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Abstract. In this paper, we address the problems with fast proximity
searches for high-dimensional data by using a graph as an index. Graph-
based methods that use the k-nearest neighbor graph (KNNG) as an
index perform better than tree-based and hash-based methods in terms
of search precision and query time. To further improve the performance
of the KNNG, the number of edges should be increased. However, increas-
ing the number takes up more memory, while the rate of performance
improvement gradually falls off. Here, we propose a pruned bi-directed
KNNG (PBKNNG) in order to improve performance without increasing
the number of edges. Different directed edges for existing edges between
a pair of nodes are added to the KNNG, and excess edges are selectively
pruned from each node. We show that the PBKNNG outperforms the
KNNG for SIFT and GIST image descriptors. However, the drawback
of the KNNG is that its construction cost is fatally expensive. As an
alternative, we show that a graph can be derived from an approximate
neighborhood graph, which costs much less to construct than a KNNG,
in the same way as the PBKNNG and that it also outperforms a KNNG.

1 Introduction

How to conduct fast proximity searches of large-scale high dimensional data is
an inevitable problem not only for similarity-based image retrieval and image
recognition but also for multimedia data processing and large-scale data mining.
Image descriptors, especially local descriptors, are used for various image recog-
nition purposes. Since a large number of local descriptors are extracted from just
one image, shortening the query time is crucial when handling a huge number of
images. Thus, indices are indispensable in this regard for large-scale data, and
as a result, various indexing methods have been proposed. In recent years, an
approximate proximity search method that does not guarantee exact results has
been the prevailing method used in the field because the query time rather than
search accuracy is prioritized.

Hash-based and quantization-based methods are approximate searches with-
out original objects. LSH [1], which is one of the hash-based methods, searches
for proximate objects by using multiple hash functions, which compute the same
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hash value for objects that are close to each other. Datar et al. [2] applied LSH
to Lp spaces so that it could be used in various applications. Spectral hashing [3]
was proposed as a method that optimizes the hash function by using a statis-
tical approach for datasets. Quantization-based methods [4,5] quantize objects
and search for quantized objects. For example, the product quantization method
(PQ) [5] splits object vectors into sub vectors and quantizes the sub vectors to
improve the search accuracy. While recent hash-based and quantization-based
methods drastically reduce memory usage, the search accuracies are significantly
lower than those of proximity searches using original objects.

Proximity searches using original objects are broadly classified into tree-based
and graph-based. In the tree-based method, a whole space is hierarchically and
recursively divided into sub spaces. As a result, the sub spaces form a tree
structure. Various kinds of methods have been proposed, including kd-tree [6],
SS-tree [7], vp-tree [8], and M-tree [9]. While these methods provide exact search
results, tree-based approximate search methods have also been studied. ANN
[10] is a method that applies an approximate search to a kd-tree. SASH [11]
is a tree that is constructed without dividing a space. FLANN [12] is an open
source library for approximate proximity searches. It provides randomized kd-
trees wherein multiple kd-trees are searched in parallel [12,13] and k-means trees
that are constructed by hierarchical k-means partitioning [12,14].

Graph-based methods use a neighborhood graph as a search index. Arya et al.
[15] proposed a method that uses randomized neighbor graphs as a search index.
Sebastian et al. [16] used a k-nearest neighbor graph (KNNG) as a search index.
Each node in the KNNG has directed edges to the k-nearest neighboring nodes.
Although a KNNG is a simple graph, it can reduce the search cost and provides
a high search accuracy. Wang et al. [17] improved the search performance by
using seed nodes, which are starting nodes for exploring a graph, obtained with
a tree-based index depending on the query from an object set. Hajebi et al.
[18] showed that searches using KNNGs outperform LSH and kd-trees for image
descriptors. Therefore, in this paper, we focused on a graph-based approximate
search for image descriptors to acquire higher performance.

Let G = G(V,E) be a graph, where V is a set of nodes that are objects in
a d-dimensional vector space R

d. E is the set of edges connecting the nodes. In
graph-based proximity searches, each of the nodes in a graph corresponds to an
object to search for. The graph that these methods use is a neighborhood graph
where neighboring nodes are associated with edges. Thus, neighboring nodes
around any node can be directly obtained from the edges. The following is a
simple nearest neighbor search for a query object that is not a node of a graph
using a neighborhood graph in a best-first manner.

