
Chapter 4
Security in WSNs

Security in wireless sensor networks (WSNs) is centered on at least the follow-
ing six fundamental requirements, namely: authentication, confidentiality, integrity,
reliability, availability and data freshness [4, 39, 52, 62]. In this chapter, we describe
these requirements, the different kinds of attacks that aim to compromise these
requirements (and hence the security of a WSN) and the defense mechanisms that
can be employed to overcome these attacks. While many security concepts hold true
for different kinds of computer networks, WSNs have certain properties that make
them particularly susceptible to attack relative to the traditional computer networks
(e.g., wired networks). These properties do not only make possible a range of attacks
not seen in regular computer networks, but also make a number of conventional
defenses unsuitable for WSNs. We first describe examples of these unique properties
and how they give rise to WSN-specific security challenges before delving into the
WSN security requirements, attacks and defenses. The last part of the chapter covers
WSN reliability including fault awareness and fault detection in WSNs.

4.1 Why WSNs are Predisposed to Attacks?

In this section, we describe unique properties that predispose WSNs to various
types of attacks.

Resource Limitations Many security mechanisms employed in computer net-
works rely on some form of cryptography. While public key cryptography is in
many cases a more versatile security scheme relative to private key cryptography
[52], the limited memory and processing power of the WSN nodes mean that the
former method can only be used subject to very careful optimization of the algo-
rithms at both the design and implementation levels [64]. This challenge does not
arise with traditional computer networks.

© Springer International Publishing AG 2016
R.R. Selmic et al., Wireless Sensor Networks,
DOI 10.1007/978-3-319-46769-6_4

83

Large-scale Deployment Sensor networks typically contain very many nodes
(e.g., thousands of nodes) that work in collaboration to achieve the purpose of the
network. This means that the two-party functionality seen with many security
protocols may not always be suited for WSNs [52]. Further, the large number of
nodes sharing sensitive information requires that security designs have to be cog-
nizant of the fact that a single compromised node could leak sensitive information
about the entire network.

Open Deployment Because sensors are typically deployed in outdoor unattended
environments, an attacker could very easily have physical access to them and
extract sensitive information (e.g., security keys) from the motes. This is in contrast
to traditional computer networks where it is for the most part safe to assume threat
models in which an adversary will have very low likelihood of physically accessing
a node.

Wireless Connectivity Because WSNs communicate via wireless communication
channels, the adversary only needs to tune into the frequencies being used for
communication to be able to eavesdrop on traffic being exchanged between the
nodes. Different from a wired computer network, therefore, security mechanisms
for WSNs need to take these kinds of attacks into consideration.

The unique attributes such as those described above make possible a number of
attacks against WSNs that call for defenses, which are for the most part specifically
tailored to WSNs.

4.2 Security Requirements

The fundamental security requirements of a WSN are given below.

Authentication Authentication enables a node to confirm that the identity of
another node with which it communicates is as claimed. This helps a node to verify
the origin of packets sent to it, ruling out the chance that spoofed packets or packets
maliciously injected into the wireless communication channel may be mistaken for
genuine packets. A message authentication code (MAC) attached to a message can
be used to verify the origin of a message [64].

Confidentiality Confidentiality stipulates that information is only accessed by
nodes which are supposed to access it. Confidentiality is ensured by encrypting the
packets being sent out at the originating node so that they are decrypted at the
receiving node. Depending on the application, encryption could be applied to the
data part of a packet or the full packet (including the header) [64]. Encryption of the
full packet helps obfuscate the node identities (which are located in the header)
which helps minimize the chances that a given node’s identity could be spoofed by
an eavesdropper.

84 4 Security in WSNs

Integrity Integrity ensures that a message sent between two nodes is not modified
by an adversary. If for instance routing or clock synchronization packets exchanged
between nodes are modified by a malicious entity, the entire network could come to
a halt. Data aggregation (i.e., the combination of readings obtained by multiple
sensors) is another WSN service that heavily relies on the assumption that data
being exchanged between WSN nodes is not modified maliciously [52]. A keyed
checksum (e.g., a MAC) can be used to determine whether messages have been
modified [64]. Figure 4.1 illustrates how a MAC appended to a message at the
sending node can be used by the receiver to determine the integrity of the message.
Taking the message and a key as input, the sender uses a MAC algorithm to
compute the MAC, which is then appended to the message before it is sent out to
the receiving node. At the receiving node, the message and the key (same as the key
which was used at the sending node) are input to the MAC algorithm so as to
compute a MAC. If this MAC matches with the one retrieved from the message,
then the message is confirmed not to have been tempered with.

Availability Availability indicates that the WSN must be functional at all times
and provide services whenever needed. One way in which availability can be
achieved is by ensuring reliability at both the node and network level, which can in
turn be achieved by building fault tolerance into the individual nodes and the
network [27, 29, 57]. Designing the system against different kinds of denial of
service attacks is also crucial for the guaranteed availability of the WSN.

Data Freshness WSN systems typically either continuously sense and forward
data from the environment, or forward data in response to a certain event. In both
cases, it is crucial that data sensed by the nodes reaches the base station as soon as
possible (i.e., when is still fresh). This does not only minimize the likelihood that
replayed packets sent by an attacker could be mistaken for legitimate packets, but
also ensures that the right kinds of interventions can be undertaken to react to the
events sensed by the network. In a target tracking application for instance, the target
can only be tracked if current data is forwarded to the base station. Data freshness is
in general achieved through reliable transport and routing schemes that minimizes
packet losses and delays.

Fig. 4.1 Using a MAC to verify message integrity

4.2 Security Requirements 85

4.3 WSN Attacks and Defenses

There are several approaches to the categorization of attacks on WSNs. One of
these approaches categorizes attacks based on whether they disrupt the functionality
of the network or not. Attacks which disrupt network functionality are called active
attacks (e.g., network jamming attacks [59]), while those which do not disrupt
network functionality are referred to as passive attacks (e.g., packet eavesdropping
attacks [61]). Another common way to categorize WSN attacks is to classify them
based on whether they are internal (i.e., launched by nodes which are part of a
WSN) or external (i.e., launched by nodes or devices that are not part of the
network). The Sybil attack [36] is an example of an internal attack, while a network
jamming attack [59] is an example of an attack which would typically be launched
by an external agent (i.e., an external attack). It is noteworthy that an attack
launched by an external entity which gets authorization to access the network and
then exploits the privileges to launch attacks would be classified as an internal
attack [64].

The most prominently used approach for the categorization of WSN attacks in
the literature distinguishes between attacks based on the layer of the communication
architecture which the attack targets. We adopt this approach in this work, since it
gives a fine-grained view of the aspects of the different algorithms and (or) proto-
cols that each attack seeks to leverage. For each layer of the network model, we first
discuss the potential attacks before delving into the different defenses that could be
used to thwart the attacks.

4.3.1 Physical Layer Attacks

We discuss here several physical layer attacks, including tempering, jamming, and
eavesdropping and traffic analysis.

Tempering Given physical access to a WSN node, the attacker could temper with
the node in several ways, which include reprogramming the node with the aid of
easily accessible tools (e.g., UISP [23]), compromising data stored on the nodes
(e.g., encryption keys) and the complete physical destruction of a node, to mention
but a few [23].

Jamming In this type of attack, the adversary sends out signals (e.g., using a
specialized waveform generator [59]) that interfere with the radio frequencies being
used by the WSN. Depending on the specific mechanism used to launch the jam-
ming attack, a sizeable portion of the network could be disrupted, rendering nodes
unable to send or receive data along the channel [59]. Figure 4.2 illustrates a typical
jamming scenario where a jammer interferes with communications associated with
all nodes within a certain radius, r, of the jammer.

86 4 Security in WSNs

Eavesdropping and Traffic Analysis Since WSN signals are broadcast in the air,
an adversary within the range of the signals could listen to the transactions going on
in the wireless channel with the aid of antennas that cost as little as $20 [10]. From
data captured during eavesdropping, the adversary could directly extract the mes-
sage content, or carry out traffic analysis to make inferences such as the location of
the base station, which could in turn inform more targeted attacks.

4.3.2 Physical Layer Defenses

One potential defense against tempering is the design of temper-proof WSN nodes
(e.g., by encasing them in a physically sturdy package [62]). The challenge with
this option, however, is that the cost of each mote could tremendously increase,
making the deployment of large WSNs very expensive. Under the assumption that
an adversary accessing a WSN node will have to move it (e.g., from one place to
another), building location awareness into the applications running on the motes
could be used to defend against some physical attacks. If a node is determined to
have been moved (e.g., based on accelerometer or GPS sensor readings), its data
could for instance be flagged by other nodes as being potentially compromised.
Alternatively, the node could be configured to delete sensitive information from
memory if movement is detected [62].

