
Laurent Amsaleg
Michael E. Houle
Erich Schubert (Eds.)

 123

LN
CS

 9
93

9

9th International Conference, SISAP 2016
Tokyo, Japan, October 24–26, 2016
Proceedings

Similarity Search
and Applications



Lecture Notes in Computer Science 9939

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Laurent Amsaleg • Michael E. Houle
Erich Schubert (Eds.)

Similarity Search
and Applications
9th International Conference, SISAP 2016
Tokyo, Japan, October 24–26, 2016
Proceedings

123



Editors
Laurent Amsaleg
CNRS–IRISA
Rennes
France

Michael E. Houle
National Institute of Informatics
Tokyo
Japan

Erich Schubert
Ludwig-Maximilians-Universität München
Munich
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46758-0 ISBN 978-3-319-46759-7 (eBook)
DOI 10.1007/978-3-319-46759-7

Library of Congress Control Number: 2016954121

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the papers presented at the 9th International Conference on
Similarity Search and Applications (SISAP 2016) held in Tokyo, Japan, during October
24–26, 2016. SISAP is an annual forum for researchers and application developers in the
area of similarity data management. It aims at the technological problems shared by
numerous application domains, such as data mining, information retrieval, multimedia,
computer vision, pattern recognition, computational biology, geography, biometrics,
machine learning, and many others that make use of similarity search as a necessary
supporting service.

From its roots as a regional workshop in metric indexing, SISAP has expanded to
become the only international conference entirely devoted to the issues surrounding the
theory, design, analysis, practice, and application of content-based and feature-based
similarity search. The SISAP initiative has also created a repository (http://www.sisap.
org/) serving the similarity search community, for the exchange of examples of real-
world applications, source code for similarity indexes, and experimental test beds and
benchmark data sets.

The call for papers welcomed full papers, short papers, as well as demonstration
papers, with all manuscripts presenting previously unpublished research contributions.
At SISAP 2016, all contributions were presented both orally and in a poster session,
which facilitated fruitful exchanges between the participants.

We received 47 submissions, 32 full papers and 15 short papers, from authors based
in 21 different countries. The Program Committee (PC) was composed of 62 members
from 26 countries. Reviews were thoroughly discussed by the chairs and PC members:
each submission received at least three to five reviews, with additional reviews
sometimes being sought in order to achieve a consensus. The PC was assisted by 23
external reviewers.

The final selection of papers was made by the PC chairs based on the reviews
received for each submission as well as the subsequent discussions among PC mem-
bers. The final conference program consisted of 18 full papers and seven short papers,
resulting in an acceptance rate of 38 % for full papers and 53 % cumulative for full and
short papers.

The proceedings of SISAP are published by Springer as a volume in the Lecture
Notes in Computer Science (LNCS) series. For SISAP 2016, as in previous years,
extended versions of five selected excellent papers were invited for publication in a
special issue of the journal Information Systems. The conference also conferred a Best
Paper Award, as judged by the PC Co-chairs and Steering Committee.

The conference program and the proceedings are organized in several parts. As a
first part, the program includes three keynote presentations from exceptionally skilled
scientists: Alexandr Andoni, from Columbia University, USA, on the topic of
“Data-Dependent Hashing for Similarity Search”; Takashi Washio, from the University
of Osaka, Japan, on “Defying the Gravity of Learning Curves: Are More Samples

http://www.sisap.org/
http://www.sisap.org/


Better for Nearest Neighbor Anomaly Detectors?”; and Zhi-Hua Zhou, from Nanjing
University, China, on “Partial Similarity Match with Multi-instance Multi-label
Learning”.

The program then carries on with the presentations of the papers, grouped in eight
categories: graphs and networks; metric and permutation-based indexing; multimedia;
text and document similarity; comparisons and benchmarks; hashing techniques; time-
evolving data; and scalable similarity search.

We would like to thank all the authors who submitted papers to SISAP 2016. We
would also like to thank all members of the PC and the external reviewers for their
effort and contribution to the conference. We want to express our gratitude to the
members of the Organizing Committee for the enormous amount of work they have
done.

We also thank our sponsors and supporters for their generosity. All the submission,
reviewing, and proceedings generation processes were carried out through the Easy-
Chair platform.

August 2016 Laurent Amsaleg
Michael E. Houle

Erich Schubert

VI Preface



Organization

Program Committee Chairs

Laurent Amsaleg CNRS-IRISA, France
Michael E. Houle National Institute of Informatics, Japan

Program Committee Members

Giuseppe Amato ISTI-CNR, Italy
Laurent Amsaleg CNRS-IRISA, France
Hiroki Arimura Hokkaido University, Japan
Ira Assent Aarhus University, Denmark
James Bailey University of Melbourne, Australia
Christian Beecks RWTH Aachen University, Germany
Panagiotis Bouros Aarhus University, Denmark
Leonid Boytsov Carnegie Mellon University, USA
Benjamin Bustos University of Chile, Chile
K. Selçuk Candan Arizona State University, USA
Guang-Ho Cha Seoul National University of Science and Technology,

Korea
Edgar Chávez CICESE, Mexico
Paolo Ciaccia University of Bologna, Italy
Richard Connor University of Strathclyde, UK
Michel Crucianu CNAM, France
Bin Cui Peking University, China
Vlad Estivill-Castro Griffith University, Australia
Andrea Esuli ISTI-CNR, Italy
Fabrizio Falchi ISTI-CNR, Italy
Claudio Gennaro ISTI-CNR, Italy
Magnus Lie Hetland NTNU, Norway
Michael E. Houle National Institute of Informatics, Japan
Yoshiharu Ishikawa Nagoya University, Japan
Björn Þór Jónsson Reykjavik University, Iceland
Ata Kabán University of Birmingham, UK
Ken-ichi Kawarabayashi National Institute of Informatics, Japan
Daniel Keim University of Konstanz, Germany
Yiannis Kompatsiaris CERTH – ITI, Greece
Peer Kröger Ludwig-Maximilians-Universität München, Germany
Guoliang Li Tsinghua University, China
Jakub Lokoč Charles University in Prague, Czech Republic



Rui Mao Shenzhen University, China
Stéphane Marchand-Maillet Viper Group - University of Geneva, Switzerland
Henning Müller HES-SO, Switzerland
Gonzalo Navarro University of Chile, Chile
Chong-Wah Ngo City University of Hong Kong, SAR China
Beng Chin Ooi National University of Singapore, Singapore
Vincent Oria New Jersey Institute of Technology, USA
M. Tamer Özsu University of Waterloo, Canada
Deepak P IBM Research, India
Apostolos N. Papadopoulos Aristotle University of Thessaloniki, Greece
Marco Patella DEIS – University of Bologna, Italy
Oscar Pedreira Universidade da Coruña, Spain
Miloš Radovanović University of Novi Sad, Serbia
Kunihiko Sadakane The University of Tokyo, Japan
Shin’ichi Satoh National Institute of Informatics, Japan
Erich Schubert Ludwig-Maximilians-Universität München, Germany
Tetsuo Shibuya Human Genome Center, Institute of Medical Science,

The University of Tokyo, Japan
Yasin Silva Arizona State University, USA
Matthew Skala IT University of Copenhagen, Denmark
John Smith IBM T.J. Watson Research Center, USA
Nenad Tomašev Google, UK
Agma Traina University of São Paulo at São Carlos, Brazil
Takeaki Uno National Institute of Informatics, Japan
Michel Verleysen Université Catholique de Louvain, Belgium
Takashi Washio ISIR, Osaka University, Japan
Marcel Worring University of Amsterdam, The Netherlands
Pavel Zezula Masaryk University, Czech Republic
De-Chuan Zhan Nanjing University, China
Zhi-Hua Zhou Nanjing University, China
Arthur Zimek Ludwig-Maximilians-Universität München, Germany
Andreas Züfle George Mason University, USA

Additional Reviewers

Tetsuya Araki
Konstantinos Avgerinakis
Nicolas Basset
Michal Batko
Jessica Beltran
Hei Chan
Elisavet Chatzilari
Anh Dinh
Alceu Ferraz Costa

Karina Figueroa
David Novak
Ninh Pham
Nora Reyes
José Fernando

Rodrigues Jr
Ubaldo Ruiz
Manos Schinas
Pascal Schweitzer

Diego Seco
Francesco Silvestri
Eleftherios

Spyromitros-Xioufis
Eric S. Tellez
Xiaofei Zhang
Yue Zhu

VIII Organization



Keynotes



Data-Dependent Hashing for Similarity Search

Alexandr Andoni

Columbia University, New York, USA

The quest for efficient similarity search algorithms has lead to a number of ideas that
proved successful in both theory and practice. Yet, the last decade or so has seen a
growing gap between the theoretical and practical approaches. On the one hand, most
successful theoretical methods rely on data-indepependent hashing, such as the classic
Locality Sensitive Hashing scheme. These methods have provable guarantees on
correctness and performance. On the other hand, in practice, methods that adapt to the
given datasets, such as the PCA-tree, often outperform the former, but provide no
guarantees on performance or correctness.

This talk will survey the recent efforts to bridge this gap between theoretical and
practical methods for similarity search. We will see that data-dependent methods are
provably better than data-independent methods, giving, for instance, the first improvements
over the Locality Sensitive Hashing schemes for the Hamming and Euclidean spaces.



Defying the Gravity of Learning Curves:
Are More Samples Better for

Nearest Neighbor Anomaly Detectors?

Takashi Washio

Osaka University, Suita, Japan

Machine learning algorithms are conventionally considered to provide higher accuracy
when more data are used for their training. We call this behavior of their learning
curves “the gravity”, and it is believed that no learning algorithms are “gravity-defiant”.
A few scholars recently suggested that some unsupervised anomaly detector ensembles
follow the gravity defiant learning curves. One explained this behavior in terms of the
sensitivity of the expected k-nearest neighbor distances to the data density. Another
discussed the former's incorrect reasoning, and demonstrated the possibilities of both
gravity-compliance and gravity-defiant behaviors by applying the statistical bias-var-
iance analysis. However, the bias-variance analysis for density estimation error is not
an appropriate tool for anomaly detection error. In this talk, we argue that the analysis
must be based on the anomaly detection error, and clarify the mechanism of the
gravity-defiant learning curves of the nearest neighbor anomaly detectors by applying
analysis based on computational geometry to the anomaly detection error. This talk is
based on collaborative work with Kai Ming Ting, Jonathan R. Wells, and Sunil Aryal
from Federation University, Australia.



Partial Similarity Match with Multi-Instance
Multi-Label Learning

Zhi-Hua Zhou

Nanjing University, Nanjing, China

In traditional supervised learning settings, a data object is usually represented by a
single feature vector, called an instance. Such a formulation has achieved great success;
however, its utility is limited when handling data objects with complex semantics
where one object simultaneously belongs to multiple semantic categories. For example,
an image showing a lion besides an elephant can be recognized simultaneously as an
image of a lion, an elephant, “wild” or even “Africa”; the text document “Around the
World in Eighty Days” can be classified simultaneously into multiple categories such
as scientific novel, Jules Verne’s writings or even books on traveling, etc. In many real
tasks it is crucial to tackle such data objects, particularly when the labels are relevant to
partial similarity match of input patterns. In this talk we will introduce the MIML
(Multi-Instance Multi-Label learning) framework which has been shown to be useful
for these scenarios.



Contents

Graphs and Networks

BFST_ED: A Novel Upper Bound Computation Framework
for the Graph Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Karam Gouda, Mona Arafa, and Toon Calders

Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search . . . . . . . 20
Masajiro Iwasaki

A Free Energy Foundation of Semantic Similarity in Automata
and Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Cewei Cui and Zhe Dang

Metric and Permutation-Based Indexing

Supermetric Search with the Four-Point Property . . . . . . . . . . . . . . . . . . . . 51
Richard Connor, Lucia Vadicamo, Franco Alberto Cardillo,
and Fausto Rabitti

Reference Point Hyperplane Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Richard Connor

Quantifying the Invariance and Robustness of Permutation-Based
Indexing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Stéphane Marchand-Maillet, Edgar Roman-Rangel, Hisham Mohamed,
and Frank Nielsen

Deep Permutations: Deep Convolutional Neural Networks
and Permutation-Based Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro,
and Lucia Vadicamo

Multimedia

Patch Matching with Polynomial Exponential Families
and Projective Divergences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Frank Nielsen and Richard Nock

Known-Item Search in Video Databases with Textual Queries . . . . . . . . . . . 117
Adam Blažek, David Kuboň, and Jakub Lokoč

http://dx.doi.org/10.1007/978-3-319-46759-7_1
http://dx.doi.org/10.1007/978-3-319-46759-7_1
http://dx.doi.org/10.1007/978-3-319-46759-7_2
http://dx.doi.org/10.1007/978-3-319-46759-7_3
http://dx.doi.org/10.1007/978-3-319-46759-7_3
http://dx.doi.org/10.1007/978-3-319-46759-7_4
http://dx.doi.org/10.1007/978-3-319-46759-7_5
http://dx.doi.org/10.1007/978-3-319-46759-7_6
http://dx.doi.org/10.1007/978-3-319-46759-7_6
http://dx.doi.org/10.1007/978-3-319-46759-7_7
http://dx.doi.org/10.1007/978-3-319-46759-7_7
http://dx.doi.org/10.1007/978-3-319-46759-7_8
http://dx.doi.org/10.1007/978-3-319-46759-7_8
http://dx.doi.org/10.1007/978-3-319-46759-7_9


Combustion Quality Estimation in Carbonization Furnace
Using Flame Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Fredy Martínez, Angelica Rendón, and Pedro Guevara

Text and Document Similarity

Bit-Vector Search Filtering with Application to a Kanji Dictionary . . . . . . . . 137
Matthew Skala

Domain Graph for Sentence Similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Fumito Konaka and Takao Miura

Context Semantic Analysis: A Knowledge-Based Technique
for Computing Inter-document Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Fabio Benedetti, Domenico Beneventano, and Sonia Bergamaschi

Comparisons and Benchmarks

An Experimental Survey of MapReduce-Based Similarity Joins . . . . . . . . . . 181
Yasin N. Silva, Jason Reed, Kyle Brown, Adelbert Wadsworth,
and Chuitian Rong

YFCC100M-HNfc6: A Large-Scale Deep Features Benchmark
for Similarity Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro, and Fausto Rabitti

A Tale of Four Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Richard Connor

Hashing Techniques

Fast Approximate Furthest Neighbors with Data-Dependent
Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Ryan R. Curtin and Andrew B. Gardner

NearBucket-LSH: Efficient Similarity Search in P2P Networks . . . . . . . . . . . 236
Naama Kraus, David Carmel, Idit Keidar, and Meni Orenbach

Speeding up Similarity Search by Sketches . . . . . . . . . . . . . . . . . . . . . . . . 250
Vladimir Mic, David Novak, and Pavel Zezula

Fast Hilbert Sort Algorithm Without Using Hilbert Indices. . . . . . . . . . . . . . 259
Yasunobu Imamura, Takeshi Shinohara, Kouichi Hirata,
and Tetsuji Kuboyama

XVI Contents

http://dx.doi.org/10.1007/978-3-319-46759-7_10
http://dx.doi.org/10.1007/978-3-319-46759-7_10
http://dx.doi.org/10.1007/978-3-319-46759-7_11
http://dx.doi.org/10.1007/978-3-319-46759-7_12
http://dx.doi.org/10.1007/978-3-319-46759-7_13
http://dx.doi.org/10.1007/978-3-319-46759-7_13
http://dx.doi.org/10.1007/978-3-319-46759-7_14
http://dx.doi.org/10.1007/978-3-319-46759-7_15
http://dx.doi.org/10.1007/978-3-319-46759-7_15
http://dx.doi.org/10.1007/978-3-319-46759-7_16
http://dx.doi.org/10.1007/978-3-319-46759-7_17
http://dx.doi.org/10.1007/978-3-319-46759-7_17
http://dx.doi.org/10.1007/978-3-319-46759-7_18
http://dx.doi.org/10.1007/978-3-319-46759-7_19
http://dx.doi.org/10.1007/978-3-319-46759-7_20


Time-Evolving Data

Similarity Searching in Long Sequences of Motion Capture Data . . . . . . . . . 271
Jan Sedmidubsky, Petr Elias, and Pavel Zezula

Music Outlier Detection Using Multiple Sequence Alignment
and Independent Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Dimitrios Bountouridis, Hendrik Vincent Koops, Frans Wiering,
and Remco C. Veltkamp

Scalable Similarity Search in Seismology: A New Approach
to Large-Scale Earthquake Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Karianne Bergen, Clara Yoon, and Gregory C. Beroza

Scalable Similarity Search

Feature Extraction and Malware Detection on Large HTTPS Data
Using MapReduce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Přemysl Čech, Jan Kohout, Jakub Lokoč, Tomáš Komárek,
Jakub Maroušek, and Tomáš Pevný

Similarity Search of Sparse Histograms on GPU Architecture . . . . . . . . . . . . 325
Hasmik Osipyan, Jakub Lokoč, and Stéphane Marchand-Maillet

Erratum to: Pruned Bi-directed K-nearest Neighbor Graph
for Proximity Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1

Masajiro Iwasaki

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Contents XVII

http://dx.doi.org/10.1007/978-3-319-46759-7_21
http://dx.doi.org/10.1007/978-3-319-46759-7_22
http://dx.doi.org/10.1007/978-3-319-46759-7_22
http://dx.doi.org/10.1007/978-3-319-46759-7_23
http://dx.doi.org/10.1007/978-3-319-46759-7_23
http://dx.doi.org/10.1007/978-3-319-46759-7_24
http://dx.doi.org/10.1007/978-3-319-46759-7_24
http://dx.doi.org/10.1007/978-3-319-46759-7_25


Graphs and Networks



BFST ED: A Novel Upper Bound Computation
Framework for the Graph Edit Distance

Karam Gouda1,2(B), Mona Arafa1, and Toon Calders2

1 Faculty of Computers and Informatics, Benha University, Benha, Egypt
{karam.gouda,mona.arafa}@fci.bu.edu.eg

2 Computer and Decision Engineering Department,
Universit Libre de Bruxelles, Brussels, Belgium

{karam.gouda,toon.calders}@ulb.ac.be

Abstract. Graph similarity is an important operation with many appli-
cations. In this paper we are interested in graph edit similarity computa-
tion. Due to the hardness of the problem, it is too hard to exactly com-
pare large graphs, and fast approximation approaches with high quality
become very interesting. In this paper we introduce a novel upper bound
computation framework for the graph edit distance. The basic idea of this
approach is to picture the comparing graphs into hierarchical structures.
This view facilitates easy comparison and graph mapping construction.
Specifically, a hierarchical view based on a breadth first search tree with
its backward edges is used. A novel tree traversing and matching method
is developed to build a graph mapping. The idea of spare trees is intro-
duced to minimize the number of insertions and/or deletions incurred
by the method and a lookahead strategy is used to enhance the ver-
tex matching process. An interesting feature of the method is that it
combines vertex map construction with edit counting in an easy and
straightforward manner. This framework also allows to compare graphs
from different hierarchical views to improve the upper bound. Experi-
ments show that tighter upper bounds are always delivered by this new
framework at a very good response time.

Keywords: Graph similarity · Graph edit distance · Upper bounds

1 Introduction

Due to its ability to capture attributes of entities as well as their relationships,
graph data model is currently used to represent data in many application areas.
These areas include but are not limited to Pattern Recognition, Social Network,
Software Engineering, Bio-informatics, Semantic Web, and Chem-informatics.
Yet, the expressive power and flexibility of graph data representation model come
at the cost of high computational complexity of many basic graph data tasks. One
of such tasks which has recently drawn lots of interest in the research community
is computing the graph edit distance. Given two graphs, their graph edit distance
computes the minimum cost graph editing to be performed on one of them to
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 3–19, 2016.
DOI: 10.1007/978-3-319-46759-7 1



4 K. Gouda et al.

get the other. A graph edit operation is a kind of vertex insertion/deletion, edge
insertion/deletion or a change of vertex/edge’s label (relabeling) in the graph.

A close relationship exists between graph editing and graph mapping. Given
a graph editing one can define a graph mapping and vice versa. The problem
of graph edit distance computation is then reduced to the problem of finding a
graph mapping which induces a minimum edit cost. Graph edit distance compu-
tation methods such as those based on A* [6,12,13] exploit this relationship and
compute graph edit distance by exploring the vertex mapping space in a best
first fashion in order to find the optimal graph mapping. Unfortunately, since
computing graph edit distance is NP-hard problem [16] those methods can not
scale to large graphs. In practice, to be able to compare large graphs, fast algo-
rithms seeking suboptimal solutions have been proposed. Some of them deliver
unbounded solutions [1,14,15,17], while others compute either upper and/or
lower bound solutions [2,4,9,16].

Recent interesting upper bounds and the one introduced in this paper are
obtained based on graph mapping. The intuition is that the better the mapping
between graphs, the better the upper bound on their edit distance. In [10] a graph
mapping method is developed, which first constructs a cost matrix between the
vertices of the two graphs, and then uses a cubic-time bipartite assignment algo-
rithm, called Hungarian algorithm [8], to optimally match the vertices. The cost
matrix holds the matching costs between the neighbourhoods of corresponding
vertices. The idea behind this heuristic being that a mapping between vertices
with similar neighborhoods should induce a graph mapping with low edit cost.
A similar idea is used in [16]. The main problem with these heuristics is that the
pairwise vertex cost considers the graph structure only locally. Thus, in cases
where neighborhoods do not differentiate the vertices, e.g., as with unlabeled
graphs, these methods work poorly. To enhance the graph mapping obtained
by these methods and tighten the upper bound, additional search strategies
were deployed, however, at the cost of extra computation time. For example,
an exhaustive vertex swapping procedure is used in [16]. A greedy vertex swap-
ping is used in [11]. Even though much time is needed by these improvements,
the resulted graph mapping is prone to local optima, which is susceptible to
initialization.

This paper presents a novel linear-time upper bound computation frame-
work for the graph edit distance. The idea behind this approach is to picture the
comparing graphs into hierarchical structures. This view facilitates easy compar-
ison and graph mapping construction. To implement the framework, the breadth
first search tree (BFST) representation is adopted as a hierarchical view of the
graph, where each comparing graph is represented by a breadth first search tree
with its backward edges. A pre-order BFST traversing and matching method
is then developed in order to build a graph mapping. A slight drift from the
pure pre-order traversal is that for each visited source vertex in the traversal,
all its children and those of its matching vertex are matched before visiting
any of these children. This facilitates for a vertex to find a suitable correspon-
dence to match among various options. In addition, the idea of spare trees is



BFST ED: A Novel Upper Bound Computation Framework 5

introduced to decrease the number of insertions and/or deletions incurred by
the method, and a lookahead strategy is used to enhance the vertex matching
process. An interesting feature of the matching method is that it combines map
construction with edit counting in easy and straightforward manner. This novel
framework allows to explore a quadratic space of graph mappings to tighten the
bound, where for each two corresponding vertices it is possible to run the tree
traversing and matching method on the distinct hierarchical view imposed by
these two vertices. Moreover, this quadratic space can be explored in parallel
to speed up the process, a feature which is not offered by any of the previous
methods. Experiments show that tighter upper bounds are always delivered by
this framework at a very good response time.

2 Preliminaries

2.1 Graphs

In this section, we first give the basic notations. Let Σ be a set of discrete-valued
labels. A labeled graph G can be represented as a triple (V,E, l), where V is a
set of vertices, E ⊆ V × V is a set of edges, and l: V → Σ is a labeling function.
|V | is the numbers of vertices in G, and is called the order of G. The degree of
a vertex v, denoted deg(v), is the number of vertices that are directly connected
to v. A labeled graph G is said to be connected, if each pair of vertices vi, vj ∈
V , i �= j, are directly or indirectly connected. In this paper, we focus on simple
and connected graphs with labeled vertices. A simple graph is undirected graph
with neither self-loops nor multiple edges. Hereafter, a labeled graph is simply
called a graph unless stated otherwise.

A graph G = (V,E, l) is a subgraph of another graph G′ = (V ′, E′, l′), denoted
G ⊆ G′, if there exists a subgraph isomorphism from G to G′.

Definition 1 (Sub-)graph isomorphism. A subgraph isomorphism is an
injective function f : V → V ′, such that (1) ∀ u ∈ V , l(u) = l′(f(u)). (2) ∀
(u, v) ∈ E, (f(u), f(v)) ∈ E′, and l((u, v)) = l′((f(u), f(v))). If G ⊆ G′ and
G′ ⊆ G, G and G′ are graph isomorphic to each other, denoted as G ∼= G′.

Definition 2 (Maximum) common sub-graph. Given two graphs G1 and
G2. A graph G = (V,E) is said to be a common sub-graph of G1 and G2 if ∃
H1 ⊆ G1 and H2 ⊆ G2 such that G ∼= H1

∼= H2. A common sub-graph G is a
maximum common edge (resp. vertex) sub-graph if there exists no other common
sub-graph G′ = (V ′, E′) such that |E′| > |E| (resp. |V ′| > |V |).

2.2 Graph Editing and Graph Edit Distance

Given a graph G, a graph edit operation p is a kind of vertex or edge deletion,
a vertex or edge insertion, or a vertex relabeling. Notice that vertex deletion
occurs only for isolated vertices. Each edit operation p is associated with a cost
c(p) to do it depending on the application at hand. It is clear that a graph edit



6 K. Gouda et al.

A B

A

C

AA
v2

A

A

C

G G

v1u1

u
4 u3

u2 v3

v4 v
5

1 2

A C

A A

G

u1

u
2 u3

u4

Fig. 1. Two comparing graphs G1 and G2.

operation transforms a graph into another one. A sequence of edit operations
〈pi〉ki=1 performed on a graph G to get another graph G′ is called graph editing,
denoted Gedit = 〈pi〉ki=1. The cost of graph editing is, thus, the sum of its edit
operation’s costs, i.e. C(Gedit) =

∑k
i=1 c(pi).

Given two graphs G1 and G2 there could be multiple graph editings of G1

to get G2. The optimal graph editing is defined as the one associated with
the minimal cost among all other graph editings transforming G1 into G2. The
cost of an optimal graph editing defines the edit distance between G1 and G2,
denoted GED(G1, G2). That is, GED(G1, G2) = minGeditC(Gedit). In this paper
we assume the unit cost model, i.e. c(p) = 1, ∀p. Thus, the optimal graph editing
is the one with the minimum number of edit operations.

Example 1. Figure 1 shows two graphs G1 and G2. An optimal graph editing of
G1 to get G2 can be obtained as follows: A deletion operation of the edge (u1, u2),
a relabeling operation of the vertex u3 from label B into label C, an insertion
of a new vertex u5 with label C, and an insertion of a new edge (u5, u4). Thus,
GED(G1, G2) = 4.

2.3 Graph Mapping

Given two graphs G1 and G2, a graph mapping aims at finding correspon-
dence between the vertices and edges of the two graphs. Every vertex map f :
V1 ∪ {un} → V2 ∪ {vn}, where un and vn are dummy vertices with special label
ε, defines a graph mapping, where the vertex u ∈ V1 or v ∈ V2 has no correspon-
dence at the other graph if f(u) = vn or f(un) = v, resp. The edge (u, v) ∈ E1

has no correspondence if (f(u), f(v)) /∈ E2. Also, the edge (v, v′) ∈ E2 has no
correspondence if (u, u′) /∈ E1 such that v = f(u) and v′ = f(u′).

There exists a relationship between graph editing and graph mapping. More
generally any graph mapping induces a graph editing which relabels all mapped
vertices, and inserts or delete the non-mapped vertices/edges of the two graphs
[5]. Conversely, given a graph editing, the maximum common subgraph isomor-
phism (MCSI) between G and G2 defines a graph mapping between G1 and G2,
where G is the graph obtained from G1 after applying the deletion and relabeling
operations in the graph editing.

Example 2. Given the graph editing of Example 1. The graph G obtained from
G1 after applying the edge deletion and vertex relabeling operations of this graph



BFST ED: A Novel Upper Bound Computation Framework 7

editing is shown in Fig. 1. The MCSI f = {(u1, v1), (u2, v4), (u3, v5), (u4, v3)}
between G and G2 defines a graph mapping. On the other hand, consider the ver-
tex map f = {(u1, v2), (u2, v4), (u3, v1), (u4, v3), (un, v5)}. A graph editing can be
defined from f as: two relabeling operations on u1 and u3. Two deletion opera-
tions of the edges (u1, u2) and (u2, u3). An insertion operation of a vertex cor-
responding to the unmatched vertex v5. Two insertion operations of the edges
(u4, u5) and (u2, u5).

In view of the relationship between graph editing and graph mapping, the
problem of graph edit distance computation is reduced to the problem of finding
an optimal graph mapping – a mapping which induces a minimum edit cost.
Due to the hardness of obtaining such a graph mapping (computing graph edit
distance is known to be NP-hard problem [16]), approximate graph mapping
methods become very popular, especially when large graphs are under inves-
tigation [3,7,11,16]. Any of those mapping methods overestimates the graph
edit distance. The intuition behind those methods is that the better the map-
ping between the comparing graphs, the better the upper bound on their edit
distance. In this paper we present an efficient upper bound computation frame-
work for the graph edit distance which is also based on graph mapping. We first
sketch the framework and then present the details of the implementing algo-
rithm. Hereafter, the comparing graphs G1 and G2 are called the source and
target graphs, resp; their edges (resp. vertices) are called the source and target
edges (resp. vertices).

3 A Novel Upper Bound Computation Framework

The main idea of our approach is to picture the graphs to be compared into hier-
archical structures. This view allows easy comparison and fast graph mapping
construction. It also facilitates counting of the induced edit operations. Breadth
first search (BFS) is a graph traversing method allowing a hierarchical view of
the graph through the breadth first search tree it constructs. This view is defined
as follows.

A

B

A

A

A

v2

A

A

C

T

u
1

u
2 u4

v3

v1
v

5 C
v
4

u
3

T

A

v1

C

A

A

v3

v2 v5 Cv
4

AA

A

C

v
3

Cv1 v2 v4 v5

u
1

v2
Tv1 Tv3

Fig. 2. One BFST view for G1, Gu1
1 = 〈Tu1 , Eu1〉, and three different for G2, namely,

Gv2
2 = 〈Tv2 , Ev2〉, Gv1

2 = 〈Tv1 , Ev1〉 and Gv3
2 = 〈Tv3 , Ev3〉. Black edges constitute BFSTs

and backward edges are shown by dashed lines.



8 K. Gouda et al.

Definition 3 (BFST representation of a graph). Given a graph G and a
vertex u ∈ G. Let Tu be the breadth first search tree (BFST) rooted at u. The
BFST representation of G given u, denoted as Gu, is defined by the BFST-Edges
pair Gu = 〈Tu, Eu〉, where Eu is the set of graph edges which are not part of Tu,
called backward edges.

Example 3. Consider the graphs G1 and G2 of Fig. 1. Figure 2 shows some of
their hierarchical representations using breadth first search trees.

Fig. 3. BFST ED: An upper bound computation framework of GED(G1, G2).

Given the source and target graphs G1 and G2. Let Tu and Tv be the breadth
first trees rooted at u ∈ G1 and v ∈ G2, resp. Based on the BFST view of the
graph, an upper bound computation framework of the graph edit distance can
be developed. First a tree mapping between Tu and Tv is constructed. This tree
mapping determines a vertex map between the vertex sets of the two graphs.
Using this vertex map, the edit cost on backward edges is calculated and then
added to the tree mapping edit cost to produce an upper bound of the graph
edit distance. Note that it is possible as a result of the tree matching method
an edge is inserted at the position of a source backward edge. If it is the case
the final edit cost should be decremented because an edge is already there and
this insertion should not be occurred. This framework, named BFST ED (which
stands for the bold letters in: Breadth First Search Tree based Edit Distance),
is outlined in Fig. 3. The vector f holds the map on graph vertices. The value
fi �= 0 indicates that the ith vertex of V1 has been mapped. fcost is the graph
mapping cost.

The most important step in this framework is the tree mapping and edit
counting method BFST Mapping AND Cost. The better the tree mapping pro-
duced by this routine, the better the overall graph edit cost returned by the
framework. The question now is how to build a good tree mapping between two
breadth first search trees? In the following subsections we answer this question.

3.1 Random and Degree-Based BFSTs Matching

The simplest and most direct answer to the previous question is to randomly
match vertices at corresponding tree levels. That is, a source vertex at a given



BFST ED: A Novel Upper Bound Computation Framework 9

tree level l can match any target vertex at the corresponding level. This match-
ing, however, may incur a huge edit cost between the two trees as a vertex having
no correspondence has to be deleted as well as its subtree if it is a source one,
or to be inserted with its subtree if it is a target one.1 Moreover, any of these
subtree insertions or deletions entails the insertion or deletion of an edge con-
necting the subtree with its parent. Unfortunately, the number of vertices that
have no correspondence will increase as we go down the tree using this match-
ing method. Suppose that at a given tree level the number of source vertices is
equal to the number of target ones, and at one of its preceding levels, there exist
vertices with no correspondence. Deletions or insertions of subtrees made at the
preceding tree level will change the equality at the given level and entail extra
deletions and/or insertions.

A

B

A

A

A

v1

A

A

C

T

u1

u
2 u4

v3

v2
v

5 C
v
4u

3

T

A

v1

C

A

A

v3

v2 v5 Cv
4

u1
v1

Tv1

A

B

A

A

T

u1

u2 u4

u3

u1

(a) (b)

AC A A C

Fig. 4. A picture of the edit operations performed on two comparing BFSTs
(a) using random assignment (b) using OUT degree assignment. Vertex/edge inser-
tions are shown by dashed vertices/edges. Vertex relabeling is done on blacked source
vertices.

Example 4. Given the source and target trees Tu1 and Tv1 of Fig. 2.
The edit cost returned by BFST ED is 13. The random matching in
BFST Mapping AND Cost induces 10 edit operations, and 3 edit operations
are required for backward edge modifications. The vertex map returned by
BFST Mapping AND Cost is as: f = {(u1, v1), (u2, v3), (u3, v

n), (u4, v
n), (un, v2),

(un, v4), (un, v5)}. This map includes 2 vertex deletions, 2 edge deletions, 3 ver-
tex insertions, and 3 edge insertions. Figure 4(a) gives a picture on how the
mapping AND cost method based on random assignment matches the source Tu1

with the target Tv1 and computes their graph edit cost.

An idea to decrease the number of insertions and/or deletions caused by
random assignment, and thus decrease the overestimation of GED, is based on
the OUT degree of a BFST vertex defined as follows.

1 Since all edit modifications usually occur at the source tree to get the target one,
any deletion at the target tree is equivalent to an insertion at the source tree in our
model.



10 K. Gouda et al.

Definition 4 (OUT degree of a BFST vertex). Given a graph G. Let Tu

be the BFST rooted at u ∈ G. For each tree vertex w ∈ Tu, the OUT degree of
w, denoted OUT (w), is defined as the number of its children in the tree.

The idea is to match the vertices at corresponding tree levels which have
near OUT degrees. According to this matching, vertices which have no corre-
spondence will decrease and consequently the edit cost returned by the method
as well. Based on this idea, the edit cost in Example 4 is decreased from 13 to 10
edit operations as the vertex map returned by BFST Mapping AND Cost has four
less insertion and deletion operations, two on vertices and two on edges, at the
cost of one extra vertex relabeling operation for matching the source vertex at
the bottom level. The associated vertex map is given as follows: f = {(u1, v1),
(u4, v3), (u2, v

n), (u3, v2), (un, v4), (un, v5)}. This map incurs 7 edit operations
on the BFSTs and 3 on backward edges. Figure 4(b) pictures the tree editing
based on OUT degree assignment.

Although this matching method is very fast,2 still the overall edit cost
returned is far from the graph edit distance. In the running example, the best
edit cost returned is 10 which is large compared with 4 – the graph edit distance.
Another important issue of this matching method which is not seen by the run-
ning example is that the method is not taking care of the matching occurred
for parents while matching children. It may happen that for many matched chil-
dren, their parents are matched differently which requires extra edit operations.
Though this counting can be accomplished in a subsequent phase using the asso-
ciated vertex map, the tree mapping cost will be very high. Next, we present a
tree mapping and matching method addressing all previous issues.

3.2 An Efficient BFSTs Matching Method

The bad overestimation of the graph edit distance returned by the previous
method is due to two reasons. One lies at the simple tree traversing method
which does not take previous vertex matching into account and blindly processes
the trees level by level. The second reason lies at the vertex matching process
itself: Vertices are randomly matched or in the best case are matched based on
their OUT degrees which offer a very narrow lookahead view for the comparing
vertices. Not to mention the very large number of insertions and/or deletions
produced by this matching method. Below we introduce a new tree traversal
and vertex matching method which addresses all previous issues.

Traversing the comparing BFSTs in pre-order can offer a solution to the first
issue as vertices can be matched in the traversal order. This matching order guar-
antees that vertices can be matched only if their parents are matched. Though
the pre-order traversal removes the overhead of any subsequent counting phase
as in the previous method, it limits the different options for matching a given
2 No computations are soever required for random assignment; only climbing the

source tree and at each tree level the corresponding vertices are randomly matched.
For OUT degree assignment, extra computations are required to match vertices with
the closest OUT degrees.



BFST ED: A Novel Upper Bound Computation Framework 11

vertex, where only one option is allowed which is based on the visited vertex. To
overcome this, one can compare and match all corresponding children of both an
already visited source vertex and its matching target before visiting any of these
children. This in turn facilitates for a child to find a suitable correspondence to
match among various options.

What is the suitable correspondence for a vertex to match? It could be based
on the OUT degree as in the previous method. However, the OUT degree gives
a very narrow view as we have already noticed. Fortunately, the BFST structure
offers a wider lookahead view which is adopted by our method. This view is
represented by a tuple, called feature vector, consisting of three values attached
with each vertex. These values are calculated during the building process of the
BFSTs.

Definition 5 (A feature vector of a BFST vertex). Given a graph G and
let Tu be the BFST rooted at u ∈ G. For each tree vertex w ∈ Tu, the feature
vector of w, denoted f(w), is a tuple f(w) = 〈SUB(w), BW (w), l(w)〉, in which:

– SUB(w) is the number of vertices and edges of the subtree rooted at w.
– BW (w) is the number of backward edges incident on w.
– l(w) is the vertex label.

Obviously, all tree leaves have SUB count zero. BW (w) is defined for each tree
vertex w as: BW (w) = deg(w)− (OUT (w)+ 1). Based on Definition 5, a source
vertex favors a target vertex to match which has near vertex distance, defined
as follows.

Definition 6 (Vertex distance). Given two source and target tree vertices w
and w′ with their feature vectors f(w) and f(w′). The distance between w and
w′, denoted d(w,w′), is defined based on feature vectors as:

d(w,w′) = |SUB(w) − SUB(w′)| + |BW (w) − BW (w′)| + c(w,w′), (1)

where the cost function c returns 0 if the two matching items, i.e. vertices w and
w′, have identical labels, and 1 otherwise.

By considering the difference |BW (w) − BW (w′)| in calculating the vertex dis-
tance, the method partially takes care of the backward edges while matching
vertices. In fact, BW (w) is introduced to minimize the number of edit opera-
tions required for matching backward edges. Formally, let Cu = {u1, . . . , uk} and
Cv = {v1, . . . , vl} be the children of two matched source and target vertices u
and v, in the given order. A child ui of u favors a child vk of v to match based
on the following equation.

k = argminvj∈Cv
(d(ui, vj)). (2)

That is, the distance between a vertex ui and its matching vertex vk should be
minimal among other vertices. In cases where there are more than one candidate
for a vertex to match, then the method selects the one with the smallest vertex id.



12 K. Gouda et al.

So far the preorder traversal with Eq. 2 addresses some of the previous issues:
No subsequent counting phase is required by the method and the method also
offers a wider lookahead view to better match the corresponding vertices. Unfor-
tunately, this traversal may worsen the other issues. In fact it may increase the
number of insertions and/or deletions because it could happen that for a vis-
ited vertex the number of its children differs from the number of children of
its matching vertex, though the total number of vertices might be equal at the
children level. To overcome this issue the idea of spare trees is brought to the
method.

Definition 7 (spare subtrees). Given two comparing BFSTs Tu and Tv rooted
at u ∈ G1 and v ∈ G2, resp. Any subtree of Tu or Tv rooted at a vertex w is called
spare subtree if the vertex w has no correspondence while pre-order traversing
Tu and Tv.

The idea of spare subtrees has been introduced in order to answer the follow-
ing question: Why do we get rid of each unmatched vertex with its subtree and
pay a high edit cost for doing so, though it could be beneficial later on instead of
being costly right now. The pre-order traversing and matching method is devel-
oped by building a spare-parts store STu at each comparing BFST Tu in order
to preserve these unmatched vertices and their subtrees. During tree traversal,
when an encountered source or target vertex has no correspondence, the method
asks the spare-parts store for a suitable counterpart. If such a spare-part does
exist it is matched and removed from the store, otherwise the new vertex itself
with its subtree goes to the relevant spare-parts store. This idea guarantees that
each vertex will get a counterpart as long as the other tree has this counterpart,
i.e., if the number of vertices of the other tree has at least the number of vertices
of the tree where the vertex belongs to. At the end of the tree traversal the
spare-parts store associated with the tree of small order will be empty and the
other store will contain a number of spare subtrees equal to the vertex difference
||V1| − |V2||. Finally, the number of vertices and edges in each remaining spare
subtree will be added to the tree mapping cost. Fortunately, the size of each
remaining spare subtree will be very small.

Algorithm 2 in Fig. 5 is a recursive encoding of the method. In fact we do not
put the whole spare subtrees in the store, references to their roots are the only
information that is maintained (refer to line 12). Also, if a vertex and its subtree
is characterized as a spare part, the connecting edge with its parent vertex (the
vertex where it hangs on) is deleted and the tree mapping cost is updated (see
line 3: All edges connecting children which have no correspondence are deleted
if they are source vertices and inserted otherwise). Moreover, if this vertex is a
source one, it is temporary blocked, i.e., it is temporary removed from the pre-
order traversal (line 13). Alternatively, if a spare source subtree is matched and
removed from the store, it goes directly into the pre-order traversal again (line
28). It means that the root of this subtree will be hung on and become a child
of the currently processing parent vertex. For hanging this spare vertex no edge
insertion is required since the matching vertex, whether it comes from the other



BFST ED: A Novel Upper Bound Computation Framework 13

spare store or as a corresponding child, has already charged by an equivalent
deletion operation at line 3 of the edge connecting it with its parent.

Fig. 5. Pre-order traversing and matching method.

Example 5. Figure 6 explains how the traversing method (Algorithm 2) matches
Tu1 with Tv1 of Fig. 2 and computes the tree edit cost. The graph edit cost pro-
duced by BFST ED is 5: 6 edit operations are required to transform Tu1 into Tv1 ;
one of the tree edge insertions is removed because it is occurred at the position
of the backward edge (u2, u4), and finally zero edit operations are required on the
remaining backward edges.

Theorem 1 (Time Complexity). The procedure BFST mapping AND cost (Algo-
rithm 2) returns the vertex map f and its induced edit cost fcost in O(d2|V1|),
where d is the maximum vertex degree in both graphs.

Theorem 2 (Correctness). The value fcost returned by BFST ED(G1, G2) with
Algorithm 2 at Fig. 5 is the edit cost induced by the returned vertex map f .



14 K. Gouda et al.

A

B

A

A

T

u
1

u
2 u4

u
3 A

v1

C

A

A

v3

v2 v5 Cv
4

T

C

u1 v1

Fig. 6. A possible tree editing transforming Tu1 into Tv1 , which is produced by the
preorder method (Algorithm 2). Vertex and edge insertions are shown by dashed lines
and vertex relabeling is shown by heavy-blacked lines. This tree editing has the follow-
ing 6 edit operations given in order according to the algorithm: deletion of the edge
(u1, u2), deletion of two target edges which is equivalent to two edge insertions at the
source tree, relabeling of u3, deletion of v2 which is equivalent to vertex insertion at
the source tree, and relabeling of u2. The vertex map returned by this algorithm in the
order of its construction is as follows: f = {(u1, v1), (u4, v3), (u3, v4), (u2, v5), (u

n, v2)}.

3.3 Improving the Overestimation: BFST ED ALL

Previously, based on the chosen graph vertex, a hierarchical representation of the
graph could be given. Thus, for each graph G, it is possible to construct |V | dis-
tinct hierarchical views, each of which starts from a different vertex. The multi-
hierarchical views of a graph gives us the opportunity to compare two graphs
from different hierarchical perspectives and choose the best obtained graph map-
ping, instead of restricting ourselves to a single view comparison. This multi-view
comparison is implemented and called BFST ED ALL. In fact BFST ED ALL explores
|V1| × |V2| possible graph mappings and returns the one with the least overesti-
mation.

4 Experimental Evaluation

In this section, we aim at empirically studying the proposed method. We con-
ducted several experiments, and all experiments were performed on a 2.27 GHz
Core i3 PC with 4 GB memory running Linux. Our method is implemented in
standard C++ using the STL library and compiled with GNU GCC.

Benchmark Datasets: We chose several real graph datasets for testing the
method.

(1) AIDS (http://dtp.nci.nih.gov/docs/aids/aidsdata.html) is a DTP AIDS
Antiviral Screen chemical compound dataset. It consists of 42, 687 chemical
compounds, with an average of 46 vertices and 48 edges. Compounds are
labelled with 63 distinct vertex labels but the majority of these labels are
H, C, O and N.

(2) Linux (http://www.comp.nus.edu.sg/∼xiaoli10/data/segos/linux segos.
zip) is a Program Dependence Graph (PDG) dataset generated from the

http://dtp.nci.nih.gov/docs/aids/aidsdata.html
http://www.comp.nus.edu.sg/~xiaoli10/data/segos/linux_segos.zip
http://www.comp.nus.edu.sg/~xiaoli10/data/segos/linux_segos.zip


BFST ED: A Novel Upper Bound Computation Framework 15

Linux kernel procedure. PDG is a static representation of the data flow
and control dependency within a procedure. In the PDG graph, an vertex is
assigned to one statement and each edge represents the dependency between
two statements. PDG is widely used in software engineering for clone detec-
tion, optimization, debugging, etc. The Linux dataset has in total 47,239
graphs, with an average of 45 vertices each. The graphs are labelled with 36
distinct vertex labels, representing the roles of statements in the procedure,
such as declaration, expression, control-point, etc.

(3) Chemical is a chemical compound dataset. It is a subset of PubChem
(https://pubchem.ncbi.nlm.nih.gov) and consists of one million graphs. It
has 24 vertices and 26 edges on average. The graphs are labelled with 81
distinct vertex labels.

4.1 Comparison with Exact Methods

We first evaluate the performance of our methods, BFST ED and BFST ED All,
against exact GED computation methods. We want to see how much speed up
can be achieved by our methods at the cost of how much loss in accuracy of
GED. In this experiment, we use the recent exact GED computation method
named CSI GED [5], and randomly choose two source and target vertices to
run BFST ED. As the exact computation of GED is expensive on large graphs,
to make this experiment possible, graphs with acceptable order were randomly
selected from the data sets. From these graphs, four groups of ten graphs each
were constructed. The graphs in each group have the same number of vertices,
and the number of vertices residing in each graph among different groups varies
from 5 to 20. In this experiment, each group is compared with the one having
the largest graph order. Thus, we have 100 graph matching operations in each
group comparison. For estimating the errors, the mean relative overestimation
of the exact graph edit distance, denoted φo, is calculated.3 Figure 7 plots the
value φo of each method on each group for the different data sets, where the
horizontal axis shows the order of the comparing group. It is clear that φo = 0
for CSI GED. Figure 7 also plots the mean run time φt taken by each method
on each group for each data set.

First, we observe that on the different data sets the accuracy loss of
BFST ED All is very small on small order groups and increases with increasing
graph order. It is between 10–20% on large groups. Accuracy loss of BFST ED,
on the other hand, is even worse and exhibits the same trend. It is about 3–
4 times larger than that of BFST ED All. Looking at the run time of the
three methods. We observe that on large groups comparisons, BFST ED All
outperforms CSI GED by 2–5 orders of magnitude and it is outperformed by
BFST ED from 1–2 orders of magnitude. One thing that should be noticed is
that on the very small order group, the one with order 5, CSI GED is faster
than BFST ED All on all real data sets.

3 φo is defined for a pair of graphs matching as: φo = |λ−GED|
GED

, where λ and GED
are the approximate and exact graph edit distances, resp.

https://pubchem.ncbi.nlm.nih.gov


16 K. Gouda et al.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

5 10 15 20

φo

Graph order

AIDS

BFST_ED

BFST_ED_ALL

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

5 10 15 20

φo

Graph order

Chemical

BFST_ED

BFST_ED_ALL

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

5 10 15 20

φo

Graph order

Linux

BFST_ED

BFST_ED_ALL

 0.001
 0.01
 0.1

 1
 10

 100

5 10 15 20

φt

Graph order

AIDS

BFST_ED

BFST_ED_ALL

EXACT

 0.0001
 0.001
 0.01
 0.1

 1
 10

5 10 15 20

φt

Graph order

Chemical

BFST_ED

BFST_ED_ALL

EXACT

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

5 10 15 20

φt

Graph order

Linux

BFST_ED

BFST_ED_ALL

EXACT

Fig. 7. Comparative accuracy and time with exact method.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

5 10 15 20

φo

Graph order

AIDS

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

5 10 15 20

φo

Graph order

Chemical

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

5 10 15 20

φo

Graph order

Linux

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0.0001

 0.001

 0.01

 0.1

 1

5 10 15 20

φt

Graph order

AIDS

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0.0001

 0.001

 0.01

 0.1

 1

5 10 15 20

φt

Graph order

Chemical

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0.0001

 0.001

 0.01

 0.1

 1

5 10 15 20

φt

Graph order

Linux

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

Fig. 8. Comparative accuracy and time with different methods: small order graphs.

4.2 Comparison with Approximation Methods

In this set of experiments, we compare our methods against the state-of-the-art
upper bound computation methods such as Assignment Edit Distance (AED)
method [10], the Star-based Edit Distance (SED) method [16], and their exten-
sions. These methods are extended by applying a postprocessing vertex swapping
phase to enhance the obtained graph mapping. In [5], a greedy vertex swapping
procedure is applied on the map obtained from AED, and is abbreviated as
“AED GS”, and in [16] an exhaustive vertex swapping is applied on the map
obtained from SED and is abbreviated as “SED ES”. The executables for com-
petitor methods were obtained from their authors.



BFST ED: A Novel Upper Bound Computation Framework 17

 40

 50

 60

 70

 80

 90

 100

 110

 120

30 40 50 60

A
ve

ra
ge

 o
ve

re
st

im
at

io
n

AIDS

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

30 40 50 60

A
ve

ra
ge

 o
ve

re
st

im
at

io
n

Graph order

Chemical

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

30 40 50 60

A
ve

ra
ge

 o
ve

re
st

im
at

io
n

Graph order

Linux

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

30 40 50 60

φt

Graph order

AIDS

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

30 40 50 60

φt

Graph order

Chemical

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

30 40 50 60

φt

Graph order

Linux

AED
SED

BFST_ED

AED_GS
SED_ES

BFST_ED_ALL

Fig. 9. Comparative accuracy and time with different methods: large order graphs.

Comparison with Respect to GED. First we compare the different methods
on graphs where the exact graph edit distance is known. Therefore, we use the
groups of graphs from the previous experiment. To look at bound tightness,
φo is calculated for each of these methods. Obviously, the smaller the mean
relative overestimation, the better is the approximation method. We also aim at
investigating φt for each method.

Figure 8 plots φo and φt for each method on the different data sets. It shows
that BFST ED All always produces smaller φo values than the ones produced by
other methods on all data sets. The gap between φo values is remarkable on the
AIDS and Chemical data sets, where φo values of BFST ED All are almost half
of those produced by SED ES, the best competitor. On Linux data set, those
produced by SED ES are comparable with ours on the largest group comparison.
In addition to the good results on bound tightness, the average run time of
BFST ED ALL is better than that of other methods. It is about 2 times faster
than the best competitor. Looking at each method individually, there is a clear
trade-off between bound tightness and speed. The first map is always come at
high speed but at the cost of accuracy loss. In conclusion, we can see that the
upper bound obtained by BFST GED ALL provides near approximate solutions at
a very good response time compared with current methods.

Comparison on Large Graphs. In this set of experiments we evaluate the
different methods on large graphs. In each data set, four groups of ten graphs
each are selected randomly, where each group has a fixed graph order chosen
as: 30, 40, 50, and 60. Each of these groups is compared using the different
methods with a database of 1000 graphs chosen randomly from the same data
set. Figure 9 shows the average edit overestimation returned by each method
per graph matching on each group. The average edit overestimation is adopted



18 K. Gouda et al.

instead of φo since there is no reference GED value available for large graphs.
The figure also shows the average running time for all data sets.

Figure 9 shows that both AED and SED have the same accuracy on all data
sets with almost the same running time (except that AED is two times faster on
Linux). AED GS shows little improvements of accuracy over AED with time
increase. BFS ED, on the other hand, shows much better accuracy with 2–
3 orders of magnitude speed up over the previous three methods. Also, both
BFST ED All and SED ES show the same accuracy on all data sets; but with
two orders of magnitude speed up for the benefit of BFST ED All. These results
shows the scalability of our methods on large graphs.

5 Conclusion

In this paper, the computational methods approximating the graph edit dis-
tance are studied; in particular, those overestimating it. A novel overestimation
approach is introduced. It uses breadth first hierarchical views of the compar-
ing graphs to build different graph maps. This approach offers new features not
present in the previous approaches, such as the easy combination of vertex map
construction and edit counting, and the possibility of constructing graph maps
in parallel. Experiments show that near overestimation is always delivered by
this new approach at a very good response time.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. Int. J. Pattern Recogn. Artif. Intell. 18, 265–298 (2004)

2. Fischer, A., Suen, C., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph
edit distance based on hausdorff matching. Pattern Recogn. 48(2), 331–343 (2015)

3. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog,
M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82.
Springer, Heidelberg (2014)

4. Gouda, K., Arafa, M.: An improved global lower bound for graph edit similarity
search. Pattern Recogn. Lett. 58, 8–14 (2015)

5. Gouda, K., Hassaan, M.: CSI GED: an efficient approach for graph edit similarity
computation. In: ICDE, pp. 265–276 (2016)

6. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination
of minimum cost paths. IEEE Trans. SSC 4(2), 100–107 (1968)

7. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. PAMI 28(8), 1200–1214 (2006)

8. Munkres, J.: A network view of disease and compound screening. J. Soc. Ind. Appl.
Math. 5, 32–38 (1957)

9. Neuhaus, M., Bunke, H.: Edit distance-based kernel functions for structural pattern
classification. Pattern Recogn. 39, 1852–1863 (2006)

10. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)



BFST ED: A Novel Upper Bound Computation Framework 19

11. Riesen, K., Fischer, A., Bunke, H.: Computing upper and lower bounds of graph
edit distance in cubic time. In: El Gayar, N., Schwenker, F., Suen, C. (eds.) ANNPR
2014. LNCS, vol. 8774, pp. 129–140. Springer, Heidelberg (2014)

12. Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit
distance computation. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang,
X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 142–151. Springer, Heidelberg (2013)

13. Riesen, K., Fankhauser, S., Bunke, H.: Speeding up graph edit distance computa-
tion with a bipartite heuristic. In: MLG, pp. 21–24 (2007)

14. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the
edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol.
4538, pp. 1–12. Springer, Heidelberg (2007)

15. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett.
45, 244–250 (2014)

16. Zeng, Z., Tung, A., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximat-
ing graph edit distance. PVLDB 2(1), 25–36 (2009)

17. Zhao, X., Xiao, C., Lin, X., Wang, W., Ishikawa, Y.: Efficient processing of graph
similarity queries with edit distance constraints. VLDB J. 22, 727–752 (2013)



Pruned Bi-directed K-nearest Neighbor Graph
for Proximity Search

Masajiro Iwasaki(B)

Yahoo Japan Corporation, Tokyo, Japan
miwasaki@yahoo-corp.jp

Abstract. In this paper, we address the problems with fast proximity
searches for high-dimensional data by using a graph as an index. Graph-
based methods that use the k-nearest neighbor graph (KNNG) as an
index perform better than tree-based and hash-based methods in terms
of search precision and query time. To further improve the performance
of the KNNG, the number of edges should be increased. However, increas-
ing the number takes up more memory, while the rate of performance
improvement gradually falls off. Here, we propose a pruned bi-directed
KNNG (PBKNNG) in order to improve performance without increasing
the number of edges. Different directed edges for existing edges between
a pair of nodes are added to the KNNG, and excess edges are selectively
pruned from each node. We show that the PBKNNG outperforms the
KNNG for SIFT and GIST image descriptors. However, the drawback
of the KNNG is that its construction cost is fatally expensive. As an
alternative, we show that a graph can be derived from an approximate
neighborhood graph, which costs much less to construct than a KNNG,
in the same way as the PBKNNG and that it also outperforms a KNNG.

1 Introduction

How to conduct fast proximity searches of large-scale high dimensional data is
an inevitable problem not only for similarity-based image retrieval and image
recognition but also for multimedia data processing and large-scale data mining.
Image descriptors, especially local descriptors, are used for various image recog-
nition purposes. Since a large number of local descriptors are extracted from just
one image, shortening the query time is crucial when handling a huge number of
images. Thus, indices are indispensable in this regard for large-scale data, and
as a result, various indexing methods have been proposed. In recent years, an
approximate proximity search method that does not guarantee exact results has
been the prevailing method used in the field because the query time rather than
search accuracy is prioritized.

Hash-based and quantization-based methods are approximate searches with-
out original objects. LSH [1], which is one of the hash-based methods, searches
for proximate objects by using multiple hash functions, which compute the same

The original version of this chapter was revised: The presentation of Fig. 5(b) was
incorrect. The erratum to this chapter is available at 10.1007/978-3-319-46759-7 26

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 20–33, 2016.
DOI: 10.1007/978-3-319-46759-7 2



Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search 21

hash value for objects that are close to each other. Datar et al. [2] applied LSH
to Lp spaces so that it could be used in various applications. Spectral hashing [3]
was proposed as a method that optimizes the hash function by using a statis-
tical approach for datasets. Quantization-based methods [4,5] quantize objects
and search for quantized objects. For example, the product quantization method
(PQ) [5] splits object vectors into sub vectors and quantizes the sub vectors to
improve the search accuracy. While recent hash-based and quantization-based
methods drastically reduce memory usage, the search accuracies are significantly
lower than those of proximity searches using original objects.