An arbitrary node is selected from all of the nodes in the graph to be
the target. The closest neighboring node to the query is selected from
the neighboring nodes of the target. If the distance between the query
and the closest neighboring node is shorter than the distance between the
query and the target node, the target node is replaced by the closest node.
Otherwise, the target node is the nearest node (the search result), and the
search procedure is terminated.
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The search performance of a KNNG improves as the number of edges for
each node increases. However, the rate of improvement gradually tapers off while
the edges occupy more and more memory. To avoid this problem, we propose a
pruned bi-directed k-nearest neighbor graph (PBKNNG). First, it adds reversely
directed edges to all of the directed edges in a KNNG. While it can improve the
search performance, the additional edges tend to concentrate on some of the
nodes. Such excess edges obviously reduce the search performance because the
number of accesses to unnecessary nodes to search increases. Therefore, second,
the long edges of each node holding excess edges are simply pruned. Third, edges
that have alternative paths for exploring the graph are selectively pruned. Thus,
we show that the PBKNNG outperforms not only the KNNG but also the tree-
and quantization-based methods.

As the number of objects grows, the brute force construction cost of a KNNG
exponentially increases because the distances between all pairs of objects in the
graph need to be computed. Thus, Dong et al. [19] reduced the construction
cost by constructing an approximate KNNG. Here, the ANNG [20] is not an
approximate KNNG but an approximate neighborhood graph that is incremen-
tally constructed using approximate k-nearest neighbors that are searched for by
using the partially constructed ANNG. Such approximate neighborhood graphs
can drastically reduce construction costs. In this paper, we also show that the
search performance of a graph (PANNG) derived from an ANNG instead of a
KNNG in the same way as a PBKNNG can be close to that of a PBKNNG.

The contributions of this paper are as follows.

– We propose a PBKNNG derived from a KNNG and show that it outperforms
not only the KNNG but also the tree- and quantization-based methods.

– We show the effectiveness of a PANNG derived from an approximate neigh-
borhood graph instead of a KNNG derived in the same way as a PBKNNG.

2 KNNG-Based Proximity Search

2.1 Proximity Search Algorithm

Most applications including image search and recognition require more than one
object to be the result for a specific query. Therefore, we decided to focus on
k-nearest neighbor (KNN) searches in this study. The search procedure with
a graph-based index generally consists of two steps: obtaining seed nodes and
exploring the graph with the seed nodes. Seed nodes can be obtained by ran-
dom sampling [18,20], clustering [16], or finding nodes that neighbor a query
by using a tree-based index [17,21]. Although the methods using a tree-based
index perform the best, we used the simplest method, random sampling, in order
to evaluate the graph structure without the effect of the tree-structure or clus-
tering. As far as the second step goes, there are two methods of exploring a
graph. In the first, the neighbors of the query are traced from seed objects in
the best-first manner in Sect. 1, and this is done repeatedly using different seeds
to improve the search accuracy [16,18]. In the second, nodes within the search
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Fig. 1. (a) Relationship between the search space, exploration space, and query.
(b) Search accuracy vs. query time of KNNG for different numbers of edges k for
10 million SIFT image descriptors. (c) Average distance of objects for each rank of
nearest neighbors vs. rank of nearest neighbors.

space, which is narrowed down as the search progresses, are explored [17,20].
The former method has a drawback in that the same nodes are accessed mul-
tiple times because it performs the best-first procedure repeatedly. As a result,
search performance deteriorates. Therefore, we use the latter to evaluate graphs
in this paper.

During KNN search, the distance of the farthest object in the search result
from the query object is set as the search radius r. The actual explored space
is wider than the search space defined by r. The radius of the exploration space
re is defined as re = r(1 + ε), where ε expands the exploration space to improve
the search accuracy. As ε increases, the accuracy improves; however, the search
cost increases because more objects within the expanded space must be accessed.
Figure 1(a) shows how the search space, exploration space, and query are related.
Algorithm 1 is the pseudo code of the search. Here, KnnSearch returns a set
of resultant objects R. Let q be a query object, ks be the number of resultant
objects, C be the set of already evaluated objects, d(x, y) be the distance between
objects x and y, and N(G, x) be the set of neighboring nodes associated with the
edges of node x in graph G. The function Seed(G) returns seed objects sampled
randomly from graph G. In a practical implementation, sets S and R are priority
queues. While making set C a simple array would reduce the access cost, the
initializing cost is expensive for large-scale data. For this reason, a hash set is
used instead.

