
Chapter 6
Localization and Tracking in WSNs

6.1 Introduction

Localization—the process by which the positions of the nodes of a Wireless Sensor
Network (WSN) are found with respect to some absolute or relative frame of
reference—is fundamental to how the WSN performs at executing its functions.
Critical WSN operations such as routing (e.g., geographical routing), data aggre-
gation and navigation (for mobile sensor networks) all heavily rely on the local-
ization mechanism. For many of today’s systems or applications requiring
localization functionality, the NAVSTAR Global Positioning System (GPS) is
typically sufficient [1]. In WSNs, however, GPS-based methods fall short for two
main reasons. First, effective operation of a GPS-based localization mechanism
demands that the WSN system has line-of-sight communication with multiple
satellites. This requirement is typically not realizable because most WSN applica-
tions are meant for environments inherently having obstructions to electromagnetic
signals, e.g., in urban areas (i.e., in the midst of tall buildings), indoors, under
water, in forests or in mountainous areas to mention but a few. The second chal-
lenge posed by GPS-based techniques is their prohibitive price—the cost of the full
network can increase over tenfold if a small subset of the nodes is equipped with
GPS receivers [17]. With GPS being unsuitable for the vast majority of WSN
applications, research on localization in WSNs is mostly focused on GPS-less
techniques, which overcome the challenges seen with a GPS.

In this chapter, we examine some of these techniques. We first explore the
localization scenario where all nodes are stationary (i.e., the layout problem [9]).
We later extend our discussion to the case where node mobility is involved
(i.e., where some WSN nodes are mobile) and present the algorithms and extra
design considerations, which are prompted by node mobility. We wind up the
chapter with a brief discussion on object tracking in WSNs, a very closely related
problem to localization.
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6.2 Design and Evaluation of Localization Algorithms

To design or analyze the applicability of a localization algorithm to a given WSN
application, one has to consider a range of factors, that include, the resource
requirements of the algorithm, the topology of the network, the nature of the terrain
in which the WSN will be deployed and the density of nodes in the network [2]. We
discuss these factors in this sub-section.

Node Density The density of nodes in the WSN has a major bearing on what kinds
of localization algorithms are suited for the network. For hop-count based algorithms
for instance, a high density of nodes is required to ensure accuracy of the approx-
imated distances [2]. Where beacon nodes are part of the localization process, their
density must be high enough for the localization operations to be effective. In
general, many localization algorithms demand a certain threshold node density
below which the localization error may increase significantly but above which the
error reduces only very slightly. As an example, in a beacon-driven localization
simulation based on 500 WSN nodes deployed in a 100 m � 100 m � 100 m
area [28], it was found, for an anchor (or beacon) percentage of 20 %, that the
localization coverage increased by almost 50 % when the node density (which was
represented as the expected number of nodes in a node’s neighborhood) increased
from 8 to 11, yet increased almost negligibly when the node density increased from
12 to 16.

Environmental Factors Obstacles such as buildings, rocks, and trees in the area
where the WSN is deployed can impede signals used for the measurement of signal
ranges (ranging methods discussed in Sect. 6.3.1.1) and result in an erratic local-
ization process. For example, signals reflected by physical obstacles located within
the WSN may interfere with each other, resulting into multipath effects and asso-
ciated localization errors [1]. Besides physical obstacles, other environmental fac-
tors such as precipitation and the amount of moisture in the air are well known to
affect radio wave propagation, potentially causing errors for localization techniques
that rely on radio waves [1]. A good localization algorithm should have mecha-
nisms to guard against or recover from the errors caused by environmental factors
such as those listed here.

Network Topology Irregular WSN topologies typically result into higher local-
ization errors [10]. Even where the topology may not be irregular, nodes at the edge
of the WSN generally tend to be relatively difficult to localize since they: (1) have a
small number of neighbors, and, (2) have all their neighbors on one side, which
implies that range measurements for these nodes provide only a limited perspective
of their location [2]. A good localization algorithm should be able to make the
necessary compensations for errors resulting from topology artifacts.

Resource Constraints The design of localization algorithms for WSNs must be
cognizant of the fact that WSN nodes have limited processing power and memory.
For applications where low precision of localization measurements is adequate,
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approximate algorithms that can estimate position using low power and cheap
hardware offer a good option around the resource limitations challenge [15]. When
an application requires localization information at a high precision, the exact
algorithms needed for this purpose generally consume more power. A good algo-
rithm in such a case would have to distribute localization tasks between different
nodes (e.g., tasks split between the base station, beacon nodes (which are typically
more powerful than the typical node) and the rest of the nodes).

6.3 Categorization of Localization Approaches

In terms of the algorithmic methodology used to make localization computations,
localization algorithms in WSNs are categorized as either range-based or
range-free. Range-based methods use estimates of distance or angles to localize the
WSN’s nodes. From these measurements, simple geometric relationships are used
to compute node locations without making assumptions about the underlying
topology of the WSN. Range-free methods on the other hand rely on connectivity
information in the WSN to estimate node locations. For effective localization, many
range-free methods rely on the WSN’s topology meeting certain requirements
(e.g., that hop distances have low variance). The main advantage of range-free
methods is that they do not require specialized hardware for distance and angle
measurements, which makes them cost-effective in comparison to range-based
methods. The key advantage of range-based methods on the other hand is the fact
that they tend to be more accurate in comparison to the range-free methods [9].
Regarding the way in which localization computations are undertaken, certain
(range-free or range-based) localization algorithms perform their localization
computations in a distributed manner, while others operate in a centralized fashion.
The latter approach has the core localization computations running on dedicated
nodes (e.g., base station), while the former has the core localization operations
running on the individual nodes.