Proximity searches using original objects are broadly classified into tree-based
and graph-based. In the tree-based method, a whole space is hierarchically and
recursively divided into sub spaces. As a result, the sub spaces form a tree
structure. Various kinds of methods have been proposed, including kd-tree [6],
SS-tree [7], vp-tree [8], and M-tree [9]. While these methods provide exact search
results, tree-based approximate search methods have also been studied. ANN
[10] is a method that applies an approximate search to a kd-tree. SASH [11]
is a tree that is constructed without dividing a space. FLANN [12] is an open
source library for approximate proximity searches. It provides randomized kd-
trees wherein multiple kd-trees are searched in parallel [12,13] and k-means trees
that are constructed by hierarchical k-means partitioning [12,14].

Graph-based methods use a neighborhood graph as a search index. Arya et al.
[15] proposed a method that uses randomized neighbor graphs as a search index.
Sebastian et al. [16] used a k-nearest neighbor graph (KNNG) as a search index.
Each node in the KNNG has directed edges to the k-nearest neighboring nodes.
Although a KNNG is a simple graph, it can reduce the search cost and provides
a high search accuracy. Wang et al. [17] improved the search performance by
using seed nodes, which are starting nodes for exploring a graph, obtained with
a tree-based index depending on the query from an object set. Hajebi et al.
[18] showed that searches using KNNGs outperform LSH and kd-trees for image
descriptors. Therefore, in this paper, we focused on a graph-based approximate
search for image descriptors to acquire higher performance.

Let G = G(V,E) be a graph, where V is a set of nodes that are objects in
a d-dimensional vector space R

d. E is the set of edges connecting the nodes. In
graph-based proximity searches, each of the nodes in a graph corresponds to an
object to search for. The graph that these methods use is a neighborhood graph
where neighboring nodes are associated with edges. Thus, neighboring nodes
around any node can be directly obtained from the edges. The following is a
simple nearest neighbor search for a query object that is not a node of a graph
using a neighborhood graph in a best-first manner.

An arbitrary node is selected from all of the nodes in the graph to be
the target. The closest neighboring node to the query is selected from
the neighboring nodes of the target. If the distance between the query
and the closest neighboring node is shorter than the distance between the
query and the target node, the target node is replaced by the closest node.
Otherwise, the target node is the nearest node (the search result), and the
search procedure is terminated.



22 M. Iwasaki

The search performance of a KNNG improves as the number of edges for
each node increases. However, the rate of improvement gradually tapers off while
the edges occupy more and more memory. To avoid this problem, we propose a
pruned bi-directed k-nearest neighbor graph (PBKNNG). First, it adds reversely
directed edges to all of the directed edges in a KNNG. While it can improve the
search performance, the additional edges tend to concentrate on some of the
nodes. Such excess edges obviously reduce the search performance because the
number of accesses to unnecessary nodes to search increases. Therefore, second,
the long edges of each node holding excess edges are simply pruned. Third, edges
that have alternative paths for exploring the graph are selectively pruned. Thus,
we show that the PBKNNG outperforms not only the KNNG but also the tree-
and quantization-based methods.

As the number of objects grows, the brute force construction cost of a KNNG
exponentially increases because the distances between all pairs of objects in the
graph need to be computed. Thus, Dong et al. [19] reduced the construction
cost by constructing an approximate KNNG. Here, the ANNG [20] is not an
approximate KNNG but an approximate neighborhood graph that is incremen-
tally constructed using approximate k-nearest neighbors that are searched for by
using the partially constructed ANNG. Such approximate neighborhood graphs
can drastically reduce construction costs. In this paper, we also show that the
search performance of a graph (PANNG) derived from an ANNG instead of a
KNNG in the same way as a PBKNNG can be close to that of a PBKNNG.

The contributions of this paper are as follows.

– We propose a PBKNNG derived from a KNNG and show that it outperforms
not only the KNNG but also the tree- and quantization-based methods.

– We show the effectiveness of a PANNG derived from an approximate neigh-
borhood graph instead of a KNNG derived in the same way as a PBKNNG.

2 KNNG-Based Proximity Search

2.1 Proximity Search Algorithm

Most applications including image search and recognition require more than one
object to be the result for a specific query. Therefore, we decided to focus on
k-nearest neighbor (KNN) searches in this study. The search procedure with
a graph-based index generally consists of two steps: obtaining seed nodes and
exploring the graph with the seed nodes. Seed nodes can be obtained by ran-
dom sampling [18,20], clustering [16], or finding nodes that neighbor a query
by using a tree-based index [17,21]. Although the methods using a tree-based
index perform the best, we used the simplest method, random sampling, in order
to evaluate the graph structure without the effect of the tree-structure or clus-
tering. As far as the second step goes, there are two methods of exploring a
graph. In the first, the neighbors of the query are traced from seed objects in
the best-first manner in Sect. 1, and this is done repeatedly using different seeds
to improve the search accuracy [16,18]. In the second, nodes within the search



Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search 23

(a)

A
cc

ur
ac

y

Query Time [ms]

(b)

D
is

ta
nc

e

Rank

(c)

Fig. 1. (a) Relationship between the search space, exploration space, and query.
(b) Search accuracy vs. query time of KNNG for different numbers of edges k for
10 million SIFT image descriptors. (c) Average distance of objects for each rank of
nearest neighbors vs. rank of nearest neighbors.

space, which is narrowed down as the search progresses, are explored [17,20].
The former method has a drawback in that the same nodes are accessed mul-
tiple times because it performs the best-first procedure repeatedly. As a result,
search performance deteriorates. Therefore, we use the latter to evaluate graphs
in this paper.

During KNN search, the distance of the farthest object in the search result
from the query object is set as the search radius r. The actual explored space
is wider than the search space defined by r. The radius of the exploration space
re is defined as re = r(1 + ε), where ε expands the exploration space to improve
the search accuracy. As ε increases, the accuracy improves; however, the search
cost increases because more objects within the expanded space must be accessed.
Figure 1(a) shows how the search space, exploration space, and query are related.
Algorithm 1 is the pseudo code of the search. Here, KnnSearch returns a set
of resultant objects R. Let q be a query object, ks be the number of resultant
objects, C be the set of already evaluated objects, d(x, y) be the distance between
objects x and y, and N(G, x) be the set of neighboring nodes associated with the
edges of node x in graph G. The function Seed(G) returns seed objects sampled
randomly from graph G. In a practical implementation, sets S and R are priority
queues. While making set C a simple array would reduce the access cost, the
initializing cost is expensive for large-scale data. For this reason, a hash set is
used instead.

2.2 Problem Definition

For simplicity, we will analyze the nearest neighbor search instead of a k-nearest
neighbor search. If Condition 1 is satisfied, the nearest neighbor is obtained in
a best-first manner from an arbitrary node on the neighborhood graph [22].

Condition 1. ∀a ∈ G,∀q ∈ R
d, if ∀b ∈ N(G, a), d(q, a) ≤ d(q, b), then ∀b ∈

G, d(q, a) ≤ d(q, b).

Delaunay triangulation, which satisfies Condition 1, has absolutely fewer edges
than a complete graph that also satisfies Condition 1. The number of edges,



24 M. Iwasaki

Algorithm 1. KnnSearch

Input: G, q, ks, ε
Output: R
1: S ← Seed(G), r ← ∞, R ← ∅
2: while S �= ∅ do
3: s ← argmin

x∈S
d(x, q), S ← S − {s}

4: if d(s, q) > r(1 + ε) then
5: return R
6: end if
7: for all o ∈ N(G, s) do
8: if o /∈ C then
9: C ← C ∪ {o}

10: if d(o, q) ≤ r(1 + ε) then
11: S ← S ∪ {o}
12: end if

13: if d(o, q) ≤ r then
14: R ← R ∪ {o}
15: if |R| > ks then
16: R ← R−{argmax

x∈R
d(x, q)}

17: end if
18: if |R| = ks then
19: r ← maxx∈R d(x, q)
20: end if
21: end if
22: end if
23: end for
24: end while
25: return R

however, increases drastically as the dimension of the objects increases. There-
fore, a Delaunay triangulation is impractical in terms of the index size due to a
huge number of the edges. As a result, most of the graph-based methods instead
use a KNNG, where the number of edges can be arbitrarily specified. The search
results of KNNG, however, are approximate because this graph does not satisfy
Condition 1.

Figure 1(b) shows the accuracy versus query time for different numbers of
edges k in a KNNG. The dataset consisted of 10 million SIFT image descriptors
(128-dimensional data). The search was conducted with Algorithm 1. The curves
of the figure are depicted by varying ε. Being closer to the top-left corner of
the figure means better performance in terms of query time and accuracy. In
this paper, accuracy is measured in terms of precision. In fact, precision and
recall are identical in the KNN search. From Fig. 1(b), one can see that the
search performance improves as the number of edges k in the KNNG increases.
However, the rate of improvement gradually decreases. The memory needed for
storing over 50 edges is large, whereas the improvement brought by storing so
many edges is not so great.

We examined the distribution of neighboring objects around a query object.
1,000 objects were randomly selected as queries from 10 million objects, and the
40 nearest neighbors for each query object were sorted by distance. Figure 1(c)
shows the average distance of the objects for each rank of the nearest neighbors.
The distance of the highest ranking object that is the nearest to the query
object is significantly shorter than the distances of lower ranked objects. Thus,
the neighboring region around an arbitrary object is extremely sparse, while
outside the neighboring region is extremely dense.

Therefore, the case in Fig. 2(a) frequently occurs in high-dimensional spaces.
The figure depicts the space of distances from node o1. The number of edges in
KNNG is three. The rank of o2 in ascending order of the distance from o1 is much



Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search 25

(a)

F
re

qu
en

cy

Number of Edges

(b) (c)

Fig. 2. (a) Relationship between nodes and edges in the case of problem conditions.
(b) Frequency of nodes vs. number of edges for each node in a BKNNG. (c) Selective
edge removal. The target node is ot, which has excess edges. If p = 3, e1 is removed,
and e2 is not.

higher than the rank of o1 in ascending order of the distance from o2. Thus, while
the directed edge from o1 to o2 is generated, an edge from o2 to o1 is not gener-
ated. Therefore, during a search, when the query oq is close to node o1 and the
seed object os is near object o2, node o1 cannot be reached through o2 from node
os because there is no path from o2 to o1. As a result, search accuracy is reduced
for high-dimensional data where such conditions frequently occur. Increasing the
number of edges helps to avoid such disconnections between neighboring nodes.
Figure 1(b) shows that increasing the number of edges improves performance
until around 30 edges, after which the improvement rate tapers off. While more
edges can reduce such disconnections, more than enough edges increase the num-
ber of accessed nodes that are ineffective for searching. As a result, the query
time increases.

3 Our Approach

To resolve the problem that increasing the number of edges to improve accuracy
causes the query time to increase, we propose two types of graph structures: the
pruned bi-directed k-nearest neighbor graph and pruned ANNG.

3.1 Pruned Bi-directed K-nearest Neighbor Graph

For a first step of our proposal, a reversely directed edge can be added for each
directed edge instead of increasing the number of edges of each node. Further-
more, if a corresponding reversely directed edge already exists, it is not added.
This solution can connect disconnected pairs of nodes and suppress any increase
in ineffective long edges. We refer to the resultant graph as a bi-directed k-nearest
neighbor graph (BKNNG). It theoretically has up to twice as many edges as a
KNNG. However, since a KNNG likely has some node pairs with directed edges
pointing to each other, the number of edges in a BKNNG is typically less than
twice that of a KNNG. In the case of 10 million SIFT objects, the number of
edges in a BKNNG generated from a KNNG wherein each node has 10 edges is



26 M. Iwasaki

about 186 million. Therefore, the number of cases in Fig. 2(a), where one pair of
nodes has one directed edge between two nodes, is about 86 million. 14 million
pairs of nodes have two different directed edges between each other.

Algorithm 2. ConstructPBKNNG
Input: G, kp, kr, p
Output: G
1: for all o ∈ V do
2: for all n ∈ N(G, o) do
3: if N(G, n) ∩ {o} = ∅ then
4: N(G, n) ← N(G, n) ∪ {o}
5: if |N(G, n)| > kp then
6: N(G, n) ← N(G, n) −

{ argmax
x∈N(G,n)

d(x, n)}
7: end if
8: end if
9: end for

10: end for
11: RemoveEdgesSelectively(G, kr, p)
12: return G

Algorithm 3.RemoveEdgesSelectively
Input: G, kr, p
Output: G
1: for all o ∈ V do
2: for all n ∈ N(G, o) do
3: if Rank(N(G, o), n) > kr then
4: if PathExists(G, o, n, p) =

true then
5: N(G, o) ← N(G, o) − n
6: end if
7: end if
8: end for
9: end for

10: return G

Figure 2(b) shows the frequency of nodes versus the number of edges in a
BKNNG that was generated from a KNNG in which each node had 10 edges.
The number of edges is widely distributed from 10 up to 1,851. The number of
edges having the highest frequency is 10. The average number of edges is about
18.6. Since excess edges for some of the nodes reduce the search performance as
a result of the computations for all the excess edges, the excess edges should be
pruned. Too long edges of nodes holding excess edges are obviously not effective
for exploring a graph because they do not connect to neighboring nodes. For a
second step, to prune such edges, the edges are sorted in ascending order of length
while reversely directed edges are being added. Here, let kp be the maximum
number of edges for each node after pruning. Edges whose rank is larger than
kp are forcedly removed (forced edge removal). Even though the processing cost
is small enough, excess edges can be effectively reduced. Nevertheless, long and
excess edges still remain. Since some of the long edges are effective for exploring
the graph because they connect clusters and some are not, these edges should
be selectively pruned to maintain the connections. If an edge from a source
node to a destination node has an alternative path from the source node to the
destination node, even if the edge is removed, the destination can be descended
from the source through the path instead of the removed edge. Note that as
the number of edges on the alternative path increases, the distance computation
cost also increases during a search. Therefore, the shortest path should be found,
and fewer edges on the path is better. For a third step, if the edges are ranked
lower than kr, where kr < kp, and have alternative paths that consist of less
than p edges that should be all ranked higher than kr for each node, they are
removed (selective edge removal). Figure 2(c) shows the selective edge removal.



Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search 27

C
on

st
ru

ct
io

n 
T

im
e 

[m
in

]

Number of Registered Objects

Fig. 3. Construction time vs. number of
nodes in ANNG and KNNG

N
um

be
r 

of
 E

dg
es

Insert Sequence

Fig. 4. Average number of edges for every
100,000 consecutive nodes of ANNG

Algorithm 4. ConstructPANNG
Input: O, kc, kp, kr, εc, p
Output: G
1: for all o ∈ O do
2: N(G, o) ← KnnSearch(G, o, kc, εc)
3: for all n ∈ N(G, o) do
4: N(G, n) ← N(G, n) ∪ {o}
5: if |N(G, n)| > kp then
6: N(G, n) ← N(G, n) −

{ argmax
x∈N(G,n)

d(x, n)}
7: end if
8: end for
9: end for

10: RemoveEdgesSelectively(G, kr, p)
11: return G

Path1 is the shortest alternative path of the edge e1. Path2 is the shortest
alternative path of e2. If p = 3, then e1 is removed because the number of edges
on path1 is two. However e2 is not removed because that on path2 is three.
Although finding the shortest path is time consuming, the limitation p of the
number of edges on the alternative paths contributes to reducing the processing
time to find the shortest alternative path. We refer to the resultant graph as
a pruned bi-directed k-nearest neighbor graph (PBKNNG). Algorithm 2 shows
the pseudo code for constructing a PBKNNG. Here, a KNNG is the input graph
G = G(V,E). Algorithm 2 calls Algorithm 3, which is the selective edge removal.
Rank(N(G, o), n) returns the rank of a node n by the distance (edge length) to
the neighboring nodes N(G, o) of a node o. PathExists(G, o, n, p) exhaustively
explores the graph G from o within p edges and returns whether the shortest
alternative path from o to n exists.

3.2 Pruned ANNG

While the KNNG is extremely expensive to construct, an approximate neigh-
borhood graph is much less costly. An ANNG [20], which is one of the approx-
imate neighborhood graphs, has high search performance. To create an ANNG
incrementally, approximate k-nearest neighbor objects for edges are searched
for by using the partially created ANNG. Figure 3 shows construction times for
KNNG and ANNG. KNNG construction times for more than two million objects
were estimated from the construction time for one million objects. The figure
shows that an ANNG has significantly lower construction times compared with a
KNNG. However, the initially inserted nodes of the ANNG tend to have a huge



28 M. Iwasaki

number of edges compared with the subsequently inserted nodes. Figure 4 shows
the average number of edges for every 100,000 nodes along the insertion sequence
of 10 million SIFT image descriptors, wherein 10 nearest neighbors are added as
edges for each node during insertion. The number of edges for the first sequence
exceeds 60. The excess edges are pruned in the same way as in PBKNNG, and
we refer to the resultant graph as a pruned ANNG (PANNG). Algorithm 4 is
the pseudo code for creating a PANNG. Let O be the set of inserted objects and
kc be the initial number of edges for an inserted node. εc is for the expansion
factor of the explored space of the KNN search. KnnSearch(G, o, kc, εc) is a KNN
search function that returns the kc nearest neighbors to the query object o. In
this study, Algorithm 1 is also used as the KnnSearch in Algorithm 4.

4 Experimental Results

The experiments used 128-dimensional SIFT image descriptors [23] and 960-
dimensional GIST image descriptors [24]. SIFT is a local descriptor, and GIST
is a global descriptor. The descriptors were extracted from about 1 million images
downloaded from Flickr1. The SIFT descriptors were extracted from the image
set by using OpenCV2. Since just one GIST descriptor is extracted from an
image by using Lear’s GIST C implementation3, the GIST descriptors were
extracted from 4 by 4 block images into which each image in the image set
was divided in order to extract 10 million descriptors. Duplicates were removed
from the descriptors. A 10-million-object dataset and 500-object query set were
randomly selected from each of the descriptors. A Euclidean distance function
was used. Each SIFT element was stored in memory as a 1-byte integer, and
each GIST element was stored as a 4-byte floating point number. The resulting
size of the KNN search was 20 nearest neighbors. We conducted the experiments
on an Intel Xeon E5-2630L (2.0 GHz and 64 GB of memory). Although the CPU
had six cores, the experimental software was not processed in parallel.

Parameter Determination: First, we evaluated the search performance to
determine the number of seed nodes. The search performance was assessed in
terms of the query time and the search accuracy while varying the number of the
seed nodes from 1 to 100 using the SIFT dataset. The results indicated that the
query times for all seed node numbers were almost the same when the accuracy
was over 0.5. The query time for 10 seed nodes was slightly shorter when the
accuracy was less than 0.5. Thus, 10 seed nodes were used in the experiment.

Figure 5(a) plots the search performance of a BKNNG using the SIFT dataset
with a varying number of edges ko, which represents not the actual number of
edges but the number of edges for the original KNNG from which the BKNNG is
derived. It can be seen that excess edges tended to reduce performance, and the
plot for ko = 10 indicates that 10 edges gave the best performance almost overall.

1 https://www.flickr.com/.
2 http://opencv.org/.
3 http://people.csail.mit.edu/torralba/code/spatialenvelope/.

https://www.flickr.com/
http://opencv.org/
http://people.csail.mit.edu/torralba/code/spatialenvelope/


Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search 29

A
cc

ur
ac

y

Query Time [ms]

(a)

A
cc

ur
ac

y

Query Time [ms]

(b)

A
cc

ur
ac

y

Query Time [ms]

(c)

Fig. 5. Accuracy vs. query time for SIFT dataset. (a) BKNNG for different numbers
of edges ko and BKNNG with ko = 10. (b) PBKNNGs with kr = ∞ derived from
BKNNG with ko = 10 for different values of kp. (c) PBKNNGs derived from BKNNG
with ko = 10 for different values of kp and kr.

Since search performance largely depends on the number of edges, to equitably
compare the different graphs, the total numbers of edges in the graphs should be
as close to equal as possible. The total number of edges in the BKNNG is up to
twice that of the original KNNG. Therefore, to compare them, Fig. 5(a) also
shows the performance for a KNNG with k = 20. The KNNG and the BKNNG
with ko = 10 had almost identical numbers of edges. The actual average number
of edges in the BKNNG was about 18.6 because edges were not added to node
pairs that already had two different directed edges between them. In spite of
it having fewer edges than the KNNG, the BKNNG performed considerably
better than the KNNG in a higher accuracy range. For example, the query time
of the BKNNG was more than 10 times shorter than that of the KNNG at
an accuracy of 0.9. These results indicate that adding bi-directed edges to the
KNNG significantly improved performance in this range of accuracy. Figure 5(b)
shows the performance of PBKNNGs with kr = ∞ derived from a KNNG with
ko = 10 for different values of kp. The parameter kr = ∞ disables the selective
edge removal. The BKNNG has many edges, and these edges increase the query
time. Therefore, while pruning edges improves performance, pruning too many
edges reduces it. From Fig. 5(b), it can be seen that the PBKNNGs where kp
is 20 and 40 show almost identical performance and are better than the others.
Figure 5(c) shows the performance of PBKNNGs derived from KNNG with ko =
10 and p = 3 for different values of kr and kp in a higher accuracy range. Since
the performance obviously decreased where p > 3, we adopted p = 3 in all of the
experiments. The PBKNNG with kp = 40 and kr = 30 was slightly better than
the others. This shows that selective edge removal is more effective at improving
performance.

Figure 6(a) shows the performance of PANNG4 for different values of kp
and kr. The PANNG was constructed by using Algorithm 4 with kc = 10 and
εc = 0.1. The curves in the figure show a similar tendency to those for PBKNNG
in Fig. 5(b) and (c). The nodes inserted in the initial stage tend to have a huge
number of edges, as Fig. 2(b) shows. Therefore, pruning contributes to improving
search performance. However, pruning too many edges reduces performance in
4 http://research-lab.yahoo.co.jp/software/ngt/.

http://research-lab.yahoo.co.jp/software/ngt/


30 M. Iwasaki
A

cc
ur

ac
y

Query Time [ms]

(a)

A
cc

ur
ac

y

Query Time [ms]

(b)

A
cc

ur
ac

y

Query Time [ms]

(c)

Fig. 6. Accuracy vs. query time. (a) ANNG with kc = 10 and PANNGs derived from
the ANNG for different kp and kr for SIFT. (b) Comparison of KNNG (k = 20),
BKNNG (ko = 10), PBKNNG (kr = 30, kp = 40), ANNG (kc = 10), PANNG (kr =
3, kp = 60), FLANN, SASH, PQ (R = 1000), and PQ (R = 5000) for SIFT. (c)
Comparison of KNNG (k = 20), BKNNG (ko = 10), PBKNNG (kr = 30, kp = 40),
ANNG (kc = 10), PANNG (kr = 30, kp = 60), FLANN, SASH, PQ (R = 1000), and
PQ (R = 5000) for GIST.

A
cc

ur
ac

y

Query Time [ms]

Fig. 7. PBKNNG, PBAKNNGs, and
PANNG with various edge precisions
indicated in Table 1 for SIFT

Table 1. Average edge precision and average
rank of top 10 shortest edges for PBKNNG,
PBAKNNGs, and PANNG

Graph Average Average

precision rank

PBKNNG 1.00 5.50

PBAKNNG-0.7 0.706 7.79

PBAKNNG-0.3 0.303 17.9

PANNG 0.567 29.4

the same way as with PBKNNG. From the figure, the PANNG with kp = 60
and kr = 30 performed the best overall in a higher accuracy range.

Comparison of Graph-Based Indexes, FLANN, SASH, and PQ: Fig-
ures 6(b) and (c) compare the performances of KNNG, BKNNG, PBKNNG,
ANNG, PANNG, FLANN, SASH5, and PQ for SIFT and GIST using the deter-
mined parameters. KNNG performed the worst, and PBKNNG performed the
best among the graph-based methods. Although PANNG was slightly worse
than PBKNNG, it is practically advantageous because the construction cost of
an ANNG is considerably lower than that of an exact KNNG.

FLANN automatically selects the best algorithm for the dataset. For the
SIFT and GIST dataset, it selected hierarchical k-means partitioning. For con-
structions of SASH, we used the number of parent nodes p = 4. Even though
approximate searches without original objects are not our target, we compared
it with PQ. While PQ does not require the objects in the memory, the search
accuracy is significantly lower. To compare fairly, we added a verification step

5 http://research.nii.ac.jp/∼meh/sash/.

http://research.nii.ac.jp/~{}meh/sash/


Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search 31

after the PQ search, which computes distances for the results of the PQ using
the objects in the memory and returns the k nearest neighbors. According to
the experiment of PQ [5], the best parameters were explored and determined.
We used the number of codewords for the product quantization k∗ = 256, the
number of subvectors m = 8, and the number of codewords k′ = 1024. The
curves of PQ were plotted by varying the number of the nearest neighbors of
the coarse quantizer w for the number of the nearest neighbors of PQ R = 1000
and 5000. It can be seen that PBKNNG and PANNG outperformed FLANN
and PQs overall and outperformed SASH excluding at lower accuracy for GIST
in Fig. 6(b) and (c).

Edge Precision Effect Analysis: In spite that a KNNG does not satisfy
Condition 1, the PBKNNG derived from the KNNG works well. This suggests
that it might be unnecessary to use an exact KNNG to generate a PBKNNG.
To clarify this, just as we derived the PBKNNG from the KNNG, we derived
a pruned bi-directed approximate k-nearest neighbor graph (PBAKNNG) from
an approximate KNNG, which is intentionally generated by pruning the edges
of the KNNG according to a specific probability, called “edge precision.” Fig. 7
compares the performances of PBKNNG, PBAKNNGs, and PANNG to clarify
the effect of varying the edge precision. The PBKNNG was constructed with
ko = 10. The PBAKNNGs were derived from AKNNG with ko = 10 for the edge
precisions 0.7 and 0.3. The PANNG was constructed with kc = 10 for εc = 0.1.
All of them were constructed with kp = 40 and kr = 30. Table 1 shows the
average edge precision and the average rank of the top 10 shortest edges for
each of 1,000 randomly sampled nodes of the indexes in Fig. 7. From the order
of the average precisions in Table 1, the search performances of PANNG should
be between PBAKNNG-0.7 and PBAKNNG-0.3. It is, however, almost the same
as PBAKNNG-0.3 at higher accuracy. We suppose that performance is affected
by both the precision and the average rank of edges. Since the performance
decreases for low edge precision are all rather small, these results show that an
exact KNNG is dispensable in order to make an approximate search.

Memory Usage: Since our search algorithm needs a large number of distance
computations, all of the objects should be placed in memory to reduce the search
cost. Here, we will discuss the memory usage of a logical index structure instead
of an actual structure since our actual implementation uses a standard template
library (STL) including a non-negligible amount of memory overhead. The logical
index structure has an array of nodes consisting of objects, a pointer to the edge
array for each node, and the size of the edge array. Its memory usage is as
follows.

memory usage = node array usage + edge array usage
node array usage = (object dimensionality · size of object element variable

+size of pointer to edge array
+size of edge array size variable) · total number of objects

edge array usage = size of node ID variable · total number of edges

(1)



32 M. Iwasaki

The length of each edge is used to prune excess edges, so the memory usage for
the edge array for index construction is as follows.

edge array usage = (size of node ID variable + size of distance variable)·
total number of edges

(2)

The total numbers of edges for the PBKNNG for ko = 10, kp = 40, and kr = 30
are 165,529,883 for the SIFT dataset and 163,959,473 for the GIST dataset. The
logical memory usage derived from Formula 1 amounts to 1.90 GB for SIFT and
36.5 GB for GIST. Since the experimental implementation included additional
information for the evaluations and memory overhead of the STL, the actual
amount of the memory was not measured.

5 Conclusion

We derived a PBKNNG from a KNNG as an index of high-dimensional data such
as image descriptors. The experiment showed that the PBKNNG outperforms
not only the KNNG but also the FLANN, SASH, and PQ in most cases on SIFT
and GIST datasets. The drawback of the KNNG is its high construction cost,
and an approximate neighborhood graph is much less costly. The experiment also
showed a PANNG derived from the approximate neighborhood graph instead of
a KNNG in the same way as the PBKNNG outperforms the KNNG, FLANN,
SASH, and PQ in most cases and performs only a little worse than the PBKNNG.

References

1. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of 25th International Conference on Very Large Data Bases,
pp. 518–528 (1999)

2. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the 20th Annual Sym-
posium on Computational Geometry, pp. 253–262. ACM (2004)

3. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Infor-
mation Processing Systems, pp. 1753–1760 (2009)

4. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning
binary codes. In: 2011 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 817–824. IEEE (2011)

5. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

6. Bentley, J.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18, 509–517 (1975)

7. White, D., Jain, R.: Similarity indexing with the SS-tree. In: Proceedings of 12th
International Conference on Data Engineering, pp. 516–523 (1996)

8. Yianilos, P.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the 4th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 311–321 (1993)



Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search 33

9. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proceedings of International Conference on Very Large
Data Bases, pp. 426–435 (1997)

10. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–
923 (1998)

11. Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-
dimensional data sets. In: 21st International Conference on Data Engineering
(ICDE 2005), pp. 619–630. IEEE (2005)

12. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional
data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2227–2240 (2014)

13. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor match-
ing. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2008, pp. 1–8. IEEE (2008)

14. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, vol.
2, pp. 2161–2168. IEEE (2006)

15. Arya, S., Mount, D.M.: Approximate nearest neighbor queries in fixed dimensions.
In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms. SODA 1993, Philadelphia, PA, USA, pp. 271–280. Society for Industrial
and Applied Mathematics (1993)

16. Sebastian, T., Kimia, B.: Metric-based shape retrieval in large databases. In: Pro-
ceedings of 16th International Conference on Pattern Recognition, vol. 3. 291–296
(2002)

17. Wang, J., Li, S.: Query-driven iterated neighborhood graph search for large scale
indexing. In: Proceedings of the 20th ACM International Conference on Multime-
dia, MM 2012, pp. 179–188. ACM, New York (2012)

18. Hajebi, K., Abbasi-Yadkori, Y., Shahbazi, H., Zhang, H.: Fast approximate nearest-
neighbor search with k-nearest neighbor graph. In: Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, pp. 1312–1317 (2011)

19. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: Proceedings of the 20th International Conference
on World Wide Web, WWW 2011, pp. 577–586. ACM, New York (2011)

20. Iwasaki, M.: Proximity search in metric spaces using approximate k nearest neigh-
bor graph (in Japanese). IPSJ Trans. Database 3(1), 18–28 (2010)

21. Iwasaki, M.: Proximity search using approximate k nearest neighbor graph with a
tree structured index (in Japanese). IPSJ J. 52(2), 817–828 (2011)

22. Navarro, G.: Searching in metric spaces by spatial approximation. VLDB J. 11(1),
28–46 (2002)

23. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision, vol.
2, pp. 1150–1157. IEEE (1999)

24. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)



A Free Energy Foundation of Semantic
Similarity in Automata and Languages

Cewei Cui(B) and Zhe Dang(B)

School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA 99164, USA

{ccui,zdang}@eecs.wsu.edu

Abstract. This paper develops a free energy theory from physics includ-
ing the variational principles for automata and languages and also pro-
vides algorithms to compute the energy as well as efficient algorithms for
estimating the nondeterminism in a nondeterministic finite automaton.
This theory is then used as a foundation to define a semantic similarity
metric for automata and languages. Since automata are a fundamental
model for all modern programs while languages are a fundamental model
for the programs’ behaviors, we believe that the theory and the met-
ric developed in this paper can be further used for real-word programs
as well.

1 Introduction

Semantic similarity between two software systems plays a central role in studying
software evolution, software plagiarism and in a more general context of semantic
mining of an executable object. Clearly, a syntactic metric of such similarity
defined on the source codes of two programs (i.e., the source codes look similar)
is far from being enough to catch the semantic similarity. The reasons are not
hard to see: plagiarized software can have a completely different “look” even
though its semantics is not much modified from the original true copy. We shall
also notice that the semantic metric that we are looking for shall be an invariant
on the dynamic behaviors (instead of the source codes) of the software systems.

Automata are a fundamental model for all modern software systems while
languages (sets of words) are a model for the requirements (i.e., behaviors spec-
ifications as sequences or words of events) of the systems. Hence, it is mean-
ingful to study the semantic similarity metric from the fundamental; e.g., finite
automata and regular languages. Such studies may provide a hint of inspira-
tion for studying more general software systems and more importantly, finite
automata themselves are useful as well in software design (i.e., statecharts [12]).

We now take a new and physical view on a run of a finite-state program
(i.e., a finite automaton M). When M runs, it receives input symbols while each
input symbols “drives” M to transit from the current state to the next. We now
imagine the automaton as a gas molecule while each state that the run passes
resembles an observation of the molecule’s physical position, speed, etc. Hence, a

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 34–47, 2016.
DOI: 10.1007/978-3-319-46759-7 3



Free Energy Foundation of Semantic Similarity 35

run of M corresponds to an observation sequence, called a microstate in physics,
of the molecule. Clearly, the semantic similarity metric that we look for must
rely on an invariant on the runs of an automaton M . This invariant can be
found in the thermodynamic formalism that provides a mathematical structure
to rigorously deduce, in a many-particle system (e.g. gas), from a microscopic
behavior to a macroscopic characteristic [11,18,19,23]. Even though a microstate
is highly random, the formalism resolves the challenge of how the highly random
microstates in the system demonstrate almost stable macroscopic characteristic
such as free energy. Returning back to the automaton, the free energy com-
puted can be treated as an invariant on the runs (i.e., dynamic behaviours) of
the automaton M . Notice that the free energy is measured on an equilibrium;
being interpreted in a software system, a program’s long-term behavior is still
highly dynamic and even random, however the dynamics itself is invariant ! This
thermodynamic view of software systems provides the physical foundation of our
semantic similarity metric. However, in order to build up the foundation, we need
first develop a free energy theory for automata and languages, and the semantic
similarity metric is then a direct and natural by-product of the theory. Notice
that the purpose of developing the theory is not limited to semantic similarity;
it shall be considered part of a new development in the traditional automata
theory that is of more than 60 years of history. We shall expect a wider range of
applications of the theory itself, in addition to the similarity metric.

Related work. Delvenne [9] and Koslicki and Thompson [14,15] are among the
first works to directly use the thermodynamic formalism in Computer Science.
In particular, Delvenne [9] computes free energy rank, using free energy on a
random walk on a graph, for web search while a “missing link” from a page
to another is present. This work inspires us to study the free energy of finite
automata. Koslicki and Thompson [14,15] study topological pressure of a DNA
sequence using a thermodynamic formalism, where an interested pattern on a
DNA sequence is given a weight. This work inspires us to study free energy for
formal languages (sets of words). Shannon’s entropy has widely been consid-
ered to have a root in thermodynamics, e.g., Boltzmann equation. In fact, the
notion of entropy rate or information rate, originally by Shannon [21] and later
by Chomsky and Miller [2], that computes the information quantity in a string
(word), can be treated as a special case of free energy or topological pressure in
thermodynamic formalism, as pioneered in Ruelle [18], Walters [23], Gurevich
[11], Sarig [19], etc. Recently, the classical formalism of Shannon’s information
rate has been used by the authors in software analysis, testing, and program
security analysis [6,7,13,16]. In particular, our previous paper [3] on the infor-
mation rate of a random walk of a graph has been recently used by Naval,
Laxmi, Rajarajan, Gaur and Conti in malware detection [17]. We are confident
that thermodynamic formalism can find its own applications in various areas of
computer science, such as similarity in programs and graphs [1,4,8,10,22,24]. In
particular, our previous work on program similarity [4] is based on information
rate and the Jaccard index.



36 C. Cui and Z. Dang

The rest of the paper is organized as follows. We first briefly introduce an
existing result in thermodynamic formalism, the variational principle [18], in its
simplest form in physics. Then, we develop a free energy theory for automata
and languages, and, in various cases, provide algorithms to compute the quantity.
Finally, we provide a semantic similarity metric based on the free energy theory.

2 A Free Energy Theory of Automata and Languages

In Computer Science, a program’s semantics can be interpreted as the set of
all of its behaviors. In various settings, such a behavior can be simply a run
(such as a sequence of state transitions), or a sequence of I/O events. Bearing
thermodynamic formalism in mind, we understand the sequence as a microstate
of the software system and ask a question:

Given the fact that there are so many (even infinite) microstates in a pro-
gram, and these microstates are highly “probabilistic” or random, can we
use thermodynamic formalism to help us understand some of the program’s
macroscopic properties that are stable and free of randomness?

The answer is yes but need some work. The set of behaviors is a language and
we now consider a language L ⊆ Σ∗ on a finite and nonempty alphabet Σ and
a function ψ : Σω → R. In this paper, we consider a simplest form of ψ: for each
x0x1x2 · · · ∈ Σω, ψ(x0x1x2 · · · ) = U(x0, x1). Herein, U : Σ × Σ → R is a given
cost function over words of length 2. The intended purpose of the cost function
is to assign a cost to a pattern in a word while the cost can be interpreted as,
in a practical setting, an amount of a resource, a priority level, etc.

The cost function is abstracted from “potential” in the thermodynamic for-
malism, which we briefly explain now. An infinite word x = x0x1x2 · · · ∈ Σω is
a microstate in thermodynamics. The microstate evolves into σ(x) = x1x2 · · · ,
σ2(x) = x2 · · · , · · · , σn(x) = xnxn+1 · · · , etc., as discrete time n evolves. Herein,
σ is the shift-to-left operator defined in an obvious way. The evolution from x
to σ(x) is to break off the first symbol x0 in x from the rest. The break-off
needs energy which is given by a pre-defined potential ψ(x). This explanation
comes from Sarig’s lecture notes [20] and we think it is a best way to illustrate the
physics behind the mathematics. Hence, for an n-step evolution, the total energy
needed or the total potential possessed is (Snψ)(x) =def

∑
0≤i≤n−1 ψ(σi(x)),

where σ0(x) = x.
In automata theory, this can also be analogously understood as follows. When

an infinite word x = x0x1x2 · · · is read (symbol by symbol, from left to right),
the reader reads the first symbol x0, then the second symbol x1, etc. Each
such symbol-read consumes energy since essentially, it performs a shift-to-left
operation in the view of thermodynamics.

In thermodynamics, a particle has high energy if it tends to evolve into one
of many choices of different microstates. Similarly, a microstate is of high energy
if it is the result of being chosen from many microstates. Using the Boltzmann



Free Energy Foundation of Semantic Similarity 37

equation, the asymptotic total energy needed per step for all microstates x in
n-step evolution is the (Gurevich) free energy

lim
n→∞

1
n

ln
∑

x:σn(x)=x
e(S

nψ)(x), (1)

where the x is called a periodic orbit (The limit exists with a weak side condition
(see Proposition 3.2 in [20]). For the mathematics, see page 63 of [11,20]).

Coming back to Computer Science, we modify the formula in (1) so that
the summation is over the (finite) words w of length n in a language L instead
of ω-words x. To do this, we first consider w = x0 · · · xn−1 which is the prefix
(with length n) of x = x0 · · · xn−1 · · · . For the term (Snψ)(x) in (1), we modify
it slightly into

(U)(w) =def

∑

0≤i<n−1

U(xi, xi+1) (2)

while, as we have mentioned earlier, the ψ now takes the special form
ψ(x0x1 · · · ) = U(x0, x1). Then the periodic orbits in (1) can be safely replaced
with words of length n. We thereby obtain the definition of (Gurevich) free
energy of language L:

GU (L) = lim sup
n→∞

1
n

ln
∑

w∈L,|w|=n

e(U)(w). (3)

(By convention, 0 ln 0 = 0. The limit superior can be replaced by limit in many
cases, e.g., when L is prefix-closed and regular, as we show later.)

Intuitively, the free energy GU (L) characterizes the average “cost” per symbol
of words in L with respect to the cost function U . A particularly interesting
example is to interpret the cost as “uncertainty”, as shown in a later example.
A special case is when U = 0. In this case, the free energy is simply (modulo a
constant) the information rate of L that was originally proposed by Shannon [21]
and Chomsky and Miller [2], and more recently studied in [5]. We shall notice
that, once U is given, the free energy of L is a constant and its definition does
not involve any probabilistic arguments.

We explore how to compute the free energy defined in (3) for various classes
of languages. We shall first point out that the free energy is not computable in
general, even for simple classes of languages.

Theorem 1. The free energy for language L′ = (Σ∗ − L)Σ∗, where L is a
context-free language, is not computable.

Later, we will show that the free energy is computable for regular languages.
The proof needs the variational principle in thermodynamics, which is briefly
introduced as follows. In a thermodynamic system, nature tends to make parti-
cles move in a way that maximizes the free energy [20] as

sup
μ

{Hμ +
∫

ψdμ}, (4)



38 C. Cui and Z. Dang

which is called the free energy of the aforementioned σ (Markov shift in thermo-
dynamic formalism [20]) with potential ψ. We shall point out that the Markov
shift itself does not contain any probabilities. Consider the compact metric space
whose topology is generated from the cylinder sets in the form of [x0 · · · xn−1] =
{x : x = x0 · · · xn−1 · · · }, and uses metric d(x, y) = 2−min{i:xi 	=yi}, where
x = x0 · · · xn−1 · · · and y = y0 · · · yn−1 · · · . In the definition, the μ is a prob-
ability measure over the space that is invariant under the Markov shift σ. The
measure μ, in plain English, is a Markov chain defined on the Markov shift σ
and Hμ is the Kolmogorov-Sinai entropy of the Markov chain μ (intuitively, it
quantifies the average randomness, called entropy, on one step of the Markov
chain), and

∫
ψdμ is the average potential on one step of the Markov chain. Due

to space limitation, we omit the mathematics behind the definition which can
be found in [20].

One of the most important achievements in thermodynamic formalism estab-
lishes the variational principle [18]. When interpreted on periodic orbits, it says
that the free energy, defined in (1), is indeed the free energy on the Markov
shift (again, with a side condition–see Sarig’s notes [20]– which we omit here for
simplicity.):

lim
n→∞

1
n

ln
∑

x:σn(x)=x
e(S

nψ)(x) = sup
μ

{Hμ +
∫

ψdμ}. (5)

The supremum on the RHS of (5) is achieved by an equilibrium probability
measure μ∗ (called Parry measure), which can be computed from a nonnegative
matrix, called Gurevich Matrix [11], constructed from the definition of ψ when ψ
is defined as U , mentioned earlier. In particular, the LHS of (5) can be computed
from the Perron-Frobenius eigenvalue of the matrix [11].

We now generalize the free energy from Markov shift to a finite automaton.
Let M be a nondeterministic finite automaton (NFA) with finitely many states
specified by Q and with alphabet Σ. Transitions in M are specified by a set
T ⊆ Q × Σ × Q, where each transition t ∈ T in the form of (p, a, q), or simply
written p

a→ q, means that M moves from state p to state q on reading input
symbol a. A run is a sequence of transitions

τ = (p0, a0, p1)(p1, a1, p2) · · · (pn−1, an−1, pn), (6)

for some n, satisfying p0
a0→ p1

a1→ · · · an−1→ pn. In M , there is a designated initial
state qinit and a number of designated accepting states qaccept ∈ F ⊆ Q. The
run τ is initialized if p0 in (6) is the initial state. It is an accepting run if it is
initialized and the last state pn in (6) is an accepting state. In this case, we say
that the word a0 · · · an−1 is accepted by M . As usual, we use L(M) to denote
the language accepted by M . M is deterministic (i.e. a DFA) if, for each p and
a, there is at most one q such that p

a→ q. It is well-known that an NFA can be
converted into a DFA such that both automata accept the same language.

Throughout the paper, we assume that M is cleaned up. That is, all the
states are dropped from M whenever it cannot be reached from the initial state
or it cannot reach an accepting state.



Free Energy Foundation of Semantic Similarity 39

We now associate a cost function V : T → R which assigns a cost value to
every transition in M . We write MV for the M associated with cost function V ,
called an NFA with cost.

We first assume that M is strongly connected. That is, every state can reach
every state in M . More precisely, for each p and q, there is a run in the form
of (6) with p0 = p and pn = q. We now define the free energy of MV . We note
that the results in [11] are defined on strongly connected graphs only. However,
a finite automaton M is not, strictly speaking, a graph since there could be
multiple transitions from one state to another (while in a graph there is at most
one edge from a node to another). Therefore, we first need to carefully translate
the automaton M into a Markov shift (a graph) as follows. Let Θ be the set of
all infinite sequences in the form of

t = p0(p0, a0, p1)p1(p1, a1, p2)p2 · · · pn−1(pn−1, an−1, pn)pn · · · (7)

or

t = (p0, a0, p1)p1(p1, a1, p2)p2 · · · pn−1(pn−1, an−1, pn)pn · · · (8)

satisfying p0
a0→ p1

a1→ · · · an−1→ pn · · · (we shall note that t may not start from
the initial state of M). In terms of the thermodynamics formalism, we define a
potential function ψ such that for each t in Θ, its potential ψ(t) = V (p0, a0, p1)
if t is in the form of (7); ψ(t) = 0 if t is in the form of (8). We can similarly
define a compact metric space over Θ whose topology is generated by cylinders
and the metric d defined earlier. Let μ be a σ-invariant probability measure.
Now the Markov shift σ on Θ defines a graph M̂ as follows. For all p, a, and q,
M̂ has node p, node q, node (p, a, q), and edges from node p to node (p, a, q)
and from node (p, a, q) to node q, iff (p, a, b) is a transition in M . Clearly, M̂ is
a strongly connected graph.

The free energy E(M̂) is defined as the quantity in (4). It is known that [11]
the free energy can be computed as follows. Suppose that the graph M̂ has k
nodes indexed with 1, · · · , k. For a node q (resp. node (p, a, q)) in M̂ , we use [q]
(resp. [(p, a, q)]) for its index. We now construct a k × k matrix M, called the
Gurevich matrix, as follows. For each i and j,

– Mij = 0 if there is no edge from node i to node j in M̂ ;
– Mij = eV (p,a,q) if there is an edge from node i to node j in M̂ and i = [p] and

j = [(p, a, q)] for some p, a, q;
– Mij = e0 if there is an edge from node i to node j in M̂ and i = [(p, a, q)] and

j = [q] for some p, a, q.

Clearly, M is a non-negative and irreducible (since M is strongly connected)
matrix. Let λ denote the spectral radius of M, which is obtained as the largest
positive real eigenvalue of M, which is called the Perron-Frobenius eigenvalue of
M. Finally, according to [11], the free energy E(M̂) can be efficiently computed
as ln λ.

Lemma 1 (Gurevich theorem). E(M̂) = lnλ, where λ is the Perron-Frobenius
eigenvalue of the Gurevich matrix M.



40 C. Cui and Z. Dang

Finally, the free energy E(MV ) for finite automaton M with cost function V is
defined as 2 · E(M̂)1.

We shall note that the definition of E(MV ) does not mention the initial and
accepting states of M . We now bring in those states and prove the variational
principle for finite automata. To do this, we first use a finite sequence to represent
a periodic orbit, as we did in (2). That is, for a run τ in (6) with length |τ | = n,
we define

(V )(τ) =def

∑

0≤i<n

V (pi, ai, pi+1). (9)

In particular, we use R to denote the set of all runs of M and A to denote the set
of all accepting runs of M ; herein, both sets are languages on transitions in M .

Theorem 2 (Variational Principle for Strongly Connected NFA). Let M be an
NFA that is strongly connected and with cost function V on transitions. Then
the following equations hold:

GV (R) = lim
n→∞

1
n

ln
∑

τ∈R,|τ |=n

e(V )(τ) = E(MV ), (10)

and

GV (A) = lim sup
n→∞

1
n

ln
∑

τ∈A,|τ |=n

e(V )(τ) = E(MV ). (11)

In particular when every state in M is an accepting state (hence L(M) is prefix
closed),

GV (A) = lim
n→∞

1
n

ln
∑

τ∈A,|τ |=n

e(V )(τ) = E(MV ). (12)

In general, M is not necessarily strongly connected. However, it is well-known
(using the linear-time Tarjan algorithm) that M can be uniquely partitioned into
a number of components M1, · · · ,Mk, for some k ≥ 1, such that

– each M i is strongly connected, or it is singleton (i.e. it contains only one state
that does not have a self-loop transition), and

– each M i is maximal (i.e. the above condition is no longer true if it is enlarged).

1 The factor 2, intuitively, comes from the fact that we “stretch”, by a factor of 2,
a run in finite automaton M to correspond it to a walk in graph M̂ . A somewhat
more efficient way to compute E(MV ) is to construct an m×m Gurevich matrix M′

where m is the number of states in M such that M′
ij = 0 if there is no transition

from pi to pj in M , else M′
ij =

∑
a:(pi,a,pj)∈T eV (pi,a,pj). Herein, p1, · · · , pm are all

states in M . One can show that E(MV ) = ln λ′ where λ′ is the Perron-Frobenius
eigenvalue of M′. We omit the details.



Free Energy Foundation of Semantic Similarity 41

From Lemma 1, the free energy E(M i
V ) for each component M i can be computed

from its graph representation M̂ i (when M i is singleton, its free energy is defined
to be 0). We now define the free energy of MV to be E(MV ) = maxi E(M i

V ).
Clearly, using the definition of E(M i

V ) and Lemma 1, we immediately have:

Theorem 3. When NFA M is cleaned-up, E(MV ) is computable.

This definition of E(MV ) is valid, since, from (11), we can easily show:

Theorem 4 (Variational Principle for NFA). When NFA M is cleaned-up, we
have GV (A) = E(MV ), where A is the set of all accepting runs of M , and V is
a cost function that assigns a cost in R to a transition in M .

We now consider a regular language L associated with a cost function defined
earlier as U : Σ × Σ → R. Let M be an NFA with a cost function V . We say
that (M,V ) implements (L,U) if M accepts L, and, for each w ∈ L with length
at least 2 and each accepting run τ for w in M , we have (U)(w) = (V )(τ) (i.e.
the total cost on w defined by U is kept exactly the same as the total cost of
each accepting run τ defined by V ).

Theorem 5. For each regular language L associated with a cost function U :
(1) For each NFA M and cost function U for transitions in M such that (M,V )
implements (L,U), we have GU (L) ≤ E(MV ). (2) There is a DFA M and cost
function U for transitions in M such that (M,V ) implements (L,U). Further-
more, we have GU (L) = E(MV ). (3) When L is prefix closed, the limit (instead
of limsup) in the definition of GU (L) in formula (3) exists.

It is difficult to show whether a nonregular language L associated with a
cost function U has a computable free energy (see also Theorem 1). Below, we
show a class of languages where the energy is computable. Let P (θ1, · · · , θk)
be a Presburger formula over nonnegative integer variables θ1, · · · , θk, for some
k. For each 1 ≤ i ≤ k, we associate P with a regular language ri. We use r
to denote 〈r1, · · · , rk〉. We then define a language LP,r as the set of all words
in the form of w1 · · · wk such that each wi ∈ ri, and the lengths |wi| of wi’s
satisfy P (|w1|, · · · , |wk|). A linear-length language L is specified by a regular
language L′ along with P and r such that L = L′ ∩ LP,r. Intuitively, L is a
subset of a given regular language such that each word in the subset is the
concatenation of k subwords, each of which is drawn from a regular language
and the lengths of the subwords are constrained by a Presburger formula. For
instance, L = {anb2na3n : n ≥ 0} is a linear-length language, which is not
context-free. We can show:

Theorem 6. For linear-length language L and cost function U , the free energy
GU (L) is computable (from L’s specification and U). The computability remains
even when L is a finite union of linear-length languages.

We turn back to NFA M (which is cleaned-up) with a cost function V on
transitions. We show an application of the free energy of (M,V ) in estimating



42 C. Cui and Z. Dang

nondeterminism in an NFA. There are applications for such an estimation. In
software engineering, NFAs can be used to specify a highly nondeterministic
system such as a concurrent system where the input symbols are the observ-
able events. Being nondeterministic, the same sequence of input symbols can
have many different execution sequences. Hence, an ideal measure for the non-
determinism would be the asymptotic growth rate of the ratio f(n)/g(n) where
f(n) is the total number of executions of input sequences of length n while g(n)
is the total number of input sequences of length n. More precisely, we define
(slightly different from the above) g(n) to be the number of words α of length
≤ n in L(M), and f(n) to be the number of initialized runs of all α’s. Then, the
nondeterminism in M is defined by

λM = lim
n→∞

log f(n) − log g(n)
n

.

Clearly, the limit in λM ≥ 0 exists and is finite (since runs are prefix closed, and
M has no ε-transitions). In particular, when M is deterministic, λM = 0.

In reality, such a metric is relevant. For instance, it can be used to estimate a
form of coverage of extensive testing of a nondeterministic system (e.g. how many
paths have already been exercised for an average input sequence). The estimation
is important since it is well-known that nondeterministic software systems are
notoriously difficult and costly to test. However, in computing λM , the difficult
part is the asymptotic growth rate of log g(n) since currently available algorithms
must convert NFA M into a DFA and use the Chomsky-Miller algorithm [2].
The conversion may cause an exponential blow-up in the number of states in the
DFA, which is not tractable. We need a practically efficient algorithm to give an
estimation of λM .

We propose an efficient estimation approach based on free energy. For the
given NFA M , we define a cost function V on transitions of M as follows. Let
k(p, a) be the total number of p′′ such that p

a→p′′ is a transition in M . For each
transition p

a→p′ in M , we define V (p, a, p′) = ln k(p, a). Notice that if k(p, a) = 1
(in this case, M is deterministic at state p on input a), V (p, a, p′) = 0. Otherwise
(i.e., k(p, a) > 1. In this case, M is nondeterministic at state p on input a),
V (p, a, p′) = ln k(p, a) > 0.

Example 1. Figure 1 shows an NFA with the V assigned on transitions.

We now use the free energy difference λ+
M = E(MV )−E(M0) to estimate λM .

Herein, M0 is the M where each transition is assigned with cost 0. Notice that
λ+

M ≥ 0 (roughly, from the Perron-Frobenius theorem applied on the Gurevich
matrices for MV and for M0) and, when M is deterministic, λ+

M = λM = 0.
We first intuitively explain the meaning behind λ+

M . In MV , each transition
p

a→p′ is assigned a cost which is the number of nats (information units in natural
logarithm) needed to code the transition when p and a are given. Hence, the total
cost of an average (initialized) run on a word α will be the total number of nats
to code the run (which starts from the known initial state) when α is known.
This total cost divided by the length n of the word α will result in nat rate δ of



Free Energy Foundation of Semantic Similarity 43

Astart D

B

C

E

F

a,
ln3

a, ln3

a, ln3

b, 0

a, 0

a, 0

a, 0

a,
0

b,
ln2

b, ln2

Fig. 1. The finite automaton for Example 1 with costs labeled.

the code. Notice that, in the definition of free energy of M , there are two parts:
the average cost per step (which roughly corresponds to the nat rate δ) and the
metric entropy (which roughly corresponds to the “average” natural logarithm
of the branching factor at a state in M). Now, in M0, the free energy is the
“average” natural logarithm of the branching factor at a state in M . Hence, the
λ+

M = E(MV )−E(M0) is roughly equal to the nat rate δ (to encode the transition
per step for a given input), which is the intended meaning in λM . When M is
deterministic, the input α decides the run and hence the nat rate is of course
zero (no extra nat is needed to encode the run).

We now compute the estimation λ+
M for the example NFA M in Fig. 1 and

obtain λ+
M = E(MV ) − E(M0) = 1.0850 − 0.5857 = 0.4993. Next, we convert the

NFA into a DFA (using an online tool) M ′ and compute λM = E(M0)−E(M ′
0) =

0.5857 − 0.3603 = 0.2255. Indeed, λ+
M is an upper estimation of λM , as shown

below.

Theorem 7. For a cleaned-up NFA M , λ+
M ≥ λM .

We note that in Theorem 7, the upper estimation λ+
M can be efficiently

computed from M . Finally, we point out that the estimation is asymptotically
tight; the proof will be included in the full version of the paper. We shall also
point out all the results can be generalized to cost function U over k > 2 (k is
constant) symbols instead of two symbols.

3 A Free-Energy Based Similarity Metric for Automata
and Languages

We are now ready to use the theory developed so far to define the similar-
ity metric. Let M i (i = 1, 2) be an NFA with a cost function Vi assigned on
edges. Notice that the two automata M1 and M2 work on the same input alpha-
bet Σ. Consider a word w = a0 · · · an−1 accepted by both automata. Suppose
that the following transition sequences (q0, a0, q1)(q1, a1, q2) · · · (qn−1, an−1, qn)
in M1 and (p0, a0, p1)(p1, a1, p2) · · · (pn−1, an−1, pn) in M2 witness the accep-
tance. However, the total cost (i.e., the total energy or potential) on the first



44 C. Cui and Z. Dang

accepting sequence is defined by V1(q0, a0, q1) + · · · + V1(qn−1, an−1, qn) while
the total cost on the second is V2(p0, a0, p1) + · · · + V2(pn−1, an−1, pn). The sum
of the two costs shall tell the deviation of the free energy on the two sequences
on the input word w. The sum can be expressed on each individual transition
as V1(q0, a0, q1) + V2(p0, a0, p1) + · · · + V1(qn−1, an−1, qn) + V2(pn−1, an−1, pn),
which again is the free energy on a properly defined (below) “shared sequence”
between the two automata.

We define M to be the Cartesian product of M1 and M2 in a standard way.
That is, ((q, p), a, (q′, p′)) is a transition in M iff (q, a, q′) is a transition in M1

and (p, a, p′) is a transition in M2, for all states p, q, p′, q′. The initial state in M
is the pair of initial states in M1 and in M2 and the accepting states in M are all
the pairs of an accepting state in M1 and an accepting state in M2. Again, we
assume that M is cleaned up. Clearly, M is an NFA accepting L(M1) ∩ L(M2).