2.2 Problem Definition

For simplicity, we will analyze the nearest neighbor search instead of a k-nearest
neighbor search. If Condition 1 is satisfied, the nearest neighbor is obtained in
a best-first manner from an arbitrary node on the neighborhood graph [22].

Condition 1. ∀a ∈ G,∀q ∈ R
d, if ∀b ∈ N(G, a), d(q, a) ≤ d(q, b), then ∀b ∈

G, d(q, a) ≤ d(q, b).

Delaunay triangulation, which satisfies Condition 1, has absolutely fewer edges
than a complete graph that also satisfies Condition 1. The number of edges,
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Algorithm 1. KnnSearch

Input: G, q, ks, ε
Output: R
1: S ← Seed(G), r ← ∞, R ← ∅
2: while S �= ∅ do
3: s ← argmin

x∈S
d(x, q), S ← S − {s}

4: if d(s, q) > r(1 + ε) then
5: return R
6: end if
7: for all o ∈ N(G, s) do
8: if o /∈ C then
9: C ← C ∪ {o}

10: if d(o, q) ≤ r(1 + ε) then
11: S ← S ∪ {o}
12: end if

13: if d(o, q) ≤ r then
14: R ← R ∪ {o}
15: if |R| > ks then
16: R ← R−{argmax

x∈R
d(x, q)}

17: end if
18: if |R| = ks then
19: r ← maxx∈R d(x, q)
20: end if
21: end if
22: end if
23: end for
24: end while
25: return R

however, increases drastically as the dimension of the objects increases. There-
fore, a Delaunay triangulation is impractical in terms of the index size due to a
huge number of the edges. As a result, most of the graph-based methods instead
use a KNNG, where the number of edges can be arbitrarily specified. The search
results of KNNG, however, are approximate because this graph does not satisfy
Condition 1.

Figure 1(b) shows the accuracy versus query time for different numbers of
edges k in a KNNG. The dataset consisted of 10 million SIFT image descriptors
(128-dimensional data). The search was conducted with Algorithm 1. The curves
of the figure are depicted by varying ε. Being closer to the top-left corner of
the figure means better performance in terms of query time and accuracy. In
this paper, accuracy is measured in terms of precision. In fact, precision and
recall are identical in the KNN search. From Fig. 1(b), one can see that the
search performance improves as the number of edges k in the KNNG increases.
However, the rate of improvement gradually decreases. The memory needed for
storing over 50 edges is large, whereas the improvement brought by storing so
many edges is not so great.

We examined the distribution of neighboring objects around a query object.
1,000 objects were randomly selected as queries from 10 million objects, and the
40 nearest neighbors for each query object were sorted by distance. Figure 1(c)
shows the average distance of the objects for each rank of the nearest neighbors.
The distance of the highest ranking object that is the nearest to the query
object is significantly shorter than the distances of lower ranked objects. Thus,
the neighboring region around an arbitrary object is extremely sparse, while
outside the neighboring region is extremely dense.

Therefore, the case in Fig. 2(a) frequently occurs in high-dimensional spaces.
The figure depicts the space of distances from node o1. The number of edges in
KNNG is three. The rank of o2 in ascending order of the distance from o1 is much
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Fig. 2. (a) Relationship between nodes and edges in the case of problem conditions.
(b) Frequency of nodes vs. number of edges for each node in a BKNNG. (c) Selective
edge removal. The target node is ot, which has excess edges. If p = 3, e1 is removed,
and e2 is not.

higher than the rank of o1 in ascending order of the distance from o2. Thus, while
the directed edge from o1 to o2 is generated, an edge from o2 to o1 is not gener-
ated. Therefore, during a search, when the query oq is close to node o1 and the
seed object os is near object o2, node o1 cannot be reached through o2 from node
os because there is no path from o2 to o1. As a result, search accuracy is reduced
for high-dimensional data where such conditions frequently occur. Increasing the
number of edges helps to avoid such disconnections between neighboring nodes.
Figure 1(b) shows that increasing the number of edges improves performance
until around 30 edges, after which the improvement rate tapers off. While more
edges can reduce such disconnections, more than enough edges increase the num-
ber of accessed nodes that are ineffective for searching. As a result, the query
time increases.