In this section we explore some of the most popular localization schemes in the
literature. We discuss several prominent range-based and range-free algorithms in
details, and then finally give a general comparison between the centralized and
distributed design approaches for WSN localization algorithms.

6.3.1 Range-Based Methods

These methods operate in two steps: a measurement step in which the
distance/angle measurements are made, and a computation step in which the
recorded measurements are combined to do the actual localization. The four main
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approaches used in the measurement step1 include Received Signal Strength
Indicator (RSSI), Time of Arrival (ToA), Time Difference of Arrival (TDoA) and
Angle of Arrival (AoA) and are discussed next before we present the computation
approaches used in the final localization step.

6.3.1.1 Approaches to Making Ranging Measurements

Received Signal Strength Indicator (RSSI) Theoretically, the power of a radio
signal at a given point is known to be inversely proportional to the square of the
distance of the point signal source. This relationship forms the backbone of the
RSSI technique. If the power of the signal at the transmitting node is known, then,
using this relationship, the receiving node can estimate its distance from the sending
node. The main advantage of this approach is that it requires no dedicated hardware,
i.e., it only requires the sensors to have a radio, which most WSN nodes are
expected to have anyway. In practice, however, this approach is for several reasons
susceptible to noise. Physical obstacles (e.g., walls, people, etc.) absorb and reflect
the waves, while different environments impact the propagation of radio waves
differently (e.g., radio waves propagate differently over asphalt than over grass [9]).
With the many possible sources of error, radio wave measurements made in real
settings rarely agree with the theoretical relationship between signal strength and
distance traversed by the signal.
For example in [12], an experiment based on Intel’s crossbow motes revealed that
RSSI measurements taken from different directions of the sensors (e.g., north, east,
west) did not depict a consistent relationship with the distance from the sensors. In
this particular experiment, researchers minimized potential sources of noise,
e.g., sensors had their batteries fully powered up throughout the experiment, the
surface on which the experiments were done was level, no physical obstacles were
present and electronic equipment that could potentially cause interference were not
present in the vicinity of the experimental apparatus. With this closely controlled
environment failing to demonstrate the power of the RSSI-based ranging method,
the research raised doubts about how well RSSI would perform in a real deploy-
ment in the wild. Several other studies have made similar findings on the ineffec-
tiveness of RSSI as a ranging method for WSNs. As of today, research on the
development of reliable RSSI-based methods for WSN localization continues to be
ongoing.

Time of Arrival (ToA) This method has two variants: One-Way Time-of-Arrival
(OW-ToA) and Two-Way Time-of-Arrival (TW-ToA). In the OW-ToA approach,
the sender and receiver of a signal have synchronized clocks. When the signal
arrives at the receiver, it registers the time of arrival, and the time of transmission of
the signal (this time is sent to the receiving node) and uses these two variables to

1We focus on these four main methods; however, there exist several derivatives of these methods
in the literature.
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compute the distance between the two nodes. The difference, tij, between the time of
transmission of the signal at the sending node and the time of receipt at the
receiving node can be obtained as (see [13]):

tij ¼
xi � xj
�� ��

c
þ eij; ð6:1Þ

where xi � xj
�� �� is the actual distance between the two nodes, c is the signal

propagation speed (which should be known for the medium in question) and eij is
the error term which follows the Gaussian distribution with zero mean and variance
rij. The distance estimate dij is obtained from,

dij ¼ ctij ¼ xi � xj
�� ��þ ceij: ð6:2Þ

In general, a high Signal-to-Noise Ratio helps minimize the estimation error.
Three major challenges faced by this method are: (1) it suffers from unreliable
measurements in the event that the clocks go out of sync, (2) extra communication
overhead is incurred as each source has to send the time of signal transmission to
the receiver, (3) since radio signals travel at the speed of light, recording their time
of arrival precisely is a challenge [1].

The TW-ToA approach eliminates the need to synchronize clocks as the distance
between the communicating nodes is estimated based on the round-trip delay of the
signal. The sensor node i sends a signal to the receiver node j. After a turn-around
time taj the receiving node sends back a message to j to acknowledge receipt of the
signal. Using a similar notation to that of the ToA method, the distance estimate dij
can be expressed as:

dij ¼ xi � xj
�� ��þ ctai þ c

eij
2

þ eji
2

� �
; ð6:3Þ

where eij and eji are the estimation errors at nodes j and nodes i for the signals being
transmitted from them. This method eliminates the error due to imprecise syn-
chronization of the clocks on nodes i and j; however, the method is also susceptible
to errors if the clock in the reference node undergoes a drift.