Jamming and eavesdropping attacks could be mitigated through the use of
spread spectrum communication. The philosophy behind spread spectrum com-
munication is to distribute the communication channel over a large number of
frequencies, making it very expensive for the adversary to jam or eavesdrop on all
the frequencies. In one spread spectrum technique (called frequency-hopping [66]),
senders rapidly switch between frequencies using a pattern known to the receivers.
This way, an adversary would not know which frequency to jam or eavesdrop while
the receiver would be aware of the variations in transmission frequencies. The

Fig. 4.2 A jamming attack
disrupting all communications
between nodes within a radius
r of the jamming node

4.3 WSN Attacks and Defenses 87

challenge with spread spectrum communication in broadcast systems such as WSNs
is that the adversary only needs to compromise one node to determine the range of
frequencies used by the WSN. Also, spread spectrum functionality increases the
power requirements of the nodes, and for a large WSN, can dramatically increase
the cost of deploying the network.

The ultimate solution to eavesdropping/traffic analysis on the communication
channel and tempering attacks aimed to infer information stored on a captured node
is encryption/cryptography. Encryption may be applied to the data stored on the
motes, or to the packets being exchanged between nodes over the channel. Because
cryptography is a solution to a wide range of other attacks, we will discuss it
separately and address its dynamics and the different factors affecting its applica-
bility in WSNs (see Sect. 4.4).

4.3.3 Link Layer Attacks

MAC Protocol Violations MAC protocols generally help ensure that the sensors
in the network efficiently use the shared communication channel. When a given
node violates the MAC protocol mechanisms (e.g., by sending data during a time
slot when another node is supposed to be sending), packet collisions occur.
Depending on the extent of the violation, the collisions could result into a wide
range of issues, including corruption of the data in the packets, unfair bandwidth
usage, and in the worst case, total denial of service if the malicious sender con-
tinuously occupies the channel and (or) the attacked nodes continually attempt to
retransmit corrupted packets [62].

MAC Identity Spoofing When a node broadcasts data on a WSN, its MAC
identity can be accessed by all nodes sharing the communication channel.
Given MAC addresses of nodes on a WSN, a malicious node (that may be within
range of the network without necessarily being part of the WSN) could use these
identities to masquerade as any of these nodes. If, for example, the malicious node
masquerades as an aggregation point, it could leverage this role to access privileged
resources of the WSN [61]. The Sybil attack [36]—an attack in which a malicious
node on the WSN presents different identities to the network at different points in
time or cycles through multiple identities to create the impression that they are all
simultaneously present on the network—is realized in WSNs through MAC identity
spoofing.

4.3.4 Link Layer Defenses

Error correcting codes [51] can be employed to address data corruption issues
caused by packet collisions if the extent of collision is low to moderate (e.g., if

88 4 Security in WSNs

collisions are comparable to those seen due to probabilistic errors [62]). However,
this approach would not handle a heavy volume of collisions as it would require a
considerable amount of resources [62]. Incorporating rate-limiting in the MAC
protocol to ignore requests beyond a certain threshold of requests and the use of
time-division multiplexing to limit the amount of time that nodes can use the
channel are the other potential defenses against attacks which overload the channel
through violations of the MAC protocol [62].

MAC identity spoofing can be tackled by associating each identity with a secret
key, making it impossible for the adversary to use a given address without having
its associated key [62]. Under the assumption of an immobile WSN, position
information (registered when the network is set up) can be used in conjunction with
MAC identities to confirm that a node is not using a spoofed address [36]. Other
techniques, such as node registration (at a central server which can be polled to
verify the identities of nodes in the network), and code attestation (e.g., to remotely
determine the legitimacy of node by comparing its memory contents to those of
known legitimate nodes) have also been proposed to address these kinds of attacks
[36, 50].

4.3.5 Network Layer Attacks

Routing Manipulation Attacks The routing tables used by nodes to forward
packets in a WSN can be poisoned in a number of ways. For example, a malicious
node may modify or spoof route update packets before forwarding them to the other
nodes in the network. As a result, the nodes receiving these updates may direct
traffic along routes determined by the attacker, which could in turn result into
congestion and collapse of the network [61]. Some specific types of route-poisoning
attacks include:

(a) Sinkhole attack: In this attack, the adversary manipulates routing information
to lure a large number of nodes into routing their traffic via a node controlled
by the adversary [26, 62] (we also alternately refer to this node as the mali-
cious or attacking node).

(b) Wormhole attack: This attack is centered on route manipulations designed to
make two distant malicious nodes appear to the other nodes to be much closer
to each other than is actually the case. Figure 4.3 illustrates the concept of a
wormhole attack. The compromised nodes 11 and 2 have a direct (wormhole)
path which is much shorter (in terms of number of hops) than other potential
paths between the two parts of the network. Nodes 12 and 1 are very likely to
communicate via the wormhole path since this path creates the illusion that
these notes are very close to each other (in fact, much closer to each other than
they actually are). Without the wormhole attack, these two nodes would
ordinarily have communicated via the much longer route via nodes 11, 8, 6, 7,
5, 4 and 2.

4.3 WSN Attacks and Defenses 89

If the adversary strategically locates the wormhole in such a way to fool the
other nodes that they are just a few hops away from the base station via the
wormhole, another malicious node placed between the wormhole and the base
station can then manifest as a sinkhole [26]. Besides the sheer destabilization
of the routing process, attacks such as the sinkhole and wormhole attacks can
also be used as a vehicle for eavesdropping given the high amount of traffic
traversing the nodes being controlled by the adversary.

(c) HELLO Flood attack: This attack basically involves the attacker sending
HELLO packets to various nodes in the network to dupe them into classifying
the attacking node as their neighbor [26, 62]. Because some of the nodes may,
in fact, be very far away from the malicious node, the adversary may have to
use a high-powered transmitter (e.g., laptop class device) to achieve the range
of transmission required to deliver the HELLO packets. If this malicious node
(now perceived to be a neighboring node) broadcasts a low cost route to the
base station, WSN nodes may attempt to send data via this route, potentially
resulting into failed data transfers, retransmissions and channel congestion
(since the offending node is actually not in radio range with many of the nodes
attempting to send data via it.). Attacks such as the sinkhole and wormhole
attacks could be realized with the aid of a HELLO Flood attack if the mali-
cious node(s) is (are) located in such a way to enable successful data transfers
from the victim nodes to the malicious node(s).

(d) Acknowledgement Spoofing: When a node A sends out packets to node B,
routing algorithms used by WSNs require that B (explicitly or implicitly)
sends some form of acknowledgement to A if data from A is indeed received
by B [26]. A malicious node C that is aware of data being sent from A towards
B (awareness of the transaction arises out of the broadcast nature of the
channel) can spoof the identity of node C and send acknowledgement infor-
mation towards A, which would then believe that the acknowledgement indeed
originated from B. This kind of attack could, for instance, fool node A to
believe that node B is alive yet it is in actual sense dead. With node A having a
wrong view of the network topology, an unstable routing process could result.

Fig. 4.3 A wormhole attack
in a WSN

90 4 Security in WSNs

(e) Selective Forwarding: Rather than forward all received messages as is sup-
posed to be the case in multi-hop networks, a malicious node launching this
attack may only forward a subset of the messages [26, 61]. This kind of attack
could, for instance, be launched by an adversary who is interested in sup-
pressing the propagation of traffic originating from a certain node or subset of
nodes. In the extreme case, a malicious node launching this attack could drop
all packets received by it, creating what is termed as a black hole [26].
Figure 4.4 illustrates a black hole in the middle of a WSN. The dark colored
nodes route their traffic via the black hole, which drops all packets and denies
them access to the base station.
A notable aspect of the black hole variant of selective forwarding attacks
however is that neighboring nodes may assume the malicious node to have
failed, prompting them to use alternative routes that do not go through the
malicious node. More subtle forms of this attack may hence be more attractive
for an adversary who is keen to avoid triggering such route modifications that
may result into the exclusion of the malicious node. It is noteworthy that
selective forwarding attacks require that the malicious node is positioned in
such a way to be traversed by the traffic to (or from) the node that the attacker
seeks to target. To meet this requirement, these types of attacks may leverage
aspects of other attacks, such as the sinkhole, wormhole and Sybil attacks to
mention but a few.

Routing Table Overflows Route-poisoning can also be induced by overflowing
the routing tables in the victim nodes. In particular, by continually sending void
routing information to the WSN, an adversary could ensure that nodes in the
network have bogus routing information in their routing tables, with little or no
room available in the node buffers for correct routing information [61].

Fig. 4.4 Black hole illustration: all messages received at the black hole are not forwarded to their
destinations

4.3 WSN Attacks and Defenses 91

4.3.6 Network Layer Defenses

The use of multiple paths for data transfer can limit the effects of some route
manipulation attacks (e.g., selective forwarding, and the sinkhole and black hole
attacks), since the damage to the system would be restricted to only the traffic
traversing a subset of the paths. The challenge with this approach, however, is that
the maintenance of potentially redundant routes may have its toll on network
resources, let alone the scheme not being feasible in sparse networks which have
very few possible routes [46]. Authentication schemes that only update routing table
entries after the node originating an update is verified are another defense against
these kinds of attacks [61]. At the message level, a message authentication code
(MAC) attached to each message (including routing-specific messages) can be used
to determine if routing information could have been altered [62]. Against wormhole
attacks, precise clock synchronization between communicating nodes could be
leveraged to estimate the distance traveled by each packet and rule out the possibility
that a given malicious node is much further than it claims to be [61]. Geographic
routing protocols that use knowledge of each node’s location information as addi-
tional information to determine the source of a given packets can help overcome
attacks such as the HELLO floods or acknowledgement spoofing [46].