3 Our Approach

To resolve the problem that increasing the number of edges to improve accuracy
causes the query time to increase, we propose two types of graph structures: the
pruned bi-directed k-nearest neighbor graph and pruned ANNG.

3.1 Pruned Bi-directed K-nearest Neighbor Graph

For a first step of our proposal, a reversely directed edge can be added for each
directed edge instead of increasing the number of edges of each node. Further-
more, if a corresponding reversely directed edge already exists, it is not added.
This solution can connect disconnected pairs of nodes and suppress any increase
in ineffective long edges. We refer to the resultant graph as a bi-directed k-nearest
neighbor graph (BKNNG). It theoretically has up to twice as many edges as a
KNNG. However, since a KNNG likely has some node pairs with directed edges
pointing to each other, the number of edges in a BKNNG is typically less than
twice that of a KNNG. In the case of 10 million SIFT objects, the number of
edges in a BKNNG generated from a KNNG wherein each node has 10 edges is
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about 186 million. Therefore, the number of cases in Fig. 2(a), where one pair of
nodes has one directed edge between two nodes, is about 86 million. 14 million
pairs of nodes have two different directed edges between each other.

Algorithm 2. ConstructPBKNNG
Input: G, kp, kr, p
Output: G
1: for all o ∈ V do
2: for all n ∈ N(G, o) do
3: if N(G, n) ∩ {o} = ∅ then
4: N(G, n) ← N(G, n) ∪ {o}
5: if |N(G, n)| > kp then
6: N(G, n) ← N(G, n) −

{ argmax
x∈N(G,n)

d(x, n)}
7: end if
8: end if
9: end for

10: end for
11: RemoveEdgesSelectively(G, kr, p)
12: return G

Algorithm 3.RemoveEdgesSelectively
Input: G, kr, p
Output: G
1: for all o ∈ V do
2: for all n ∈ N(G, o) do
3: if Rank(N(G, o), n) > kr then
4: if PathExists(G, o, n, p) =

true then
5: N(G, o) ← N(G, o) − n
6: end if
7: end if
8: end for
9: end for

10: return G

Figure 2(b) shows the frequency of nodes versus the number of edges in a
BKNNG that was generated from a KNNG in which each node had 10 edges.
The number of edges is widely distributed from 10 up to 1,851. The number of
edges having the highest frequency is 10. The average number of edges is about
18.6. Since excess edges for some of the nodes reduce the search performance as
a result of the computations for all the excess edges, the excess edges should be
pruned. Too long edges of nodes holding excess edges are obviously not effective
for exploring a graph because they do not connect to neighboring nodes. For a
second step, to prune such edges, the edges are sorted in ascending order of length
while reversely directed edges are being added. Here, let kp be the maximum
number of edges for each node after pruning. Edges whose rank is larger than
kp are forcedly removed (forced edge removal). Even though the processing cost
is small enough, excess edges can be effectively reduced. Nevertheless, long and
excess edges still remain. Since some of the long edges are effective for exploring
the graph because they connect clusters and some are not, these edges should
be selectively pruned to maintain the connections. If an edge from a source
node to a destination node has an alternative path from the source node to the
destination node, even if the edge is removed, the destination can be descended
from the source through the path instead of the removed edge. Note that as
the number of edges on the alternative path increases, the distance computation
cost also increases during a search. Therefore, the shortest path should be found,
and fewer edges on the path is better. For a third step, if the edges are ranked
lower than kr, where kr < kp, and have alternative paths that consist of less
than p edges that should be all ranked higher than kr for each node, they are
removed (selective edge removal). Figure 2(c) shows the selective edge removal.
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Algorithm 4. ConstructPANNG
Input: O, kc, kp, kr, εc, p
Output: G
1: for all o ∈ O do
2: N(G, o) ← KnnSearch(G, o, kc, εc)
3: for all n ∈ N(G, o) do
4: N(G, n) ← N(G, n) ∪ {o}
5: if |N(G, n)| > kp then
6: N(G, n) ← N(G, n) −