Time Difference of Arrival (TDoA) This method computes the distance between
two nodes based on the difference between the times of arrival of the radio signal
and a second signal (typically an ultrasound or an audible frequency, which require
each node to have a speaker and microphone [2]). The transmitter first sends a radio
message, and then waits for an interval t before sending the sound wave. On
receiving the radio signal, the receiving node switches on its microphone to detect
the incoming audio signal. If the radio signal and audio signal are, respectively,
received at times tr and ts, the distance d between the two nodes can be estimated
from
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d ¼ ðc� vÞðts � tr � tÞ; ð6:4Þ

where c and v are, respectively, the propagation speed of sound and radio waves.
The TDoA concept can also be used with multiple sensors/receivers that are

tasked with localizing a sensor node or a target in their sensing field. Consider a
group of sensors shown in Fig. 6.1 and a hidden emitter that the WSN is trying to
localize, i.e., consider a network of N sensors with coordinate vectors ~piðtÞ,
i 2 1; 2; . . .;Nf g, and a hidden emitter located at ~peðtÞ. Included are only sensors
that are selected to localize the specific emitter source/sensor node. The distance
between the emitter and the sensor i is reiðtÞ.

The TDoA sensing concept allows for measurement of difference in time of
arrival, i.e.,

rijðtÞ ¼ reiðtÞ � rejðtÞ ¼ cðti � tjÞ; ð6:5Þ

where c is the speed of a signal propagation, reiðtÞ is the distance between the
emitter and the i-th sensor, and ti is the signal propagation time between the emitter
and the i-th sensor. Without a loss of generality, consider the coordinate system
origin to be located at sensor 1. The closed form of TDoA-based localization is
given in [18] using basic geometry of the sensor network

Pe þ rij
� �2 ¼ ~pik k2 � 2~pi~pe þP2

e ; ð6:6Þ

where Pe is the distance of the emitter from the coordinate system origin. This
equation is equivalent to

0 ¼ ~pik k2�2~pi~pe � r2ij � 2Perij: ð6:7Þ

Fig. 6.1 Sensor network localize the hidden emitter using TDoA framework
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However, the TDoA measurements will produce errors in the above equation,
yielding

ei ¼ ~pik k2�2~pi~pe � r2ij � 2Perij; ð6:8Þ

or in the matrix form [18]

~e ¼ P� 2S~pe � 2PeR; ð6:9Þ

where matrices are defined as:

P ¼
~p2k k2 � r221
~p3k k2 � r231

..

.

~pNk k2 � r2N1

2
6664

3
7775; S ¼

x2 y2 z2
x3 y3 z3

..

.

xN yN zN

2
6664

3
7775; R ¼

r21
r31
..
.

rN1

2
6664

3
7775 ð6:10Þ

Note that the TDoA measurements will affect matrices P and R, while matrix S
contains locations of sensors. Then, the least-squares error solution for the optimal
emitter location estimation is given by

~pe ¼ 1
2

STS
� ��1

ST P� 2PeRð Þ: ð6:11Þ

This solution assumes that the distance of the emitter from the coordinate system
origin Pe is known. To get an optimal solution in terms of ~pe only, one needs to
optimize the modified Eq. (6.9) in terms of Pe. The modified Eq. (6.9) in given by

~e ¼ P� S STS
� ��1

ST P� 2PeRð Þ � 2PeR; ð6:12Þ

~e ¼ P� 2PeRð Þ I� S STS
� ��1

ST
� �

: ð6:13Þ

The closed-form solution is obtained by minimizing~eT~e and is given by

~pe ¼ 1
2

STS
� ��1

ST I� RRTS1S1
RTS1S1R

� �
P; ð6:14Þ

where S1 ¼ I� S STS
� ��1

ST . It is recommended to first quickly calculate the
emitter estimate and then to proceed with iterative methods for improved accuracy.
Note that this method requires five or more sensors to accurately estimate the
emitter location [18].

To minimize errors, TDoA requires that the media be free of echoes and the
speakers be calibrated with the microphones since they tend to have different
transmission and reception characteristics [2]. TDoA is considerably much more
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accurate than methods which entirely rely on radio waves. For the specific com-
parison between TDoA and RSSI, TDoA attains much better performance than RSSI
because it only measures signal travel time yet RSSI measures signal magnitude.
Signal magnitude measurements see noise from both occlusion and signal multipath
effects, while signal time measurements only see noise from occlusion [2].
The major disadvantage of TDoA is the extra hardware it requires (e.g., microphones
and speakers).

Angle of Arrival (AoA) This method uses several spatially separated radio or
microphone arrays on the WSN node. When a WSN node receives a signal, dif-
ferences between the phase of the signal at different microphones are used to
determine the location of the transmitter. Increasing the number of array elements,
the distance between them and the SNR helps improve the performance of the AoA
method [13]. In a 2-dimensional setting without noise, a minimum of two receivers
can be used to locate the transmitter. The presence of noise calls for the usage of
more than two AoA measurements. The major challenge with the AoA technique is
the expensive and bulky hardware (microphone and several speakers) it requires [2].
Moreover, the small form factor of the WSN nodes makes it difficult to accom-
modate multiple speakers that have enough separation as required for good
performance.