4.3.7 Transport Layer Attacks

Denial of Service As part of the mechanisms to ensure end-to-end reliability,
transport layer protocols in WSNs (see survey in [11]) maintain state information
(e.g., information on the status and identity of each active connection). When an
adversary opens up a large number of connections in a short time, the amount of
information stored about the connections at the concerned node(s) increases
tremendously, and in the worst case can deplete all memory at the nodes [62].

Connection Desynchronization In this attack, an adversary sends spoofed mes-
sages to one or both nodes involved in a connection, fooling them into requesting
for retransmission of missed frames. The attacker manages to force the nodes into
this synchronization recovery phase by carefully selecting the sequence numbers
and control flags of the spoofed packets. The main effect of this attack is the
wastage of energy and memory of the nodes during the continued retransmission
requests [46].

4.3.8 Transport Layer Defenses

A possible defense against connection desynchronization attacks is the authenti-
cation of all packets being exchanged during a connection. This helps ensure that

92 4 Security in WSNs

packets from a malicious sender cannot be confused with those being sent between
the genuine nodes. For the DoS attacks against the transport layer, one proposed
solution is to force each node to commit to every connection it initiates, e.g., by
having it first solves a puzzle [62]. The puzzles would have the undesired impact of
consuming a node’s resources, but would make it computationally challenging for a
node to initiate a very large number of connections and leave them unclosed [62].

4.3.9 Application Layer Attacks

Attacks on Data Aggregation Process Data aggregation, a service provided by
the application layer, ensures meaningful combination of data from the sensors
(e.g., by eliminating erroneous readings) to enable the accurate estimation of the
sensed environment [52]. Possible attacks on this service include the malicious
modification of data before it is forwarded to the base station and the complete
disruption of the service by, for instance, strategically placing a black hole in the
WSN. With the base station having wrong information about the sensed environ-
ment, the network could then be compromised in several other ways if the base
station triggers actions based on the wrong information fed to it [61].

Clock Desynchronization Clock synchronization, another service provided by the
application layer, typically has to be carried out with very high accuracy [14, 52].
Attacks on this service (i.e., clock desynchronization attacks) can be launched by
sendingmalicious beacon packets into the network, forcing some nodes to adjust their
clocks and get out of sync with the other nodes [61]. For example, in WSN appli-
cations in which time series data is used to make velocity estimates (e.g., see [7]),
clock synchronization problems would result in wrong velocity computations,
defeating the very purpose of the network. The identification of duplicate readings
from different nodes detecting the same event is another WSN operation which
heavily relies on the sensor clocks being closely synchronized [14, 25].

Selective Forwarding This attack is similar to the one already described under the
network layer, except that the attacker or compromised node makes forwarding
decisions based on the contents of the packets as opposed to the addresses of the
nodes involved [61].

4.3.10 Application Layer Defenses

Attacks on data aggregation and clock synchronization are essentially attacks on the
integrity of data being exchanged between nodes, meaning they have to be
addressed through authentication as data finds its way through the network. The
selecting forwarding attack is addressed through encryption schemes that obfuscate
the data [61].

4.3 WSN Attacks and Defenses 93

4.4 Cryptography in Sensor Networks

Cryptography is at the heart of many WSN security mechanisms designed to ensure
data confidentiality and authenticity. The two categories of cryptography—sym-
metric (or private) and asymmetric (or public) key cryptography—are both used in
several cryptography schemes proposed for WSNs. For each of symmetric and
asymmetric key cryptography, this section gives an overview of the design con-
siderations and operational dynamics of the different schemes that have been eval-
uated or proposed for WSNs. A more detailed treatment of these topics can be found
in [62, 64].

4.4.1 Symmetric Key Cryptography in WSNs

In a symmetric key system, the sender encrypts a message using a secret key that is
also known to the receiver of the message. On receiving the cipher text (i.e.,
encrypted message), the receiver uses the same key to decrypt the message. A major
requirement of symmetric key systems is that the keys remain secret, and be
changed frequently to minimize the possibility of success of attacks. Further, for
large networks, it is crucial that the distribution of keys between the sensor nodes be
done as efficiently as possible because the number of key-pairs can be very large.
To meet the above two requirements (i.e., key security and efficient key distribu-
tion), there is a wide range of techniques (i.e., key management schemes) whose
applicability to WSNs has been widely studied in the literature. We briefly discuss
these schemes in the rest of the section.

The simplest approach to key establishment in WSNs would be to use a single
key that is known to all nodes on the WSN. If one node has to communicate with
another, it only has to encrypt data using the global key, so that the receiver can
decrypt the data using the same key. The challenge with this approach is that a
single compromised node results into the entire WSN being compromised.

Centralized key distribution (e.g., the scheme used in [20]) presents a more
secure alternative to the above scheme as each node only shares its key with the
base station. Communication between any two WSN nodes begins with each of
them communicating with the base station, which sends the symmetric key required
for the two nodes to communicate. A weakness with this scheme is that it could
incur a huge communication overhead, e.g., when two neighboring nodes have to
first communicate with a distant base station before exchanging data with each
other. This scheme also faces a single point of failure vulnerability since a breach of
the base station exposes the keys for each pair of nodes on the WSN [64].

94 4 Security in WSNs

A naïve approach of solving the single point of failure problems seen with the
above two approaches is to pre-distribute the keys, i.e., preload each node pair with a
private key before deploying the nodes on a WSN (Fig. 4.5). Assume a WSN having
N nodes. Since each node will have to store N � 1 keys, a total of 0:5NðN � 1Þ keys
will have to be stored in the WSN. As N increases, this number will grow very fast,
potentially imposing significant memory constraints on the WSN [64]. To reap the
benefits of key pre-distribution while minimizing resource consumption, there is a
wide range of key distribution schemes that have been proposed in the literature [3].
We briefly discuss these next.

Random Key Pre-Distribution (RKP) [15] In this approach, each WSN node is
preloaded with a key ring, which is a set of keys randomly selected from a large
pool of keys. With a certain probability, two nodes will share a key, and hence be
able to communicate directly using that key. Figure 4.6 illustrates how RKP works.
The nodes numbered 1, 2, 3, 4 and 5 randomly choose keys from a large pool of
keys. Node 1’s key ring has the keys a, b and c while nodes 2, 3, 4 and 5,
respectively, have key rings comprised of the keys p, q and y; a, y and q; p, x and y;
and x, y and p. Nodes numbered 1 and 3 have the key a in common, and can hence
use it for their pairwise communications. Similarly, nodes 3 and 4 can use the key
y for their communications. The other nodes use their common keys for commu-
nication in the same way.

It is noteworthy that the absence of direct connectivity between every pair of
nodes will not prevent communication between any two nodes because data transfer
between a pair of nodes only requires that a path exists between the two nodes via
other nodes which share keys pairwise. For example, node 3 can communicate with
node 2 through node 5 which shares a key with both nodes. Similarly, node 1 can
communicate with node 4 via node 3.

With a WSN of 10,000 nodes, it was shown in [15] that key rings of just 250
keys can guarantee “almost-certain” connectivity for the entire network. This
translates into a total of approximately 2.5 million keys, which is a significant
reduction in memory requirements if compared to the approximately 50 million
keys required (i.e., 0:5NðN � 1Þ) for a similarly sized network using the previously
described scheme.

Variants of RKP Because the basic RKP scheme requires that two nodes only to
have a single shared key to set up a secure communication link, the compromise of
a single key ring (i.e., capture or compromise of a single node) exposes a large

Fig. 4.5 Pairwise key used
for communications between
each pair of nodes on the
network

4.4 Cryptography in Sensor Networks 95

number of nodes to attack. The q-RKP scheme [8] seeks to improve the resilience
of a WSN to attack by requiring that two nodes should share q keys, where q > 1 to
be able to set up a communication link. As q increases, the chance that an attacker
who compromises a set of keys can break a given link decreases exponentially [8].
An augmentation of the q-RKP scheme uses multipath reinforcement to improve
security [8]. In particular, after the initial secure links have been set up, this scheme
requires that the nodes update the keys with random values using multiple inde-
pendent links. The use of multiple links helps limit the impact of node capture
attacks on the network. The use of multiple independent links helps ensure that an
attacker listening to the network would have to listen to multiple links to be able to
extract enough information to compromise the network. In a location-dependent
version of RKP [1, 23], key rings are constituted based on the locations of the
sensors in such a way that neighboring nodes have more keys in common than
distant nodes. The advantage of this is that the effects of node compromise are
constrained to a local area. Several other derivatives of RKP have been proposed
(e.g., see [12, 24, 32, 41]) with the major motivation being the improvement of the
security, memory requirements and network connectivity properties of the base key
pre-distribution protocol.

