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Abstract Traditionally, geostatistical simulations are performed on regular grids,

in IJK coordinates system, simulating centroids of the cells. This approach (com-

monly used) has severe drawbacks: the support size effect is not taken into account

and some artifacts due to cells distortion may appear. On the other hand, reservoir

engineers and hydrogeologists are increasingly referring to new generation of grids

to perform dynamic simulation (Voronoı̈ grids, tetrahedral grids, etc.) which require

addressing the volume support effect.

In this paper, we present a theoretical framework to simulate variables directly

on this new generation of grids, using a depositional coordinates system (UVT) and

taking into account the support size effect.

A real field case study is subsequently presented (lithology and petrophysical

modeling) to illustrate the possibilities of the new generation of simulation tools. A

conclusion is provided and the remaining problems are discussed to propose some

guidelines for future works.
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1 Introduction

For more than 40 years, geostatistical estimations and simulations have been

performed on regular so-called “sugar-box” grids. This is mainly due to historical

reasons. The technology was emerging first from the mining industry, to estimate

grades for open pit blocks, and it was a reasonable choice to use such support of

information.

These regular grids have been kept for a long time as they allow following

stratigraphy in corner point grids geometry commonly used in petroleum industry;

they were also a convenient format to optimize algorithms of various kinds

(sequential simulations, simulation with fast Fourier transform, multiple-point

statistics simulations, etc.).

However, several new grid geometries have emerged in the last decades: tetra-

hedral meshes in hydrogeology and Voronoi grids with local grid refinements for

petroleum industry. These grids are more convenient to solve the physical equations

of flow and transport in porous media. Moreover, these grids are emerging in the

geo-modeling processes with a relevant formulation of the depositional UVT

coordinates system (see Mallet 2004); a dual grid approach was used to address

both the dynamic simulation and the geostatistical characterization (flow simulation

grid or FSG to solve the physical problem and the geological grid or GG to perform

geostatistics).

The dual grid approach has several drawbacks: the geological grid resolution is

driven by the smallest cells of the flow simulation grid, and, moreover, an upscaling

technique is necessary to transfer information from GG to FSG; this upscaling

technique needs to be general enough for the considered topologies.

As a consequence, it was necessary to adapt the geostatistical processes to use

directly the flow simulation grids; but, due to the various size and geometry of

elementary grid cells, it is mandatory to take into account the support size effect.

We present a technique based on the formalism of the discrete Gaussian model (see

Emery 2009 and Chilès and Delfiner 2012). A review of other solutions for

geostatistical simulations on unstructured grids can be found in Zaytsev et al.

2016. To simulate directly on unstructured reservoir grids, an alternative method

proposed by Boucher A. and Grosse H. (2015) will be also commented regarding

implementation aspects.

2 Recall of the Discrete Gaussian Model

The presentation of the discrete Gaussian model (DGM) can be found in Chilès and

Delfiner (2012). It can be described as follows:

– Each block of the grid vp is attributed a parameter rp E (0,1) which is called the

change of support coefficient for this block.

– We work on the Gaussian transform Y of the variable of interest Z.
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– We decompose the Gaussian anamorphosis of Z in a basis of normalized Hermite

polynomials χi (Y(x)):

Z xð Þ ¼ φ Y xð Þð Þ ¼
X1
i¼0

φiχi Y xð Þð Þ ð1Þ

– Using the Cartier’s relation (Chiles and Delfiner 2012 p. 441), we can derive the
block support distribution Z(v) since it can also be represented in the same

polynomial basis using the decomposition (1) and the block change of support

coefficient r:

Z vð Þ ¼ φv Yvð Þ ¼
X1
i¼0

φi:r
iχi Yvð Þ ð2Þ

– By double volumetric integration of the point support covariance C(x,x0) over the
volume of interest ν, we can derive the change of support coefficients rp:

Var Z vp
� �� � ¼ 1

vp
�� ��2

Z
v

Z
v

C x, x0ð Þdxdx0 ¼
X1
i¼1

φ2
i r

2i
p ð3Þ

– Following the same principle, by double volumetric integration of the point

support covariance C(x,x0) over two different volumes of interest νp and νq, we
can derive the block support covariances:

Cov Z vp
� �

,Z vq
� �� � ¼ 1

vp
�� �� vq

�� ��
Z
vp

Z
vq

C x, x0ð Þdxdx0 ¼
X1
i¼1

φ2
i r

i
pr

i
qcov Yvp ; Yvq

� �i

ð4Þ

– Once the change of support is known for each grid cell and covariance is known

between each pair of Gaussian random variables characterizing the volumes of

each grid cell, we are back to a classical problem of generating a multivariate

Gaussian random function with a given covariance matrix which can be solved

by classical methods such as SGS.

