
Chapter 5
Coverage and Connectivity

A major advantage of wireless sensor networks (WSNs) over wired networks is the
potential for ad hoc deployment of the network. If the monitoring of a dangerous
environment is required, then one may not be able to deploy a wired network.
However, a WSN may be deployed in even the most inhospitable of domains, and
the sensor data can then be gathered and monitored from a remote location. A likely
ad hoc deployment method for distributing the sensor nodes in such a hazardous
terrain is to airdrop them over the region of interest. In a chemical monitoring
application, for instance, wireless sensor nodes may be airdropped over an area
which could be unsafe to manually deploy the nodes and then self-organize them
into a network for this monitoring task.

The problem with this deployment method, as well as other random deployment
methods often used with WSNs, is that one has no full control over where the nodes
will be located. Consider, as an example, the application of battlefield surveillance
in which a large number of sensor nodes, designed to detect and locate the presence
of enemy snipers [30], are airdropped over the battlefield. Nodes may use acoustic
sensing to detect gunshots fired by snipers and approximate the location of a
shooter by aggregating the time of arrival (ToA) data from several sensors. Crucial
to this application, as well as many others, is the often implicit assumption that the
deployment of sensor nodes is complete such that any event occurring within the
sensor field will be detected. However, due to the randomness of a deployment
there is no guarantee of complete coverage, raising questions on how to verify the
absence of holes in the sensor coverage within the region of interest, and how to
locate such holes in coverage if they do exist.

The coverage of the area of interest is one of the Qualify of Service
(QoS) metrics in WSNs [18] as it describes how well the sensing field is sensed or
covered by the sensor nodes. A point in the region of interest is considered to be
covered if one or more sensors can measure the phenomena of interest at that point.
If every point in the sensing field is covered by at least one sensor node, we say that
the coverage is complete, and such coverage has degree of one. Sometimes specific
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applications require higher fault redundancy or sensor network measurement
accuracy, resulting in higher degree of coverage where multiple sensor nodes cover
point(s) in the sensing field.

Related to coverage is connectivity—another important characteristic of WSNs.
As described later in the chapter, sensor networks can be modeled using graphs
where nodes are equivalent to vertices and communication links are represented by
corresponding edges. If the equivalent graph is connected then we consider the
sensor network to be connected. The graph (or sensor network) is connected if there
is an edge path (communication path) between any two vertices (nodes) in the graph
(network). Otherwise, the graph (network) is disconnected and some nodes are not
able to communicate with the rest of the network. Disconnected network nodes are
basically useless for the network since the information on those nodes is not
accessible by the network anymore. Similarly, as with the coverage in the sensor
network, connectivity can have higher degrees that allows for more robust networks
where removal or failure of some nodes does not cause the network to become
disconnected.

Notions of coverage and connectivity are, in most practical applications, not
independent of each other. Most applications have strict requirements for both of
these network characteristics. It is often required to provide a certain level (quality)
of coverage, while maintaining the network connectivity. This translates into
constrained optimization problems, discussed later in the chapter, where type
of coverage determines optimization cost function and connectivity relates to
constraints. Similarly, it might be required to deploy a robust network that is
fault-tolerant with a higher degree of connectivity, while the sensing area is still
fully covered.

In this chapter, we review important notation and results related to sensor net-
work coverage and connectivity and tools that are commonly used in modeling of
sensor networks coverage and connectivity. We present basic graph notations that
are used in WSN modeling including tools used in coverage modeling and provide
few examples of optimal coverage under sensor network connectivity constraints.

5.1 Modeling Sensor Networks Using Graphs

In this section, we cover modeling of wireless sensor network using certain
mathematical constructs known as graphs and simplicial complexes. This mapping
of the sensor network allows users to perform mathematical and computational
analysis of the network’s topology, to analyze network coverage and connectivity,
and develop algorithms that deal with those issues. Such modeling is, in general,
applicable to both networks with known coordinates and coordinate-free networks.
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5.1.1 Communication Graphs

A graph, defined as G ¼ V ;Eð Þ describes a set V of vertices and a set E of edges
that connect the vertices. In most cases in WSN applications, it is presumed that all
communication links between sensor nodes are bidirectional. This means that if
node A is within the communication range of node B, then the reverse is also true.
For this reason, this discussion of graphs may be restricted to deal only with
undirected simple graphs. A graph is called a simple graph if it does not contain
multiple edges between pairs of vertices or self-loops, which connect a vertex to
itself, and it is called undirected if all edges are bidirectional. For simplicity, the
term graph is often used to refer to such graphs. Figure 5.1 illustrates the graph
G ¼ V ;Eð Þ with vertex set V ¼ 1; 2; 3; 4f g, and edge set E ¼ 12; 13; 14; 24; 34f g.
Note also that the edge set for an undirected graph may consist of unordered pairs
of vertices such that the edge 12 is equivalent to the edge 21.

Here, we define terms such as vertex degrees and order of a graph [54] that are
used in WSNs modeling.

Definition 5.1 The degree of vertex v in a graph G, d(v) is the number of edges
incident to v. If the maximum degree in a graph is equal to the minimum degree in
the graph, then the graph is called regular graph. The graph is called k-regular if the
common degree is k.

For example, the degree of vertex 1 in the graph in Fig. 5.1 is 3, while the degree
of vertex 3 is 2.

Definition 5.2 The order of a graph G, n(G), is the number of vertices in graph
G. The size of a graph G, e(G), is the number of edges in graph G.

Definition 5.3 [54] A graph G is connected if it has a u, v-path whenever
u; v 2 VðGÞ; otherwise, G is disconnected. If graph G has a u, v-path, then vertex
u is connected to vertex v in G.

Directed Graphs Communication links in sensor networks does not need to be
symmetric. If the node A can hear the node B, it does not necessary mean that the
node A can hear the node B. This can happen due to several reasons including node

Fig. 5.1 Example of a simple
graph with four vertices and
five edges
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failure, different energy levels at the node that force radio to operate at different
power levels, etc. A model that represents such a network is called directed graph.

Definition 5.4 [54] A directed graph G is a triple consisting of a vertex set V(G),
an edge set E(G), and a function that assigns to each edge an ordered pair of
vertices. The first vertex of the ordered pair is the tail of the edge, and the second is
the head.

An example of a directed graph is given in Fig. 5.2, where there is an edge from 3
to 1, from 3 to 2, and from 3 to 4. There is also an edge from 1 to 2, and from 4 to 2.

Definition 5.5 An adjacency matrix A(G) of a directed graph G is a matrix that at
the position i, j has the number of edges from vi to vj.

For example, an adjacency matrix for the graph in Fig. 5.2 is given by

AðGÞ ¼

1 2 3 4
1

2

3

4

0 1 0 0
0 0 0 0
1 1 0 1
0 1 0 0

0
BB@

1
CCA : ð5:1Þ

If the graph is weighted, then for each pair of vertices u, v, there is a assigned
weight auv, [34]. We consider a graph with weights that are real, satisfying
auv ¼ avu, auv 6¼ 0 if and only if u and v are adjacent vertices, and auv � 0. In case of
weighted graphs, the adjacency matrix is AðGÞ ¼ auv½ �u;v2VðGÞ and the degree of a
vertex v is equal to a sum of all weights that are adjoining to the vertex v, i.e.,
dðvÞ ¼ P

u auv.

Definition 5.6 A complement of a graph G is a graph �G that has the same set of
vertices and a complement set of edges, i.e., there is an edge between any two
vertices in �G if there is no edge between the same vertices in G.

Note that together, a graph G and its complement �G form a complete graph with
all possible edges, see Fig. 5.3.