6.3.1.2 Computing Locations from Ranging Measurements

From the angle and distance measurements, the most commonly used methods to
find the locations of the WSN nodes are angulation, lateration, and statistical
estimation. Angulation uses measured angles between nodes while lateration uses
distance measurements between nodes to localize the nodes. For statistical esti-
mation, the most commonly used techniques are Maximum Likelihood Estimation
(MLE) and Bayesian inference. We next briefly discuss the mechanisms of these
techniques.

Angulation This method is used when the angles or bearings of the nodes to be
localized are known relative to the known locations of the anchor (or beacon) nodes
(e.g., after application of the AoA technique). Triangulation is a specific form of
angulation in which the angular separation between two anchors and the target node
are used to localize the target node.

Figure 6.2 illustrates the triangulation mechanism. The two anchor nodes
(Anchor #1 and Anchor #2) are at known positions and hence at a known distance,
L, apart. Angles a and b represent the angular displacement of the target node from
the two anchors. As illustrated in the Fig. 6.2, the meeting point of the two lines
from the anchor determines the location of the target node. This location could for
instance be expressed in terms of d, the perpendicular distance of the target node
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from the line joining the two anchors. Using simple trigonometry, d can be obtained
using the following equation

d
1

tan a
þ 1

tan b

� �
¼ L; ð6:15Þ

which can be rewritten as

d ¼ L sin a sin b
sinðaþ bÞ : ð6:16Þ

In practice, the angular measurements a and b can be noisy, and the procedure
can only define regions in which the target node is likely to be located. Angulation
computations involving other nodes may then be used to fine-tune the position
estimate.

Lateration This method is used when ranges between the target node and the
anchor positions are known. Figure 6.3 illustrates trilateration, a form of lateration

Fig. 6.2 Illustration of
triangulation

Fig. 6.3 Illustration of
trilateration
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in which three anchor nodes are used to locate the target node. For instance,
if ranging measurements reveal that the target node is a distance R1 from the anchor
node #1, the method stipulates that a circle of radius R1 be drawn around #1, with
the circumference of the circle defining the set of points where the target node could
be located.

With a similar process undertaken for the other three anchors, the point of
intersection of the three circles represents the location of the target node. Assuming
the center of the circle with radius R1 (i.e., the center of the circle around anchor #1)
has the coordinates (x1, y1) with the centers and radii of the circles around anchors
#2 and #3 defined similarly, the position (x, y) of the target node is found from the
solution of the following three equations of the respective circles:

ðx� xiÞ2 þðy� yiÞ2 ¼ R2
i ; i ¼ 1; 2; 3: ð6:17Þ

Similarly as for angulation, measurement errors make it difficult to obtain the
precise position of the target node. In such cases a region in which the target node is
located is what is returned by the trilateration algorithm (as opposed to a precise
point).

Estimation These methods use a measurement model expressing the relationship
between the state of the system and measured data [1]. In Maximum Likelihood
Estimation (MLE), the parameters capturing the system state are obtained by
maximizing the likelihood of the measured data. The parameters are estimated
using measured data with no prior information about state used. In Bayesian
inference on the other hand, the system is estimated using both prior information
and measured data. The estimation is based on recursive iteration, which use Bayes
theorem [1].

6.3.2 Range-Free Methods

At the cost of reduced localization accuracy relative to the range-based techniques,
range-free methods are designed to operate without the need for expensive hard-
ware (e.g., the speakers and microphones used in TDoA). The idea behind this
design approach is that the required localization precision for certain applications
may not be so high to warrant the huge cost associated with the usage of expensive
hardware on the nodes [6]. Range-free localization techniques can be generalized
into three categories, namely, anchor proximity based methods, connectivity-based
methods and event-driven methods [27]. In this section, we briefly discuss each of
these categories and give examples of some of the most prominent algorithms in
each category.
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6.3.2.1 Anchor Proximity Based Methods

Localization under this approach is based on coarse-grained information of whether
a given node is within the vicinity of another node. Based on a modality such as
radio, infrared or sound, this localization approach uses binary information on
whether a node A is within range of another node B, and then uses this information
(in conjunction with similar information from other nodes) to carry out localization
for the whole network.

The simplest example of an anchor proximity based localization method is the
Centroid method [3, 27]. The method assumes a network in which a set of anchor
nodes located at known positions (x1, y1) through (xn, yn) form a regular mesh and
transmit signals containing their positions to the rest of the nodes. Each anchor node
i is associated with a connectivity metric CMi which is computed using

CMi ¼ Nrecði; tÞ
Nsntði; tÞ � 100; ð6:18Þ

where Nrecði; tÞ is the number of beacons sent by i which have been received in time
t, and Nsntði; tÞ is the number of beacons that have been sent by i in time t. Based on
signals received from a subset of k anchors having CMi exceeding a certain
threshold CMth, a node estimates its location, ðx̂; ŷÞ as the centroid of the reference
points, i.e.

ðx̂; ŷÞ ¼
P

fjjCMj �CMthg xj
k

;

P
fjjCMj �CMthg yj

k

 !
: ð6:19Þ

To minimize the localization error, the method requires a dense network of
anchors. Variants of this baseline Centroid localization algorithm incorporate
additional heuristics, such as the use of weights to give more prominence to anchors
closer to the node in question (see survey in [27]).