Deterministic Key Distribution A shortcoming of the RKP protocols is that there
is a possibility of certain nodes being isolated from their neighbors due to a lack of
shared keys. This weakness follows from the non-guaranteed connectivity depicted
by the underlying random graph model on which the base RKP protocol is based.
Deterministic key pre-distribution schemes overcome this challenge by imposing
some requirements on the extent of connectivity between nodes. In one determin-
istic key pre-distribution scheme (see [31]), a strongly regular graph is used as the
underlying model, guaranteeing that any two adjacent nodes have connectivity to a
certain number of neighbors and every two nonadjacent nodes have connectivity to
a certain number of neighbors. In another approach to deterministic key
pre-distribution (e.g., see [63]), the WSN is modeled using a multidimensional grid

Fig. 4.6 Illustration of random key pre-distribution

96 4 Security in WSNs

in which nodes along the same dimension are able to establish shared keys while
nodes with dimension mismatches can negotiate keys through indirect connections.

4.4.2 Asymmetric Key Cryptography in WSNs

To ensure message confidentiality through asymmetric key cryptography, a sender
uses the receiver’s public key to encrypt a message while the receiver uses their
private key to decrypt the message. The private key is only known to the receiver,
while the public key can be accessed by any entity which wishes to send a message
to the receiver. Asymmetric cryptographic schemes are, however, resource-
intensive, as they involve complex computations such as the modular exponenti-
ation of large numbers [9]. In a WSN setting, while the decryption process can for
some applications be assumed to be done at the base station (which can be assumed
to have a significant amount of resources) [20], the encryption step has to be done
on the WSN nodes, which are inherently resource-limited. Asymmetric cryptog-
raphy, however, has a number of advantages that make it appealing for WSN
applications. One major advantage of asymmetric key cryptography relative to
symmetric cryptography in WSNs is that it is robust against node capture attacks
since a captured node would only reveal its private key and no other information.
Other advantages of these schemes include their scalability (since they perform the
same way regardless of the number of nodes in the network [9]), and their ease of
revocation of compromised key-pairs [9].

Early efforts towards asymmetric cryptography in WSNs worked around the
resource-intensiveness of the assymetric algorithms via a scheme which simulates an
asymmetric system through a delayed disclosure of symmetric keys in which keys
are revealed sequentially over time (scheme is presented in [40]). As argued in [20],
this delayed disclosure of keys may require nodes to store multiple messages before
they can be authenticated, which can, in turn, take its toll on the resource-constrained
nodes. Another challenge posed by the emulated asymmetric cryptography scheme
in [40] is that it requires frequent transmission of the keys and key management
messages, which has implications on both the energy requirements and security of
the network.

On basis of these factors, Gaubatz et al. [20] argue that emulated asymmetric
cryptographic schemes in WSNs eliminate many of the benefits of symmetric key
cryptography and propose the use of customized hardware to support the expensive
asymmetric key operations. In particular, they show using customized hardware that
two well–known asymmetric cryptographic schemes—the NtruEncrypt and Rabin
algorithms—are feasible for WSN systems. Software-based approaches that mini-
mize the computational load on the nodes (e.g., by among other factors selecting a
low value of the exponentiation base, e, used in the cryptographic computations)
have also been found to enable the implementation of public key cryptography in
WSNs. For example, in [58], an RSA-based method that uses e ¼ 3 is shown to
work well for the UC Berkeley MICA2 motes. A much wider range of

4.4 Cryptography in Sensor Networks 97

cryptographic schemes is studied in [42] with the authors finding that with careful
design, asymmetric cryptography is much more feasible for WSNs than earlier
thought.

4.5 Faults in WSNs

Reliable performance of WSNs is necessary in safety-critical applications, such as
process control, chemical agents monitoring, radiation contamination monitoring
and detection, medical applications and others. Here, we present an overview of
statistical data analysis and signal processing techniques that are used to detect
sensor faults. Sensor network systems have four levels of abstraction as listed
below, and failures can occur at each level.

4.5.1 Fault-Aware WSNs

Fault-aware WSNs have ability to detect, isolate, and mitigate faults at each system
level including sensors (components), sensor nodes, and network (system) level. At
each level at which faults can occur, fault-aware WSNs are required to detect
failures, isolate them and mitigate their effects. Such design improves robustness
and reduces the need for hardware redundancy. However, the tradeoffs are usually
in higher computation and communication costs that are incurred during fault
analysis and mitigation.

Component Level Each sensor node has multiple components, such as sensors,
actuators, a power supply, a radio and a microcontroller. Sensors and actuators
directly interact with the physical environment and are subjected to noise, aging and
errors due to manufacturing defects. The depletion of batteries can cause the sensor
nodes to crash. A node with failed radio is equivalent to a crashed node even if the
other sensing and power subsystems operate well. Various methods have been
proposed to mitigate sensor failures including novel fault tolerance schemes [28,
34] and detection of faulty sensors using Bayesian algorithms [13, 30].

Node Level At this level, data processing includes converting the analog sensor
data into digital data. Data encoding and decoding techniques and data compression
can be implemented to increase data rate. A node failure may occur because of the
physical damage caused by random airdrop or exposure to harmful chemicals.
Crash faults in sensor networks are identified in [10]. Fault identification algorithms
can be implemented on individual sensor nodes. This increases the storage and
computational cost at the node level. On the other hand, this method has the
advantage of saving the communication cost required to transmit all the sensor data
to the base station. Radio is the most power-consuming component of the sensor
node. Applications that perform data aggregation or data processing from multiple

98 4 Security in WSNs

nodes require the base station to inform them about the failed sensor nodes. Such
applications would need to remove the failed nodes readings from collaborative
operations of sensor nodes. Therefore, there is a two-way communication cost
involved in centralized fault detection algorithms. Table 4.1 lists the energy con-
sumed by the Telos-B mote radio and processor [53].

Network Level The nodes form a bidirectional communication link with their
peers to achieve a network of interacting sensor nodes. The network layer of a WSN
is responsible for efficient communication in the transmission medium. Inability to
perform efficient routing tasks may constitute to congestion in the network.
Lightweight and energy-efficient transport protocols that can support any generic
application have been developed in [49, 55].

System Level For proper functioning of any system, accurate coordination of the
distributed actions performed by the diverse system components is needed. The
system level analysis involves a centralized method of implementation in which
data from all the nodes are gathered at the base station prior to analysis. Algorithms
are implemented at a local computer or the data might be transported to remote
users via wide area network for analysis and processing. The advantage of this
implementation method is that local or remote computers are equipped with more
computational and storage resources than a tiny sensor node.

4.5.2 Sensor Faults in WSNs

WSNs can range from a small handful to hundreds or even thousands of sensor
nodes with various sensors monitoring diverse physical phenomena. Faulty sensor
readings can lead to unnecessary shutdowns of plants or disruptions in monitored
processes. While sensor technology advancements can reduce fault occurrences,
they cannot be completely eliminated. Here, we present fault detection techniques,
lists the common faults for sensors in WSNs, and identify mathematical models for
such faults.

Sensor and actuator faults in complex, distributed electromechanical systems are
well studied [33, 37, 48]. In [37], a systematic taxonomy of common sensor data
faults that occur in deployed sensor networks and the detailed approaches com-
monly taken to model these faults are provided. These features include character-
istics specific to the data, system, or environment pertaining to the system of
interest. According to [37], the data features are usually statistical in nature.
A confident diagnosis of any single fault may require more than one of these

Table 4.1 Example of
sensor node energy
consumption for Telos-B
node

Operation Energy consumption

Transmit one bit (radio) 2950 nJ/m

Receive one bit (radio) 2600 nJ/m

Execute one operation (processor) 4 nJ/operation

4.5 Faults in WSNs 99

features to be modeled. The fault detection techniques most commonly used include
mean and variance (determine expected behavior via regression models or cor-
recting faulty sensor values), correlation (regression methods), gradient (rate of
change), and spatial or temporal distance (determines if data is faulty). Table 4.2
shows common fault detection techniques that includes statistical, nearest neighbor,
clustering, and classification methods.

Statistical methods create a model of healthy data and then classify any behavior
that does not fit that model as a fault. For example, a statistical model of an outdoor
temperature sensor may assume that temperature should be high during the day and
low at night, and register a fault anytime that trend is not observed. In this case, a
fault could either indicate a malfunction in the sensor network or an environmental
irregularity, like a storm. Statistical methods have the advantage of justifiable
mathematical models, but are not robust to phenomena that do not fit assumed
distributions.

Fault classification methods take the opposite approach and instead of creating
mathematical models for healthy data, they use mathematical models for faulty
data. Incoming data from the WSN is analyzed for behavior that corresponds to the
faulty behavior previously modeled. The main advantage of classification methods
is that they allow users to specify an exact set of faults to be considered, while the
main disadvantage is that they usually cannot detect faults not previously observed.