WSNs are commonly mapped to corresponding graphs that represent connec-
tivity of the nodes and can be used to solve certain problems. The set of sensor

Fig. 5.2 Example of a
directed graph
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nodes N in the network becomes the set of vertices in the graph. Two nodes are then
connected with a graph edge if there is a direct communication link between them.
By direct communication link, we mean only those nodes that can communicate
directly without multi-hopping. This is illustrated in Fig. 5.4 below where a sensor
network is represented as a graph.

Assuming that communication range between sensor nodes is rc and that the
communication model is binary (when inside the communication range nodes can
communicate, outside the range they cannot), then any two nodes whose Euclidean
distance is less than rc have a corresponding graph edge in the equivalent com-
munication graph. Equivalently, if two nodes lie in each other’s communication

Fig. 5.3 A graph G, its compliment �G and a complete graph Gþ �G ¼ Kn

Fig. 5.4 Mapping a sensor network to a graph
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disk, then there is an edge between them. Therefore, the sensor network is modeled
using a specific type of graph known as a unit disk graph, which admits a graph
edge between two vertices if their Euclidean distance is less than a fixed threshold.
For communication networks, this graph is commonly referred to as the commu-
nication graph of the network. An example of a communication graph for a simple
network is given in Fig. 5.5. The disks around each node represent the commu-
nication range rc of the nodes.

5.2 Coverage

One of the fundamental problems in the field of WSNs is the coverage. Coverage is
an important indicator of the Quality of Service (QoS) in a sensor network [33]. The
coverage problem can be approached in a number of ways due to the broad range of
possible sensor network applications, but the central goal is to determine how well a
set of sensor nodes monitors a given area.

The sensor coverage problem is closely related to the art gallery problem [37], a
well-known visibility problem from computational geometry. The objective of this
problem, which was originally proposed in August 1973 by mathematician Victor
Klee, is to determine a minimum number of observers needed for surveillance of an
art gallery such that every point can be seen by at least one observer.

This problem is illustrated in Fig. 5.6. Note that for any convex region, such as
that to the left, only one observer is required. For the region to the right, two
observers are needed to monitor the entire area since one observer to the lower left
corner cannot see the portion at the top right.

Fig. 5.5 A sensor network
and its communication graph
—a unit disk graph
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This problem is shown to be NP-hard in [31]. Reference [7] proves that n=3b c
observers are always sufficient and the solution is sometimes optimal in 2D space,
where n is the number of sides in the polygonal region being monitored, and the
floor function xb c is defined as the largest integer not greater than x (for example,
3:2b c ¼ 3, �3:2b c ¼ �4). This result is commonly referred to as Chvatal’s art
gallery theorem. A linear-time algorithm for locating these n=3b c observers is given
in [27]. An approximation algorithm for the 3D case is proposed in [32] which is
within Oðlog nÞ of the optimal solution.

In [16], coverage is classified into three main categories: blanket coverage,
barrier coverage, and sweep coverage. The goal of blanket coverage, as name
suggests, is to maximize the coverage of area of interest. This is the common
objective for a majority of WSN monitoring applications. Barrier coverage attempts
to minimize the probability of an intruder penetrating the barrier and is important
security feature in WSN applications. An example of barrier coverage is border
patrol, where a nation attempts to keep people from crossing its borders illegally
[3, 29]. Finally, sweep coverage is the equivalent of a barrier moving across the
area of interest where a set of sensors sweeps specific area. This incorporates
aspects of both blanket coverage and barrier coverage. These three types of cov-
erage are shown below in Figs. 5.7, 5.8, and 5.9, respectively.

A further issue to consider with coverage problems is point coverage versus area
coverage. Either the sensor nodes can focus coverage on certain areas or targets,
referred to as point coverage, or they can be spread out in an attempt to cover an

Fig. 5.6 The art gallery
problem example

Fig. 5.7 Blanket coverage
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entire area, referred to as area coverage. Typically, in most common WSN
applications, area coverage is used. However, there are some situations, such as in
tracking applications, where point coverage may be more appropriate.

The topic of sensing coverage is often approached by studying how to position
the sensors such that the area of interest is sufficiently monitored. A non-complete
coverage in WSNs (coverage with holes) allows for intrusion into the system and
presents a security issue where a WSN needs to deal with intrusion detection in
some other way [2, 42]. Several authors have considered the problem of optimally
positioning sensor such that a region is maximally covered [6, 23, 26, 58]. The
central idea is to spread out the nodes as much as possible to improve sensing
coverage over a region of interest. Other results have focused on finding a minimal
number of sensors needed to monitor an area [1, 38]. This approach is especially
useful in an over-deployed network where one can find a minimal subset of the
sensors that will maintain the desired level of coverage and power off all other
nodes to reduce power consumption [47, 48, 52, 57].

5.2.1 Coverage Holes

The problem of locating coverage holes in a coordinate-free network has been
studied in [13–15]. A strictly graph theoretic approach is used to locate nodes on the
boundary of holes; however, no clear definition is given of what constitutes a hole
for the proposed method. Additionally, [14] provides a graph theoretic method for

Fig. 5.8 Barrier coverage

Fig. 5.9 Sweep coverage

124 5 Coverage and Connectivity



using only local connectivity information (i.e., no coordinates) to develop a rough
sketch of the layout of the network. The relationship between sensing coverage and
node connectivity in sensor networks is given in [57]. This fundamental result states
that if the communication range of the sensor nodes is at least twice the sensing
range then complete sensing coverage of a convex region implies connectivity of
the network. A generalization of this result to higher degrees of coverage, often
referred to as k-coverage, is presented in [52]. A sensor field is called k-covered if
every point is covered by at least k sensors. Under the same assumption, that the
communication range be at least twice the sensing range, k-coverage implies
k-connectivity.

Local connectivity information, without any positioning information, was used
in [19, 40, 45] to determine if a region is covered or not [23]. Mathematical models
of homology [45] were used to determine the coverage. A further extension of this
work [19] shows how to detect the boundary of a hole in the network. This method
only works for sensor networks that have a single hole and for networks having
multiple holes it likely will not identify all holes. Furthermore, there is no guarantee
that the algorithm will exactly locate even single holes. These references present a
method of determining coverage without knowing the positions of the sensors. The
major limitation is that there must be a certain ratio between the sensing range and
the communication range of the sensor nodes or connectivity information alone is
not enough to imply sensing coverage.

Whereas much study has been focused on how to improve coverage in sensor
networks, research in [25] seeks to identify any holes in coverage that may be
present in the existing sensor network deployment. Only after verifying that cov-
erage is not sufficient would attempts be made to improve coverage or patch holes.

If the area of interest is not completely covered, it is called coverage holes, or
simply holes. It is in these holes that an event may go undetected. Figure 5.10 gives
an example of a sensor network with fully 1-covered sensor field and a sensor
network with a coverage hole.

Fig. 5.10 Fully covered (1-covered) sensor field (left) and deployment with a coverage hole
(right)

5.2 Coverage 125



After determining the existence of holes it is also desirable to locate the holes so
that, if necessary, they can be patched. Detecting the location of holes may be
useful for other reasons as well. The presence of a hole may indicate a feature of the
terrain, such as a lake, or some other phenomenon, such as a fire, which cannot be
patched by the simple deployment of additional sensors. Also, messages are more
likely to be routed through nodes on hole boundaries, depleting their available
battery power more quickly, which could finally enlarge the hole [56] and degrade
the network performance.

Assuming a simple, omnidirectional sensing model, each sensor node has a
certain sensing range rs and a transmission, or communication, range rc.