Another widely studied anchor-based algorithm is the Approximate Point in
Triangle (APIT) algorithm [6]. This method segments the WSN into triangular
regions whose vertices are the locations of anchor nodes. A node is localized based
on the triangles to which it is found to belong. The method can be subdivided into
three steps: (1) Beacon exchange—in this step nodes receive beacons from anchor
nodes, (2) Point In Triangle (PIT) Testing—here a node chooses three anchors from
all anchors from which it has received beacons and tests whether it is inside the
triangle formed by connecting these anchors (this process repeats until all combi-
nations are exhausted or the required accuracy is achieved), (3) APIT aggregation
and centroid calculation—which involves the combination of results from different
PIT tests to determine which triangle segments are more likely to contain a node,
followed by a centroid computation which determines the location of the node.

Figure 6.4 illustrates how the results from multiple PIT tests are aggregated.
A grid array is used to represent the area of the region that a node could occupy.
The smaller the size of the grids, the better the accuracy. When a PIT test
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determines that a node lies inside a given triangle, all cells in that triangle have their
score incremented. When the node is found to lie outside a given triangle, the scores
of the cells inside that triangle are decremented. At the end of the process, the
overlapping area with maximum score is used to calculate the centroid similar to
(6.19). This method also requires a high density of anchors for good performance.
Several variants of this method exist in the literature with a focus on attributes such
as anchor self-placement and optimization for WSNs with different properties [27].

6.3.2.2 Connectivity-Based Methods

Connectivity-based methods utilize connectivity information across the network to
make localization decisions. One of the most prominent amongst these methods is
the DV-hop method [11]. This method is centered on the distance vector routing
paradigm. Each anchor broadcasts a beacon that contains its location. The beacon
has its hop-count parameter initialized to one and incremented at each hop. As the
beacons from multiple anchors traverse the network, each node on their path reg-
isters the minimum hop-count value per anchor. Anchor nodes also keep track of
this information from beacons originating from their fellow anchors. If disðvi; vjÞ
and hopðvi; vjÞ denote the physical distance and a minimum number of hops
between anchors vi and vj respectively, the anchors estimate the average size of a
hop, Dhop, using

Dhop ¼
P

i 6¼j disðvi; vjÞP
i 6¼j hopðvi; vjÞ

: ð6:20Þ

Fig. 6.4 Scan algorithm for
PIT aggregation
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Using this information, an arbitrary node uk can estimate its physical distance to
the anchor vi using

disðuk; viÞ ¼ Dhophopðuk; viÞ: ð6:21Þ

Based on information collected from multiple anchors, triangulation can be
performed to localize a given node.

The challenge with this method is that the Dhop metric can only be representative
of the actual per hop distance if the WSN topology is isotropic (i.e., if the physical
distance of each hop is roughly constant in different directions). For networks
having complex (anisotropic) shapes, the above formulations can produce very poor
localization results. Several derivatives of the DV-hop algorithm exist in the lit-
erature, with some of them having mechanisms designed to tackle the irregular
topology problem (see detailed survey in [27]).

The isometric feature mapping (isomap) algorithm also relies on sensor con-
nectivity information for WSN localization [20, 27]. In this method, the number of
hops, dij, along the shortest path between two nodes in the WSN is used as an
estimate of the actual distance dij between the two nodes. For a network containing
n nodes, location estimation is done by minimizing the following cost function

C ¼
Xn
i¼1

Xn
j¼1

d2ij � zi � zj
�� ��2� �2

; ð6:22Þ

where zi is the estimated vector coordinates of node i and zi � zj
�� �� is the Euclidian

distance between zi and zj. The optimal values of zj are obtained using
Multi-dimensional Scaling (MDS).

6.3.2.3 Event-Driven Methods

These methods use external localization events that are propagated through the
WSN. The sensor nodes do not participate in the origination of the events. One of
these techniques—the lighthouse method [16]—localizes a node based on the
duration that the node dwells in a parallel rotating beam generated by the external
localization device. The distance, d, between a target sensor node and the beam
generator is estimated using

d ¼ b
2 sin xDt=2ð Þ ; ð6:23Þ

where x is the angular velocity of rotation of the beam, b is the width of the beam
and Dt is the interval at which the sensor node continuously senses the existence of
illumination. The three-dimensional variant of this algorithm requires three mutu-
ally perpendicular beams of light.
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Another localization algorithm in this family is Spotlight [19]. The algorithm
largely follows the same mechanism as that of the lighthouse method, except for the
fact that it moves all resource-intensive operations away from the WSN nodes and
has them done on the external spotlight device. Several other methods using the
same philosophy of localization have been proposed in the literature (see [27]).

6.4 Comparing Design Paradigms: Centralized vs.
Distributed Techniques

A key question that has to be addressed before selecting a localization algorithm for
a given application is whether the algorithm is centralized or distributed.
Centralized algorithms have the distance/angle or connectivity information being
sent from the nodes to a central processing center (e.g., the base station) where
resource-intensive computations are carried out. Results from the computations are
then sent back to the respective nodes [2]. Distributed algorithms have no dedicated
computation unit and have all necessary computations done within the network (on
both the anchor and regular nodes which engage in local information exchange).
The main advantage of centralized algorithms is that they provide more accurate
location information than their distributed counterparts. Their major disadvantages,
however, are the lack of scalability (which makes them mostly suited for small scale
WSNs) and the lower reliability arising from accumulated information losses seen
with multi-hop transactions across a WSN [10].