We now define the cost functions V on the M as V ((q, p), a, (q′, p′)) =
V1(q, a, q′) + V2(p, a, p′). The semantic similarity metric Δ(M1

V1
,M2

V2
) is defined

as the free energy of M ; i.e., E(MV ). Intuitively, this definition catches the aver-
age “shared free energy” per step on the shared accepting runs between M1 and
M2. We have

0 ≤ Δ(M1
V1

,M2
V2

) ≤ E(M1
V1

) + E(M2
V2

). (13)

To see (13), Δ(M1
V1

,M2
V2

) = E(MV ) ≥ 0 is obvious, since the LHS of (11) in
Theorem 2 is nonnegative and so is the LHS of the equation in Theorem 4.
To show Δ(M1

V1
,M2

V2
) ≤ E(M1

V1
) + E(M2

V2
) in (13), we need some effort. First

we assume that M is strongly connected and hence we can use Theorem 2.
Observe that the term

∑
τ∈A,|τ |=n e(V )(τ) in (11) in Theorem 2 satisfies, using

the definition V , the following inequality
∑

τ∈A,|τ |=n

e(V )(τ) ≤
∑

τ1∈A1,|τ1|=n

e(V1)(τ1) ·
∑

τ2∈A2,|τ2|=n

e(V2)(τ2)

where A1 and A2 are accepting transition sequences of M1 and M2, respectively.
Now we plug-in the RHS of the inequality into (11) and obtain

lim sup
n→∞

1
n

ln
∑

τ∈A,|τ |=n

e(V )(τ) ≤ lim sup
n→∞

1
n

ln
∑

τ1∈A1,|τ1|=n

e(V1)(τ1)

+ lim sup
n→∞

1
n

ln
∑

τ2∈A2,|τ2|=n

e(V2)(τ2).

Then, we use Theorem 4 on M1
V1

and M2
V2

and hence the RHS of the above
inequality becomes

lim sup
n→∞

1
n

ln
∑

τ∈A,|τ |=n

e(V )(τ) ≤ E(M1
V1

) + E(M2
V2

).

Again, using (11) in Theorem 2 on the LHS of the inequality, we have

E(MV ) ≤ E(M1
V1

) + E(M2
V2

).



Free Energy Foundation of Semantic Similarity 45

Using Theorem 4 again on the LHS, we finally obtain for a general M (which may
not be strongly connected), the above inequality still holds, which is essentially
the result in (13).

In particular, the reader can easily check that the inequality in (13) is tight:
when M1 and M2 are completely independent (i.e., L(M1) ∩ L(M2) = ∅), the
similarity metric Δ(M1

V1
,M2

V2
) = 0. However, when M1 and M2 are the same

and the V1 and V2 are also the same, we have the similarity metric Δ(M1
V1

,M2
V2

)
reaches the maximum E(M1

V1
) + E(M2

V2
). Intuitively, the metric Δ(M1

V1
,M2

V2
)

characterizes the “shared free energy” between the two finite state programs
M1

V1
and M2

V2
as follows. Imagine that the two programs (automata) are two

moving gas molecules. At each step of observation, the molecules can be highly
random and hence it makes little sense to compare every step of the observations
to figure out the similarity between the two molecules. The approach we take
in defining the metric Δ(M1

V1
,M2

V2
) is to “create” a third molecule MV that, at

each step, possesses the potential as the sum of the first two molecules (this is
a reward) whenever the first two molecule share the same orbit (i.e., the same
input symbol) – otherwise when the orbit are different, the potential of the third
molecule is −∞ (this is a penalty). Clearly, the dynamics of the third molecule
would be very different from the first two. However, as we have shown above, the
long term characteristic of free energy of the third molecule reflects the shared
free energy between the first two molecules when they follow the same orbit.

1start 2

43

A, 0.14

G, 0.1

,
A

6
7.

0

G, 0.2

T
,
0
.8

C, 0.35

C, 0.65

G
,
0
.7

5start 6
C, 0.2; G, 0.4

A, 0.9

T, 0.7

C, 0.2

1, 5start 2, 6 4, 5

3, 6

G, 0.5; A, 1.04

A, 1.66

T, 1.5

C, 0.55

C, 0.85

Fig. 2. The first figure is an NFA M1
V1 with cost function V1; the second figure is an

NFA M2
V2 with cost function V2; the third figure is the Cartesian product MV .

We now look at an example of two NFAs M1
V1

and M2
V2

where the cost
functions V1 and V2 are labeled in the Fig. 2. One can think that the two
automata try to specify a genome pattern on the four nucleotides (G,A,C, T )
in DNA while the costs could be interpreted as probabilities, weights of choices,
etc. Notice that the semantics of the automata are the nucleic acid sequences
that the automata accept, and those sequences are associated with a cost on
each nucleotide. For instance, the following sequence (A, 0.14)(T, 0.8)(C, 0.65)
is accepted by M1

V1
. Hence, the semantic similarity between the two automata

shall concern the similarity between the sequences (with costs) accepted by the
two automata instead of the naive similarity on the appearances of the two
graphs themselves. Again, we imagine each such sequence accepted as a mole-
cule moving along the orbit specified on the sequence and use the shared free
energy between the molecule specified by M1

V1
and the molecule specified by



46 C. Cui and Z. Dang

M2
V2

to measure the semantic similarity Δ(M1
V1

,M2
V2

). We compute, using the
algorithms in Theorem 4 and the definition of the Cartesian product MV shown
earlier, the results E(M1

V1
) = 0.3500, E(M2

V2
) = 1.4087, and the similarity metric

Δ(M1
V1

,M2
V2

) = 1.025, which indeed satisfies (13).
Notice that Δ(M1

V1
,M2

V2
) can be computed efficiently (which involves only

Cartesian product of the two automata, and largest eigenvalues of the Gurevich
matrices in Theorems 2 and 4).

Let L1 and L2 be two regular languages associated with two cost functions
U1 and U2, respectively, According to Theorem 5(2), we can construct DFAs
M1

V1
and M2

V2
and use Δ(M1

V1
,M2

V2
) to serve as the semantic similarity metric

for the two regular languages. However, it does not seem that Δ(M1
V1

,M2
V2

) can
be efficiently computed from the regular languages since the known construction
from regular languages to deterministic finite automata involves exponential
blowup on the state space. There might be other alternative definitions on the
metric over regular languages (such as using the estimation of nondeterminism
in an NFA shown earlier in the paper) such that the metric can be efficiently
computed. We leave this for future work.

Acknowledgements. We would like to thank Jean-Charles Delvenne, David Koslicki,
Daniel J. Thompson, Eric Wang, William J. Hutton III, and Ali Saberi for discussions.
We would also like to thank the seven referees for suggestions and comments that have
improved the presentation of our results.

References

1. Chartrand, G., Kubicki, G., Schultz, M.: Graph similarity, distance in graphs.
Aequationes Math. 55(1), 129–145 (1998)

2. Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1(2), 91–112 (1958)
3. Cui, C., Dang, Z., Fischer, T.R.: Typical paths of a graph. Fundam. Inform. 110(

1–4), 95–109 (2011)
4. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Similarity in languages and pro-

grams. Theor. Comput. Sci. 498, 58–75 (2013)
5. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information rate of some classes

of non-regular languages: an automata-theoretic approach. In: Csuhaj-Varjú, E.,
Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 232–243.
Springer, Heidelberg (2014)

6. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Execution information rate for some
classes of automata. Inf. Comput. 246, 20–29 (2016)

7. Dang, Z., Dementyev, D., Fischer, T.R., Hutton III, W.J.: Security of numerical
sensors in automata. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 76–88.
Springer, Heidelberg (2015)

8. Dehmer, M., Emmert-Streib, F., Kilian, J.: A similarity measure for graphs with
low computational complexity. Appl. Math. Comput. 182(1), 447–459 (2006)

9. Delvenne, J.-C., Libert, A.-S.: Centrality measures and thermodynamic formalism
for complex networks. Phys. Rev. E 83, 046117 (2011)

10. ElGhawalby, H., Hancock, E.R.: Measuring graph similarity using spectral geom-
etry. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp.
517–526. Springer, Heidelberg (2008)



Free Energy Foundation of Semantic Similarity 47

11. Gurevich, B.M.: A variational characterization of one-dimensional countable state
gibbs random fields. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete 68(2), 205–242 (1984)

12. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

13. Ibarra, O.H., Cui, C., Dang, Z., Fischer, T.R.: Lossiness of communication channels
modeled by transducers. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE
2014. LNCS, vol. 8493, pp. 224–233. Springer, Heidelberg (2014)

14. Koslicki, D.: Topological entropy of DNA sequences. Bioinformatics 27(8), 1061–
1067 (2011)

15. Koslicki, D., Thompson, D.J.: Coding sequence density estimation via topological
pressure. J. Math. Biol. 70(1), 45–69 (2014)

16. Li, Q., Dang, Z.: Sampling automata and programs. Theor. Comput. Sci. 577,
125–140 (2015)

17. Naval, S., Laxmi, V., Rajarajan, M., Gaur, M.S., Conti, M.: Employing program
semantics for malware detection. IEEE Trans. Inf. Forensics Secur. 10(12), 2591–
2604 (2015)

18. Ruelle, D.: Thermodynamic Formalism: The Mathematical Structure of Equilib-
rium Statistical Mechanics. Cambridge University Press/Cambridge Mathematical
Library, Cambridge (2004)

19. Sarig, O.M.: Thermodynamic formalism for countable Markov shifts. Ergodic
Theor. Dyn. Syst. 19, 1565–1593 (1999)

20. Sarig, O.M.: Lecture notes on thermodynamic formalism for topological Markov
shifts (2009)

21. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-
versity of Illinois Press, Urbana (1949)

22. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer,
Heidelberg (2006)

23. Walters, P.: An Introduction to Ergodic Theory. Graduate Texts in Mathematics.
Springer, New York (1982)

24. Zager, L.A., Verghese, G.C.: Graph Similarity Scoring and Matching. Appl. Math.
Lett. 21(1), 86–94 (2008)



Metric and Permutation-Based Indexing



Supermetric Search with the Four-Point
Property

Richard Connor1(B), Lucia Vadicamo2, Franco Alberto Cardillo3,
and Fausto Rabitti2

1 Department of Computer and Information Sciences,
University of Strathclyde, Glasgow G1 1XH, UK

richard.connor@strath.ac.uk
2 Institute of Information Science and Technologies (ISTI),

CNR, Via Moruzzi 1, 56124 Pisa, Italy
{lucia.vadicamo,fausto.rabitti}@isti.cnr.it

3 Institute of Computational Linguistics (ILC), CNR,
Via Moruzzi 1, 56124 Pisa, Italy

francoalberto.cardillo@ilc.cnr.it

Abstract. Metric indexing research is concerned with the efficient eval-
uation of queries in metric spaces. In general, a large space of objects
is arranged in such a way that, when a further object is presented as a
query, those objects most similar to the query can be efficiently found.
Most such mechanisms rely upon the triangle inequality property of the
metric governing the space. The triangle inequality property is equiva-
lent to a finite embedding property, which states that any three points of
the space can be isometrically embedded in two-dimensional Euclidean
space. In this paper, we examine a class of semimetric space which is
finitely 4-embeddable in three-dimensional Euclidean space. In mathe-
matics this property has been extensively studied and is generally known
as the four-point property. All spaces with the four-point property are
metric spaces, but they also have some stronger geometric guarantees.
We coin the term supermetric space as, in terms of metric search, they are
significantly more tractable. We show some stronger geometric guaran-
tees deriving from the four-point property which can be used in indexing
to great effect, and show results for two of the SISAP benchmark searches
that are substantially better than any previously published.

1 Introduction

To set the context, we are interested in searching a (large) finite set of objects
S which is a subset of an infinite set U , where (U, d) is a metric space. The
general requirement is to efficiently find members of S which are similar to an

The term supermetric space has previously been used in the domains of particle
physics and evolutionary biology as a pseudonym for the mathematical term ultra-
metric, a concept of no interest in metric search; we believe our concept is of sufficient
importance to the domain to justify its reuse with a different meaning.

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 51–64, 2016.
DOI: 10.1007/978-3-319-46759-7 4



52 R. Connor et al.

Fig. 1. In any metric space, two pivot points and any solution to a query can be
isometrically embedded in �22. The point q cannot be drawn in the same diagram.
Given its distance from p1 and p2, any solution in the original metric space must lie
in the region bounded by the four arcs shown. If the point s lies to the right of Vp1,p2 ,
there is therefore no requirement to search to the left of the hyperplane in the original
space.

arbitrary member of U , where the distance function d gives the only way by
which any two objects may be compared. There are many important practical
examples captured by this mathematical framework, see for example [3,8]. Such
spaces are typically searched with reference to a query object q ∈ U . A threshold
search for some threshold t, based on a query q ∈ U , has the solution set {s ∈
S such that d(q, s) ≤ t}.

1.1 Metric Spaces and Finite Isometric Embeddings

An isometric embedding of one metric space (V, dv) in another (W,dw) can be
achieved when there exists a mapping function f : V → W such that dv(x, y) =
dw(f(x), f(y)), for all x, y ∈ V . A finite isometric embedding occurs whenever
this property is true for any finite selection of n points from V , in which case
the terminology used is that V is isometrically n-embeddable in W .

The first observation to be made in this context is that any metric space
is isometrically 3-embeddable in �22. This is apparent from the triangle inequal-
ity property of a proper metric. In fact the two properties are equivalent: for
any semi-metric space (V, dv) which is isometrically 3-embeddable in �22, triangle
inequality also holds. It is interesting to consider the standard exclusion mech-
anisms of pivot-based exclusion and hyperplane-based exclusion in the light of
an isometric 3-embedding in �22; Fig. 1 for example shows a basis for hyperplane
exclusion using only this property rather than triangle inequality explicitly.

1.2 Supermetric Spaces: Isometric 4-Embedding in �32

It turns out that many useful metric spaces have a stronger property: they are
isometrically 4-embeddable in �32. In the mathematical literature, this has been



Supermetric Search 53

referred to as the four-point property. We have studied such spaces in the context
of metric indexing in [4], where we develop in detail the following outcomes:

1. Any metric space which is isometrically embeddable in a Hilbert space has
the four-point property.

2. Important spaces with the property include, for any dimension, spaces with
the following metrics: Euclidean, Jensen-Shannon, Triangular, and (a variant
of) Cosine distances.

3. Important spaces which do not have the property include those with the
metrics: Manhattan, Chebyshev, and Levenshtein distances.

4. However, for any metric space (U, d), the space (U,
√

d) does have the four-
point property.

In terms of practical impact on metric search, in [4] we show only how the
four-point property can be used to improve standard hyperplane partitioning.
We consider a situation where a subspace is divided according to which of two
selected reference points p1 and p2 is the closer. When relying only on triangle
inequality, that is in a metric space without the four-point property, then for
a query q and a query threshold t, the subspace associated with p1 can be
excluded from the search only if d(q, p1) − d(q, p2) > 2t. As the region defined
by this condition when projected onto the plane is a hyperbola (see Fig. 1), we
name this Hyperbolic Exclusion.

If the space in question has the four-point property, however, we show that,
for the same subspaces, there is no requirement to search that associated with p1

whenever d(q,p1)
2−d(q,p2)

2

d(p1,p2)
> 2t; this is a weaker condition and therefore allows,

in general, more exclusion. We name this condition Hilbert Exclusion.
In this paper, we examine a more general consequence of four-point embed-

dable spaces and show some interim results including new best-performance
search of SISAP data sets.

2 Tetrahedral Projection onto a Plane

In a supermetric space, any two reference points p1 and p2, and query point q,
and any solution to that query s where d(q, s) ≤ t, can all be embedded in 3D
Euclidean space. As such, they can be used to form the vertices of a tetrahedron.
It seems that, while simple metric search is based around the properties of a
triangle, there should be corresponding tetrahedral properties which give a new,
stronger, set of guarantees.

Assume that for some search context, points p1, p2 ∈ U are somehow selected
and a data structure is built for a finite set S ⊂ U where, for s ∈ S, the three
distances d(p1, p2), d(s, p1) and d(s, p2) are calculated during the build process
and used to guide the structuring of the data. At query time, for a query q, the
two distances d(q, p1) and d(q, p2) are calculated and may be used to make some
deduction relating to this structure.

This situation gives knowledge of two adjacent faces of the tetrahedron which
can be formed in three dimensions. Five of the six edge lengths have been mea-
sured, and the final edge is upper-bounded by the value of t. Therefore, for a



54 R. Connor et al.

Fig. 2. Two triangles in 3D space

Fig. 3. Projection of the two triangles onto the same plane by rotation around p1p2.
Note that �22(R(q), s) ≤ �32(q, s)

point s to be a solution to the query, it must be possible to form a tetrahedron
with the five measured edge lengths, and a last edge of length t.

Figure 2 shows a situation where five edge lengths have been embedded in 3D
space. The edge p1p2 is shared between the two facial triangles depicted. However
the distance d(s, q) is not known, and therefore neither is the angle between these
triangles. The observation which gives rise to the results presented here is that,
if both triangles are now projected onto the same plane, which can be achieved
by rotating one of them around the line p1p2 until it is coplanar with the other,
then for any case where the final edge of the tetrahedron (qs) is less than the
length t, then the length of this side in the resulting planar tetrahedron is upper
bounded by t, as illustrated in Fig. 3.

Many such coplanar triangles can be depicted, representing many points in a
single space, in a single scatter plot as in Fig. 4. This shows a set of 500 points,
drawn from randomly generated 8-dimensional Euclidean space, and plotted with
respect to their distances from two fixed reference points p1 and p2. The distance
between the reference points is measured, and the reference points are plotted



Supermetric Search 55

Fig. 4. Scatter diagram for 8-dimensional Euclidean Space. The distance δ between two
selected reference points p1 and p2 is measured, and an embedding function is chosen
which maps these to (0, −δ/2) and (0, δ/2) respectively. Other points si in the space
are then plotted to preserve the distances d(si, p1) and d(si, p2). For metric spaces
with the four-point property, the �2 distance between the corresponding points in this
diagram is a lower bound on d(si, sj) in the original space. Hence, any point within t of
a point s in the original space cannot lie outside the circle of radius t centered around
s in the scatter plot.

on the X-axis symmetrically either side of the origin. For each point in the rest
of the set, the distances d(s, p1) and d(s, p2) are calculated, and used to plot the
unique corresponding point in a triangle above the X-axis, according to these
edge lengths. In this figure, in consideration with our observations over Fig. 3,
it can be seen that, if any two points are separated by less that some constant
t in the original space, and thus also in the 3D embedding, then they are also
within t of each other in this scatter plot.

It is important to be aware, in this and the following figures, of the importance
of the four-point property. The same diagram can of course be plotted for a
simple metric space, but in this case no spatial relationship is implied between
any two points plotted: no matter how close two points are in the plot, there is no
implication for the distance between them in the original space. However if the
diagram is plotted for a metric with the four-point property, then the distance
between any two points on the plane is a lower bound on their distance in the
original space; two points that are further than t on the plot cannot be within
t of each other in the original space. This observation leads to an arbitrarily
large number of ways of partitioning the space and allowing these partitions
to excluded based on a query position, and has many potential uses in metric
indexing.



56 R. Connor et al.

3 Indexes Based on Tetrahedral/Planar Projection

During construction of an index, the constructed 2D space can be arbitrarily
partitioned according to any rule based on the geometry of this plane, calcu-
lated with respect to the distances d(si, p1), d(si, p2) and d(p1, p2). At query
time, if the query falls in any region of the plane that is further than the query
threshold t from any such partition, points within that partition cannot contain
any solution to the query. Since, as will be shown, different spaces give quite
different distributions of points within the plane, build-time partitions can be
chosen according to this distribution, rather than as a fixed attribute of an index
mechanism.

There is much potential for investigating partitions of this plane, and our
work is ongoing. The simplest such mechanism to consider is the application of
this concept to normal hyperplane partitioning. Suppose that a data set S is
simply divided according to which of the points p1 and p2 is the closer, which
corresponds in the scatter diagram to a split over the Y axis. Then at query
time, if the corresponding plot position for the query is further than t from
the Y axis, no solutions can exist in the subset closer to the opposing reference
point. Figure 5 shows the same points, but now highlighted according to this
distinction. Those drawn in solid, either side of the Y-axis, are guaranteed to
be on the same side of the corresponding hyperplane partition in the original
space; therefore, if they were query points, the opposing semi-space would not
require to be searched. If the same diagram is drawn for a simple metric space, a
query point can be used to exclude the opposing semi-space only according to a
condition algebraically derived from triangle inequality: |d(q, p1)−d(q, p2)| > 2t,
which describes a hyperbola with foci at the reference points and semi-major axis
of the search threshold. For the same data and search threshold, the difference
in exclusion capability is shown in Fig. 5; of the 500 randomly selected queries,
only 160 fail to exclude the opposing semi-space, whereas with normal hyperbolic
exclusion, the number is 421. The query threshold illustrated, 0.145, is chosen to
retrieve around one millionth of the space and is not therefore artificially large.

As stated, this particular situation has been extensively investigated and is
fully reported in [4]. Here we will concentrate further on other properties of the
planar projection, of which the derivation of Hilbert exclusion turns out to be a
special case.

4 Partitions of the 2D Plane

For the purposes of this analysis only, for reasons of simplicity, we seek to divide
a data set into precisely two partitions. This is without reference to details
of any indexing structure which may use the concepts, although in all cases by
implication there exists a simple binary partition tree structure corresponding to
the partitioning. In all cases the partition is defined in terms of the 2D plane onto
which all points are projected as described above. A few points are important
to note for such structures:



Supermetric Search 57

−0.8 −0.6 −0.4 −0.2 0 0.2 0.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p1 p2

Hilbert Exclusion, 8 dimensions

X

al
tit

ud
e 

fr
om

 li
ne

 (p
1, p

2)

non−exclusive queries
exclusive queries, n = 340

−0.8 −0.6 −0.4 −0.2 0 0.2 0.40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p1 p2

Hyperbolic Exclusion, 8 dimensions

X

al
tit

ud
e 

fr
om

 li
ne

 (p
1, p

2)

non−exclusive queries
exclusive queries, n = 79

Fig. 5. Scatter diagram for 8-dimensional Euclidean Space. The data is divided into
two subsets according to which side of Y-axis they lie; if the solidly-coloured points
represent queries, the data on the opposing side cannot contain a solution. The left-
hand side illustrates use of tetrahedral/planar projection, the right hand side illustrates
use of the normal hyperbolic condition.

1. For any such strategy, other more complex ways of indexing the data exist;
by analogy, for example, various forms of SAT [2], GNAT [1], M-Index [7]
etc. will exist. Mechanisms normally associated with single reference point
pivoting may also have equivalents. In our initial analysis we do not have
time or space to investigate all of these forms.

2. There is an apparent disadvantage for any of these techniques when compared
with any technique based on single-point pivoting, which is that for any con-
ceptual tree node, two distances need to be calculated as against one. This is
not the case in fact, as it is always possible to re-use one reference point from
the node directly above, without significantly affecting any spatial proper-
ties of the distribution, using a technique first proposed for the monotonous
bisector tree [6].

3. Furthermore, any such mechanism has a further advantage, as whenever the
space is partitioned, it is also possible to store internal and external radii
for the partitions, from both of the reference points, which allow further
exclusions to be made at effectively no extra cost.

4.1 Reference Point Separation

An important observation is that the shape of the 2D “point cloud”, upon which
effective exclusion depends, is not greatly affected by the choice of reference
points. In comparison with normal Hyperbolic exclusion this is a huge advantage.
The hyperbola which bounds the effective queries, i.e. those which can be used
to exclude the opposing semispace, is defined only by the (fixed) query radius,
and the distance between the reference points, where the larger the separation
of the reference points, the better the exclusion. In the extreme case where the
separation is no larger than twice the query radius, which can readily occur



58 R. Connor et al.

in high-dimensional space, it is impossible for any exclusions to be made. This
effect can be ameliorated by choosing widely separated reference points, but in
an unevenly distributed set this in itself can be dangerous: if one point chosen
is an outlier, then the point cloud will lie close to the other point, and again no
exclusions will be made. Finding two reference points which are well separated,
and where the rest of the points is evenly distributed between them, is of course
an intractable task in general.

Figures 6 and 7 show this effect. In these diagrams, the reference points have
been selected as the furthest, and nearest, respectively out of 1,000 sample pairs
of points drawn from the space. It can be seen that, when exclusion is based on
tetrahedral properties allowed from the four-point property, the exclusive power
remains fairly constant, as the size and shape of the point cloud is not greatly
affected. However, when the hyperbolic condition is used, the exclusive power is
hugely affected; in this case the query threshold is only slightly less than half
the separation of the reference points, and the resulting hyperbola diverges so
rapidly from the separating hyperplane that no exclusions are made from the
sample queries. From Fig. 6 it should also be noted that, no matter how far
the reference points are separated, the four-point property always gives more
exclusions; in this case, although the separating lines do not appear visually
to be very different, the implied probability of exclusion in for the four-point
property is 0.66, against 0.58.

To allow most partition structures to perform well, a very large part of the
build cost is typically spent in the selection of good reference points and this
cost is largely avoidable with any such four-point strategy.

4.2 Arbitrary Partitions

Again we stress the fact that, given the strong lower bound condition on the
projected 2D plane, we can choose arbitrary geometric partitions of this plane

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

Hilbert Exclusion, 8 dimensions

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1, p
2)

non−exclusive queries
exclusive queries, n = 330

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

Hyperbolic Exclusion, 8 dimensions

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1, p
2)

non−exclusive queries
exclusive queries, n = 278

Fig. 6. Scatter diagram for 8-dimensional Euclidean Space with widely separated ref-
erence points. (The distance between reference points is such that the reference points
themselves do not appear on the plot.)



Supermetric Search 59

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
1

p
2

Hilbert Exclusion, 8 dimensions

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1, p
2)

non−exclusive queries
exclusive queries, n = 311

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

p
1

p
2

Hyperbolic Exclusion, 8 dimensions

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1, p
2)

non−exclusive queries
exclusive queries, n = 0

Fig. 7. Scatter diagram for 8-dimensional Euclidean Space with close reference points.
Note from comparison of the left-hand graphs of this figure with Fig. 6 that the sep-
aration of the reference points has no apparent effect on the power of the four-point
exclusion, whereas normal metric exclusion becomes completely useless.

to structure the data. For randomly generated, evenly distributed points there
seems to be little to choose. However it is often the case that “real world”
data sets do not show the same properties as generated sets; in particular, they
tend to be much less evenly distributed, with significant numbers of clusters
and outliers. These factors can significantly affect the performance of indexing
mechanisms. Figures 8 and 9 show a sample taken from the SISAP colors data set
with Euclidean distance applied, showing four different partitions. Four different
partitions of the plane have been arbitrarily selected and applied. The query
threshold illustrated is 0.052 corresponding to a query returning 0.001% of the
data.

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

verticalSISAP colors

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1,p
2)

p
1

p
2

non−exclusive queries
exclusive queries, n = 195

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

horizontalSISAP colors

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1,p
2)

p
1

p
2

non−exclusive queries
exclusive queries, n = 342

Fig. 8. Scatter diagrams dividing the plane equally in X and Y dimension, either can be
used for partitioning a hyperplane tree structure. We show results for the “horizontal”
pattern in Fig. 12 where it is the best available partitioning.



60 R. Connor et al.

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

circleSISAP colors

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1,p
2)

p
1

p
2

non−exclusive queries
exclusive queries, n = 267

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

farLeftDistSISAP colors

X

al
ti

tu
d

e 
fr

o
m

 li
n

e 
(p

1,p
2)

p
1

p
2

non−exclusive queries
exclusive queries, n = 315

Fig. 9. Two more binary partitions, based now on median distance from arbitrary
points in the plane (centre and top-left respectively); we have not yet found a use for
these but include the diagrams to make the point that any such partition may be used.

In all cases, it can be noted that the partitions are even, leading to balanced
indexing structures. It is very likely that skewed partitions may perform bet-
ter, an aspect we have not yet investigated. However one important balanced
partition is illustrated on the left hand side of Fig. 8, implying that a balanced
hyperplane tree can be efficiently constructed.

It can be seen that, in this case, partitioning the plane according to the
height of individual points above the X-axis is the most effective strategy. The
disadvantage with this is that a little more calculation is required to plot the
height of the point, rather than its offset from the Y-axis; however this is a very
minor effect when significantly more distance calculations can be avoided.

4.3 Balance

As already noted, any of the partitions shown above can be simply used to
bisect the data and thus produced a balanced indexing structure. These examples
are all defined using a single real value with respect to the planar geometry.
This can be calculated for each object within the subset to be divided, and
the median can be found very efficiently using the QuickMedianSort algorithm;
for a random distribution of points, the practical cost of balancing a binary
tree at construction time appears similar to performing QuickSort once on all
the data. While balanced structures are often slower than unbalanced ones for
relatively small data sets, they become rapidly more desirable as the size of the
data increases, and again more so if it is too large to fit in main memory and
requires to be stored in backing store pages. The ability to balance the data
without reducing the effectiveness of the exclusion mechanism therefore seems
important. One further area of investigation, not yet performed, would be the
effect of controlling the balance, which once again is arbitrarily possible simply
by selecting different offset values. In general this will increase the probability of



Supermetric Search 61

exclusion at cost of excluding smaller subsets of the data, and the effectiveness
will depend on the individual distributions of the different strategies.

5 Experiments and Results

To illustrate the effects discussed, we have implemented a generic partition tree
which can be specialised according to a number of criteria. All of the core code
executed is the same1, allowing fair comparisons to be made for both distance
measurement counts and elapsed time. The generic partition tree can be para-
meterised according to the following criteria:

Hilbert or Hyperbolic: the essence of our investigation.
Hilbert partition type: horizontal or vertical; we have not yet experimented

with any other partition of the plane.
Balanced, or Unbalanced: as explained in the text, all the partitioned spaces

can be balanced, in these tests we choose an even left/right split. Unbalanced
spaces tested are split according only to which reference point is closer; both
Hilbert and Hyperbolic exclusion are tested for these.

Reference point selection: Three different strategies are tested. The first ref-
erence point is arbitrarily selected, and the second is one of: the closest (non-
identical) value within the subset; a randomly-selected value from the subset;
and the furthest value from within the subset.

In all cases, with each partition two pivot values are kept and used in conjunc-
tion with each other exclusion policy: a cover radius is stored for the respective
left/right reference points, and also the minimum radius between each reference
point and the closest point in the opposing semi-space.

All tests are performed over SISAP colors and nasa benchmark data sets
[5], using Euclidean distance, taking 10 % of the set to act as queries over the
remainder and measuring only the number of distance calculations performed
per query (n = 101.5 k, 36.1 k respectively.) In the remaining text we highlight
some of the more interesting results.

5.1 Results

The smallest number of distances required for indexing was achieved by the
unbalanced monotonous tree using Hilbert exclusion, with the reference points
separated as far as possible. Figure 10 shows these results, in each case the bot-
tom line on the graph indicating the best performance of our Hilbert exclusion
mechanism in this context2. For comparison, the DiSAT [2] results with the two
exclusion mechanisms are shown with grey lines; DiSAT/Hyperbolic, the top line
on this chart, at the time of its publication was the best known general-purpose
indexing mechanism.
1 All of the (Java) code for these experiments can be downloaded from https://

bitbucket.org/richardconnor/metric-space-framework/.
2 Which we therefore believe makes the best performance yet published for these

metric/dataset combinations.

https://bitbucket.org/richardconnor/metric-space-framework/
https://bitbucket.org/richardconnor/metric-space-framework/


62 R. Connor et al.

0.052 0.083 0.131

5000

10000

15000

20000

25000
SISAP "colors" data set

Threshold

n
o

. o
f 

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

DiSAT / Hyperbolic
DiSAT / Hilbert
MonPT / Hyperbolic
MonPT / Hilbert

0.12 0.285 0.53

1000

2000

3000

4000

5000

6000

7000
SISAP "nasa" data set

Threshold

n
o

. o
f 

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

DiSAT / Hyperbolic
DiSAT / Hilbert
MonPT / Hyperbolic
MonPT / Hilbert

Fig. 10. Number of distance calculations per query for two SISAP benchmark sets.
The best case for each data is Hilbert exclusion with a monotonous partition tree.

Figure 11 shows the relative effect of reference point separation when using
Hilbert and Hyperbolic exclusion. Clearly, the furthest separation works best
as would always be expected. The point here to note is the relative disad-
vantage suffered by the four-point metric with a cheaper choice of reference
point. As collection size increases, the selection of multiple good reference points
becomes relatively more expensive; with the four-point properties, building a
high-performance index is much, much cheaper as the choice of reference point
is much less significant.

0.052 0.083 0.131

5000

10000

15000

20000

25000

30000

35000

40000

45000
SISAP "colors" data set

Threshold

n
o

. o
f 

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

Far / Hyperbolic
Med / Hyperbolic
Near / Hyperbolic
Far / Hilbert
Med / Hilbert
Near / Hilbert

0.12 0.285 0.53

5000

10000

15000
SISAP "nasa" data set

Threshold

n
o

. o
f 

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

Far / Hyperbolic
Med / Hyperbolic
Near / Hyperbolic
Far / Hilbert
Med / Hilbert
Near / Hilbert

Fig. 11. Unbalanced hyperplane tree, different reference point separations. Choice of
reference point is far less important for Hilbert exclusion, potentially allowing dramatic
reductions to build time performance.

Finally, we can show one of our other partitions in action: the “horizontal”
partition shown on the right-hand side of Fig. 8. Figure 12 shows this partition in
comparison with the vertical and unbalanced Hilbert partitions when the close
reference points are selected for the colors data set. Although, as can be seen



Supermetric Search 63

in comparison with other graphs, this is not the best way we have found of
searching this particular data set, the graph is included as a demonstration that
a completely novel partitioning technique can be the best with some selections
of data sets and reference points; there is much work still to do here. In fact,
if partition exclusion alone is used this technique is the best available, but the
way the space is partitions means many less cover radius exclusions are made;
definitely the subject of further work.

0.052 0.083 0.131

5000

10000

15000

20000

25000

30000
SISAP "colors" data set

Threshold

n
o

. o
f 

d
is

ta
n

ce
 c

al
cu

la
ti

o
n

s

H−V: Hilbert, vertical partition
H−H: Hilbert, horizontal partition
Hilbert, unbalanced

Fig. 12. Hilbert-Horizontal with close reference points; H-H is the bottom line, com-
pared with H-V and unbalanced Hilbert. Hyperbolic exclusion with these reference
points is shown as the top line of Fig. 11.

6 Conclusions

We have presented here a novel observation based on the four-point property
that is possessed by many useful distance metrics. We have shown how, if it is
guaranteed that any four points from the original space may be embedded in �32
as a tetrahedron, some much tighter geometric properties exist, in particular we
have shown a lower-bound distance that can be calculated from knowledge of
the sides of two tetrahedral faces. We have shown a few examples of how metric
indexes can be constructed from this property and, although at an early stage
of investigation, we have already shown a new best-performance for Euclidean
distance search over two of the SISAP benchmark datasets. We believe a step
change in improvement for exact search is possible; already our improved dis-
tance counts represent 29 % and 44 % of the previously published best results for
nasa and colors respectively, using a structure which is much simpler and has a
much smaller build time; we think much greater improvement is yet possible.

Acknowledgements. We would like to thank the anonymous referees for helpful
comments on an earlier version of this paper. Richard Connor would like to acknowledge
support by the National Research Council of Italy (CNR) for a Short-term Mobility
Fellowship (STM) in June 2015, which funded a stay at ISTI-CNR in Pisa during which
much of this work was conceived.



64 R. Connor et al.

References

1. Brin, S.: Near neighbor search in large metric spaces. In 21th International Confer-
ence on Very Large Data Bases (VLDB 1995) (1995)

2. Chávez, E., Ludueña, V., Reyes, N., Roggero, P.: Faster proximity searching with
the distal SAT. Inf. Syst. 59, 15–47 (2016)

3. Chávez, E., Navarro, G.: Metric databases. In: Rivero, L.C., Doorn, J.H., Ferraggine,
V.E. (eds.) Encyclopedia of Database Technologies and Applications, pp. 366–371.
Idea Group, Hershey (2005)

4. Connor, R., Cardillo, F.A., Vadicamo, L., Rabitti, F.: Hilbert exclusion: improved
metric search through finite isometric embeddings. ArXiv e-prints (accepted for
publication ACM TOIS, July 2016), April 2016

5. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library. www.sisap.org/library/
manual.pdf

6. Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous Bisector* Trees — a tool
for efficient partitioning of complex scenes of geometric objects. In: Monien, B.,
Ottmann, Th (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594, pp.
186–203. Springer, Heidelberg (1992). doi:10.1007/3-540-55488-2 27

7. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution for
precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011). Selected
Papers from the 2nd International Workshop on Similarity Search and Applications
SISAP (2009)

8. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, New York (2006)

www.sisap.org/library/manual.pdf
www.sisap.org/library/manual.pdf
http://dx.doi.org/10.1007/3-540-55488-2_27


Reference Point Hyperplane Trees

Richard Connor(B)

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow G1 1XH, UK

richard.connor@strath.ac.uk

Abstract. Our context of interest is tree-structured exact search in met-
ric spaces. We make the simple observation that, the deeper a data item
is within the tree, the higher the probability of that item being excluded
from a search. Assuming a fixed and independent probability p of any
subtree being excluded at query time, the probability of an individual
data item being accessed is (1 − p)d for a node at depth d. In a balanced
binary tree half of the data will be at the maximum depth of the tree so
this effect should be significant and observable. We test this hypothesis
with two experiments on partition trees. First, we force a balance by
adjusting the partition/exclusion criteria, and compare this with unbal-
anced trees where the mean data depth is greater. Second, we compare a
generic hyperplane tree with a monotone hyperplane tree, where also the
mean depth is greater. In both cases the tree with the greater mean data
depth performs better in high-dimensional spaces. We then experiment
with increasing the mean depth of nodes by using a small, fixed set of
reference points to make exclusion decisions over the whole tree, so that
almost all of the data resides at the maximum depth. Again this can be
seen to reduce the overall cost of indexing. Furthermore, we observe that
having already calculated reference point distances for all data, a final
filtering can be applied if the distance table is retained. This reduces
further the number of distance calculations required, whilst retaining
scalability. The final structure can in fact be viewed as a hybrid between
a generic hyperplane tree and a LAESA search structure.

1 Introduction and Background

Sections 1.1 and 1.2 set the context of metric search in very brief detail; much
more comprehensive explanations are to be found in [4,12]. Readers familiar
with metric search can skim these sections, although some notation used in the
rest of the article is introduced.

1.1 Notation and Basic Indexing Principles

To set the context, we are interested in querying a large finite metric space (S, d)
which is a subset of an infinite space (U, d). The most general form of query is a
threshold query, where a query q ∈ U is presented along with a threshold t, the
required solution being the set {s ← S | d(q, s) ≤ t}. In general |S| is too large
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 65–78, 2016.
DOI: 10.1007/978-3-319-46759-7 5



66 R. Connor

for an exhaustive search to be tractable, in which case the metric properties of
d require to be used to optimise the search.

In metric indexing, S is arranged in a data structure which allows exclusion
of subspaces according to one or more of the exclusion conditions deriving from
the triangle inequality property of the metric. As we refer to these later, we
summarise them as:

pivot exclusion (a). For a reference point p ∈ U and any real value μ, if
d(q, p) > μ + t, then no element of {s ∈ S | d(s, p) ≤ μ} can be a solution to
the query

pivot exclusion (b). For a reference point p ∈ U and any real value μ, if
d(q, p) ≤ μ − t, then no element of {s ∈ S | d(s, p) > μ} can be a solution to
the query

hyperplane exclusion. For reference points p1, p2 ∈ U , if d(q, p1)−d(q, p2) >
2t, then no element of {s ∈ S | d(s, p1) ≤ d(s, p2)} can be a solution to the
query.

1.2 Partition Trees

By “partition tree” we refer to any tree-structured metric indexing mechanism
which recursively divides a finite search space into a tree structure, so that
queries can subsequently be optimised using one or more of the above exclusion
conditions. These structure data either by distance from a single point, such as
the Vantage Point Tree, by relative distance from two points, for example the
Generic Hyperplane Tree or Bisector Tree. Many such structures are documented
in [4,12]. In our context we are interested only in the latter category as will
become clear.

As there are many variants of both structures, we restrict our description to
the simplest form of binary metric search tree in each category. The concepts
extend to more complex and efficient indexes such as the GNAT [1], MIndex [10]
and various forms of SAT trees [2,3,7,8], here we are only concerned with the
principles.

In both cases, search trees are formed from a finite set of points in a metric
space by selecting two reference points, and recursively forming child nodes to
store the remaining points according to which of these reference points is the
closest. During query, these nodes may be excluded from a search if it can be
determined that the child node cannot contain any solutions to the query. In
general, the term “bisector” is used when such exclusions are based on pivot
exclusion, and the term “hyperplane” is used when exclusions are based on
hyperbolic exclusion. It has long been known that, given the same basic tree
structure, both exclusion techniques can be used; as this always increases the
degree of exclusion, thus improving efficiency, it makes no sense to do otherwise.
Therefore, any sensible index using this structure will be a hybrid of these two
techniques.



Reference Point Hyperplane Trees 67

1.3 Balancing the Partition

To the above exclusion conditions, we add one more first identified in [6]:

hyperbola exclusion. For reference points p1, p2 ∈ U and any real value δ, if
d(q, p1) − d(q, p2) > 2t + δ, then no element of {s ⊂ S, d(s, p1) ≤ d(s, p2) + δ}
can be a solution to the query

The addition of the constant δ means that for any pair of reference points,
an arbitrary balance can be chosen when constructing the tree. An algebraic
proof of correctness for this property follows the same lines as that for normal
hyperplane exclusion.

The purpose of this is illustrated in Fig. 1. The diagrams show the two refer-
ence points p1, p2 plotted centrally along the X axis d(p1, p2) apart. Each other
point is uniquely positioned according to its distances from p1 and p2 respec-
tively. The data shown here is drawn from the SISAP colors data set under
Euclidean distance.

Fig. 1. Balanced hyperbolic exclusion

As we will use more such figures, it is worth explaining in a little detail
what is being illustrated. The only significant geometric relationship within the
scatter plot is between each point plotted and the two reference points plotted
along the X axis; there is no relation between the distances of points plotted
in this plane and their distance in the original space. The assumption is made
however that the distribution of points in this plane is likely to be the same
for both data and query as an indexing structure is being built and used; this
assumption is justified by the fact that, for any metric space, any three points
may be isometrically embedded in two-dimensional Euclidean space, giving a
meaningful semantics to the distribution if not the individual point distances.
The separation of points around the central line represents the separation of
data at construction time if a structure was being built using these 500 points as
data, with the two selected reference points. The effectiveness of the exclusion
mechanism is illustrated by the two outer lines, which show the boundaries of



68 R. Connor

queries which allow the opposing semi-space to avoid being searched for possible
solutions. If the distribution is representative, it is reasonable to use the same
set of example points for both purposes.

On the left-hand side of the figure, normal hyperplane exclusion is illustrated.
The data is split according to which is the closer reference point, which mani-
fests here as either side of the Y axis. The exclusion condition is the hyperbola
condition, depicted by the outer (hyperbolic) curves. Any query points outside
these lines do not require the opposing semi-space to be searched.

However the partition of the data is unbalanced with respect to the chosen
reference points. On the right hand side of the picture, the data set is split
according to the central hyperbolic curve, the value for this being chosen to
achieve an arbitrary balance of the data, in this case evenly divided. From the
illustration it can be seen that fewer queries will achieve the exclusion condition;
however, the magnitude of the space excluded will be greater in most cases.

For our purposes here, the point is that an even balance can be achieved
in all cases, for arbitrary data and any reference points. Of course, unlike in
a database indexing structure, an improved balance does not imply improved
performance, and our working hypothesis at this point is in fact that balancing
will, on whole, degrade performance as it reduces the mean depth of the data.

2 Balanced and Monotonous Partition Trees

Algorithms 1 and 2 give the simplest algorithms for constructing, and querying,
a balanced partition tree.

Data: Si ⊂ S
Result: Node: < p1, p2 : U, δ : R, left, right : Node>
select p1, p2 from Si;
if |Si| > 2 then

Si ← Si − {p1, p2};
for all sj ∈ Si calculate d(sj , p1) − d(sj , p2);
find median value δ;
create subsets Sl, Sr such that;
Sl = {s ← Si, d(s, p1) − d(s, p2) < δ};
Sr = {s ← Si, d(s, p1) − d(s, p2) ≥ δ};
left ← CreateNode(Sl);
right ← CreateNode(Sr);

end

Algorithm 1. CreateNode (balanced)

This algorithm works correctly, but to work well requires the same refine-
ments as any other hyperplane tree, as follows:

1. The reference points need to be chosen carefully to be far apart, but also not
to be very close to any reference point previously used at a higher level of the
tree. Otherwise, in either case, few or no exclusions will be made at the node.



Reference Point Hyperplane Trees 69

Data: q ∈ U, n : Node
Result: Result: {s ∈ S, d(s, q ≤ t})
Result = {};
if d(q, n.p1) ≤ t then

Result.add(p1)
end
if d(q, n.p2) ≤ t then

Result.add(p2)
end
if d(q, n.p1) − d(q, n.p2) ≥ 2t + n.δ then

Result.add(Query(q,n.right))
end
if d(q, n.p2) − d(q, n.p1) > 2t + n.δ then

Result.add(Query(q,n.left))
end

Algorithm 2. Query

2. As well as relying on hyperbolic exclusion, each node can also cheaply store
values for use, for both partitions, with both types of pivot exclusion. For both
subtrees minimum and maximum distances to either reference point can be
stored and used to allow pivot exclusion for a query. Most commonly, only
the cover radius is kept for the reference point closest to the subtree. The
minimum distance from the opposing reference point may also be of value; an
interesting observation with the balanced tree, which can be seen by studying
Fig. 1, is that both these types of pivot exclusion may well function better
with a higher δ value at the node.

The monotonous hyperplane tree (MHT1) was first described in [9] where
it was described as a bisector tree using only pivot exclusion. The structure is
essentially the same, but each child node of the tree shares one reference point
with its parent, as shown in Algorithm3. A significant advantage is that, for
each exclusion decision required in an internal node of the tree, only a single
distance needs to be calculated rather than two for the non-monotonous variant.

The query algorithm is conceptually the same, but in practice the distance
value d(q, p1) is calculated in the parent node and passed through the recursion
to avoid its recalculation in the child node.

The intent behind this reuse of reference points was originally geometric in
origin, based on an intuition of point clustering within a relatively low dimen-
sional space; this intuition becomes increasingly invalid as the dimensionality
of the space increases. Interestingly however the monotonous tree performs
substantially better that an equivalent hyperplane tree in high dimensional
spaces.

1 Originally named the “Monotonous Bisector* Tree”.



70 R. Connor

Data: Si ⊂ S, p1 ∈ S
Result: Node: < p1, p2 : U, δ : R, left, right : Node>
select p2 from Si;
if |Si| > 2 then

Si ← Si − {p1, p2};
for all sj ∈ Si calculate d(sj , p1) − d(sj , p2);
find median value δ;
create subsets Sl, Sr such that;
Sl = {s ← Si, d(s, p1) − d(s, p2) < δ};
Sr = {s ← Si, d(s, p1) − d(s, p2) ≥ δ};
left ← CreateNode(Sl, p1);
right ← CreateNode(Sr, p2);

end

Algorithm 3. CreateNode (monotonous balanced)

3 The Effect of Depth

As balance and monotonicity are orthogonal properties of the partition tree, we
have now identified four different types of tree to test in experiments. At each
node of each of the four trees described, it is not unreasonable to assume that
over a large range of queries the probability of being able to exclude one of the
subtrees is approximately constant.

Data is embedded within the whole tree. Viewed from the perspective of an
individual data item at depth d within the tree, it sits at the end of a chain of
tests, each of which may result in it not being visited during a query. The proba-
bility of any data item being reached, and therefore having its distance measured,
is therefore (1 − p)d, where p is the probability of an exclusion being made at
each higher node. It should therefore be possible to measure that (a) unbalanced
trees perform better than balanced, and (b) monotonous trees perform better
than non-monotonous, as in each case the mean data depth is greater.

Figure 2 shows performance for the four tree types used for Euclidean search
on the SISAP colors and nasa data sets [5]. In each case ten percent of the data
is used as queries over remaining 90 percent of the set, at threshold values which
return 0.01, 0.1 and 1 % of the data sets respectively; results plotted are the
mean number of distances required per query (n = 101414, 36135 respectively.)
The results presented are in terms of the mean number of distance calculations
required per query; for most mechanisms over similar data structures execution
times are proportional to these, and are not included due to space constraints2.

In all of these tests, a reasonable attempt to find “good” reference points
is made; the selection of the first reference point is arbitrary (either randomly
selected, or passed down from the construction of the parent node in the case
of monotonous trees); the second reference point is selected as the point within
the subset which is furthest from the first. This works reasonably well, although

2 Source code to repeat these experiments, including timings, is available from https://
bitbucket.org/richardconnor/metric-space-framework.

https://bitbucket.org/richardconnor/metric-space-framework
https://bitbucket.org/richardconnor/metric-space-framework


Reference Point Hyperplane Trees 71

Threshold
0.052 0.083 0.131

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

    0

 5000

10000

15000

20000

25000

30000

35000
SISAP "colors" data set

BalPT
PT
Bal-MonPT
MonPT

Threshold
0.12 0.285 0.53

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

    0

 2000

 4000

 6000

 8000

10000

12000

14000
SISAP "nasa" data set

BalPT
PT
Bal-MonPT
MonPT

Fig. 2. Four variants of hyperplane trees (monotonous or not, balanced or not) showing
number of distances performed for SISAP benchmark searches. In each case, from the
bottom (best) is: monotonous unbalanced, monotonous balanced, normal unbalanced,
normal balanced

performance can be improved a little by using a much more expensive algorithm
at this point.

In each case, as expected, the balanced tree does not perform as well as
the unbalanced tree, and the monotonous tree performs better than the non-
monotonous tree.

4 Balancing and Pivot Exclusion

Before describing our proposed mechanism we briefly consider the effect on exclu-
sion when relatively ineffective reference points are used. It should be noted that
this will usually be the case towards the leaf nodes of any tree, as only a small
set is available to choose from, and in fact this will affect the majority cases of
any search in a high-dimensional space. In our particular context, we are going
to compromise the effectiveness of the hyperplane exclusion through the tree
nodes, by using relatively ineffective reference points, in exchange for placing
the majority of the data at the leaf nodes.

Figure 3 shows the same data as plotted in Fig. 1, but where much less good
reference points have been selected. These are not pathologically bad reference
points, in that they are the worst pair tested from a randomly selected sample of
only a few. The tradeoff between balanced and unbalanced exclusion is now very
interesting. As can be seen in the left hand figure, the large majority (450 ex.
500 points) of queries will successfully allow exclusion of the opposing subspace;
however in all but four cases the opposing subspace contains only around 2% of
the data; however, those four cases exclude 98 % of the data. On the right-hand
side, only 24 ex 500 queries allow exclusion, but in each case half of the data
is excluded. So for this sample of points, treated as both data and query over
the same reference points, both balanced and unbalanced versions save a total
of around 6k distance calculations out of 25k.



72 R. Connor

Fig. 3. The data as plotted in Fig. 1, with a much worse choice of reference points.
Note that in the right-hand chart, the pivots are so skewed that the left-hand branch
of the exclusion hyperbola does not exist in �22; the line on the left is the hyperbolic
centre of the data with respect to the reference points.

However one further factor that can be noticed in general terms is that the use
of pivot exclusion of both types (a cover radius can be kept for each reference
point and semispace, and also the minimum distance between each reference
point and the opposing semispace) may be more effective in the balanced version
due to the division between the sets being skewed; it can be seen here that
the left-hand cover radius in the balanced diagram is usefully smaller than the
corresponding cover radius in the left-hand diagram.

This case is clearly anecdotal, and our experiments still show that on the
whole the unbalanced version is more effective overall; however we believe this
is because of the larger mean number of exclusion possibilities before reaching
the data nodes. This is the aspect we now try to address.

5 Reference Point Hyperplane Trees

The essence of the idea presented here is to use the same partition tree structure
and query strategy, but using a fixed, relatively small set of reference points to
define the partitions. The underlying observation is that, given we can achieve
a balanced partition of the data for any pair of reference points, we can reuse
the same reference points in different sub-branches of the tree. Attempting the
same tactic without the ability to control the balance degrades into, effectively,
a collection of lists.

Any points from the data set not included in the reference point set will
necessarily end up at the leaf nodes of the tree. Thus, although the limited set
of reference points pairs may reduce the effectiveness of exclusion at each level,
the mean depth traversed before another distance calculation is required will be
greater.

Assuming a balanced tree is constructed as above, the binary monotonous
hyperplane tree stores half of its data at the leaf nodes, which have a depth of
log2 n for n data. The non-monotonous variant has only one-third of its data



Reference Point Hyperplane Trees 73

in the leaf nodes, and the mean depth is corresponding smaller. The two tree
types are illustrated in Fig. 4, where it is clear to see the average depth of a data
item is always greater for the monotonous case. In fact empirical analysis shows
that for large trees, the Reference Point tree has a weighted mean data depth of
exactly one more than the Monotonous tree, which in turn has a weighted mean
data depth of exactly one more than the non-monotonous tree.

p1 p2

p3 p4 p5 p6

p7 p8 p9 p10 p11 p12 p13 p14

p1 p2

p1 p3 p2 p4

p1 p5 p3 p6 p2 p7 p4 p8

Fig. 4. Generic and monotonous hyperplane trees. Note the re-use of a single parent
node for constructing the child node partition. For large trees, mean data depth is
log2 n − 1 for Generic, and log2 n for Monotonous.

To investigate this advantage further, we have considered two ways of using
a small fixed set of points for the tree navigation, illustrated in Fig. 5.

5.1 Permutation Trees

The first we refer to as a permutation tree. The underlying observation here is
that, for a fixed set of n reference points, there exist

(
n
2

)
unique pairs of points

that can be used to form a balanced hyperplane partition. These can be assigned
a numbering, as can the internal nodes of the tree, so that a different permutation
is used at each node of the tree. At construction time, the permutation used for
the particular node is selected and the difference of the distances to each point
are calculated, the data is then divided into two parts based on the median of
these differences. At query time, the distance between the query and each of the
n reference points can be pre-calculated; this gives all the information that is
required to navigate the tree as far as the leaf nodes where the data is stored.

The strength of this method derives from the rate of growth of the function(
n
2

)
. For n data to be resident at the leaf nodes, we require (modulo detail)

around n internal nodes and therefore permutations, which in turn requires only
around

√
8n
2 reference points. This equates to around 1,400 points for 1 M data,

14k for 100 M data etc.
We have built such structures and measured them; the results are shown in

Fig. 6. They are encouraging; for the colors data set in particular, this is faster,



74 R. Connor

p1 p2

p1 p3 p2 p3

p1 p4 p2 p4 p3 p4 p1 p5

p1 p2

p2 p3 p2 p3

p3 p4 p3 p4 p3 p4 p3 p4

Fig. 5. Permutation and Leanest trees. In either case, on scaling, mean data depth is
effectively log2n + 1 as all data is stored at the leaf nodes.

Threshold
0.052 0.083 0.131

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

    0

 5000

10000

15000

20000

25000

30000

35000
SISAP "colors" data set

BalPT
PT
Bal-MonPT
MonPT
Permutation Tree

Threshold
0.12 0.285 0.53

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

    0

 2000

 4000

 6000

 8000

10000

12000

14000

16000
SISAP "nasa" data set

BalPT
PT
Bal-MonPT
MonPT
Permutation Tree

Fig. 6. Cost of Permutation Tree indexing. The costs for the two datasets are plotted
in bold against the background of the costs plotted in Fig. 2 for comparison.

and requires less distance calculations, than any other balanced tree format.
It seems to do relatively better at lower relative query thresholds, and for the
higher-complexity data of the colors data set. Finally, we should note that the
reference points from which the permutations are constructed are, at this point,
selected randomly; we believe a significant improvement could be obtained by a
better selection of these points but have not yet investigated how to achieve this.

5.2 Leanest Trees

For our other test, we have selected a strategy that we did not expect to work
at all; for a set of n + 1 reference points, we partition each level of the tree with
the same pair of points. That is, for the node at level 0, we use points {p0, p1}
to partition the space; at level two, we use the pair {p1, p2}, etc. For all nodes
across the breadth of the tree, for depth m we use the reference pair {pm, pm+1}.
This requires the selection of only log2 n + 1 reference points for data of size n.

For this strategy, it is much easier to provide relatively good pairs of points
for partitioning the data, as there are relatively very few of them. For the results



Reference Point Hyperplane Trees 75

given we used a cheap but relatively effective strategy. The first reference point
is chosen at random; repeatedly, until all are selected, another is found from the
data which is far apart (in these cases we only sampled 500 points), and so on
until all the required points are found. One further check is required, that none of
the selected points is very close (or indeed identical) to another already selected,
as that would result in the whole layer of the tree performing no exclusions at all.

5.3 Leanest Trees with LAESA

We have one more important refinement. The build algorithm for the Leanest
Tree, for greatest efficiency, will pre-calculate the distances from the small set
of reference points to each element of the data; this data structure can then be
passed into the recursive build function as a table. This table has exactly the
same structure as the LAESA [11] structure.

The table has only n log2 n entries and may therefore typically be stored along
with the constructed tree. At query time, a vector of distances from the query to
the same reference points is calculated before the tree traversal begins. Whenever
the query evaluation reaches a leaf node of the tree, containing therefore a data
node that has not been excluded during the tree traversal, a normal tree query
algorithm would then calculate the distance between the query and the datum
s at this node. If d(q, s) ≤ t then s is included in the result set.

However, before performing this calculation (these distance calculations typ-
ically representing the major cost of the search) it may be possible to avoid it, as
for each pi in the set of reference points, d(q, pi) and d(s, pi) are both available,
having been previously calculated. If, for any pi, |d(q, pi) − d(s, pi)| > t, it is
not possible that d(q, s) ≤ t (by the principle of Pivot Exclusion (a) named in
Sect. 1.1) and the datum can be discarded without its distance being calculated.

Of course this operation itself is not without cost, and should be performed
only if its cost is less than that of a distance calculation. This will generally be
the case at least if the size of an individual datum is greater than log2 |S|, or if
a particularly expensive distance metric is being used.