{ argmax
x∈N(G,n)

d(x, n)}
7: end if
8: end for
9: end for

10: RemoveEdgesSelectively(G, kr, p)
11: return G

Path1 is the shortest alternative path of the edge e1. Path2 is the shortest
alternative path of e2. If p = 3, then e1 is removed because the number of edges
on path1 is two. However e2 is not removed because that on path2 is three.
Although finding the shortest path is time consuming, the limitation p of the
number of edges on the alternative paths contributes to reducing the processing
time to find the shortest alternative path. We refer to the resultant graph as
a pruned bi-directed k-nearest neighbor graph (PBKNNG). Algorithm 2 shows
the pseudo code for constructing a PBKNNG. Here, a KNNG is the input graph
G = G(V,E). Algorithm 2 calls Algorithm 3, which is the selective edge removal.
Rank(N(G, o), n) returns the rank of a node n by the distance (edge length) to
the neighboring nodes N(G, o) of a node o. PathExists(G, o, n, p) exhaustively
explores the graph G from o within p edges and returns whether the shortest
alternative path from o to n exists.

3.2 Pruned ANNG

While the KNNG is extremely expensive to construct, an approximate neigh-
borhood graph is much less costly. An ANNG [20], which is one of the approx-
imate neighborhood graphs, has high search performance. To create an ANNG
incrementally, approximate k-nearest neighbor objects for edges are searched
for by using the partially created ANNG. Figure 3 shows construction times for
KNNG and ANNG. KNNG construction times for more than two million objects
were estimated from the construction time for one million objects. The figure
shows that an ANNG has significantly lower construction times compared with a
KNNG. However, the initially inserted nodes of the ANNG tend to have a huge
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number of edges compared with the subsequently inserted nodes. Figure 4 shows
the average number of edges for every 100,000 nodes along the insertion sequence
of 10 million SIFT image descriptors, wherein 10 nearest neighbors are added as
edges for each node during insertion. The number of edges for the first sequence
exceeds 60. The excess edges are pruned in the same way as in PBKNNG, and
we refer to the resultant graph as a pruned ANNG (PANNG). Algorithm 4 is
the pseudo code for creating a PANNG. Let O be the set of inserted objects and
kc be the initial number of edges for an inserted node. εc is for the expansion
factor of the explored space of the KNN search. KnnSearch(G, o, kc, εc) is a KNN
search function that returns the kc nearest neighbors to the query object o. In
this study, Algorithm 1 is also used as the KnnSearch in Algorithm 4.

4 Experimental Results

The experiments used 128-dimensional SIFT image descriptors [23] and 960-
dimensional GIST image descriptors [24]. SIFT is a local descriptor, and GIST
is a global descriptor. The descriptors were extracted from about 1 million images
downloaded from Flickr1. The SIFT descriptors were extracted from the image
set by using OpenCV2. Since just one GIST descriptor is extracted from an
image by using Lear’s GIST C implementation3, the GIST descriptors were
extracted from 4 by 4 block images into which each image in the image set
was divided in order to extract 10 million descriptors. Duplicates were removed
from the descriptors. A 10-million-object dataset and 500-object query set were
randomly selected from each of the descriptors. A Euclidean distance function
was used. Each SIFT element was stored in memory as a 1-byte integer, and
each GIST element was stored as a 4-byte floating point number. The resulting
size of the KNN search was 20 nearest neighbors. We conducted the experiments
on an Intel Xeon E5-2630L (2.0 GHz and 64 GB of memory). Although the CPU
had six cores, the experimental software was not processed in parallel.

Parameter Determination: First, we evaluated the search performance to
determine the number of seed nodes. The search performance was assessed in
terms of the query time and the search accuracy while varying the number of the
seed nodes from 1 to 100 using the SIFT dataset. The results indicated that the
query times for all seed node numbers were almost the same when the accuracy
was over 0.5. The query time for 10 seed nodes was slightly shorter when the
accuracy was less than 0.5. Thus, 10 seed nodes were used in the experiment.

Figure 5(a) plots the search performance of a BKNNG using the SIFT dataset
with a varying number of edges ko, which represents not the actual number of
edges but the number of edges for the original KNNG from which the BKNNG is
derived. It can be seen that excess edges tended to reduce performance, and the
plot for ko = 10 indicates that 10 edges gave the best performance almost overall.

1 https://www.flickr.com/.
2 http://opencv.org/.
3 http://people.csail.mit.edu/torralba/code/spatialenvelope/.

https://www.flickr.com/
http://opencv.org/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
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Fig. 5. Accuracy vs. query time for SIFT dataset. (a) BKNNG for different numbers
of edges ko and BKNNG with ko = 10. (b) PBKNNGs with kr = ∞ derived from
BKNNG with ko = 10 for different values of kp. (c) PBKNNGs derived from BKNNG
with ko = 10 for different values of kp and kr.