In terms of communication energy efficiency, the difference between a central-
ized and distributed mechanism depends on the specific WSN setting. For a large
network using a centralized scheme, the flow of localization traffic to and from the
base station could cover a very large number of hops and hence results in significant
energy usage. In a distributed setting, only local information exchange is carried out
between neighboring nodes; however, many such exchanges may have to take place
if a large number of iterations occur before a stable localization solution is obtained.
The difference between the two varies depending on the specifics of the WSN
application. For typical settings, past studies have found the distributed approach to
be more energy efficient than the centralized approach when the number of itera-
tions is less than the mean number of hops to the central processing unit [10, 14].

6.5 Localization in Mobile WSNs

6.5.1 Benefits of Node Mobility

When some of the nodes of a WSN are mobile, the WSN is said to be a
Mobile WSN (MWSN). While mobility comes with increased energy consumption
of the network, it has a number of advantages that include [1]:
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(1) Network connectivity: In a static WSN, nodes in a certain part of the network
can get completely disconnected due to battery drain. With the presence of
mobile nodes, such connectivity issues are easily alleviated as the mobile
nodes move to cover up for the connectivity gaps.

(2) Avoiding uneven node “death”: Typically nodes at the edges of the WSN
(towards the base station) die first because they handle most of the traffic that
is being sent from the other WSN nodes to the base station. Through the use of
mobile sinks, an energy consumption is more balanced across the network as
all nodes take turns to forward data to the mobile sinks, which move towards
these nodes at different points in time.

(3) Channel Capacity: The presence of mobile nodes enables multiple paths for
data transport through the network. This increases the channel capacity and
minimizes the likelihood that data integrity could be breached.

The simplest form a MWSN has, what is referred to as, the planar architecture.
In this architecture, both the mobile and stationary nodes of the WSN communicate
in an ad hoc manner over the same network [1]. In a 2-tier architecture the mobile
nodes form an overly network or serve as “data mules” moving data through the
network while in a 3-tier architecture the stationary sensor nodes pass data to the
mobile nodes, which then pass the data over to the access points. Compared to static
WSNs where localization is usually done only during the initialization stage,
MWSNs require a continuous localization process as the nodes change positions in
the network. This continuous localization presents new challenges, including
localization latency and changes in the localization signal due to relative movement
between the receiver and transmitter. We briefly describe these challenges next.

6.5.1.1 Algorithm Design Considerations Prompted by Node Mobility

Localization Latency Localization latency refers to that time interval between
when measurements are made on a node and when the localization algorithms
complete their computations to locate the position of the node. Given a mobile node
in a WSN, the results of a localization computation are only meaningful if they are
available soon after the measurements are done (i.e., when localization latency is
kept to a bare minimum). If the localization algorithms take too long to render the
localization decision, the node will likely have moved to a position far away from
the previously computed position, resulting in erratic results for all other processes
relying on localization information. Fast algorithms that overcome the localization
latency problem tend to give less accurate localization results [5]. The design of a
localization algorithm for a MWSN hence always has to make a trade-off between
the localization latency and the accuracy of localization results. One common
solution to the localization latency problem is the use of distributed algorithms that
minimize the latency of data transmissions across the network [5].
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Doppler Effect Owing to the mobility of the transmitter, or the receiver, or both,
the frequency of the signal as registered by the receiver may undergo a shift called
the Doppler shift, which may in turn induce errors into the signal measurements fed
into the localization algorithms. Figure 6.5 illustrates the Doppler effect where on
the left there is no relative motion between the transmitter T1 and the receivers, R1

and R2 (i.e., they could either all be stationary or moving at the same velocity). In
this setting, the waves sent out by T1 could be visualized as concentric rings which
arrive at the receivers after fixed time intervals. To both R1 and R2, T1 seems to be
transmitting at a frequency determined by the rate at which the waves arrive at the
receivers, which in turn is the actual frequency at which T1 is indeed transmitting.
The localization algorithms designed for the traditional static sensor networks are
targeted towards this scenario and can reliably use frequency measurements made
in this setting for their localization process.
Figure 6.5 on the right shows the situation in a MWSN where the transmitter T2

moves relative to the receivers R3 and R4. With the transmitter moving towards R3,
each subsequent ring (assuming we visualize the signal as circular rings such as in
the previous example) transmitted by T2 arrives at R3 faster than the previous one.
Meanwhile at R4, the reverse is true—as the signal takes longer and longer to arrive
as T2 moves away. For the receiver R3, T2 will appear to be transmitting at a certain
frequency, while to R4, it will appear to be transmitting at a different frequency. In
truth, T2 will not be transmitting at any of the two frequencies. This frequency shift
caused by node mobility is what is referred to as the Doppler shift. For accurate
localization in MWSNs, this shift has to be taken into consideration. The Doppler
shift can be modeled using

Df
f

¼ � v
c
; ð6:24Þ

where f is the frequency of the emitted signal, Df is the frequency shift, c is the
speed of signal propagation (speed of light for EM signals in air), and v is the speed
of the source at which the source if moving away from the observer.

