
Chapter 8
WSN Platforms

8.1 Introduction

Previous chapters describe sensor network architecture, communication protocols
and various characteristics related to security of WSNs. This chapter provides a
short overview of hardware and simulation-based WSN platforms. A basic
knowledge about the WSN platforms is necessary to understand physical and
computational capabilities and limitations of the technology, to foresee future
directions in technology development, and to further develop WSN algorithms and
protocols.

While very few research and development results can directly be implemented
on real wireless sensor nodes and networks, more often such implementations are
first carried out on sensor network simulators. WSN simulators provide test plat-
forms that can save time and cost, expand complexity of deployed networks, and
thus verify results before any real hardware nodes are deployed. WSN simulators
can verify results in simulation that can be costly, dangerous, or impossible to
deploy in real-life, large-scale networks. Also, some applications in harsh envi-
ronments would be extremely difficult for live testing, and effect on possible node
failures is easier to simulate on WSN simulators. Therefore, WSN simulators are an
integral part of every research and development effort in this area.

8.2 WSN Hardware Platforms

WSN platforms implement the physical layer of the protocol stack and have the
primary goal of gathering multi-modal information about the physical phenomena.
The three main components of a WSN hardware platform—namely, sensors which
perform the sensing functions, the radio that provides communication and

© Springer International Publishing AG 2016
R.R. Selmic et al., Wireless Sensor Networks,
DOI 10.1007/978-3-319-46769-6_8

197

networking, and the microcontroller which performs the processing—are designed
with an aim of minimizing the amount of consumed power. This design objective
emanates from the fact that WSNs are usually deployed in environments where
human intervention after deployment is not expected, a scenario that rules out the
possibility of human-supported battery recharging.

One of the first wireless, low-power, real-time monitoring applications was
developed by UC Berkeley and was called Mica motes [12]. Those first sensor
nodes were based on low-power, 8-bit or 16-bit microcontrollers with few sensors
either attached directly to the networking platform or with modular hardware
approach where various sensing modules can be easily attached. Included are Mica
and Mica2 wireless sensor networks, followed by IRIS platform, and Cricket
system discussed later in the chapter. Since then, researchers are actively exploring
WSNs applications in numerous domains and engineers have created more
advanced platforms with improved computational capabilities [3] such as WSN
nodes running on 32-bit ARM Cortex-M3 microcontrollers [3, 9] that reduces
latency and energy consumption for computationally intensive tasks, but have
increased energy consumption for traditional sensing applications. Further hardware
platform development includes FPGA-based nodes [4, 10, 15, 16], that are modular
and can be reconfigured. In particular, [15] presents a WSN node that combines
FPGA and System-on-Chip technology and is a low-power, a high-performance,
adaptable sensor node. Only recent FPGA could be used in such applications as
their power consumption was reduced (initial FPGA were extremely power inten-
sive devices).

In this chapter, we describe the most commonly used WSN hardware platforms
that are important from historic/technology development perspective or have a
high-market penetration. Table 8.1 shows the described WSN hardware nodes.

8.2.1 IRIS

The IRIS sensor nodes platform, from MEMSIC, Fig. 8.1, is an evolution of the
first Mica and Mica2 sensor nodes platform [6, 26]. The nodes, also called Motes,
run on a 2.4 GHz low-power Atmel’s radio (AT86RF230) that is based on IEEE
802.15.4 standard [26] with transmission data rate of 250 kbps.

IRIS motes have an outdoor line-of-sight range of about 500 m and indoor range
of about 50 m. They run on 2 AA batteries with current consumption ranging from
10 to 17 mA depending of transmission power of the radio. Motes are based on
Atmel ATmega1281 8-bit microcontroller with 128 kB of Flash memory, 4 kB of
EEPROM, and 8 kB is an internal SRAM. This is a low-power, static-operation,
advanced RISC architecture microcontroller with selectable various frequency of
operation from below 4 MHz and up to 16 MHz.

198 8 WSN Platforms

Table 8.1 Common WSN platforms with their microcontroller units, radio, and sensor
components

WSN Node MCU Radio Sensors

IRIS Atmel ATmega1281,
RISC architecture (Tiny
OS)

2.4 GHz Atmel
AT86RF230

Various sensor boards,
communication supported
using analog inputs,
digital I/O, I2C, SPI,
UART.

Digi XBee®

ZigBee
No MCU, can
communicate with
variety of
microcontrollers
through serial interface

865 MHz to
2.4 GHz

No sensors on the module.

WiSense TI MSP430 (Linux) CC1000 Temperature, light, and
other custom modules

Intel® Mote 2 Intel PXA271 (Tiny OS
or Linux)

CC2420 at
2.4 GHz (IEEE
802.15.4)

Stackable modules, can
support image and video
processing

Mulle ARM Cortex-M4
(Contiki OS)

IEEE 802.15.4 at
868 MHz,
900 MHz

Different I/O with 60-pin
connector, various sensors
can be added

CM30x Jennic JN5148 RISC
wireless microcontroller

IEEE 802.15.4
integrated with
MCU

Multiple I/O with 34-pin
connector for sensor
modules

Fleck3 Atmel ATmega128
(Tiny OS)

Nordic nRF905,
ISM band
433/868/915 MHz

Built in temperature and
light sensors, can add an
expansion board with
extra sensors

Cricket Atmel ATmega128L
(Tiny OS)

CC1000 51-pin connector for
sensor module

Shimmer wireless
node

TI MSP430 TI CC2420 at
2.4 GHz (IEEE
802.15.4)

Sensor modules: 9DoF
kinematic, GPS, ECG,
etc.