Since search performance largely depends on the number of edges, to equitably
compare the different graphs, the total numbers of edges in the graphs should be
as close to equal as possible. The total number of edges in the BKNNG is up to
twice that of the original KNNG. Therefore, to compare them, Fig. 5(a) also
shows the performance for a KNNG with k = 20. The KNNG and the BKNNG
with ko = 10 had almost identical numbers of edges. The actual average number
of edges in the BKNNG was about 18.6 because edges were not added to node
pairs that already had two different directed edges between them. In spite of
it having fewer edges than the KNNG, the BKNNG performed considerably
better than the KNNG in a higher accuracy range. For example, the query time
of the BKNNG was more than 10 times shorter than that of the KNNG at
an accuracy of 0.9. These results indicate that adding bi-directed edges to the
KNNG significantly improved performance in this range of accuracy. Figure 5(b)
shows the performance of PBKNNGs with kr = ∞ derived from a KNNG with
ko = 10 for different values of kp. The parameter kr = ∞ disables the selective
edge removal. The BKNNG has many edges, and these edges increase the query
time. Therefore, while pruning edges improves performance, pruning too many
edges reduces it. From Fig. 5(b), it can be seen that the PBKNNGs where kp
is 20 and 40 show almost identical performance and are better than the others.
Figure 5(c) shows the performance of PBKNNGs derived from KNNG with ko =
10 and p = 3 for different values of kr and kp in a higher accuracy range. Since
the performance obviously decreased where p > 3, we adopted p = 3 in all of the
experiments. The PBKNNG with kp = 40 and kr = 30 was slightly better than
the others. This shows that selective edge removal is more effective at improving
performance.

Figure 6(a) shows the performance of PANNG4 for different values of kp
and kr. The PANNG was constructed by using Algorithm 4 with kc = 10 and
εc = 0.1. The curves in the figure show a similar tendency to those for PBKNNG
in Fig. 5(b) and (c). The nodes inserted in the initial stage tend to have a huge
number of edges, as Fig. 2(b) shows. Therefore, pruning contributes to improving
search performance. However, pruning too many edges reduces performance in
4 http://research-lab.yahoo.co.jp/software/ngt/.

http://research-lab.yahoo.co.jp/software/ngt/
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Fig. 6. Accuracy vs. query time. (a) ANNG with kc = 10 and PANNGs derived from
the ANNG for different kp and kr for SIFT. (b) Comparison of KNNG (k = 20),
BKNNG (ko = 10), PBKNNG (kr = 30, kp = 40), ANNG (kc = 10), PANNG (kr =
3, kp = 60), FLANN, SASH, PQ (R = 1000), and PQ (R = 5000) for SIFT. (c)
Comparison of KNNG (k = 20), BKNNG (ko = 10), PBKNNG (kr = 30, kp = 40),
ANNG (kc = 10), PANNG (kr = 30, kp = 60), FLANN, SASH, PQ (R = 1000), and
PQ (R = 5000) for GIST.
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Fig. 7. PBKNNG, PBAKNNGs, and
PANNG with various edge precisions
indicated in Table 1 for SIFT

Table 1. Average edge precision and average
rank of top 10 shortest edges for PBKNNG,
PBAKNNGs, and PANNG

Graph Average Average

precision rank

PBKNNG 1.00 5.50

PBAKNNG-0.7 0.706 7.79

PBAKNNG-0.3 0.303 17.9

PANNG 0.567 29.4

the same way as with PBKNNG. From the figure, the PANNG with kp = 60
and kr = 30 performed the best overall in a higher accuracy range.

Comparison of Graph-Based Indexes, FLANN, SASH, and PQ: Fig-
ures 6(b) and (c) compare the performances of KNNG, BKNNG, PBKNNG,
ANNG, PANNG, FLANN, SASH5, and PQ for SIFT and GIST using the deter-
mined parameters. KNNG performed the worst, and PBKNNG performed the
best among the graph-based methods. Although PANNG was slightly worse
than PBKNNG, it is practically advantageous because the construction cost of
an ANNG is considerably lower than that of an exact KNNG.