In real-life applications, sensing and communication models are not always
omnidirectional. Such models also heavily depend on environmental conditions.

Example 5.1 The IRIS sensor nodes are equipped with omnidirectional antennas
capable of transmitting signal up to 500 m. That capability is produced in envi-
ronments where there are no obstructions and the EM signal is allowed to propagate
without interference. In the case of an urban environment, the sensing range would
be considerably less; moreover, other factors such as multipath signal reflections,
shadowing, and path loss due to non-free space propagation also affect the accuracy
of the model. The received signal strength gradually decreases with the distance
from the transmitter. The received signal strength is inversely proportional to the
square of the distance between the transmitting and receiving antennas.
Mathematically, it can be written as

Pr

Pt
¼

ffiffiffiffiffiffiffi
Glk

p
4pd

� �2
; ð5:2Þ

where, Pr is the received power, Pt is the transmitted power, k is the wavelength of
the signal, d is the distance between receiver and transmitter, and Gl is the product
of the transmit and receive antenna field radiation pattern. Because the antennas on
the nodes are omnidirectional, the factor Gl is equal to 1.

Consider a set S � <2 that represents a sensing area of interest. A network of
N equal sensor nodes is deployed over Swith sensor locations at xi; yi; zið Þ. A sensing
function is given by piðqÞ where pi is the probability that the event q 2 S will be
detected. Such probability represents the sensing model and in its simplest form the
probability can take the form of a uniform probability density function [20]

piðqÞ ¼ 1; di � rs
0; di [ rs

�
ð5:3Þ

or

126 5 Coverage and Connectivity



piðqÞ ¼ Pt

ffiffiffiffiffi
Glk

p
4pdi

h i2
; di � rs

0; di [ rs

(
ð5:4Þ

where rs is the sensing radius of the omnidirectional antenna and di is a distance
between the location of a sensor node i and specific sensing point in the field q, i.e.,

di ¼ xi; yi; zið Þ � qk k: ð5:5Þ

In case of a uniform sensing probability function, the radius rs around each node is
referred to as its sensing disk, see Fig. 5.11. It is within this disk that the sensor will
detect the desired phenomenon with probability of one. This is sometimes referred
to as a binary sensing model since an event is either detected or it is not detected.
Probabilistic models are also discussed in the literature [21, 58] and may be more
realistic than binary sensing model. The same is true for communication models
that affect connectivity of WSNs. However, when coverage and connectivity are
discussed, usually the simplest binary models are considered (sensors can either
sense or not, nodes can either communicate with other nodes or not).

5.3 Connectivity

Deployment of wireless sensor networks requires minimization of cost, reduction in
computation and communication, high-degree of sensing area coverage, while
maintaining a connected network. If the network is not connected, information
cannot flow from deployed sensors towards the network gateway or a base station.
If a network is modeled as a graph, then network connectivity is equivalent to graph
connectivity, i.e., there exists a path between any two vertices (nodes) in the graph.
Equivalently to the degree of coverage, there is a degree of network connectivity

rc

rs

Fig. 5.11 Sensing and
communication range of a
sensor node
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where k-connectivity means that removing any k − 1 nodes still leaves the graph
connected. Several deployment algorithms that optimize some aspect of coverage,
while maintaining network connectivity, are given in [18]. Potential field algorithm
provides sensor nodes mobility where coverage can be maximized, while the net-
work is still connected [39]. Decentralized estimation and control of graph con-
nectivity for WSNs with mobile nodes is given in [55].

The concept of potential field is an artificially created field where static and
mobile nodes are subject to specifically designed forces. Since the goal is to
maximize the coverage while maintain the connectivity, two forces were suggested
in [39]: FR—a repulsive force that move mobile sensor nodes away from each other
to maximize the coverage; and FA—an attractive force that pulls nodes towards
each other to stay connected. Both forces are inversely proportional to the square of
the distance between node pairs and are given by

FRði; jÞ ¼ �Kr

dist ðxi; yiÞ; ðxj; yjÞ
� �� 	2 ðxi; yiÞ � ðxj; yjÞ

dist ðxi; yiÞ; ðxj; yjÞ
� �

FAði; jÞ ¼
�Ka

dist ðxi;yiÞ;ðxj;yjÞ½ ��Rcð Þ2
ðxi;yiÞ�ðxj;yjÞ

dist ðxi;yiÞ;ðxj;yjÞ½ � ; for critical connect:
0; otherwise

8<
:

ð5:6Þ

where ðxi; yiÞ is an x,y location of a sensor node i, and Kr and Ka are design
constants. Nodes are initially positioned at one place, and then start repelling from
each other. When they are only k-connected neighbors left for a single node (critical
connection), the attractive force starts pulling sensor nodes, thus preventing further
reduction in sensor nodes connectivity. The nodes reach equilibrium state when
sum of all forces acting on a node is equal to zero. The method provides an elegant,
distributed solution for deployment of mobile sensor nodes under k-connectivity
constraints.

Distributed algorithm that applies virtual forces is presented in [22]. Such
algorithm maximizes the coverage and maintains uniform distribution of sensor
nodes. The method assumes that nodes have information about their coordinates.
The virtual force is proportional to the distance between sensor nodes and expected
density of sensor nodes in the sensing field. The force is given by

Fði; jÞ ¼ lðiÞ
l2ðRcÞ Rc � dist ðxi; yiÞ; ðxj; yjÞ

� �� 	 ðxi; yiÞ � ðxj; yjÞ
dist ðxi; yiÞ; ðxj; yjÞ

� � ; ð5:7Þ

where lðiÞ is the local node density the at sensor node i, and the expected density
lðRcÞ. The expected density depends on communication radius and is given by

lðRcÞ ¼ NpR2
c

A
; ð5:8Þ
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with N being the number of sensor nodes, Rc communication radius, and A the
sensing area. The algorithm provides movement of the nodes based on virtual
forces and finishes when there are no new movements of nodes.

A centralized approach using virtual forces is given in [58, 60]. Each sensor has
three virtual forces that act upon the node: repulsive force from the obstacles,
attractive force from the sensing areas of high interest, and forces from other nodes.
The specific forces from other nodes can either be repulsive or attractive, depending
on their mutual distance and design parameters. The force applied to each sensor
node is given by

Fi ¼
X
j2Ni

Fij þFR
i þFA

i ; ð5:9Þ

where Fij is the force (repulsive or attractive) from node j to node i, FR
i is the

repulsive force applied to the node, and FA
i is the attractive force applied to the

node. The force Fij is given by

Fij ¼
wA dist ðxi; yiÞ; ðxj; yjÞ

� �� dth
� 	

\i~j; if dist ðxi; yiÞ; ðxj; yjÞ
� �

[ dth

0; if dist ðxi; yiÞ; ðxj; yjÞ
� � ¼ dth

wB

dist ðxi;yiÞ;ðxj;yjÞ½ �\i~jþ p; if dist ðxi; yiÞ; ðxj; yjÞ
� �

\dth

8>>><
>>>:

;

ð5:10Þ

where i~j is the vector from node i to node j, dth is the threshold value for the mutual
distance between nodes, and wA and wB are the constants determining amplitude of
the forces. The method provides centralized deployment algorithm with controlled
connectivity of the network. The sign of the force changes when distance between
nodes crosses dth threshold, allowing for controlled connectivity of the network.
The computational complexity of the virtual force algorithm is OðnmkÞ for a net-
work of n nodes deployed on the m� k grid.