6 Analysis

Figure 7 shows measurements for the Leanest Tree and its LAESA hybrid. These
are plotted in bold, again set in the context of the greyed-out measurements
copied from Fig. 2.

In each case, the top dotted line is for the Leanest Tree measured without
using the LAESA hybrid. This is comparable to the Permutation Tree, and again
it is worth noting that this is a good performance for a balanced tree; in cases
where balancing is required, for example if the data does not fit in main memory
and requires paging, this mechanism is worthy of consideration.

The lower dotted line is the raw number of distance measurements made by
the hybrid mechanism. This is by far the best performance measured in these
terms for both data sets; however, for reasons explained above, it must be noted



76 R. Connor

Threshold
0.052 0.083 0.131

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

    0

 5000

10000

15000

20000

25000

30000

35000
SISAP "colors" data set

BalPT
PT
Bal-MonPT
MonPT
Leanest Tree
Leanest Tree/LAESA
adjusted L/L cost

Threshold
0.12 0.285 0.53

no
. o

f d
is

ta
nc

e 
ca

lc
ul

at
io

ns

    0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000
SISAP "nasa" data set

BalPT
PT
Bal-MonPT
MonPT
Leanest Tree
Leanest Tree/LAESA
adjusted L/L cost

Fig. 7. Cost of Leanest Tree indexing. The costs for the two datasets are plotted in
bold against the background of the costs plotted in Fig. 2 for comparison. The LAESA
hybrid is the lowest line in each graph; this is not a true representation of overall cost,
as explained in the text; the solid line gives a good estimate of the true cost of the
hybrid mechanism.

that this does not represent actual measured performance in terms of query
time, as there is a significant extra cost entailed in performing the LAESA-
based filtering. In some cases however the number of distance calculations will
swamp any other cost of the query and this line would be representative for the
mechanism.

To give a fair comparison for these data sets and this metric, the solid black
line is generated, rather than measured, to take the LAESA overhead cost into
account. In fact this is done pessimistically by considering only the size of the
data access required. Thus, to the raw distance count, a factor is added according
to the number of reference points used, as a proportion of the size of the original
data points. Thus for example for the nasa data set the tree depth is 15, requiring
16 reference points, and the original data is 20 dimensions. For every time the
LAESA exclusion is attempted, 0.8 of a distance calculation is added to the total
measured from the original space. For the colors data, these figures are 17 and
118 respectively, making the hybrid mechanism relatively more useful.

It may be noted that the total number of distance measurements made by
this mechanism is similar (although in general smaller) to that required by the
pure LAESA mechanism; however, a query using LAESA requires a linear scan
of the whole LAESA table, therefore giving a cost directly proportional to the
data size. In contrast our hybrid mechanism resorts to using the LAESA table
only for data which has not already been excluded through the tree traversal,
and therefore retains the scalability implied by recursive search structures.

The main outcome of our work is thus represented by the solid black line in
the left hand figure, which gives a substantially better performance for this data
set than any other we are aware of. The hybrid Leanest/LAESA mechanism
appears to be very well suited for data sets which are very large and require
paging, whose individual data items are very large, or whose distance metrics
are very expensive.



Reference Point Hyperplane Trees 77

7 Conclusions and Further Work

Having made the observation that the monotonous hyperplane tree is sub-
stantially more efficient that the non-monotonous equivalent, even in high-
dimensional spaces, we formed the hypothesis that this is primarily due to the
longer mean search paths to each data item. We have taken this idea to its
extreme, in conjunction with an ability to force balance onto a hyperplane par-
tition, through the design of “permutation” and “leanest” hyperplane trees. In
particular, the latter requires only log2n + 1 reference points for data of size n,
therefore leaving effectively all of the data at the leaf nodes of the tree. We have
tested both mechanisms against two SISAP benchmark data sets, and found
good realistic performance in comparison with other structures that are bal-
anced and therefore usable for very large data sets, or very large data points,
which require to be paged.

Furthermore we note that the balanced tree mechanism can also be viewed as
a scalable implementation of a LAESA structure, giving very good performance
in particular for high-dimensional and expensive distance metrics. For very little
extra cost, LAESA-style filtering can be performed on the results of the tree
search, apparently giving the best of both worlds. We continue to investigate this
mechanism in metric spaces more challenging that the benchmark sets reported
so far.

Acknowledgements. Richard Connor would like to acknowledge support by the
National Research Council of Italy (CNR) for a Short-term Mobility Fellowship (STM)
in June 2015, which funded a stay at ISTI-CNR in Pisa where some of this work
was done. The work has also benefitted considerably from conversations with Franco
Alberto Cardillo, Lucia Vadicamo and Fausto Rabitti, as well as feedback from the
anonymous referees. Thanks also to Jakub Lokoč for pointing out his earlier invention
of parameterised hyperplane partitioning!

References

1. Brin, S.: Near neighbor search in large metric spaces. In: 21st International Confer-
ence on Very Large Data Bases (VLDB 1995) (1995). http://ilpubs.stanford.edu:
8090/113/

2. Chávez, E., Ludueña, V., Reyes, N., Roggero, P.: Faster proximity searching with
the distal SAT. In: Traina, A.J.M., Traina Jr., C., Cordeiro, R.L.F. (eds.) SISAP
2014. LNCS, vol. 8821, pp. 58–69. Springer, Heidelberg (2014)

3. Chávez, E., Ludueña, V., Reyes, N., Roggero, P.: Faster proximity searching
with the distal SAT. In: Traina, A.J.M., Traina, C., Cordeiro, R.L.F. (eds.)
SISAP 2014. LNCS, vol. 8821, pp. 58–69. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11988-5 6

4. Chávez, E., Navarro, G.: Metric databases. In: Rivero, L.C., Doorn, J.H.,
Ferraggine, V.E. (eds.) Encyclopedia of Database Technologies and Applications,
pp. 366–371. Idea Group, Hershey (2005)

5. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library. www.sisap.org/
library/manual.pdf

http://ilpubs.stanford.edu:8090/113/
http://ilpubs.stanford.edu:8090/113/
http://dx.doi.org/10.1007/978-3-319-11988-5_6
http://dx.doi.org/10.1007/978-3-319-11988-5_6
www.sisap.org/library/manual.pdf
www.sisap.org/library/manual.pdf


78 R. Connor

6. Lokoč, J., Skopal, T.: On applications of parameterized hyperplane partitioning.
In: Proceedings of the Third International Conference on SImilarity Search and
Applications, SISAP 2010, pp. 131–132. ACM, New York (2010). http://doi.acm.
org/10.1145/1862344.1862370

7. Navarro, G.: Searching in metric spaces by spatial approximation. VLDB J. 11(1),
28–46 (2002)

8. Navarro, G., Reyes, N.: Fully dynamic spatial approximation trees. In: Laender,
A.H.F., Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, p. 254. Springer,
Heidelberg (2002)

9. Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous Bisector* Trees — a tool
for efficient partitioning of complex scenes of geometric objects. In: Monien, B.,
Ottmann, T. (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594, pp.
186–203. Springer, Heidelberg (1992). doi:10.1007/3-540-55488-2 27

10. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011).
Selected Papers from the 2nd International Workshop on Similarity Search and
Applications (SISAP) 2009

11. Ruiz, E.V.: An algorithm for finding nearest neighbours in (approxi-
mately) constant average time. Pattern Recogn. Lett. 4(3), 145–157 (1986).
http://www.sciencedirect.com/science/article/pii/0167865586900139

12. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, New York (2006)

http://doi.acm.org/10.1145/1862344.1862370
http://doi.acm.org/10.1145/1862344.1862370
http://dx.doi.org/10.1007/3-540-55488-2_27
http://www.sciencedirect.com/science/article/pii/0167865586900139


Quantifying the Invariance and Robustness
of Permutation-Based Indexing Schemes

Stéphane Marchand-Maillet1(B), Edgar Roman-Rangel1, Hisham Mohamed1,
and Frank Nielsen2

1 Department of Computer Science, University of Geneva, Geneva, Switzerland
stephane.marchand-maillet@unige.ch

2 LIX Polytechnique, Paris, France

Abstract. Providing a fast and accurate (exact or approximate) access
to large-scale multidimensional data is a ubiquitous problem and dates
back to the early days of large-scale Information Systems. Similarity
search, requiring to resolve nearest neighbor (NN) searches, is a funda-
mental tool for structuring information space. Permutation-based Index-
ing (PBI) is a reference-based indexing scheme that accelerates NN
search by combining the use of landmark points and ranking in place
of distance calculation.

In this paper, we are interested in understanding the approximation
made by the PBI scheme. The aim is to understand the robustness of the
scheme created by modeling and studying by quantifying its invariance
properties. After discussing the geometry of PBI, in relation to the study
of ranking, from empirical evidence, we make proposals to cater for the
inconsistencies of this structure.

Keywords: Permutation based indexing · Ranking · Geometry

1 Introduction

Providing a fast and accurate (exact or approximate) access to large-scale mul-
tidimensional data is a ubiquitous problem and dates back to the early days of
large-scale Information Systems. The approach generally taken is that of defin-
ing a structure of the space based on information similarity and to partition the
information space according to this structure for quantized or hierarchical access.
The most common base for structuring the space is to assume the existence of a
relevant metric in the space and to base the indexing on the properties of that
metric space to resolve the Nearest Neighbor (NN) search problem. From there,
a large variety of indexing techniques have been defined [10,29,36,37].

In this paper, we are interested in a finer understanding of the approximations
made by the PBI scheme (and, more generally, permutation-based distance mea-
surements). In particular, the aim is to understand the robustness of the scheme
created by quantifying its invariance properties. The main contributions is the
definition of a formal space partitioning model for the PBI scheme, embarking
power tools from geometry modeling.
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 79–92, 2016.
DOI: 10.1007/978-3-319-46759-7 6



80 S. Marchand-Maillet et al.

We demonstrate the validity of our proposal with extensive empirical evi-
dence. In this paper, we are interested in understanding the approximation made
by the PBI scheme. The aim is to understand the robustness of the scheme
created, or conversely, quantify its invariance properties. After discussing the
geometry of PBI, in relation to the study of ranking, from extensive empirical
evidence, we make proposals to cater for the inconsistencies of this structure.

2 Related Work

A large family of indexing techniques is that of reference-based indexing schemes,
where some reference points (sometimes referred to as pivots or anchor points)
are selected, based on their local or global properties and then organized for
facilitating query resolution and data access. In the list of such structures, we
can cite tree-based indexing that place a hierarchical structure over these pivots.
These include BK-Tree [6], Vantage Point Tree [23,32] or M-Tree (Metric Tree)
[11].

More recent structures such as the Fixed Query Array [9], M-Index [24] or
Permutation Based Indexing [8] use pivots to partition the space and to encode
the data according to the structure of the partition. These structures have a
number of parameters on which their actual performance depend and their choice
are generally made empirically, either based on heuristics or on the statistics of
the data in question [1,3,4,7]. However, a formal modeling of the relationship
between these choices and the impact on the performance, based on a sound
modeling of the encoding created by the indexing scheme is still missing [2,20].

They also relate to the statistical properties of high-dimensional represen-
tation spaces within which the curse of dimensionality applies [5,13,33,34].
Although indexing performance decreases in such a setup and hardware advances
(such as GPU computations) allow brute-force exhaustive search to be fast and
robust [12,17], it is still relevant to look at indexing structures acting either
within subspaces or data manifolds [35].

We have studied how PBI may be distributed over parallel architectures
[19], how PBI schemes may be simplified (pruned) to scale while preserving
an adequate level of approximation [20]. We have worked on large-scale data
processing, including with GPU processing [14,21,22]. Here, we extend an initial
modeling for the geometry of PBI [18].

3 Formal Modeling of Permutation-Based Indexing
Schemes

We follow and adapt notations from [8,16]. Given U = {o1, . . . , oN} a collection
(universe) of N D-dimensional objects oi ∈ R

D, and given a continuous distance
function d(., .) operating on objects, typically any Minkowsky distance (including
the Euclidean distance dE) or other classical distance function (including the
cosine similarity distance).

We choose from U a set of n (0 < n ≤ N) reference objects R = {r1, . . . , rn}
where, for every k, rk = oi for some i.



Quantifying the Invariance and Robustness of PBI Schemes 81

Definition 1 (Ordered list). Given oi ∈ U , we define the ordered list of object
oi as the permutation πi : [[1, n]] → [[1, n]] such that for all k ∈ [[1, n − 1]]:1

{
d(rπi(k), oi) < d(rπi(k+1), oi)

or d(rπi(k), oi) = d(rπi(k+1), oi) and πi(k) < πi(k + 1)

We note πi = (πi(1), . . . , πi(n)).
Given p ∈ R

D, we note πp the ordered list of any point p.

In other words, πi is the list of indices of the reference objects rk sorted in
increasing distance values from oi. To remove randomness completely from the
ranking, in case of a tie on distances, the reference object of lower index appears
first in the list.

Viewing the ordered list as a bijective function, we can define π−1
i as its

inverse function, providing the position of a reference object in the ordered list.
We also extend the notation to apply the function πi (resp π−1

i ) on ordered
sets. In that case, for example, π−1

i (J) = (π−1
i (j1), . . . , π−1

i (jl)), where J =
(j1, . . . , jl).

The function πi encodes the position of object oi with respect to the list
of reference objects R and it is the purpose of this paper to study further the
properties of πi.

Based on this position encoding, we can define a new distance approximation
using any distance that can be computed between rankings (ordered lists). The
Spearman Footrule Distance (SFD) based on set R or the Spearman Rho (ρ)
are typically used:

δR(oi, oj) =
n∑

k=1

∣
∣π−1

i (k) − π−1
j (k)

∣
∣ (1)

ρR(oi, oj) =

√
√
√
√

n∑

k=1

(
π−1

i (k) − π−1
j (k)

)2
(2)

It has been shown that such distance functions can be used to resolve the k
nearest neighbor problem (k-NN) since δR and ρR approximate, in terms of
ranking, continuous distances for the search of k-NN [8]. In other words, for
example,

δR(oi, oj)
rank� d(oi, oj) ∀oi, oj ∈ U (3)

Hence, Permutation-based Indexing (PBI) aims at facilitating and optimizing,
for any query q (q ∈ U or q �∈ U) the computation of rank-based distances such
as δR(q, oi) for all oi ∈ U .

We will base our formal analysis on δR but, unless otherwise stated, any
other rank-based distance function (such as ρR) may apply instead.

1 We use the compact notation [[1, n]] = {1, · · · , n} for sets of successive integers.



82 S. Marchand-Maillet et al.

3.1 Invariance

Computing distances over ordered lists creates distance approximations, which
in turn create equivalence relationship.

Definition 2 (Equivalence relationship). Given R ⊂ U and oi, oj ∈ U , we
note oi ≡ oj if and only if

– δR(oi, oj) = 0,
– equivalently, πi = πj (since δR is a distance function).

Definition 3 (Equivalence class - Invariance). The equivalence class of
object oi is

[oi] = {p ∈ R
D such that p ≡ oi}

The quotient space U/ ≡ is the set of all equivalence classes of δR from U .

The equivalence class is the set of all positions p an object can take in the
initial space without changing its encoding in the permutation space. As an
immediate consequence, the value of the δR distance between any pair of points
of respective classes does not vary. Hence, the equivalence classes show the extent
of the invariance of the πi encoding. Similarly, the equivalence classes measure
the approximation made by the distance function δR.

We now construct a geometric structure for analyzing the PBI scheme.

3.2 Geometry

Objects oi are points of the R
D space over which some geometrical properties

can be inferred. We use the Euclidean distance in R
D but this analysis may be

extended with using other metrics.
A D-dimensional space may be partitioned by (D − 1)-dimensional hyper-

planes. In our context, perpendicular bisectors are particular such hyperplanes.

Definition 4 (Perpendicular bisector). Given rk, rl ∈ R, we define Δkl as
the (D − 1)-dimensional perpendicular bisector2 of the segment [rk, rl].

Proposition 1. If two given objects oi, oj ∈ U are separated by Δkl then

(π−1
i (k) − π−1

i (l)).(π−1
j (k) − π−1

j (l)) < 0

If Δkl is the only bisector separating oi and oj, then in that case, in particular,
δR(oi, oj) = 2.

Proof. Traversing Δkl flips the ranking of rk and rl in the ordered list, while
leaving other values of π−1

i (m) and π−1
j (m) unchanged for all m �= k, l.

2 We initially restrict ourselves to R
D spaces. The generalisation of these notions to

generic metric spaces is left for future work.



Quantifying the Invariance and Robustness of PBI Schemes 83

Definition 5 (Local flip). We call the fact of traversing a bisector Δkl a local
flip, (|π−1

i (k) − π−1
i (l)| = 1).

There is therefore a direct relationship between the geometrical organization of
the points and the organization of the ordered list. More generally, neighboring
relationships between objects relate to Voronoi diagrams, themselves formed
out of bisectors Δkl. We define the base element of V(R), the classical Voronoi
diagram of R, as follows.

Definition 6 (Voronoi cell). Given rk ∈ R, we define VR(rk) ⊂ R
D as the

Voronoi cell of rk with respect to R. VR(rk) is the subset:

VR(rk) =
{
p ∈ R

D such that d(p, rk) ≤ d(p, rl) ∀rl ∈ R
}

VR(rk) is a D-dimensional simplex bounded by bisectors Δkl. rk is then said to
be a generator of VR(rk).
V(R) = {VR(rk) ∀rk ∈ R} is the Voronoi diagram of R.

Remark 1. We assume that, considering the randomness of the positions of
objects in U (and therefore in R):

– The Voronoi diagram of R is not degenerate, i.e., no more than D+1 reference
objects lie on the same D-dimensional hypersphere;

– no object oi lies exactly on the boundary of two or more Voronoi cells.

A number of properties of the Voronoi diagrams help us understanding the
structure of PBI. We recall the definition of the Delaunay graph.

Definition 7 (Delaunay graph). Given R and V(R), we define G = (R,E)
the Delaunay graph with vertices rk ∈ R and edges E such that:

(rk, rl) ∈ E if and only if VR(rk) and VR(rl) share a common facet.

Definition 6 considers a unique object as generator for each Voronoi cell.
Hence, by definition, for all objects oi ∈ VR(rk), we have π−1

i (k) = 1.
Consider now rl and rm ∈ R, neighbors of rk in G. Δkl and Δkm support

facets of VR(rk). Suppose we extend Δlm within VR(rk). Δlm separates objects
oi for which π−1

i (l) > π−1
i (m) from objects oi for which π−1

i (l) < π−1
i (m).

In particular, because rl and rm ∈ R are neighbors of rk, one may isolate a
portion of VR(rk) bounded by Δlm where, for each object oi in that region
π−1

i ((k, l,m)) = (1, 2, 3). Repeating that process, leads to the construction of
the ordered order-2 Voronoi diagram, where the generators of the cells at the
ordered pairs of reference objects (Fig. 1).

Generalizing this construction, we obtain the ordered order-k Voronoi dia-
gram (OOkVD).

Definition 8 (Ordered order-k Voronoi diagram). Given Rk =
(rj1 , . . . , rjk) an ordered subset of R, we define V k

R(Rk) ⊂ R
D as the OOkVD

cell of Rk with respect to R. V k
R(Rk) is such that:

oi ∈ V k
R(Rk) ⇔ π−1

i ((j1, . . . , jk)) = [[1, k]]



84 S. Marchand-Maillet et al.

Fig. 1. Original Voronoi diagram (red bold lines) for 5 points in the 2D plane. The union
with the order-2 Voronoi diagram (dashed lines) forms the ordered order-2 Voronoi
partition. Cell centers act as reference points. The label for every cell is given as the
permutation of the 2 closest reference points from points in the cell. Every original cell
is repartitioned by the order-2 neighboring relationships (adapted from [26]) (Color
figure online)

Proposition 2. The equivalent classes of the δR distance (U/ ≡) are cells of the
ordered order-(n− 1) Voronoi diagram of R: if oi ∈ V k

R(Rk) then [oi] = V k
R(Rk).

Proof. By construction. Knowing that p ∈ V k
R(Rk) for all k < n is sufficient to

determine the ordered list πp.

As noted in [2], equivalent classes are the vertices of the permutahedron of
order n, the polytope whose edges are connecting all permutations differing from
a local flip.



Quantifying the Invariance and Robustness of PBI Schemes 85

Fig. 2. Ordered order-2 Voronoi diagram of 3 points (black lines). Edges of the Delau-
nay graph (red lines). Edges of the order-n permutahedron mapped on the same plane
(green lines) (Color figure online)

Proposition 3. The edges of the order-n permutahedron form a equivalent
“order-(n−1) Delaunay graph” for the ordered order-(n−1) Voronoi diagram. In
other words, permutations differing from one local flip (connected vertices of the
order-n permutahedron) relate to neighboring cells of the ordered order-(n − 1)
Voronoi diagram.

Proof. Direct from Definition 5 and Proposition 2.

Propositions 2 and 3 provide us with powerful geometric tools to study the
performance of the δR distance and therefore the permutation-based encoding.
For example, it is easily seen that local flips between positions k and k+1 in the
list relate to crossing edges of the order-k Voronoi diagram (Fig. 2). Similarly,
relationships between Voronoi cells, Delaunay simplices and enclosing spheres
help us understanding which of the n! possible permutations will actually exist
in the permutation-based encoding defined by a given choice of R. Upperbounds
and D-dimensional constructs that achieve these bounds are presented in [30,31].
An empirical study on the number of Pivot Permutations prefixes is proposed
in [25].



86 S. Marchand-Maillet et al.

3.3 Invariance and Robustness

In this paper, we wish to investigate empirically the factors that emerged from
the above modeling. Namely, we wish to obtain an empirical understanding of
the properties of invariance and robustness of the scheme against perturbations.
The related literature focused on the capabilities of the encoding to retrieve
all and only the k-NN of a query point p. This provides insight on how much
balls centered on p grow similarly according to increasing distances dE and δR,
which we use as prototypical metric in the original and permutations spaces,
respectively.

Here, we rather aim at going to a finer understanding by giving insights on
the questions:

– How much unique is the correspondence between the values of dE and δ?
– How much position information does each reference point rk carry in the

encoding of object oi?

We think that such information will advance the understanding of the limitations
of PBI and help formally optimizing its parameters such as the number and
position of reference points, and whether using partial ordered lists is useful.

4 Experiments

We base our experiments on dense sets of objects drawn uniformly from the unit
R

D cube. We chose n reference points according to the greedy global locality
approach [18].

4.1 Original Versus Permutation-Based Distances

We first investigate the match between distance values in the original space
and the permutation space. Ideally, for every original distance value, we should
find a corresponding permutation-based distance value. However, due to rank
approximation and invariance, this is not the case. To measure this invariance,
for every value of the permutation-based distance3, we gather the corresponding
histogram of the original distance values. The less peaked the histogram, the
more invariance, and the more confusion in discriminating objects.

As can be seen from Fig. 3, both original and permutation-based distance
functions show a decent correlation (dark diagonal corresponding to the peak
value of the histograms). δR and ρR behave similarly. However, the higher the
value of the permutation-based distance, the more spread the original corre-
sponding distance values are. This can be interpreted as the fact that the ball
of the permutation distance will grow more and more with irregular borders. In
other words, there is more and more uncertainty in the match between original
distance values and permutation-based distance values.
3 We use δR(oi, oj) = 1

2

∑n
k=1

∣
∣π−1

i (k) − π−1
j (k)

∣
∣, to avoid systematically empty odd

bins.



Quantifying the Invariance and Robustness of PBI Schemes 87

Fig. 3. Collection of histograms (horizontal lines of the images - the darker the higher
the value) of Euclidean distance values for every value of the permutation-based dis-
tance (vertical value). From left to right, top to bottom: (a) Uniform distribution of 2D
objects with δR based on 30 reference points. (b) Uniform distribution of 4D objects
with δR based on 30 reference points. (c) Uniform distribution of 2D objects with ρR

(values quantized) based on 30 reference points. (d) Uniform distribution of 4D objects
with ρR (values quantized) based on 30 reference points.

4.2 Local Invariance Properties

We now wish to get a more detailed understanding of how permutation-based
distance work. From their definition, these distance functions (e.g. δR or ρR)
essentially count the discrepancy between the ordered list, without accounting for
the position in the lists at which this difference arises. For example, if δR(oi, oj) =
1, the corresponding ordered lists differs from only one local flip. However this
local flip may indifferently be between elements at the beginning of the list (e.g.
changing cell of the order-1 Voronoi diagramà) or at the end of the list (crossing
Δkl where rk and rl are far from oi and oj).

Definition 9 (Activation). We say that a reference object rk is activated in
the computation of δR(oi, oj) if π−1

i (k) �= π−1
j (k).



88 S. Marchand-Maillet et al.

Fig. 4. Collection of histograms (horizontal lines of the images - the darker the higher
the value) for the activation (see text) of each reference object depending of the value
of δR (D = 2, n = 30). (left) full statistic. (right) zoom on low values of δR.

Ideally, we would like the position of an object be encoded mostly by its local
reference objects. This corresponds to making the position encoding independent
of far structures. As a result, this would support the use of local criteria for the
choice of reference objects.

In that case, when computing permutation-based distance values for neigh-
boring objects, local reference objects would be activated. Conversely, low values
of permutation-based distance should be due to the activation of local reference
objects. This would for example justify formally that ordered list pruning is a
sound operation.

We plot in Fig. 4 the statistics of activation of reference objects (n = 30) for
each value of the permutation-based distance.

We read a rather uniform distribution of activation, which counters to the
idea of local encoding. This may be understood by looking at Fig. 1. One can
see that bisectors resulting from the high order Voronoi partition splits cells into
a fine grain partition. Hence, pairs of distance reference objects do participate
in the determination of the fine sensitivity of the encoding. This is rather unde-
sirable and motivates the use of weighted permutation-based distance functions
such as that proposed in [15] to enforce a local penalty on distance measure-
ments.

4.3 Real Data

We now study a real use case where indexing invariance is desirable and should
be adapted to the data. We study Maya hieroglyphs images. A part of Maya
writing consists into glyphs (base signs) combined into glyph blocks. Each glyph
can be referenced by a Thompson code (T-code, e.g. T0168) and glyphblocks
can be therefore described by the combination of the T-codes of the glyphs that
compose the block, which we call a T-string (see Fig. 5).



Quantifying the Invariance and Robustness of PBI Schemes 89

Fig. 5. Maya glyphblocks annotated with their corresponding T-strings. (1st row)
Glyphblocks with different number of composing glyphs. (2nd row) Glyphblocks of
the same class, illustrating the visual variability of the classes

Table 1. Average equivalence class population and precision with respect to the num-
ber of reference objects. Values in brackets indicate the standard deviation

n 6 7 8 9 10 20

Pop. 233.56 (187.76) 99.31 (99.14) 43.77 (57.46) 19.74 (35.58) 7.20 (11.87) 1.06 (1.44)

Prec. 0.05 (0.09) 0.10 (0.17) 0.19 (0.25) 0.36 (0.34) 0.54 (0.37) 99.84 (0.03)

It is interesting to study visual similarity of Maya hieroglyphs [28]. Figure 5
(2nd row) motivates the fact that the indexing scheme should absorb the visual
variation of the symbols. Integrating this with our earlier discussion, the question
is how to map similarity-based classification onto the notion of invariance of
the indexing scheme. Here, “invariance” is understood as “invariance to writing
style”. In other words the challenge is to tune the parameters of the indexing
scheme to align with the semantics of the data.

Here, we use a set of 15,500 annotated glyphblocks in 155 classes (same
Tstring) of 100 individuals. We extract features from an autoencoder. We use
the values of the L most activated neurons on the encoding layer (joining the
encoder and the decoder architectures). Our initial experiments show that this
encoding captures relevant visual features4. We extract the L = 30 values of the
most activated neurons of the encoding layer as features and use the Euclidean
distance to measure similarity. Here, we adapt the number n of reference objects
using the greedy global locality approach.

The above numbers in Table 1 illustrate the reduction in size of the partition
cells, leading to a reduction of the size of their population. In that particular
application, standard deviation figure on the cell population show that the choice
of reference objects is not adapted to the data since there is a large variation
in the number of items per cell. A higher number of reference objects creates a

4 The details of this study may be found in [27].



90 S. Marchand-Maillet et al.

finer partition. As a result, the precision inside the equivalence class mechanically
increases. However, here again, the figures show the need for an adapted choice
of reference objects to align the equivalence classes (cells of the partition) with
the semantic classes of the data. It is therefore a critical challenge to formulate
the optimisation of the choice of reference objects according to the semantic
value of the data.

5 Conclusion

Permutation-based indexing schemes have shown to be effective to support the
resolution of kNN queries. Their main parameters are the number and location
of reference objects and the permutation-based distance used.

In this paper, the main contribution is a formal modeling of the mechanics
of PBI schemes, helped by ranking theory and computational geometry. This
base model provides insights and powerful tools for the fine study of properties
of permutation-based geometry. Here, we focus on invariance, which relates to
robustness to data variation (e.g. due to noise). We motivate such a study by the
use of PBI in applications where items may be grouped by classes with internal
variation. In that case, kNN queries may be resolved directly using the space
partition thus created.

Our initial experiments following our model reveal an adequate transfer of
neighboring information from the original feature space onto the permutation-
based representation space. However, the analysis also demonstrates that permu-
tation-based distances such as δR or ρR do not localize the measurements, as
it would be desirable. The use of adapted permutation-based distance functions
(such as weighted by rank position [15]) may be beneficial here.

This paper opens many avenues for deeper studies on PBI. We plan to extend
our formal model in the direction of a better understanding of the geometry
of PBI and the design or choice of adapted parameters such as permutation-
based distance incorporating pruning or weighting. Getting deeper insights on
the geometry of the partition will also be a way to optimize the use of reference
objects and therefore their location and number.

Acknowledgments. This work has been partly supported by the Swiss National Sci-
ence Foundation under project MAAYA (SNF Grant number 144238).

Dr. Hisham Mohamed is now with Sensirion AG, Staefa, Switzerland.

References

1. Amato, G., Esuli, A., Falchi, F.: Pivot selection strategies for permutation-based
similarity search. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013.
LNCS, vol. 8199, pp. 91–102. Springer, Heidelberg (2013)

2. Amato, G., Falchi, F., Rabitti, F., Vadicamo, L.: Some theoretical and experimen-
tal observations on permutation spaces and similarity search. In: Traina, A.J.M.,
Traina Jr., C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 37–49.
Springer, Heidelberg (2014)



Quantifying the Invariance and Robustness of PBI Schemes 91

3. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces
and its use for approximate similarity search. ACM Trans. Inf. Syst. 21(2), 192–227
(2003)

4. Ares, L.G., Brisaboa, N.R., Esteller, M.F., Pedreira, O., Places, A.S.: Optimal
pivots to minimize the index size for metric access methods. In: Proceedings of
the 2009 Second International Workshop on Similarity Search and Applications,
SISAP 2009, pp. 74–80. IEEE Computer Society, Washington, DC (2009)

5. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: International Conference on Database Theory, pp. 217–235 (1999)

6. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
mun. ACM 16(4), 230–236 (1973)

7. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity
searching in metric spaces. Pattern Recogn. Lett. 24(14), 2357–2366 (2003)

8. Chavez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

9. Chávez, E., Marroqúın, J.L., Navarro, G.: Fixed queries array: a fast and econom-
ical data structure for proximity searching. Multimed. Tools Appl. 14(2), 113–135
(2001)

10. Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

11. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB 1997, San Francisco, CA, USA, pp. 426–435 (1997)

12. Garcia, V., Debreuve, E., Nielsen, F., Barlaud, M.: K-nearest neighbor search: fast
GPU-based implementations and application to high-dimensional feature match-
ing. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp.
3757–3760. IEEE (2010)

13. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high
dimensional spaces? In: Proceedings of the 26th International Conference on Very
Large Data Bases, VLDB 2000, pp. 506–515. Morgan Kaufmann Publishers Inc.,
San Francisco (2000)

14. Krulǐs, M., Osipyan, H., Marchand-Maillet, S.: Optimizing sorting and top-k selec-
tion steps in permutation based indexing on GPUs. In: Morzy, T., Valduriez,
P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol. 539, pp. 305–317. Springer,
Heidelberg (2015)

15. Kumar, R., Vassilvitskii, S.: Generalized distances between rankings. In: Proceed-
ings of the 19th International Conference on World Wide Web, WWW 2010,
New York, NY, USA, pp. 571–580 (2010)

16. Lebanon, G., Lafferty, J.D.: Cranking: combining rankings using conditional prob-
ability models on permutations. In: Proceedings of the Nineteenth International
Conference on Machine Learning, ICML 2002, pp. 363–370. Morgan Kaufmann
Publishers Inc., San Francisco (2002)

17. Li, S., Amenta, N.: Brute-force k-nearest neighbors search on the GPU. In: Amato,
G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 259–270. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-25087-8 25

18. Mohamed, H.: Scalable approximate k-NN in multidimensional Big Data (in partic-
ular, Chap. 3). Ph.D. thesis, Viper Group, CS Department, University of Geneva,
August 2014

19. Mohamed, H., Marchand-Maillet, S.: Distributed media indexing based on MPI
and mapreduce. Multimed. Tools Appl. 69(2), 513–537 (2014)

http://dx.doi.org/10.1007/978-3-319-25087-8_25


92 S. Marchand-Maillet et al.

20. Mohamed, H., Marchand-Maillet, S.: Quantized ranking for permutation-based
indexing. Inf. Syst. 52, 163–175 (2015)

21. Mohamed, H., Osipyan, H., Marchand-Maillet, S.: Multi-core (CPU and GPU) for
permutation-based indexing. In: Traina, A.J.M., Traina Jr., C., Cordeiro, R.L.F.
(eds.) SISAP 2014. LNCS, vol. 8821, pp. 277–288. Springer, Heidelberg (2014)

22. Mohammed, H., Marchand-Maillet, S.: Scalable indexing for big data processing.
In: Li, K.-C., Jiang, H., Yang, L.T., Cuzzocrea, A. (eds.) Big Data: Algorithms,
Analytics, and Applications. Chapman & Hall, Boca Raton (2015)

23. Nielsen, F., Piro, P., Barlaud, M.: Bregman vantage point trees for efficient nearest
neighbor queries. In: IEEE International Conference on Multimedia and Expo,
2009, ICME 2009, pp. 878–881. IEEE (2009)

24. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

25. Novak, D., Zezula, P.: Performance study of independent anchor spaces for simi-
larity searching. Comput. J. 57(11), 1741–1755 (2014)

26. Okabe, A., Boots, B., Sugihara, K., Chui, S.N.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, 2nd edn. Wiley, New York (2000)

27. Roman-Rangel, E., Marchand-Maillet, S.: Indexing Mayan hieroglyphs with neural
codes. In: International Conference on Pattern Recognition (ICPR 2016), Cancun,
Mexico (2016)

28. Roman-Rangel, E., Wang, C., Marchand-Maillet, S.: Simmap: similarity maps for
scale invariant local shape descriptors. Neurocomputing (Part B) 175, 888–898
(2016)

29. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The
Morgan Kaufmann Series in Computer Graphics and Geometric Modeling.
Elsevier/Morgan Kaufmann, California (2006)

30. Skala, M.: Counting distance permutations. In: IEEE 24th International Confer-
ence on Data Engineering Workshop, 2008, ICDEW 2008, pp. 362–369, April 2008

31. Skala, M.: Aspects of metric spaces in computation. Ph.D. thesis, University of
Waterloo (2008)

32. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Inf. Process. Lett. 40(4), 175–179 (1991)

33. Volnyansky, I., Pestov, V.: Curse of dimensionality in pivot based indexes. In: Sec-
ond International Workshop on Similarity Search and Applications, 2009, SISAP
2009, pp. 39–46, August 2009

34. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proceedings of the
24rd International Conference on Very Large Data Bases, VLDB 1998, pp. 194–
205. Morgan Kaufmann Publishers Inc., San Francisco (1998)

35. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

36. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 1993, Philadelphia, PA, USA, pp. 311–321 (1993)

37. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, New York (2006)



Deep Permutations: Deep Convolutional Neural
Networks and Permutation-Based Indexing

Giuseppe Amato(B), Fabrizio Falchi(B), Claudio Gennaro(B),
and Lucia Vadicamo(B)

ISTI-CNR, via G. Moruzzi 1, 56124 Pisa, Italy
{giuseppe.amato,fabrizio.falchi,claudio.gennaro,

lucia.vadicamo}@isti.cnr.it

Abstract. The activation of the Deep Convolutional Neural Networks
hidden layers can be successfully used as features, often referred as Deep
Features, in generic visual similarity search tasks.

Recently scientists have shown that permutation-based methods offer
very good performance in indexing and supporting approximate similar-
ity search on large database of objects. Permutation-based approaches
represent metric objects as sequences (permutations) of reference objects,
chosen from a predefined set of data. However, associating objects with
permutations might have a high cost due to the distance calculation
between the data objects and the reference objects.

In this work, we propose a new approach to generate permutations
at a very low computational cost, when objects to be indexed are Deep
Features. We show that the permutations generated using the proposed
method are more effective than those obtained using pivot selection cri-
teria specifically developed for permutation-based methods.

Keywords: Similarity search · Permutation-based indexing · Deep con-
volutional neural network

1 Introduction

The activation of the Deep Convolutional Neural Networks (DCNNs) hidden
layers has been used in the context of transfer learning and content-based image
retrieval [10,23]. In fact, Deep Learning methods are “representation-learning
methods with multiple levels of representation, obtained by composing simple
but non-linear modules that each transform the representation at one level (start-
ing with the raw input) into a representation at a higher, slightly more abstract
level” [19]. These representations can be successfully used as features in generic
recognition or visual similarity search tasks. The first layers are typically use-
ful in recognizing low-level characteristics of images such as edges and blobs,
while higher levels have demonstrated to be more suitable for semantic similar-
ity search.

However, DCNN features are typically of high dimensionality. For instance,
in the well-known AlexNet architecture [18] the output of the sixth layer (fc6)
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 93–106, 2016.
DOI: 10.1007/978-3-319-46759-7 7



94 G. Amato et al.

has 4,096 dimensions, while the fifth layer (pool5) has 9,216 dimensions. This
represents a major obstacle to the use of DCNN features on large scale, due to
the well-known dimensionality curse [13].

An effective approach to tackle the dimensionality curse problem is the
application of approximate access methods. Permutation-based approaches
[4,9,11,22] are promising access methods for approximate similarity search. They
represent metric objects as sequences (permutations) of reference objects, chosen
from a predefined set of objects. Similarity queries are executed by searching for
data objects whose permutation representations are similar to the query permu-
tation representation. Each permutation is generated by sorting the entire set of
reference objects according to their distances from the object to be represented.

The total number of reference objects, to be used for building permutations,
depends on the size of the dataset to be indexed, and can amount to tens of
thousands [4]. In these cases, both indexing time and searching time is affected
by the cost of generating permutations for objects being inserted, or for the
queries.

In this paper, we propose an approach to generate permutations for Deep
Features at a very low computational cost since it does not require the distance
calculation between the reference objects and the objects to be represented.
Moreover, we show that the permutations generated using the proposed method
are more effective than those obtained using pivot selection criteria specifically
developed for permutation-based methods.

The rest of the paper is organized as follows. In Sect. 2, we briefly describe
related work. Section 3 provides background for the reader. In Sect. 4, we
introduce our approach to generate permutations for Deep Features. Section 5
presents some experimental results using real-life datasets. Section 6 concludes
the paper.

2 Related Work

Pivot selection strategies for permutation-based methods were discussed in [2].
In the paper the Farthest-First Traversal (FFT) technique was identified as the
one providing a set of reference objects such that the sorting performed with
similarity computed among the permutations was the most correlated to sorting
performed using the original distance. We will see that the techniques proposed
here for Deep Features outperform also the FFT technique.

The permutation-based approach was used in PPP-Codes index [21] to index
a collection of 20 million images processed by a deep convolutional neural net-
work. However, no special techniques was used to generate permutations for
Deep Features.

Some recent works try to treat the features in a convolutional layer as local
features [5,25]. This way, a single forward pass of the entire image through
the DCNN is enough to obtain the activation of its local patches, which are
then encoded using Vector of Locally Aggregated Descriptors (VLAD). A similar
approach uses Bag of Words (BoW) encoding instead of VLAD to take advantage



Deep Convolutional Neural Networks and Permutation-Based Indexing 95

of sparse representations for fast retrieval in large-scale databases. However,
although authors claim that their approach is very scalable in terms of search
time, they did not report any efficiency measurements and experiments have
been carried out on datasets of limited size.

Liu et al. [20] proposed a framework that adapts Bag-of-Word model and
inverted table to DCNN feature indexing, which is similar to the one we propose.
However, for large-scale datasets, Liu et al. have to build a large-scale visual
dictionary that employs the product quantization method to learn a large-scale
visual dictionary from a training set of global DCNN features. In any case, using
this approach the authors reported a search time that is one order higher than
in our case for the same dataset.

An approach, called LuQ and introduced in [1], exploits the quantization
of the vector components of the DCNN features that allows one to use a text
retrieval engine to perform image similarity search. In LuQ, each real-valued
vector component xi of the deep feature is transformed in a natural numbers ni

given by �Qxi�; where �� denotes the floor function and Q is a multiplication
factor >1 that works as a quantization factor. ni are then used as term frequen-
cies for the “term-components” of the text documents representing the feature
vectors.

3 Background

In the following we introduce the needed notions of permutation-based similarity
search approach and Deep Features.

3.1 Permutation-Based Indexing

Given a domain D, a distance function d : D×D → R, and a fixed set of reference
objects P = {p1 . . . pn} ⊂ D that we call pivots or reference objects, we define a
permutation-based representation Πo (briefly permutation) of an object o ∈ D
as the sequence of pivots identifiers sorted in ascending order by their distance
from o [4,9,11,22].

Formally, the permutation-based representation Πo = (Πo(1), . . . ,Πo(n))
lists the pivot identifiers in an order such that ∀j ∈ {1, . . . , n−1}, d(o, pΠo(j)) ≤
d(o, pΠo(j+1)), where pΠo(j) indicates the pivot at position j in the permutation
associated with object o.

If we denote as Π−1
o (i) the position of a pivot pi, in the permutation of

an object o ∈ D, so that Πo(Π−1
o (i)) = i, we obtain the equivalent inverted

representation of permutations Π−1
o :

Π−1
o = (Π−1

o (1), . . . , Π−1
o (n)).

In Πo the value in each position of the sequence is the identifier of the pivot in
that position. In the inverted representation Π−1

o , each position corresponds to a
pivot and the value in each position corresponds to the rank of the corresponding



96 G. Amato et al.

pivot. The inverted representation of permutations Π−1
o allows us to easily define

most of the distance functions between permutations.
Permutations are generally compared using Spearman rho, Kendall Tau, or

Spearman Footrule distances. As an example given two permutations Πx and
Πy, Spearman rho distance is defined as:

Sρ(Πx,Πy) =
√ ∑

1≤i≤n

(Π−1
x (i) − Π−1

y (i))2

Following the intuition that the most relevant information of the permutation
Πo is in the very first, i.e. nearest, pivots [4], the Spearman rho distance with
location parameter Sρ,l is a generalization intended to compare top-l lists (i.e.,
truncated permutations). It was defined in [12] as:

Sρ,l(Πx,Πy) =
√ ∑

1≤i≤n

(Π̃−1
x,l (i) − Π̃−1

y,l (i))2

Sρ,l differs from Sρ for the use of an inverted top-l permutation Π̃−1
o,l , which

assumes that pivots further than pΠo(l) from o are assigned to position l + 1.
Formally, Π̃−1

o,l (i) = Π−1
o (i) if Π−1

o (i) ≤ l and Π̃−1
o,l (i) = l + 1 otherwise.

It is worth noting that only the first l elements of the permutation Πo are
used, in order to compare any two objects with the Sρ,l.

3.2 Deep Features

Recently, a new class of image descriptor, built upon Deep Convolutional Neural
Networks, have been used as effective alternative to descriptors built using local
features such as SIFT, SURF, ORB, BRIEF, etc. DCNNs have attracted enor-
mous interest within the Computer Vision community because of the state-of-
the-art results [18] achieved in challenging image classification challenges such
as ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In computer
vision, DCNN have been used to perform several tasks, including not only image
classification, but also image retrieval [7,10] and object detection [14], to cite
some. In particular, it has been proved that the multiple levels of representa-
tion, which are learned by DCNN on specific task (typically supervised) can be
used to transfer learning across tasks [10,23]. The activation of neurons of a
specific layers, in particular the last ones, can be used as features for describing
the visual content.

In order to extract Deep Features, we used a trained model publicly available
for the popular Caffe framework [17]. Many deep neural network models, in
particular trained models, are available for this framework1. Among them, we
chose the HybridNet for several reasons: first, its architecture is the very same
of the famous AlexNet [18]; second, the HybridNet has been trained not only
on the ImageNet subset used for ILSVRC competitions (as many others), but
1 https://github.com/BVLC/caffe/wiki/Model-Zoo.

https://github.com/BVLC/caffe/wiki/Model-Zoo


Deep Convolutional Neural Networks and Permutation-Based Indexing 97

also on the Places Database [26]; last, but not least, experiments conducted on
various datasets demonstrate the good transferability of the learning [6,8,26].
We decided to use the activation of the first fully connected layer, the fc6 layer,
given the results reported on [7,8,10].

The activations at the fc6 layer is a vector of 4,096 of floats. Generally, the
rectified linear unit (ReLU) is used to bring to zero all negative activation values.
In this way, feature vectors contain only values greater or equal to zero. Feature
vectors are sparse, so that in average about 75 % of elements are zero.

4 Permutation Representation for Deep Features

As introduced in Sect. 3.1 the basic idea of permutation-based indexing tech-
niques is to represent data objects with permutations built using a set of refer-
ence object identifiers as permutants. Given an object o, its permutation-based
representation Πo is the list of reference object identifiers, sorted in ascending
order with respect to the distance between o and the various reference objects.

Using the permutation-based representation, similarity between two objects
is estimated computing the similarity between the two corresponding permuta-
tions, rather than using the original distance function. The rationale behind this
is that, when permutations are built using this strategy, objects that are very
close one to the other, have similar permutation representations as well. In other
words, if two objects are very close one to the other, they will sort the set of
reference objects in a very similar way.

Notice however that, the relevant aspect, when building permutations, is the
capability of generating sequences of identifiers (permutations) in such a way
that similar objects have similar permutations as well. Sorting a set of reference
objects, according to their distance with the object to be represented is just one,
yet effective, approach.

Here, we propose an approach to generate sequence of identifiers, not nec-
essarily associated with reference objects, when objects to be indexed are Deep
Features. The basic idea is as follows. Permutants are the indexes of elements of
the deep feature vectors. Given a deep feature vector, the corresponding permu-
tation is obtained by sorting the indexes of the elements of the vector, in descend-
ing order with respect to the values of the corresponding elements. Suppose for
instance the feature vector is fv = [0.1, 0.3, 0.4, 0, 0.2]2. The permutation-based
representation of fv is Πfv = (3, 2, 5, 1, 4), that is permutant (index) 3 is in
position 1, permutant 2 is in position 2, permutant 5 is in position 3, etc. The
inverted representation, introduced in Sect. 3.1 is Π−1

fv = (4, 2, 1, 5, 3), that is
permutant (index) 1 is in position 4, permutant 2 is in position 2, permutant 3
is in position 1, etc.

The intuition behind this is that features in the high levels of the neural
network carry-out some sort of high-level visual information. We can imagine
that individual dimensions of the deep feature vectors represent some sort of

2 In reality, the number of dimensions is 4,096 or more.



98 G. Amato et al.

visual concept, and that the value of each dimension specifies the importance
of that visual concept in the image. Similar deep feature vectors sort the visual
concepts (the dimensions) in the same way, according to the activation values.

More formally, let fv = [v1, . . . , vn] be a deep feature vector (where
n = 4, 096, in our case). The corresponding permutation is Πfv =
(Πfv(1), . . . , Πfv(n)) such that ∀i ∈ {1, . . . , n− 1}, fv[Πfv(i)] ≥ fv[Πfv(i+1)].
Using the inverted representation, introduced in Sect. 3.1, we have that Π−1

fv =
(Π−1

fv (1), . . . , Π−1
fv (n)) such that if Π−1

fv (i) ≤ Π−1
fv (j) then fv[i] ≥ fv[j], that is

if index i of the vector appears before index j in the permutation, then the value
of element i of the vector is greater than that of element j.

Let us discuss more in details the process of creating permutations with the
activations of the deep neural network. Note that when two elements of a deep
feature vectors have the same value, their position in the permutation cannot be
uniquely assigned. This is very rare, with elements having a value different than
zero, since we are using real values. However, as we said in Sect. 3.2, on average,
75 % of the dimension have value equal to zero. This means that order of these
elements is not unique.

In order to face this problem, we define and compare two different strategies:

– The first strategy, which we call zeros-to-l, assigns all elements having value
equal to zero to position l + 1, where l is the location parameters.

– The second strategy, which we call no-ReLU does not use the ReLU (See
Sect. 3.2) so that negative values are not flattened to 0 and vector components
with the same activation values occur very rarely.

If we restrict to the case of Spearman rho distance and considering deep
feature vectors L2-normalized to the unit length, it easy to see that our strategy
of generating permutations is equivalent to the following permutation generation
strategy.

– Create a set of 4,096 reference vectors (pivots) such that the i-th reference
object has 1 in dimension i and 0 in all other elements of the vectors.

– Given an object o sort all reference objects in ascending order to their distance
from o, as described in Sect. 3.1.

A question that might arise after this description is what is the benefit of this
approach given that vector of permutations are of the same dimension of DCNN
vectors. The advantage of the proposed approach is that permutation vectors
can be easily encoded into an inverted index, which exhibits high efficiency as
shown in [3].

5 Experiments

The similarity search paradigm employs a similarity (or a distance) function to
retrieve objects similar to a query. The similarity function and the object repre-
sentations are chosen so that they reflect the user (or the application) require-
ments for the task being executed. However, generally, the similarity function



Deep Convolutional Neural Networks and Permutation-Based Indexing 99

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1,000

R
ec

al
l@

10

l

no-ReLu zeros-to-l

Fig. 1. Comparison between the no-ReLU and the zeros-to-l techniques, varying the
location parameter l (length of the truncated permutations).

does not capture precisely the semantic of the indexed objects, and some errors
occur in the similarity search results.

In our case, we are testing an approximate similarity search algorithm.
That is, an algorithm that returns a result that is approximate with respect
to the exact similarity search result, which in turns tries to satisfy the user
retrieval requirements. The assumption is that, although the approximate sim-
ilarity search result is an approximation of the exact similarity search results,
the user does not notice the possible degradation of accuracy, given that also the
exact similarity search algorithm is already an approximation of his/her intuition
of similarity.

In this respect, we performed two type of experiments. We first evaluated
the performance of the proposed technique in a pure similarity search task,
where we use an exact similarity search ground-truth to assess the quality of the
approximate similarity search, obtained with the permutation-based approach.
Then, we evaluated the performance in a multimedia information retrieval task.
Here, the ground-truth was manually generated associating each query with a set
of results pertinent to the query. In this way, we were able to evaluate both the
approximation introduced with respect to the exact similarity search algorithm,
and the impact of this approximation with respect to the user perception of the
retrieval task.

5.1 Experimental Settings

For assessing the proposed technique in a pure similarity search task, we used the
Deep Features extracted as discussed in Sect. 3.2 from the Yahoo Flickr Creative
Commons 100 Million dataset (YFCC100M) [24].



100 G. Amato et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

R
ec

al
l@

10

l

Deep Permutations

FFT Pivots

Random Pivots

Fig. 2. Comparisons of the proposed Deep Permutation approach, with standard
permutation-based methods using random selection of pivots, and Farthest-First Tra-
versal (FFT) pivot selection strategy.

The assessment of the proposed algorithm in a multimedia information
retrieval task was performed using the Deep Features extracted from the INRIA
Holidays dataset [16].

The YFCC100M dataset [24] contains almost 100M of the images, all
uploaded to Flickr between 2004 and 2014 and published under a CC com-
mercial or noncommercial license. The ground-truth was built selecting 1,000
different queries and executing an exact similarity search on these queries using
the euclidean distance to compare Deep Features.

INRIA Holidays [16] is a collection of 1,491 images, which mainly contains
personal holidays photos. The images are of high resolution and represent a large
variety of scene type (natural, man-made, water, fire effects, etc.). The authors
selected 500 queries and manually identified a list of qualified results for each of
them. As in [15], we merged the Holidays dataset with the distraction dataset
MIRFlickr including 1M images3.

5.2 Evaluation in a Similarity Search Task

In order to assess quality of search results of our approach, we use the measure
called recall@k, which determines the ratio of correct results for a given query in
the top-k results returned. Let ERQ(k) and ARQ(k) be the top-k sets of results
returned by exact and approximate similarity search, respectively. The recall@k
is the ratio between the number of correct results in the approximate result set

3 http://press.liacs.nl/mirflickr/.

http://press.liacs.nl/mirflickr/


Deep Convolutional Neural Networks and Permutation-Based Indexing 101

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

R
ec

al
l@

k

k

Deep Permutations

FFT Pivots

Random Pivots

Fig. 3. Recall@k varying k for our approach with l = 800 and 4,096 random and FFT
pivots.

and the number of correct results that should have been retrieved:

recall@k =
|ARQ(k) ∩ ERQ(k)|

|ERQ(k)| .

Where | · | denote the size of a set.
We first discuss the comparison of the two approaches that we defined for

handling elements of the vectors having zero as value: no-ReLU and the zeros-to-
l. These tests were executed on a subset of the YFCC100M dataset of size 1M and
the results are shown in Fig. 1. In experiments, we vary the location parameter
l, that is the length of the truncated top-l permutation, and we compute the
recall@10.

The figure shows that the plots corresponding to the two strategies are over-
lapped until l = 700. Them, the zeros-to-l degrades with respect to the other. At
l = 900 also the no-ReLU starts degrading, remaining always higher than the
other. This behavior is due to the presence of elements with value equal to zero.
As we said in Sect. 4, it is not possible to distinguish and to sort the elements
having value equal to zero and, on average, about the 75 % of elements of fc6
vectors are zeros. This means that when l approaches to 1,000, there are no more
elements with non-zero values, which up to now were correctly sorted, and we
encounter elements having value equal to zero. These elements are all assigned
to position l+1 in the zeros-to-l approach, and are replaced by the negative acti-
vation values, seen before applying the ReLU, in the no-ReLU approach. The
graphs show that using negative value for sorting these elements helps, until a
certain degree. For larger values of l the quality degrades. It is worth mention-
ing that when the neural network was trained, the ReLU was used. Therefore,



102 G. Amato et al.

negative values were never seen at the output and they were always flattened to
zero. Therefore, the negative values were not subject of fine tuning during the
learning phase, and were always all treated as zeros. This is the reason why we
see a degradation also using negative values. It would be interesting comparing
with a network trained without using ReLU. However, this was out of the scope
of this paper, where we wanted to use a standard DCNN, and we leave it to
future investigation.

Figure 2 compares the proposed approach, with the no-ReLU strategy using
a standard permutation-based approach, where pivots where both selected ran-
domly and using Farthest-First Traversal (FFT), which in [2] was shown to be
the best pivot selection method for permutation-based searching. Random selec-
tion and FFT offer better performance for values of l up to 200. Then the Deep
Permutation approach is much better, reaching a recall of 80 %. The FFT app-
roach is always lower than 60 % and the random approach reaches just 45 %
recall.

Figure 3 compares our approach against random selection and FFT, comput-
ing the recall@k for k ranging from 1 to 1,000. Also in this case, we can see
that the new proposed approach outperforms the others and remains practically
stable for all ks.

Tests discussed above were executed on a subset of size 1M of the entire
YFCC100M dataset. Figure 4 shows the performance of the Deep Permutations
approach increasing the size of the indexed dataset up to 100M. Here, we com-
pute recall for k equal to 10, 100, and 1,000. Also in this case we do not see
significant differences for different values of k, and the recall remains also stable
around 80 % for the various tested sizes of the dataset.

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100

R
ec

al
l@

Millions of images

Recall@1000

Recall@100

Recall@10

Fig. 4. Recall@k for various k varying dataset size (expressed in millions) obtained by
the proposed approach for l = 800.



Deep Convolutional Neural Networks and Permutation-Based Indexing 103

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 10 100 1,000

m
A

P

l

Fig. 5. mAP obtained on INRIA Holidays varying l

5.3 Evaluation in a Multimedia Information Retrieval Task

In this set of experiments, we only test the no-ReLU approach. Figure 5 shows
the graph of the mean average precision (mAP) varying the location parameter
l, that is the length of the truncated permutation. We can see that the mAP
improves rapidly until l is 100, then remains stable slightly below 0.8. The max-
imum is reached when l = 800, where the mAP is 0.77.

These values of mAP are rather surprising and competing with state of the
art methods tested on the INRIA Holidays dataset. To further investigate this
we have compared the obtained results with the direct use of the Deep Features,
using the Euclidean distance (L2) as distance, and with the LuQ method [1]. The
comparison was performed on the INRIA Holidays dataset alone and together
with the MIRFlickr dataset.

Results are reported in Table 1. The direct use of the Deep Features on the
INRIA Holidays dataset, using the L2 distance, exhibits a mAP of 0.75 with
ReLU, 0.76 without ReLU. On the INRIA Holidays dataset with the MIRFlickr
distraction set, it exhibits a mAP of 0.69 with ReLU, 0.62 without ReLU.

Our approach on the INRIA Holidays dataset, exhibits a mAP of 0.75 with
full permutations, 0.77 with l = 800. On the INRIA Holidays dataset with
MIRFlickr distraction set, we obtain a mAP of 0.60 with full permutations, 0.62
with l = 800. The results obtained using l = 800 are always greater or equal
to the one obtained directly using the Deep Features, and equal to the results
obtained by LuQ.