Nearest neighbor methods forego data models in favor of using a
sensor-to-sensor comparison as a fault metric. These methods identify sets of
sensors whose data should be similar (i.e., the spatially nearest sensors). Anytime
these neighbors report significantly different readings from each other, a fault is
registered. The main advantage of nearest neighbor methods is that they allow faults
to be detected without a mathematical model for healthy or faulty data. The main
disadvantage is that they require appropriate neighbors to be defined, and mistakes
in deciding which sensors are related can result in poor data comparisons.

Clustering-based methods compare clusters of nodes rather than sensors. During
a learning period, sets of nodes are grouped into clusters, which are then compared
to each other to establish which clusters are measuring related data. During fault

Table 4.2 Common fault detection techniques

Method References Pros Cons

Statistical [3, 60] Mathematically justified
models

Fails if data does not fit
assumed distribution

Classification [35, 44] Provides exact set of faults Computationally expensive,
requires proper kernel choice

Nearest
neighbor

[5, 65] No assumption on data
distribution

Computationally expensive in
large networks, dependent on
input parameters

Clustering [45] No previous knowledge of
data statistics is needed,
adapts to new data

Cluster width mush be defined

100 4 Security in WSNs

detection, each cluster compares its data with its related clusters, and faults are
registered whenever two related clusters are not measuring similar data. Clustering
methods are less computationally expensive than nearest neighbor methods. The
main disadvantage of clustering methods is the difficulty of appropriately defining
clusters.

In [21], Principal Components Analysis (PCA) is used during a learning period to
model healthy data behavior with the first four eigenvectors. Using these eigen-
vectors as a baseline for healthy behavior, any activity that falls outside of the
healthy model is considered an outlier. In [35], a Support Vector Machine (SVM) is
used to model healthy behavior and detect outliers in real time for a WSN. In [56],
possible outliers are sorted and ranked periodically, speeding up the process of
outlier discovery for a high dimensional dataset. Calibration methods focus on
identifying and accounting for offsets and gains in a WSN. In [6], it is assumed that
the phenomena being measured should have similar behavior everywhere and the
characteristics of a small base set are used to model the characteristics of the entire
network. In [2], it is assumed that the phenomena being measured have some linear
correlation between a sensor and its nearest neighbor, and this information is used to
calibrate the sensors in the WSN. The NASA Stennis Space Center has implemented
a fault detection models for WSNs on a system that consists of multiple wireless
sensor nodes, fault detection software, a server, and a client (Fig. 4.7). The system is
intended for health monitoring applications of rocket test stands and widely dis-
tributed support systems, including pressurized gas lines, propellant delivery sys-
tems, and water coolant lines [16–19]. The main system components include a
server, a Network Capable Application Processor (NCAP), Communication Module,
a set of Transducer Interface Modules (TIMs), and wireless sensor nodes. The TIMs
monitor sensors that measure physical phenomena, such as temperature, pressure,

Fig. 4.7 Distributed wireless sensor network configuration that includes a server, a Network
Capable Application Processor (NCAP), a communication module, a Transducer Interface Module
(TIM) and wireless sensor nodes

4.5 Faults in WSNs 101

and flow rate. They communicate measured data to the NCAP, which analyzes the
data for faults. The NCAP records the data (as well as any detected faults) in a server
where it can be accessed by a user.

4.5.3 Mathematical Models for Sensor Faults

We discuss here a model that is used in WSN fault detection and identification
(Fig. 4.8) [54]. For a sensor node j, sensor readings from the node’s multiple
sensors are given by

ZjðkÞ ¼ z1j ðkÞz2j ðkÞ. . .zNj ðkÞ
h iT

; ð4:1Þ

where individual sensors on a node are identified as zijðkÞ, i ¼ 1; 2; . . .;N. The
model considers each node with an equal number of sensors, N, with output values
at time instance k given by zijðkÞ (i-th sensor on j-th node at time k). A true value of

a measured physical variable is uijðkÞ and a faulty measurement of the i-th sensor on

the j-th node at time instance k is ẑijðkÞ.
There are two general categories for fault detection techniques: data-centric and

system-centric [37]. Data-centric techniques focus on a single data stream to
identify faults, while system-centric techniques consider the whole system to detect

Fig. 4.8 Model of a WSN that is used in the fault analysis

102 4 Security in WSNs

faults. The two types of techniques need not be used exclusively.
A computationally inexpensive data-centric technique may be used to identify
abnormal behavior on a sensor stream, at which point a more expensive
system-centric technique can be implemented that compares the sensor data to
related neighboring nodes, verifying whether the abnormal data reflects an abnor-
mal environment or a faulty sensor reading.

If a model for the behavior of a measured phenomenon is known, the model can
be compared to the readings of a sensor, and the error between the two used for
identification of faults. If a model is not known, then other techniques listed in
Table 4.2 can be applied to identify faults.

4.5.3.1 Data-Centric Fault Models

For each type of fault, there are defining data characteristics, e.g. magnitude for
outlier fault or variance for noise fault. One can identify a range for the specific data
characteristic under normal operating conditions, and then determine a fault to have
occured whenever the characteristic of interest falls outside of the expected range.

The energy constraints in WSNs limit communication and computation com-
plexities, while one of the main hardware constraints is memory. For a large net-
work, it is infeasible to store every data sample collected by a sensor. Therefore,
online fault detection algorithms with a sliding data window are preferable
(“one-pass algorithms”, [22]). A sliding window considers the last Wsl data samples
from a sensor data stream. Data samples are stored for the duration of the sliding
window and then erased. This method is robust to changes in normal behavior of a
sensor data.

A less robust and less costly method of defining data norms is to use a learning
period. A standard assumption is that sensor data are healthy during the learning
period. By analyzing a data stream over the learning period, normal behavior can be
defined. The advantage is that a normal behavior has to be calculated only once.
However, the method is not robust to data streams whose behavior changes with
time. For example, the pressure in a pipe may be low during a learning period, but
rise when gas is pumped into it. Using a sliding window allows algorithms to
update the expected behavior of a data stream as its normal behavior changes, while
still detecting true faults in the data stream.

Outlier Fault An outlier is a single data sample whose value is significantly
(defined by the user) outside of the range defined by previous data samples, see
Fig. 4.9. To quantify this range, one can define �Zi

j , an upper bound of expected

sensor data, and Zi
j, a lower bound of expected data.

4.5 Faults in WSNs 103

The upper and lower bounds Z
i
j and Zi

j are given by

Z
i
jðkÞ ¼ max zijðpÞ

n o
þ cout max zijðpÞ

n o
�min zijðpÞ

n o���
���; ð4:2Þ

Zi
jðkÞ ¼ min zijðpÞ

n o
� cout max zijðpÞ

n o
�min zijðpÞ

n o���
���; ð4:3Þ

for p ¼ k0; k0 þ 1; . . .; k0 þWln � 1 where k0 is the first data point in the learning
period, Wln is the number of data points in the learning period, and cout is a positive
constant that determines the outlier detection sensitivity. For instance, cout ¼ 0:20
allows the signal to vary 20 % of the range above and below data limits observed
during the learning period. Increasing cout lowers outlier detection sensitivity by
allowing some faulty readings to go undetected, while reducing the false alarm rate.

When using a sliding window, Z
i
jðkÞ and Zi

jðkÞ are recalculated periodically.
Bounds can be recalculated every time new data is received. For a sliding window
of a length Wsl, every time new data is received, the sliding window is updated, and
the bounds become functions of the current data sample. The running index p in this
case is p ¼ k �Wsl; k �Wsl þ 1; . . .; k � 1. The benefit of using such bounds is that
if the range of expected data changes, the bounds will adapt to them. However,
frequent updating of the signal bounds increases the computational cost and is a
natural tradeoff between the false alarm rate and computational cost. The condition
for an outlier fault to be triggered is given by

zijðkÞ[Z
i
jðkÞ or zijðkÞ\Zi

jðkÞ: ð4:4Þ

Spike Fault The term spike fault is used in reference of a small number, rs, of data
points that rise or fall more rapidly than the data during the healthy sensor behavior.
Figure 4.10 shows a spike fault where data returns to normal behavior after the

spike. The following parameters are used to identify a spike fault: R
i
j, an upper

Fig. 4.9 Outlier occurring between 100 and 150 s

104 4 Security in WSNs

bound on the gradient which may be ascribed to healthy data on the i-th sensor at
the j-th node, and rs, a number of successive samples required to have an unhealthy
gradient before a spike occurs. The bound that is used in determining healthy
behavior is based on a learning period or a sliding window

R
i
j ¼ ð1þ cspkÞmax zijðpÞ � zijðp� 1Þ

���
��� ð4:5Þ

where p ¼ k0; k0 þ 1; . . .; k0 þWln � 1 in case of a fixed learning period and p ¼
k � rs �Wsl; k �Wsl þ 1; . . .; k � rs � 1 in case of a sliding window, and cspk is a
positive constant that determines the detection sensitivity.