ADVANTICSYS
XM1000

TI MSP430 TI CC2420 at
2.4 GHz (IEEE
802.15.4)

Integrated temperature,
humidity, and two light
sensors

Fig. 8.1 IRIS sensor node
from MEMSIC (reproduced
by permission of MEMSIC,
www.memsic.com)

8.2 WSN Hardware Platforms 199

http://www.memsic.com

Motes have 51-pin expansion connector that enables stacking of various sensor
boards for different applications such as security and building monitoring, acoustic
and vibration monitoring, chemical sensing, and more. Communications with
multiple sensors is possible through analog inputs, digital I/O, I2C, SPI, and UART
interfaces.

IRIS runs on TinyOS [28], an event-based operating system written in nesC
programming language, which is a variation of a C language for embedded systems
with small memory storage devices. An event handler processes events as they
occur. The operating system consists of components connected with interfaces for
various wireless sensor network abstractions such as communication, routing,
sensing, and more. Components include the specification with names of their
interfaces and the interfaces’ implementation. Interfaces have a bidirectional feature
that has been specified into a set of commands and a set of events. Components
have two forms: modules and configurations. Modules can provide the application
code that contains different interfaces. The modules specify what interfaces have
been used or provided, and then implement them with the corresponding code.
Configurations are used for assembling or linking other components together.

A typical application with IRIS WSN nodes is given in [24] where a passive
radar is proposed that monitors for presence of people in indoor environments.
The WSN nodes measure the Received Signal Strength Indicator (RSSI) that
determines how people’s motion affects RSSI at the pre-deployed WSN. The
method is based on IRIS node capability to directly measure the received signal
strength through its Atmel radio chip. In this case the radio serves dual purpose—
provides wireless communication platform and measures received signal strength.
In [19], IRIS nodes were used for ambient monitoring application as well as to
verify energy modeling in WSNs.

8.2.2 WiSense

WiSense is a low-power, modular WSN platform that is based on the TI MSP430
microprocessor and CC1000 radio technologies operating in sub-GHz frequency
range (see Fig. 8.2). The microcontroller, radio, and sensor components are all
separated as different hardware modules (boards), with the microcontroller con-
necting to the radio through the SPI interface and to the sensors through I2C, SPI,
and UART interfaces. The microprocessor board is equipped with temperature and
light sensors as well as EEPROM. The platform is suitable for fast prototyping in
home automation, smart building, and industrial automation applications.

The sensor node runs open-source Linux that implements IEEE 802.15.4 stan-
dard. The software and sensor nodes support both Full Function Device (can
operate as a router node and can also transmit data from other nodes, thus sup-
porting various network topologies) and Reduced Function Device (only sends
information to network, cannot relay data from other nodes) modes.

200 8 WSN Platforms

8.2.3 Digi XBee® ZigBee

Digi XBee® ZigBee 802.15.4 RF communication modules are a common platform
for wireless connections between various electronic devices, not just sensor nodes,
(see Fig. 8.3, [27]). They are a popular platform for wireless sensor networks where
sensors can be added as separate components. They operate on frequencies from
865 MHz to 2.4 GHz and support various wireless interfaces including mesh,
point-to-point, star, ZigBee, WiFi and others.

Digi XBee® ZigBee operates of 250 kbps data rate and has a range of up to
100 m for 1 mW transmit power devices or 1.6 km for 60 mW transmit power
devices. The system supports direct sequence spread spectrum modulation and the
128-bit Advanced Encryption Standard for data encryption. However, MAC-layer
addresses are non-encrypted and can be visible to all. The wireless module can
operate in a command mode (node firmware can be modified through a set of
commands, characters), an idle mode (listens for valid data or RF and serial ports), a
receive mode (when a destination node receives a dedicated packet), a transmit
mode (prepares to send packets as serial data), and a sleep mode (low-power state
when node is not in use, cannot send or receive packets until awaken). Basic
commands and changes in the Digi XBee® ZigBee node configuration and firmware
can be entered remotely.

Power

Microprocessor
TI MSP430

EEPROM

Sensors

UART

Power

CC1000
radio

Sensors

I2C

SPI

Fig. 8.2 WiSense wireless sensor network node block diagram with main design components

Fig. 8.3 Digi XBee® ZigBee
wireless communication
platform (reproduced by
permission of Digi XBee®,
http://www.digi.com)

8.2 WSN Hardware Platforms 201

http://www.digi.com

In a typical application for condition monitoring and energy management in
homes [7], Digi XBee® ZigBee nodes are used as Internet of Things (IoT) where
three different sensors are connected with the coordinator/controller module using
ZigBee communication standard in a mesh topology or a star topology (depending
of the range between the coordinator and the end nodes). The coordinator is
communicating with the gateway that translates the ZigBee protocol to the Internet
protocol (IPv6) format. The Digi XBee® ZigBee sensor nodes produce ZigBee
packets (64 bits address for a node on a Personal Area Network—PAN and a 16 bit
address for the PAN) that are converted into IPv6 packets (128 bits to address a
node on the network: 48 bits to address the network, 16 bits to address the PAN,
and 64 bits to address the sensor node) and then sent to a central server. In the
opposite direction, command packets towards the Digi XBee® ZigBee modules are
encapsulated in a User Datagram Protocol (UDP) and then converted back to
ZigBee packets by the IoT application gateway. This translation allowed for IoT
IPv6 implementation of sensor nodes in 802.15.4 data format and ZigBee network
where each sensor node is addressable with its specific IP address [7].