Looking at these results we can make an additional observation. Deep Fea-
tures are generally compared using the L2 distance. However, results above sug-
gest that possibly this is not the best distance function to be used. In fact,
transforming Deep Features into permutations and comparing them using the



104 G. Amato et al.

Table 1. Comparison of the mAP obtained on INRIA Holidays (with and without
the MIRFlickr distraction set) using the following approaches: a) the direct use of the
Deep Features compared with the Euclidean distance (L2). We reported the results
obtained before and after applying the ReLu; b) our approach based on the use of
the Deep Permutations compared with the Spearman rho distance. We reported the
results obtained using the full length permutation and the truncated permutation with
location parameter l = 800; c) the LuQ method [1].

L2 Deep permutations LuQ [1]

ReLu no-ReLu full l = 800

Holidays 0.75 0.76 0.75 0.77 0.77

Holidays+MIRFlickr 0.60 0.62 0.60 0.62 0.62

Spearman rho distance has slightly better performance. Thus, investigations on
better distance functions to be used with Deep Features is worth being consid-
ered.

6 Conclusion

In this paper, we presented an approach for representing and fast indexing Deep
Convolutional Neural Network Features as permutations. Compared to the clas-
sical approach based on permutation, this technique does not need computing
distances between pivots and data objects but uses the same activation values
of the neural network as a source for associating Deep Feature vectors with
permutations.

The proposed technique when evaluated in a pure similarity search task offers
a recall up to 80 %, much higher than other permutation-based methods. We also
evaluated this technique in a multimedia information retrieval context. Here,
surprisingly, the proposed technique offers a mean average precision of 0.77,
slightly higher than the direct use of the Deep Features with the L2 distance.

This suggests that probably the L2 is not the most effective distance function
to be used with Deep Features, given that permutation representation together
with the Spearman rho distance provide better performance.

Note also that, probably, the same approach can be applied to any feature
represented as a vector, not just DCNN features, provided its dimensionality is
high. We are going to investigate how this idea generalizes to other features and
to other distance functions as future work.

Acknowledgments. This work was partially founded by: EAGLE, Europeana net-
work of Ancient Greek and Latin Epigraphy, co-founded by the European Commission,
CIP-ICT-PSP.2012.2.1 - Europeana and creativity, Grant Agreement no. 325122; and
Smart News, Social sensing for breakingnews, co-founded by the Tuscany region under
the FAR-FAS 2014 program, CUP CIPE D58C15000270008.



Deep Convolutional Neural Networks and Permutation-Based Indexing 105

References

1. Amato, G., Debole, F., Falchi, F., Gennaro, C., Rabitti, F.: Large scale indexing
and searching deep convolutional neural network features. In: Madria, S., Hara, T.
(eds.) DaWaK 2016. LNCS, vol. 9829, pp. 213–224. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-43946-4 14

2. Amato, G., Esuli, A., Falchi, F.: Pivot selection strategies for permutation-
based similarity search. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP
2013. LNCS, vol. 8199, pp. 91–102. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41062-8 10

3. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable
approximatesimilarity search. Multimedia Tools Appl. 1–30 (2012)

4. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable
approximate similarity search. Multimedia Tools Appl. 71(3), 1333–1362 (2014).
doi:10.1007/s11042-012-1271-1

5. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-
tecture for weakly supervised place recognition. arXiv preprint arXiv:1511.07247
(2015)

6. Azizpour, H., Razavian, A., Sullivan, J., Maki, A., Carlsson, S.: From generic to
specific deep representations for visual recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 36–45
(2015)

7. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image
retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014,
Part I. LNCS, vol. 8689, pp. 584–599. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10590-1 38

8. Chandrasekhar, V., Lin, J., Morère, O., Goh, H., Veillard, A.: A practical
guide to CNNs and fisher vectors for image instance retrieval. arXiv preprint
arXiv:1508.02496 (2015)

9. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

10. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
Decaf: a deep convolutional activation feature for generic visual recognition. arXiv
preprint arXiv:1310.1531 (2013)

11. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manag. 48(5), 889–902 (2012)

12. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003,
pp. 28–36. Society for Industrial and Applied Mathematics (2003)

13. Ge, Z., McCool, C., Sanderson, C., Corke, P.: Modelling local deep convolutional
neural network features to improve fine-grained image classification. In: 2015 IEEE
International Conference on Image Processing (ICIP), pp. 4112–4116. IEEE (2015)

14. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

15. Jégou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: IEEE 12th Inter-
national Conference on Computer Vision, 29 November 2009–2 October 2009, pp.
2357–2364 (2009)

http://dx.doi.org/10.1007/978-3-319-43946-4_14
http://dx.doi.org/10.1007/978-3-642-41062-8_10
http://dx.doi.org/10.1007/978-3-642-41062-8_10
http://dx.doi.org/10.1007/s11042-012-1271-1
http://arxiv.org/abs/1511.07247
http://dx.doi.org/10.1007/978-3-319-10590-1_38
http://dx.doi.org/10.1007/978-3-319-10590-1_38
http://arxiv.org/abs/1508.02496
http://arxiv.org/abs/1310.1531


106 G. Amato et al.

16. Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric con-
sistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-88682-2 24

17. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093 (2014)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

20. Liu, R., Zhao, Y., Wei, S., Zhu, Z., Liao, L., Qiu, S.: Indexing of CNN features for
large scale image search. arXiv preprint arXiv:1508.00217 (2015)

21. Novak, D., Batko, M., Zezula, P.: Large-scale image retrieval using neural net
descriptors. In: Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1039–1040. ACM (2015)

22. Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric
spaces. In: Proceedings of the Third International Conference on Similarity Search
and Applications, SISAP 2010, pp. 59–66. ACM (2010)

23. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
an astounding baseline for recognition. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 512–519. IEEE (2014)

24. Thomee, B., Elizalde, B., Shamma, D.A., Ni, K., Friedland, G., Poland, D., Borth,
D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM
59(2), 64–73 (2016)

25. Yue-Hei Ng, J., Yang, F., Davis, L.S.: Exploiting local features from deep networks
for image retrieval. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 53–61 (2015)

26. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Advances in Neural Information
Processing Systems, pp. 487–495 (2014)

http://dx.doi.org/10.1007/978-3-540-88682-2_24
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1508.00217


Multimedia



Patch Matching with Polynomial Exponential
Families and Projective Divergences

Frank Nielsen1,2(B) and Richard Nock3,4

1 École Polytechnique, Palaiseau, France
Frank.Nielsen@acm.org

2 Sony Computer Science Laboratories Inc., Tokyo, Japan
3 Data61, Sydney ATP, Sydney, Australia

4 The Australian National University, Sydney, Australia

Abstract. Given a query patch image, patch matching consists in find-
ing similar patches in a target image. In pattern recognition, patch
matching is a fundamental task that is time consuming, specially when
zoom factors and symmetries are handled. The matching results heavily
depend on the underlying notion of distances, or similarities, between
patches. We present a method that consists in modeling patches by flex-
ible statistical parametric distributions called polynomial exponential
families (PEFs). PEFs model universally arbitrary smooth distributions,
and yield a compact patch representation of complexity independent of
the patch sizes. Since PEFs have computationally intractable normaliza-
tion terms, we estimate PEFs with score matching, and consider a pro-
jective distance: the symmetrized γ-divergence. We demonstrate experi-
mentally the performance of our patch matching system.

1 Introduction and Prior Work

Given a query patch image Is of dimension (ws, hs), patch matching asks to find
“similar” patches in a target image It of dimension (wt, ht). Patch matching
find countless applications [1–3] in image processing. A basic dissimilarity mea-
sure of patches Is and sub-image patch It(x0) of dimension (ws, hs) anchored
at location x0 is the Sum of Square Differences (SSDs) of the pixel intensities:
D(Is, It(x0)) =

∑
x∈[1,ws]×[1,hs]

(Is(x) − It(x + x0))2, that can be interpreted as
the squared Euclidean distance on the vectorized patch intensities. Thus find-
ing similar patches amount to find close(st) neighbors in R

ws×hs . This basic
SSD distance may be further extended to color or multi-channel images (like
hyperspectral images) either by taking the average or the maximum of the SSDs
for all channels. A näıve brute-force baseline patch matching algorithm com-
putes a matching score for each potential pixel position x0 ∈ [1, wt] × [1, ht]
at the target image in time O(wthtwshs). This is prohibitively too expensive
in practice. When dealing with pure translations, the Fourier phase correlation
method [4,5] can be used to speed up the alignment of images within subpixel
precision in O(wh log(wh)) time using the Fast Fourier Transform (FFT) with
w = max(ws, wt) and h = max(hs, ht). To factorize and speed up the distance
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 109–116, 2016.
DOI: 10.1007/978-3-319-46759-7 8



110 F. Nielsen and R. Nock

calculation between the source patch and the target patch when scanning the
target image, a general Patch Matching (PM) method [1,2] has been designed
that computes a Nearest Neighbor Field (NNF). However, those methods are too
time consuming when dealing with large patches, and are not robust to smooth
patch deformations, symmetry detections (like reflections [6,7]) of patches, and
zooming factors (requiring guessing and rescaling the source patch accordingly).

We propose a fast statistical framework to match patches: Our algorithm
models (potentially large) patches by statistical parametric distributions esti-
mated from patch pixels, and define the distance between patches by a corre-
sponding statistical distance between those compact patch representations. In
order to handle a flexible faithful modeling of any arbitrary smooth probability
density, we consider Polynomial Exponential Families [8,9] (PEFs) that have
intractable normalizing constants. Since we cannot computationally normalize
those PEF distributions, we bypass this problem by considering statistical pro-
jective distances [10] that ensures that D(λq, λ′q′) = D(q, q′) for any λ, λ′ > 0,
where q and q′ are the unnormalized distributions of patches.

The paper is organized as follows: Sect. 2 presents our patch statistical rep-
resentation, the chosen distance function, and the fast batched patch parameter
estimation procedure using integral images. Section 3 reports on our experiments.
Section 4 concludes this work by hinting at further perspectives.

2 Patch Matching with Polynomial Exponential Families

2.1 Polynomial Exponential Families: Definition and Estimation

We consider the univariate parametric probability distributions with the follow-
ing probability density:

p(x; θ) = exp(〈θ, t(x)〉 − F (θ)),

where t(x) = (x1, . . . , xD) denotes the sufficient statistics [10,11], and θ the
natural parameters. 〈x, y〉 = x�y ∈ R denotes the Euclidean inner product. Let
Θ ⊆ R

D be the natural parameter space so that
∫

exp(〈θ, t(x)〉dx < ∞.
The function F (θ) = log

∫
exp(〈θ, t(x)〉)dx is called the log-normalizer or

partition function in statistical physics [10,11]. The order of this exponential
family is the dimension of the natural parameter space, D. Since ti(x) = xi is
the monomial of degree i for i ∈ [D] = {1, . . . , D}, this family of distribution
is called a polynomial exponential family (PEF). PEFs are universal density
estimators that allow one to model arbitrarily finely any smooth multimodal
density [8]. This can be easily seen by considering the log-density that is a
polynomial function, and polynomial functions are well-known to model any
smooth function.

For an exponential family, the maximum likelihood estimator θ̂ from a set
of independently and identically distributed (iid) scalar observations x1, . . . , xn

(the patch pixel intensities with n = wshs) satisfies the following identity equa-
tion: ∇F (θ̂) = 1

n

∑n
i=1 t(xi).



Patch Matching with Polynomial Exponential Families 111

Since F (θ) is not known in closed form for PEFs, one cannot compute its
gradient ∇F (θ), and we need a different method to estimate θ̂. Let q(x; θ) =
exp(〈θ, t(x)〉) be the unnormalized model, a positive probability measure (and
p(x; θ) = q(x;θ)

eF (θ) ∝ q(x; θ)). We use the Score Matching Estimator [12,13] (SME1):

θ̂ = −
(

n∑

i=1

D(xi)�D(xi)

)−1 (
n∑

i=1

Δt(xi)

)

, (1)

where D(x) = ∇t(x) = (t′1(x), . . . , t′D(x)) is the vector of derivatives of t(x)
(term by term), and Δt(x) is the vector of the Laplacian operators of the ti(x)’s,
(computed from the second derivatives, term by term). We have t′i(x) = ixi−1

when i ≥ 1 (and 0 otherwise) and Δit(x) = t′′i (x) = i(i−1)xi−2 when i ≥ 2 (and
0 otherwise). Notice that SME is not efficient when p(x; θ) is not Gaussian [10]
(but MLE is efficient). See also [8] for alternative estimation recursion moment
method of PEFs. Here, we consider X = R

+ the support of all PEFs (although
intensity values are clamped to 255 for fully saturated pixels).

Thus a patch of size (ws, hs) is represented compactly by a natural parameter
of a PEF of order D 
 ws × hs, and is independent of the patch resolutions.

2.2 Statistical Projective Divergences

In order to measure the (dis)similarity between two patches described by
their natural parameters θs and θt, we need a proper statistical distance [14–
16] like the relative entropy also called the Kullback-Leibler (KL) divergence:
KL(p(x; θs), p(x; θt)) =

∫
x∈R+ p(x; θs) log p(x;θs)

p(x;θt)
dx. It is well-known that the

KL divergence amounts to a Bregman divergence on swapped natural para-
meters when the distributions come from the same exponential family [17].
However, we point out that we do not have the log-normalizer F (θ) in closed
form for PEFs. Hence, we consider a projective divergence that ensures that
D(λq, λ′q′) = D(q, q′) for any λ, λ′ > 0. For PEFs, we need to consider a sta-
tistical projective distance, and we choose the γ-divergence [18–20] (for γ > 0)
between two distributions p and q:

Dγ(p, q) =
1

γ(1 + γ)
log Iγ(p, p) − 1

γ
log Iγ(p, q) +

1
1 + γ

log Iγ(q, q), (2)

where
Iγ(p, q) =

∫

x∈X
p(x)q(x)γdx. (3)

When γ → 0, Dγ(p, q) → KL(p, q). For our patch matching application,
we consider the symmetrized γ-divergence: Sγ(p, q) = 1

2 (Dγ(p, q) + Dγ(q, p)).
Although Dγ(p, q) can be applied to unnormalized densities, its value depend on
the log-normalizer F . Indeed, the term Iγ(p : q) admits a closed-form solution
provided that γθp + θq ∈ Θ:

Iγ(θp, θq) = exp (F (θp + γθq) − F (θp) − γF (θq)) . (4)
1 http://user2015.math.aau.dk/presentations/invited steffen lauritzen.pdf.

http://user2015.math.aau.dk/presentations/invited_steffen_lauritzen.pdf


112 F. Nielsen and R. Nock

Proof. We have Iγ(θp, θq) =
∫

exp(〈t(x), θp + γθq〉 − F (θp) − γF (θq))dx.
Expanding the right-hand side, we get exp(F (θp + γθq) − F (θp) −
γF (θq))

∫
exp(〈t(x), θp + γθq〉−F (θp+γθq))dx. By definition, when γθp+θq ∈ Θ,

we have
∫

exp(〈t(x), θp + γθq〉−F (θp +γθq))dx = 1, and the result follows. The
γθp +θq ∈ Θ condition is always satisfied when the natural parameter space [14–
16] is a cone (since γ > 0), like the multivariate Gaussians distributions, the
multinomial distributions, and the Wishart distributions, just to name a few.

One can check that by taking a Taylor expansion on the γ-divergence
expressed using the closed-form expression of Eq. 4 for exponential families with
conic natural space, we obtain the Bregman divergence [17] when γ → 0.

To fix ideas, we shall consider γ = 0.1 in the remainder. Since the support is
univariate, we may approximate the γ-divergence by discretizing the integral of
Eq. 3 with a Riemann sum (discretization). Another method that works also for
arbitrary multivariate distributions, is to use stochastic integration by sampling
x1, . . . , xm following distribution p (importance sampling). Then we have:

Iγ(p, q) =
∫

x∈X
p(x)q(x)γdx � 1

m

m∑

i=1

q(xi)γ .

In practice, we set m = 100000 for importance sampling.
Notice that some statistical divergences are only one-sided projective diver-

gence. For example, Hyvärinen divergence [21]:

DH(p, q) =
1
2

∫

p(x)‖∇x log p(x) − ∇x log q(x)‖2dx.

2.3 Fast PEF Estimations Using Summed Area Tables

Recall that to compute the score matching estimator of Eq. 1 we need to com-
pute both sums for all wt × ht locii of the patches. In order to estimate the
PEF parameters in constant time (for a prescribed order D) instead of time
proportional to the source patch size, we use Summed Area Tables [22] (SATs
also called integral images, interestingly also used to detect mirror symmetry of
patches in [6]). For every pixel of position (x, y), the value of the summed area
table F (x, y) is

∑
x′≤x,y′≤y f(x′, y′), where f is the function that we want to sum

up. In our setting, we need two SATs (cumulative sum arrays) per channel for
D�D and Δt evaluated for the intensity (or red, green, blue values when con-
sidering color images). The value of the table at position (x, y) can be computed
using previously computed values when filling the SAT,

F (x, y) = f(x, y) + F (x − 1, y) + F (x, y − 1) − F (x − 1, y − 1)

(when x − 1 or y − 1 is zero, the value is just zero). Once the table is
constructed, for the score matching method, when we want to compute the
sums in the equation for a patch (a rectangle with bottom-left corner of
position(x0, y0) and top-right corner of position(x1, y1)), and we compute it in
O(1) as:

∑
x0≤x≤x1,y0≤y≤y1

f(x, y) = F (x1, y1)+F (x0, y0)−F (x0, y1)−F (x1, y0).



Patch Matching with Polynomial Exponential Families 113

aligned pixel-based (SSD) PEF (D = 4) with Sγ

Fig. 1. Comparison of PEFPM with the baseline SSD patch matching (patch size 150×
150 and image size 960×640): Observe that due to its flexibility the statistical modeling
got more face hits (4 faces) than the pixel-aligned SSD method (one face). The upper
row is on pixel intensities, the middle row on sum of RGB channel dissimilarities, and
the last row on the maximum of RGB channel dissimilarity. (Color figure online)

3 Experiments

All our experiments were performed in JavaTM on a HP Elitebook 840 G1
(i7-4600U CPU 2.1 GHz with 8 GB RAM). First, let us compare our PEFPM
method (with γ = 0.1) with the baseline SSD method: Fig. 1 displays the results
obtained when considering intensity values, sum of distances (sum of SSDs
or sum of Sγ divergences), or max of distances for the dissimilarity between
patches. Observe that our statistical method successfully detected 4 visually
similar patches (human faces) while the aligned pixel-based distance detected
only one face.

Next, we study the impact of the PEF order D on the visual patch search
in Fig. 2. We notice that results depend on the chosen order, and that the most
visually similar patches are found for D = 4 and D = 5. This raises the problem
of model selection for future research.

Table 1 reports the computational times breaked down into (i) the SAT con-
struction stage, (ii) the PEF estimations, and (iii) the Sγ approximation accord-
ing to the order of the PEF. Clearly, the higher the order the more costly. The
PEF estimation stage scales linearly with the order with slope 1, while the SAT
construction and Sγ search have slopes <1.

We then tested the stability of our statistical PEFPM method by adding
some gaussian noise (Fig. 3). Corrupting the pixel channels with a Gaussian



114 F. Nielsen and R. Nock

order D = 3 order D = 4

order D = 5 order D = 6

Fig. 2. Impact of the polynomial degree of PEFs, the order D of the exponential family
(image size 1280 × 853, patch size 100 × 100). Here, order D = 4 and D = 5 find the
most visually similar patches.

Table 1. Computational time in seconds for PEFs.

Degree of PEF

2 3 4 5 6

SAT construction 5.99 6.37 8.04 9.56 11.86

PEF estimation 5.24 7.44 8.96 12.84 14.82

Sγ search 7.02 8.86 9.70 10.30 10.52

no noise noise variance 10

Fig. 3. Effect of Gaussian noise on PEFs patch matching (patch size 300 × 250).

noise change the estimated distributions, but the distance evaluations with the
gamma divergence provably attenuate the distortions [18], and we can check that
we obtained the same matching patches.

Finally, one big advantage of our statistical modeling other pixel-based patch
distance is to allow to consider different zoom values and symmetries. Indeed,
geometric symmetries do not change (much) the estimated distribution in a
patch. For example, see Fig. 4 that illustrates this property: PEFPM nicely
detected the two butterflies even if one looks like the reflected copy of the other.
Here, the patch sizes are large (about 1/3 of the image dimension) and SSD-
based method will be very costly and inefficient.



Patch Matching with Polynomial Exponential Families 115

Fig. 4. Patch matching with symmetry (reflection) detected by PEFPM of order 6
(patch siwe 250 × 250, image dimension (960, 640)).

4 Concluding Remarks

We proposed a novel statistical flexible modeling of image patches for fast pat-
tern recognition. Our approach is particularly well-suited for handling large
patches and accounting for patch symmetries [7] or other deformations in target
images. This work offers many avenues for future research: (1) model selection
of the polynomial exponential family according to the query patch, (2) fore-
ground/background detection in patches (say, using Grabcut [23]) and matching
only the foreground statistical distributions to improve the accuracy of patch
matching, (3) multivariate PEFs to bypass sum/max of univariate PEF dis-
tances, etc.

Acknowledgments. We gratefully thank Quei-An Chen (École Polytechnique,
France) for implementing our patch matching system and performing various experi-
ments.

References

1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a ran-
domized correspondence algorithm for structural image editing. ACM Trans.
Graph. (TOG) 28(3), 24 (2009)

2. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized Patch-
Match correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N.
(eds.) ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15558-1 3

3. Li, Y., Dong, W., Shi, G., Xie, X.: Learning parametric distributions for image
super-resolution: where patch matching meets sparse coding. In: 2015 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 450–458, December 2015

4. Kuglin, C.: The phase correlation image alignment method. In: Proceedings of the
International Conference on Cybernetics and Society, pp. 163–165 (1975)

5. Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel
registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)

6. Patraucean, V., Gioi, R., Ovsjanikov, M.: Detection of mirror-symmetric image
patches. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 211–216 (2013)

7. Wang, Z., Tang, Z., Zhang, X.: Reflection symmetry detection using locally affine
invariant edge correspondence. IEEE Trans. Image Process. 24(4), 1297–1301
(2015)

http://dx.doi.org/10.1007/978-3-642-15558-1_3
http://dx.doi.org/10.1007/978-3-642-15558-1_3


116 F. Nielsen and R. Nock

8. Cobb, L., Koppstein, P., Chen, N.H.: Estimation and moment recursion relations
for multimodal distributions of the exponential family. J. Am. Stat. Assoc. 78(381),
124–130 (1983)

9. Rohde, D., Corcoran, J.: MCMC methods for univariate exponential family models
with intractable normalization constants. In: 2014 IEEE Workshop on Statistical
Signal Processing (SSP), pp. 356–359, June 2014

10. Amari, S.: Information Geometry and Its Applications. Applied Mathematical Sci-
ences. Springer, Tokyo (2016)

11. Brown, L.D.: Fundamentals of Statistical Exponential Families: With Applica-
tions in Statistical Decision Theory, vol. 9. Institute of Mathematical Statistics,
Hayward (1983). 283 pages. ISSN 0749-2170. https://projecteuclid.org/euclid.
lnms/1215466757

12. Hyvärinen, A.: Estimation of non-normalized statistical models by score matching.
J. Mach. Learn. Res. 6, 695–709 (2005)

13. Forbes, P.G., Lauritzen, S.: Linear estimating equations for exponential families
with application to Gaussian linear concentration models. Linear Algebra Its Appl.
473, 261–283 (2015). Special Issue on Statistics

14. Nielsen, F., Nock, R.: A closed-form expression for the Sharma-Mittal entropy of
exponential families. J. Phys. A Math. Theor. 45(3), 032003 (2011)

15. Nielsen, F.: Closed-form information-theoretic divergences for statistical mixtures.
In: 21st International Conference on Pattern Recognition (ICPR), pp. 1723–1726.
IEEE (2012)

16. Nielsen, F., Nock, R.: On the chi square and higher-order chi distances for approx-
imating f -divergences. IEEE Sig. Process. Lett. 1(21), 10–13 (2014)

17. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman diver-
gences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

18. Fujisawa, H., Eguchi, S.: Robust parameter estimation with a small bias against
heavy contamination. J. Multivariate Anal. 99(9), 2053–2081 (2008)

19. Notsu, A., Komori, O., Eguchi, S.: Spontaneous clustering via minimum gamma-
divergence. Neural Comput. 26(2), 421–448 (2014)

20. Chen, T.L., Hsieh, D.N., Hung, H., Tu, I.P., Wu, P.S., Wu, Y.M., Chang, W.H.,
Huang, S.Y., et al.: γ-SUP: a clustering algorithm for cryo-electron microscopy
images of asymmetric particles. Ann. Appl. Stat. 8(1), 259–285 (2014)

21. Ehm, W.: Unbiased risk estimation and scoring rules. Comptes Rendus
Mathématiques 349(11), 699–702 (2011)

22. Crow, F.C.: Summed-area tables for texture mapping. ACM SIGGRAPH Comput.
Graph. 18(3), 207–212 (1984)

23. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive foreground extraction
using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

https://projecteuclid.org/euclid.lnms/1215466757
https://projecteuclid.org/euclid.lnms/1215466757


Known-Item Search in Video Databases
with Textual Queries

Adam Blažek, David Kuboň(B), and Jakub Lokoč

SIRET Research Group, Faculty of Mathematics and Physics,
Department of Software Engineering, Charles University in Prague,

Prague, Czech Republic
blazekada@gmail.com, kubondavid@seznam.cz, lokoc@ksi.mff.cuni.cz

Abstract. In this paper, we present two approaches for known-item
search in video databases with textual queries. In the first approach,
we require the database objects to be labeled with an arbitrary Ima-
geNet classification model. During the search, the set of query words
is expanded with synonyms and hypernyms until we encounter words
present in the database which are consequently searched for. In the
second approach, we delegate the query to an independent database
such as Google Images and let the user pick a suitable result for
query-by-example search. Furthermore, the effectiveness of the proposed
approaches is evaluated in a user study.

1 Introduction

With the renaissance of artificial neural networks trained by deep learning
algorithms [5,16], query-by-example similarity search has become an effective
retrieval scenario in many domains. The retrieval scenario requires one strong
assumption: the user has an example query object to start the search. Unfortu-
nately, this assumption is not always satisfied. The search intents can be rather
abstract (e.g., find an animal) or the searched object can be present only in the
mind of a user (e.g., face of a person). In both cases, the user is not able to find
one ideal query object that perfectly fits the search intents, directly express the
query by keywords, or draw a sketch. Such retrieval scenarios are denoted as
a known-item search (or mental query retrieval). In order to solve known-item
search tasks, retrieval systems [13] put the user into the center of the retrieval
process and provide support tools to minimize the number of necessary interac-
tions with the user.

Given a known-item search system, it is difficult to evaluate its effective-
ness automatically. Therefore, competitions like the Video Browser Showdown
(VBS) [12] are organized1, where many different systems and their operators
compete in predefined known-item search tasks. At the VBS, there are two types
of tasks for large video collection: visual search tasks where one finds a short

1 VBS was set up as a follow up of known-item search TRECVID [15] task organized
from 2010 to 2012. Since 2016, VBS has become a part of TRECVID.

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 117–124, 2016.
DOI: 10.1007/978-3-319-46759-7 9



118 A. Blažek et al.

presented video clip (recording is not allowed) and textual search tasks where
the requested scene is described only by a short text. Although the tasks only
simulate real complex retrieval scenarios, the results of the competition point
to promising approaches and open problems. Based on the results of the last
VBS (searching in 300 h of video), we may conclude that visual search tasks can
be effectively solved by many traditional approaches [1] and, to some extent,
even with a sequential scan of the database [4]. On the other hand, the textual
search tasks represent an open challenge. In this case, it is significantly harder
to initialize the search with an appropriate query-example or sketch.

In this paper, we focus on textual known-item search task initialization. We
compare two orthogonal approaches to find an initial query object using keyword
search. The first approach employs an external image retrieval system designed
for effective keyword search (e.g., Google Images). In such system, users can
usually materialize their ideas and use some of the returned image to initialize
similarity search. The problem of this approach is that the first idea of the
user does not have to correspond (in the terms of similarity) with the contents
of the dataset. For this reason, the second approach is dataset-oriented, where
automatic annotations are created for the searched video. Unlike other state-of-
the-art approaches, our approach is not restricted to speech transcripts only [17]
nor do they require manual pre-annotation [8]. Given the annotations, user-
defined keyword query is matched directly to the contents of the dataset. Such
an approach has been used in several known-item search tools [9]. We enhance it
with text processing and exploration of semantic relations between words. Since
the user is part of the search process, only a comparative user study can decide
which of the two approaches is more effective given specific retrieval tasks.

The paper is organized as follows: Sect. 2 presents an overview of a reference
known-item search system successful in visual search tasks, which we want to
improve for textual search tasks by two keyword search approaches presented
in Sect. 3. In Sect. 4, the results of a comparative user study are presented and
Sect. 5 concludes the paper.

2 Reference Known-Item Search Tool

Although this paper focuses on effective processing of textual queries, the ben-
efits of other approaches used for known-item search should not be omitted.
Therefore, we implement the textual search option into a well-established sys-
tem from the Video Browser Showdown competition. More specifically, we extend
the Multi-sketch Semantic Video Browser [7] that won the competition twice in
2014 and 2015, while in 2016 in took the third place, still in the cluster of the
most successful tools. Whereas the novel textual-query approaches are presented
in the following section, in this section we briefly summarize the key features of
the tool.

The crucial feature of this tool is the multi-modal sketching canvas (Fig. 1 -
right), where users can define the most significant visual clues of the searched
scene. The modalities are colors, more specifically feature signatures [6], and



Known-Item Search in Video Databases with Textual Queries 119

Fig. 1. Multi-sketch semantic video browser

edges [10]. The tool also enables the user to define two consecutive sketches and
include temporal information in the query. However, most of the area is dedicated
for presenting and browsing the top matching results. Any displayed key-frame
might be selected for query-by-example search with DeCAF features [2].

So far, the presented features were successful in handling visual search tasks.
In the past, the tool outperformed even tools with advanced concept detectors
and filtering approaches. However, if the user is unaware of the colors and edges
in search scenes, sketch-based techniques often fail to initiate a successful search.
For this reason, we introduce two types of textual queries and analyze their
performance in connection with the described visual search approaches.

3 Textual Queries for Known-Item Search in Video

Given a textual description of the searched scene, it is difficult to initialize the
search in a content-based way. If the textual description does not contain any
clues for color or edge/shape, but only a concept label, the keyword search
becomes the preferred filtering choice. Even if the search item is known visually,
it might be easier, especially for novice users, to describe it textually. For these
reasons we are introducing and evaluating two orthogonal approaches for textual
search for known-item in video.

3.1 External Image Search Engine

The first approach we investigate is to use the text query in an external keyword-
based image search engine to get sample images and use these to initialize the
search. Such an engine can be, for example, well-established Google Images
search. However, this approach has two significant limitations. First, a suffi-
ciently fast Internet connection is necessary and the engine has to be available.
Furthermore, as the selected image has to be preprocessed for the video retrieval
system, all the feature extraction techniques (or services) have to be available



120 A. Blažek et al.

for instant usage. Second, the selected image does not have to correspond to the
content of the searched scene, while the materialized image may be distracting
for the search.

The Multi-sketch Semantic Video Browser can be extended easily just by
providing an additional text search field in the application. When user issues a
textual query, the application downloads top k images from the external image
retrieval server. The images are displayed to the user and the user selects a can-
didate image for search. Appropriate features are then extracted (e.g., DeCAF
descriptors) and used to initialize similarity search browsing.

3.2 ImageNet Labels

In the second approach investigated in this paper, we consider a search method
based on labels automatically assigned to key-frames using an arbitrary Ima-
geNet [11] classification model; in our case, Deep Neural Network [14]. While
the model provides highly specific labels from the ImageNet set of 1000 labels,
users tend to form more elaborate yet generic queries or even whole sentences.
For example, we would like to match a key-frame labeled as ‘golden retriever’
with a query ‘A dog is playing with a ball’. To interconnect the worlds of Ima-
geNet labels and user queries, we introduce two different processing pipelines:
key-frames labeling and query processing and matching.

Key-Frames Labeling. During the video preprocessing, the top five labels for
each key-frame are extracted together with their probabilities. Every ImageNet
label is in fact a synset (a group of elements, which are semantically equivalent)
from the WordNet [3] lexical database. Of the five extracted labels, a tree of their
hypernyms is built, such as the one in Fig. 2. The nodes represent synsets and
edges represent WordNet hypernym–hyponym relations between them. A prob-
ability of a newly inferred synset is a sum of probabilities of its children. Using
this tree, we can deduce probability values even for labels not available in the
ImageNet labels set. Both extracted and inferred labels and their probabilities
are stored in an inverted index for efficient retrieval.

Query Processing and Matching. The processing of a user query follows a
simple procedure. First, stop-words (such as ‘a’, ‘been’ or ‘your’) are removed
for higher efficiency while the remaining words are transformed into their basic
forms. Since only nouns (objects) are present in ImageNet, all other parts of
speech are also removed. Consequently, the noun’s meanings are explored using
WordNet and a set of synsets is assigned to each of the nouns, which usually
contains several different meanings of the word (e.g. a noun ‘horse’ might be an
animal as well as a gymnastic equipment).

Now, we iteratively generalize each query synset (exchange it for its hyper-
nym) until it is present in the database. For example, a query synset ‘horse’ (not
present) might be exchanged after few iterations for synset ‘animal’ (present).
This way, each query synset would yield some results — in the worst case, we



Known-Item Search in Video Databases with Textual Queries 121

Fig. 2. A synset tree of one particular key-frame. Each node represents one synset
together with the probability of its presence in the key-frame. The tree includes both
the synsets extracted by the model (green) and the inferred ones (blue). (Color figure
online)

would search for the most general synset – ‘entity’ which is present in every
key-frame. In other words, we are going to search for the most specific synsets
we can find in the dataset.

For each query synset, we rank all the key-frames with the probabilities of
occurrence of the synset in the key-frames. The rankings of query synset s are
weighted by 1−avgp(s) where avgp(s) stands for average probability of synset s
over all the dataset key-frames. In other words, we prefer more specific synsets
(rarely present) over generic synsets, which have a weaker filtering power. This
scheme follows the same idea as the term frequency weighing technique utilized
in general textual search.

User Feedback Loop. Since all the word meanings are extracted from the
query, it is vital for the user to be able to overlook and control the actual searched
labels. We provide a checklist of them and only a subset might be selected. The
effects of this procedure affect the results immediately. Experiments reveal that
this provides a highly used and convenient way to further specify the search,
now based on information actually contained in the dataset.

4 User Study

We carried out a simple user study in order to determine which of the pro-
posed approaches is more effective. A total of 21 novice participants were briefly
introduced to the tool and asked to find 6 different video segments presented via
playback with a limit of 3 min for each task. The database contained almost 30 h
of diverse video content including, TV shows, sports, indoor and outdoor activ-
ities, etc. Example key-frames from the searched video segments are displayed
in Fig. 3.

The two textual search approaches presented in this paper are referred to
as Google (Sect. 3.1) and ImageNet (Sect. 3.2). For each task, participants were



122 A. Blažek et al.

Task 1 Task 2 Task 3

Task 4 Task 5 Task 6

Fig. 3. Example key-frames from the searched video segments.

randomly divided in three groups, where each group was enabled to use either
Google, ImageNet or both approaches.

Out of 102 individual searches, 96 included a textual query, and 33 of them
consecutively lead to a success (34.4 %). The numbers of successful searches are
captured in Fig. 4. In 13 out of the successful 33 searches, participants did not
use any feature other than textual search. The data collected do not demon-
strate statistically significant differences between success rates — for Google vs.
ImageNet p-value is 0.731014, for Google vs. both p-value is 0.291958 and for
ImageNet vs. both p-value 0.261518. In the case of the group enabled to use both
techniques, total number of Google queries was 108, as opposed to 72 ImageNet

Fig. 4. Numbers of successful searches for each task.



Known-Item Search in Video Databases with Textual Queries 123

queries. However, if we restrict this to the successful tasks, there were 17 Google
queries and 20 ImageNet queries.

ImageNet turned to be effective search initialization for scenes, that contain
a particular, easily identifiable object, e.g. a harvester in Task 3 or a golf cart
in Task 6. Regarding complex scenes containing plurality of concepts (Tasks 2,
4 and 5), users struggled to select the one actually detected by ImageNet.

Arguably, the main limitation of Google approach is that the retrieved images
frequently do not fit users expectations. Although they may contain the searched
object the context happen to be quite dissimilar to the searched scene. We
observed that inexperienced users were using these unfitting images instead of
refining the query. On the other hand, we are able to retrieve suitable images
with seemingly unrelated query independently on the content of our database.

Apparently, Tasks 6 and 3 were rather easy as both approaches lead to success
almost instantaneously. We contribute this to the fact that distinct keywords
were available to begin the search with (e.g. golf cart, harvester). Task 1 could
have been solved just by using the sketch-based techniques. Task 4 was very hard
for users limited to ImageNet as none of the obvious concepts (pumpkin, goat)
were actually detected. Task 5 required to follow the obvious text query football
with additional browsing techniques. Task 2 was rather confusing as some of the
apparent search words such as military or kitchen provided misleading results.

5 Conclusion

In this paper, we presented two orthogonal approaches for known-item search in
video with textual queries. The approaches were evaluated in a user study which
revealed that both approaches provide a viable way to search for a known-item
in certain scenarios. We may also conclude that the textual queries are preferred
by novice users, as a third of the successful searches was carried out without any
other modalities, such as color and edge sketches.

Acknowledgements. This research was supported by Charles University in Prague
Grant Agency – GAUK project no. 1134316. Furthermore, we are grateful to Mr. Jan
Pavlovsky for his help with the user study.

References

1. Barthel, K.U., Hezel, N., Mackowiak, R.: Navigating a graph of scenes for exploring
large video collections. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu,
X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 418–423. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-27674-8 43

2. Donahue, J., Jia, Y., Vinyals, O., et al.: DeCAF: a deep convolutional activation
feature for generic visual recognition. CoRR, abs/1310.1531 (2013)

3. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books, Bradford
(1998)

http://dx.doi.org/10.1007/978-3-319-27674-8_43


124 A. Blažek et al.

4. Hürst, W., van de Werken, R., Hoet, M.: A storyboard-based interface for mobile
video browsing. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.)
MMM 2015, Part II. LNCS, vol. 8936, pp. 261–265. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-14442-9 25

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates Inc. (2012)

6. Krulǐs, M., Lokoč, J., Skopal, T.: Efficient extraction of clustering-based feature
signatures using GPU architectures. Multimedia Tools Appl. 1–33 (2015)

7. Kuboň, D., Blažek, A., Lokoč, J., Skopal, T.: Multi-sketch semantic video browser.
In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM
2016. LNCS, vol. 9517, pp. 406–411. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-27674-8 41

8. Lin, D., Fidler, S., Kong, C., Urtasun, R.: Visual semantic search: retrieving videos
via complex textual queries. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2657–2664, June 2014

9. Moumtzidou, A., et al.: VERGE: an interactive search engine for browsing video
collections. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H.,
O’Connor, N. (eds.) MMM 2014, Part II. LNCS, vol. 8326, pp. 411–414. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-04117-9 48

10. Park, D.K., Jeon, Y.S., Won, C.S.: Efficient use of local edge histogram descriptor.
In: Proceedings of the 2000 ACM Workshops on Multimedia, MULTIMEDIA 2000,
pp. 51–54. ACM, New York (2000)

11. Russakovsky, O., Deng, J., Hao, S., et al.: ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

12. Schoeffmann, K.: A user-centric media retrieval competition: the video browser
showdown 2012–2014. IEEE Multimedia 21(4), 8–13 (2014)

13. Schoeffmann, K., Hudelist, M.A., Huber, J.: Video interaction tools: a survey of
recent work. ACM Comput. Surv. 48(1), 14:1–14:34 (2015)

14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2014)

15. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: Pro-
ceedings of the 8th ACM International Workshop on Multimedia Information
Retrieval, MIR 2006, pp. 321–330, ACM, New York (2006)

16. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. CoRR,
abs/1409.4842 (2014)

17. Volkmer, T., Natsev, A.: Exploring automatic query refinement for text-based
video retrieval. In: 2006 IEEE International Conference on Multimedia and Expo,
pp. 765–768, July 2006

http://dx.doi.org/10.1007/978-3-319-14442-9_25
http://dx.doi.org/10.1007/978-3-319-27674-8_41
http://dx.doi.org/10.1007/978-3-319-27674-8_41
http://dx.doi.org/10.1007/978-3-319-04117-9_48


Combustion Quality Estimation
in Carbonization Furnace Using Flame

Similarity Measure

Fredy Mart́ınez1(B), Angelica Rendón1, and Pedro Guevara2

1 District University Francisco José de Caldas, Bogotá D.C., Colombia
fhmartinezs@udistrital.edu.co, avrendonc@correo.udistrital.edu.co

2 Tecsol Industries Limited, Bogotá D.C., Colombia
pedro guevarap@yahoo.com

http://www.udistrital.edu.co

Abstract. Similarity distance measures are used to study the sim-
ilarity between patterns. We propose the use of similarity measures
between images to estimate the quality of combustion in a furnace
designed for carbonization processes in the production of activated car-
bon. Broadly speaking, the production of activated carbon requires two
thermal processes: carbonization and activation. One of the most sensi-
tive variables in both processes is the level of oxygen. For carbonization,
the process involves thermal decomposition of vegetal material in the
absence of air. For activation, the gasification of the material at high
temperature is required, and one of the oxidizing agents used is oxy-
gen. Given the complexity of measuring the oxygen level because of the
functional characteristics of the furnaces, we propose a strategy for esti-
mating the quality of combustion, which is directly related to the oxygen
level, based on similarity measures between reference photographs and
the flame states. This strategy corresponds to the instrumentalization of
methods used by operators in manual control of the furnaces. Our algo-
rithm is tested with reference photos taken at the production plant, and
the experimental results prove the efficiency of the proposed technique.

Keywords: Activated carbon · Carbonization · Distance · Flame ·
Similarity

1 Introduction

Similarity is the measure of how alike two data objects are, and it is a particularly
powerful tool to discover patterns in large data sets, as is the case of color images
[1]. Normally it is described as a distance between features of an object. If this
distance is small, there will be high degree of similarity. And if instead the
distance is large, there will be low degree of similarity.

Similarity measure is highly dependent on the domain and application. Two
objects can be similar because of their size, shape or color, which is why care

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 125–133, 2016.
DOI: 10.1007/978-3-319-46759-7 10



126 F. Mart́ınez et al.

should be taken to avoid calculating distances with features that are not related.
The process is called Content-Based Image Retrieval (CBIR), also known as
Query By Image Content (QBIC) [2]. This seeks to relate images according to
their content, as opposed to based on metadata. A CBIR system performs using
features like color, size, texture and shape computed from images.

Similarity comparison between two images can be made using different met-
rics. Each metric corresponds to a strategy that produces a quantitative assess-
ment of similarity. A large number of image similarity metrics have been pro-
posed, however, there is no a right image similarity metric, but a set of metrics
that are appropriated for a particular application. Different metrics can be clas-
sified into three categories:

– Image based
– Histrogram based
– Based on similarity of objects contained in images.

The histogram involves the construction of a representation of the color char-
acteristics of each image [4–6]. It corresponds to the definition of a function on
each pixel of the image, but the value is stored for each pixel. For the case of a
grayscale image, if (Eq. 1):

f : [1, n] × [1,m] −→ [0, 255] (1)

is a gray value image, then (Eq. 2):

H (f) : [0, 255] −→ [0, n × m] (2)

is its histogram. In general, similar images have similar histograms.
In this paper we propose and evaluate the use of the histogram. While is

true that different images can have similar histograms, when the designer aims
to compare images that knows in advance that are similar (for example, with
different states of the same system), this strategy turns out to be extremely
useful. Besides, the histogram is invariant to rotation, translation, and scaling
of the image.

The similarity of two images described by colour histograms is also measured
by a distance between the histograms in the colour space. A very simple and
fairly used distance is the histogram intersection proposed by Swain-Ballard [8]
(Eq. 3):

d (f, g) = 1 −
n∑

i=1

m∑

j=1

min [f (i, j) , g (i, j)] (3)

We propose the use of histogram-based similarity measures on images of the
flame in a carbonization furnace, with respect to reference images, as a strategy
to estimate the amount of oxygen in the process, and therefore, the quality
of combustion [3,7]. To do this, we evaluate four different similarity metrics,
selecting the one with best performing in order to integrate it to the sensing
loop of the control system.



Combustion Quality Estimation Using Flame Similarity 127

The prototype hardware is comprised of a small digital camera (5 megapixel
native resolution, sensor-capable of 2592× 1944 pixel static images). The control
board uses a Broadcom system on a chip (SoC), which includes an ARM CPU
(900 MHz 32-bit quad-core Cortex-A7, with 256 KB shared L2 cache) and an on
chip graphics processing unit (GPU, a VideoCore IV).

The hardware uses a variant of Debian Linux as operating system. The digital
image processing (filters, scaling, histograms and calculation of distances) is done
in Python code. The system has WiFi connectivity, this allows us to remotely
monitor images, histograms and other data. The platform is installed directly in
the furnace on the opposite end of the burner, and in front of it.

The paper is organized as follows. In Sect. 2 presents a description of the
problem of determining the quality of combustion to control the carbonization
process. Section 3 describes the strategies used to estimate the content of oxy-
gen in the combustion by flame similarity measure. Section 4 introduces some
results obtained with the proposed strategy. Finally, conclusion and discussion
are presented in Sect. 5.

2 Problem Statement

Carbonization is a process of thermal decomposition of organic waste in the
absence of air. The idea is to remove from the vegetable material hydrogen,
oxygen and nitrogen to increase the proportion of carbon. In production plant,
this process is performed in a furnace, on which must be controlled: (1) Oxygen
level, (2) Heating rate, (3) Final temperature, and (4) Residence time.

Unlike temperature, due to the configuration of the furnace it is not possible
the use of an oxygen sensor to feedback the state of this variable to the control
system. Our experiments show that it is possible to control the content of oxygen
in combustion if we regulate the entry of air into the furnace burner. The pro-
posed similarity measure considers this fact to compare the state of the flame in
the furnace with four reference images corresponding to four states under which
the oxygen percentage is known.

The four reference images correspond to the flame in four operating condi-
tions for which the oxygen level is known. These conditions are, according to the
opening of the air valve:

– Flama with 0 % air.
– Flama with 40 % air.
– Flama with 80 % air.
– Flama with 100 % air.

The fuel used is natural gas, and the system can independently control the
supply of fuel and air.

To solve the problem of sensing oxygen into the furnace, an embedded sys-
tem with a camera to take pictures of the flame and estimate the quality of
combustion through similarity measures with reference images is proposed. In
the case of carbonization (the production plant also includes thermal activation
processes), the reference will be the image with 0 % air content.



128 F. Mart́ınez et al.

3 Methodology

Choosing which histogram comparison function to use is normally dependent on:

– The size of the dataset.
– The quality of the images in the dataset.
– The set of relevant characteristics for comparison.

In principle, to compare the histograms we selected four distances because
they are the most used in these types of applications:

– Correlation: Computes the correlation between the two histograms. The dis-
tance between the H1 and H2 histograms is calculated as follows (Eq. 4):

d (H1,H2) =

∑

I

(
H1 (I) − H1

) (
H2 (I) − H2

)

√
∑

I

(
H1 (I) − H1

)2 (
H2 (I) − H2

)2
(4)

where (Eq. 5):

Hk =
1
N

∑

J

Hk (J) (5)

and N is the total number of histogram bins.
– Chi-Squared: Applies the Chi-Squared distance to the histograms. The dis-

tance between the H1 and H2 histograms is calculated as follows (Eq. 6):

d (H1,H2) =
∑

I

(H1 (I) − H2 (I))2

H1 (I)
(6)

– Intersection: Calculates the intersection between the two histograms. The dis-
tance between the H1 and H2 histograms is calculated as follows (Eq. 7):

d (H1,H2) =
∑

I

min (H1 (I) ,H2 (I)) (7)

– Bhattacharyya: Bhattacharyya distance, used to measure the overlap between
the two histograms. The distance between the H1 and H2 histograms is cal-
culated as follows (Eq. 8):

d (H1,H2) =

√

1 − 1
√

H1H2N2

∑

I

√
H1 (I) · H2 (I) (8)

As a first evaluation strategy of the four selected distances, we compared
the four reference images and organize them according to their similarity with
respect to the reference image for 0 % air content, this thinking about the car-
bonization process. The expected result is that the metrics organize the four
images from smaller air content to higher air content (ordered by oxygen level).
The result is shown in Fig. 1.



Combustion Quality Estimation Using Flame Similarity 129

Fig. 1. Comparison between the four metrics with respect to the four reference images.
(a) Correlation: Scale [0.9, 1], values close to one indicate too little oxygen. (b) Chi-
Squared: Scale [0, 0.6], values close to zero indicate too little oxygen. (c) Intersection:
Scale [1, 1.5], values close to 1.5 indicate too little oxygen. (d) Bhattacharyya: Scale
[0, 0.4], values close to zero indicate too little oxygen.

The four metrics managed to organize the reference images as expected.
However, we select among them the Chi-Squared distance and the Bhattacharyya
distance because they produce a higher resolution in the differentiation of each
reference state. The final selection of the metric to use in the control system was
performed according to the behavior with images of the furnace operation.

4 Results

We have tested our proposed algorithm on a database generated in the Tecsol
Industries Limited production plant (25 images of different operating condi-
tions). The images were taken facing the flame, from the opposite side of the
carbonization furnace. Images are captured in color with a quality of 1280 ×
720 pixels. The processing system maintains this quality for calculating the his-
togram. The illumination inside the furnace is completely dependent on the
flame.

We first compared the database with respect to the reference image for 0 %
air content using the Chi-Squared distance. Then, we repeat the procedure for
the Bhattacharyya distance. The results are shown in Figs. 2 and 3.

Figure 2 shows that the Chi-Squared distance has trouble for properly cat-
egorize images in which there is very low level of oxygen, below the reference
to 0 % (018, 002 and 001). These images were taken greatly reducing the flow
of fuel, and so we force a much wider and orange flame. This distance puts



130 F. Mart́ınez et al.

Fig. 2. Oxygen estimation in the furnace using the Chi-Squared distance. (Color figure
online)

these three cases at the end, after the values corresponding to 100 % air, which
is clearly wrong. Another problem is the increase in the scale for the distance
value, which due to these three cases rises to almost 100. This impairs normal
readings (distances with values from 0 to 1) by reducing the resolution of the
sensor.

Figure 3 shows that the Bhattacharyya distance is also struggling with the
same three images, but they are best handled by assigning values below the
extreme case (011 and 012 cases, where the air valve is opened almost com-
pletely). The behavior is the expected, and the scale allows good resolution in
the identification of system status, this is the reason why this distance is selected
for the implementation of smart sensor.

Table 1 shows a comparison of errors for each of these two metrics. All scales
are normalized in the range [0, 1], and the error for each image is calculated at
full scale. In general, the distance Bhattacharyya has a greater error, however,
statistically the error is similar to the distance Chi-Squared error. In addition,
the three images out of scale do not alter the behavior of the scale.



Combustion Quality Estimation Using Flame Similarity 131

Fig. 3. Oxygen estimation in the furnace using the Bhattacharyya distance.

Table 1. Percentage error of each metric for each image at full scale



132 F. Mart́ınez et al.

5 Conclusions

The objective of this paper is to propose a strategy to estimate the amount
of oxygen into a furnace during a process of carbonization of vegetal material.
The proposed strategy relies on the fact that the color and size of the flame
are directly proportional to the amount of oxygen on the furnace, a fact sup-
ported by tests under different operating conditions. To carry out the evaluation
four images of the flame used in known conditions (flame with 0 % air, 40 %
air, 80 % air y 100 % air), and we perform similarity measurements between
the state of the flame and reference images. The scheme uses the histogram of
the image, and examines the similarity by calculating distance. We evaluate the
performance four distances (Correlation, Chi-Squared, Intersection and Bhat-
tacharyya), finally selecting the Bhattacharyya distance due to its performance.
Over several tests on the furnace, it is concluded that the scheme has more
than enough performance, so it is implemented in an intelligent sensor on an
embedded system. As future work aimed at improving the performance of the
algorithm, particularly for unknown images (out of scale formed by reference
images), we propose the use of a larger number of reference images, and the use
of all metrics with these new references.

Acknowledgments. This work was supported by Colciencias through the project
622470149090, by Tecsol Industries Limited and the District University Francisco José
de Caldas. The views expressed in this paper are not necessarily endorsed by Colcien-
cias, Tecsol or District University. The authors thank the research group ARMOS for
the evaluation carried out on prototypes of ideas and strategies.

References

1. Barrero, A., Robayo, M., Jacinto, E.: Algoritmo de navegación a bordo en ambientes
controlados a partir de procesamiento de imágenes. Tekhnê 12(2), 23–34 (2015).
ISSN 1692–8407

2. Beecks, C., Kirchhoff, S., Seidl, T.: On stability of signature-based similarity mea-
sures for content-based image retrieval. Multimedia Tools Appl. 71(1), 349–362
(2014). ISSN 1380–7501

3. Beecks, C., Zimmer, A., Seidl, T., Martin, D., Pischke, P., Kneer, R.: Applying sim-
ilarity search for the investigation of the fuel injection process. In: 4th International
Conference on Similarity Search and Applications (SISAP 2011), pp. 117–118 (2011)

4. Chen, S., Li, F.: Color image retrieval based on vector quantization. In: International
Conference on Electrical and Control Engineering (ICECE 2010), pp. 5092–5095
(2010)

5. Pang, Y., Shi, X., Jia, B., Blasch, E., Sheaff, C., Pham, K., Chen, G., Ling, H.:
Multiway histogram intersection for multi-target tracking. In: 18th International
Conference on Information Fusion (Fusion 2015), pp. 1938–1945 (2015)

6. Rajalakshmi, T., Minu, R.: Improving relevance feedback for content based medical
image retrieval. In: International Conference on Information Communication and
Embedded Systems (ICICES 2014), pp. 1–5 (2014)



Combustion Quality Estimation Using Flame Similarity 133

7. Sabeti, L., Wu, J.: New similarity measure for illumination invariant content-based
image retrieval. In: International Conference on Automation and Logistics, pp. 279–
283 (2008)

8. Swain, M., Ballard, D.: Indexing via color histograms. In: Third International Con-
ference on Computer Vision, pp. 390–393 (1990)



Text and Document Similarity



Bit-Vector Search Filtering with Application
to a Kanji Dictionary

Matthew Skala(B)

IT University of Copenhagen, Copenhagen, Denmark
mskala@ansuz.sooke.bc.ca

Abstract. Database query problems can be categorized by the expres-
siveness of their query languages, and data structure bounds are better
for less expressive languages. Highly expressive languages, such as those
permitting Boolean operations, lead to difficult query problems with
poor bounds, and high dimensionality in geometric problems also causes
their query languages to become expressive and inefficient. The IDSgrep
kanji dictionary software approaches a highly expressive tree-matching
query problem with a filtering technique set in 128-bit Hamming space.
It can be a model for other highly expressive query languages. We suggest
improvements to bit vector filtering of general applicability, and evaluate
them in the context of IDSgrep.

1 Introduction

Many data structure problems of interest are specializations of the following
general database query problem.

Problem 1. Given a universe U , preprocess a database S ⊆ U into a data struc-
ture, to efficiently answer queries of the form “Find Q ∩ S for a given query Q.”
The database will be given by explicitly listing its n elements, but the query
Q will be specified in some much more concise query language, which will not
necessarily permit all arbitrarily-chosen subsets of U to be queries.

For example, in one kind of similarity search the query is described by a single
element q ∈ U ; the set Q to be intersected with S is then all elements “similar”
to q, for some definition of similarity. In the present work, we are interested in
database queries for which each element of S is or is not part of the query result
independently—excluding such things as nearest neighbour queries, where the
presence of one element in the database can affect whether some other element
should or should not be returned.

The range of different query sets Q, determined by the expressive power of
the query language, affects how this problem can be solved. A query language
with very little expressive power, for instance consisting only of intervals of
permitted values in a single numeric attribute, permits the use of tree-based data
structures with typical O(log n) query time. An even less expressive language,
such as one expressing only singleton sets (thus, membership queries) would
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 137–150, 2016.
DOI: 10.1007/978-3-319-46759-7 11



138 M. Skala

be naturally solved using hash tables for constant query time. But when Q is
specified using an advanced query language, loosely defined as one with great
expressive power, it becomes more difficult to apply data structure techniques,
and the data structures give less useful guarantees.

The naive solution to Problem 1 for an advanced query language would exam-
ine every element of S in Ω(n) time. Similarity queries of a linear-space data
structure based on distance in a metric space also quickly approach Ω(n) num-
ber of elements examined when the dimensionality is large [5]; and because some
problems arising from similarity search become NP-hard in arbitrary dimen-
sion [21,26], and others have disappointingly large polynomial lower bounds
associated with complexity-theoretic reductions from hard problems [28], there
appears to be a connection between expressiveness of query languages and the
dimensionality of the data. The language of high-dimensional near-neighbour
queries is expressive enough to ask hard questions.

We are interested in query languages that embed Boolean operators: where
the ability to specify query sets Q1 and Q2 implies also being able to specify
Q1 ∩ Q2 (AND), Q1 ∪ Q2 (OR), and U\Q1 (NOT). Including such operators
makes the language sufficiently expressive that it may be hard to beat the naive
solution; and performance suffers even further if a complicated query language
makes testing an element against the query an expensive operation in itself.

The present work describes and experimentally tests some techniques for
speeding up general database query with expressive query languages, when bit-
vector filtering is already in use. The hope is to reduce the constant in the Ω(n)
by not examining every element in the database individually; and to possibly get
better than Ω(n) performance on easy queries while still supporting hard queries
on the same data structure. Our approach builds upon a bit-vector filtering
method described previously [23] and implemented in a mature free-software
project. We have a specific application originating in computational linguistics,
but the techniques studied here are intended for general use.

1.1 About the Application

The Tsukurimashou Project [22] develops parametric fonts for Japanese-
language typesetting, and associated software tools. IDSgrep is one of these
tools: a search utility for Han character dictionaries [23].