Different formulations are available for the discrete Gaussian model; in this

paper, these aspects will not be addressed; for such discussions, we refer to Zaytsev

et al. (2016).
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3 Practical Aspects of Applying Discrete Gaussian Model
for Geostatistical Simulations on Unstructured Grids

To apply the theory of DGM to unstructured grids, key additional issues need to be

addressed.

It is mandatory to integrate efficiently point support covariance (Eqs. 3 and 4)

over cells that are not usual octahedrons. This issue is solved with an efficient

lumping of each grid cell (see Korenblit and Shmerling 2006) followed by pseudo

Monte Carlo integration using Sobol sequence of quasi-random points in the

six-dimensional space of integration. This methodology is recommended for high

dimension space because of the convergence speed.

Figure 1 illustrates the advantage of Monte Carlo methods for the problem of

computing the variance of a block average value. In this figure, several integration

methods are compared (subsequent Gauss quadrature integration, approximating

the block with regularly spaced points, Monte Carlo integration). Clearly, Monte

Carlo and related techniques are much more efficient.

It is also important to have an efficient procedure to navigate in the topology of

the grid. The definition of searching neighborhood needs to be addressed in a

general and efficient way. We propose to address this issue with a k-d tree efficient

search (Bentley 1975). Expressed in the asymptotic notations for comparison of the

algorithm performance (Cormen 2009), for a grid of Nb blocks, the k-d tree gives

performanceO(log Nb) for the neighborhood search operation, which is much faster

than the naı̈ve approach of looking through all the blocks of the grid which is at

least Ω(Nb).

Fig. 1 Comparison of different integration methods to estimate variance of a typical grid cell

(Gauss integration, regular spacing, Monte Carlo with Sobol quasi-random sequence)
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4 What About Facies Modeling?

In the previous section, we addressed the problem of simulating a continuous

variable on an unstructured grid.

Another important problem is to simulate categorical variables on unstructured

grids. Following the same general approach, it is important to address the support

size effect, at least for sub-seismic heterogeneities.

The problem can be described as follows: let us consider a categorical variable

with K states k¼ 1,K. The appropriate way to handle support size effect is to

simulate on the unstructured grid a proportion vector p¼(p1,. . .,pK) with compo-

nents summing up to one.

Although using DGM for the problem of simulating categorical variables is

possible, the range of applicability of the resulting model is very limited.

In our case study, the problem of facies simulation has been addressed with the

method described by Gross and Boucher (2015). In their paper, the authors propose

an upscaling-based approach for geostatistical simulations on unstructured grids

which enables simulating the block values in a consecutive manner. Although using

upscaling, this method does not require creating and storing a refined grid for the

entire unstructured model, but only uses discretizations of a limited number of nodes

at every step. The algorithm is based on parsimonious simulation of control points

inside the cell of the unstructured mesh. The current point is simulated consistently

with the other points previously simulated in the cell and the neighboring previously

simulated cells; therefore, point-to-block covariances are still needed.

The key issue is to choose efficiently the number and the locations of the control

points inside the cell. For this problem, sensitivity tests can be performed similarly

than what has done for the integration of Eq. (3). A discretizing set of points can be

considered to be good, if it enables to approximate accurately the variance of the block.

Precisely, a set of points {xi, i ¼ 1 . . .N} can be used for simulating the value Z(v) if

Var
1

N

XN

1
Z xið Þ

� �
� Var Z vð Þð Þ: ð5Þ

Our tests indicate that when the Sobol quasi-random sequence of discretizing points

is used, a relatively small number of points (between 50 and 100; see Fig. 2) are

sufficient to satisfy (5).

