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Abstract An approach to model spatial asymmetrical relations between indicators

is presented in a pluri-Gaussian framework. The underlying gaussian random

functions are modelled using the linear model of co-regionalization, and a spatial

shift is applied to them. Analytical relationships between the two underlying

gaussian variograms and the indicator covariances are developed for a truncation

rule with three facies and cut-off at 0. The application of this truncation rule

demonstrates that the spatial shift on the underlying gaussian functions produces

asymmetries in the modelled 1D facies sequences. For a general truncation rule, the

indicator covariances can be computed numerically, and a sensitivity study shows

that the spatial shift and the correlation coefficient between the gaussian functions

provide flexibility to model the asymmetry between facies. Finally, a case study is

presented of a Triassic vertical facies succession in the Latemar carbonate platform

(Dolomites, Northern Italy) composed of shallowing-upward cycles. The model is

flexible enough to capture the different transition probabilities between the envi-

ronments of deposition and to generate realistic facies successions.

1 Introduction

Variogram-based indicator simulation aims to distribute facies in space using first-

and second-order spatial statistics as a constraint. It is widely used for modelling

heterogeneous subsurface rock volumes such as hydrocarbon reservoirs and

groundwater aquifers, in which data are usually sparse and deterministic methods

are not appropriate. In standard oil industry practice, the facies represent regions of

the reservoir where petrophysical properties such as porosity and permeability can

be assumed to have statistically homogeneous distributions. Therefore, the spatial

distribution of facies has a great impact on the reservoir model predictions.
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While it is easy to constrain the models with the proportion and autocovariance

of each facies (Alabert 1989; Armstrong et al. 2011), it is more complex to model

the cross-indicator covariances between facies. For instance, SIS (sequence indi-

cator simulation) by modelling every facies independently (Alabert 1989) does not

reproduce cross-covariances between different facies, possibly resulting in

non-realistic geological models.

With the aim of modelling spatial relationships between different facies, Carle

and Fogg (1996) constrain cross-covariances using the parameters of a continuous-

time Markov chain. An important outcome of their method is the possibility to

model spatial asymmetry between the indicator variables. The probability of facies

A to be on top of facies B can be different from that of facies A being under B. Such

asymmetrical vertical stacking patterns of facies are common in the stratigraphic

record as sedimentological processes tend to create and preserve shallowing-

upward facies successions which are asymmetric (Burgess et al. 2001; Grotzinger

1986; Strasser 1988; Tucker 1985). However, the model used by Carle and Fogg

(1996) is memoryless and so prevents from using a hole-effect covariance and

reproducing cyclicity, which is another common feature of vertical facies succes-

sions (Burgess et al. 2001; Fischer 1964; Goldhammer et al. 1990; Grotzinger 1986;

Masetti et al. 1991). Another approach uses non-parametric indicator variograms

for bivariate probabilities to simulate facies with asymmetrical patterns (Allard

et al. 2011; D’Or et al. 2008). The approach presented in the current paper aims to

use parametric auto- and cross-covariance models that are “realizable”, that is

associated with valid random set models (Chilès and Delfiner 2012).

Pluri-Gaussian simulations (PGS) can handle facies interactions thanks to the

use of underlying continuous gaussian variables and truncation rules defining facies

ordering and geometries (Armstrong et al. 2011). Moreover, by construction, the

PGS formalism leads to a general cross-covariance model between facies that is

realizable (Chilès and Delfiner 2012). Developing a flexible multivariate gaussian

framework allows to increase the range of facies patterns. For instance, the original

linear model of co-regionalization (Wackernagel 2013), applied to the underlying

gaussian functions, provides flexibility in the resulting facies thicknesses and

distributions. However, the cross-correlations between the underlying gaussian

functions are symmetrical and so are the facies relations.

To overcome this limitation, some authors have proposed to use spatial shifts to

transform the cross-covariances between gaussian functions (Apanasovich and

Genton 2010; Li and Zhang 2011; Oliver 2003). Armstrong et al. (2011) proposed

to use a similar approach when defining the linear model of co-regionalization of

the underlying gaussian variables. Although it is natural to expect that an asym-

metrical cross-correlation between the gaussian functions should lead to asymmet-

rical relations between facies, this approach has not yet, to our knowledge, been

fully developed and tested. Moreover, the relation between the spatial shift, the

correlation and the facies asymmetry has not been studied explicitly.