In practice a MWSN has a large number of nodes moving with varying velocities
at different time instants. Compensating for the Doppler effect in a global

Fig. 6.5 Impact of the Doppler shift: no relative motion between transmitter and receivers (left);
and transmitter and receivers moving relative to each other (right)
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localization framework hence requires the use of the above formulation while
taking into consideration the movement properties of the network. An example of a
localization model that compensates for the Doppler effect through elaborate
modeling of the velocities and locations of the nodes can be found in [8].

Line of Sight Inconsistences In a MWSN, a node can have good line-of-sight
communication with a mobile node at a given instant, and yet be in a position with a
poor line-of-sight the next moment. This can negatively impact the localization
process for mechanisms that rely on line-of-sight communication. This problem is
generally addressed by having a high density of nodes around a given mobile node
such that there are always a number of nodes in positions with good line-of-sight to
the mobile node [1].

6.6 Tracking in WSNs

One of the application areas of WSNs is object tracking. Examples of such applica-
tions include, battle field surveillance (e.g., tracking of enemy tanks or soldiers in a
battle field), tracking of animals in a forest and structural monitoring (i.e., monitoring
structural response to forced excitation [22]) to mention but a few. In all these
applications, the sensors have to initially detect the target, and then communicate
amongst themselves to keep track of its position as it moves from one point to the next.
A key aspect of this tracking process is how to efficiently detect the object and generate
reliable reports in an energy efficient manner. There exists a wide range of tracking
methods to address these issues in different ways. In this section, we briefly discuss the
approaches to object tracking inWSNs. We make our presentation based on the three
main families of tracking algorithms: namely, tree-based tracking, cluster-based
tracking, and prediction-based tracking. The majority of all tracking algorithms bor-
rowaspects fromone ormore of these algorithms,which implies that insights into their
mechanisms should give a good picture of how tracking is done in WSNs in general.

6.6.1 Tree-Based Tracking

In this type of tracking, the network is modeled by a graph in which the vertices
represent the WSN nodes, while the edges represent the connections between nodes
that are able to communicate directly with each other. One of the most studied
algorithms under this category is the Dynamic Convoy Tree Collaboration (DCTC)
framework [26]. The method is centered on the idea of a convoy tree, which is a
sub-tree of the full WSN tree which is comprised of the nodes around the moving
target. When the target enters the WSN, the sensor nodes that first detect it select a
root (which is usually a node which is closest to the target) amongst themselves and
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construct an initial convoy tree. The root collects more information from the nodes
so as to maintain a refined picture of the location of the target. As the target moves,
the convoy tree is modified with certain nodes far away from it being pruned, while
others are added to the tree. During this modification of the tree, the root node may
be replaced by another node that is located closer to the target. To minimize energy
usage during communication as the tree gets reconfigured with the movement of the
target, the DCTC is designed to always select a minimum cost convoy tree
sequence with high tree coverage. Selection of this tree is done through dynamic
programming performed on the optimization problem of finding the earlier men-
tioned minimum cost convoy tree.

In anothermethod called ScalableTrackingUsingNetworkedSensors (STUN) [7],
a logical tree is built by successfully adding nodes to the tree based on the event rate
thresholds of the nodes. The tree is built using a bottom-up approach (from the leaves
to the root) with subsets of the sensors merged into balanced trees. Merging is done in
such away that the high rate subsets aremergedfirst. On this logical tree, the leaves act
as the sensors forwarding information up the tree. Figure 6.6 illustrates the operation
of this algorithm. As the target moves in the direction shown on the figure, the
closest leaf nodesAandBdetect its presence. The twonodeswill trigger their ancestor
E to register the target as a detected target, which will in turn alert its ancestor G about
the same information. As the target moves towards C and D, the two nodes will also
detect its presence and forward the message to their ancestor F, which in turn forward
the message to G. Because G will already be having this particular target among its
detected elements (after having been earlier notified by A and B), it will not forward
this message up the tree. Elimination of redundant message passing is central to
STUN’s mechanisms for minimizing communication cost.

6.6.2 Cluster-Based Tracking

In cluster-based tracking, the WSN is segmented into clusters where each cluster
has a head node and member sensors. The distributed predictive tracking algorithm

Fig. 6.6 Mechanism of the
STUN algorithm
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in [25] is an example of a cluster-based tracking algorithm. The algorithm assumes
a WSN that has already been segmented into static clusters. It distinguishes between
sensors which are located at the border and those which are located deep in the
WSN. Border sensors keep sensing at all times while the non-border sensors are in
hibernation until notified by the cluster head to begin sensing. The idea behind this
difference in operation of the border and non-border sensors is that the target of
interest will originate from outside the WSN, and have to cross the border (and be
sensed by the border sensors) before it can traverse the WSN. When a target is
detected at the border, the Cluster Head (CH1) for the group of sensors which first
sense it formulates a unique descriptor for the target and sends it to the next
downstream cluster head, (CH2), and all the way to the sink.