8.2.4 Intel® Mote 2

Intel® Mote 2 or iMote2 [29], from Intel®, is a high-performance WSN node that
uses Intel Xscale® PXA271 CPU. It is able to operate at low power since the
PXA271 CPU is capable to run at low voltage (0.85 V) and low frequency
(13 MHz). The processor has several low-power modes including the sleep and
deep sleep modes. In the deep sleep mode it draws a current of about 390 lA
(compared to up to 66 mA in active mode). The processor integrates many I/O
options that include I2C, 3 Synchronous Serial Ports, 3 high-speed UARTs, fast
infrared, camera interface USB client and host and I2S codec audio interfaces
among several others. These many I/O options make it very flexible in supporting
different sensors. The processor also adds several timers and a real-time clock.

iMote2 integrates the IEEE 802.15.4 radio transceiver (CC2420). This trans-
ceiver supports a data rate of 250 kb/s with 16 channels in the 2.4 GHz band. Also,
this mote platform integrates a 2.4 GHz surface mount antenna, which has a
nominal range of up to 30 m. For applications requiring a longer range, an SMA
connector can be soldered directly to the board for the connection of an external
antenna. The module includes a power management IC that supplies the processor
with the various voltage domains.

For interfacing the sensor board, the iMote2 has two sets of connectors, the basic
set and the advanced set. The basic set supports the most common sensor interfaces
and can be supported in future mote designs. The advanced set is platform-specific
and exposes advanced features such as the camera interface, high-speed bus and
audio interfaces. The mote can be powered by primary battery, rechargeable bat-
tery, or using mini-B USB connector.

202 8 WSN Platforms

The iMote2 supports a range of operating systems that include TinyOS for
extremely low-power sensor network applications and Linux for more advanced
applications. Detailed specifications of this node can be found in [29]. The fol-
lowing figures show the top and bottom of the Intel Mote 2 sensor node (Fig. 8.4).

8.2.5 Mulle

Mulle [30] (from Eistec AB, Fig. 8.5) is a wireless Embedded Internet System
(EIS) for wireless sensors connected to the Internet of Things (IoT). Mulle platform
comprises the Mulle sensor nodes, the Mulle Internet gateway device and the cloud
services and Mulle development tools. The platform uses an ARM Cortex-M4
microcontroller and an IEEE 802.15.4 radio operating at 868 MHz. A frequency of
900 MHz is supported upon request. The Mulle is able to store large amounts of
sensor and configuration data on its on-board 2 MB flash memory. It has a
high-density expansion port with a 60-pin connector that supports a large number of
I/O options (both digital and analog), enabling connectivity to other types of sen-
sors and various debugging and programming tools. A selection of supported
expansion boards includes [30]:

• Programming board, including a JTAG programmer and pin headers for all
expansion port pins.

• IMU board equipped with gyro and magnetometer.
• Weather station board including sensors for barometric ressure, humidity,

temperature, ambient light.
• Gateway board for using a Mulle board as a 6LoWPAN/RPL border gateway.

Intel Xscale® PXA271

Dialog DA9030 Power
Management IC

Mini USB

2.4 GHz 802.15.4
antenna

CC2420 transceiver,
2.4 GHz, 802.15.4

Fig. 8.4 Intel® Mote 2 sensor node, top view (left) and bottom view (right) (reproduced by
permission from [29])

8.2 WSN Hardware Platforms 203

Mulle runs the open-source Contiki operating system that features a full TCP/IP
stack (with support for IPv6) and runs protocols such as UDP, TCP, HTTP and
6LoWPAN among others. The use of TCP/IP over 6LoWPAN enables the Mulle to
transmit sensor data directly to the Internet. For Internet operations involving
complex negotiations that cause high battery consumption, the gateway acts as a
mediator for Internet services, with the aim to reduce the power consumption of the
sensors. In its lowest sleep mode, the Mulle’s power consumption is 20 lW. Mulle
software can be built using the standard GNU GCC tool chain for embedded ARM
platforms.

The legacy Mulle has a Renesas M16C/62P microcontroller and either a
Bluetooth 2.0 module (v3.1, v3.2, v4.1) or IEEE 802.15.4 transceiver. Similarly as
the new version, it also has an on-board 2 MB flash memory.

8.2.6 iSense Core Module 3 (CM30x)

The CM30x [31] uses the 32-bit Jennic JN5148 RISC wireless microcontroller that
integrates the radio module in the single chip together with the microcontroller. It
has 128 kB of memory that may be shared between program code and data. This
flexibility of memory allocation enables a more robust operation than in designs in
which the memory allocation is fixed. Its IEEE 802.15.4-compliant radio achieves a
data rate of 250 kBit/s and supports two additional modes of operation, offering
increased data rates of 500 and 667 kBit/s. The CM30x supports AES encryption, is
ZigBee-ready and supports time of flight-based ranging.