In this article, we expand on the previous work described above to demonstrate

that a spatial shift applied to the underlying gaussian functions can be used to create

asymmetries in the vertical stacking of facies. The sensitivity of vertical facies
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stacking patterns to selected parameters is then investigated. Synthetic examples

are produced, and the usefulness of this method is demonstrated by modelling a real

facies succession from the Triassic Latemar carbonate platform (Dolomites, North-

ern Italy).

2 Methodology

In this section, we explain the basic principles of the pluri-Gaussian simulation

(PGS) methodology and its relation to indicator functions. We then describe the

shifted PGS model.

2.1 Context and Notations

We focus here on a simple example with three facies. The truncation rule that

defines the contacts between facies and their proportion, relative to their area, can

be drawn as follows (Fig. 1):

If I1, I2 and I3 are the indicators of the three facies, the truncation rule defines

them as follows for every location x on a vertical section:

I1 xð Þ ¼ 1, Z1 xð Þ < t1
0, else

�
ð1Þ

I2 xð Þ ¼ 1, Z1 xð Þ > t1, Z2 xð Þ > t2
0, else

�
ð2Þ

I3 xð Þ ¼ 1, Z1 xð Þ > t1, Z2 xð Þ < t2
0, else

�
ð3Þ

When the indicator of a facies equals 1, the corresponding facies is present at the

location x. The marginal gaussian cumulative function G applied to each gaussian

function Z1 and Z2 allows to have a truncation rule on which the area of a facies

equals its proportion. However, if there is a correlation between the two functions, it

affects the proportion as the points tend to be located along the transformation of

the correlation line ρ (Fig. 1) which is plotted in the axes (G(Z1),G(Z2)) and thus has
for equation

Y ¼ G ρ*G�1 X½ �� � ð4Þ

In the example of Fig. 1, a positive correlation increases the proportion of facies

2 over facies 3 as shown by the larger number of points generated in the domain of

facies 2. With a negative correlation, it would be the opposite. A uniform truncation
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rule could be obtained by applying the bi-normal gaussian cumulative function with

correlation ρ on Z1 and Z2, but its analytical expression is not known.

The truncation rule does not contain spatial information and so does not control

asymmetries. As the aim of this study is to model asymmetrical relations, the

transition probability from one facies i to another j should be different in opposite

directions h and �h:

tij hð Þ ¼ P Ii xð Þ ¼ 1, Ij xþ hð Þ ¼ 1
� �

P Ii xð Þ ¼ 1½ � 6¼ tij �hð Þ ð5Þ

Under the stationary hypothesis, the transition probability is independent of

location. This transition probability results from the gaussian function parameters:

correlation ρ, thresholds t1 and t2, gaussian correlation models ρz1 (h) and ρz2 (h)
and the cross-correlation ρz1z2 (h) that can be asymmetric.

2.2 Relation Between the Indicators and Gaussian Functions

Understanding the link between the facies transition probabilities and the parame-

ters of the underlying bi-gaussian function would help in inferring a pluri-Gaussian

model resulting in the correct asymmetrical transition probabilities. Armstrong

et al. (2011) show that the covariance of the facies indicator can be expressed as

a multivariable integral of the underlying bi-gaussian density. For instance, the

non-centred cross-covariance, between facies 2 and 3, C23(h), is defined as

Facies 1

Facies 2

Facies 3

G(Z1)

G(Z2)

G(t1)

G(t2)

0.0

0.0

0.2

0.
2

0.
4

0.
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8

1.
0

0.4 0.6 0.8 1.0

Fig. 1 Truncation rule defining three facies with two gaussian random functions Z1 and Z2. t1 and
t2 are the truncations associated with each gaussian functions and G is the gaussian cumulative

function. The red curve is defined by Eq. 4, with the correlation ρ¼ 0.7. One thousand random

generations with a correlation ρ¼ 0.7 are performed thanks to the R package MASS (Venables and

Ripley 2002) and displayed
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C23 hð Þ ¼ E I2 xð Þ I3 xþ hð Þ½ � ¼ P I2 xð Þ ¼ 1, I3 xþ hð Þ ¼ 1½ � ð6Þ

According to Eqs. 1, 2 and 3, we have

C23 hð Þ ¼ P Z1 xð Þ > t1,Z2 xð Þ > t2,Z1 xþ hð Þ > t1,Z2 xþ hð Þ < t2½ � ð7Þ

This is the joint probability of four gaussian events with their dependence

described by the correlation matrix:

X
hð Þ ¼

1 ρ ρZ1
hð Þ ρZ1Z2

hð Þ
ρ 1 ρZ1Z2

�hð Þ ρZ2
hð Þ

ρZ1
hð Þ ρZ1Z2

�hð Þ 1 ρ
ρZ1Z2

hð Þ ρZ2
hð Þ ρ 1

0
BB@

1
CCA ð8Þ

C23(h) can then be expressed as an integral of the quadri-variate gaussian density
gΣ(h)(u,v,w,z) with the covariance matrix previously described:

C23 hð Þ ¼
Z 1

t1

Z 1

t2

Z 1

t1

Z t2

�1
gX

hð Þ u; v;w; zð Þdu dv dw dz ð9Þ

As we work with three facies (Fig. 1), the covariance between facies 1 and facies

2 is expressed by a triple integral, while a double integral defines the

autocovariance of facies 1.

2.3 The Spatial Shift Applied to the Linear Model
of Co-regionalization

The linear model of co-regionalization presented by Wackernagel (2013) is a

flexible model for p-multivariate simulations and is chosen in this article. We

also incorporate a shift on the covariance matrix C as proposed by Li and Zhang

(2011). Armstrong et al. (2011) propose a way to simulate such a multivariate field

from two independent gaussian functions Y1 and Y2 with covariances ρY1(h) and
ρY2(h):

Z1 xð Þ ¼ Y1 xð Þ

Z2 xð Þ ¼ ρ

ρY1
að Þ Y1 xþ að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

ρY1
að Þ2

s
Y2 xð Þ

8><
>: ð10Þ

The spatial shift, a, is the distance at which the correlation between the two

gaussian functions Z1 and Z2 is maximal, and ρ is the correlation between the two

simulated gaussian functions Z1 and Z2 at the same location. We can directly deduce

from the square root term in Eq. 10 the condition of validity of the model:
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�ρY1
að Þ < ρ < ρY1

að Þ ð11Þ

This condition originally results from the fact that the variance of the gaussian

functions Z1 and Z2 is one. It is now possible to relate the covariances ρZ1 and ρZ2 of
the gaussian fields Z1 and Z2 to the covariances of Y1 and Y2:

ρZ1
hð Þ ¼ ρY1

hð Þ
ρZ2

hð Þ ¼ ρ2

ρY1
að Þ2

ρY1
hð Þ þ 1� ρ2

ρY1
að Þ2

" #
ρY2

hð Þ
8<
: ð12Þ

and the cross-correlations between Z1 and Z2, which are asymmetric:

ρZ1Z2
h; að Þ ¼ ρρZ1

hþ aj jð Þ
ρZ1

að Þ
ρZ1Z2

�h, að Þ ¼ ρρZ h� aj jð Þ
ρZ1

að Þ

8>><
>>: ð13Þ

It is interesting to see that

ρZ1Z2
�h, � að Þ ¼ ρZ1Z2

h; að Þ ð14Þ

The different parameters of the model are summarized in Table 1.

Table 1 Symbols of the different parameters of the shifted pluri-Gaussian model

Signification Parameter

First gaussian field Z1
Second delayed gaussian field Z2
Upward transition probability from facies i to facies j as a function of distance h tij(h)

Proportion of facies i Pi

Covariance function of Z1 ρz1(h)

Covariance function of Z2 ρz2(h)

Correlation coefficient between Z1 and Z2 ρ

Cross-correlation between Z1 and Z2 at distance h ρz1z2(h)

Shift in the cross-correlation between Z1 and Z2 a

Range of the first gaussian function with a gaussian variogram, practical range

a1
ffiffiffi
3

p a1

Range of the second gaussian function with a gaussian variogram, practical range

a2
ffiffiffi
3

p a2
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3 Results

In this section, we study the indicator transiograms derived from the shifted linear

model of co-regionalization applied with PGS and with the truncation rule in Fig. 1.

We first express the analytical expressions for a special case and then develop a

sensitivity study in the general case thanks to numerical gaussian integrations.

Gaussian variograms for the gaussian functions are used in order to have a linear

behaviour at the origin on the indicator transiograms.

3.1 Analytical Study of the Asymmetry

We focus here on the special case where t1 ¼ t2¼ 0 as some analytical expressions

can be found between the pluri-Gaussian and the transition probabilities.