In case of using a sliding window, the gradient bound is a function of sample time
k. The end of the sliding window should be set more than rs samples away from the
current data sample. The number of successive samples, rs, required for a spike fault
is influenced both by the phenomena being measured and the sampling rate. Some
phenomena, such as the intensity of light, may be expected to produce signals with
sharp gradients [37] while others are expected to change smoothly. For a
slow-varying signal, a spike could indicate a fault in the sensor or that the sampling
rate is too slow. A small rs hastens the detection of spikes, which is crucial in time
constrained applications. Conditions for spike detection are given by:

zijðkÞ � zijðk � 1Þ[R
i
j zijðkÞ � zijðk � 1Þ\� R

i
j

zijðk � 1Þ � zijðk � 2Þ[R
i
j or zijðk � 1Þ � zijðk � 2Þ\� R

i
j

..

. ..
.

zijðk � rs þ 1Þ � zijðk � rsÞ[R
i
jðkÞ zijðk � rs þ 1Þ � zijðk � rsÞ\� R

i
jðkÞ
ð4:6Þ

There are two sets of conditions because a spike fault model requires rs successive
points to have either an abnormally large positive or negative gradients. Moreover,

Fig. 4.10 Spike occurring between 100 and 150 s

4.5 Faults in WSNs 105

this eliminates false positive spike identification when high frequency noise is
present, resulting in sensor readings having large gradients in random directions.

Variance Fault Variance fault is defined as a set of data whose values tend to
differ from the mean by an abnormally large or small amount, where the threshold
parameters are chosen by the user. Defining the length of the window over which
variance is calculated as Wv, and the expected value of data over that window as �zij,
the variance is then given by [38]:

Vi
j ðkÞ ¼

1
Wv � 1

Xk�1

p¼k�Wv

zijðpÞ � �zij
� �2

: ð4:7Þ

There are two types of variance faults: low variance and high variance faults.
A low variance fault (also called a stuck-at fault) occurs when the variance of a data
stream is abnormally low, i.e., when a signal is stuck at a certain value. A high
variance fault occurs when the variance is abnormally high. The model parameters

include Vi
j and V

i
j, a lower and an upper bound on signal variance under healthy

conditions.

The variance fault has occurred if Vi
j ðkÞ[V

i
jðkÞ or Vi

j ðkÞ\Vi
jðkÞ. Increasing the

learning or sliding window size provides a larger sample size for determining the
variance. If the phenomenon being measured is slow-varying throughout learning
period, it will result in a more accurate representation of the steady state variance of
the system. However, if the phenomenon is fast-varying over the learning period,
signal changes will be reflected in the healthy variance parameters. A small window
size will emphasize the role of variance as imperfections in the system, but will also
increase false positives. Figures 4.11 and 4.12 show low variance and high variance
faults, respectively.

There are several possible causes of variance faults. The term “noise” is often
used to describe some high variance faults in the case of signals with particular

Fig. 4.11 Low variance fault occurring between 120 and 160 s

106 4 Security in WSNs

mathematical attributes. Several types of noise exist, such as white noise, pink noise
(equal power in bandwidths that are proportionally wide, see below), and violet
noise (increases with frequency). Noise is usually classified by its behavior in the
power spectrum and the fast Fourier transform (FFT) is often used to detect and
isolate a noise fault [43].

High Frequency Noise Fault Noise classification and quantification is usually
done in the frequency domain where the FFT is used to obtain the signal power
spectrum, Fig. 4.13. Here, we describe a method for detecting undesired high
frequency signals in the power spectrum and how to distinguish the presence of
unexpected high frequency useful data and high frequency noise.

Fig. 4.12 High variance fault occurring between 150 and 200 s

Fig. 4.13 Time domain and power spectrum for a sinusoid with small amount of white noise (top)
and large amount of white noise (bottom)

4.5 Faults in WSNs 107

Figure 4.13 indicates how the FFT can be used to detect noise in a sensor signal.
Define the window of data on which the FFT is performed as Wfft. The variables

that define a high frequency noise fault include Y
i
j (the maximum power level

classified as noise in the power spectrum) and �vij (the highest frequency of a useful

signal with a power spectrum contribution above the noise level Y
i
j). To define what

constitutes a meaningful contribution to the power spectrum, one needs to compute
the power spectrum of a signal over a range of frequencies higher than v ¼ vmax. It
is assumed that vmax is significantly higher than any frequency that contributes more
than noise to the power spectrum. In particular, it is assumed that the highest
frequency component is at least Wpow higher than any frequency that makes a
meaningful contribution to the power spectrum. The maximum power level which

noise is expected to contribute, Y
i
j, is then based on the power spectrum contri-

butions of the last Wpow frequency components in the FFT:

Y
i
j ¼ max Yi

j ðvÞ
n o

þ cfft max Yi
j ðvÞ

n o
�min Yi

j ðvÞ
n o���

���; v 2 ðvmax �Wpow; vmaxÞ
ð4:8Þ

where cfft is the parameter that is used to tune the sensitivity of the high frequency
noise model. Any frequency component with a power spectrum contribution at or

below Y
i
j is considered noise, and any frequency component which contributes a

power level above Y
i
j is said to have a meaningful contribution to the data stream.

The highest contributing frequency component under healthy conditions as the

highest frequency v with a power spectrum contribution above Y
i
j is defined as:

�vij ¼ max vijjYi
j ðvÞ[Y

i
j

n o
: ð4:9Þ

A high frequency noise fault is then defined as the phenomenon wherein the power
spectrum of a signal has a meaningful contribution at a frequency higher than the

highest frequency expressed during the learning period, Yi
j ðvÞ[Y

i
j for v[�vij.

4.5.3.2 System-Centric Fault Models

System-centric fault models use data from multiple sensors in the system to detect
faults. The following techniques require at least one healthy sensor to be correlated
to the faulty sensor. This in turn requires that the nodes in the WSN have multiple
sensors that measure the same (or related) phenomena, i.e., those nodes are densely
deployed to the point of oversampling phenomena of interest [2]. To determine if
two or more sensors measure related data, one can use variograms. Variograms
quantify the correlation of a phenomenon at one point in the system with a

108 4 Security in WSNs

phenomenon at another point in the system. A variogram cij;l between sensors j and
l is defined as:

cij;lðkÞ ¼
1

2Wvgm

Xk�Wvgm þ 1

p¼k

zijðpÞ � zilðpÞ
� �2

; ð4:10Þ

where Wvgm is the window of data where the variogram is being calculated. In the
event of spatial correlation among sensors, the variogram is a function of radius
r around sensor j:

cijðkÞ ¼
1

2Wvgm XjðrÞ
�� ��

X
q2XjðrÞ

Xk�Wvgm þ 1

p¼k

zijðpÞ � ziqðpÞ
� �2

; ð4:11Þ

where r is the radius around sensor j, XjðrÞ is the set of all neighbors of sensor
j within radius r, and Xj j is the cardinality of the set X. A small variogram implies a
high correlation among the sensors. If the variogram between a sensor and its
neighbors is smaller than some threshold C, then the sensor reading is related to its
neighbors.

Offset Fault An offset fault occurs when sensor data values are offset from the true
phenomenon being measured by a constant value:

ẑijðkÞ ¼ f uijðkÞ
� �

þ b0; ð4:12Þ

where the function f represents a nonlinear sensor model, uijðkÞ is a true value being
measured on the i-th sensor at the j-th node, and b0 is the offset. Figure 4.14 shows
an example of an offset fault. To determine the offset value, one usually requires

Fig. 4.14 A signal with a constant offset fault

4.5 Faults in WSNs 109

either a ground truth value of the sensor readings or a precise sensor model f, see
[16]. In case of a densely distributed sensor network, an offset fault can be modeled
as a constant difference between the readings of a sensor and the readings of its
related neighbors.

Let us consider the difference between a sensor’s readings and the average of the
readings of its related neighbors:

Di
jðkÞ ¼ zijðkÞ �

1
Xj

�� ��
X
q2Xj

ziqðkÞ: ð4:13Þ

A constant offset is modeled as a slow-varying difference between a sensor’s
measurements and the true value being measured. To distinguish between a con-
stant offset and a time-changing offset (which may be considered a drift fault, see

below) the variance, var Di
jðkÞ

� �
, over a window of a certain size is observed. The

conditions for an offset fault are that the difference between a sensor’s readings and
the readings of its related neighbors be above the threshold value and that the
variance of the difference is sufficiently small, i.e., Di

jðkÞ� coft and

var Di
jðkÞ

� �
� boft, where coft and boft are model parameters.

Gain Fault A gain fault occurs when the sensor data for a certain measured
phenomenon differ from the healthy sensor data by a constant ratio; see Fig. 4.15.
In the event of a gain fault, it is expected that the gain of a sensor’s readings
compared to the average of its neighbor’s readings, gij, to be significantly lower or
higher than 1. This ratio can be found as

Fig. 4.15 A signal with the gain fault (higher gain in this case)

110 4 Security in WSNs

gijðkÞ ¼
zijðkÞ

1
Xjj j

P
q2Xj

ziqðkÞ
: ð4:14Þ

To quantify variation of the sensor’s gain, we consider the variance var gijðkÞ
� �

over the window of data. A gain fault has occurred when gijðkÞ � 1
���

���� cgn and

var gijðkÞ
� �

� bgn, where cgn and bgn are small, adjustable parameters.