5.3.1 Graph Laplacian

The Laplacian matrix of a network communication graph is of fundamental
importance in network connectivity, network diameter, mean distance, number of
connected components of a graph and numerous other applications, [34]. We
review a standard graph theory terminology that includes adjacency matrix and the
Laplacian matrix of graphs. In Sect. 5.1.1 we defined an adjacency matrix A(G) of a
directional graph G as a matrix that at the position i, j has the number of edges from
vi to vj. We also introduced a degree of a vertex vi.
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Let D(G) be a diagonal matrix indexed by a vertex set V(G),
DðGÞ ¼ diag dðv1Þ; dðv2Þ; . . .; dðvnÞf g. The Laplacian matrix of a graph G is
defined as

QðGÞ ¼ DðGÞ � AðGÞ: ð5:11Þ

The Laplacian matrix is also called Kirchhoff matrix or admittance matrix and it
finds its application in electrical networks. The Laplacian matrix is positive
semi-definite and symmetric matrix with the additional property that all rows sum to
zero (show this property as an exercise). The characteristic polynomial of Q(G) is
given by

lðG; kÞ ¼ det kI � Qð Þ; ð5:12Þ

where I is the identity matrix of same dimensions at Q. The characteristic poly-
nomial roots are the Laplacian eigenvalues k1 � k2 � � � � � kn where n is the order
of G.

Example 5.2 Consider two graphs shown in Fig. 5.12.
The adjacency matrix A1 (for the graph on the left) and matrix A2 (for the graph

on the right) are given by

A1 ¼

0 1 1 1 0
1 0 0 1 0
1 0 0 1 1
1 1 1 0 1
0 0 1 1 0

2
66664

3
77775;A2 ¼

0 0 1 0 0
0 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0

2
66664

3
77775: ð5:13Þ

Fig. 5.12 Connected (left)
and disconnected (right)
graph
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Corresponding Laplacian matrices are:

Q1 ¼

3 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 2

2
6666664

3
7777775
�

0 1 1 1 0

1 0 0 1 0

1 0 0 1 1

1 1 1 0 1

0 0 1 1 0

2
6666664

3
7777775

¼

3 �1 �1 �1 0

�1 2 0 �1 0

�1 0 3 �1 �1

�1 �1 �1 4 �1

0 0 �1 �1 2

2
6666664

3
7777775

ð5:14Þ

Q2 ¼

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
�

0 0 1 0 0

0 0 0 1 0

1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

2
6666664

3
7777775

¼

1 0 �1 0 0

0 1 0 �1 0

�1 0 2 0 �1

0 �1 0 1 0

0 0 �1 0 1

2
6666664

3
7777775

ð5:15Þ

and corresponding Laplacian eigenvalues are:

lðG1Þ : 0; 1:58; 3; 4:41; 5 ð5:16Þ

lðG2Þ : 0; 0; 1; 2; 3: ð5:17Þ

Note that the graph G2 is disconnected and has two components, and its first two
eigenvalues are equal to zero. The following theorem [34] relates spectrum of the
Laplacian graph matrix and graph connectivity.

Theorem 5.1 Let G be a weighted graph with all weights nonnegative. Then:

(a) Q(G) has only real eigenvalues,
(b) Q(G) is positive semi-definite,
(c) Its smallest eigenvalue is k1 ¼ 0 and a corresponding eigenvector is

1; 1; . . .; 1½ �T . The multiplicity of 0 as an eigenvalue of Q(G) is equal to the
number of components of graph G.
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From Theorem 5.1, it follows that k1 ¼ 0, k2 [ 0 if and only if the graph G is
connected. Therefore, the eigenvalues of the graph Laplacian serves as a measure of
graph connectivity. The number k2ðGÞ is also called algebraic connectivity of the
graph G as it directly relates to its connectivity [12]. If k2 ¼ 0 then the graph
(network) is disconnected. If k2 [ 0, the graph (network) is connected, with the
second eigenvalue k2 being a measure of the graph (network) connectivity. The
following Theorem [34] lists few useful bounds on Laplacian eigenvalues.

Theorem 5.2 Let G(V, E) be a graph of order n. The following bounds are valid:

(a) k2 � n
n�1min dðvÞf g

(b) kn �max dðuÞþ dðvÞf g where uv 2 EðGÞ
(c)

Pn
i¼1 ki ¼ 2 EðGÞj j ¼ P

v
dðvÞ

(d) kn � n
n�1max dðvÞf g.

The following result describes behavior of eigenvalues when additional edges
are inserted in the communication graph [34]. This corresponds to a scenario when
nodes move closer to each other, thus increasing their connectivity.

Theorem 5.3 The eigenvalues of graph G and G0 ¼ Gþ e satisfy

0 ¼ k1ðGÞ ¼ k1ðG0Þ � k2ðGÞ� k2ðG0Þ � � � � � knðGÞ� knðG0Þ: ð5:18Þ

The number of spanning trees is also related to the spectrum of Laplacian. Let
jðGÞ be the number of spanning trees of the graph G of order n. The number of
spanning trees is related to eigenvalues by

jðGÞ ¼ 1
n
k2ðGÞk3ðGÞ. . .knðGÞ: ð5:19Þ

The second eigenvalue of a graph Laplacian is closely related to the graph diameter
(the longest shortest path between any two graph vertices, i.e., the largest number of
vertices that must be traversed to travel from one vertex to another), which relates to
the sensor network coverage area. The upper and lower bounds on graph diameter
are given by [34]

4
nk2ðGÞ � diamðGÞ� 2

Dþ k2ðGÞ
4k2ðGÞ lnðn� 1Þ


 �
; ð5:20Þ

where D is the maximum degree in graph G, D ¼ max dðvÞf g.
Applications of Laplacian eigenvalue-based analysis include mobile sensor net-

works, robotics swarms, cooperative control, consensus networks, and others. Most
applications utilize the fact that the measure of network connectivity is the second
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smallest eigenvalue of the Laplacian matrix of the graph. For instance, in [43], a
decentralized connectivity maintenance control strategy for mobile robotic
systems/networks is considered, i.e., a group of N agents with single-integrator
dynamics

_pi ¼ ui; ð5:21Þ

where pi and ui are position and control input, respectively, for the i-th agent. In [53],
the connectivity maintenance control algorithm is given by

ui ¼ @k2
@pi

: ð5:22Þ

To improve the system stability from the connectivity point of view, it is proposed
in [43] a modified control algorithm where control signal increases as the algebraic
connectivity of the graph decreases (graph becomes “less connected”). The modi-
fied controls algorithms is given by

ui ¼ csch2ðk2 � eÞ @k2
@pi

; ð5:23Þ

where csch is the standard hyperbolic cosecant function and e is the desired
lower-bound for the value of k2. This approach allows the control signal to
increases when connectivity in the network is reduced.

5.4 Coverage Models Using Voronoi Diagrams

In Chap. 2 we provided an overview of Voronoi diagrams. Voronoi diagrams can
be used for studying WSN deployment, coverage control, and hole patching.
A vector-based algorithm was proposed in [51] where sensors move from densely
covered areas to sparsely covered areas. Sensors act on each other with repulsive
force. The virtual force from neighboring sensors will move the sensor such that the
mutual distance is close to average distance between nodes. During each move-
ment, each sensor calculates future coverage within its Voronoi cell. If the future
movement will not improve the coverage, the sensor will not move to the target
location and will instead move to the midpoint position between its target location
and new location. Voronoi cell also has repulsive forces from the cell boundary,
thus pushing the sensor node toward the inside of the region.