There are three variants of CM30x, which differ in the antenna used: the CM30I
uses an integrated PCB antenna, the CM30U uses a U.FL connector for external
antenna, and the CM30HP uses a power amplifier and U.FL connector for external
antenna. The module with the integrated PCB antenna (CM30I) is particularly well

Fig. 8.5 Current version of a
Mulle sensor node
(reproduced by permission of
Eistec AB, http://www.eistec.
se/mulle/wsn)

204 8 WSN Platforms

http://www.eistec.se/mulle/wsn
http://www.eistec.se/mulle/wsn

suited for compact systems. For the first two antenna options, a receive sensitivity
of −95 dBm (at 250 kBit/s) and a transmit power tunable between −60 and
+2.5 dBm is supported while for the third option, a receive sensitivity of −98 dBm
(at 250 kBit/s) and a transmit power of up to 10 dBm is supported. The module has
a LED that aids in debugging operations and a high-precision clock that with
infrequent resynchronization enables precisely timed sleep and wake-up periods.
A 34-pin connector that can supply up to 500 mA allows for connection to other
modules (such as sensor modules, a gateway module, or an I/O module) to the core
module. The core module may be powered by a wall-mount adapter, a standard
battery holder, one of the power modules, or via an USB interface. The system has a
voltage regulator that is software controlled.

8.2.7 Fleck3

The Fleck3 is the second generation of the Fleck series [2, 18], Fig. 8.6. Developed
at the CSIRO ICT center in Australia, the Fleck series was designed to overcome
some of the limitations of the Mica mote. Areas in which this series overcome the
challenges of the Mica2 motes include: the provision of a one-board solution (screw

Fig. 8.6 Fleck3 sensor network module (reproduced by permission from [2])

8.2 WSN Hardware Platforms 205

terminals give access to digital and analog channels) and a robust expansion board
interface, support for solar charging, and the use of a long-range radio having a
range of over 1000 m.

The Fleck3 uses an Atmel ATmega128 microcontroller and a Nordic nRF905
radio. Communication between the radio and the microcontroller is via the SPI bus,
for which the ATmega128 acts as the SPI master and the radio as an SPI slave
device. The bus is central to the communication mechanism as units such as the
flash memory, the real-time clock and the temperature sensor all communicate with
the ATmega128 over the SPI bus. The radio works in all the different ISM bands
(433, 868, 915 MHz) which is more suited for its main application area (e.g.,
outdoor environmental monitoring and agriculture applications) than the 2.4 GHz
band used by wide-band radios following the IEEE 802.15.4 standard. The radio
further has all its components integrated within the chip, which reduces the number
of parts and the variability in radio characteristics.

The Fleck3 uses the DS1306 real-time clock (RTC) chip, which is interfaced to
the Atmega128 as a SPI slave device. The clock uses <1 lA current for time
keeping and <1 mA when active. The RTC frees up the sensor node from the need
to keep time, which helps reserve resources for event-based programs. For security,
an optional board that uses an off-the-shelf Trusted Platform Computing
(TPM) chip from Atmel is supported. This chip implements the full TPM specifi-
cation that includes a crypto engine, secure storage for keys, and a random number
generator. For application development the fleck platform supports TinyOS 1.x.

8.2.8 Cricket

Cricket is a sensor-based device used for indoor localization. It was developed by
MIT scientists [17] and manufactured by MEMSIC [26]. It has been widely utilized
in research conducted in indoor environments where distance estimation between
sensor nodes is needed. There are several advantages of the system including small
device size, high measurement accuracy, scalability, user privacy and ease of
deployment [26]. A cricket node can be configured as a beacon or a listener. The
most common method to use Cricket is to attach the beacons in the infrastructure
(walls and/or ceilings) and set listeners on a mobile device that is going to be
localized or navigated.

This sensor-based system can provide distance estimates using
time-difference-of-arrival (TDoA) with an accuracy of within 1–3 cm. The system
utilizes the combination of RF and ultrasound signal to measure distance and
provide location information.

The Cricket mote is built on a MICA2 low-power consumption sensor board
combined with an RF module and associated hardware to implement the distance
measurement feature and the ability for sending distance information. Figures 8.7
and 8.8 show the Cricket hardware implementation graph and the real Cricket mote.

206 8 WSN Platforms

Cricket mote uses ATmega128L as a main processor, which belongs to the AVR
series. It is a high-performance, low-power 8-bit microcontroller that runs at
7.37 MHz in active mode as well as a 32.768 kHz clock that is applied in a power
saving mode. The mote also has 128 KB programmable Flash ROM, 4 KB
read-only EEPROM, and 53 general-purpose lines. The Cricket uses CC1000 as a
low-power RF transceiver, which operates in the frequency range of 300–
1000 MHz.

The Cricket system has an ultrasound unit (receiver and transmitter). Within the
transmitter, there is a transducer to generate piezoelectric ultrasonic pulses at
40 kHz with configurable duration.

In a typical application using the Cricket system, there are multiple beacons
deployed on walls or ceilings that periodically transmit RF and ultrasound signal,
Fig. 8.9. At least one listener attached to the host device (laptop, robot) passively
receives those signals to calculate the distance between each beacon and itself.