Drift Fault A drift fault occurs when sensor readings drift away from the real
values by an amount that increases with time, Fig. 4.16.

Given Di
jðkÞ in (4.13), a drift fault model represents a steady increase in time,

i.e., an offset increment kijðk; LÞ ¼ Di
jðkÞ � Di

jðk � LÞ is a function of time incre-
ment L:

kijðk; LÞ ¼ kijðLÞ ¼ cdft: ð4:15Þ

If cdft varies with time, then (4.15) models a drift that is increasing according to
the integral of cdft.

Questions and Exercises

1. What are the advantages of random key pre-distribution (RKP) relative to
centralized key distribution in WSNs?

2. Briefly describe the shortcomings ofRKP and the general philosophy of operation
of some of the schemes that have been designed to address these shortcomings.

Fig. 4.16 Drift fault when the offset between the signals is steadily increasing

4.5 Faults in WSNs 111

3. Briefly describe the steps through which a keyed checksum can be used to
verify the integrity of messages exchanged between WSN nodes.

4. Under what conditions would it be feasible to apply asymmetric key cryp-
tography in WSNs?

5. Use MATLAB to simulate an RKP scheme in which 1000 nodes create key
rings containing m keys drawn from a pool of 50 keys for m = 2, 5, 10 and 20.
Comment on the connectivity of the network for the different values of
m. Assume the keys are the numbers 1 through 50.

6. What is the difference between a wormhole attack and a black hole attack? In
your opinion which of these attacks would be more difficult to detect in
practice? Give a reason for your answer.

7. Assume that sensor data follow sinusoidal function in time with amplitude of
10. Give an example of an outlier sensor fault and how would you set the
threshold parameters in such a case? Does the sampling rate affects the fault
model and how?

8. What would be the scenario where the spike fault would overlap with the
outlier fault? Can this be prevented?

9. How does the variance fault differ from the high frequency noise fault? Which
class set is a superset of the other?

10. Use MATLAB to simulate a high frequency noise fault for a simple data set
you create. Then tune fault parameters such that the fault can be effectively
detected.

11. Suppose that a sensor is producing sinusoidal type of data over time
z1ðtÞ ¼ 5 sinðwtÞ. At a certain moment there is a gain fault of value 2. How
would a faulty data look like and what other faults could be triggered at that
moment? Would any other fault be triggered at steady state value of sensor
data, i.e., after fault has already occurred?

12. Consider a real life scenario of a sensor with saturation limits at the output. If
the drift fault occurs, after some time, what would such fault look like? Any
fault detection after long time period will identify what kind of sensor problem?

References

1. F. Anjum, “Location dependent key management using random key-predistribution in sensor
networks,” in Proc. 5th ACM Workshop on Wireless Security, Los Angeles, California, 2006.

2. L. Balzano and R. Nowak, “Blind calibration of networks of sensors: Theory and algorithms,”
in Networked Sensing Information and Control, V. Saligrama, Ed. Springer US, 2008,
pp. 9–37.

3. L. Bettencourt, A. Hagberg, and L. Larkey, “Separating the wheat from the chaff: Practical
anomaly detection schemes in ecological applications of distributed sensor networks,” in
Proceedings of the IEEE International Conference on Distributed Computing in Sensor
Systems, 2007.

4. R. Beyah, J. McNair, and C. Corbett, Ed., Security in Ad Hoc and Sensor Networks, World
Scientific Publishing Co, Singapore, 2010.

112 4 Security in WSNs

5. J. Branch, B. Szymanski, C. Giannella, and R. Wolff, “In-network outlier detection in wireless
sensor networks,” in Proceedings of the IEEE Conference on Distributed Computing Systems,
2006.

6. V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak, “A collaborative approach to
in-place sensor calibration,” in Proceedings of the Second International Workshop on
Information Processing in Sensor Networks (IPSN, 2003, pp. 301–316.

7. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat monitoring:
application driver for wireless communications technology,” SIGCOMM Comput. Commun.
Rev., vol. 31, pp. 20–41, 2001.

8. H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor
Networks,” in Proc. 2003 IEEE Symposium on Security and Privacy, 2003.

9. H. Chan, A. Perrig, and D. Song, “Key Distribution Techniques for Sensor Networks,”
Wireless Sensor Networks, C. S. Raghavendra, K. Sivalingam, and T. Znati, Eds., ed:
Springer US, 2004, pp. 277–303.

10. S. Chessa and P. Santi, “Crash Fault Identification in Wireless Sensor Networks,” Computer
Communications, vol. 25, no. 14, pp. 1273–1282, 2002.

11. W. Chonggang, K. Sohraby, L. Bo, M. Daneshmand, and H. Yueming, “A survey of transport
protocols for wireless sensor networks,” IEEE Network, vol. 20, pp. 34–40, 2006.

12. W. Du, J. Deng, Y.S. Han, and P.K. Varshney, “A pairwise key pre-distribution scheme for
wireless sensor networks,” in Proc. the 10th ACM Conference on Computer and
Communications security, Washington D.C., USA, 2003.

13. E. Elnahrawy and B. Nath, “Clearing and Querying Noisy Sensors,” Proc. Workshop on
Sensor Networks and Applications (WSNA), 2003.

14. J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using reference
broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 147–163, 2002.

15. L. Eschenauer and V.D. Gligor, “A key-management scheme for distributed sensor
networks,” in Proc. 9th ACM Conference on Computer and Communications Security,
Washington, DC, USA, 2002.

16. F. Figueroa, J. Schmalzel, J. Morris, M. Turowski, and R. Franzl, “Integrated system health
management: Pilot operational implementation in a rocket engine test stand,” in AIAA
Infotech@Aerospace 2010, Atlanta, GA, April 2010.

17. F. Figueroa, J. Schmalzel, R. Aguilar, M. Shwabacher, and J. Morris, “Integrated system
health management (ISHM) for test stand and j-2x engine: Core implementation,” in 44th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, July 2008.
18. F. Figueroa, J. Schmalzel, M. Walker, M. Venkatesh, R. Kapadia, J. Morris, M. Turowski,

and H. Smith, “Integrated system health management: Foundational concepts, approach, and
implementation,” NASA Stennis Space Center, Tech. Rep., April 2009.

19. F. Figueroa, J. Schmalzel, R. Aguilar, M. Shwabacher, and J. Morris, “Tutorial integrated
systems health management (ISHM),” in NASA/ESA Conference on Adaptive Hardware and
Systems (AHS-2011), San Diego, CA, June 2011.

20. G. Gaubatz, J.-P. Kaps, and B. Sunar, “Public Key Cryptography in Sensor Networks—
Revisited,” Security in Ad-hoc and Sensor Networks, vol. 3313, C. Castelluccia, H.
Hartenstein, C. Paar, and D. Westhoff, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 2–18.

21. J. Gupchup, A. Terzis, R.C. Burns, and A.S. Szalay, “Model-based event detection in wireless
sensor networks,” Computing Research Repository arXiv:0901.3923, 2009.

22. C. Han, L. Xu, and G. He, “Mining recent frequent itemsets in sliding windows over data
streams,” Computing and Informatics, vol. 27, pp. 315–339, 2008.

23. C. Hartung, J. Balasalle, and R. Han, “Node Compromise in Sensor Networks: The Need for
Secure Systems,” University of Colorado at Boulder Technical Report CU-CS-990-052005.

24. J. Hwang and Y. Kim, “Revisiting random key pre-distribution schemes for wireless sensor
networks,” in Proc. 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks,
Washington DC, USA, 2004.

References 113

http://arxiv.org/abs/0901.3923

25. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a scalable and robust
communication paradigm for sensor networks,” in Proc. 6th Annual International Conference
on Mobile Computing and Networking, Boston, Massachusetts, USA, 2000.

26. C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor Networks: Attacks and
Countermeasures,” in Proc. First IEEE International Workshop on Sensor Network Protocols
and Applications, 2002, pp. 113–127.

27. F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “Fault tolerance techniques for
wireless ad hoc sensor networks,” Proceedings of IEEE Sensors, 2002, pp. 1491–1496 vol. 2.

28. F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, “Fault Tolerance Techniques
for Wireless Ad Hoc Sensor Networks,” IEEE Sensors, vol. 2, pp. 1491–1496, 2002.

29. B. Krishnamachari and S. Iyengar, “Distributed Bayesian algorithms for fault-tolerant event
region detection in wireless sensor networks,” IEEE Transactions on Computers, vol. 53,
pp. 241–250, 2004.

30. B. Krishnamachari and S. Iyengar, “Distributed Bayesian Algorithms for Fault-Tolerant Event
Region Detection in Wireless Sensor Networks,” IEEE Transactions on Computers, vol. 53,
no. 3, 2004.