3.1.1 Behaviour of the Asymmetrical Transition Probability

With the truncation rule used in Fig. 1, the transition probability between facies

1 and 2 can be written as a triple integral. Its analytical expression, developed in the

appendix (Eqs. 25 and 26), is the following:

t12 hð Þ ¼ �1

4
þ 1

2π
arccos

ρρZ1
hþ aj jð Þ

ρZ1
að Þ

� �
þ arccos ρZ1

hð Þ� 	þ arcsin ρð Þ

 �

ð15Þ

Therefore, the shift a and the correlation ρmust be non-zero to bring asymmetry

(Fig. 2). We can also deduce the relation:

t12 �h, � að Þ ¼ t12 h; að Þ ð16Þ

which means that changing the sign of the shift allows the asymmetry between the

two facies to be switched.

We can see that if the correlation and shift are positive, and the transition

probability tends towards a facies with low proportions, the curve has a very high

concavity with a maximum before the range (Fig. 2, right). If the correlation is

negative and the transition probability tends towards a facies with high proportion,

the curve has an inflexion point (Fig. 2, left). In the opposite direction, the

behaviour is always different, highlighting the asymmetry. If there is no shift,

there is no asymmetry (Fig. 2).
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3.1.2 Asymmetry in Facies Contacts

The frequency of contacts between two given facies can be derived from the

derivative of the cross-transition probability at the origin, which is the rate of

transition from one facies to the other per unit length. We can express the rate of

transition upward T12
+ and downward T12

� in the case of a gaussian variogram by

differentiating Eq. 15:

Tþ
12 a; ρ; a1ð Þ ¼ limh!0t12

0 hð Þ ¼ 1

2π

ffiffiffi
2

p

a1
þ a

2 ρ

a21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
" #

ð17Þ

T�
12 a; ρ; a1ð Þ ¼ limh!0t12

0 �hð Þ ¼ 1

2π

ffiffiffi
2

p

a1
� a

2 ρ

a21
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
" #

ð18Þ

From these equations, it is clear that if the correlation ρ and the shift a are

positive, the probability of having facies 2 on top of facies 1 is higher than of having

facies 1 on top of facies 2. It can be interesting to see for which shift the transition

rate is maximal; let’s take

Fig. 2 Influence of a positive shift on the transition probabilities from facies 1 to facies 2 with

different values of the proportion P2 of facies 2. The coefficient ρ is either 0.8 or �0.8. The

gaussian function has a gaussian variogram with range 8 (practical range ¼ 13.85) and the shift is

3. The upward and downward transitions are deduced from Eq. 15, such as the dotted line obtained
with a shift equal to 0, and the black tangents are obtained from Eqs. 17 to 18
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alim ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� ρ2ð Þp
2ρ

ð19Þ

In that case, we have

Tþ
12 alim; ρ; r1ð Þ ¼

ffiffiffi
2

p

a1π
T�
12 alim; ρ; r1ð Þ ¼ 0

8<
: ð20Þ

With this shift, facies 1 cannot make a transition to facies 2 going downwards as

the transition rate is 0. For the upward transition, it can be noticed that the

expression of the transition rate is the inverse of the mean length of facies

1 (Lantuéjoul 2002). This implies that the upward transition rate from facies 1 to

facies 3 is zero with the closing relations of the transition rate matrix Q:

Q ¼
�1=L1 1=L1 0

0 �1=L2 1=L2

�1=L3 0 �1=L3

0
@

1
A ð21Þ

with Li as the mean lengths of the different facies. Therefore, this shift gives the

maximum of asymmetry and allows to build perfect geologic asymmetrical

sequences. However, the shift is also bounded by Eq. 11, and consequently

Eqs. 19, 20 and 21 are not possible. As the transition rates increase linearly with

the shift, the maximum of asymmetry is obtained for the higher shift which is the

following according to Eq. 11:

amax ¼ a1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�log ρð Þ

p
ð22Þ

It can be noted that the expressions of alim and amax converge to each other when

ρ tends to one. Thus, for a correlation that tends to one, amax gives upward and

downward transition rates that tend, respectively, to 1/Li and 0, allowing to create

perfect asymmetrical sequences (Eq. 21). This limit case can also be obtained by

simulating only one gaussian function and use the shifted equivalent as the second

gaussian function.

The expressions of the multi-gaussian integrals have allowed asymmetries for a

truncation rule with cut-off at 0 to be analytically expressed. Lantuéjoul (2002)

gives a solution for a general truncation rule when the correlation tends to 1. This

might allow development of more general expressions with thresholds.