Voronoi-based algorithm moves sensor nodes towards the maximum coverage.
It is a greedy algorithm where each sensor checks for holes within its Voronoi cell.
If the hole is detected, the node moves towards its farthest vertex in the Voronoi
cell. The distance between the farthest Voronoi vertex and its new location is equal
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to the sensing range with a maximum moving distance of the node being equal to
the half of the communication range.

A combination of mobile and static nodes offers reduced cost while networks
still has flexibility of mobile networks. Voronoi diagrams can be used for a hole
detection in such networks [50]. Static nodes map their Voronoi diagrams and
calculate coverage holes within their Voronoi cells. Static nodes then start the
bidding process in which a mobile node will move to patch the hole. If there is a
hole, a static sensor chooses the Voronoi vertex that is the farthest from the sensor
and calculates related bid. The bid is given by

Bi ¼ pðd � rsÞ2; ð5:24Þ

where d is the distance between the sensor node and the Voronoi vertex, and rs is
the sensing range. Mobile nodes also have their own base price. The static node
finds the mobile node whose base price is lower than its bid. The mobile node
receives all bids from its neighbors, and based on the highest bid moves to heal the
coverage hole. Once the mobile node accepts the bid, it updates its base price with
that specific bid. This bidding-price model guarantees that the total size of holes
will decrease over time, meaning no mobile node will patch the one hole, and create
larger one at the same time.

5.5 Simplicial Complexes

A k-simplex is defined as the convex hull of a set of k + 1 points in <n. More
intuitively, a k-simplex is simply an unordered (k + 1)-tuple of points. For example,
a 0-simplex (r0) is defined as a single point and a 1-simplex (r1) is defined as an
unordered pair of points. These are identical to vertices and edges in graph theoretic
terminology. A 2-simplex (r2), comprised a triple of points is informally a triangle
that is “filled in” so that it is not hollow inside. A 3-simplex (r3), also called a
tetrahedron, is defined by a set of four points, and is again, solid inside. In general,
any k-simplex has a solid interior, though it is difficult to visualize this in higher
dimensions. Examples of the first several k-simplices are illustrated in Fig. 5.13 [40].

Fig. 5.13 Examples of a 0-simplex, a 1-simplex, a 2-simplex, and a 3-simplex
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This concept of k-simplices may also be extended to include collections of
attached simplices, which are known as simplicial complexes. A simplicial complex
K is a finite collection of simplices that satisfies the following two conditions:

1. For any simplex ri 2 K, each face of ri is also in K;
2. Two k-simplices r1; r2 2 K must intersect at a common face.

While (a)–(c) in Fig. 5.14 are collections of k-simplices; it is clear from the
definition that (c) is not a simplicial complex because it violates condition 2.

It is evident from the above discussion that there is a strong similarity between
graphs and simplicial complexes. In fact, a simplicial complex is in a sense just the
generalization of a graph to higher dimensions. If we define the r-skeleton of the
simplicial complex K as the collection of all k-simplices of K for which k � r, then
it is clear that the 1-skeleton of K is a graph, also called the underlying graph of K,
since it is simply a set of vertices and edges.

5.5.1 From WSNs to Simplicial Complexes

We introduce here two important simplicial complexes and their respective planar
counterparts and show how each may be used to model a WSN [40]. The sensor
network is mapped to one of these simplicial complexes which correspond to
sensing coverage. Then, the simplicial complex can be analyzed to find the number
and location of holes, which relate to holes in the actual sensor network. Such
simplicial complexes can model the coverage of the sensor networks and related
quality of service in terms of coverage completeness.

Čech Complex The Čech complex, also known as the nerve complex [4], can be
defined for a set of points X with a parameter r[ 0. The points x0, x1, …, xn are
defined as 0-simplices. The 1-simplex x0x1½ � is defined if the r-balls centered at x0
and x1 intersect. If the r-balls centered at x0, x1, and x2 have a common intersection,
then the 2-simplex x0x1x2½ � exists in the Čech complex. In general, the k-simplex
x0x1x2. . .xk½ � exists if and only if the r-balls centered at x0, x1, …, xk have a
nonempty common intersection.

(a)             (b)

(c)

Fig. 5.14 Examples of simplicial complexes (a, b) and a non-simplicial complex (c)

5.5 Simplicial Complexes 135



It is obvious that this construction fits well for modeling coverage in a WSN. To
observe this, one only needs to consider that r from the above construction equals
the sensing radius rs. For example, when three sensing disks have a common
intersection we add a 2-simplex to the Čech complex which signifies that the entire
area inside the polygon (i.e., triangle) formed by these three sensor nodes is
covered. The inclusion of higher dimensional simplices indicates higher degrees of
coverage. Figure 5.15 illustrates the construction of simplices from the union of
coverage disks. In (a), a 1-simplex is constructed since the disks have a common
intersection. The disks in (b) do not have a common intersection and the corre-
sponding triangle is not filled, while the disks in (c) do have a common intersection
and the corresponding filled triangle is constructed (2-simplex) [40].

An important benefit of this simplicial complex is that it can be computed even if
the nodes have different sensing ranges, as long as the sensing model is a circle
around the node. For theoretical analysis purposes it is usually assumed that all
nodes have identical sensing ranges, but do note that this assumption is, in general,
not required. However, a potential disadvantage of this simplicial complex con-
struction is that precise distances between nodes must be known. If these distances
are not precisely known this could lead to errors in the constructed Čech complex.

Rips Complex [40] The Rips complex, sometimes also called the Vietoris com-
plex, was originally introduced by Vietoris in 1927 [49]. Given the point set X with
a diameter r, the Rips complex is defined as follows. The k-simplex x0x1x2. . .xk½ � is
defined in the Rips complex if the pairwise distance between each of x0, x1, x2, …,
xk is less than r. For example, when the distance between two points x0 and x1 is less
than r, then we define the 1-simplex x0x1½ �. Likewise, if the pairwise distance
between the three points at x0, x1, and x2 are all less than r, then we define the
2-simplex x0x1x2½ �.

(a) (b) (c)

Fig. 5.15 Constructing the Čech complex from the union of sensing disks
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Note that the definition of the Rips complex is very similar to that of the unit
disk graph from Sect. 5.1.1. It is apparent from the two definitions that using
parameter r for each, the 1-skeleton of the Rips complex is equivalent to the unit
disk graph. The Rips complex can be considered as a sort of “higher dimensional”
version of the unit disk graph.

This similarity in the Rips complex and the unit disk graph leads to an alternate
approach to constructing the Rips complex which is extremely useful for sensor
networks and was exploited in [45] to construct the Rips complex in a
coordinate-free network. Given the communication graph of the network, which by
definition is a unit disk graph, the graph can be expanded to include higher
dimensional simplices as follows. Any complete graph on k vertices, that is, the
graph in which all k vertices are pairwise adjacent, corresponds to a (k − 1)-simplex
in the Rips complex. Thus, any triangles (K3) in the communication graph are
“filled in” to become 2-simplices, any tetrahedrons (K4) are “filled in” to become
3-simplices, and so on. Since no locations are needed to create the communication
graph the Rips complex for a sensor network can be constructed entirely from local
connectivity data. Figure 5.16 shows an example communication graph and its
induced Rips complex.

5.5.2 Comparison of Čech Complex and Rips Complex

While the Čech complex maps the coverage provided by the union of sensing
coverage disks into a corresponding simplicial complex, this relationship is not as
well defined for the Rips complex whose construction is based solely on the
communication range of the nodes and does not take into account their sensing
range at all. In [45], the ratio rc �

ffiffiffi
3

p � rs is used since for a set of three nodes with
maximum pairwise distance for communication range of rc, the sensing radius must
be at least rc=

ffiffiffi
3

p
for the sensing disks to have common intersection as shown in

Fig. 5.17 [40].