31. J. Lee and D. Stinson, “Deterministic Key Predistribution Schemes for Distributed Sensor
Networks,” Selected Areas in Cryptography, vol. 3357, H. Handschuh and M. A. Hasan, Eds.,
ed: Springer Berlin Heidelberg, 2005, pp. 294–307.

32. D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor networks,” in Proc. 10th
ACM Conference on Computer and Communications Security, Washington D.C., USA, 2003.

33. X. Luo, M. Dong, and Y. Huang, “On distributed fault-tolerant detection in wireless sensor
networks,” IEEE Transaction on Computers, vol. 55, no. 1, pp. 58–70, 2006.

34. K. Marzullo, “Tolerating Failures of Continuous Valued Sensors,” ACM Transactions on
Computer Systems, vol. 8, pp. 284–304, 1990.

35. M.S. Mohamed and T. Kavitha, “Outlier detection using support vector machine in wireless
sensor network real time data,” IEEE Journal of Soft Computing and Engineering, vol. 1, no.
2, pp. 68–72, May 2011.

36. J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil attack in sensor networks: analysis
and defenses,” Proc. Third International Symposium on Information Processing in Sensor
Networks, 2004, pp. 259–268.

37. K. Ni, N. Ramanathan, M.N.H. Chehade, L. Balzano, S. Nair, S. Zahedi, G. Pottie, M.
Hansen, M. Srivastava, and E. Kohler, “Sensor network data fault types,” ACM, vol. 5, no. 3,
pp. 1–29, August 2009.

38. R.L. Ott and M.T. Longnecker, An Introduction to Statistical Methods and Data Analysis,
Cengage Learning, 6th Edition, 2008.

39. A.S.K. Pathan, H.-W. Lee, and C.S. Hong, “Security in wireless sensor networks: Issues and
challenges,” Proc. 8th International Conference on Advanced Communication Technology,
ICACT 2006, 2006.

40. A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D. Culler, “SPINS: Security Protocols for
Sensor Networks,” Wireless Networks, vol. 8, pp. 521–534, 2002.

41. R.D. Pietro, L.V. Mancini, and A. Mei, “Random key-assignment for secure Wireless Sensor
Networks,” in Proc. 1st ACM Workshop on Security of Ad Hoc and Sensor Networks, Fairfax,
Virginia, 2003.

42. K. Piotrowski, P. Langendoerfer, and S. Peter, “How public key cryptography influences
wireless sensor node lifetime,” in Proc. 4th ACM Workshop on Security of Ad Hoc and Sensor
Networks, Alexandria, Virginia, USA, 2006.

43. J. Proakis and D. Manolakis, Digital Signal Processing, Prentice Hall, 2006.
44. S. Rajasegarar, C. Leckie, M. Palaniswami, and J. Bezdek, “Quarter sphere based distributed

anomaly detection in wireless sensor networks,” in Proceedings of the IEEE International
Conference on Communications, 2007.

45. S. Rajasegarar, C. Leckie, M. Palaniswami, and J. Bezdek, “Distributed anomaly detection in
wireless sensor networks,” in Proceedings of the IEEE International Conference on
Communication Systems, 2006.

114 4 Security in WSNs

46. D.R. Raymond and S.F. Midkiff, “Denial-of-Service in Wireless Sensor Networks: Attacks
and Defenses,” IEEE Pervasive Computing, vol. 7, pp. 74–81, 2008.

47. “Coremicro reconfigurable embedded smart sensor node (CRE-SSN) product brochure, url:
http://americangnc.com/images/cre-ssn brochure.pdf, accessed Feb. 2015.” American GNC
Corporation, Tech. Rep., 2012.

48. M. Russell, G. Lecakes, S. Mandayam, and S. Jensen, “The intelligent valve: A diagnostic
framework for integrated system-health management of a rocket-engine test stand,” IEEE
Transactions on Instrumentation and Measurement, vol. 60, no. 4, pp. 1489–1497, April
2011.

49. Y. Sankarasubramaniam, Ö.B. Akan, and I.F. Akyildiz, “ERST: Event-to-Sink Reliable
Transport in Wireless Networks,” ACM MobiHoc’03, 2003.

50. M. Shaneck, K. Mahadevan, V. Kher, and Y. Kim, “Remote Software-Based Attestation for
Wireless Sensors,” in Security and Privacy in Ad-hoc and Sensor Networks, vol. 3813, R.
Molva, G. Tsudik, and D. Westhoff, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 27–41.

51. B. Shen, “Application of Error Correction Codes in Wireless Sensor Networks,” Master of
Science (MS), The University of Maine, 2007.

52. E. Shi and A. Perrig, “Designing secure sensor networks,” Wireless Communications, IEEE,
vol. 11, pp. 38–43, 2004.

53. M. Srivastava, “Energy Aware Wireless Sensor and Actuator Networks,” CENS, 2005.
54. N. Vosburg, R. Selmic, S. Oonk, and F. Maldonado, “Intelligent distributed and ubiquitous

health management system: Data storage and processing,” in AIAA Infotech@Aerospace,
Boston, MA, August 2013.

55. C.Y. Wan, A.T. Campbell, and L. Krishnamurthy, “PSFQ: A Reliable Transport Protocol for
Wireless Sensor Networks,” ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA ‘02), 2002.

56. Y. Wang, S. Parthasarathy, and S. Tatikonda, “Locality sensitive outlier detection: A ranking
driven approach,” in Proc. IEEE 27th International Conference on Data Engineering (ICDE),
2011, pp. 410–421.

57. T.-Y. Wang, L.-Y. Chang, D.-R. Duh, and J.-Y. Wu, “Fault-tolerant decision fusion via
collaborative sensor fault detection in wireless sensor networks,” IEEE Transactions on
Wireless Communications, vol. 7, no. 2, pp. 756–768, 2008.

58. R. Watro, D. Kong, S.-F. Cuti, C. Gardiner, C. Lynn, and P. Kruus, “TinyPK: securing sensor
networks with public key technology,” in Proc. 2nd ACM Workshop on Security of Ad Hoc
and Sensor Networks, Washington DC, USA, 2004.

59. X. Wenyuan, M. Ke, W. Trappe, and Y. Zhang, “Jamming sensor networks: attack and
defense strategies,” IEEE Network, vol. 20, pp. 41–47, 2006.

60. W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, and P. Deng, “Outlying and boundary data
detection in sensor networks,” IEEE Transactions on Knowledge and Data Engineering, vol.
19, no. 8, pp. 1145–1157, 2011.

61. K. Xing, S. Srinivasan, M.M. Rivera, J. Li, and X. Cheng, “Attacks and Countermeasures in
Sensor Networks: A Survey,” in Network Security, S. C. H. Huang, D. MacCallum, and D.-Z.
Du, Eds., ed: Springer US, 2010, pp. 251–272.

62. W. Yong, G. Attebury, and B. Ramamurthy, “A survey of security issues in wireless sensor
networks,” Communications Surveys & Tutorials, IEEE, vol. 8, pp. 2–23, 2006.

63. Z. Yun and F. Yuguang, “Scalable and deterministic key agreement for large scale networks,”
IEEE Transactions on Wireless Communications, vol. 6, pp. 4366–4373, 2007.

64. Z. Yun, F. Yuguang, and Z. Yanchao, “Securing wireless sensor networks: a survey,”
Communications Surveys & Tutorials, IEEE, vol. 10, pp. 6–28, 2008.

65. K. Zhang, S. Shi, H. Gao, and J. Li, “Unsupervised outlier detection in sensor networks using
aggregation tree,” in Proceedings of the Advanced Data Mining and Applications, 2007.

66. S. Zoican, “Frequency hopping spread spectrum technique for wireless communication
systems,” in Proc. 5th International Symposium on Spread Spectrum Techniques and
Applications, pp. 338–341 vol. 1, 1998.

References 115

http://americangnc.com/images/cre-ssn

	4 Security in WSNs
	4.1 Why WSNs are Predisposed to Attacks?
	4.2 Security Requirements
	4.3 WSN Attacks and Defenses
	4.3.1 Physical Layer Attacks
	4.3.2 Physical Layer Defenses
	4.3.3 Link Layer Attacks
	4.3.4 Link Layer Defenses
	4.3.5 Network Layer Attacks
	4.3.6 Network Layer Defenses
	4.3.7 Transport Layer Attacks
	4.3.8 Transport Layer Defenses
	4.3.9 Application Layer Attacks
	4.3.10 Application Layer Defenses

	4.4 Cryptography in Sensor Networks
	4.4.1 Symmetric Key Cryptography in WSNs
	4.4.2 Asymmetric Key Cryptography in WSNs

	4.5 Faults in WSNs
	4.5.1 Fault-Aware WSNs
	4.5.2 Sensor Faults in WSNs
	4.5.3 Mathematical Models for Sensor Faults
	4.5.3.1 Data-Centric Fault Models
	4.5.3.2 System-Centric Fault Models

	Questions and Exercises
	References