Fig. 8.7 Cricket hardware implementation block diagram with its main components [13]

Atmel processor US transmitter

US receiver
7.328 MHz crystal

51-pin connector

RS-232 connector

Fig. 8.8 Cricket mote [13]

8.2 WSN Hardware Platforms 207

The TDoA technique is used to measure the beacon-to-listener distances.
The listener estimates distance by obtaining the TDoA of the RF and the ultrasound
signals that is given by:

DT ¼ d
vUS

� d
vRF

; ð8:1Þ

where d is the distance from the beacon to the listener, vUS is the speed of sound
propagation (in a normal room temperature and humidity vUS ffi 344 m/s) and vRF is
the speed of light (vRF ffi 3� 108 m/s). With vRF [[vUS, the distance is given
by an approximation: d � DT � vUS.

8.2.9 Shimmer Wireless Node

Developed by Shimmer Research™, the Shimmer Wireless Platform was designed
from the ground up to be a low-power, modular, wearable sensor node for use in
healthcare, sports science, environmental sensing, and biofeedback [25]. A typical
platform would include the main unit and a sensor board. The packaging is
designed so that the main board rests at the bottom of the package and the sensor
board rests on the top.

The main node consists of a Texas Instruments MSP430F1611 microcontroller
featuring an 8 MHz clock, 2 DAC outputs, and an 8-channel, 12-bit ADC. The
microcontroller also includes 10 KB of RAM and 48 KB of flash memory. Two
sensors are integrated onto the main node (three-axis accelerometer and a
tilt/vibration switch). The Shimmer Wireless Platform uses dual radios including TI
CC2420 radio chip for 2.4 GHz IEEE 802.15.4 communication and the Bluetooth

Fig. 8.9 Deployed cricket
beacons and listeners in a
localization application

208 8 WSN Platforms

radio. Power is provided to the node with a Li-ion rechargeable battery. The node
will accept voltages from 2.2 to 3.6 V.

Some examples of sensor modules include the 9DoF kinematic, GPS, and ECG.
The 9DoF kinematic sensor board features a Honeywell HMC5843 three-axis
digital compass and an InvenSense 500 series MEMS-based gyro. These sensors
allow for complex motion sensing in a 3D environment. Worn on a user, it enables
gestural computing and can be used for virtual reality and gaming applications.

8.2.10 ADVANTICSYS XM1000

The ADVANTICSYS XM1000 is a wireless sensor node based on an upgraded
Crossbow TelosB platform [32] and is powered by two AA batteries, Fig. 8.10. It
features the 16 MHz, 16-bit TI MSP430F2618 microcontroller using the RISC
instruction set. Integrated into the microcontroller are 116 KB of program flash and
8 KB of data RAM with node-integrated external flash chip. The expanded memory
allows for over-the-air reprogramming of the device as well as implementation of
Device Profile for Web Services (DPWS)—a method for web service discovery and
communication with the device on a LAN or WAN. The microcontroller enables
communication using UART, SPI, and I2C protocols.

Several sensors are directly integrated onto the board for monitoring tempera-
ture, humidity, and light. Wireless connectivity at 2.4 GHz is enabled by the TI
CC2420 transceiver. This chip is IEEE 802.15.4 compliant, and has a range of up to
120 m outdoors and 30 m indoors.

8.3 WSN Simulation Tools

When conducting research on WSNs, it is often more feasible to use WSN simu-
lations than deploy a real WSN. One common reason for preferring a WSN sim-
ulation is that of minimizing costs—for example, the total cost of purchasing WSN
nodes and other hardware would be prohibitive for applications requiring very large
number (e.g., thousands) of nodes. In such cases, researchers use WSN simulations,

Fig. 8.10 XM 1000 wireless
sensor node (reproduced by
permission of
ADVANTICSYS, [32])

8.2 WSN Hardware Platforms 209

with the decision to deploy the real nodes depending on the promise depicted by the
simulation-based research. Cost limitations are however not the only reason in
support of WSN simulations. Other reasons include [5]: (1) Network Debugging
Issues—debugging large distributed networks can sometimes be a daunting task
and simulation can, for certain scenarios, provide a means to find and correct bugs
prior to undertaking real WSN implementations. (2) Harsh Operating
Environments—the target environments for certain WSN applications are unsafe for
humans. Examples of applications associated with such environments include those
for monitoring wildlife, volcanic activity or adverse weather conditions to mention
but a few. In such cases, simulation offers a means to conduct experiments in a safe
environment before resources and necessary mitigations against threats can be
dedicated to deployments in the real operation environment. (3) The Need for
Precise Control of WSN Parameters—in WSN research, it is often required to
evaluate the behavior of the network for different combinations of precisely chosen
parameter settings. Because a live WSN setting is not entirely controllable by the
experimenter, simulations come in handy to provide this controlled and repeatable
environment.

To address challenges such as these, the community has put forth a number of
simulators. This section briefly explores five of the most popular WSN simulation
tools.