3.2 Sensitivity Analysis for a General Truncation Rule

The gaussian integral cannot be computed analytically in the general case with

cut-offs different from 0. However, it can be computed numerically (Genz 1992)
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using a code available on R (Genz et al. 2009; Renard et al. 2015). Consequently,

we have access to all the transition probabilities, and the correlation ρ can be

changed while keeping the proportions constant which is not possible analytically.

This is carried out by minimizing an objective function quantifying the differ-

ence between the targeted and simulated proportions computed with the gaussian

numerical integral (Genz 1992). It can also be done with a maximum likelihood

estimation of the target proportions by generating random correlated gaussian

values. Understanding the impacts of the correlation and the shift at constant

proportions is important for manually fitting transition probabilities (Fig. 3).

We can see in Fig. 3 that both the correlation and the shift have an impact on the

tangent at the origin which provides a flexibility to match the asymmetry between

facies contacts. The asymmetrical limit behaviour alim (Eq. 19) seems to have been

reached with ρ¼ 0.8 and a¼ 3 as the transition rate is close to 0 for these values.

The two parameters also affect differently the curvature of the transition probability

increasing the flexibility of the method.

Fig. 3 Comparison of the impact of the correlation and the shift on the transition probability from

facies 2 to facies 1 upwards. The step for the black curves is 0.1 for the correlation (left) and 0.3 for
the shift step (right). The range of the first gaussian variogram is 8, the proportion of facies 1 is 0.3

and facies 2 is 0.4
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4 Case Study

This section presents a case study for illustrating the method described earlier with

three facies and the truncation rule of Fig. 1. The geostatistical package RGeostats

is used for the simulation (Renard et al. 2015). The transiograms are studied for two

facies as the relation with the third can be automatically deduced from them.

4.1 The Latemar Data Set

Carbonate outcrops usually show significant vertical asymmetries in their facies

distribution, in part explained by a gradual lateral shift in environments of deposi-

tions during sea-level highstands, followed by nondeposition during sea-level

lowstands and the subsequent transgression (Catuneanu et al. 2011). For instance,

the intertidal environment tends to be on top of the subtidal environment in

shallowing-upward sequences (Sena and John 2013). The Latemar massif in the

Dolomites of Northern Italy shows well-documented examples of asymmetrical

vertical facies sequences in a carbonate platform. As reported by Egenhoff et al.

(1999), a typical asymmetrical, upward-shallowing succession is bounded by a

supratidal exposure surface at its top, which tends to cap intertidal-to-shallow-

subtidal grainstones that overlie subtidal wackestones (Fig. 4).

4.2 Constraining the Transition Probabilities

The transition probabilities of Fig. 5 were derived from the data shown in Fig. 4.

They can be fitted with the shifted linear model of co-regionalization manually

through a trial-and-error process, by maximum likelihood estimation or by mini-

mizing an objective function. In a more general context, a manual procedure is

preferred as transiogram modelling is a step where geological conceptual knowl-

edge can be incorporated. Therefore, we choose to fit manually the transition

probabilities of Fig. 5.

As seen in Fig. 5, the model fitted by trial and error honours the tangent at the

origin of the transition probabilities. This means that the transition rates are well

constrained. Moreover, a possible hole-effect is observed in the experimental

transition probabilities due to a low variance in the facies thicknesses. This effect

cannot be modelled with the current model, but a hole-effect variogram on the

gaussian function should be able to model it (Dubrule 2016).

Modelling Asymmetrical Facies Successions Using Pluri-Gaussian Simulations 69



Fig. 4 Comparison between the vertical section of the Latemar section reported by Egenhoff et al.

(1999) and simulations with asymmetrical pluri-Gaussian simulations. The parameters for the

simulation are the same as described in Fig. 5

Fig. 5 Match between experimental transition probabilities (red) observed in Fig. 4 and the model

(blue). Facies 1 is subtidal and facies 2 intertidal. The parameters used for the model are 0.9 for the

range of the first gaussian, 0.52 for the range of the second gaussian, 0.13 for the shift and 0.8 for

the correlation
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4.3 Facies Asymmetrical Simulation with Pluri-Gaussian
Model

We build two gaussian fields, and then we apply the transformations described in

Eq. 10 on three simulations (see Fig. 4). The asymmetry is still preserved in the

simulations, with supratidal facies always on top of the intertidal facies and the

intertidal facies on top of the subtidal facies. However, the limit shift alim (Eq. 19)

has not been reached as the probability of having subtidal on top of supratidal is not

1, which is also observed on the data. To go further in the simulation analysis, the

experimental transiograms are computed on 50 simulated sections and compared to

the model variogram (Fig. 6).