The term Han script refers generically to a set of tens or hundreds of thou-
sands of characters used in varying forms to write text in East Asian languages.
Use of Han script is current in Chinese and Japanese. Korean is now written
primarily in an alphabetic script with limited use of Han characters. Vietnamese
is written in Latin script today, but it was historically written with Han char-
acters, and specifically Vietnamese forms for Han characters are standardized
in Unicode. The present work focuses on kanji, the Japanese form. One feature
of Han script is that characters can be analysed as hierarchical combinations
of elements that may be shared with other characters, or may be characters in
themselves, as shown in Fig. 1.



Bit-Vector Search Filtering with Application to a Kanji Dictionary 139

Fig. 1. A dictionary entry for the character meaning “language” [23].

Font developers, language learners, and computational linguists each have
reasons to query databases of these trees with Boolean criteria, as in “Find all
characters that contain on the left, and anywhere, but not .”

The details of the IDSgrep data model and query language are not new
here and not relevant to the algorithmic considerations of the present paper,
which treats the matching function as a black box. They are covered in earlier
work [22,23] in much greater detail than is possible in this space or appropriate to
the present work. But to summarize for interested readers: the structure of each
character is represented by an EIDS tree (“Extended Ideographic Description
Sequence,” an extension of Unicode’s IDS concept [27]), like the one illustrated
in Fig. 1. Each node of the tree is labelled with a functor describing the relation
among its children, such as for one above the other, and optionally a head
such as naming the character represented by that subtree. Not all subtrees
of characters are characters in themselves, so not all nodes have heads. Queries
are also trees in the same format, entered using a simple prefix syntax.

The basic matching rule is that if a query and a dictionary entry both have
heads, then they match if and only if the heads are identical; if they do not
both have heads, then they match if their functors and all their children match,
recursively. But there are also special matching operators invoked by special
functors in the query. For instance, ? is a match-everything wildcard, allowing
the query to match any dictionary entry for a character with a top and
bottom part in which the bottom matches . Special operators include match-
everything; Boolean AND, OR, and NOT; match any subtree; an associative
match which rearranges trees along the lines of the associative law in arithmetic;
and a few others intended for special purposes. Evaluating the full matching
function between one query and one dictionary entry is a relatively expensive
operation (worst-case cubic in the size of the tree and the query, excluding certain
matching operators that invoke third-party software with no time guarantees);
and a naive implementation of search would do this evaluation on all of the O(n)
trees in the database.

To support filtering search, IDSgrep calculates a bit vector for each EIDS
tree, as shown in Fig. 2. Bit vectors, like EIDS trees, are treated as opaque by
the search algorithm, but internally each one is the concatenation of four 32-bit



140 M. Skala

Fig. 2. Calculating a bit vector [23].

words which are Bloom filters of the tree’s node labels. The first word, denoted
v1 in the figure, encodes the root of the tree. The functor and arity (it is
a binary node) are hashed to select bits 11, 19, and 32; the head selects
bits 1, 15, and 28. Similarly, the left child of the root determines v2, the right
determines v3, and all other nodes select bits in v4. Conditions on trees expressed
in the query language, such as “must contain this label anywhere in the tree”
imply conditions on the bit vectors, such as “at least three bits in this subset of
the indices, must be set”; and the division into words allows computing the bit
vector for a tree given its root labels and the vectors of the root’s children.

1.2 Related Work

Bloom filtering [3] is well known. Guo et al. [9] describe the technique, also
well known, of combining Bloom filters with Boolean AND and OR to per-
form the same operations on the sets the filters approximate. Our tree-matching
problems are connected with unification in logic programming languages such
as Prolog [4], and Aı̈t-Kaci et al. [1] introduced bit vectors as a way to solve
unification problems.

Advanced query languages for trees often take the form of modifications
to the language of regular expressions. Polách describes such pattern matching
in general abstract terms [18], and there is much work on regular expression-
like tree matching specific to computational linguistics applications [7,14,15].
Some of our own work [24,25] applies bit vectors to unification in computational
linguistics. Kaneta et al. [11] use them for another tree-matching problem. These
references are described in more detail, with others related to kanji dictionaries
and the linguistics application of IDSgrep, in our earlier IDSgrep paper [23].

The difficulty of high-dimensional queries has become known as the curse
of dimensionality : exact query problems in high-dimensional spaces, across a



Bit-Vector Search Filtering with Application to a Kanji Dictionary 141

wide range of different kinds of problems, have a strong tendency toward costs
in time, space, or both that are exponential in the dimension. Approximation
techniques have become standard in efforts to achieve practical results for high
dimensions [10]. Theoretical work like that of Williams [28] links the difficulty of
similarity search to the Strong Exponential Time Hypothesis, essentially saying
that (for exact queries, in the worst case), we cannot do better than looking
at Ω(n) points without proving unexpected deep results in complexity the-
ory. Query languages that include Boolean logic have obvious direct applica-
tion to satisfiability-type NP-hard problems, and work like that of Frances and
Litman [8] and our own [21,26] links similarity-based queries to NP-hardness.
Since advanced query languages seem doomed to hardness when the dimension
is high enough, there is interest in at least measuring dimensionality of real data
to detect when that phenomenon occurs [17,20].

The Binary Decision Diagram (BDD) is an interesting data structure in its
own right, used here as a black box. Knuth describes its workings in detail [13].
IDSgrep’s implementation uses the BuDDy library, due to Lind-Nielsen [16].

1.3 Notation

Although the software manipulates bit vectors as constant-sized objects using
CPU bitwise instructions, we write them as if they were sets (implicitly, the sets
of indices containing 1 bits) as a notational convenience. Thus, for bit vectors
u and v, we write u ∩ v for the bitwise AND of u and v; u ∪ v for the bitwise
OR; and u ⊆ v for the statement that v contains a 1 bit at every index where
u contains a 1 bit. We also write |u| for the Hamming weight (or population
count) of u, which is the number of 1 bits.

2 Bit-Vector Search with Enhancements

IDSgrep [23] performs a general database query (Problem 1) on opaque objects
representing kanji dictionary entries and queries against them. Both happen
to be EIDS trees as mentioned earlier, but the data structure is deliberately
abstracted from the query algorithm. From the search algorithm’s point of view,
there is simply a database of arbitrary objects and a relatively expensive function
match(N,H) which returns a Boolean value true if and only if N (the needle,
an EIDS tree representing the query) is considered to match H (the haystack,
an object from the database). With only that abstract interface, nothing better
than linear search would possible.

However, the underlying query language also provides bit vectors for the
database objects, and filtering functions from the bit vectors to Boolean results,
guaranteed to return true for all vectors of objects that match the query. A more
efficient, but still linear, search can evaluate the filter functions first, and only
invoke match(N,H) when all filters return true. The bit vectors and filtering
functions remain opaque, abstracted from the search algorithm.



142 M. Skala

The first layer of filtering uses a lambda filter, which is a pair (m,λ) consisting
of a bit vector m and an integer λ, considered to match a dictionary entry’s
vector v if |m ∩ v| > λ. Note that setting λ = −1 would match everything,
giving a correct but unhelpful filter; the filter generator heuristically attempts
to maximize λ and minimize m, while maintaining correctness.

The second layer of filtering uses a binary decision diagram directly encoding
a monotonic function from bit vectors to Boolean truth values, again attempting
to heuristically make that function return true as rarely as possible while still
including all vectors of matching EIDS trees. This BDD filter is evaluated only
if the lambda filter matches; then only if the BDD filter also matches does
IDSgrep proceed to evaluating the exact EIDS matching function. As described
in previous work, use of these filtering layers results in a significant improvement
in query time on real-life data [23].

The new issue we address in the present work is that although the filtering
can avoid many invocations of match(N,H), the lambda filter at least is still
tested for every entry in the database; and so there is a Ω(n) lower bound on
all queries, though with an improved constant because of the filtering. How can
the search algorithm on these opaque objects avoid looking at every entry?

2.1 Blocks with Bounds

Suppose the index file is divided into blocks and we record some information
about each block summarizing logical statements that apply to all vectors in the
block. If, based on that information, we can infer that no vector in a block could
possibly match the query, then we can skip over examining the entire block. If
the number of blocks is asymptotically smaller than the number of entries in the
database, and we end up accepting (not skipping) less than a constant fraction
of them, then the query time can break the Ω(n) barrier.

Bearing in mind the monotonic nature of the filtering layers, which implies
that only 0 bits in a vector are really useful for excluding entries, we would like
the summary to give maximal information about the 0 bits of the vectors in the
block. We choose to store containment and cardinality bounds: for each block,
a bit vector b and integer μ such that for every vector v in the block, v ⊆ b and
|v| ≤ μ. The optimal values are b equal to the OR of all vectors in the block
and μ equal to the greatest Hamming weight. Note the similarity in structure
between these bounds and the lambda filtering function.

Given bounds (b, μ) for a block and a lambda filter (m,λ), if min{|b ∩ m|, μ} ≤
λ then it is impossible for any vector in the block to match the filter, and we
can skip the entire block. Similarly, we can detect cases where an entire block
fails to match a BDD filter, by a traversal of the BDD.

We report experimental results for a range of block sizes up to putting the
entire database in a single block. Doing that is equivalent to not using blocks
at all, except in the rare case of a match-nothing query that can be proven to
match nothing from the whole-database containment and cardinality bounds.



Bit-Vector Search Filtering with Application to a Kanji Dictionary 143

2.2 Sorting

Since in our application the order of entries in the database is not significant,
we can use that order to enhance search. In particular, it would cost very little
to sort the index into lexicographically increasing order. If we are also splitting
the index into blocks, we can sort within each block.

Given a lambda or BDD filter, we can easily compute the lexicographic range
of vectors it could match, and then at query time, start with a binary search to
find the first vector in the index or block that is within the range. Unfortunately,
since both filters are monotonic, the all-ones vector will be matched by every
filter that matches anything, and so only the lower end of the range usefully
limits the search, and this improvement can only improve the constant in the
search time. Nonetheless, it seems an inexpensive way to remove a few more
filter checks from the search.

We compute the lexicographic bounds just once per query. In principle, a
more detailed calculation could find lexicographic bounds on the vectors that
match the query and that also obey the containment and cardinality bounds of
a block, and this way we could usefully generate a lexicographic upper as well
as a lower bound. But such a calculation would be more expensive in itself and
would have to be repeated for every block instead of being done once per query.
It seems unlikely to give much benefit in practice over the other ways we are
already applying the containment and cardinality bounds. We leave testing that
for future work.

Sorting the index data by bit vector implies that our eventual access to the
dictionary file will be in randomized order, and random seeking could signifi-
cantly increase the overall cost of the search when the dictionary file is stored
on disk. To avoid this issue, when sorting the index we also generate a sorted
dictionary with the entries arranged in the same order as the index; then accesses
to dictionary entries during search will at least be sequential, if not consecutive.

2.3 Clustering

It ought to be the case that vectors in the same block are similar to each other,
for some definition of similarity. Then queries are more likely to match either
none or many of the vectors in the block, maximizing the chance that we can
exclude the block on the basis of its summary information. If we must keep
vectors in their original database order then we are stuck with making blocks
be consecutive intervals of that order; but if we are sorting the index anyway, it
makes sense to do clustering first and make the blocks correspond to clusters.
Even the sorting itself, followed by making blocks out of consecutive entries,
might be expected to provide some clustering benefit because similar vectors
might tend to appear near each other in lexicographic order.

Noting the way the containment bound works as a bitwise OR of the vec-
tors in the block, it seems the worst situation is when we include a vector in a
large block that has a 1 at an index where all others in the block are 0. Then



144 M. Skala

just because of including that vector, we have an additional 1 in the contain-
ment bound and fewer chances to skip all the other vectors in the block. We
tested a variant of k-means clustering using a special similarity measurement
that captures the idea of avoiding such situations.

Suppose, during clustering, we are considering moving a vector v into a cluster
Ci, which is a multiset of vectors. If v is already assigned to Ci, let C ′

i be the
cluster with (one instance of) v removed; otherwise C ′

i = Ci. Then we compute:

fit(v, C ′
i) =

1
|C ′

i| + 1

[

min
vj=1

|{w ∈ C ′
i|wj = 1}| +

{
1 if v was assigned to Ci,

0 otherwise.

]

This says that how well a vector fits in a cluster is basically the fraction of
other vectors in the cluster that share its least popular attribute; a vector will fit
well in a cluster where all its 1 bits are already included in the cluster’s bound as
a result of many other vectors. The special handling for the case of v “already”
assigned to Ci appears to be necessary for reliable termination; other variations
we tried would loop indefinitely on some inputs. For similar reasons, we limited
cluster size to at most twice the initial block size. Any cluster currently at the
maximum size limit will not be considered as a possible destination for moving
a vector during the optimization. That counteracted an observed tendency for
the algorithm to put most of the database in a single huge cluster.

The clustering algorithm starts by assigning consecutive blocks of vectors
from the index to be clusters (in input order if unsorted, or sorted order if we
are sorting) and then iteratively attempts to move every vector to the cluster
that maximizes its value of fit(v, C ′

i), until no more such moves are possible. If
using sorted indices, we sort within the clusters again after finding them.

3 Experimental Results

We extended the current version of IDSgrep to use the techniques described in
the previous section, creating a special version for these experiments designated
version 0.5.2, and we evaluated it using the same data, test queries, and hardware
and operating system configurations used in our earlier work [23]. The test data-
base contains 217,288 entries for decompositions of Han characters especially
concentrating on Japanese kanji, gathered from the CJKVI [12], CHISE-IDS [6],
KanjiVG [2], and Tsukurimashou [19] projects. There are 1,642 test queries, rep-
resenting a spectrum of complexity and result set size from single exact-match
character queries to more complicated Boolean operations. Speed testing was
performed on a MacBook Pro equipped with a 2.3 GHz Intel iCore i7 CPU and
8 G of RAM, running Mac OS X 10.9.5. A package of our code and data is avail-
able to assist in reproducing the results, and includes the experimental results
that were omitted here for space reasons.

The test query set from our earlier work [23] was designed to demonstrate
the dictionary application, and includes many queries for which lambda and
BDD filtering are ineffective. Those queries also tend to be relatively slow in



Bit-Vector Search Filtering with Application to a Kanji Dictionary 145

other parts of the software; as a result, they dominate the total real running
time for the test set taken as a whole when filtering is applied, and they make
time measurements specific to filtering difficult. To better measure the filtering-
specific techniques in the present paper, we separated out 512 “slow” queries,
which are those with associative-match or match-anywhere operators at the root,
or consisting solely of Boolean combinations of such queries. Such queries are
easily recognized by testing that definition, and their important feature is that
they generate filter functions which match nearly everything, so filtering search
has little effect. The remaining 1,130 queries, where filtering search is expected
to be of more use, are designated “fast.” We tested each power of two block size
from 4 to 262,144; that last, being larger than the database, effectively means
no blocking at all.

Running the 1,130 queries in the fast query test set on the database of 217,288
entries means doing, or avoiding, a total of 1,130× 217,288= 245,535,440 tests
of whether a query matches a database entry. Each test either results in the
entry being discarded at some level of processing, or in a final match which
returns a result. Figure 3 shows how frequently these outcomes occurred in our
experiments, for selected choices of parameters. The categories shown in each
stacked column represent increasingly expensive outcomes. A match may be
discarded by skipping a block; by binary search (only for sorted indices); by
the lambda filter; by the BDD filter; or it may be a BDD hit, which is true
of 894,341 tests (0.36 %) for all parameter settings. Of those BDD hits, 29,606
will match in the final tree test, but that is too small a proportion (0.012 %)
to usefully depict on the chart. Results shown in this figure are the same for
all trials of each parameter set because the query algorithm is deterministic. A
similar chart for the 512 slow queries is shown in Fig. 4. Here also, the final tree
matches (137,415, or 0.12 % of 512× 217,288= 111,251,456 tests) form too small
a proportion to be visible on the chart.

The running times for the fast and slow query test sets are shown in Figs. 5
and 6 respectively. Note these figures use logarithmic scales. The quantities plot-
ted are sample means of user CPU seconds per loop as measured by IDSgrep’s
built-in statistics feature, with error bars representing intervals of ±2 sample
standard deviations, on 20 trials of each combination of parameter settings.

4 Discussion and Conclusions

The outcome counts of Fig. 3 show that the new approach of excluding blocks
based on their containment and cardinality bounds allows the query to exclude
a significant fraction of more expensive filter checks, for the queries in the “fast”
set where filtering is effective. Without sorting or clustering, this effect is only
significant at the smallest block sizes, but with sorting, clustering, or both, we
can exclude many blocks even at block sizes up to thousands of vectors. For
sorted indices, the lexicographic lower bound allows excluding a few more vec-
tors, up to about 10 % on the largest block sizes.

However, these techniques have very little effect on the “slow” queries shown
in Fig. 4. We are only excluding blocks at all at the smallest block sizes, we



146 M. Skala

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

no sorting or clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting

block skip
binary search
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting and clustering

block skip
binary search
lambda misses
BDD misses
BDD hits

Fig. 3. Outcomes of testing dictionary entries against fast queries. Vertical axis: pro-
portion in percent; horizontal: entries per block, 1K = 1,024.

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

no sorting or clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

clustering

block skip
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting

block skip
binary search
lambda misses
BDD misses
BDD hits

 0

 20

 40

 60

 80

 100

4 16 64 256 1024 4K 16K 64K 256K

sorting and clustering

block skip
binary search
lambda misses
BDD misses
BDD hits

Fig. 4. Outcomes of testing dictionary entries against slow queries. Vertical axis: pro-
portion in percent; horizontal: entries per block, 1K = 1,024.



Bit-Vector Search Filtering with Application to a Kanji Dictionary 147

 7

 8

 9
 10

 12

 15

 20

4K 16K 64K 256K 4  16  64  256  1024

qu
er

y 
tim

e 
(s

ec
on

ds
 p

er
 lo

op
 o

f 1
13

0)

block size (entries)

no sorting or clustering
clustering

sorting
sorting and clustering

Fig. 5. Running times for fast queries.

 95

 100

 105

 110

 115

 120

 125

4K 16K 64K 256K 4  16  64  256  1024

qu
er

y 
tim

e 
(s

ec
on

ds
 p

er
 lo

op
 o

f 5
12

)

block size (entries)

no sorting or clustering
clustering

sorting
sorting and clustering

Fig. 6. Running times for slow queries.



148 M. Skala

are excluding very few blocks, and somewhat oddly, the clusters found without
sorting first perform noticeably better than any other choice of options. These
effects highlight the different nature of the “slow” queries: they are queries for
which almost all vectors are lambda filter hits, and about a quarter of vectors
are also BDD filter hits. Trimming the time consumption of filter misses makes
very little difference to the bottom line performance.

To some extent we can say that IDSgrep is a victim of its own success. The
plain Ω(n) search algorithm with lambda and BDD filtering is already so good,
and in particular has such small constants for the filtering step, that it already
shifts much of the running time away from filtering and into the final tree tests
and ancillary tasks like parsing the file formats. For that reason, we should
not expect to see the trends shown in Figs. 3 and 4 to be reflected strongly in
the overall times of Figs. 5 and 6. The outcome counts measure only filtering,
whereas the overall times also include parsing and tree matches, which do not
vary between the experimental treatments.

The results suggest two directions for future work. First, more advanced vari-
ations of bit vector query are best targeted to larger data sets, and applications
beyond kanji dictionaries; future work on bit vector queries in general might
better use other applications for testing. Skipping blocks, even if it saves little
time for IDSgrep, can reasonably be expected to help more when failing to skip
blocks is more expensive, as in a very large database or one with an even more
expensive query language than ours. It would be interesting to apply these tech-
niques to advanced query languages on other, much larger, data collections—for
instance, document databases with bits encoding keyword presence and Boolean
queries over those, or image local-descriptor databases with very expensive sim-
ilarity measurements. The smaller the result set in comparison to the overall
database, the more we can realistically expect bit vector filtering to help.

Second, it may be appropriate to change the underlying bit vector and fil-
ter definitions in the specific application of kanji dictionaries. We are getting
good filtering on some queries, but not on others, with 128-bit vectors; and the
specific design and parameters of how EIDS trees generate bit vectors have not
been changed or studied systematically since IDSgrep first introduced bit vector
filtering. It would not cost much more time or space to switch to 256-bit vec-
tors; could that bring more of the “slow” queries into the “fast” group? Can the
definition of “slow” queries inform future bit vector designs that could exclude
more entries and benefit more from the present work?

The difficulty appears to come from the associative and match-anywhere
operators, which notably are not Boolean operators of the kind most likely to
give hardness reductions. Maybe a redesigned bit vector definition specifically
targeting those operators could move more queries into the “fast” class. In par-
ticular, the associative match operator currently generates a match-everything
filter, but might be enhanced to generate a more restrictive filter. The match-
anywhere operator in a query reduces to a Boolean OR of several other queries,
naturally hitting many vectors, and an improved vector design might add some
bits specifically to serve this operator better.



Bit-Vector Search Filtering with Application to a Kanji Dictionary 149

Requiring bit vector filters to be monotonic was an important technical aspect
of the IDSgrep design. It made the difference between the feasibility and infeasi-
bility of using BDDs. However, it limits the benefit of our new sorting technique,
because monotonicity means we can only compute a useful lexicographic lower
bound. The upper bound is always the all-ones vector. If we could make non-
monotonic filters work with the rest of the system, it might help toward the
goal of better than linear query time for easy queries. In particular, if a query
matching only one entry could also match only one vector then we could expect
the binary search to find that one vector after only O(log n) steps.

It is natural to extend the single-level blocking done here to a recursive tree-
like structure, with a constant number (rather than constant size) of blocks each
divided into smaller blocks, through as many levels as needed. A recursive data
structure would lend itself to proving sublinear bounds for queries where that
may be possible, while still degrading gracefully to linear time on harder queries
where the lower bounds forbid anything better.

To conclude, we have proposed new techniques for filtering bit vector search,
and tested them in the specific application of a kanji dictionary. The new tech-
niques are experimentally shown to allow skipping a significant fraction of more
expensive vector tests on some kinds of queries, but they cost enough to be
of limited use for small databases or for queries where bit vectors are already
failing. We have described technical issues relevant to our implementation. We
have discussed these results and their implications both for bit vector query in
general and the kanji dictionary application in particular.

References

1. Aı̈t-Kaci, H., Boyer, R.S., Lincoln, P., Nasr, R.: Efficient implementation of lattice
operations. ACM Trans. Program. Lang. Syst. 11(1), 115–146 (1989)

2. Apel, U.: KanjiVG. http://kanjivg.tagaini.net/
3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13(7), 422–426 (1970)
4. Bramer, M.: Logic Programming with Prolog, 2nd edn. Springer, London (2013)
5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric

spaces. ACM Comput. Surv. 33(3), 273–321 (2001)
6. CHISE project. http://www.chise.org/
7. Choi, Y.S.: Tree pattern expression for extracting information from syntactically

parsed text corpora. Data Min. Knowl. Disc. 22(1–2), 211–231 (2011)
8. Frances, M., Litman, A.: On covering problems of codes. Theor. Comput. Syst.

30(2), 113–119 (1997)
9. Guo, D., Wu, J., Chen, H., Yuan, Y., Luo, X.: The dynamic bloom filters. IEEE

Trans. Knowl. Data Eng. 22(1), 120–133 (2010)
10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing. pp. 604–613. ACM, New York (1998)

11. Kaneta, Y., Arimura, H., Raman, R.: Faster bit-parallel algorithms for unordered
pseudo-tree matching and tree homeomorphism. J. Discrete Algorithms 14, 119–
135 (2012)

http://kanjivg.tagaini.net/
http://www.chise.org/


150 M. Skala

12. Kawabata, T.: IDS data for CJK unified Ideographs. https://github.com/cjkvi/
cjkvi-ids

13. Knuth, D.E.: The Art of Computer Programming, Pre-fascicle 1B, vol. 4. Addison-
Wesley, Reading (2009)

14. Lai, C., Bird, S.: Querying linguistic trees. J. Logic Lang. Inf. 19(1), 53–73 (2010)
15. Levy, R., Andrew, G.: Tregex and Tsurgeon: tools for querying and manipulating

tree data structures. In: Calzolari, N., Choukri, K., Gangemi, A., Maegaard, B.,
Mariani, J., Odijk, J., Tapias, D. (eds.) 5th International Conference on Language
Resources and Evaluation (LREC 2006), Genoa, Italy, 22–28 May 2006

16. Lind-Nielsen, J.: BuDDy: a BDD package. http://buddy.sourceforge.net/manual/
main.html

17. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press,
Cambridge (2002)

18. Polách, R.: Tree pattern matching and tree expressions. Master’s thesis, Czech
Technical University in Prague (2011)

19. Skala, M.: Tsukurimashou font family and IDSgrep. http://tsukurimashou.osdn.
jp/

20. Skala, M.: Measuring the difficulty of distance-based indexing. In: Consens, M.,
Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 103–114. Springer, Heidelberg
(2005). doi:10.1007/11575832 12

21. Skala, M.: On the complexity of reverse similarity search. In: Chávez, E., Navarro,
G. (eds.) First International Workshop on Similarity Search and Applications
(SISAP 2008), Cancun, Mexico, 11–12 April 2008, pp. 149–156. IEEE (2008)

22. Skala, M.: Tsukurimashou: a Japanese-language font meta-family. TUGboat 34(3),
269–278. In: Proceedings of the 34th Annual Meeting of the TEX Users Group
(TUG 2013), Tokyo, Japan, 23–26 October 2013 (2014)

23. Skala, M.: A structural query system for Han characters. Int. J. Asian Lang.
Process. 23(2), 127–159 (2015)

24. Skala, M., Krakovna, V., Kramár, J., Penn, G.: A generalized-zero-preserving
method for compact encoding of concept lattices. In: 48th Annual Meeting of
the Association for Computational Linguistics (ACL 2010), Uppsala, Sweden, 11–
16 July 2010, pp. 1512–1521. Association for Computational Linguistics (2010).
http://www.aclweb.org/anthology/P10-1153

25. Skala, M., Penn, G.: Approximate bit vectors for fast unification. In: Kanazawa,
M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 2011. LNCS (LNAI), vol. 6878,
pp. 158–173. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23211-4 10

26. Skala, M.A.: Aspects of metric spaces in computation. Ph.D. thesis, University of
Waterloo (2008)

27. Unicode Consortium: Ideographic description characters. In: The Unicode Stan-
dard, Version 6.0.0, Section 12.2. The Unicode Consortium, Mountain View, USA
(2011). http://www.unicode.org/versions/Unicode6.0.0/ch12.pdf

28. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348(2–3), 357–365 (2005)

https://github.com/cjkvi/cjkvi-ids
https://github.com/cjkvi/cjkvi-ids
http://buddy.sourceforge.net/manual/main.html
http://buddy.sourceforge.net/manual/main.html
http://tsukurimashou.osdn.jp/
http://tsukurimashou.osdn.jp/
http://dx.doi.org/10.1007/11575832_12
http://www.aclweb.org/anthology/P10-1153
http://dx.doi.org/10.1007/978-3-642-23211-4_10
http://www.unicode.org/versions/Unicode6.0.0/ch12.pdf


Domain Graph for Sentence Similarity

Fumito Konaka(B) and Takao Miura

Department of Advanced Sciences, HOSEI University,
3-7-2 KajinoCho, Koganei, Tokyo 184–8584, Japan

fumito.konaka.2t@stu.hosei.ac.jp, miurat@hosei.ac.jp

Abstract. In this work we propose a new method for word similar-
ity. Assuming that each word corresponds to a unit of semantics, called
synset, with categorical features, called domain, we construct a domain
graph of a synset which is all the hypernyms which belong to the domain
of the synset. Here we take an advantage of domain graphs to reflect
semantic aspect of words. In experiments we show how well the domain
graph approach goes well with word similarity. Then we extend the
domain graph in sentence similarity independent of BOW. In addition
we assess the execution time in terms of the task and show the significant
improvements.

Keywords: Domain graph · Synsets · Similarity

1 Introduction

Nowadays we have a huge amount of digital information such as Web and Google
Books with tags or some others. Typical examples are Social Network Ser-
vice (SNS), twitters and BLOGs. Text in SNS are generally composed of short
sentences with semantic ambiguity (synonymous/homonymous words and jar-
gons), onomatopoeia (mimetic/words such as ding-dong, ba-dump, wwwww) and
spelling inconsistency (or, orthographic variants of words) such as never/nevr,
baby/babyyyyy. There can be no systematic formulation and we need computer-
assisted approach to tackle with these problems.

A typical application is information retrieval and text mining by which we
may get to the heart of interests in large datasets. In information retrieval, each
document is described by a multiset over words, called Bag-of-Words (BOW).
Here we construct a vector to each multiset where the column contains term
frequency (TF) or the one multiplied by inverse document frequency (IDF).
The approach is called Vector Space Model (VSM). BOW approach assumes
that a multiset describes stable and frequent meaning. For example, a multiset
{John, Dog, Bite} means “a Dog Bites John” but not “John Bites a Dog”.
All these mean, for example, that we can give document similarity and ranking
using vector calculation.

However, VSM is not useful to short documents, since individual words may
carry a variety of semantics and context by word-order. That’s why VSM doesn’t
always go well with synonymous/homonymous situation and we hardly overcome
WSD (Word Sense Disambiguity) issues.
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 151–163, 2016.
DOI: 10.1007/978-3-319-46759-7 12



152 F. Konaka and T. Miura

One of the difficulties is how to define similarity between sentences indepen-
dent of VSM. We like to give sentence similarity not based on syntactic aspects
but on semantic ones so that we examine more powerful retrieval on both long
and short documents, including SNS texts.

This investigation contributes to the following points: First, we propose a new
similarity between two words to reflect semantic aspects and to give indexing.
Second, we improve query efficiency with the much simpler indices to words.
Finally, we show the effectiveness of new similarity over SNS sentences.

The rest of the paper is organized as follows. In Sect. 2 we introduce several
concepts and discuss why it is hard to achieve the definition of semantic simi-
larity. In Sect. 3 we propose our approach and show some experimental results
in Sect. 4 to see how effective our approach works. In Sect. 5 we conclude this
investigation.

2 Word Similarity

To describe word similarity, there are two kinds of approaches, knowledge-based
and corpus-based. Knowledge-based similarity means that, using semantic struc-
tures such as ontology, words are defined similar by evaluating the structure.

Usually knowledge-base consists of many entry words, each of which contains
several units (synsets) of semantics, explanation sentences to each synset and
relations (links) to other synsets. The links describe several semantic ties, called
ontology, such as hypernyms, synonyms, homonyms, antonyms and so on. A
synonym means several words share identical synset and a homonym means a
single word carries multiple synsets. One of the typical examples is WordNet
[14], an ontology dictionary containing 155,287 words which are divided into
117,659 groups (synsets), each of them corresponds to a synonymous group of
words. Very often we see several links to other synsets of hypernyms (broader
level) which have strong relationship of semantic similarity. For example, two
words Corgi and Bulldog are similar because both are dogs where the synsets
corgi, bulldog are defined in advance and they have links to a synset dog. In
a same way, they are similar because both are mammals and because both are
animals. However Siamese and Bulldog are not similar because both are not
dog, but similar because both are mammals and because both are animals. We
could even go so far as to say everything is similar because it is an object.

There have been several kinds of similarities proposed so far using WordNet,
putting attention on the links [13] and some of them are available and open in
WordNet::Similarity or NLTK1. Some of the similarity definitions are provided
as Path, Lch, WuPalmer, Res, Jcn and Lin as follows.

Path = max
si,sj∈w1,w2

−log pathlen(si, sj) (1)

Lch = max
si,sj

−log
pathlen(si, sj)

2 × D
(2)

1 http://wn-similarity.sourceforge.net/, http://www.nltk.org/.

http://wn-similarity.sourceforge.net/
http://www.nltk.org/


Domain Graph for Sentence Similarity 153

WuPalmer = max
si,sj

2 × depth(LCS(si, sj))
depth(si) + depth(sj)

(3)

Res = max
si,sj

−logP (LCS(si, sj)) (4)

Jcn = max
si,sj

1
2 × logP (LCS(si, sj)) − (logP (si) + logP (sj))

(5)

Lin = max
si,sj

2 × logP (LCS(si, sj))
logP (si) + logP (sj)

(6)

In the definitions, w1, w2 mean words and si, sj synsets belonged to words.
While Path, Lch and WuPalmer are defined based on minimum path length,

all of Res, Jcn, Lin are based on entropy. Both WuPalmer and Jcn assume
synsets become similar when they locate at deep level.

There exist cyclic structures among verb relationship in WordNet 3.0 as in
Fig. 1 [16]. Remember a cycle means a path (a sequence of arcs) such that there
exist arcs a1, a2, a2, .., an and a1 = an. We say a loop if n = 1. Then a graph is
called cyclic. Otherwise acyclic. Also a multiple path means there are multiple
distinct paths from a to b, or a node b has multiple parents2. Acyclic graphs
may have multiple paths. Note that similarity based on minimum path length
cannot be well-defined in a case of multiple paths as in the right of Fig. 1.

Fig. 1. Cycle and multiple path

As for corpus-based similarity, we take analytical information and apply char-
acteristic features for similarity. One of the aproach take advantages of Latent
Semantic Analysis (LSA) [5]. Here we build up a document matrix D over words
and documents and decompose D into D = UΣV T by Singular Value Decom-
position (SVD). The technique is based on Principal Component Analysis and
the latent semantics can be defined using co-occurrence of words and docu-
ments. Similarity corresponds to the one between two vectors of words over
latent semantics.

3 Domain Graph and Similarity

Let us introduce a new similarity between words based on knowledge-base to
capture their own sematic aspects. As we said previously, VSM means that
2 Sometimes this is called a ring.



154 F. Konaka and T. Miura

we interpret words and sentences in a “common” way, i.e., we have frequent
interpretation to all the sentences and words even if we like to do that differently.
The new similarity allows us to reflect role and relationship of the words.

Generally each word may correspond to a (non-empty) set of synsets with
several features such as an ontological structure (considered as a directed graph)
among synsets. To introduce similarity between two words, we discuss Domain
Graph by which we take knowledge-base similarity into consideration, which
mean we put our stress on relationship among words defined by knowledge-base.
Generally word similarity can be defined with the one of synsets and ontology
relationship among synsets: the stronger similarity means the closer relationship
in a sense of path length or far apart distance. When two words are not similar,
their synsets should be far apart with each other, the common synset has higher
level in the ontology. Our discussion could have same motivation as WuPalmar
and Jcn, but the similarity can be simple and efficient since we give the similarity
in terms of graph structures.

Given a word, we assume there happen several synsets and each synset has
domain feature as well as the explanation and links. A problem to decide which
synset we think about, is called Word Sense Disambiguation (WSD) [15] and
here we don’t discuss WSD any more. Each synset belongs to several domains.
For example, in WordNet, Lexicographer File Names (or domains) are defined as
Table 13. Note that every domain is complementary to ontology, i.e., a collection
of short-cuts over paths, apart from levels,

The idea of Domain Graph comes from hypernym relationship consisting
of nodes (synsets) and arcs (hypernym relationship) between synsets. We may
consider domains as a new feature of a synset (a node). Given a word w with the
synset sw, a Domain Graph of w means all the hypernyms (ancestors) in such a
way that every path belongs to one of the domains of sw. In Domain Graph, it
is assumed that every pair of synsets at shallow level may not be similar. This
means a notion of domains allows us to ignore high levels of abstraction (such
as object) and to overlap several parts in the ontology structure.

The graph can be described by sub-graph (nodes and arcs) in the directed
graph. To examine how similar two words are, let us define similarity of graphs.
Considered P,Q as two sets of nodes, the most common similarity is Jaccard
coefficient, denoted by Jacc(P,Q) = |P∩Q|

|P∪Q| , where |P | means the number of
nodes in P . Note it may take time to obtain the co-efficient to large P,Q.

Let us define the Domain Graph similarity of two words w1, w2. Let s1, s2
be synsets corresponded to w1, w2 respectively. The DG similarity is defined to
be the Jaccard similarity of G(s1) and G(s2) where G(s) means all the nodes in
the sub-graph of s in the domain graph of interests.

DGsimilarity(w1, w2) = Jacc(G(s1), G(s2))
3 There are 45 Lexicographer Files based on syntactic category and logical group-

ings. They contain synsets during WordNet development. There is another approach
WordNet Domains which is a lexical resource created in a semi-automatic way by
augmenting WordNet with domain labels. To each synset, there exists at least one
semantic domain label annotated by hands from 200 labels [1].



Domain Graph for Sentence Similarity 155

Minimum Hash (MinHash) function h provides us with efficient computation
[3] for Jaccard coefficients. In fact, we can estimate the coefficient Jacc(p, q)
which is equal to the probability of min h(p) = min h(q). Given k MinHash
functions and n function values to p, q that are matched, Jacc(p, q) should be
simply n/k, i.e., Ĵ = n/k. Since we can obtain k hash values immediately, we
can estimate Jaccard coefficients very quickly without any structural information
such as indices.

Table 1. Excerpt from domains over synsets

ID Domain Description

00 adj.all All adjective clusters

01 adj.pert Relational adjectives (pertainyms)

02 adv.all All adverbs

03 noun.Tops Unique beginner for nouns

04 noun.act Nouns denoting acts or actions

05 noun.animal Nouns denoting animals

29 verb.body Verbs of grooming, dressing and bodily care

30 verb.change Verbs of size, temperature change, intensifying, etc.

31 verb.cognition Verbs of thinking, judging, analyzing, doubting

44 adj.ppl Participial adjectives

Let us discuss how to construct Domain Graph. Among others, we need WSD
process to specify which synset we have to a word w. Figure 2 shows algorithms
for “makeDomainGraph”.

To select single synset to w, we do WSD process (doWSD in step 1) based on
Lesk Algorithm [15] as shown in an algorithm for “scanDict” Here we examine
how many relevant words we have with respect to a query, and choose the synset
of the biggest ratio. In the algorithm for “makeDomainGraph”, we select a synset
sw defined as below:

sw = argmaxs∈Synsets
|T ∩ (gloss(s) ∪ synonyms(s))|

|gloss(s) ∪ synonyms(s)|
In the definition, given a word w in the algorithm for “makeDomainGraph”,

Synsets means all the synsets the word w has, T all the words appeared in a
query, gloss(s) all the words appear in the explanation (in WordNet) of a synset
s and synonyms(s) all the words containing s as its synset.

Let D(sw) be a domain (through WSD) which a synset sw of a word w
belongs to. Let c be a hypernym of sw, then we follow the link to c as long as
c belongs to D(sw). In short, a Domain Graph of w means all the hypernyms
(ancestors) of the domain D(sw).

Let us show areas in Fig. 3. Let an area surrounded by solid lines be baseline
synsets given by Path (formula 1), and an area by dotted lines be synsets in a



156 F. Konaka and T. Miura

Fig. 2. Proposed algorithms

domain graph. We examine the similarity of synsets A and B in the left of Fig. 3,
and the one of A and A’ in the right of Fig. 3. Since a node A’ has an arc to D but A
doesn’t, A’ is more similar to B compared to A. In fact, in the baseline area, there
are 2 arcs (AC and BC; A’C and BC) of the shortest path in Fig. 3 so that we have
same similarity of AB and A’B. On the other hand, in the area by domain graph,
we have different situation. We don’t have same similarity AB and A’B because
there are 3 arcs ACD and BD on left and 2 arcs A’D and BD on right.

Fig. 3. Area by baseline and domain graphs

4 Experiments

In this section let us discuss experimental results to examine the proposed
approach. First, we examine the effectiveness of domain graph by comparing
several similarities among words through our approach with and without the



Domain Graph for Sentence Similarity 157

domain graphs. Second we extend our approach to sentence similarity. We dis-
cuss Domain Graph Approach of words to sentences.

In these experiments, we assume WordNet 3.0 and its domains. We also
assume k = 10 for a MinHash function murmurhash3 (which is obtained by
small experiments) through experimental Java libraries [8].

4.1 Similarity Among Words

Here we examine 4 corpus sets each of which has score values to each pair of
words by hands: Li30 [11] RG65 [17] WS353 [7] and VP130 [19]. Once we obtain
our similarity values, we compare them with the scores within by looking at
Spearman order-correlations. In this case, we examine all the synsets of word
pairs to obtain the maximum similarity, same as formulas (1)–(6).

We give similarity between two words with domain graph and without. As
the baseline similarity values, we examine Path, Lch,WuPalmer,Res, Jcn and
Lin (formulas (1)–(6)) in Natural Language Took Kit (NLTK). Also, as the
ontology in WordNet, we apply WS4J4 as baseline Paths.

We show the results in Table 2 which contains correlation values (ρ) and
execution time (s). The tables shows that ρ results with domain graph are the
best ones except VP130, slightly superior to the one without: +0.045(Li30),
+0.004(RG65), +0.12(WS353) and +0.032(VP130). The half of the execution
shows the best ones too.

Table 2. Word similarity and efficiency

Corpus

Li30 RG65 WS353 VP130

ρ s ρ s ρ s ρ s

Path 0.729 2.189 0.781 2.243 0.296 4.495 0.725 2.817

Lch 0.729 2.219 0.781 2.302 0.296 4.58 0.725 2.776

WuPalmer 0.705 2.186 0.755 2.3 0.329 4.699 0.728 2.839

Res 0.704 4.151 0.776 4.271 0.329 6.608 0.661 4.717

Jcn 0.742 4.24 0.775 4.331 0.280 6.981 0.695 4.878

Lin 0.761 4.168 0.784 4.369 0.296 7.01 0.689 4.859

Domain graph (No Index) 0.776 1.108 0.798 1.345 0.406 6.343 0.693 3.863

(Index) 0.127 0.208 0.778 0.721

No Domain 0.731 1.462 0.794 1.92 0.286 10.491 0.661 4.107

As seen easily, the domain graph approach in most of the corpus has better
correlation values to others (ρ). Note we don’t discuss WSD issue about sw
to construct domain graphs. There is no sharp distinction with and without
4 https://code.google.com/archive/p/ws4j/.

https://code.google.com/archive/p/ws4j/


158 F. Konaka and T. Miura

Table 3. Sentence pairs in PIT2015

Similarity Sentence 1 Sentence 2

0 What the hell is Brandon bass
thinking

Brandon Bass is shutting Carmelo
down

1 EJ Manuel is the 1st qb taken huh 1st QB off of the board

2 Aaron dobson is a smart pick They pluck Aaron Dobson from the

Herd

3 Please give the Avs a win Come on avs be somebody

4 Barry Sanders really won the Madden
cover

So Barry Sanders is on the cover

5 I liked that video body party I like that body party joint from Ciara

domain graph in our approach, because the domain graphs contain few multiple
paths (say, only 8 nodes have multiple parent nodes within whole relations in
WordNer 3.0 [16]) so that the results by our approach become the best but no big
difference. As for execution efficiency, our graph approach is superior to others
in LI30 and RG65, and equal in VP130. Indexed one means all the hash values
are prepared in advance and no CPU overhead arises.

4.2 Semantic Textual Similarity

Let us examine how well the proposed approach goes with short sentences. Here
we examine PIT2015 corpus, i.e., we examine PIT-2015 Twitter Paraphrase Cor-
pus [18] as a test corpus, which includes many short sentences extracted at more
than 500 Twitter sites from April 24, 2013 to May 3, 2013. The corpus contain
17,790 pairs of sentences divided into 13,063 pairs for training and 4,727 pairs
for development. And there are 972 pairs included for test. We examine these
13,063 pairs for training and the 972 pairs for test. Each pair has scored by
Amazon Mechanical turk in terms of 0 (not similar) to 5 (most similar). Also
morphological and proper noun information have been attached to each word.
Table 3 shows some examples of the PIT corpus.

We conduct two experiments, calculating sentence similarity and execution
time.

4.2.1 Sentence Similarity
We apply preprocessing (lowercase conversion and making original form by Tree-
Tagger5) to the corpus and provide the feature information as well as the one
by the corpus.

Here we add character bigram, trigram for characteristic words and word uni-
gram, bigram for word sequences to every sentence in a form of Jaccard co-efficients
as the feature values. Then we examine sentence similarity by Support Vector
Regression (SVR) by using the features above. Given a sentence n = 1, .., N ,

5 http://www.cis.uni-muenchen.de/∼schmid/tools/TreeTagger/.

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/


Domain Graph for Sentence Similarity 159

let xn be a feature vector of 5-dimension for the n-th sentence: x1
n, x2

n for charac-
ter bigram, character trigram respectively, x3

n, x4
n for word unigram, word bigram

respectively and x5
n for domain graph. Then y(xn) means the regression value to

the 5 features of xn through SVR. Using LIBSVM [2], we apply ε-SVR with default
parameters by minimizing V targeted for better fitting as below:

V = C

N∑

n=1

(ξn + ξ̂n) + Z

ξn =
{

0 if (tn ≤ y(xn) + ε)
ξn if (tn > y(xn) + ε) , ξ̂n =

{
0 if (tn ≥ y(xn) + ε)
ξ̂n if (tn < y(xn) + ε)

In the definition of V , the first term shows a penalty to data beyond an
allowable error ε for regression while the second term Z means its normalization.
We put the similarity values to each pair by SVR and compare them with the
one in the corpus and we evaluate the result by Pearson correlations.

As the baseline, we discuss ASOBEK [6] proposed by Eyecioglu which is based
on SVR with character bigram (x1

n) and word unigram (x3
n), Logistic Regression

(LR) based on word n-gram (x3
n, x4

n) by Das [4], and Weighted Textual Matrix
Factorization (WTMF) by Guo [9]. We apply DomainGraph approach to all the
features (x1

n, .., x5
n), the one except character bigram/trigram (x3

n, .., x5
n) and the

one with only domain graph (x5
n) feature.

Let us show the result in Table 4. Our approach with all the features scored
the best because of domain graph feature (x5

n). Compared to ASOBEK character
2-gram and (word 1-gram) and LR (word n-gram), this approach is at least
9.9 % better but comparable. So is true for our domain graph approach without
character n-gram (14.9 % better). On the other hand, only one feature in word
1-gram and domain graph doesn’t work well.

First of all, let us discuss why WTMF doesn’t work well. As shown in Table 3,
WTMF works poor (62 %), because the approach comes from word co-occurrence
in documents and the situation can be hardly detected in short sentences. It
seems hard to solve the problem by Matrix Factorization.

Table 4. Sentence similarity results (PIT2015)

Model Features Correlation Improvement

(1) ASOBEK x1
n, x3

n 0.504 0.90

(2) x3
n 0.071 0.13

(3) LR x3
n, x4

n 0.511 0.91

(4) WTMF 0.35 0.62

(5) Our approach x1
n, ..., x5

n 0.561 1.00

(6) x3
n, x4

n, x5
n 0.488 0.87

(7) x5
n 0.071 0.13



160 F. Konaka and T. Miura

In ASOBEK, two sentences in Table 5 (1) and (2) look similar to (2). Note (1′)
and (2′) contain words/morphemes and look alike. The corpus gives the similarity
4 while the correlation is 0.727 by our approach. The major difference of two
ASOBEK comes from character bigram (x1

n). Looking into the detail, we have
Jaccard coefficients of character bigram 0.5714, character trigram 0.5294, word
unigram 0.4375, and word bigram 0.3125 and domain graph 0.7241. ASOBEK
(1) takes x1

n, x3
n into consideration and the x1

n is bigger than x3
n, so ASOBEK

(2) goes worse. On the other hand, our approach (5) is 14.9 % better than (6)
since x5

n is dominant.

Table 5. Similar sentences

(1) MHP wishes you a safe and happy Memorial Day weekend

(2) We hope that everyone has a very safe and happy Memorial Day Weekend

(1′) wish#verb, memorial#noun, day#noun, weekend#noun

(2′) hope#verb, have#verb, memorial#noun, day#noun, weekend#noun

Our approach (7) works poor because every sentence contains many words
and word unigram and bigram should be considered. It is said that character
n-gram may work well for spelling inconsistency. Some examples in PIT2015
are the following: “The ungeekedeliteschicago Daily is out”, “Lydia is a
GROOOOOOOWN woman”, “I will brin them Taco Bell chipotle soo they
let me stay.”

Let us go into the detail of spelling inconsistency issue. We examine another
corpus SemEval2012 MSRpar, MSRvid and SMTeuroparl for short sentences
with training data, because they contain no spelling inconsistency. In Table 6
we show the comparison results with and without character n-gram features
(x1

n, x2
n). As seen easily, there happen no difference and we can say character

n-gram may not be useful for spelling inconsistency issue by our approach.

Table 6. Sentence similarity results (SemEval2012)

Model Feature 1 Feature 2 Improvement

x3
n, x4

n, x5
n x1

n, x2
n, x3

n, x4
n, x5

n

MSRpar 0.409 0.610 1.49

MSRvid 0.684 0.811 1.19

SMTeuroparl 0.501 0.552 1.10

PIT2015 0.488 0.561 1.15

4.2.2 Execution Time
We also assess the execution time of semantic textual similarity. In this exper-
iment, we use 25,000 sentences randomly selected from the PIT corpus as a



Domain Graph for Sentence Similarity 161

Fig. 4. Execution times (sec)

dataset. The time is measured during calculating the similarity between all sen-
tences and a query randomly selected from the dataset. Each system is compared
with others in terms of the time which is measured ten times and averaged.

We consider four systems, No Index measuring the time from constructing
the domain graph to calculating the similarity, Index measuring the time to cal-
culate the similarity using the index, No Domain constructing the graph without
domain likewise Sect. 4.1 and Baseline.

Measuring sentence similarity systems using WordNet tend to calculate the
similarity in every conceivable combination and to use the maximum value [12]:

sim(S1, S2) =
∑

wi∈S1

max
wj∈S2

simWN (wi, wj) (7)

In Eq. 7, S1, S2 are sentences and imWN is the similarity using WordNet. Thus
we consider Eq. 7 is appropriate as Baseline. In this experiment simWN is Path
implemented by WS4J6.

We show the environment in Table 7 and the results in Fig. 4.
Figure 4 shows No Index execute 25,000 sentences with 0.94 times as much as

No Domain. This improvement is caused by the neglect of structures at shallow
level. And it is mentionable No Domain is inferior to Baseline. Path search the
shortest path by recording the current shortest and updating it. In other word,
Baseline can shift to the next step when Path cannot renew. However, Domain
6 https://code.google.com/archive/p/ws4j/.

https://code.google.com/archive/p/ws4j/


162 F. Konaka and T. Miura

Table 7. Machine specs

Item Spec

CPU Intel(R) Xeon(R) X3430 2.40 GHz

Memory 16GB

OS Windows 7 64bit OS

Language Java

Compiler Eclipse Compiler for Java

Graph need more times compared with Baseline since it use all synsets meeting
conditions.

Figure 4 also shows Index execute 25,000 sentences with 0.006 times as much
as No Index. For calculating the sentence similarity, Baseline seeks for the max-
imum word similarity in all combinations. Baseline have to calculate all com-
binations with each sentence since the combinations depends on the input. By
contrast, Domain Graph does not have to read the input again and calculate all
combinations since the similarity is defined as Jaccard coefficients.

5 Conclusion

In this investigation, we have proposed a new similarity among words using
domain graph. The similarity provides us with ontological aspects on similarity
while avoiding trivial knowledge often appears at shallow level. Also we have
discussed semantic properties of the similarity based on domain graph indepen-
dent of BOW aspects. We have shown how to obtain features of domain graph
by minimum hash techniques so that the approach can be useful for information
retrieval.

We have shown the effectiveness of our approach by experiments. The exper-
iments show that the results by our approach become the best (but no big
difference because of WorNet ontology) while the execution efficiencies are com-
parable. By extending the approach for sentence similarity, we have also shown
domain graph approach works best, say, at least improved 9.9 %, (because of
domain graph feature) than other baseline.

All these show our approach is promising for query to short sentences.
Some problems remain unsolved. Often spelling inconsistency makes the sim-

ilarity worse or incorrect, but no sharp solution is proposed until now. Character
n-grams or any other techniques are not enough to improve queries, but domain
graph with word normalization could help the situation better.

References

1. Bentivogli, L., Forner, P., Magnini, B., Pianta, E.: Revising WordNet domains
hierarchy: semantics, coverage, and balancing. In: COLING 2004 Workshop on
“Multilingual Linguistic Resources”, pp. 101–108 (2004)



Domain Graph for Sentence Similarity 163

2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

3. Cohen, E., et al.: Finding interesting associations without support pruning. IEEE
Trans. Knowl. Data Eng. 13(1), 64–78 (2001)

4. Das, D., Smith, N.A.: Paraphrase identification as probabilistic quasi-synchronous
recognition. In: Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Process-
ing of the AFNLP, vol. 1, pp. 468–476. Association for Computational Linguistics
(2009)

5. Deerwester, S., Dumais, S., et al.: Indexing by latent semantic analysis. J. Am.
Soc. Inf. Sci. 41(6), 391407 (1990)

6. Eyecioglu, A., Keller, B.: ASOBEK: Twitter paraphrase identification with simple
overlap features and SVMs. In: Proceedings of SemEval (2015)

7. Finkeltsein, L., et al.: Placing search in context: the concept revisited. In: Proceed-
ings of the 10th International Conference on World Wide Web. ACM, 2001. pp.
406–414

8. Finlayson, M.A.: Java libraries for accessing the Princeton WordNet: comparison
and evaluation. In: Proceedings of the 7th Global Wordnet Conference, Tartu,
Estonia (2014)

9. Guo, W., Diab, M.: Modeling sentences in the latent space. In: Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics: Long
Papers, vol. 1, pp. 864–872. Association for Computational Linguistics (2012)

10. Konaka, F., Miura, T.: Textual similarity for word sequences. In: Amato, G., Con-
nor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 244–249.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25087-8 23

11. Li, Y., et al.: Sentence similarity based on semantic nets and corpus statistics.
IEEE Trans. Knowl. Data Eng. 18(8), 1138–1150 (2006)

12. Liu, H., Wang, P.: Assessing sentence similarity using wordnet based word simi-
larity. J. Softw. 8(6), 1451–1458 (2013)

13. Meng, L., Huang, R., Gu, J.: A review of semantic similarity measures in wordnet.
Int. J. Hybrid Inf. Technol. 6(1), 1–12 (2013)

14. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995)

15. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR)
41(2), 10 (2009)

16. Richens, T.: Anomalies in the WordNet verb hierarchy. In: Proceedings of the
22nd International Conference on Computational Linguistics, vol. 1, pp. 729–736.
Association for Computational Linguistics (2008)

17. Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun.
ACM 8(10), 627–633 (1965)

18. Xu, W., Callison-Burch, C., Dolan, W.B.: SemEval-2015 Task 1: paraphrase and
semantic similarity in Twitter (PIT). In: Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval) (2015)

19. Yang, D., Powers, W.M.W.: Verb similarity on the taxonomy of WordNet. Masaryk
University (2006)

http://dx.doi.org/10.1007/978-3-319-25087-8_23


Context Semantic Analysis:
A Knowledge-Based Technique for Computing

Inter-document Similarity

Fabio Benedetti(B), Domenico Beneventano, and Sonia Bergamaschi

Dipartimento di Ingegneria Enzo Ferrari,
Università di Modena e Reggio Emilia, Modena, Italy

{fabio.benedetti,domenico.beneventano,sonia.bergamaschi}@unimore.it

Abstract. We propose a novel knowledge-based technique for inter-
document similarity, called Context Semantic Analysis (CSA). Several
specialized approaches built on top of specific knowledge base (e.g.
Wikipedia) exist in literature but CSA differs from them because it is
designed to be portable to any RDF knowledge base. Our technique relies
on a generic RDF knowledge base (e.g. DBpedia and Wikidata) to extract
from it a vector able to represent the context of a document. We show
how such a Semantic Context Vector can be effectively exploited to com-
pute inter-document similarity. Experimental results show that our gen-
eral technique outperforms baselines built on top of traditional methods,
and achieves a performance similar to the ones of specialized methods.

Keywords: Knowledge graph · Knowledge base · Inter-document
similarity · Similarity measures

1 Introduction

Recent years have seen growing number of knowledge bases that have been used
in several domains and applications. Besides DBpedia [2], which is the heart
of the Linked Open Data (LOD) cloud [5], other important examples includes:
Wikidata [25], a collaborative knowledge base; YAGO [22], a huge semantic
knowledge base, derived from Wikipedia, WordNet and GeoNames; Snomed
CT [6], the best known ontology in the medical domain and AGROVOC [7],
a multilingual agricultural thesaurus we used recently for annotating agricul-
tural resources [4].

Recent research trends indicate that semantic information and knowledge-
based approaches can be used effectively for improving existing techniques, as
Natural Language Processing (NLP) and Information Retrieval (IR); on the
other hand, much still remains to be done in order to effectively exploit these
rich models in these fields [21]. For instance, in the context of inter-document
similarity, which plays an important role in many NLP and IR tasks, the classic
techniques rely solely on syntactic information and are usually based on Vector
Space Models [23], where the documents, composed by words, are represented

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 164–178, 2016.
DOI: 10.1007/978-3-319-46759-7 13



Context Semantic Analysis 165

in a vector space having words as dimensions. Such techniques fail in detecting
relationships among concepts like in these two sentences: “The Rolling Stones
with the participation of Roger Daltrey opened the concerts’ season in Trafal-
gar Square” and “The bands headed by Mick Jagger with the leader of The
Who played in London last week”. These two sentences contain highly related
concepts which can be found by exploiting the knowledge and network structure
encoded within knowledge bases such as DBpedia, even if they are not contained
explicitly in the text.

In this paper, we present Context Semantic Analysis (CSA), a novel technique
for estimating inter-document similarity, leveraging the information contained
in a knowledge base. One of the main novelty of CSA w.r.t. other knowledge-
based techniques for document similarity is its applicability to generic RDF
knowledge bases, so that all datasets belonging to the LOD cloud [5] (more than
one thousand) can be used.

CSA is based on the notion of contextual graph of a document, i.e. a sub-
graph of the knowledge base which contains the contextual information of the
document. The contextual graph is then suitably weighted to capture the degree
of associativity between its concepts, i.e., the degree of relevance of a property
for the entities it connects. The vertices of such a weighted contextual graph
are then ranked by using PageRank methods, so obtaining a Semantic Context
Vector, which represents the context of the document. Finally, we estimate the
similarity of two documents by comparing their Semantic Context Vectors with
standard methods, such as the cosine similarity. By evaluating our method on a
standard benchmark for document similarity (which consider correlations with
human judges), we show how it outperforms almost all other methods and how
it is portable to generic knowledge bases. Moreover we analyze and show its
scalability in a clustering task with a larger corpus of documents.