8.3.1 ns-2 (Network Simulator-2)

Network Simulator-2 (ns-2) is an open-source discrete-event simulator. The sim-
ulation kernel, models and protocols are implemented in C++ while the creation,
control and management of simulations is done in Object-oriented Tool Command
Language (OTcl) [5, 8]. Network Simulator-2 was designed for simulating tradi-
tional IP networks and as such requires special extensions in order to support WSN
simulations. The extensions augment the base ns-2 functionality with features such
as sensing, processing energy consumption, WSN operation modes (e.g., sleep and
wake-up modes), variations in node capabilities (e.g., regular nodes versus access
points), and various options for dissemination of sensed data among others. Two of
these extensions such as MannaSim [14] and SensorSim [33] have been widely
used in past WSN research. SensorSim has however long ceased to be developed or
supported and we do not discuss it here.

MannaSim comprises two components: (1) the MannaSim Framework, which
encompasses the core extension module used for the design, development and
analysis of different WSN applications; and (2) the Script Generator tool, which
provides a front-end via which Tool Command Language (Tcl) simulation scripts
are easily created. MannaSim enables the user to control aspects of the network’s
composition (e.g., number, type and density of nodes) and its organization (e.g., flat
or hierarchical network). It supports a wide range of applications and provides a
testbed for various algorithms and protocols [14]. MannaSim comprises a set of

210 8 WSN Platforms

classes, which extend the corresponding ns-2 classes. For example, the Battery class
extends ns-2’s EnergyModel class and provides methods for the implementation of
various battery models. Another example is the SensorNode class, which extends
ns-2’s MobileNode class by adding features such as sensing and processing. A full
list of classes can be found in [14, 20].

One of the major advantages of ns-2 as a WSN simulator is its abundance of
publicly available protocols and algorithms [22]. Some of its most notable weak-
nesses on the other hand include the steep learning curve that one typically goes
through before undertaking meaningful simulations and the absence of an appli-
cation model [22].

8.3.2 OMNETT++

OMNETT++ is a discrete-event simulation environment for communication net-
works in general. Its components are developed in C++ while the simulation
implementation is based on a high level language called Network Description
Language (NED) [20]. Because OMNETT++ is not specifically designed for
WSNs, it requires special packages to be able to run WSN simulations. Below, we
briefly discuss two of the most popular amongst these frameworks.

Castalia: Via a wide range of tunable parameters, Castalia can be used to simulate
a broad spectrum of WSN platforms. Its most outstanding features include [34]:
(i) the advanced channel model which is based on empirically measured data; (ii) the
radio model which is based on real radio components; (iii) its extended modeling
sensing provisions, and (iv) its intrinsic design for adaptability and extensibility. The
latter attribute in particular enables researchers to easily port their algorithms and
protocols into Castalia. Castalia is not recommended for cases where emphasis of
simulation is to observe detailed platform-specific behavior. In such cases, Castalia
is best used as a first-line simulator that provides a coarse-grained view of the WSN’s
behavior before more fine-grained platform-specific simulations can be run [34].

MiXiM (Mixed Simulator): It is a merger of several OMNETT++ based frame-
works for mobile and wireless simulation [35]. The word “mixed” in its name
comes from its being a combination of various simulators [20]. Its radio propa-
gation model is based on the Channel Simulator (ChSim) [36], connection man-
agement and mobility support are based on the Mobility Framework (MF) [37]
while the protocol library is derived from the MAC simulator [38], the Positif
Framework [38] and from the Mobility Framework. MiXiM supports models based
on both 2D and 3D settings and, in addition to traditional WSN nodes, supports the
simulation of objects such as walls and houses as obstacles to the propagation of
radio waves.

8.3 WSN Simulation Tools 211

8.3.3 TinyOS Simulator (TOSSIM)

TOSSIM is a discrete-event simulator specifically designed for TinyOS applica-
tions. It has support for two programming interfaces, one of which is in Python, the
other in C++. Using the Python interface, one can interact with the running sim-
ulation dynamically. TOSSIM programs can replace entire components of TinyOS
applications with their simulation implementations since these programs in general
require no modification to be run on the motes [1, 28]. This feature gives developers
a big margin for application testing and debugging since TinyOS applications may
be developed and compiled to the TOSSIM framework running on a
desktop. TOSSIM captures details of TinyOS’s behavior, closely simulating each
ADC capture and each interrupt to the system. Using tools external to TOSSIM,
users can implement models of different real-world phenomena.

The design choice to keep real-world models external to the simulator was aimed
to allow the flexibility for researchers to implement their own models in such a way
that the TOSSIM environment imposes no definitions of its own regarding what is
correct or wrong [11]. Despite capturing TinyOS behavior at a very fine level, it is
noteworthy that TOSSIM makes several simplifying assumptions that could cause
unexpected behavior. For example, as a direct consequence of being a
discrete-event simulator, TOSSIM interrupts are non pre-emptive. If, as an exam-
ple, pre-emption were to put a real-world mote into unrecoverable state, an
equivalent simulated TOSSIM mote would not capture this behavior [11]. These
kinds of challenges notwithstanding, TOSSIM offers a good first step towards the
understanding of algorithm performance prior to implementation on a real WSN.