Fig. 5.16 Communication graph (a) and its induced Rips complex (b)

5.5 Simplicial Complexes 137



It can also be shown that the radius-r Rips complex has the same 1-skeleton as
the radius-r/2 Čech complex. Thus, assuming rs ¼ rc=2, then the Rips complex and
the Čech complex are equivalent with the possible exception with three commu-
nicating nodes without a common intersection of their sensing disks. In other
words, triangle-shaped holes, such as that in Fig. 5.15b, are not possible in the Rips
complex since based on the above assumption the nodes are all within communi-
cation range, and they would immediately be “filled in” as 2-simplices.

Figure 5.18 shows examples of Rips and Čech complexes created using the
above assumption. Notice that the only difference is that the triangle-shaped holes
in the Čech complex do not exist in the Rips complex as mentioned above. This
could be acceptable in some applications since the triangular holes represent areas
with very small coverage holes, and larger holes will exist in both complexes. The
drawback to using this assumption, however, is that if this ratio is not exact, then
this equivalence between two simplicial complexes will not hold.

Even with the help of either of the above assumptions, the Čech complex and
Rips complex are still not equivalent. For this reason, results in [45] instead show
how to infer Čech data by “squeezing” it between two Rips complexes constructed
at different radii. This idea may be useful for verifying coverage, but it is not as

Fig. 5.17 Relationship
between rc and rs for the Rips
complex

Fig. 5.18 Rips complex (left) and Čech complex (right) for rs ¼ rc=2
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helpful in localization of the holes. If the sensor nodes’ coordinates are known, then
the Čech complex may be used to capture the exact coverage of the sensing disks.
Otherwise, if sensor nodes’ coordinates are not known, then for any ratio between
sensing and communication radii the Rips complex will only approximate the Čech
complex.

5.5.3 Subcomplexes with Planar Topology

We introduce subcomplexes of both the Čech complex and the Rips complex [40].
The significance of these subcomplexes is that their underlying graphs are planar,
meaning that they have no crossing edges. As a result, both simplicial complexes
are 2-complexes, which mean that the largest k-simplex in the complex is a
2-simplex and k-simplices of higher dimensions cannot exist in the complex. These
subcomplexes can be considered as the maximal subcomplexes that retain the
number and shape of the holes in the original complex.

Alpha-Shape Complex [40] Closely related to the Čech complex is the
Alpha-shape complex, which is originally due to Herbert Edelsbrunner [11]. To
construct this complex, one must first compute the Voronoi diagraph VorX for the
point set X. Next, for each point x 2 X its Alpha-cell A(x, r) can be defined as the
intersection VorXðxÞ \Bðx; rÞ, where VorX(x) is the Voronoi cell of x and B(x, r) is
an open ball of radius r centered at x. The Alpha-shape complex Ca X; rð Þ is defined
by the nerve, or Čech complex of the set of Alpha-cells A(x, r). That is, a k-simplex
in the Alpha-shape complex corresponds to the non-empty intersection of k + 1
alpha-cells.

Figure 5.19 shows the Voronoi diagram and sensing disks for a set of points.
The collection of Alpha-cells, which is the intersection of each sensing disk and its
Voronoi cell, is shown in Fig. 5.20. Finally, the nerve of these alpha-cells is taken
to create the alpha-shape complex shown in Fig. 5.20. Notice that the two holes in
the alpha-shape complex clearly correspond to the holes in the union of sensing
disks from Fig. 5.19.

It can be shown that for a given parameter r and a set of points X there is a
homotopy equivalence between the two complexes, i.e., the thickness can be
ignored (i.e., higher dimensional k-simplices), and the holes stayed preserved in the
complex as shown in Fig. 5.21. Also, as may be expected with the use of the
Voronoi diagram, the Alpha-shape complex is a subcomplex of the Delaunay
complex and so its underlying graph must be planar.

Maximal Simplicial Complex [40] Note that it is also highly desirable to have a
planar subcomplex of the Rips complex, analogous to the relationship between the
Čech and Alpha-shape complexes. The basic goal is to remove a subset of the edges
in the communication graph such that the new graph is planar and the number and

5.5 Simplicial Complexes 139



shape of holes is maintained in the induced Rips complex. In general, this is a
difficult problem since the embedding is not known and removal of the wrong edges
will have an effect on the holes in the induced Rips complex.

Fig. 5.19 Voronoi diagram (left) and union of sensing disks (right) for a set of points

Fig. 5.20 Alpha cells (left) and alpha shape complex (right) for point set from Fig. 5.19

Fig. 5.21 Union of sensing disks (a), Čech complex (b), and alpha shape complex (c) for a set of
sensor nodes
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Researchers in [35] have proposed a solution to this problem by examining all
crossing edges in the communication graph and carefully eliminating one edge in
the crossing pair while still maintaining the structure of the topological holes.
Authors refer to the planar subgraph as a maximal simplicial subgraph. After
obtaining this subgraph, all that is left is to “fill in” all the triangles to obtain the
induced Rips complex, which they call the maximal simplicial complex.

Figure 5.22 shows an example communication graph and its maximal simplicial
complex obtained from the communication graph. The relative position of holes is
maintained in the maximal simplicial complex.

5.6 Simplicial Homology and Coverage Holes

Homology is a mathematical method for detecting and counting holes in a topo-
logical space using algebra. A basic background on homology theory that is rele-
vant to the sensor networks coverage is presented here, while a more complete
development of homology theory can be found in [24, 36].

One way to define homology is as a vector space. For a simplicial complex K,
the 1-dimensional homology H1(K) can be used to determine its holes. This can be
represented as a vector space whose basis represents cycles in K surrounding its
holes. Thus, the dimension of this vector space |H1(K)|, often called the first Betti
number of K, gives the number of cycles that corresponds to the number of holes.
Holes of higher dimension may also be found using homology. For example, the
second Betti number for a sphere S, which is the dimension of H2(S), is 1 because
the sphere is empty inside. For the sensor network coverage problems,
one-dimensional holes correspond to holes in sensing coverage.

Computing the first Betti number of a simplicial complex is important in the
analysis of coverage completeness since it provides information about a number of

Fig. 5.22 Communication graph (left) and its maximal simplicial complex (right)
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holes that exist in the network. Two software packages for computional homology
are PLEX [46] and CHomP [8]. The typical Betti number implementations involve
computing the rank of matrices, which for very large networks, can be prohibitively
slow. However, this method does not take into account that the simplicial com-
plexes are not arbitrary but are constrained by the physical nature of the sensor
network. A simple arithmetic formula for computing the first Betti number of a
simplicial complex K is given by:

b1 ¼ b0 �
Xn
k¼0

ð�1Þk ðk-simplices inKÞj j; ð5:25Þ

where n corresponds to the largest k-simplex in K, and b0 is the zeroth Betti
number, which is equivalent to the number of connected components in the
underlying graph, or 1-skeleton, of K. This follows from the Euler characteristic v
for a simplicial complex which can be defined as the alternating sum of Betti
numbers

v ¼
X1
k¼0

ð�1Þkbk: ð5:26Þ

For an arbitrary simplicial complex, Betti numbers of any dimension may be
nonzero. However, all the simplicial complexes that relate to sensor networks have
constraints due to the disk-shaped sensing and communication ranges which have
been assumed. Therefore, all Betti numbers of dimension larger than one will be
zero if the nodes lie in the plane. This leads to the simplified formula

v ¼ b0 � b1; ð5:27Þ

where b0 is equivalent to the number of connected components in the underlying
graph. A second definition of the Euler characteristic for a simplicial complex
K using the alternating sum of the number of k-simplices is given by

v ¼
Xn
k¼0

ð�1Þk ðk-simplices inKÞj j; ð5:28Þ

where n corresponds to the largest k-simplex in K. From here follows the
Eq. (5.25).