The paper is structured as follows. Section 2 contains the related work, while
Sect. 3 is devoted to some preliminaries useful for the rest of the paper. Then,
CSA is described in Sect. 4 and Sect. 5 contains its evaluation. Finally, the last
Section contains some conclusions.

2 Related Work

Text similarity has been one the main research topic of the last few years due
to wide range of its applications in tasks such as information retrieval, text
classification, document clustering, topic detection, etc. [11]. In this field a lot of
techniques have been proposed but we can group them in two main categories,
content based and knowledge enriched approaches, where the main difference is
that the first group uses only textual information contained in documents while
the second one enriches these documents by extracting information from other
sources, usually knowledge bases.

The standard document representation technique is the Vector Space Model
[23]. Each document is expressed as a weighted high-dimensional vector, the
dimensions corresponding to individual features such as words. The result is



166 F. Benedetti et al.

called the bag-of-words model and it is the first example of content based app-
roach. The limitation of this model is that it does not address polysemy (the
same word can have multiple meanings) and synonymy (two words can repre-
sent the same concept). Another technique belonging the content based group
is Latent Semantic Analysis (LSA) [9], which assumes that there is a latent
semantic structure in the documents it analyzes. Its goal is to extract this latent
semantic structure by applying dimensionality reduction to the terms-document
matrix used for representing the corpus of documents.

Recently, a lot of effort has been employed in designing new techniques for
text similarity which use information contained in knowledge bases. A first exam-
ple of this knowledge enriched approaches is Explicit Semantic Analysis (ESA)
[10], which indexes documents with Wikipedia concepts and it uses Wikipedia
hyperlink structure information for mapping any text as a weighted vector of
Wikipedia-based concepts. Another documents similarity technique that lever-
age the information contained in Wikipedia is WikiWalk [27], where the per-
sonalized PageRank on Wikipedia pages is used, with a personalization vector
based on the ESA weights on concepts detected in the documents, to produce
a vector used for estimating the similarity. A big drawback of this approach is
the computational cost, indeed, for each document we have to execute first ESA
and then compute the personalized PageRank on the whole Wikipedia. Another
remarkable approach is SSA, i.e. Salient Semantic Analysis [12]. This method
starts with Wikipedia for creating a corpus where concepts and saliency are
explicitly annotated, then, the authors use this corpus to build concept-based
word profiles, which are used to measure the semantic relatedness of words and
texts. These group of knowledge enriched approach are designed for using only
Wikipedia as source of knowledge and they are not portable to generic knowl-
edge bases. Our method CSA differs from them because it aims to be a generic
approach that can use any knowledge bases expressed according to the Seman-
tic Web standard, i.e. described in RDF, so that all datasets belonging to the
Linked Open Data cloud [5] (more than one thousand) can be used as source of
knowledge. To the best of our knowledge, the only approach portable to generic
knowledge bases is the one proposed in [21], where the authors represent docu-
ments belonging to a corpus as graphs extracted form a generic knowledge base.
It differs from CSA because it is based on a Graph Edit Distance (GED) graph
matching method to estimate similarity, while in our approach a document is
represented as a vector and the similarity can be estimated more effortlessly by
using cosine similarity.

3 Preliminaries

3.1 Inter-document Similarity

Vector Space Models are generally based on a co-occurrence matrix, a way of
representing how often words co-occur; in a term-document matrix, each row
represents a word and each column represents a document. Let C be a corpus
composed of n documents, where each document dj is composed by a sequence



Context Semantic Analysis 167

of terms. Let m be the number of terms in C; the term-document matrix T is a
matrix m×n where its cell (i, j) contains the weight tij assigned to term i in the
document j. A document dj is then represented by the vector dj = [t1j , . . . , tmj ].
Different strategies of weighting exist (see, for example, [19]); where the weight
tij is equal to the number of time the term i appears in the document j. the
most famous weighting strategy is td-idf (Term Frequency - Inverse Document
Frequency) [19].

The most common way of estimating the similarity of two documents is the
cosine similarity, i.e., the cosine or angular distance between context vectors
representing the two documents, because it has been shown to be effective in
practice for many information retrieval applications [9].

3.2 Knowledge Base

We focus on RDF knowledge bases1; an RDF KB can be considered a set of facts
(statements), where each fact is a triple of the form <subject,predicate,object>.
A set of such triples is an RDF graph KB = (V,E): a labeled, directed multi-
graph, where subjects and objects are vertices and the predicates are labeled
edges between them. According to [8], vertices are divided in 3 disjoint sets,
URIs U , blank nodes B and literals L; literals cannot be the subjects of RDF
triples.

The triples of an RDF KB can usually be divided into A-Box and T-Box ;
while the A-Box contains instance data (i.e. extensional knowledge), the T-Box
contains the formal definition of the terminology (classes and properties) used in
the A-Box ; as an example, Fig. 1 shows an extract of DBpedia2. Our methods
relies only on the extensional knowledge of a KB, i.e. only on the A-Box ; for our
experiments we choose two generic domain KBs: DBpedia [2] and Wikidata [25],
due to their large coverage and variety of relationships at the extensional level.

3.3 PageRank

PageRank was first proposed to rank web pages [20], but the method is now
used in several applications for finding vertices in a graph that are most relevant

Fig. 1. Example of an RDF KB, with the A-Box and the T-Box.

1 https://www.w3.org/TR/rdf-primer/.
2 We abbreviate URI namespaces with common prefixes, see http://prefix.cc for details.

https://www.w3.org/TR/rdf-primer/
http://prefix.cc


168 F. Benedetti et al.

for a certain task. Let G be a graph with n vertices and di be the outdegree of
the vertex i; the Standard PageRank algorithm computes the PageRank vector
R defined by the equation:

R = cMR + (1 − c)v

where the transition probability matrix M is a n×n matrix given by Mij = 1/di
if it exists an edge from i to j and 0 otherwise, c is the damping factor, a scalar
value between 0 and 1 and the personalization vector v is a n×1 uniform vector
in which each element is 1/n. Standard PageRank uses just graph topology, but
many graphs, as the ones in our case, come with weights on either nodes or edges,
which can be used to personalize the PageRank algorithm. The Personalized
PageRank [13] uses node weights to define a non-uniform vector v and thus
biasing the computation of the PageRank vector R to be more influenced from
heavier nodes. Another variant is the Weighted PageRank [26] which uses edge
weights to define a custom transition probability matrix for influencing further
the computation of the PageRank vector R.

4 Context Semantic Analysis

Given a corpus C of documents and an RDF knowledge graph KB, CSA is
composed of the following three steps:

– Contextual Graph Extraction: a Contextual Graph CG(d) containing the
contextual information of a document d is extracted from the KB.

– Semantic Context Vectors Generation: the Semantic Context Vector
SCV (d) representing the context of the document d is generated analyzing
its CG(d).

– Context Similarity Evaluation: the Context Similarity is evaluated by
comparing the context vectors of documents belonging to the corpus C.

4.1 Contextual Graph Extraction

Given a document d and a knowledge graph KB, the goal of this first step is
to extract a subgraph from KB containing all the information about d. Our
method relies only on the extensional knowledge of a KB, i.e. on its A-Box.
More precisely, given a knowledge base KB, we consider the subgraph KBA =
(VA, EA) where the triples are in the A-Box of the KB. We also exclude the
triples containing literals, so, all the vertices VA belongs to (U ∪ B) and every
edge EA corresponds to an object property. In Fig. 1 we have only 3 triples that
belongs to KBA: the ones containing the dbo:genre property.

The extraction of the Contextual Graph CG(d) for a document d is a three-
step process:

1. Starting Entities Identification: the entities of KGA which are explic-
itly mentioned in the document d are identified: such set of entities is called
starting entities of d, denoted by SE(d). The problem to find the set SE(d) is



Context Semantic Analysis 169

an instance of the well-known Named Entity Recognition problem [18]; it is out
of scope of this work, we tested some of the already implemented techniques and
on the basis of the obtained results, we empirically chosen DBpedia Spotlight
[17] and TextRazor3 to identify starting entities w.r.t. DBpedia and Wikidata,
respectively.

2. Contextual Graph Construction: the Contextual Graph of the doc-
ument d is defined as the subgraph of KGA composed by all the triples that
connect with a path of length l, at least 2 starting entities in SE(d). More
precisely, given a document d and a length l > 0, we define:

CGl(d) = {<s, p, o> |<s, p, o> ∈ KGA ∧ <s, p, o> ∈ Path(s1, s2) ∧
length(Path(s1, s2)) ≤ l ∧ s1, s2 ∈ SE(d) ∧ s1 �= s2}

where Path(s1, s2) is a path on KGA from s1 and s2.
For example, let us consider the two sentences used in the introduction:

d1: “The Rolling Stones with the participation of Roger Daltrey opened the
concerts’ season in Trafalgar Square”
d2: “The bands headed by Mick Jagger with the leader of The Who played
in London last week”.

It is easy to find as starting entities in DBpedia: SE(d1) {The Rolling
Stones, Roger Daltrey,Trafalgar Square} and SE(d2) {Mick Jagger, The
Who,London}. For example, by using l = 2 we obtain CG2(d1) with 5 nodes
and CG2(d2) with 12 nodes; by using l = 3 we obtain CG3(d1) with 141 nodes
and CG3(d2) with 66 nodes. The most significant portion of information shared
between CG3(d1) and CG3(d2) is shown in Fig. 2.

3. Contextual Graph weighting: In the literature several graph weight-
ing methods have been proposed to capture the degree of associativity between
concepts in the graph, i.e., the degree of relevance of a property for the entities
it connects [1,21]. The most common way of weighing a property pi is to com-
pute its Information Content (IC), IC(X = pi) = −log(P (pi)), where P (pi) is
the probability that a random variable X exhibits the outcome pi; thus, IC(pi)

Fig. 2. Portion of DBpedia containing the most significant shared contextual informa-
tion between the two sentences on the left

3 https://www.textrazor.com/.

https://www.textrazor.com/


170 F. Benedetti et al.

measures the specificity of the property pi, regardless of the entities it actually
connects. To take into account that the same property can connect more or less
specific entities, IC(obji|pi) is computed in a similar way, where P (obji|pi) is
the conditional probability that a node obji appears as object of the property
pi. This metric aims to provide an high weight to uncommon properties that
points to uncommon object; the drawback is that it penalize infrequent object
that occur with infrequent properties; for example, dbo:Punk:Rock is overall
very infrequent, but it get an high probability when it occurs conditional on
dbo:genre. The authors in [21] propose to mitigate this problem by computing the
Joint Information Content wjointIC = IC(obji|pi) + IC(pi), and the Combined
Information Content wcombIC = IC(obji) + IC(pi), making an independence
assumption between property and object.

We introduce a new weighting function based on the fact that the importance
of a property between two entities also depends on the classes to which such
entities belong. For example, in Fig. 1, most people would agree that, for subjects
which are instance of dbo:Band, the importance of dbo:genre increases when
the object is an instance of dbo:MusicGenre. In fact, the 94 % of the dbo:Band
instances are subject of a dbo:genre property that has as object, in 91 % of cases,
an instance of dbo:MusicGenre, while only the 0.002 % of times, an instance
of dbo:City. Taking in exam the triple <si, pi, oi>, we measure the correlation
between a property pi, the class of the subject si and the class of the object oi
by using the notion of Total Correlation [24], which is a method for weighting
multi-way co-occurrences according to their importance:

TotalCorrelation(si, pi, oi) = −log(
P (Si, pi, Oi)

P (Si)P (pi)P (Oi)
)

where Si and Oi are the classes associated to the entities si and oi, respectively4.
Definitely, for contextual graphs we have three edge weights: Total Correla-

tion (WTotCor), Joint Information Content (WJoint), and Combined Information
Content (WComb).

4.2 Semantic Context Vectors

At this point we have all the ingredients necessary to define the notion of Seman-
tic Context Vector, a vector representation of documents based on Contextual
Graphs.

Given a corpus of documents C = {d1, . . . , dn} and an RDF KB, for each
document d ∈ C we build its contextual graph CGl(d); then we consider the set
E = {e1, . . . , em} of entities occurring in all the contextual graphs. Similar to the
term-document matrix (see Sect. 3.1) we consider an entity-document matrix M ,
4 When an entity is an instance of more than one class we use the class with the

minor number of instances because it better characterizes an entity; however if we
filter the knowledge bases by excluding classes defined in external sources such as
YAGO, GroNames, etc. only 6.4 % of entities in Dbpedia and 2.22 % in Wikidata
are instances of more than one class.



Context Semantic Analysis 171

a m × n matrix where the cell (i, j) contains the weight s(ei, dj) of the entity
ei ∈ E in the document dj ∈ C. A document dj is thus represented by the jth
column of such matrix, called Semantic Context Vector of dj and denoted by
SCV (dj):

SCV (dj) = (s(e1, dj), . . . , s(em, dj))

The weighting function s(ei, dj) has to take into account for the importance
of the entity ei within CG(dj), by also considering the edge weights computed in
the previous section. For this reason, we used the PageRank methods resumed
in Sect. 3.3.

The Semantic Context Vector SCV (d) of a document d is thus defined by 4
parameters:

1. KB: the RDF Knowledge Base; for example KB=Dbpedia and KB=Wikidata;
2. CG-L: the length for the Contextual Graph CGl(d); we used l = 2 and l = 3
3. WeightMethod: the edge weighting method for CGl(d): WComb, WJoint and

WTotCor.
Edge weights are used to set up the transition probability matrix M as a

k × k matrix, where k is the number of nodes of CG(dj): Mpq = w(p,q)
∑k

z=1 w(p,z)
,

where w(p, q) returns the weight if an edge from p to q exists, otherwise it
return 0.

We denote with Wnoweight the case when edge weights are not used and the
Standard PageRank algorithm is considered, where M is given by Mpq = 1/dp
if it exists an edge from p to q and 0 otherwise (dp be the outdegree of the
vertex p).

4. PageRankConfiguration: the used damping factor and personalization vector.
As damping factor we consider a range of values from 0.10 to 0.95 with a step
of 0.05. As personalization vector we consider the following two cases:
(a) Standard PageRank: in this case (denoted by r) there is no personalization

vector, i.e., an uniform vector is considered;
(b) Personalized PageRank: in this case (denoted by pr) the personalization

vector v = (v1, . . . , vk) is setup to give an equal probability to starting
entities: vi = 1/|SE(d)| if ei ∈ SE and 0 otherwise.

With r@50 and pr@50 we denote Standard and Personalized PageRank,
respectively, with a damping factor equal to .5; the same for other damp-
ing factor values.

As an example, for the documents d1 and d2 of Fig. 2, part of their SCVs are
shown in Table 1; the KB is DBpedia and CG-L is equal to 3; both PageRank
and Personalized PageRank are considered, with a damping factor equal to .75
(i.e. r@75 and pr@75 ).

We can observe that PageRank tends to arrange weight in all the context
graph’s nodes, while with the Personalized PageRank all the weight is focused
in the neighborhood of the starting entities.



172 F. Benedetti et al.

4.3 CSA Similarity Table 1. Semantic Context Vectors of the two
documents in Fig. 2

Entity Document d1 Document d2

pr@75 r@75 pr@75 r@75

The Rolling Stones .187 .036 .098 .082

Roger Daltrey .140 .018 - -

Trafalgar Square .155 .024 - -

London .111 .048 .225 .072

Mick Jagger .000 .024 .155 .051

The Who .055 .028 .175 .053

England .083 .050 .104 .090

Rock music .072 .037 .098 .077

The CSA Similarity between two
documents d1 and d2 is computed
as the cosine similarity between
the Semantic Contextual Vectors
SCV (d1) and SCV (d2); it is clear
from the Semantic Context Vectors
shown in Table 1 how the cosine
similarity can detect some similar-
ity between these two documents.
In the next Evaluation Section we
will analyze how the SCV ’s para-
meters affect the CSA similarity.

Linear combination of CSA with text similarity measures. The CSA
similarity, simCSA, is only based on information extracted from a knowledge
base; we used a linear combination of the CSA similarity with other similarity
measures simtext (such as LSA [15] and ESA [3]) to include in the final similarity
measure also textual information:

simo = α ∗ simCSA + (1 − α) ∗ simtext

where α is the weight parameter used for combining the two measures.

5 Evaluation

We evaluate the CSA performance in two different context: by considering its
correlation with human judges, and, by analyzing its scalability in a clustering
task.

5.1 Evaluation - Correlation with Human Judges

Experimental setup. The most common and effective way for evaluating tech-
niques of inter-document similarity is to assess how the similarity measure pro-
duced emulates human judges. To this end, we use the dataset of documents
LP505 [15], which contains 50 documents, selected from the Australian Broad-
casting Corporation’s news mail service, evaluated by 83 students of the Uni-
versity of Adelaide. The performance score is given by the Pearson product-
moment correlation coefficient r [14] between the computed similarities and the
ones assigned by human judges; the Pearson coefficient r measures the linear
correlation between two variables.

Results and discussion. A summary of the results is shown in Fig. 3, which
shows the Pearson coefficient r between the human gold standard and CSA

5 https://webfiles.uci.edu/mdlee/LeePincombeWelsh.zip.

https://webfiles.uci.edu/mdlee/LeePincombeWelsh.zip


Context Semantic Analysis 173

Fig. 3. Pearson correlation with human judgments (LP50 Dataset) of CSA, with dif-
ferent configurations.

by varying the parameters that define the Semantic Context Vectors, with the
exception of CG-L that has been considered constant and equal to 3. One of
the main result is that, for all the configurations, the Personalized PageRank
(pr) outperforms the Standard PageRank (r); another interesting result is that,
in almost all the configurations, the novel edge weighting function WTotCor we
proposed slightly outperforms the other ones, WJoint and WComb. We can also
appreciate different behaviors w.r.t the KB: DBpedia is more stable, while Wiki-
data exhibits a strong performance decay by increasing the damping factor, with
the Personalized PageRank.

In particular, the CSA configuration with DBpedia, WTotCor, Personalized
PageRank with damping factor ranging from 0.30 to 0.85, is quite stable: it varies
by only 2.5 % from the minimum (0.605 pr@30) to the maximum (0.62 pr@65);
then such a CSA configuration is almost parameter free.

Table 2 shows the Pearson coefficient r for the best CSA configurations we
found, by varying all the parameters.

In order to evaluate CSA we produced some baselines:

– Jaccard on starting entities: we used the starting entities collected for each
document as descriptor of the document and we used the Jaccard similar-
ity for estimating the similarity between documents, namely sim(d1, d2) =
SE(d1)∩SE(d2)
SE(d1)∪SE(d2)

.
– Cosine (bag of words): we model the document corpus in a standard bag of

words Vector Space Model and we compute the cosine similarity6.
6 Implemented as in [15] (only removing the stopwords).



174 F. Benedetti et al.

Table 2. Results on the LP50 dataset (Pearson r correlation coefficient).

Wnoweight WComb WJoint WTotCor Best

DBpedia
CG-L

{
2 pr@40 0.57 pr@40 0.59 pr@60 0.58 pr@30 0.59 0.59
3 pr@60 0.59 pr@65 0.61 pr@65 0.61 pr@65 0.62 0.62

Jaccard on starting entities 0.49

Wnoweight WComb WJoint WTotCor

Wikidata
CG-L

{
2 pr@40 0.54 pr@40 0.56 pr@40 0.55 pr@40 0.57 0.57
3 pr@40 0.59 pr@40 0.60 pr@40 0.60 pr@40 0.61 0.61

Jaccard on starting entities 0.48

Cosine (bag of words) 0.41

Table 3. Best Pearson correlation obtained on the LP50 dataset by combining CSA
(l = 3 and Total Correlation as weight function) with LSA and ESA

Alpha value α

0.25 0.5 0.75

DBpedia CSA + LSA pr@70 0.67 pr@70 0.67 pr@70 0.65

CSA + ESA pr@80 0.71 pr@65 0.72 pr@65 0.68

Wikidata CSA + LSA pr@40 0.67 pr@40 0.68 pr@40 0.65

CSA + ESA pr@40 0.72 pr@40 0.72 pr@40 0.67

CSA is able to outperform both baselines; we obtained a relative improvement
of the 21 % (with either DBpedia and Wikidata) w.r.t. the Jaccard baseline7;
this improvement is particularly significant because it is only due to information
extracted from the KBs by CSA8. W.r.t. the Cosine baseline the margins are
greater (34 % DBpedia and 33 % Wikidata); this result is not too surprising
because this baseline utilize only the words contained in the text for estimating
the similarity.

Table 3 shows the performance of the linear combination of CSA with the
standard text similarity measures un-backgrounded LSA [15]9 and ESA reim-
plemented [3]. The best performance is obtained with α = 0.5, and we can
observe that the best configurations obtained in Table 2 for CSA (i.e. pr@65
for DBpedia and pr@40 for Wikidata) are also the best configurations of CSA
combined with LSA and ESA.

Finally, in Table 4, CSA is compared with other literature techniques. The
original performance of ESA reported in [10] on the LP50 dataset has been

7 If not explicitly stated all the difference in performance are statistically significant
at p-value < 0.05 using Fisher’s Z-value transformation.

8 The sets of starting entities are obtained by using NER APIs.
9 With td-idf as weighting function.



Context Semantic Analysis 175

Table 4. System comparison on the LP50 dataset

Pearson coefficient r

CSA 0.62

CSA+ LSA 0.65

CSA+ ESA 0.72

Bag-of-Words [15] 0.41

Un-Backgrounded LSA [15] 0.52

Backgrounded LSA [15] 0.59

ESA original [10] 0.72

ESA reimplemented [3] 0.59

GED-based (Dbpedia) [21] 0.63

SSA [12] 0.68

WikiWalk + ESA [27] 0.77

criticized in [3] for being based on a cut-of value used to prune the vectors in
order to produce better results on the LP50 dataset and, consequently, over-fit
the approach to this particular dataset. In fact, a much lower performance has
been obtained in [3,12] by re-implementing ESA without adapting the cut-off
value.

The main result of such comparison is that our CSA method is able to pro-
duce results comparable with well known techniques, like LSA and ESA, and
it is able to achieve improvements when it is used in conjunction with them
(for example, CSA + ESA obtains a correlation r = 0.72, so it attains a 16 %
improvement). The Graph Edit Distance (GED) based approach of [21], which
is the most similar to our, produces almost identical results but with GED the
similarity measures are obtained in a much more computationally expensive way
than in CSA (a deeper comparison is in the next Section). By taking in exam
other knowledge enriched techniques built on top of a specific knowledge base
(Wikipedia), CSA combined with ESA slightly outperforms SSA, but it does not
reach the performance of WikiWalk + ESA.

5.2 Scalability Evaluation - Hierarchical Document Clustering

The goal of this evaluation is to estimate both the effectiveness and efficiency of
CSA in a benchmark composed of a larger number of documents.

Experimental setup. We used a dataset (re0 ) of Reuters 2157810, a collection
of 1504 manually classified documents, which is commonly used for evaluat-
ing hierarchical clustering techniques. To build the clusters hierarchy we used

10 Reuters collection is available at http://kdd.ics.uci.edu/databases/reuters21578/
reuters21578.

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578


176 F. Benedetti et al.

Table 5. Results on the Reuters 21578 (re0 ) dataset (F-measure and execution time
for building the cluster hierarchy)

F-measure Time

CSA 0.638 34 m

CSA+ LSA 0.702 75 m

Jaccard on starting entities 0.415 22 m

LSA 0.611 42 m

GED-based similarity NA >100 h

a hierarchical clustering algorithm, based on a similarity measure and group-
average-link [16]. In this test we used only DBpedia, since was before proved
that it produce more stable results.

Performance is measured in terms of goodness of fit with existing categories
by using F measure. As defined in [28], for an entire hierarchy of clusters the F
measure of any class is the maximum value it attains at any node in the tree and
an overall value for the F measure is computed by taking the weighted average of
all values for the F measure as given by the following:

∑
i
ni

n maxF (i, j), where
the max is taken over all clusters at all levels, n is the number of documents
and F (i, j) is the F measure for the class i and the cluster j.

Results and discussion. First of all, for each document d we extracted its
CG3(d) and we computed SCV (d) for several configurations; then, we stored bot
CGs and SCV s on a file system11. The whole process took 32 hours, but we did
not focus on improving the performance of this step, indeed, we can think of it as
a preprocessing step. In Table 5 a summary of the results is shown; it includes the
F measures and the average of the execution time obtained running 5 time the
clustering algorithm. The configuration of CSA used for obtaining these results
is GC-L=3, WTotCor and pr@65, which proves to be the best configuration also
in this test. We produced three different baselines: Jaccard on starting entities,
LSA [19] and GED-based (DBpedia) [21]. We considered only the GED system
since it is the most similar to our approach.

As a first observation, CSA outperforms all the considered baselines in terms
of F-measure and the linear combination with LSA brings a 10 % improvement.

We were not able to successfully complete the test for GED due to its com-
putational cost. Intuitively, to perform hierarchical clustering, we have to com-
pute the inter-document similarity between all the documents of the corpus, i.e.,
15012 measures of similarity for the re0 dataset. While for CSA and LSA the
cosine similarity is used, GED-similarity is based on a more expensive graph edit
distance algorithm.

11 We executed this experiment in a Ubuntu machine with 16 cores (Intel Xeon E312xx)
and 98 Gb of RAM.



Context Semantic Analysis 177

6 Conclusion and Future Work

In this paper, we proposed Context Semantic Analysis (CSA), a novel knowledge-
based technique for estimating inter-document similarity. The technique is based
on a Semantic Context Vector, which can be extracted from a Knowledge Base
and stored as metadata of a document and used, when needed, for computing
the Context Similarity with other documents. We showed the consistency of
CSA respect to human judges and how it outperforms standard similarity meth-
ods. Moreover, we obtained comparable results w.r.t. other knowledge enriched
approaches built on top of a specific KB (ESA, WikiWalk and SSA) with the
advantage that our method is portable to any generic RDF KB (to the best of
our knowledge CSA is the first system that shown its portability with two huge
RDF KBs). Finally, we demonstrate its scalability and effectiveness performing
hierarchical clustering with a larger corpus of documents.

To analyze the properties of CSA and to evaluate its performance we used two
generic domain KBs, i.e. DBpedia and Wikidata; however, CSA is applicable to
a generic RDF knowledge base. As a first future work, we are planning to test
CSA with some domain specific KBs, such as the RDF version of AGROVOC12

and Snomed CT. Then, we will analyze the time complexity needed to compute
the Context Vector for any given document in order to judge the capability of
CSA of dealing with web scale datasets in real/interactive time.

References

1. Anyanwu, K., Maduko, A., Sheth, A.: SemRank: ranking complex relationship
search results on the semantic web. In Proceedings of the 14th International Con-
ference on World Wide Web, pp. 117–127. ACM (2005)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76298-0 52

3. Bär, D., Zesch, T., Gurevych, I.: A reflective view on text similarity. In: RANLP,
pp. 515–520 (2011)

4. Beneventano, D., Bergamaschi, S., Sorrentino, S., Vincini, M., Benedetti, F.:
Semantic annotation of the cerealab database by the agrovoc linked dataset. Ecol.
Inform. 26, 119–126 (2015)

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. In: Sheth, A.P.
(ed.) Semantic Services, Interoperability, Web Applications: Emerging Concepts,
pp. 205–227. IGI Global, Hershey (2009)

6. Bos, L., Donnelly, K.: SNOMED-CT: the advanced terminology and coding system
for eHealth. Stud. Health Technol. Inform. 121, 279–290 (2006)

7. Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques,
Y., Keizer, J.: The AGROVOC linked dataset. Semant. Web 4(3), 341–348 (2013)

8. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts, abstract syntax. W3C
Recomm. 25, 1–8 (2014)

12 http://aims.fao.org/standards/agrovoc/linked-open-data.

http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://aims.fao.org/standards/agrovoc/linked-open-data


178 F. Benedetti et al.

9. Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inf. Sci. Technol. 38(1), 188–
230 (2004)

10. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-
based explicit semantic analysis. IJCAI 7, 1606–1611 (2007)

11. Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput.
Appl. 68(13), 13–18 (2013)

12. Hassan, S., Mihalcea, R.: Semantic relatedness using salient semantic analysis. In:
AAAI (2011)

13. Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of the 11th Interna-
tional Conference on World Wide Web, pp. 517–526. ACM (2002)

14. Lawrence, I., Lin, K.: A concordance correlation coefficient to evaluate repro-
ducibility. Biometrics 45, 255–268 (1989)

15. Lee, M., Pincombe, B., Welsh, M.: An empirical evaluation of models of text doc-
ument similarity. In: Cognitive Science (2005)

16. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information
Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

17. Mendes, P., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia spotlight shedding
light on the web of documents. In: I-Semantics (2011)

18. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification.
Lingvisticae Investigationes 30(1), 3–26 (2007)

19. Nakov, P., Popova, A., Mateev, P.: Weight functions impact on LSA performance.
In: EuroConference RANLP, pp. 187–193 (2001)

20. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web (1999)

21. Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In:
Proceedings of the 7th ACM International Conference on Web Search and Data
Mining, pp. 543–552. ACM (2014)

22. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: Proceedings of the 16th International Conference on World Wide Web, pp.
697–706. ACM (2007)

23. Turney, P.D., Pantel, P., et al.: From frequency to meaning: vector space models
of semantics. J. Artif. Intell. Res. 37(1), 141–188 (2010)

24. Van de Cruys, T.: Two multivariate generalizations of pointwise mutual informa-
tion. In Proceedings of the Workshop on Distributional Semantics and Composi-
tionality, pp. 16–20. Association for Computational Linguistics (2011)

25. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

26. Xing, W., Ghorbani, A.: Weighted pagerank algorithm. In: Second Annual Confer-
ence on Communication Networks and Services Research, 2004. Proceedings, pp.
305–314. IEEE (2004)

27. Yeh, E., Ramage, D., Manning, C.D., Agirre, E., Soroa, A.: WikiWalk: random
walks on wikipedia for semantic relatedness. In Proceedings of the 2009 Workshop
on Graph-Based Methods for Natural Language Processing, pp. 41–49. Association
for Computational Linguistics (2009)

28. Zhao, Y., Karypis, G.: Evaluation of hierarchical clustering algorithms for docu-
ment datasets. In Proceedings of the Eleventh International Conference on Infor-
mation and Knowledge Management, pp. 515–524. ACM (2002)



Comparisons and Benchmarks



An Experimental Survey of MapReduce-Based
Similarity Joins

Yasin N. Silva(&), Jason Reed, Kyle Brown, Adelbert Wadsworth,
and Chuitian Rong

Arizona State University, Glendale, AZ, USA
{ysilva,jmreed3,kabrow17,ajwadswo,crong5}@asu.edu

Abstract. In recent years, Big Data systems and their main data processing
framework - MapReduce, have been introduced to efficiently process and ana-
lyze massive amounts of data. One of the key data processing and analysis
operations is the Similarity Join (SJ), which finds similar pairs of objects
between two datasets. The study of SJ techniques for Big Data systems has
emerged as a key topic in the database community and several research teams
have published techniques to solve the SJ problem on Big Data systems.
However, many of these techniques were not experimentally compared against
alternative approaches. This was the case in part because some of these tech-
niques were developed in parallel while others were not implemented even as
part of their original publications. Consequently, there is not a clear under-
standing of how these techniques compare to each other and which technique to
use in specific scenarios. This paper addresses this problem by focusing on the
study, classification and comparison of previously proposed MapReduce-based
SJ algorithms. The contributions of this paper include the classification of SJs
based on the supported data types and distance functions, and an extensive set of
experimental results. Furthermore, the authors have made available their
open-source implementation of many SJ algorithms to enable other researchers
and practitioners to apply and extend these algorithms.

Keywords: Similarity joins � Big Data systems � Performance evaluation �
MapReduce

1 Introduction

The processing and analysis of massive amounts of data is a crucial requirement in
many commercial and scientific applications. Internet companies, for instance, collect
large amounts of data such as content produced by web crawlers, service logs and click
streams generated by web services. Analyzing these datasets may require processing
tens or hundreds of terabytes of data. Big Data systems and MapReduce, their main
data processing framework, constitute an answer to the requirements of processing

This work was supported by Arizona State University’s SRCA and NCUIRE awards, the NSFC
(No. 61402329), and the China Scholarship Council.

© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 181–195, 2016.
DOI: 10.1007/978-3-319-46759-7_14



massive datasets in a highly scalable and distributed fashion. These systems are
composed of large clusters of commodity machines and are often dynamically scalable,
i.e., cluster nodes can easily be added or removed depending on the workload.
Important examples of these Big Data systems are: Apache Hadoop [26]; Google’s File
System [10], MapReduce [9] and Bigtable [8]; and Microsoft’s Dryad [11] and
SCOPE/Cosmos [7].

The Similarity Join is one of the most useful operations for data processing and
analysis. This operation retrieves all data pairs from two datasets (R and S) whose
distances are smaller than or equal to a predefined threshold e. Similarity Joins have
been extensively used in domains like record linkage, data cleaning, sensor networks,
marketing analysis, multimedia applications, recommendation systems, etc. A signifi-
cant amount of work has been focused on the study of non-distributed implementa-
tions. Particularly, Similarity Joins have been studied as standalone operations [12–15],
as operations that use standard database operators [16–18], and as physical database
operators [1–5].

The study of Similarity Join techniques for Big Data systems has recently emerged
as a key topic in the data management systems community. Several research teams
have proposed and published different techniques to solve the Similarity Join problem
on Big Data systems (e.g., [19–25]). Unfortunately, however, many of these techniques
were not experimentally compared against alternative approaches. This was the case in
part because some of these techniques were developed in parallel while others were not
implemented even as part of their original publications. Consequently, while there are
many techniques to solve the Similarity Join problem, there is not a clear understanding
of: (1) how these techniques compare to each other, and (2) which technique to use in
real-world scenarios with specific requirements for data types, distance functions,
dataset sizes, etc. Furthermore, the need for comparative work in the area of data
management was recently highlighted by the editors of a top journal in this area [6].

This paper addresses this problem by focusing on the study, classification and
comparison of the Similarity Join techniques proposed for Big Data systems (using the
MapReduce framework). The main contributions of this paper are:

• The classification of Similarity Join techniques based on the supported data types
and distance functions.

• An extensive set of experimental results. These results include tests that compare
the performance of alternative approaches (based on supported data type and dis-
tance function) under various dataset sizes and distance thresholds.

• The availability of the authors’ open-source implementation of many Similarity Join
algorithms [27]. Our goal is to enable other researchers and practitioners to apply
and extend these algorithms.

The remaining part of this paper is organized as follows. Section 2 presents the
description of all the algorithms considered in our study and a classification of the
algorithms based on the supported data types and distance functions. Section 3 presents
the experimental evaluation results and discussions (this section is divided into sub-
sections that focus on specific data types and distance functions). Finally, Sect. 4
presents the conclusions.

182 Y.N. Silva et al.



2 MapReduce-Based Similarity Join Algorithms

2.1 Classification of the Algorithms

Table 1 presents the MapReduce-based Similarity Join algorithms considered in our
study. For each algorithm, the table shows the supported data types and distance
functions (DFs), and the data types that could be supported by extending the original
algorithms. In order to systematically evaluate the different algorithms, we classify
them based on the supported data types. The experimental section of this paper,
compares all the algorithms that support a given data type and its associated distance
functions.

2.2 Description of the Studied Similarity-Join Algorithms

Naïve Join. The Naïve Join algorithm [22] is compatible with all data types and
distance functions, and works in a single MapReduce job. The algorithm uses a key
space defined by a parameter J, which is proportional to the square root of the number
of reducers (reduce tasks) to be used. During the Map phase, pairs of input data
elements are assigned to a key pair with the form (i, j) where 0� i� j� J. For each

Table 1. Similarity Join algorithms and supported distance functions and data types.

Algorithm
Supported Distance/
Similarity Functions

Supported Data Types

Text/String Numeric Vector Set
Naïve Join Any DF • • * •
Ball Hashing 1 Hamming Distance

Edit Distance
•

Ball Hashing 2 Hamming Distance
Edit Distance

•

Subsequence Edit Distance •
Splitting Hamming Distance

Edit Distance
•

Hamming Code Hamming Distance •
Anchor Points Hamming Distance

Edit Distance
• * *

MRThetaJoin Any DF • • • •
MRSimJoin Any metric DF • • • •
MRSetJoin JS, TC, CC,

Edit Distance*
* •

Online Aggregation JS, RS, DS, SC, VC •
Lookup JS, RS, DS, SC, VC •
Sharding JS, RS, DS, SC, VC •
• Natively Supported 
* Can be extended to support this data type or distance function
JS=Jaccard Similarity, TC=Tanimoto Coefficient, CC=Cosine Coefficient, RS=Ruzicka 
Similarity, DS=Dice Similarity, SC=Set Cosine Sim., VC=Vector Cosine Sim.

An Experimental Survey of MapReduce-Based Similarity Joins 183



input record X, the mapper (map task) outputs key-value pairs with the form ((i, j), X),
such that any two records are mapped to at least one common key. The reducer receives
all of the records for a given key and compares each pair of records outputting the pairs
with distance smaller than or equal to e (distance threshold). The algorithm proposed in
[22] does not consider the case where two records are mapped to more than one
common key. In this case, we solved the problem by outputting only when i = j.

Ball Hashing 1. The Ball Hashing 1 algorithm [22] takes a brute force approach to
solving the Similarity Join problem. This algorithm assumes that the alphabet of the
input value is finite and known. The Map phase takes in a given input record r and
generates a ball of radius e. In effect, for a given join attribute vr, it will generate a set
Vr composed of every possible value within e of vr. For each value Vri in Vr that is not
equal to vr, the Map will emit the key-value pair <Vri, r>. The Map will additionally
output the key-value pair <vr, r>. As vr is the join attribute in r, this ensures a collision
in the Reduce phase with any matching pairs (links). Any Reduce group that contains
such a record (<vr, r>) should be considered an active group and the record r should be
considered native to that group. Any Reduce group that does not have a native record
within it should be considered inactive and does not need to be processed further. In the
active groups, the join matches are generated by combining the native members with
each of the non-native members in the group. The original paper does not consider the
possibility of multiple input records having the same join value. If this is the case, there
is the additional need to join native members among each other as well as all native
records against all non-native records. This algorithm supports string data with the Edit
and Hamming distance functions.

Ball Hashing 2. Ball Hashing 2 [22] is an extension of the Ball Hashing 1 algorithm.
The difference is that in the Map phase, it generates balls of size e/2. Because of this, it
is necessary to process every Reduce group. A brute force comparison is performed in
each Reduce group to find any matches and eliminate the possibility of duplicate
outputs. The algorithm supports string data with Edit and Hamming distance metrics.

Subsequence. Subsequence [22] is an algorithm proposed for string data and the Edit
Distance. The Map phase generates all the (b − e/2)-subsequences of each input string
(b is the string length) and outputs pairs of the form <subsequence, input_string>. The
Reduce phase compares all the records sharing the same subsequence to identify the
Similarity Join matches. The key idea behind this algorithm is that if two strings are
within e, they will share at least one identical subsequence.

Splitting. The Splitting algorithm [22] is composed of a single MapReduce job and is
based on splitting strings into substrings. These substrings are then compared to other
substrings generated from the input dataset. In order to be considered a Similarity Join
match, a pair of strings only needs to share one common substring. In the Map task,
each input string (with length b) is split into substrings of length b/(e + 1). The result
will be composed of b/(b/(e + 1)) substrings. Each substring will be outputted with a
key consisting of its position (i) in the parent string, and the substring that was gen-
erated, si. The value that will be attached to the key is the parent string. Each reducer
will compare (pair wise) all the substrings that have a matching key and output the
pairs that are separated by a distance smaller than or equal to e. To avoid the generation

184 Y.N. Silva et al.



of duplicate pairs at multiple reducers, a match is generated only within the Reduce
group associated with the position of the first common substring between two matching
strings. This distance functions supported by this algorithm are Hamming and Edit
Distance.

Anchor Points. This algorithm distributes the input data into groups where all the
members of a group are within a certain distance of an anchor point [22]. The technique
supports the Hamming and Edit Distance functions. In the case of Hamming Distance,
the algorithm finds first a set of anchor points such that every input record is within e
from at least one anchor. This set is stored in a distributed cache and used at each
mapper. For each input record s, the mapper outputs key-value pairs for every anchor
point that is within 2e of s. The mapper marks the closest anchor point to s as its home
group. In the Reduce phase, the strings of a given home group will be compared to
other strings from other groups that were sent to the same reducer. All strings in the
home group will be compared as well. In the case of Edit Distance, the anchor points
are a subset of the data such that every input record is within e deletions from at least
one anchor. This modified algorithm only works with fixed-length strings. This fact is
not directly stated in the paper but was confirmed by the authors.

Hamming Code. The Hamming Code algorithm [22] is a SJ technique proposed for
string data and the Hamming Distance. Since this algorithm only works when e = 1 and
the strings’ length is one less than a power of 2, it is not included in our evaluation.

MRThetaJoin. MRThetaJoin [23] is a randomized Theta Join algorithm that supports
arbitrary join predicates (including Similarity Join conditions). This approach uses a
single MapReduce job and requires some basic statistics (input cardinality). The
approach uses a model that partitions the input relations using a matrix that considers
all the combinations of records that would be required to answer a cross product. The
matrix cells are then assigned to reducers in a way that minimizes job completion time.
A memory-aware variant is also proposed for the common scenario where partitions do
not fit in memory. Since any Theta Join or Similarity Join is a subset of the
cross-product, the matrix used in this approach can represent any join condition. Thus,
this approach can be used to supports Similarity Joins with any distance function and
data type. For the performance evaluation of Similarity Joins presented in this paper,
we implemented an adaptation of the memory-aware 1-Bucket-Theta algorithm pro-
posed in [25] that uses the single-node QuickJoin algorithm [15] in the reduce function.

MRSimJoin. The MRSimJoin algorithm [20, 21] iteratively partitions the data into
smaller partitions, until each partition is small enough to be processed in a single node.
The process is divided into a sequence of rounds, and each round corresponds to a
MapReduce job. Partitioning is achieved by using a set of pivots, which are a subset of the
records to be partitioned. There are two types of partitions, base partitions and
window-pair partitions. Base partitions hold all of the records closest to a given pivot,
rather than any other pivot. Window-pair partitions hold records within the boundary
between two base partitions. If possible, e.g., Euclidean Distance, the window-pair
partitions should only include the points within e from the hyperplane separating adjacent
base partitions. If this is not possible, a distance is computed to a generalized hyperplane
boundary (lower bound of the distance). This algorithm can be used with any data type

An Experimental Survey of MapReduce-Based Similarity Joins 185



and metric. The experimental section in [20] shows that in most cases the number of
pivots can be adjusted to ensure the algorithm runs in a single MapReduce job.

MRSetJoin. MapReduce Set-Similarity Join [19] is a Similarity Join algorithm that
consists of three stages made up of various MapReduce jobs. In the first stage, data
statistics are generated in order to select good signatures, or tokens, that will be used by
later MapReduce jobs. In the second stage, each record has its record-ID and
join-attribute value assigned to the previously generated tokens, the similarity between
records associated with the same token is computed, and record-ID pairs of similar
records are outputted. In the third stage, pairs of joined records are generated from the
output of the second stage and the original input data. MRSetJoin supports set-based
distance functions like Jaccard Distance and Cosine Coefficient. There are multiple
options presented for each stage, however, the paper states that BTO-PK-BRJ is the
most robust and reliable option. Thus, this option is used in this survey as the repre-
sentative of this technique.

V-Smart-Online Aggregation. Online Aggregation [24] is a Similarity Join algorithm
under the V-SMART-Join framework, which can be used for set and multiset data and
set-based distance functions like Jaccard and Dice. In general, the V-SMART-Join
framework consists of two phases, joining and similarity. Although the framework
includes three different joining phase algorithms, Online Aggregation, Lookup, and
Sharding, only one of the three was selected to participate in the survey. According to
the experimental results in [24], Online Aggregation generally outperforms the
Sharding and Lookup algorithms, and as such it was selected to represent this
approach. The algorithm is based on the computation of Uni(Mi) for each multiset Mi.
Uni(Mi) is the partial result of a unilateral function (e.g., Uni(Mi) = |Mi|). During the
joining phase (one MapReduce job), the Uni(Mi) of a given multiset Mi is joined to all
the elements of Mi. The similarity phase, composed of two MapReduce jobs, builds an
inverted index, computes the similarity between all candidate pairs, and outputs the
Similarity Join matches.

3 Experimental Comparison

This section presents the experimental comparison of previously proposed
MapReduce-based Similarity Join algorithms. One of the key tasks for this survey work
was the implementation of the studied algorithms. While in some cases, the source code
was provided by the original authors (MRSetJoin, MRSimJoin), in most cases, the
source code was not available and consequently had to be implemented as part of our
work (e.g., Ball Hashing 1, Ball Hashing 2, Naïve Join, Splitting, Online Aggregation,
MRThetaJoin). We have made available the source code of all the evaluated algorithms
in [27]. All the algorithms were implemented and evaluated using Hadoop (0.20.2), the
most popular open-source MapReduce framework. The experiments were performed
using a Hadoop cluster running on the Amazon Elastic Compute Cloud (EC2). Unless
otherwise stated, we used a cluster of 10 nodes (1 master + 9 worker nodes) with the
following specifications: 15 GB of memory, 4 virtual cores with 2 EC2 Compute Units
each, 1,690 GB of local instance storage, 64-bit platform. The number of reducers was

186 Y.N. Silva et al.



computed as: 0.95 � ⟨no. worker nodes⟩ � ⟨max reduce tasks per node⟩ = 25.
Table 2 shows configurations details for individual algorithms.

The experiments used a slightly modified version of the Harvard bibliographic
dataset [28]. Specifically, we used a subset of the original dataset and augmented the
record structure with a vector attribute to perform the tests with vector data. Each
record contains the following attributes: unique ID, title, date issued, record change
date, record creation date, Harvard record-ID, first author, all author names, and vector.
The vector attribute is a 10D vector that was generated based on the characters of the
title (multiplied against prime numbers). The vector components are in the range
[0–999]. The minimum and maximum length (number of characters) of each attribute
are as follows: unique ID (9, 9), title (6, 996), date issued (4, 4), record change date (15,
15), record creation date (6, 6), Harvard record-ID (10, 10), first author (6, 94), and all
author names (6, 2462). The dataset for scale factor 1 (SF1) contains 200K records. The
records of each dataset are equally divided between tables R and S.

The datasets for SF greater than 1 were generated in such a way that the number of
matches of any Similarity Join operation in SFN is N times the number of matches in
SF1. For vector data, the datasets for higher SF were obtained adding shifted copies of
the SF1 dataset where the distance between copies were greater than the maximum
value of e. For string data, the datasets for higher SF were obtained adding a copy of
the SF1 data where characters are shifted similarly to the process in [19].

We evaluate the performance of the algorithms by independently analyzing their
execution time while increasing the dataset size (SF) and the distance threshold (e). We
did not include the execution time when an algorithms took a relatively long time
(more than 3 h). We performed four sets of experiments for the following combinations
of data types and distance functions: (1) vector data and Euclidean Distance,
(2) variable-length string (text) data and Edit Distance, (3) fixed-length string data and
Hamming Distance, and (4) set data and Jaccard Distance. Each algorithm was exe-
cuted multiple times; we report the average execution times.

3.1 Comparison of Algorithms for Vector Data – Euclidean Distance

This section compares the performance of the algorithms that support vector data,
namely MRSimJoin and MRThetaJoin. We use the Euclidean Distance function and
perform the distance computations over the 10D vector attribute of the Harvard dataset.

Table 2. Additional configuration details.

Algorithm Configuration Details
Naïve Join J =
MRThetaJoin K = ((|R|+|S|) x b)/m, where |R| and |S| are the cardinalities of R and 

S, b = size in bytes per record, m = memory threshold (64 MB).
MRSimJoin Memory limit for in-memory SJ algorithm = 64 MB.

Number of Pivots = SF x 100.

An Experimental Survey of MapReduce-Based Similarity Joins 187



Increasing Scale Factor. Figures 1 and 2 compare the way MRSimJoin and
MRThetaJoin scale when the data size increases (SF1–SF4). The experiments use 10D
vectors. The experiments in Fig. 1 use a relatively small value of e (5 % of the
maximum possible distance) while the ones in Fig. 2 a relatively large value (15 %).
Figure 1 shows that, for small values of e (5 %), MRSimJoin performs significantly
better than MRThetaJoin when the data size increases. Specifically, the execution time
of MRThetaJoin grows from being 2 times the one of MRSimJoin for SF1 to 7 times
for SF4. The execution time of MRThetaJoin is significantly higher than that of
MRSimJoin because the total size of all the partitions of MRThetaJoin is significantly
larger than that of MRSimJoin. Figure 2 shows that, for larger values of e (15 %),
MRSimJoin still performs better than MRThetaJoin in the case of larger datasets but is
outperformed by MRThetaJoin for small datasets. Specifically, the execution time of
MRThetaJoin is 0.7 times the one of MRSimJoin for SF1 and SF2; and 1.2 and 1.9
times for SF3 and SF4, respectively.

Increasing e. Figures 3 and 4 show how the execution time of MRSimJoin and
MRThetaJoin increase when e increases (1 %–20 %). Figure 3 considers relatively
smaller values of e (1 %–5 %) while Fig. 4 considers larger values (5 %-20 %). The
results in both figures show that the performance of MRSimJoin is better than the one
of MRThetaJoin for all the evaluated values of e. Specifically, in Fig. 3 the execution
time of MRThetaJoin is between 7 (e = 5 %) to 11 (e = 1 %) times the one of
MRSimJoin while in Fig. 4, the execution time of MRThetaJoin is between 1.6
(e = 20 %) to 9.2 (e = 5 %) times the one of MRSimJoin. We can observe that the
performance of MRSimJoin tends to get closer to the one of MRThetaJoin for very
large values of e. In general, the execution time of both algorithms grows when e
grows. The increase in execution time is due to a higher number of distance compu-
tations in both algorithms and slightly larger sizes of window-pair partitions in the case
of MRSimJoin.

From the results presented in this section, we can conclude that MRSimJoin is in
general the best approach to perform Similarity Joins with vector data unless the dataset
size is very small and the distance threshold is extremely large.

3.2 Comparison of Algorithms for Variable-Length String Data – Edit
Distance

This section compares the performance of the Similarity Join algorithms using string
data and the Edit Distance. The tests use the first author name (variable-length: 6–94,
alphabet size: 27) as the join attribute. The evaluated algorithms are: MRSimJoin,
Naïve Join, MRThetaJoin, and Ball Hashing 1. For this last algorithm, we were only
able to obtain results for the test with e = 1. Even using SF1, this algorithm took
significantly longer than the other algorithms. Ball Hashing 2 and Anchor Points are
not included since they do not support variable-length strings. Splitting and Subse-
quence were not included since the brief information included in [22] to support
variable-length strings was not sufficient to implement this feature. Ball Hashing 2 and
Splitting are evaluated in Sect. 3.2 with fixed-length strings. Regarding the Edit

188 Y.N. Silva et al.



Distance metric, we consider the edit operations of insertion and deletion of a character.
Both operations have a cost of 1. This is a common case of the Edit Distance and it is
used in the specification of Naïve Join, Ball Hashing 1, and Ball Hashing 2.
MRSimJoin and MRThetaJoin, which also support the Edit Distance with the character
substitution operation, were adapted to support the metric with insertion and deletion.
The maximum value of e is 100.

Increasing Scale Factor. Figure 5 compares the performance of the algorithms when
the dataset is incrementally scaled from SF1 to SF4. Naïve Join is the best performing
algorithm for SF1 while MRSimJoin performs the best in all the other cases. For SF1,
Naïve Join completed execution within 75 % of the execution time of MRThetaJoin,
and 89 % of that of MRSimJoin. However, as the data size increased, MRSimJoin
outperformed both Naïve Join and MRThetaJoin for SF2-SF4. For these values of SF,
MRSimJoin’s execution time is at most 74 % of that of MRThetaJoin, and at most
76 % of that of Naïve Join. Also, we observed that as the scale factor increased, the
relative advantage of MRSimJoin improved too, and at SF4, MRSimJoin completed
within 54 % of the execution time of MRThetaJoin and within 56 % of that of Naïve
Join.

Increasing e. Figure 6 compares the algorithms when the value of e (distance
threshold) increases from 1 to 4. For e values of 1 and 2, MRSimJoin outperformed the
other algorithms, completing always within 68 % of the execution time of MRThe-
taJoin and within 77 % of that of Naïve Join. The outlier on these tests was Ball
Hashing 1. Specifically, its execution time was nine times the one of MRSimJoin for
e = 1. The Ball Hashing 1 tests using higher values of e were cancelled after they took
significantly longer than the other algorithms. For larger values of e (3 and 4), Naïve
Join outperformed the other algorithms. Specifically, Naïve Join completed within
78 % of MRSimJoin’s execution time, and 89 % of MRThetaJoin’s execution time for
these larger values of e.

Fig. 2. Euclidean - Increasing SF (e = 15 %)Fig. 1. Euclidean - Increasing SF (e = 5 %)

An Experimental Survey of MapReduce-Based Similarity Joins 189



From these results, it can be concluded that MRSimJoin is, in general, the best
approach to perform similarity joins with the Edit Distance (text data) when the dataset
is large (greater than SF1 in our tests) or the distance threshold is relatively small (1 or
2 in our tests). For smaller datasets or larger distance thresholds, Naïve Join is the best
approach among the evaluated algorithms.

3.3 Comparison of Algorithms for Fixed-Length Strings – Hamming
Distance

The tests in this section perform Similarity Joins using Hamming Distance over the first
6 characters of the first author name (fixed-length: 6, alphabet: 27). The evaluated
algorithms are: MRSimJoin, MRThetaJoin, Naïve Join, Splitting, Ball Hashing 1, and
Ball Hashing 2. Anchor Points it is not included since the paper that introduced it
showed that it is outperformed by other algorithms [22]. The maximum value of e is 6.

Fig. 4. Euclidean - Increasing e (large)Fig. 3. Euclidean - Increasing e (small)

Fig. 5. Edit Dist. - Increasing SF Fig. 6. Edit Dist. - Increasing e

190 Y.N. Silva et al.



Increasing Scale Factor. The results of the experiments using increasing scale factors
(SF1–SF4) are represented in Fig. 7. This figure shows that the Splitting algorithm
outperforms all of the other algorithms for all the values of scale factor. Specifically,
Splitting’s execution time is at most 71 % of the one of MRThetaJoin, 60 % of Naïve
Join, and 24 % of MRSimJoin. MRThetaJoin and Naïve Join have very similar results,
with MRThetaJoin slightly outperforming Naïve Join for SF1, SF3 and SF4. The
execution time of MRSimJoin is larger than the ones of the other algorithms compared
in Fig. 7. Ball Hashing 1 and Ball Hashing 2 were excluded from the comparison as
they did not complete within a reasonable amount of time.

Increasing e. Figure 8 shows the results of comparing the algorithms with increasing
values of the distance threshold. In these tests, the Splitting algorithm outperforms all
other algorithms with the exception of e = 3 where MRThetaJoin slightly outperforms
it. Splitting’s execution times are between 11 % (e = 1) and 106 % (e = 3) of those of

Fig. 7. Hamming Dist. - Increasing SF Fig. 8. Hamming Dist. - Increasing e

Fig. 9. Hamming Dist. - Increasing e (1 k) Fig. 10. Jaccard - Increasing SF

An Experimental Survey of MapReduce-Based Similarity Joins 191



MRThetaJoin. Splitting’s execution times are also between 15 % and 92 % of the ones
of Naïve Join, between 3 % and 90 % of MRSimJoin, and less than 4 % of the
execution time of Ball Hashing 1 and Ball Hashing 2. Ball Hashing 1 and 2 are not
reported in Fig. 7 (and only have some data points in Fig. 8) because they did not
return a result under a significantly long time (3 h). Figure 9 presents the execution
time of these algorithms with a significantly smaller dataset (1K records) under mul-
tiple values of e. Observe that even for this small dataset, the execution time of Ball
Hashing 1 is not only significantly larger than that of Ball Hashing 2, but also increases
rapidly. The execution time of Ball Hashing 1 increases from being 2 times the exe-
cution time of Ball Hashing 2 for e = 1 to be 31 times for e = 2. While Ball Hashing 2
clearly outperforms Ball Hashing 1, it is still significantly slower than other algorithms
as shown in Fig. 8.

The results of this section show that in the case of Hamming Distance, the Splitting
algorithm is the best choice for various values of dataset size and distance threshold. In
most of the cases, Naïve Join and MRThetaJoin are the next best performing options.

3.4 Comparison of Algorithms for Set Data – Jaccard Distance

This section compares the performance of the algorithms that support set data, namely
Naïve Join, MRThetaJoin, MRSimJoin, MRSetJoin, and Online Aggregation. The
Lookup and Sharding algorithms were not included in our analysis since they were
found to be generally outperformed by Online Aggregation [24]. We use the Jaccard
Distance function and perform the distance computations over the First Author Name
attribute. To this end, we first converted the author name into a proper set by deleting
spaces and removing duplicates. For instance, the name “John Smith” is converted into
the set {j, o, h, n, s, m, i, t}. The alphabet size and the maximum set size are 26. In this
case, the range of e is: 0 (0 %)–1 (100 %).

Increasing Scale Factor. Figure 10 compares the way the algorithms scale when the
dataset size increases (SF1–SF4). Naïve Join is the slowest algorithm, having a SF1
runtime that is at least four times the ones of the other algorithms in this figure. It is also
too slow to be executed with any of the higher scale factor values. MRThetaJoin was
executed with SF1 and SF2 but its runtime was too long to be included for larger
datasets. MRSimJoin and MRSetJoin have fairly similar execution times. MRSetJoin
performs better with SF1–SF3 but its relative advantage decreases as the dataset size
increases. Specifically, MRSetJoin’s execution time is 33 %, 50 % and 73 % of those
of MRSimJoin for SF1, SF2 and SF3, respectively. MRSimJoin outperforms MRSet-
Join for SF4, where MRSimJoin’s execution time is 89 % of the one of MRSetJoin.
The results of the Online Aggregation algorithm were not included because these tests
took too long and were cancelled or did not complete properly. We were able to
successfully run this algorithm only with very small datasets (*1K).