Fig. 6 Comparison between transition probabilities model (blue) and simulated (grey) and mean

of the simulated (red) on 50 simulations of the Latemar section presented in Fig. 4. Facies 1 is

subtidal, and facies 2 is intertidal
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This Monte Carlo study shows that the simulated transition probabilities seem to

match the model well at the origin and for other distances as the mean transiogram

of the simulations matches with the transiogram model (Fig. 6).

5 Discussion and Conclusion

This study has shown that the shifted linear model of co-regionalization seems well-

suited to model facies transitions asymmetries using PGS. For the case of modelling

three facies, the first two gaussian variograms allow to define facies mean thick-

nesses, while the shift and the correlation determine the asymmetrical patterns.

Therefore, every transition rate of the transiogram matrix can be inferred indepen-

dently making the method very flexible. Moreover, we saw analytically and numer-

ically that the maximum rate of transitions could be reached asymptotically, which

allows to build perfect asymmetrical sequences.

More precisely, the gaussian integral allows to fix the transition rates as with a

Markov process (Carle and Fogg 1996). However, if the number of facies is

increased, it would be more difficult to respect the different asymmetries, and

manual fitting of the different transition probabilities would be more complex.

Automatic procedures such as maximum likelihood estimations might address

that issue.

The advantage of PGS over continuous-time Markov chains is that it provides a

framework in which the resulting indicator variograms are automatically valid but

also quite flexible. Beyond just transition rates, the parametrical covariances can

lead to linear or fractal behaviour of the indicator variogram at the origin (Chilès

and Delfiner 2012; Dubrule 2016). Other models than the linear model of

co-regionalization would allow to select different behaviours for every facies. For

instance, the multivariate Matern model would allow cross-transition probabilities

to have different smoothness parameters for every facies (Gneiting et al. 2012), and

the spatial shift could be applied to it (Li and Zhang 2011) which would also result

in facies asymmetries. This is currently investigated by the authors.

Acknowledgements The authors would like to thank the Earth Science and Engineering Depart-

ment of Imperial College for a PhD studentship grant for T. Le Blévec and Total for funding
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Appendix: Analytical Expression of the Triple Gaussian
Integral

In a similar fashion as Kendall et al. (1994), we consider three correlated gaussian

variates being in their respective intervals as a set of three dependent events. With

the truncation rule displayed in Fig. 1 and thresholds that equal 0, facies 1 at

72 T. Le Blévec et al.



location x and facies 2 at location x+h correspond to one variate being negative and
two positive. The indicator covariance C12(h) quantifies the probability of the

intersection of these three events. The correlation matrix between the three gaussian

variates is the following:

X
hð Þ ¼

1 ρZ1
hð Þ ρρZ1

hþ aj jð Þ
ρZ1

að Þ
ρZ1

hð Þ 1 ρ
ρρZ1

hþ aj jð Þ
ρZ1

að Þ ρ 1

0
BBBB@

1
CCCCA ð23Þ

The probability can be written as a triple integral of the corresponding gaussian

density gΣ(h)(u,v,w):

C12 hð Þ ¼
Z 0

�1

Z þ1

0

Z þ1

0

gΣ hð Þ u; v;wð Þdudvdw ð24Þ

Thanks to the gaussian integral symmetry property, the probability of intersec-

tion of the events is the complementary of the probability of their union (Kendall

et al. 1994). Therefore, by definition of the union, the intersection of the three

events can be expressed as a sum of the corresponding single and pair events and so

the triple integral as a sum of the single integrals that equal to 0.5 and double

integrals with their respective correlation coefficient:

C12 hð Þ

¼ 1

2
1� 3*0:5þ

Z 0

�1

Z þ1

0

gρZ1 hð Þ u; vð Þdudvþ
Z 0

�1

Z þ1

0

gρρZ1
hþaj jð Þ

ρZ1
að Þ

u; vð Þdudv
 

þ
Z þ1

0

Z þ1

0

gρ u; vð Þdudv
!

ð25Þ

Sheppard (1899) gives then the solution of the double integral that allows to obtain

the final expression of the transition probability between facies 1 and 2 (Eq. 15):

Z þ1

0

Z þ1

0

gρ u; vð Þdudv ¼ 1

2
�
Z þ1

0

Z þ1

0

gρ u; vð Þdudv ¼ 1

4
þ 1

2π
arcsin ρð Þ

ð26Þ
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