

internal lobe heterogeneity, which is not typically captured by conventional model-

ing approaches. Stacking is a fundamental characteristic of lobes, as well as the

internal architecture (proximal, dominated by amalgamated sands, to distal, dom-

inated by non-amalgamated sands).

This study endeavors to quantify the added value of utilizing a process-

mimicking approach compared to conventional modeling approaches. A simple

multiple-point statistics (MPS) model is utilized as a benchmark, because it repre-

sents the common modeling approach in this setting. To achieve our objective we

propose to generate typical deepwater lobe reservoir models using archetypal well

log data and perform flow diagnostics to estimate the impact recovery. Previous

studies have shown the importance of reservoir connectivity and heterogeneity on

reservoir performance (e.g., Larue and Hovadik 2006). Our results quantify the

incremental impact of connectivity (lobe stacking) and heterogeneity (within-lobe

trends) for different net-to-gross scenarios modeling with process-mimicking

models benchmarked with standard MPS workflow. This is useful to justify the

additional effort to adopt emerging process-mimicking methods rather than utiliz-

ing widely available MPS workflows.

Fig. 1 Continuum of process-mimicking approaches that allow us opportunities to produce more

geologically realistic reservoir models
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2 Methodology

The experiment is based on the application of three parallel modeling workflows

from stratigraphic characterization to reservoir modeling to connectivity analysis.

The first workflow is based on a standard MPS approach with associated training

image construction. The second workflow, based on the surface-based modeling

process described previously, generates lobes that capture the large-scale lobe

geometry and compensational stacking. The third workflow includes the features

of the second workflow with the added within-lobe reservoir property (porosity and

permeability) trends that include fining (decrease in reservoir quality) distally and

laterally, as well as sedimentary cycles vertically. Each workflow from 1 to 3 rep-

resents increasing integration of the stratigraphic characterization. The quantifica-

tion of impact is based on a flow diagnostic tool that calculates the dynamic Lorenz

coefficient, a global measure of the degree of connectivity complexity. The exper-

iment includes 20 stochastic realizations from each workflow for 40, 60, and 80%

NTG (ratio of lobe related to overbank facies).

2.1 Geologic Characterization

Deepwater lobe characterization is based on a hierarchical architecture. Individual

lobe elements are lenticular in cross section and lobate in map view, with high

aspect ratios on the order of 1,000:1 (Beaubouef et al. 1999; Sullivan et al. 2004;

Prélat et al. 2009, 2010). They represent the unconfined deposition of genetically

related sediment gravity flows. Lobe elements that are genetically related show

similar grain size and facies distribution and similar architectural styles and stack in

a compensational manner to form a lobe complex.

Lobe elements are characterized by individual depositional packages known as

stories. These include general trends in depositional grain size with fining from

proximal to distal and inner to outer lobe and vertical cycles (Fig. 2).

2.2 Geostatistical Modeling

Lithofacies modeling, for Workflow 1 geostatistical modeling, utilizes MPS. The

MPS variant is the standard SNESIM approach (Strebelle 2002). The training

image is composed of sand facies lobes in an overbank background (see Fig. 3).

It was built using a simple object-modeling tool that generates lobular shapes with

dimensions 60,000 ft in length, 40,000 ft in width, and 40 ft in thickness. The global

proportions are constrained by firstly designing training images with the target

facies proportions and updating conditional distributions from the training images

based on mismatch with target global proportions during simulation.

604 R. Kaplan et al.



For workflows 2 and 3 our surface-based method was applied to simulate

compensationally stacked lobes (Pyrcz et al. 2015). The same dimensions men-

tioned above were used in the construction of these lobes. Our tool also generates an

azimuth field within the lobe objects, as well as longitudinal, transverse, and

vertical trends which are combined to produce our hierarchical trend. More infor-

mation on the hierarchical trend approach is found in Pyrcz et al. (2005). The

hierarchical trend is crucial because it is used to guide the petrophysical modeling

in Workflow 3 (Fig. 4).

Sequential Gaussian simulation is applied to simulate porosity within the reser-

voir facies using a histogram of values ranging from 0.04 to 0.26, and a variogram

range of 2,000 ft in the longitudinal direction and 1,300 ft in the transverse direction

is assumed. For workflows 1 and 2, no trends are applied for the porosity simula-

tion. However, for workflow 3 within-lobe trends, which mimic the hierarchical

architecture recognized in deepwater lobes, are added. These trends are integrated

as a secondary variable with a correlation coefficient of 0.8.

Fig. 2 Dip section of a simple conceptual model of within-lobe heterogeneity for a simple lobe

geometry

Fig. 3 Training image used in MPS simulation at a sand proportion of 60%
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Cloud transform is applied to simulate permeability conditional to the simulated

porosity realizations using the same variogram mentioned previously. Permeability

values range from 5 to 30 mD within the reservoir facies. Examples of strike

sections for realizations from each workflow are shown in Figs. 5 and 6.