8.3.4 Optimized Network Engineering Tool (OPNET)

OPNET is a proprietary1 discrete-event simulator targeted for computer networks in
general. Different from simulators such as ns-2, OPNET supports the modeling of
sensor hardware (e.g., transceivers and antennas), and has provision for the defi-
nition of custom packet formats [1]. Using its GUI, one may model, graph or
animate the simulator’s output. Researchers have designed an interface for com-
piling TinyOS applications to OPNET models [21]. Just as the kind of interoper-
ability realizable between TOSSIM and TinyOS, this interface enables a shared
code model in which the same application code is shared between the TinyOS
executable and the OPNET simulation model. The interface has support for sce-
nario management and statistics management, has the ability for instantiations of
different applications to be simulated together in the same memory space, and
has the availability of a much larger wealth of models, the combination of which
give OPNET an edge when it comes to sophisticated TinyOS simulations [21].

1Since October 2012, the simulator is owned by Riverbed [40].

212 8 WSN Platforms

Typical of proprietary products, the OPNET license comes with a considerable
amount of documentation and study cases that can be useful to researchers [1].

8.3.5 Avrora

Avrora is a Java-based open-source simulator for embedded sensing programs. It
simulates the actual microcontroller programs (as opposed to models of the soft-
ware), and executes cycle-accurate simulations of the devices and the radio com-
munication [23]. It can scale to networks of up to 10,000 nodes and can handle as
many as 25 nodes in real-time [23]. It has a nearly complete implementation of the
mica2 hardware platform, an ATMega128L implementation, and an implementa-
tion of the CC1000 AM radio [39]. To enable testing, debugging, or analyzing of
programs before running them in network simulations, Avrora supports the simu-
lation of a sensor network program on a single node. For complete network sim-
ulation Avrora provides full timing accuracy and allows programs to communicate
via the CC1000 AM radio. Two notable challenges seen with Avrora are that it is
slow (e.g., it is 50 % slower than TOSSIM) and it does not model node mobility or
clock drift [22].

References

1. A. Abuarqoub, F. Al-Fayez, T. Alsboui, M. Hammoudeh, and A. Nisbe, “Simulation issues in
wireless sensor networks: a survey,” Proc. the Sixth International Conference on Sensor
Technologies and Applications (SENSORCOMM 2012), Rome, Italy, 2012.

2. P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore, “Environmental wireless
sensor networks,” Proceedings of the IEEE, Special Issue on Emerging Sensor Network
Applications, vol. 98, no. 11, pp. 1903–1917, November 2010.

3. Cricket User Manual, MIT Computer Science and Artificial Intelligence Lab, Second Edition,
Jan. 2005.

4. C.-M. Hsieh, F. Samie, M.S. Srouji, M. Wang, Z. Wang, and J. Henkel, “Hardware/software
co-design for a wireless sensor network platform,” 2014 International Conference on
Hardware/Software Codesign and System Synthesis (CODES + ISSS), New Delhi, 2014.

5. M. Jevtic, N. Zogovic, and G. Dimic, Evaluation of Wireless Sensor Network Simulators,
17th Telecommunications forum TELFOR, Belgrade, Serbia, 2009.

6. M. Johnson, M. Healy, P. van de Ven, M.J. Hayes, J. Nelson, T. Newe, and E. Lewis, “A
comparative review of wireless sensor network mote technologies,” Proc. IEEE Sensors,
pp. 1439–1442, October 2009.

7. S.D.T. Kelly, N.K. Suryadevara, and S.C. Mukhopadhyay, “Towards the Implementation of
IoT for Environment Condition Monitoring in Homes,” IEEE Sensors Journal, vol. 13, no.
10, October 2013.

8. S. Khan, A.K. Pathan, and N.A. Alrajeh (Editors), Wireless Sensor Networks: Current Status
and Future Trends, CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2013.

9. J. Ko, K. Klues, C. Richter, W. Hofer, B. Kusy, M. Bruenig, T. Schmid, Q. Wang, P. Dutta
and A. Terzis, “Low power or high performance? A tradeoff whose time has come (and nearly
gone),” Proc. the 9th European Conference on Wireless Sensor Networks, Italy 2012.

8.3 WSN Simulation Tools 213

10. M. Kohvakka, T. Arpinen, M. Haunikainen and T.D. Hamalainen, “High-performance
multi-radio wsn platform,” Proceedings of the 2nd International Workshop on Multi-hop Ad
Hoc Networks: From Theory to Reality, pp. 95–97, 2006.

11. P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate and scalable simulation of
entire TinyOS applications,” Proc. of the 1st International Conference on Embedded
Networked Sensor Systems, New York, NY, USA, 2003.

12. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson, “Wireless Sensor
Networks for Habitat Monitoring,” Proc. the 1st ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA ‘02), pp. 88–97, 2002.

13. MIT Computer Science and Artificial Intelligence Lab, “Cricket user Manual, Second
Edition,” January 2005.

14. R.M. Pereira, L.B. Ruiz, and M.L.A. Ghizoni, “MannaSim: A NS-2 Extension to Simulate
Wireless Sensor Networks,” The Fourteenth International Conference on Networks,
Barcelona, Spain, 2015.

15. F. Philipp, F. A. Samman and M. Glesner, “Design of an autonomous platform for distributed
sensing-actuating systems”, 22nd IEEE International Symposium on Rapid System
Prototyping (RSP), pp. 85–90, 2011.