FLANN automatically selects the best algorithm for the dataset. For the
SIFT and GIST dataset, it selected hierarchical k-means partitioning. For con-
structions of SASH, we used the number of parent nodes p = 4. Even though
approximate searches without original objects are not our target, we compared
it with PQ. While PQ does not require the objects in the memory, the search
accuracy is significantly lower. To compare fairly, we added a verification step

5 http://research.nii.ac.jp/∼meh/sash/.

http://research.nii.ac.jp/~{}meh/sash/
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after the PQ search, which computes distances for the results of the PQ using
the objects in the memory and returns the k nearest neighbors. According to
the experiment of PQ [5], the best parameters were explored and determined.
We used the number of codewords for the product quantization k∗ = 256, the
number of subvectors m = 8, and the number of codewords k′ = 1024. The
curves of PQ were plotted by varying the number of the nearest neighbors of
the coarse quantizer w for the number of the nearest neighbors of PQ R = 1000
and 5000. It can be seen that PBKNNG and PANNG outperformed FLANN
and PQs overall and outperformed SASH excluding at lower accuracy for GIST
in Fig. 6(b) and (c).

Edge Precision Effect Analysis: In spite that a KNNG does not satisfy
Condition 1, the PBKNNG derived from the KNNG works well. This suggests
that it might be unnecessary to use an exact KNNG to generate a PBKNNG.
To clarify this, just as we derived the PBKNNG from the KNNG, we derived
a pruned bi-directed approximate k-nearest neighbor graph (PBAKNNG) from
an approximate KNNG, which is intentionally generated by pruning the edges
of the KNNG according to a specific probability, called “edge precision.” Fig. 7
compares the performances of PBKNNG, PBAKNNGs, and PANNG to clarify
the effect of varying the edge precision. The PBKNNG was constructed with
ko = 10. The PBAKNNGs were derived from AKNNG with ko = 10 for the edge
precisions 0.7 and 0.3. The PANNG was constructed with kc = 10 for εc = 0.1.
All of them were constructed with kp = 40 and kr = 30. Table 1 shows the
average edge precision and the average rank of the top 10 shortest edges for
each of 1,000 randomly sampled nodes of the indexes in Fig. 7. From the order
of the average precisions in Table 1, the search performances of PANNG should
be between PBAKNNG-0.7 and PBAKNNG-0.3. It is, however, almost the same
as PBAKNNG-0.3 at higher accuracy. We suppose that performance is affected
by both the precision and the average rank of edges. Since the performance
decreases for low edge precision are all rather small, these results show that an
exact KNNG is dispensable in order to make an approximate search.

Memory Usage: Since our search algorithm needs a large number of distance
computations, all of the objects should be placed in memory to reduce the search
cost. Here, we will discuss the memory usage of a logical index structure instead
of an actual structure since our actual implementation uses a standard template
library (STL) including a non-negligible amount of memory overhead. The logical
index structure has an array of nodes consisting of objects, a pointer to the edge
array for each node, and the size of the edge array. Its memory usage is as
follows.

memory usage = node array usage + edge array usage
node array usage = (object dimensionality · size of object element variable

+size of pointer to edge array
+size of edge array size variable) · total number of objects

edge array usage = size of node ID variable · total number of edges

(1)
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The length of each edge is used to prune excess edges, so the memory usage for
the edge array for index construction is as follows.

edge array usage = (size of node ID variable + size of distance variable)·
total number of edges

(2)

The total numbers of edges for the PBKNNG for ko = 10, kp = 40, and kr = 30
are 165,529,883 for the SIFT dataset and 163,959,473 for the GIST dataset. The
logical memory usage derived from Formula 1 amounts to 1.90 GB for SIFT and
36.5 GB for GIST. Since the experimental implementation included additional
information for the evaluations and memory overhead of the STL, the actual
amount of the memory was not measured.

5 Conclusion

We derived a PBKNNG from a KNNG as an index of high-dimensional data such
as image descriptors. The experiment showed that the PBKNNG outperforms
not only the KNNG but also the FLANN, SASH, and PQ in most cases on SIFT
and GIST datasets. The drawback of the KNNG is its high construction cost,
and an approximate neighborhood graph is much less costly. The experiment also
showed a PANNG derived from the approximate neighborhood graph instead of
a KNNG in the same way as the PBKNNG outperforms the KNNG, FLANN,
SASH, and PQ in most cases and performs only a little worse than the PBKNNG.
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