2.3 Flow Diagnostic Assessment

Flow diagnostic assessment was used to derive quantitative information on reser-

voir connectivity. These methods utilize standard reservoir property models (poros-

ity and directional permeability) along with efficient, simplified flow simulation to

provide immediate information on the impact of modeling decisions on flow

heterogeneity (Shook and Mitchell 2009; Shahvali et al. 2012; Møyner et al. 2015).

In this case study a steady-state pressure field is calculated that induces a

displacement or flux from injectors to producers across the reservoir. Importantly,

Fig. 4 Surface-based lobe

model with sand and

argillaceous sand

proportion of 60%

Fig. 5 Strike sections of a porosity realization from each of the workflows
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the computed flux does not account for the full physics of the flow between two

wells as the calculation of flux within the model makes several assumptions. Firstly,

the flow is assumed to be steady state and single phase; therefore, the phase of the

flow will not change due to buoyancy, well controls, or fluid mobility changes.

Secondly, a main assumption is that the flow is incompressible and well-driven

flow; any independent reservoir compartment or fault block in the model must have

at least one producer and one injector well to initiate some flow.

This approach yields a number of outputs including dynamic Lorenz coefficient

(DLC) and time of flight information. Once the flux across the volume and time of

flight are calculated, the F-Φ relationships can be calculated. When plotted this

generates a curve representing the relationship between normalized, cumulative

flow capacity (F) against storage capacity (Φ). Specifically, the curve explains the

ratio between the volume of injected and swept reservoir pore volume. Twice the

area under this curve and above the 1:1 line is the DLC and can be used to rank the

heterogeneity of multiple models (see Fig. 7). This is a good quantification of flow

Fig. 6 Strike sections of a permeability realization from each of the workflows

Fig. 7 Dynamic Lorenz coefficient to quantify reservoir connectivity heterogeneity as a summa-

rization of the storage capacity subtracted from the flow capacity based on a set of injectors and

producers
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complexity (reservoir heterogeneity) as it describes whether flow in the reservoir

represents a simple piston displacement or highly impacted by high permeability

streaks and barriers (indicated by high DLC).

3 Results

The flow diagnostic assessment quantified by DLC (a good indicator of recovery

factor) suggests that the level of reservoir connectivity and heterogeneity is

impacted by the additional features such as lobe stacking pattern and within-lobe

trends that are available with process-mimicking model. Visually, we see this

behavior in Fig. 8 where the volume that is being swept shrinks and is less uniform

as we go from the simplistic model from workflow 1 to a more complex model from

workflow 3.

The expectation over several model realizations, for each workflow, was calcu-

lated and plotted. It demonstrates increasing flow complexity with increasing model

complexity (see Fig. 9).

We assessed at each net-to-gross scenario which features, stacking patterns

(connectivity) or within-lobe architecture, contributed more significantly to the

change in the DLC. The proportion increase of DLC, as we move from a purely

geostatistical method to a geological method that incorporated stacking patterns

and within-lobe architecture, was calculated. At lower net-to-gross regimes, we see

Fig. 8 Time-of-flight represents the time it takes (in pore volumes injected) for injected fluid to

travel from an injector to a given point in the reservoir
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that connectivity has more of an effect on the DLC; hence more emphasis should be

placed on modeling shale placement (e.g., drapes, baffles, etc.) within the reservoir.

As the net-to-gross increases, the modeling of internal trends (lobe architecture)

becomes more critical (see Fig. 10).

Fig. 9 Graph showing the DLC at 40%, 60%, and 80% net-to-gross. It is apparent that as we add

compensational stacking and within-lobe trends, we see an increase in the DLC

Fig. 10 Graphs showing the proportion of DLC increase due to lobe stacking pattern and within-

lobe internal architecture
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4 Discussion

This work has demonstrated that the additional reservoir model complexity,

namely, lobe stacking patterns and detailed within-lobe trends, impacts reservoir

connectivity heterogeneity. This motivates adoption of new process-mimicking

technology that integrates these geologic features, depending on modeling objec-

tive. For example, this approach will be more appropriate for evaluating the

detailed flow behavior of a deepwater lobe reservoir in the presence of mud drapes

and within-lobe trends.

Conversely, this work suggests that current widely available reservoir modeling

approaches (such as MPS) may underestimate reservoir fluid flow complexity,

without the inclusion of addition constraints to directly capture these heterogene-

ities. In our experience, this may translate into overestimation of recovery factor

and time to water breakthrough. Generating more realistic models may assist in

managing and mitigating risk that may arise with conventional modeling methods.

Future work includes performing a full flow simulation which provides us with

measures of heterogeneity other than the DLC.

5 Conclusions

Deepwater lobes are important reservoir targets. New insights from geological

characterization suggest a hierarchy of heterogeneities including compensationally

stacked lobes and within-lobe reservoir property trends. The incremental impact of

these heterogeneities is determined through three workflows: (1) a traditional MPS

workflow, (2) a process-mimicking workflow that captures lobe stacking patterns,

and (3) a process-mimicking workflow that captures lobe stacking patterns and

within-lobe trends.

Each of these additional complexities has a significant impact on flow hetero-

geneity as represented by DLC.
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