16. J. Portilla, T. Riesgo and A. De Castro, “A reconfigurable FPGA-based architecture for
modular nodes in wireless sensor net-works,” 3rd Southern Conference on Programmable
Logic, Mar del Plata, Argentina, 2007.

17. N.B. Priyantha, The Cricket Indoor Location System, Ph.D. Dissertation, Massachusetts
Institute of Technology, Jun. 2005.

18. P. Sikka, P. Corke, L. Overs, P. Valencia, and T. Wark, “Fleck—a platform for real-world
outdoor sensor networks,” Proc. 3rd International Conference on Intelligent Sensors, Sensor
Networks and Information, Melbourne, Australia, pp. 709–714, December 2007.

19. G. Stamatescu, C. Chiţu, C. Vasile, I. Stamatescu, D. Popescu and V. Sgârciu, “Analytical
and experimental sensor node energy modeling in ambient monitoring,” 9th IEEE Conference
on Industrial Electronics and Applications (ICIEA), Hangzhou, China, 2014.

20. M. Stehlik, Comparison of Simulators for Wireless Sensor Networks, Master Thesis, Masaryk
University, 2011.

21. D. Sumorok, D. Starobinski, and A. Trachtenberg, “Simulation of TinyOS Wireless Sensor
Networks Using OPNET,” Proc. of OPNETWORK 04, Washington DC, August 2004.

22. H. Sundani, H. Li, V.K. Devabhaktuni, M. Alam, and P. Bhattacharya, “Wireless sensor
network simulators, a survey and comparisons,” International Journal of Computer Networks
(IJCN), vol. 2, no. 5, 2015.

23. B.L. Titzer, D.K. Lee, and J. Palsberg, “Avrora: scalable sensor network simulation with
precise timing,” Proc. the Fourth International Symposium on Information Processing in
Sensor Networks, UCLA, Los Angeles, CA, 2005.

24. J.S.C. Turner, M.F. Ramli, L.M. Kamarudin, A. Zakaria, A.Y.M. Shakaff, D.L. Ndzi, C.M.
Nor, N. Hassan, and S.M Mamduh, “The study of human movement effect on signal strength
for indoor WSN deployment,” IEEE Conference on Wireless Sensors (ICWiSe2013),
Kuching, Sarawak, December 2013.

25. “Shimmer Wireless Sensor Unit/Platform.” [Online]. Available: http://www.shimmer-
research.com/p/products/sensor-units-and-modules/shimmer-wireless-sensor-unitplatform.

26. http://www.memsic.com/wireless-sensor-networks/.
27. http://www.digi.com/lp/xbee.
28. http://www.tinyos.net/.
29. http://wsn.cse.wustl.edu/images/e/e3/Imote2_Datasheet.pdf.
30. http://www.eistec.se/mulle/.
31. http://www.coalesenses.com.
32. http://www.advanticsys.com.
33. http://www.nrl.navy.mil/itd/ncs/products/sensorsim.
34. https://castalia.forge.nicta.com.au/index.php/en/.
35. http://mixim.sourceforge.net/.

214 8 WSN Platforms

http://www.shimmer-research.com/p/products/sensor-units-and-modules/shimmer-wireless-sensor-unitplatform
http://www.shimmer-research.com/p/products/sensor-units-and-modules/shimmer-wireless-sensor-unitplatform
http://www.memsic.com/wireless-sensor-networks/
http://www.digi.com/lp/xbee
http://www.tinyos.net/
http://wsn.cse.wustl.edu/images/e/e3/Imote2_Datasheet.pdf
http://www.eistec.se/mulle/
http://www.coalesenses.com
http://www.advanticsys.com
http://www.nrl.navy.mil/itd/ncs/products/sensorsim
https://castalia.forge.nicta.com.au/index.php/en/
http://mixim.sourceforge.net/

36. http://www-old.cs.uni-paderborn.de/en/fachgebiete/research-group-computer-networks/
projects/chsim.html.

37. http://mobility-fw.sourceforge.net/.
38. http://www.consensus.tudelft.nl/software.html.
39. http://compilers.cs.ucla.edu/avrora/sensors.html.
40. http://www.riverbed.com.

References 215

http://www-old.cs.uni-paderborn.de/en/fachgebiete/research-group-computer-networks/projects/chsim.html
http://www-old.cs.uni-paderborn.de/en/fachgebiete/research-group-computer-networks/projects/chsim.html
http://mobility-fw.sourceforge.net/
http://www.consensus.tudelft.nl/software.html
http://compilers.cs.ucla.edu/avrora/sensors.html
http://www.riverbed.com

	8 WSN Platforms
	8.1 Introduction
	8.2 WSN Hardware Platforms
	8.2.1 IRIS
	8.2.2 WiSense
	8.2.3 Digi XBee® ZigBee
	8.2.4 Intel® Mote 2
	8.2.5 Mulle
	8.2.6 iSense Core Module 3 (CM30x)
	8.2.7 Fleck3
	8.2.8 Cricket
	8.2.9 Shimmer Wireless Node
	8.2.10 ADVANTICSYS XM1000

	8.3 WSN Simulation Tools
	8.3.1 ns-2 (Network Simulator-2)
	8.3.2 OMNETT++
	8.3.3 TinyOS Simulator (TOSSIM)
	8.3.4 Optimized Network Engineering Tool (OPNET)
	8.3.5 Avrora

	References