The drawback of (5.25) in computing coverage holes is that one must know all
higher dimensional simplices, whereas with the matrix intensive computations, only
the (k + 1)-simplices and lower dimensions are needed to find the k-th Betti number.
Thus, only the sets of 0-, 1-, and 2-simplices would be needed to compute b1.
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However, for the planar subcomplexes described above, the following simplified
result can be used:

b1 ¼ b0 � VðGÞj j þ EðGÞj j � ð2-simplices inKÞj j; ð5:29Þ

where G is the underlying graph of the simplicial complex K. Under assumption
that the 1-skeleton of K is a connected graph, which is typically the case, then
b0 = 1 and so the computation can be simplified even further to

b1 ¼ 1� VðGÞj j þ EðGÞj j � ð2-simplices inKÞj j: ð5:30Þ

Note that this formula can also be derived from Euler’s formula for connected
planar graphs. Euler’s formula for a connected planar graph can be written as
V � EþF ¼ 2, where V is the number of vertices, E is the number of edges, and
F is the number of faces. This formula, however, accounts for an additional face
known as the infinite, or exterior face, which is not needed for sensor networks
applications and can be discarded. Also, it is clear that the number of faces F in the
planar underlying graph of one of the planar subcomplexes is the sum of the
number of 2-simplices in the complex and the number of holes. This is due to the
obvious fact that every face in the underlying graph is either a 2-simplex or a hole.

Example 5.3 Consider the simple complex illustrated in Fig. 5.23. The simplicial
complex has seven 0-simplices (or vertices), nine 1-simplices (or edges), and two
2-simplices. Inserting these values into Eq. (5.30), we see that b1 ¼ 1� 7þ
9� 2 ¼ 1, as expected by observation of the simplicial complex (Fig. 5.23).

In applications related to sensor networks hole coverage, the alpha-shape
complex and the maximal simplicial complex have advantage over other complexes
for multiple reasons. First, algorithms for computing the number of holes in the
complex are computationally efficient by utilizing simple arithmetic calculations.
Second, divide-and-conquer algorithms are often suitable for planar graphs.
Furthermore, it allows for coverage holes to be defined as faces in the underlying
planar graph. If the underlying graph is not planar, holes may not be uniquely
identifiable as is shown in Fig. 5.24. Notice that the hole is not uniquely defined
since one could argue that cycle A, B, D, cycle A, B, C, or cycle A, B, C, D are all
the correct way to identify the hole.

Fig. 5.23 Example
simplicial complex with
b1 = 1
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5.7 K-Coverage

Coverage in WSNs applications is usually associated with 1-coverage where it is
desired to have at least one sensor node covering every point of interest. If
1-coverage is not satisfied, then there is a hole in the sensor network coverage. The
term hole here also refers to a 1-hole, meaning there is not at least one sensor node
covering a certain area in the set of interest. A more robust network to node failures
and other node related errors might have k-coverage requirements, i.e., that every
point in the area of interest should be covered by at least k sensor nodes.

Definition 5.7 Consider a sensor network consisting of a set Z sensor nodes and a
region on interest S. A subset P � S is said to be k-covered if and only if for every
point p 2 P, there are at least k sensor nodes from Z that cover the point p.

Looking at the construction of the Čech complex it is evident that only a single
point must be covered by k + 1 disks to create a k-simplex (e.g., see Fig. 5.15c). It
is required to show that the entire area inside a polygon formed by k vertices is
k-covered. This implies that for any single polygon vertex the other k − 1 vertices
must all lie within its sensing disk and leads us back to the Rips complex, which
admits a k-simplex if the pairwise distance between any set of k vertices is less than
parameter r. Thus, a construction of the Rips complex using the parameter rs allows
one to determine k-coverage. For example, any 3-simplex in this simplicial complex
comprised four vertices and, of course, the area inside the polygon formed by these
vertices is 4-covered. Note that this method gives a sufficient (but not necessary)
condition for k-coverage since there may still be other k-covered portions of the
network which do not entirely fill the area inside a polygon formed by a subset of
nodes. However, this is much like the case for 1-coverage where a hole in the
simplicial complex looks large, but in reality, is much smaller when considering the
actual union of sensing disks (e.g., see Fig. 5.15b).

Fig. 5.24 Sensing disks (left)
and corresponding simplicial
complex (right) which
contains a hole that is not
uniquely identifiable
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5.8 Coverage Control

The problem of deploying sensors to satisfy application requirements is called
coverage control problem [5]. The coverage control can be static, or offline, and
dynamic, or online. In the static coverage, the sensor node locations are
pre-calculated before the deployment, such that once deployed, the sensor network
satisfies pre-assigned coverage mission requirements. This is equivalent to the
facility location optimization problem in operations research. The dynamic cover-
age control includes mobile sensor networks, Fig. 5.25, where the coverage control
is calculated online and the position of sensor nodes is adjusted according to
specified criteria. Furthermore, the dynamic coverage control can be centralized
with a central controller (or a base station) providing control inputs to the whole
network, or distributed where each sensor node adjusts its position according to the
locally executed algorithm.

Another example of dynamic coverage control is a future WSN usage in weather
monitoring and hurricane tracking. Even though hurricanes can be tracked by
satellites, precise wind speed, precipitation, and pressure of the storm-affected area
can be monitored and detected only using close-range sensing devices. Presently
such monitoring and data gathering is done using NOAA reconnaissance airplane
with probes that record air pressure, humidity, temperature, and wind speed that
weather scientists use to predict storm surge, place and time when the storm hits the
land.

Future hurricane monitoring systems will consist of a network of ground sensors
and mobile sensors with coverage that can dynamically adapt to changes in the
hurricane path and strength; see Fig. 5.26.

Several optimal control problems related to sensor networks were formulated
in [5]. An optimal coverage under constraints of imprecise detection and terrain
properties where the number of sensor nodes is minimized was presented in [9].

Fig. 5.25 Micro-aerial vehicle based sensor network—a mobile sensor networks with dynamic
coverage control

5.8 Coverage Control 145



In [17] problems arising in maintaining coordination and communication between
the group of robots and solutions to these problems were discussed. Three models
of deployment are introduced to maximize the coverage area within the close range
of the mobile nodes, deployment to maximize the probability of detecting a source,
and deployment to maximize the visibility of the network. A variety of control
methods in multi-vehicle cooperative control using graph theory have been pre-
sented in [41]. Optimal coverage control for mobile sensor networks was presented
in [10]. The paper uses a Voronoi partitioning and Lloyd descent algorithm but does
not consider network connectivity constraints. Two location functions that char-
acterize coverage performance were provided in [9] including a study of their
gradient properties via nonsmooth analysis. In most cases, the feasibility sets are
assumed to be convex and related optimization problems are convex optimization
problems. If network connectivity is considered as well, then underlying opti-
mization problems become, in most cases, non-convex optimization problems.

Example 5.4 Consider a coverage control problem in chemical plants where it is
required to provide an optimal coverage of large chemical plants or areas of interest
with a large number of static sensor nodes that monitor for a wide spectrum of
chemical agents; have several mobile nodes moving over rough plant terrain and
track a possible contamination cloud; and allow technicians to adjust the controller
of all mobile sensor nodes. This is an optimal coverage control problem with a
trade-off between uniform coverage of the whole plant and focused coverage of the
contamination cloud; see Fig. 5.27.