The decision to send the message to CH2 is based on a prediction step which
determines that the most likely cluster head whose region is to be traversed next by
the target is CH2. This prediction is in turn based on the target’s current speed and
direction of motion at the time when it is detected by CH1. Once CH2 receives the
message, it selects three sensors in its cluster that are closest to the predicted
positions of the target and notifies them to “wake up” to sense the approaching
target. This process continues through the network. In the event that the motion
prediction step fails (e.g., if the target abruptly changes course), sensors within a
recapture radius are all woken up to try to detect the target’s new position. A key
aspect of the algorithm’s performance is its sensor hibernation mechanism which
helps minimize its energy consumption. The main challenge with this method,
however, is its static clustering approach (i.e., clusters are formed at time of net-
work deployment and remain that way) which limits its tolerance to sensor faults.

Several dynamic clustering approaches have been proposed to address this
drawback. In many of these methods, cluster formation is triggered by detection of
the event of interest (see review in [4]) with no explicit CH selection needed (e.g., a
sensor with sufficient battery power may volunteer to act as a CH). The algorithm
presented for acoustic targets in [4] is an example of one such dynamic clustering
approach.

6.6.3 Prediction-Based Tracking

Prediction-based tracking involves motion prediction steps that determine the likely
destination of the target. This prediction helps with energy preservation as nodes
which are far away from the region, that is predicted to be next visited by the target,
can be put to sleep. Both cluster-based and tree-based algorithms can be designed to
be prediction-based (e.g., see the Predictive Tracking algorithm discussed above).
A key design attribute of prediction-based tracking is how the system recovers from
prediction errors. Several papers in the literature propose different approaches to
wake up the sensors once an error is detected (e.g., see [21, 23–25]) with one
common criteria being minimizing recovery time and energy consumption.
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Questions and Exercises

1. The Global Positioning System (GPS) is very widely used for the localization
of objects in the earth’s frame of reference. Why is GPS not suited for local-
ization in WSN settings?

2. Time Difference of Arrival (TDoA) and Received Signal Strength Indicator
(RSSI) are examples of ranging methods in range-based localization. Briefly
describe the mechanisms behind the operation of these two techniques. Why
does TDoA typically perform better that RSSI?

3. What are the advantages and disadvantages of range-free localization relative to
range-based localization?

4. The DV-hop method is an example of a connectivity-based range-free local-
ization method. Briefly describe how this method estimates the distance
between an arbitrary node uk and an anchor node vi. Given distances of the
arbitrary node from multiple anchors, describe how the node’s location is
determined through this method. Why does the DV-hop method fail in net-
works having complex shapes?

5. What benefits does the inclusion of mobile nodes bring to a WSN? Briefly
describe possible different architectures of a WSN having some mobile nodes.

6. Briefly describe the meaning of the term “Doppler effect”. How does this effect
impact localization in mobile WSNs. How is the impact of this effect com-
pensated for?

7. Briefly describe the mechanism of operation of tree-based, cluster-based and
prediction-based tracking in WSNs.

8. During a WSN localization process, a target node is to be localized based on its
angular displacement from two anchor nodes. Assuming the two anchors #1
and #2 are, respectively, located at the coordinates (2,3) and (10,0), and that the
angular displacements a and b of the target node relative to the anchors #1 and
#2 are, respectively, 45° and 60°, compute the location of the target node
relative to the two anchors in Fig. 6.7.

9. In this problem you will use MATLAB to simulate the APIT localization
algorithm. Assume that the WSN occupies a 20 � 20 region which is divided
into 400 cells that are each 1 � 1 units in dimension. Let the bottom left corner

Fig. 6.7 Reference figure for
Question 8
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of the region have the coordinates (0,0) and the top right corner have the
coordinates (20,20). Assume that the anchors at (0,0), (5,2) and (3,8) are
connected to form a triangular region, just like the anchors at (10,10), (10,20),
(15,10) and the anchors at (20,0), (15,5) and (15,0). Randomly generate 100
coordinates within this 20 � 20 region (assume the coordinates are integer
numbers, i.e., each of the x and y coordinates are integer values between 0 and
20 inclusive). These coordinates represent the locations of the normal WSN
nodes. For any five of these nodes that lie inside the triangles, use the APIT
approach to find their locations. Compare the locations found by the algorithm
to the actual locations of these nodes (compute the error as the Euclidian
distance between the true locations and the computed locations and find the
mean error over the five nodes). Rerun the APIT process when the WSN is
segmented into cells that are 2 � 2 units in dimension and when they are cells
that are 4 � 4 units in dimension. Comment on how the localization error
varies in relation to the cell size (be sure to use the same 5 nodes in all three
cases).

10. How many receiving localization nodes are enough for a successful imple-
mentation of a TDoA method?

11. What is the optimal configuration of receivers in TDoA? Please explain why.
12. Given four receivers in a plane that use RSSI method of localization, derive

mathematically the optimal configuration of receivers. Simulate using
MATLAB various scenarios and show that the solution found theoretically
gives the best localization accuracy.

13. Describe how (6.11) can be used for localization by combining two different
methods. Which method can be combined here? What is the trade-off in
combining two methods versus using only one of the localization methods?
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