5 Application to a Real Field Case

The above-described methods have been applied to field X. The objective is to

simulate groundwater flow on a very large grid including regional effects modeled

with large grid cells and local details for a zone of interest modeled with much

smaller grid cells (100–1,000 times smaller).
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The area covered by the grid is 70 by 90 km2. The previous model was built with

constant values over very large domain; it was not representative of the variability

of facies and porosity that can occur in this domain.

A new facies model (using the method in Gross and Boucher (2015)) was built.

Three facies are modeled (shale, shaly sand, and massive sand); the target pro-

portions over the entire grid are 20% for shales, 45% for shaly sands, and 35% for

massive sands; the covariance function used for the underlying Gaussian field in the

truncated Gaussian simulation is a spherical model with areal ranges of 800 m by

250 m (azimuth of maximum range is 55�); the vertical range is 100 m. The

coordinate system is a UVT coordinate system, built from the relevant horizons.

The facies simulation results are illustrated in Fig. 3. The simulated proportions

over the grid are clearly illustrative of the support size effect (less variations in large

cells, larger variations in small cells).

The important issue of modeling facies and related proportions is illustrated in

Fig. 4. The dominant facies (most likely facies regarding proportions) is

represented. In the area modeled with large cells, the shale facies is never dominant,

and proportional modeling procedure is the only way to keep that facies into

account; in the area of local grid refinement, this aspect is less important, and the

traditional truncated Gaussian simulation picture is observed.

The porosity model has been built using DGM assumptions. As each facies can

occur in each cell, it is therefore important to perform full field porosity model for

each facies. Point-scale distributions for each facies are provided in Table 1

(we used beta distributions with p and q referring to the shape parameters); these

porosity distributions are clearly different according to facies classification. Point-

scale normal score variogram for porosity is a spherical model with areal ranges of

600 m by 200 m (azimuth of maximum range axis is 55�); the vertical range is 80 m.

The porosity model inside each facies is represented in Fig. 5. The support size

effect is clearly visible with small variations in large cells and larger variations in

smaller cells.

Fig. 2 Approximating the

variance of blocks with the

variance of a set of

discretizing points.

Spherical covariance in 3D,

the dimensions of the blocks

approximately equal to the

ranges of the covariance
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Fig. 3 Facies modeling on field X, proportions maps for silt (blue), silty sand (pink), and massive

sands (yellow). The simulated facies proportion map is sharp in the region of the local grid

refinement and becomes smoother in the regions of coarse blocks

Fig. 4 Facies modeling on field X, dominant facies map

Table 1 Point-scale porosity

distributions for field X
Facies Distribution

Shales Beta (min¼ 0, max¼ 0.4, p¼ 1, q¼ 6)

Shaly sands Beta (min¼ 0, max¼ 0.4, p¼ 3, q¼ 3)

Sands Beta (min¼ 0, max¼ 0.4, p¼ 8.5, q¼ 3.5)
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From these facies porosities, it is possible to derive equivalent porosity for each

cell simply by weighting them according to simulated proportions. This result is

represented in Fig. 6; the support size effect is still visible.
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Fig. 5 Full field porosity modeling inside each facies of reservoir X

Fig. 6 Full field equivalent porosity inside reservoir X
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6 Conclusion and Future Work

In this paper, we have presented a methodology to address geostatistical simulation

on unstructured grids. Implementation issues have been discussed, and an illustra-

tive field case example has been performed. We have shown that the world of

geostatistics and the world of complex fit-for-purpose gridding can be reconciled.

The proposed workflow can be adapted to co-simulation techniques without

major difficulties. A co-simulation approach with DGM on regular grids can be

generalized without major modifications for unstructured grids (Emery and Ortiz

2011). In order to use the DGM for co-simulation, a linear model of

co-regionalization (LMC) can be used, and conditioning kriging should be

substituted with conditioning co-kriging.

However, it is important to notice than we have addressed only the domain of

additive variables. An important topic is still to be treated: nonadditive variables

such as permeabilities. We envisage treating these variables by using fit-for-pur-

pose transformation like power transform as suggested in Noetinger (1996) and

Deutsch (2002); but these transformations need to be calibrated by physical mea-

sures and numerical tests. This will be the next challenge of this research.

Other problems would be interesting to investigate: generalization of algorithms

to nonstationary cases, addressing facies simulation techniques different from

truncated Gaussian simulation.
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