Fig. 5.26 Static and mobile sensor nodes track a hurricane
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Let r be the sensors radio transmission range. Assume that there is a focus point
XFðtÞ; YFðtÞð Þ where several mobile sensor nodes should converge. In the case of a
chemical contamination example, the focus point can be a contamination cloud
(center of mass of the cloud). Consider a region of interest S that is a compact set,
and a set Z of sensor nodes. A subset M � Z is a set of all mobile sensor nodes. An
optimal coverage control problem can be formulated by specifying a cost function
of interest and constraints that limit the network in terms of geometry, flow, energy,
or any other network parameter.

The coverage control problem can be formulated as an optimal control problem,
or more precisely, as a linear-quadratic regulator (LQR) problem. The problem is to
find an optimal location of mobile nodes M, such that the following cost function is
minimized:

minJ1 ¼ R
X
i2M

dist2 ðxi; yiÞ; ðXFðtÞ; YFðtÞÞ½ � þQ
X

i2M;j2Z
dist�2 ðxi; yiÞ; ðxj; yjÞ

� �
;

ð5:31Þ

where R and Q are the control design parameters or weighting factors, and
dist ðxi; yiÞ; ðxj; yjÞ

� �
is an Euclidean distance between nodes i and j and is given by

dist ðxi; yiÞ; ðxj; yjÞ
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ2 þðyi � yjÞ2
q

: ð5:32Þ

Note that this is a convex optimization problem since the optimization cost
function is convex and there are no constraints. Convex optimization refers to cost
function being a convex function and constraint set being a convex set; otherwise,
optimization is a non-convex and common operation research methods do not
apply. For extra reading on non-convex optimization, we refer to [27]. The
parameter R penalizes closeness to the focus point, or tracking of the target. The
parameter Q penalizes uniform distribution of nodes across the set S. For example,

Fig. 5.27 Focused coverage (left) versus uniform coverage (right)
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R = 10, Q = 10,000 means that the user is much more concerned with the uniform
node distribution than to cover the specific area of interest, Fig. 5.27 (right). On the
other hand, R = 10,000, Q = 10 indicates that the user wants extensive coverage of
the focus point (tracking) rather than uniform node distribution, Fig. 5.27 (left).

The cost function in (5.31) has such specific form because the original problem
is a multi-objective optimization problem. One common way to solve this type of
problem is to combine the weighted sums of each individual objective function into
an aggregate objective function (AOF). Specifically, the two objectives are to
minimize the distance between the mobile nodes and the focus point and to max-
imize the distance between the mobile nodes and the other static and mobile
nodes (minimize the inverse of this distance).

The problem formulation, including the cost function that is given in (5.31) has
more of a theoretical significance, since it does not consider the network connec-
tivity. Namely, such a solution will optimize the cost function and distribute the
nodes accordingly without consideration of the network connectivity. Some sensor
nodes can go out of communication range and become useless from the network
standpoint. More realistic problem formulation that includes network connectivity
can be given as follows.

Given the compact coverage area of interest S, a focus point XFðtÞ; YFðtÞð Þ, sensor
network graph GðtÞ ¼ NðtÞ;EðtÞð Þ and mobile subgraph GmðtÞ ¼ MðtÞ;EmðtÞð Þ,
find an optimal vertex location of the mobile subgraph GmðtÞ such that the following
cost function is minimized

minJ2 ¼ R
X
i2M

dist2 ðxi; yiÞ; ðXFðtÞ; YFðtÞÞ½ � þQ
X

i2M;j2N
dist�2 ðxi; yiÞ; ðxj; yjÞ

� �
;

ð5:33Þ

such that the graph GðtÞ stays vertex k-connected and satisfies the mobile node
localization condition. Constants R and Q are control design parameters.

Note that this is a non-convex optimization problem where a feasibility set is, in
general, a non-convex set. Similarly, one can formulate suboptimal sensor network
coverage control problem with focus/target areas possibly represented by several
disjoint sets. Such constraint set is, in general, non-convex.

An optimal deployment that is based on probabilistic models is given in [59].
The sensor locations (x,y) have Gaussian distribution given by its mean and stan-
dard deviation, as well as its join distribution pxyðx; yÞ. The probability for a
gridpoint ði; jÞ to be detected by a sensor at ðx; yÞ is given by cijðx; yÞ and the miss
probability of the gridpoint is mijðx; yÞ ¼ 1� cijðx; yÞ. For a set N of deployed static
sensors, the total miss probability of the gridpoint ði; jÞ is given by

mij ¼
Y

ðx;yÞ2N
ð1� cijðx; yÞÞ: ð5:34Þ
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Assuming that the newly deployed sensor will be placed at ðx; yÞ, the total miss
probability is given by

mðx; yÞ ¼
X

ði;jÞ2Grid
mijðx; yÞmij: ð5:35Þ

Based on the calculated total miss probability, one can place the sensor to minimize
the miss probability, providing the best possible sensor network coverage from the
probability of detection point of view under given assumptions of grid deployment.
After every node deployment, above probabilities are updated and recalculated
based on new topology. The computational complexity of miss probability algo-
rithm is Oðn2m2Þ for a grid size of n� m.

Questions and Exercises

1. What is the degree of a vertex in a graph G? Provide an example.
2. Explain when is a graph connected? Draw examples of connected and dis-

connected graphs.
3. Demonstrate by example that if a graph G is disconnected, then its complement

�G is connected. Show another example that the opposite is not true—if the
graph G is connected, then its complement �G is not necessary disconnected.
Finally, prove this statement rigorously.

4. Study the Chvátal’s art gallery theorem and find out what is an upper bound on
the minimal number of guards that are required to cover the gallery? Please
describe “upper bound on the minimal number” in case of this problem.

5. If the gallery floor plan can be divided into square rooms, what would be the
upper bound on the minimal number of guards required to cover the gallery in
this case?

6. When one can say that complete sensing coverage of a convex region implies
connectivity of the network?

7. Given a graph V ¼ f1; 2; 3; 4; 5; 6; 7g,
E ¼ fð1; 2Þ; ð1; 3Þ; ð1; 5Þ; ð2; 3Þ; ð3; 5Þ; ð4; 7Þ; ð6; 7Þg, using a graph Laplacian
check if the graph is connected. Find the number of spanning trees using
Laplacian eigenvalues.

8. Given a graph V ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9g, E ¼ fð1; 2Þ; ð1; 3Þ; ð1; 5Þ; ð2; 3Þ; ð3; 5Þ;
ð3; 6Þ; ð4; 5Þ; ð5; 8Þ; ð5; 9Þ; ð6; 7Þ; ð6; 8Þg, estimate the lower and upper bounds
on the graph diameter.

9. For a graph with vertices V ¼ f1; 2; 3; 4; 5g, draw a complex and a simplicial
complex.

10. For a set of points in two-dimensional space with the following coordinates
X ¼ fð�1;�2Þ; ð1; 0Þ; ð2; 3Þ; ð3;�4Þ; ð�3;�5Þg, draw a Voronoi diagram and
derive alpha shape complex.
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11. Describe a k-coverage in sensor networks and its relationship with the Rips
complex. What does it mean by 2-coverage specifically and in terms of the Rips
complex?

12. Use linear quadratic control problem setup similar to the one given in
Eq. (5.31) and formulate a sensor network coverage control problem where it is
required for mobile nodes to be attracted to the target node, to be repelled from
the static sensor nodes, and to be repelled from each other (mobile nodes).

13. How can you extend the previous problem formulation and include constraints
that would ensure collision avoidance between mobile sensor nodes?
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