Increasing e. Figure 11 shows how the execution time of the evaluated algorithms
increases when e increases (4 %–16 %). Naïve Join was the slowest algorithm and its
runtime was at least 3.5 times of the ones of the other algorithms. MRSetJoin and

192 Y.N. Silva et al.



MRSimJoin are the best performing algorithms. MRSetJoin’s advantage over
MRSimJoin tends to increase when e increases. Specifically, MRSimJoin’s execution
time is 1.8 times the one of MRSetJoin for SF1 and 4.7 for SF4. Figure 12 provides
additional details of the two best performing algorithms (MRSetJoin and MRSimJoin).
This figure compares the algorithms’ performance using SF4. Figure 12 shows that for
a larger dataset (SF4), the relative advantage of MRSetJoin over MRSimJoin decreases.
In this case, the execution time of MRSimJoin is between 0.8 and 1.8 of those of
MRSetJoin.

The results presented in this section indicate that MRSetJoin is, in general, the best
algorithm for set data and Jaccard Distance. MRSimJoin, which performed second in
most tests, should be considered as an alternative particularly for very large datasets
where it could, in fact, outperform MRSetJoin.

4 Conclusions

MapReduce is widely considered one of the key processing frameworks for Big Data
and the Similarity Join is one of the key operations for analyzing large datasets in many
application scenarios. While many MapReduce-based Similarity Join algorithms have
been proposed, many of these techniques were not experimentally compared against
alternative approaches and some of them were not even implemented as part of the
original publications. This paper aims to shed light on how the proposed algorithms
compare to each other qualitatively (supported data types and distance functions) and
quantitatively (execution time trends). The paper compares the performance of the
algorithms when the dataset size and the distance threshold increase. Furthermore, the
paper evaluates the algorithms under different combinations of data type (vectors,
same-length strings, variable-length strings, and sets) and distance functions (Euclidean
Distance, Hamming Distance, Edit Distance, and Jaccard Distance). One of the key
findings of our study is that the proposed algorithms vary significantly in terms of the
supported distance functions, e.g., algorithms like MRSimJoin and MRThetaJoin
support multiple metrics while Subsequence and Hamming Code support only one.
There is also not a single algorithm that outperforms all the others for all the evaluated

Fig. 11. Jaccard - Increasing e (SF1) Fig. 12. Jaccard - Increasing e (SF4)

An Experimental Survey of MapReduce-Based Similarity Joins 193



data types and distance functions. Instead, in some cases, an algorithm performs
consistently better than the others for a given data type and metric, while in others, the
identification of the best algorithm depends on the dataset size and distance threshold.
The authors have made available the source code of all the implemented algorithms to
enable other researchers and practitioners to apply and extend these algorithms.

References

1. Silva, Y.N., Aref, W.G., Ali, M.: The similarity join database operator. In: ICDE (2010)
2. Silva, Y.N., Pearson, S.: Exploiting database similarity joins for metric spaces. In: VLDB

(2012)
3. Silva, Y.N., Aly, A.M., Aref, W.G., Larson, P.-A.: SimDB: a similarity-aware database

system. In: SIGMOD (2010)
4. Silva, Y.N., Aref, W.G., Larson, P.-A., Pearson, S., Ali, M.: Similarity queries: their

conceptual evaluation, transformations, and processing. VLDB J. 22(3), 395–420 (2013)
5. Silva, Y.N., Aref, W.G.: Similarity-aware query processing and optimization. In: VLDB

Ph.D. Workshop, France (2009)
6. Bernstein, P.A., Jensen, C.S., Tan, K.-L.: A call for surveys. SIGMOD Rec. 41(2), 47 (2012)
7. Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:

Scope: easy and efficient parallel processing of massive data sets. In: VLDB (2008)
8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,

Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2), 1–26 (2008)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI
(2004)

10. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: SOSP (2003)
11. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel

programs from sequential building blocks. In: EuroSys (2007)
12. Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using eD-index. In:

Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736,
pp. 484–493. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45227-0_48

13. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.-P.: Epsilon grid order: an algorithm for
the similarity join on massive high-dimensional data. In: SIGMOD (2001)

14. Dittrich, J.-P., Seeger, B.: GESS: a scalable similarity join algorithm for mining large data
sets in high dimensional spaces. In: SIGKDD (2001)

15. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans. Database Syst. 33,
7:1–7:38 (2008)

16. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in data
cleaning. In: ICDE (2006)

17. Chaudhuri, S., Ganti, V., Kaushik, R.: Data debugger: an operator-centric approach for data
quality solutions. IEEE Data Eng. Bull. 29(2), 60–66 (2006)

18. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.:
Approximate string joins in a database (almost) for free. In: VLDB (2001)

19. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapReduce. In:
SIGMOD 2010 (2010)

20. Silva, Y.N., Reed, J.M., Tsosie, L.M.: MapReduce-based similarity join for metric spaces.
In: VLDB/Cloud-I (2012)

194 Y.N. Silva et al.

http://dx.doi.org/10.1007/978-3-540-45227-0_48


21. Silva, Y.N., Reed, J.M.: Exploiting MapReduce-based similarity joins. In: SIGMOD (2012)
22. Afrati, F.N., Sarma, A.D., Menestrina, D., Parameswaran, A., Ullman, J.D.: Fuzzy joins

using MapReduce. In: ICDE (2012)
23. Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: SIGMOD (2011)
24. Metwally, A., Faloutsos, C.: V-SMART-join: a scalable MapReduce framework for all-pair

similarity joins of multisets and vectors. In: VLDB (2012)
25. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate detection.

In: WWW (2008)
26. Apache Hadoop. http://hadoop.apache.org/
27. SimCloud Project: MapReduce-based similarity join survey. http://www.public.asu.edu/

*ynsilva/SimCloud/SJSurvey
28. Harvard Library: Harvard bibliographic dataset. http://library.harvard.edu/open-metadata

An Experimental Survey of MapReduce-Based Similarity Joins 195

http://hadoop.apache.org/
http://www.public.asu.edu/%7eynsilva/SimCloud/SJSurvey
http://www.public.asu.edu/%7eynsilva/SimCloud/SJSurvey
http://library.harvard.edu/open-metadata


YFCC100M-HNfc6: A Large-Scale Deep
Features Benchmark for Similarity Search

Giuseppe Amato, Fabrizio Falchi(B), Claudio Gennaro, and Fausto Rabitti

ISTI-CNR, via G. Moruzzi 1, 56124 Pisa, Italy
{giuseppe.amato,fabrizio.falchi,claudio.gennaro,

fausto.rabitti}@isti.cnr.it

Abstract. In this paper, we present YFCC100M-HNfc6, a benchmark
consisting of 97M deep features extracted from the Yahoo Creative Com-
mons 100M (YFCC100M) dataset. Three type of features were extracted
using a state-of-the-art Convolutional Neural Network trained on the
ImageNet and Places datasets. Together with the features, we made pub-
licly available a set of 1,000 queries and k-NN results obtained by sequen-
tial scan. We first report detailed statistical information on both the
features and search results. Then, we show an example of performance
evaluation, performed using this benchmark, on the MI-File approximate
similarity access method.

Keywords: Similarity search · Deep features · Content-based image
retrieval · Convolutional neural networks · YFCC100M

1 Introduction

The ability to efficiently search for similarity in large databases of images is a crit-
ical aspect for a number of content-based retrieval applications like web search
engines, e-commerce, museum collections, medical image processing, etc. To
address this problem, several approaches based on index methods have been pro-
posed in the literature, such as approximate access methods based permutation-
based indices [4,10,12,16,22]. However, an important issue in comparing perfor-
mance of different access methods is the availability of realistic benchmarks, of
very large size.

In this paper, we present YFCC100M-HNfc6, a similarity-search benchmark
consisting of three types of features extracted from 97M images, and pre-computed
similarity search results for k-NN searches (k = 10, 001) on 1000 queries. To make
scalability assessment of access methods, precomputed results for the 1000 queries
were generated for increasing sizes of the dataset at intermediate steps of 1M. The
features of the benchmark were extracted from the YFCC100M [21] dataset using
state of the art Deep Convolutional Neural Networks.

Deep learning methods are “representation-learning methods with multiple
levels of representation, obtained by composing simple but non-linear modules
that each transform the representation at one level (starting with the raw input)
into a representation at a higher, slightly more abstract level” [15]. Starting from
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 196–209, 2016.
DOI: 10.1007/978-3-319-46759-7 15



YFCC100M-HNfc6 197

2012 [14], Deep Convolutional Neural Networks (DCCNs) have attracted enor-
mous interest within the Computer Vision community because of the state-of-
the-art results achieved in image classification tasks. The relevance of the internal
representation learned by the neural network during training have been proved
by recent works that the activation produced by an image within the intermediate
layers can be used as a high-level descriptor of the image visual content [6,8,17,19].

The importance of having a very large dataset of publicly available features
has been proven by the Content-based Photo Image Retrieval (CoPhIR) [7]1 we
released on 2009, which has been used by many scientists working in the field
of very large scale similarity search algorithms. The CoPhIR dataset consists of
MPEG-7 features extracted from about 107M Flickr! images. Given the impres-
sive improvement recently achieved in many Content-Based Image Retrieval
applications by using Deep Features, we decided to create a new benchmark
based on features obtained as activations of DCNNs. To accomplish to this task
we had the opportunity to have access to an already publicly available image
dataset, i.e., the YFCC100M [21], from which we extracted the deep features,
and we collaborated with the team of the Multimedia Commons Initiative [2]
that made our deep features also available through their website.

The availability of extracted features from large datasets contributes to the
research in the field in three ways. First, it allows a fair comparison between
similarity access methods. In fact, details in the feature extractions could result
in slightly different features obtained by various research group making impos-
sible comparing the performance measures obtained. Second, the extraction of
some features, as the deep features, is computational demanding. Extracting fea-
tures from a collection of 100M documents can take months on a standard PC
or special hardware, as clusters of GPUs, are required to do it in days. Third,
when the images of the dataset are public available online (as for CoPhIR and
YFCC100M), having the features allows researchers to index without storing
them locally but just pointing to them whenever results have to be shown.

The rest of the paper is organized as follows. In Sect. 2, we briefly describe
related work. Detailed information about the dataset and the features extracted
are given in Sect. 3. In Sect. 4, we give statistical information about both features
and search results. Section 5 provides some general metrics for measuring the
quality of approximate results and a case study of their application. Section 6
concludes the paper.

2 Related Work

There are other very large datasets that can be used as a benchmark for assessing
the performance of similarity search access methods. Among the most relevant
we mention the CoPhIR and the TEXMEX dataset.

The CoPhIR dataset [7] consists of 107 millions MPEG-7 features extracted
from images. Not all the images in CoPhIR have a creative common license.

1 http://cophir.isti.cnr.it/.

http://cophir.isti.cnr.it/


198 G. Amato et al.

Moreover, Deep Features have been proved to outperform previous approach as
MPEG-7 in many tasks [17].

The ANN SIFT1B dataset from the TEXMEX corpus2 consists of one billion
SIFT local features of 128 dimensions extracted from about 1 million images.
Any image has about 1,000 features and each of them would be a query for the
system. Moreover, a ground truth with image as queries was note defined. It is
worth to mention that, in terms of images, our proposed dataset is 2 order of
magnitude bigger and the proposed deep features have larger dimensionality.

Deep Convolutional Neural Networks (DCNNs) have recently become state-
of-the-art approach for many computer vision task such as image classification
[14,20], image retrieval [6,11,14,17,20] and object recognition [11]. The use of
the activation of intermediate layers as a high-level descriptor of the image visual
content has been also proved to be effective by many recent works [6,8,17,19].
Rectified Linear Unit (ReLU) is part of almost all of the DCNN models and is
typically applied also for extracting deep features from images [8,11]. However,
there are works in which the ReLU was omitted [6,17,19]. The L2 Normalization
of the feature in order to and compare using the Euclidean distance is a standard
de-facto for deep features [8,19]. It is worth to mention, that the resulting ranking
of similarity search is equivalent to the cosine similarity. Principal Component
Analysis has been successfully used in [6,18].

3 The YFCC100M-HNfc6 Dataset

The Yahoo Flickr Creative Commons 100M (YFCC100M) [21] consists of
approximately 99.2 million photos and 0.8 million videos, all uploaded to Flickr
between 2004 and 2014 and published under a Creative Commons commercial or
non commercial license. Metadata for the YFCC100M dataset are publicly avail-
able through Yahoo! Webscope3. YFCC100M images can be obtained directly
from Flickr! using the information reported in the metadata or through the Mul-
timedia Commons Initiative website4 using the hash of the original image also
reported in the metadata.

The YFCC100M-HNfc6 was obtained by extracting, from the YFCC100M
images, the HNfc6 Deep Features, described in Sect. 3.1, and by pre-computing
the k-NN results for 1,000 queries. We selected the first 1,000 images of our order-
ing (which is random) as similarity search queries. We performed k-NN search with
k = 10, 001 sequentially scanning the data. We report results at intermediate steps
of 1 million objects in order to allow scalability measures of access methods. The
query itself is between the results generated at any intermediate step. The results
of the k-NN queries can be used as ground-truth results for ranges up to 0.629 for
the Euclidean distance and up to 606 for the Hamming. We did not to consider
images smaller than 4 KB; therefore, we extracted features from 96,976,180 of the
99,206,564 images in YFCC100M [21]. YFCC100M-HNFc6 features are available
2 http://corpus-texmex.irisa.fr/.
3 https://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67.
4 https://multimediacommons.wordpress.com.

http://corpus-texmex.irisa.fr/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67
https://multimediacommons.wordpress.com


YFCC100M-HNfc6 199

in 97 zipped text files in which the objects have been randomly ordered. Thus,
any subset of the full dataset contains random objects from the full dataset. The
features, the k-NN results, demos of on-line systems indexing the features, and
other information is available on the deep features website [1]. As a result of dif-
ferent processing of the neuron activation, we give three distinct features: ReLU-
L2Norm, which is the reference feature for the dataset; Binary, which is intended
for high efficiency and Raw, which allows other researchers to test other type of
processing of the neurons activations. Information about the extracted features is
given in following section.

3.1 The HNfc6 Deep Features

Deep features have been extracted with a trained model publicly available for
the popular Caffe framework [13]. Many deep neural network models and in
particular trained models are available for this framework at5. Among them,
we chose the HybridNet for several reasons: first, its architecture is the same
of the famous AlexNet [14]; second, the HybridNet has been trained not only
on the ImageNet subset used for ILSVRC competitions (as many others), but
also on the Places Database [23]; last, but not least, experiments conducted on
various datasets demonstrate the good transferability of the learning [5,8,23].
We decided to use the activation of the first fully connected layer (i.e., fc6) given
the results reported on [6,8,11]. It is worth to mention that the activation of the
second fully connected layer (i.e., fc7) can be obtained from the fc6 activation
with a simple matrix operation using the pre-trained weights [1].

As a result of different processing of the neuron activation, we give three
distinct features described in the following.

ReLU-L2Norm. The reference features of our YFCC100M-HNfc6 data are
4,096 dimensional L2 Normalized vectors corresponding to the activation of the
neurons of the HybridNet fc6 layer after the ReLU. This activation function,
which is part of the HybridNet Convolutional Neural Network, simply sets to
zero all the elements of the vectors that are negative. The distance to be used
to compare is the Euclidean (aka L2 distance). The ranking of the results for
a query using a combination of the L2 normalization and Euclidean distance is
the same to the ones using the Cosine similarity of the original feature vectors.

Binary. We provide a binary version of the deep features consisting of 4,096
bits (i.e., 512 bytes). We simply encoded the positive values of the activations
as 1 s, while zeros and negative values as 0 s. We evaluated k-NN results also for
these features using the Hamming distance.

Raw. The activations of the fc6 neurons without the ReLU are given for anyone
that would like to try approaches different from the previous ones and can be
5 https://github.com/BVLC/caffe/wiki/Model-Zoo.

https://github.com/BVLC/caffe/wiki/Model-Zoo


200 G. Amato et al.

Fig. 1. Cumulative distribution function
and probability density of n. positive ele-
ments per image.

Fig. 2. Cumulative distribution function
of percentage of positives per feature
element

useful to researchers willing to test new processing of neuron activations and
experiments. We also give a k-NN results for these features comparing them
with the Euclidean distance after the L2 Normalization. Please note that the
values given on the deep features website [1] are not L2 Normalized.

Please note that the fc7 layer activation can be obtained from the raw fc6
data quite easily and without the use of any external library. On the deep features
website, we give all the necessary information and a code example for anyone
interested.

4 Statistical Analysis

In this Section, we report detailed statical information for the proposed bench-
mark. As reported in the previous Section, YFCC100M-HNfc6 consists of three
version of deep features, which are the results of different processing of the exact
values of the neuron activation.

We first show some statistics about the sign of the activation of the neurons
that constitute the deep features. Each neuron of a hidden layer, as the fc6 we
considered, basically reports whether a specific high level feature, learned during
the training phase, is found in the input image. The sign of the activation reports
if the specific feature was found or not, while the absolute value is a measure
of the confidence on this information. These statistic also illustrate the sparsity
of both the ReLU-L2Norm and Binary features. Please note that the sparsity of
the features is relevant for any access methods that would consider compression
or techniques that require sparse information as inverted files.

In Fig. 1, we report the cumulative distribution function and probability den-
sity function for the number of positive values in features. This statistic is the
very same for the ReLU-L2Norm, Raw, and Binary. In particular, the amount
of positives has the following statistics: min = 221, mode = 919, median = 972,
mean = 972 and max = 2,201. The results show that on average, each image has
about 25 % of positive elements. Thus, theReLU-L2Norm vectors are quite sparse.



YFCC100M-HNfc6 201

Fig. 3. Cumulative distribution function (probability density as dotted line) for both
Euclidean and Hamming distances

We now consider each vector component (i.e., each neuron in the fc6 layer)
individually. The goal of this analysis is evaluating the sparsity and estimating
the usefulness of each particular element of the feature vector. As an example,
an element whose values is always zero would be useless. Moreover, the over-
all sparsity of the data (shown in Fig. 1) could be the results of very different
distribution of the values across the vector elements. In Fig. 2, we report the
cumulative distribution related to the percentage of positives for an element all
over the dataset. The graph shows that there is a 10 % of the vector components
that have positive values in less than 5 % of the images, while there is 10 % of
elements that are positive in more than 40 % of the images (that is, there is 90 %
of elements that are positive in less than 40 % of the images). Overall, the results
show that the sparsity is not equally spread across the feature element. More-
over, there are neurons which are almost never activated by the input images.
The opposite, neurons activated by almost any image, do not exist.

We now focus on the distribution of distances. In Fig. 3, we report the cumu-
lative and probability density functions for both the Euclidean distance applied
to the ReLU-L2Norm features (a) and the Hamming distance applied to the fea-
tures of Binary. In Table 1, we report the metric space intrinsic dimensionality
[9] defined as μ2/(2σ2), and other information also related to these distributions.

The ReLU-L2Norm features in conjunction with the Euclidean distance
appear to be very hard to index. The course of dimensionality is revealed in
the graph and confirmed by the high intrinsic dimensionality. On the contrary,
the Binary features combined with the Hamming distance reveal an intrinsic
dimensionality of only 35 and the distribution is very similar to a Gaussian.

In Fig. 4, we analyse the amount of intersection between the results of the
1,000 k-NN queries we performed by sequentially scanning the dataset for the
aim of creating the ground-truths that we made public available on our website.
We compare the results obtained with the ReLU-L2Norm and Binary features



202 G. Amato et al.

Table 1. Intrinsic Dimensionality

Euclidean Hamming

Intrinsic dimensionality (μ2/(2σ2)) 276 35

Variance 0.0029 27057

Standard deviation (σ) 0.054 164.5

Mean (μ) 1.27 1383

Mode 1.28 1388

Fig. 4. Intersection between Euclidean and Hamming k-NN results varying k used for
the k-NN search (with and without the query in the dataset).

reporting the average intersection varying k. We also considered the cases in
which the query is between the results or is removed. When the query is in the
result, at least the query itself is in the intersection. So, for instance, we have
100 % intersection for k = 1. The most interesting curve is the one in which we
do not consider the query itself in the results. We obtained an intersection of
about 0.4 for k between 1 and 1,000. It is also worth to note that the intersection
increase with k.

In Fig. 5, we consider the distance of the results in our k-NN queries over
the ReLU-L2Norm feature varying k reporting min, mean, max, 10-th and 90-th
percentiles. The graph shows that 90 % of the first 10 results for each query
have a distance below 1.0. Unfortunately this distance is the same we obtain
as mean for the 10,000 result. Moreover, for 10 % of the queries we have a first
result at a distance greater than 0.9, which is the mean value we obtained for the
result at position 1,000. In other words, while deep features have been proven
to be effective in ranking, the value of the distance itself does not appear to be
meaningful. This is also an effect of the high intrinsic dimensionality of the space
and the curse of dimensionality.

4.1 Online CBIR Systems Using YFCC100M-HNfc6

We have also created and put on-line two different CBIR systems that use the
YFCC100M-HNfc6 benchmark. One system is based on the the Metric Inverted



YFCC100M-HNfc6 203

Fig. 5. Mean, min, max, 10-th and 90-th the k-th results distances.

File (MI-File) technique [4]. MI-File uses an inverted file to store relationships
between permutations, and some approximations and optimizations to improve
both efficiency and effectiveness. The basic idea is that entries (the lexicon) of the
inverted file are the set of permutants (or pivots) P . The posting list associated
with an entry pi ∈ P is a list of pairs (o,Π−1

o (i)), o ∈ C, i.e. a list where each
object o of the dataset C is associated with the position of the pivot pi in Πo.

The second system is based on the LuQ approach [3]. LuQ represents each
DNCC feature as a text document and uses a NoSQL database (Apache Lucene)
for efficiently indexing and searching purposes. It exploits the quantization of
the vector components of the DCNN features, in which each real-valued vector
component xi is transformed in a natural numbers ni given by �Qxi�; where
�� denotes the floor function and Q is a multiplication factor > 1 that works
as a quantization factor. ni are then used as term frequencies for the “term-
components” of the text document representing the feature vectors.

All the 97M features vectors of YFCC100M-HNfc6 were indexed using MI-
File and LuQ approaches. The corresponding on-line demos are available at
http://mifile.deepfeatures.org and http://melisandre.deepfeatures.org.

The whole Lucene 5.5 archive of LuQ approach is also available for download
from the deep features website [1]. The advantage of this representation is that
can be directly queried with Lucene by simply extracting the term vectors from
the archive.

5 Performance Evaluation of Similarity Search
Techniques

Performance assessment and comparison of similarity search techniques requires,
in addition to a common dataset, also a common methodology to the execution
of the experiments. Experiments must be executed using objective measures and
should be reproducible so that other researcher can validate them and compare
against other techniques.

http://mifile.deepfeatures.org
http://melisandre.deepfeatures.org


204 G. Amato et al.

In the following, we discuss some useful performance measures that can be
used to assess similarity search methods. Then, we show an example of perfor-
mance assessment of a similarity search technique using the YFCC100M-HNfc6
benchmark and some of these performance measures.

Performance measures can be broadly classified into measures for assessing
the efficiency and measures for assessing the accuracy of similarity search algo-
rithms. Exact similarity search algorithms, that is algorithms that retrieve all
objects that satisfy a similarity query, require just assessment of their efficiency.
However, many popular similarity search methods are approximate, i.e., might
loose some qualifying objects and can retrieve some non-qualifying objects. In
this case, therefore, the assessment of the quality of the results is relevant, to
determine the trade-off between efficiency and accuracy.

A very obvious measure to assess efficiency of similarity search algorithms is
measuring the average query processing time computed on a reasonable number
of different queries. Unfortunately, this measures is not easily reproducible and
objective. Query processing time depends on several aspects that are not easily
controllable. Different hardware architectures, software installed, operating sys-
tem, running environments, programming languages, can significantly affect the
results.

A more objective measure, when data to be searched cannot be stored in
main memory, is the number of disk block reads. All hard disks read data in
blocks, for instance of size 4 K bytes. Reading more disk blocks means more time
spent transferring data from disk to memory. This measure can give significant
information both for traditional hard disks and for solid state disks. In case of
traditional hard disks, it can be useful to distinguish between consecutively stored
disk block reads and randomly stored disk block reads. Consecutively stored disk
block reads do not require disk seeks, so they are order of magnitude faster than
randomly stored disk block reads. However, this differentiation is not relevant
in case of solid state disks, where there is practically no disk seek cost.

Another useful objective measure is the number of object reads. Similarity
search algorithms generally access data from the disk either for accessing data
structures of the index or for retrieving objects to be checked against the query
conditions. The number of object reads gives an idea of the improvement of
performance with respect to an exhaustive sequential scan of the entire dataset.
A similar performance measure is the number of distance computations. In many
realistic cases, the distance computation has an high cost as well. Counting the
number of computed distances is useful as well, especially in those cases where
part or all objects are stored in main memory.

Approximate similarity search methods offer improvement of efficient of some
orders of magnitude with respect to exact similarity search algorithms, at the
expense of some degradation of the accuracy. To assess the quality of approxi-
mate similarity search methods, a ground-truth must be available for the dataset,
built using exact similarity search queries. In YFCC100M-HNfc6 the ground-
truth is composed of 1,000 different queries for which the 10,001 nearest neigh-
bours were retrieved. Ground-truth was generated using the entire dataset, and



YFCC100M-HNfc6 205

also smaller portions with size multiple of one million, to allow researchers to
both test on a portion of the dataset and study scalability. A discussion on mea-
sures for assessing the quality of approximate similarity search can be found in
[22]. Here we report some of those measures.

Two popular measures to assess quality of search results are the Precision
and Recall measures. These can also be effectively used in our case. Let Q be a
similarity query, for instance a range search or a k-NN search. Let ERQ be the
sorted exact similarity search result set, and ARQ be the sorted approximate
similarity search result set. Let | · | denote the size of a set. The precision P is
the ratio between the number of correct results in the approximate result set,
by the total size of the approximate result set:

P =
|ARQ ∩ ERQ|

|ARQ| .

The recall R is the ratio between the number of correct results in the
approximate result set and the number of correct results that should have been
retrieved:

R =
|ARQ ∩ ERQ|

|ERQ| .

An additional useful way to assess the quality of approximate results is to
evaluate the discrepancy between the sorted approximate result set and the
exact result set. This can be measured in terms of the difference in position of
the objects between these sets. Let X be the entire dataset, XQ the entire dataset
sorted according to the distance from query object in query Q, o = ARQ[i] is
the i-th object in the sorted approximate result set ARQ, XQ(o) is the position
of object o in sorted sets XQ. The Error on the Position, EP , can be defined as
a normalized version of the Induced Sperman Footrule distance as follows:

EP =
∑|ARQ|

i=1 |XQ(ARQ[i]) − i|
|ARQ| · |X| .

The error on position measures the difference in positions between the
approximate result and the exact result, averaged for all retrieved objects, and
normalized dividing by the size of the dataset. Suppose the error on position is
EP = 10−5, on a dataset of 1 millions objects. This means that on average, the
difference in position of retrieved objects, between the approximate and exact
results, is 10−5 · 1, 000, 000 = 10.

Clearly all above measures should be averaged on several queries. As we
said before, YFCC100M-HNfc6 offers k-NN results for 1,000 queries, so these
measures can be averaged on those queries.

5.1 Performance Evaluation Example

In the following, we show some an example of performance assessments obtained
using the full binary YFCC100M-HNfc6 benchmark and some of the performance



206 G. Amato et al.

measures mentioned in the previous section. The method that we test is the MI-
File approximate similarity search index [4]. MI-File is a permutation based
method that uses inverted files to perform fast approximate execution of k-NN
queries. MI-File offers the following parameters to trade efficiency with accuracy:

– Amplification factor amp: when searching for the k-NN the MI-File retrieves
a candidate set of k′ = amp · k objects, reorders it according to the original
distance function, and returns the top-k objects. The larger amp, the higher
the search cost, and the higher the accuracy.

– data object permutation length ki: the permutation representing a data object
is obtained using the ki closest reference objects out of the total set of reference
objects. The value of ki determines the number of posting lists containing a
reference to the object being inserted.

– Query permutation length ks: the permutation representing the query is
obtained using the ks closest reference objects out of the total set of refer-
ence objects. The value of ks determines the number of posting lists accessed
during a query execution.

– Maximum position difference mpd: posting lists are scanned considering entries
referring objects whose reference objects position difference in their permuta-
tion, with respect to the query permutation, is at most mpd. The higher mpd,
the more entries are retrieved from the posting lists.

Please see [4] for further details on the MI-File and its parameters usage.
In our experiments, we indexed the entire binary YFCC100M-HNfc6 dataset,

using ki = 100. The total number of reference objects for building permutations
is 20,000. The queries were executed with amp ranging from 1 to 70. The values
used for ks ranged from 1 to 50 and mpd = ks. We executed 100-NN queries
using the 1,000 queries of the ground truth, and performance measures were
obtained as average of the measures computed for all query. Results are shown
in Fig. 6.

The two upper figures show the relationships between the number of disk
blocks accessed and the quality of results. Disk block size is 4 K bytes. Every
plot corresponds to different setting for amp, and the amount of disk blocks
accessed was tuned by setting the ks parameter. MI-File reaches a recall of 75 %
with a number of disk block accesses around 30,000. For the same disk access
cost, we have an error on position of 2 ·10−6. This means that the on average the
difference in position of retrieved objects, between the approximate and exact
results, on a dataset of 100M objects, is around 200 positions. However, given
that the recall is 0.75 %, so 75 out of 100 objects are correctly retrieved and their
difference in position can be at most 25, most of the position error is due to the
few objects (25 %) that were erroneously retrieved in place of the exact results.

The two bottom graphs show the relationships between the number of data-
base objects accessed and the quality of the results. Here, the index access cost is
not taken into account. In this case, 7,000 objects out of 100M total objects have
to be accessed to have a recall of almost 75 % and a position error of 2 · 10−6.

An objective estimation of the average query processing time can be obtained
from the number of disk blocks accessed and the Input/Output Operations Per



YFCC100M-HNfc6 207

Fig. 6. Experiments executed indexing the YFCC100M-HNfc6 binary features with
the MI-File considering k-NN search with k = 100



208 G. Amato et al.

Second (IOPS) of the disk being used. For instance with a solid state disk having
8,600 IOPS, the expected elapsed time of a query reading 30,000 disk blocks of
4 K each, is around 3.5 s.

It is also worth mentioning that, in this example of performance evaluation,
precision is always equal to recall. In fact the denominator, in the precision
and recall definitions, is equal to the total number of retrieved objects, which
is k = 100 both for approximate and exact search, and the numerator is always
the number of correct objects retrieved.

6 Conclusion

In this paper, we presented YFCC100M-HNfc6: a benchmark for evaluating
content-based image retrieval systems consisting of 97M deep features extracted
from the YFCC100M dataset. Together with detailed statical information for
the proposed dataset, we reported performance assessment and comparison that
can be used to assess similarity search methods with common methodology to
the execution of the experiments. The benchmark is publicly available on the
Deep Features website [1].

Acknowledgments. This work was partially founded by: EAGLE, Europeana net-
work of Ancient Greek and Latin Epigraphy, co-founded by the European Commision,
CIP-ICT-PSP.2012.2.1 - Europeana and creativity, Grant Agreement n. 325122; and
Smart News, Social sensing for breakingnews, co-founded by the Tuscnay region under
the FAR-FAS 2014 program, CUP CIPE D58C15000270008.

References

1. Deep features. http://www.deepfeatures.org. Accessed 23 May 2016
2. The multimedia commons initiative. https://multimediacommons.wordpress.com/.

Accessed 23 May 2016
3. Amato, G., Debole, F., Falchi, F., Gennaro, C., Rabitti, F.: Large scale indexing

and searching deep convolutional neural network features. In: Madria, S., Hara, T.
(eds.) DaWaK 2016. LNCS, vol. 9829, pp. 213–224. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-43946-4 14

4. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable
approximate similarity search. Multimedia Tools Appl. 71(3), 1333–1362 (2014).
http://dx.doi.org/10.1007/s11042-012-1271-1

5. Azizpour, H., Razavian, A., Sullivan, J., Maki, A., Carlsson, S.: From generic to
specific deep representations for visual recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 36–45
(2015)

6. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image
retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014,
Part I. LNCS, vol. 8689, pp. 584–599. Springer, Heidelberg (2014)

7. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.:
CoPhIR: a test collection for content-based image retrieval. CoRR abs/0905.4627v2
(2009). http://cophir.isti.cnr.it

http://www.deepfeatures.org
https://multimediacommons.wordpress.com/
http://dx.doi.org/10.1007/978-3-319-43946-4_14
http://dx.doi.org/10.1007/s11042-012-1271-1
http://cophir.isti.cnr.it


YFCC100M-HNfc6 209

8. Chandrasekhar, V., Lin, J., Morère, O., Goh, H., Veillard, A.: A practical
guide to cnns and fisher vectors for image instance retrieval. arXiv preprint
arXiv:1508.02496 (2015)

9. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. (CSUR) 33(3), 273–321 (2001)

10. Chavez, G., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

11. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
Decaf: a deep convolutional activation feature for generic visual recognition. arXiv
preprint arXiv:1310.1531 (2013)

12. Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based
image retrieval based on the lucene search engine library. In: Lalmas, M., Jose, J.,
Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp.
55–66. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15464-5 8

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

15. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

16. Mohamed, H., Marchand-Maillet, S.: Quantized ranking for permutation-based
indexing. Inf. Syst. 52, 163–175 (2015)

17. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
an astounding baseline for recognition. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 512–519. IEEE (2014)

18. Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: A baseline for visual instance
retrieval with deep convolutional networks. arXiv preprint arXiv:1412.6574 (2014)

19. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat:
integrated recognition, localization and detection using convolutional networks.
arXiv preprint arXiv:1312.6229 (2013)

20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

21. Thomee, B., Elizalde, B., Shamma, D.A., Ni, K., Friedland, G., Poland, D., Borth,
D., Li, L.J.: YFCC100M: the new data in multimedia research. Commun. ACM
59(2), 64–73 (2016)

22. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach, Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)

23. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Advances in neural information
processing systems, pp. 487–495 (2014)

http://arxiv.org/abs/1508.02496
http://arXiv.org/abs/1508.02496
http://arxiv.org/abs/1310.1531
http://arXiv.org/abs/1310.1531
http://dx.doi.org/10.1007/978-3-642-15464-5_8
http://arxiv.org/abs/1408.5093
http://arXiv.org/abs/1408.5093
http://arxiv.org/abs/1412.6574
http://arXiv.org/abs/1412.6574
http://arxiv.org/abs/1312.6229
http://arXiv.org/abs/1312.6229
http://arxiv.org/abs/1409.1556
http://arXiv.org/abs/1409.1556


A Tale of Four Metrics

Richard Connor(B)

Department of Computer and Information Sciences, University of Strathclyde,
Glasgow G1 1XH, UK

richard.connor@strath.ac.uk

Abstract. There are many contexts where the definition of similarity
in multivariate space requires to be based on the correlation, rather than
absolute value, of the variables. Examples include classic IR measure-
ments such as TDF/IF and BM25, client similarity measures based on
collaborative filtering, feature analysis of chemical molecules, and biodi-
versity contexts.

In such cases, it is almost standard for Cosine similarity to be used.
More recently, Jensen-Shannon divergence has appeared in a proper met-
ric form, and a related metric Structural Entropic Distance (SED) has
been investigated. A fourth metric, based on a little-known divergence
function named as Triangular Divergence, is also assessed here.

For these metrics, we study their properties in the context of simi-
larity and metric search. We compare and contrast their semantics and
performance. Our conclusion is that, despite Cosine Distance being an
almost automatic choice in this context, Triangular Distance is most
likely to be the best choice in terms of a compromise between semantics
and performance.

1 Introduction

Comparing the similarity of two vectors of numbers is a very common occupation
across many branches of computer and indeed other sciences. However the choice
of similarity measure is often not taken very seriously. In situations where the
correlation among dimensions is required, Cosine similarity is most commonly
used, and is often adopted without further thought. There are however literally
hundreds of other choices which have been used in various circumstances.

“Correlation” similarity is a requirement when the data values represent a
number of independent dimensions, each of which represents a probability, or
a number whose ratio with other numbers is more important that its absolute
value. The most commonly known domain is information retrieval where docu-
ment search is usually performed based on the relative frequency of terms within
documents and the collections; it is important in many other domains as well.

Large-scale search by similarity requires some strong properties to benefit
from available techniques. It is important for a similarity function to be coercible
into a proper distance function for techniques such as exact metric indexing, and
indeed for most forms of approximate metric indexing. It would be nice if the
metric used had a well-defined semantics with respect to the value space under
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 210–217, 2016.
DOI: 10.1007/978-3-319-46759-7 16



Four Metrics 211

consideration, a property often entirely overlooked. Hilbert embeddability gives
further important guarantees for metric search [1,2]. Finally, efficient evaluation
is also of clear importance when large data sets are being considered.

We are not aware of any metric which fits all of these requirements. Table 1
gives an overview of these properties for the four metrics we have considered;
none has all the desirable properties. However, the little-known Triangular Dis-
tance meets all requirements other than semantic; furthermore, we show that
it is an excellent estimator for Jensen-Shannon, and hence Structural Entropic,
distances, and thus should inherit their semantic basis. Our conclusion is that
this relatively unknown function is probably the best starting place for data sets
without a known ground truth.

Table 1. Outline properties of the four metrics

Metric Abbreviation
used in text

Proper
metrica

Hilbert
embeddable

Semantic
basis

Efficient
evalution

Cosine Cos Yes No No Yes

Jensen-Shannon Jsd Yes Yes Yes No

Structural Entropic Sed Yes No Yes No

Triangular Tri Yes Yes No Yes
aIn fact all of these metrics require some massaging over their “natural” form
to achieve this, see Sect. 2.

2 Definitions

The common names used for the four functions are not uniquely defined and are
used differently according to context. In particular, similarity coefficients with
these names have been used as well as divergence and distance (implying semi-
metric and metric properties, respectively) functions. If all that is required is a
ranking function over the input, these details are unimportant as the semantics
will be indistinguishable. To allow a proper comparison, in this paper we will
compare a form of each function that is a proper metric, and whose range is
bounded in [0, 1].

For all functions we consider the domain of values V ∈ (R+)n for some fixed
n. Values v within this space have the properties vi ≥ 0 for all i, and

∑
i vi = 1,

and as such can represent probability distributions over n distinct events1. All of
the metrics bar Cosine distance are defined over probability distributions in any
case, and the normalisation of a vector space to achieve this property does not
affect the outcome of Cosine distance. It should be noted that Cosine distance

1 Some functions are formally undefined in the presence of zero values, requiring either
0 log 0 or 0/0. In each case, there is in fact a good mathematical argument for treating
these terms as 0 rather than undefined.



212 R. Connor

alone is well-defined over negative domains; we disregard this property in our
context although note that this makes the function more generally applicable.

Terse definitions follow for the four functions under consideration. In most
cases these are not the most familiar forms of each function, but in each case
carry the same rank ordering as more familiar forms.

Preliminaries

h(x) = −x log2 x

K(v, w) = 1 − 1
2

∑

i

(h(vi) + h(wi) − h(vi + wi))

Cosine Distance

Dcos(v, w) =
(

2
π

)

cos−1

(
v · w

|v||w|
)

(1)

Jensen-Shannon Distance

Djsd(v, w) =
√

K(v, w) (2)

Structural Entropic Distance

Dsed(v, w) = (2K(v,w) − 1)p (3)

for any constant p with a value of ≤ 0.4862.

Triangular Distance

Dtri(v, w) =

√
1
2

∑

i

(vi − wi)2

vi + wi
(4)

3 Metric Properties

To be a proper metric, a function requires to be a semi-metric with the added
property of triangle inequality. The semi-metric properties for all functions are
evident directly from their definitions above.

Cosine Distance as defined here over (R+)n is simply the angle between
two vectors defined in n-dimensional Cartesian space, adjusted into [0, 1].
Any three vectors in any dimensionality may be transformed into three-
dimensional space whilst preserving the angles between them, from which it
is immediately evident that, for any three such vectors in any dimensionality,
triangle inequality holds.

Jensen-Shannon Distance as defined here has been shown to be a proper
metric in [6,10].

Structural Entropic Distance has been shown to be a proper metric in [4].
Triangular Distance is very little studied, the term was probably first coined

in [13]. The fact that the form given here is a proper metric is alluded to in
[12]; while the authors of this clearly knew it, there is no published proof we
can find before one given in [1].

2 See [4] for an explanation of this constant.



Four Metrics 213

4 Semantics

All functions have the same endpoints: a distance of 0 occurs if and only if the
vectors are identical, and a distance of 1 occurs if and only if no dimension
has a non-zero value in both vectors, i.e. there is no correlation among the
dimensions. Beyond this observation, we give a brief overview of the semantics
of the functions.

Cos While Cosine distance has a very clear meaning in vector space, it is
essentially meaningless when used for multivariate analysis, other than when
approaching the common endpoints at 0 and 1.

The origins of the use of Cosine distance in Information Retrieval is hard to
trace. Singhal [11] states: “Typically, the angle between two vectors is used as a
measure of divergence between the vectors, and cosine of the angle is used as the
numeric similarity (since cosine has the nice property that it is 1.0 for identical
vectors and 0.0 for orthogonal vectors).” It would appear that cosine similarity
has been in use in this field for 50 years without much more attention than this
being paid to its semantics. This lack of meaning is directly related to the “long
document” problem in information retrieval. Mathematically, this corresponds
to the following observation.

Consider two probability distributions P1 and P2 whose distance d(P1, P2)
is measured by some metric d. Consider an event e such that P1(e) = 0 and
P2(e) �= 0. It is then realised that e can be refined into two separate events e1
and e2, i.e. Pi(e) = Pi(e1) + Pi(e2). It is clearly desirable that d(P1, P2) would
not be affected by this refinement. However, when applied to Cosine distance
this refinement decreases the measured distance, as the magnitude of the vectors
is deceased, but the “dot product” is not affected. By simple observation of the
other three metrics, distance is indeed preserved in this situation.

This observation is expanded in [3]. The problem is addressed in Information
Retrieval by including parameters such as document length as a proxy for the
number of terms contained in e.g. the Okapi BM formulae [5,8] shows how an
equivalent parameterless construction based on Jensen-Shannon distance seman-
tically outperforms BM25 and other cosine-based models.

Jsd was originally derived from Kullback-Leibler divergence, which has a well-
defined semantics. However its massaging into the proper metric form of Jensen-
Shannon distance is arbitrary [9] and the original semantics is lost.

Topsøe has found a meaningful, if somewhat obscure, semantics given in [7],
based on the comparative entropy of information streams.

Sed was originally designed as an information distance in its own right, and as
such is the only one of these functions with a semantic derivation [4]. The initial
formulation is

Dsed(v, w) =
C(v + w)

√
C(v) · C(w)

− 1



214 R. Connor

where C is a measure of information content3. Comparing this with the initial
formulation of Jensen-Shannon distance:

Djsd(v, w) = K(v,m) + K(w,m), m = (v + w)/2

where K is the Kullback-Leibler divergence, it is initially quite surprising that
both can be written as monotonic transforms over the same kernel function as
shown in Eqs. 2 and 3. However as this preserves rank order, Jensen-Shannon
distance can safely be deemed to inherit the same semantic basis.

Tri Triangular distance has no obvious semantics over probability distributions
but Topsøe has shown surprisingly tight upper and lower bounds for Jensen-
Shannon distance expressed in terms of Triangular Discrimination [12]. This is
where our interest in this function derives from. When the bounds given are
manipulated for the proper metric forms of both functions, it turns out that

Dtri(v, w) ≤ Djsd(v, w) ≤
√

2 ln(2) · Dtri(v, w)

It seems that in evenly distributed high-dimensional spaces Triangular Distance
should be an excellent estimator for (the much more expensive) Jensen-Shannon
Distance.

5 Runtime Evaluation Costs

Various optimisations are available for all of these metrics under various cir-
cumstances; here we simply give the brute-force cost of evaluating the different
metrics over two different data sets, which appears to be usefully indicative of
cost.

Table 2. Raw execution times

Data set Cos Jsd Sed Tri

Colors “Cold” times 540 2681 1962 245

Colors “Hot” times 532 2671 1883 245

10dim “Cold” times 610 814 463 51

10dim “Hot” times 608 794 434 47

Table 2 shows outline execution times in milliseconds for ten million distance
evaluations from the SISAP colors4 data and randomly generated 10-dimensional
space. There are a few points to note:

3 In fact Shannon’s entropy raised to the power of the logarithm base, see [4] for
details.

4 118 dimensions.



Four Metrics 215

1. Results are indicative only; accurate performance depends on particular
implementation details. However the code used5 has been refined over some
time, is believed to be the most generally efficient form of each function coded
at a high level, and shares object representations over all metrics.

2. The distinction between jsd and sed is artificial; as noted, they may be cal-
culated as functions of each other via the kernel definition. Here they are
evaluated according to their original definitions as given in Sect. 4; there is
a significant advantage in evaluating the complexity of each vector and the
vector mean, rather than just the pairwise entropy differences.

3. The differences between “hot and “cold” evaluation times are explained by
parts of the evaluation that can be memo-ised within the data structure used
to represent the point; for example magnitude (cos) and complexity (sed).

4. colors is a set of relatively sparse vectors, containing a significant number of
zero values, whereas 10dim contains no zero values. The effect on the perfor-
mance is very clear; however it should be noted that specific optimisations
are available for all metrics over sparse spaces.

The tests were run on a laptop with a 2.9 GHz Intel Core i7 processor; only
the relative figures and the effect of sparsity should be taken seriously. The only
general outcome is that (a) there can be a very major difference in performance,
and (b) Triangular Distance is always by far the cheapest of those tested.

6 Query Evaluation Costs

To give an idea of how well the metrics work in practice, a nearest-neighbour
search was conducted using a balanced vantage point tree. Nearest-neighbour
was chosen here to avoid difficulties with comparing different query thresholds.
For the 10dim data set, a tree containing one million values was queried by 1,000
different queries, and for the SISAP colors data, 10 % of the data was selected
randomly for use as queries. Total elapsed time for these queries is given in
milliseconds.

While cosine distance performs best over the long vectors of the SISAP colors
set, it is impossible to tell the value of this without having a ground truth for
similarity; Cosine distance is well known to give artificially low values for high-
dimensional data, and the presence of many small distances will clearly reduce
the cost of any nearest-neighbour search.

The relative times of Triangular distance with both SED and Jensen-
Shannon, for a function that should be expected to return very similar results,
are notable (Table 3).

7 Triangular Distance as an Approximation of JSD/SED

It is apparent that Triangular distance is so far, at least in terms of efficiency, the
most desirable of the metrics; however it has no clear semantics. However our pri-
mary interest in the metric was the observation explained above, that it should
5 Aailable at https://bitbucket.org/richardconnor/metric-space-framework.

https://bitbucket.org/richardconnor/metric-space-framework


216 R. Connor

Table 3. Metric Index build and query times

Data set Size Cos Jsd Sed Tri

Colors 101414 Build time 1209 4710 3693 862

Colors (10.1k queries) Query time 125355 1134417 673602 281702

10dim 1M Build time 13512 17643 12766 3252

10dim (1k queries) Query time 21038 35842 25591 13266

Fig. 1. Scatter plot showing the tight correlation between Triangular and Jensen-
Shannon distances over randomly selected values from the SISAP colors data. Lines
indicate the theoretical bounds for Jsd/Tri.

provide an excellent estimator for Jensen-Shannon and Structural Entropic dis-
tance, which we now test.

The left plot in Fig. 1 shows, for the SISAP colors data set, scatter plots of
1,125 randomly selected pairs of points measured against each other with the
two metrics. For comparison, the right plot shows the same data with Cosine
distance applied instead of Triangular. The measured correlation of Triangular
distance is 0.9993, against 0.965 for Cosine distance. When a linear function
intersecting the origin is applied, R2 values are 0.9991 and 0.929 respectively.
This test has been extensively re-performed with other real-world and generated
data sets, and these correlation figures are found to be typical.

It is therefore evident that Triangular Distance is an excellent estimator for
Jensen-Shannon Distance, and in turn is likely to inherit the semantic ordering
assured by Structural Entropic Distance.

8 Conclusions

The simple conclusion of this work is that, when correlation is the desired basis
of comparison, no ground truth is available, and runtime costs are an issue, then
Triangular Distance should probably be the metric of choice. This little-known
metric deserves to be used as default, rather than the almost-ubiquitous Cosine
distance: it is more efficient, and semantically superior.



Four Metrics 217

References

1. Connor, R., Cardillo, F.A., Vadicamo, L., Rabitti, F.: Hilbert Exclusion: Improved
Metric Search Through Finite Isometric Embeddings. ArXiv e-prints, accepted for
publication ACM TOIS, April 2016

2. Connor, R., Cardillo, F.A., Vadicamo, L., Rabitti, F.: Supermetric Search with
the Four-Point Property. Accepted for publication SISAP, Tokyo, Japan, October
2016

3. Connor, R., Moss, R.: A multivariate correlation distance for vector spaces. In:
Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 209–225. Springer,
Heidelberg (2012)

4. Connor, R., Simeoni, F., Iakovos, M., Moss, R.: A bounded distance metric for
comparing tree structure. Inf. Syst. 36(4), 748–764 (2011)

5. Connor, R., Moss, R., Harvey, M.: A new probabilistic ranking model. In: Pro-
ceedings of the 2013 Conference on the Theory of Information Retrieval, ICTIR
2013, p. 23: 109–23: 112, NY, USA (2013). http://doi.acm.org/10.1145/2499178.
2499185

6. Endres, D., Schindelin, J.: A new metric for probability distributions. IEEE Trans.
Inf. Theor. 49(7), 1858–1860 (2003)

7. Fuglede, B., Topsoe, F.: Jensen-Shannon divergence and Hilbert space embedding.
In: Proceedings of International Symposium on Information Theory, ISIT 2004,
p. 31 (2004)

8. Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information
retrieval: development and comparative experiments: part 2. Inf. Process. Manag.
36(6), 809–840 (2000)

9. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf.
Theor. 37(1), 145–151 (1991)

10. Österreicher, F., Vajda, I.: A new class of metric divergences on probability spaces
and and its statistical applications. Ann. Inst. Stat. Math. 55, 639–653 (2003)

11. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull.
24(4), 35–43 (2001)

12. Topsoe, F.: Some inequalities for information divergence and related measures of
discrimination. IEEE Trans. Inf. Theor. 46(4), 1602–1609 (2000)

13. Topsøe, F.: Jenson-Shannon divergence and norm-based measures of discrimination
and variation. Preprint math.ku.dk (2003)

http://doi.acm.org/10.1145/2499178.2499185
http://doi.acm.org/10.1145/2499178.2499185
https://www.math.ku.dk


Hashing Techniques



Fast Approximate Furthest Neighbors
with Data-Dependent Candidate Selection

Ryan R. Curtin(B) and Andrew B. Gardner

Center for Advanced Machine Learning, Symantec Corporation,
Atlanta, GA 30338, USA

ryan@ratml.org, andrew gardner@symantec.com

Abstract. We present a novel strategy for approximate furthest neigh-
bor search that selects a candidate set using the data distribution. This
strategy leads to an algorithm, which we call DrusillaSelect, that is
able to outperform existing approximate furthest neighbor strategies.
Our strategy is motivated by an empirical study of the behavior of the
furthest neighbor search problem, which lends intuition for where our
algorithm is most useful. We also present a variant of the algorithm that
gives an absolute approximation guarantee; under some assumptions, the
guaranteed approximation can be achieved in provably less time than
brute-force search. Performance studies indicate that DrusillaSelect

can achieve comparable levels of approximation to other algorithms while
giving up to an order of magnitude speedup. An implementation is avail-
able in the mlpack machine learning library (found at http://www.
mlpack.org).

1 Introduction

We concern ourselves with the problem of furthest neighbor search, which is the
logical opposite of the well-known problem of nearest neighbor search. Instead
of finding the nearest neighbor of a query point, our goal is to find the furthest
neighbor. This problem has applications in recommender systems, where furthest
neighbors can increase the diversity of recommendations [1,2]. Furthest neighbor
search is also a component in some nonlinear dimensionality reduction algorithms
[3], complete linkage clustering [4,5] and other clustering applications [6]. Thus,
being able to quickly return furthest neighbors is a significant practical concern
for many applications.

However, it is in general not feasible to return exact furthest neighbors from
large sets of points. Although this is possible with Voronoi diagrams in 2 or 3
dimensions [7], and with single-tree or dual-tree algorithms in higher dimensions
[8], these algorithms tend to have long running times in practice. Therefore,
approximate algorithms are often considered acceptable in most applications.

For approximate neighbor search algorithms, hashing strategies are a pop-
ular option [9–11]. Typically hashing has been applied to the problem of near-
est neighbor search, but recently there has been interest in applying hashing
techniques to furthest neighbor search [12,13]. In general, these techniques are
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 221–235, 2016.
DOI: 10.1007/978-3-319-46759-7 17

http://www.mlpack.org
http://www.mlpack.org


222 R.R. Curtin and A.B. Gardner

based on random projections, where random unit vectors are chosen as projec-
tion bases. This allows probabilistic error guarantees, but the entirely random
approach does not use the structure of the dataset.

In this paper, we first consider the structure of the furthest neighbors problem
and then conclude that a data-dependent approach can be used to select a small
set of candidate points that work for all query points. This allows us to develop:

– DrusillaSelect, an algorithm that selects candidate points based on the
data distribution and outperforms other approximate furthest neighbors
approaches in practice.

– A modified version of DrusillaSelect which satisfies rigorous approximation
guarantees, and under some assumptions will provably outperform the brute-
force approach at search time. However, it is not likely to be useful in practice.

Our empirical results in Sect. 7 show that the DrusillaSelect algo-
rithm demonstrably outperforms existing solutions for approximate k-furthest-
neighbor search.

2 Notation and Formal Problem Description

The problem of furthest neighbor search is easily formalized. Given a set of
reference points Sr ∈ Rn×d, a set of query points Sq ∈ Rm×d, and a distance
metric d(·, ·), the problem is to find, for each query point pq ∈ Sq,

argmaxpr∈Sr
d(pq, pr). (1)

A trivial way to solve this algorithm is by brute-force: for each query point,
loop over all reference points and find the furthest one. But this algorithm takes
O(nm) time, and does not scale well to large Sr or Sq. In this paper, we will
consider the ε-approximate form of the furthest neighbor search problem.

Given a set of reference points Sr ∈ Rn×d, a set of query points Sq ∈
Rm×d, an approximation parameter ε ≥ 0, and a distance metric d(·, ·), the
ε-approximate furthest neighbor problem is to find a furthest neighbor candi-
date p̂fn for each query point pq ∈ Sq such that

d(pq, pfn)
d(pq, p̂fn)

< 1 + ε (2)

where pfn is the true furthest neighbor of pq in Sr. When ε = 0, this reduces to
the exact furthest neighbor search problem. This form of approximation is also
known as relative-value approximation.

3 Related Work

There have been a number of improvements over the naive brute-force search
algorithm suggested above. Exact techniques based on Voronoi diagrams can



Fast Approximate Furthest Neighbors 223

solve the furthest neighbor problem. In 1981, Toussaint and Bhattacharya pro-
posed building a furthest-point Voronoi diagram to solve the furthest neighbors
problem in O(m log n) time [14]. But in high dimensions, Voronoi diagrams are
not useful because of their exponential memory dependence on the dimension.

Another approach to exact furthest neighbor search uses space trees [8]. A
tree is built on the reference points Sr, and nodes that cannot contain the fur-
thest neighbor of a given query point are pruned. This is essentially equivalent to
many algorithms for nearest neighbor search, such as the algorithm for nearest
neighbor search with cover trees [15], but with inequalities reversed (i.e., prune
nearby nodes, not faraway nodes). This can be done in a dual-tree setting, by
also building a tree on the query points Sq. Dual-tree nearest neighbor search
has been proven to scale linearly in the size of the reference set under some con-
ditions [16], but no similar bound has been shown for dual-tree furthest neighbor
search. It would be reasonable to expect similar empirical scaling. Unfortunately,
tree-based approaches tend to perform poorly in high dimensions, and the tree
construction time can cause the algorithm to be undesirably slow.

Further runtime acceleration can be achieved if approximation is allowed. It
is easy to modify the single-tree and dual-tree algorithms to support this, in
the manner suggested by Curtin for nearest neighbor search [17]. Although this
is shown to accelerate nearest neighbor search runtime by a significant amount
(depending on the allowed approximation), the setup time of building the trees
can still dominate. A similar approach to this strategy is the fair split tree,
designed by Bespamyatnikh [18]. But this approach suffers from the same issues.

The fastest known algorithms for approximate furthest neighbor search are
hashing algorithms. Indyk [13] proposed a hashing algorithm based on random
projections that is able to solve a slightly different problem: this algorithm is able
to determine (approximately) whether or not there exists a point in Sr farther
away than a given distance. This can be reduced to the approximate furthest
neighbor problem we are interested in, but this is complex to implement.

Pagh et al. [12] refine this approach to directly solve the approximate furthest
neighbor problem; this improves on the runtime of Indyk’s algorithm and is easy
to implement. This algorithm, called QDAFN (‘query-dependent approximate
furthest neighbor’), has a guaranteed success probability. A user must specify
the number of projections and the number of points stored for each projection;
usually, this number is generally low. But in very high-dimensional settings, the
random projections can fail to capture important outlying points. This motivates
us to investigate the point distribution as a path towards a better algorithm.

4 Furthest Neighbor Point Distribution

The furthest neighbor problem is quite different from the nearest neighbor prob-
lem, which has received significantly more attention [8,9,17,19–22]. This dif-
ference is perhaps somewhat counterintuitive, given that the furthest neighbor
problem is simply an argmax over Sr, not an argmin. But this change causes the
problem to have surprisingly different structure with respect to the results.



224 R.R. Curtin and A.B. Gardner

As a first observation of the differences between the two problems, consider
that for any set Sr, the furthest neighbor of every point can be made to be a
single point simply by adding a single point sufficiently far from every other point
in Sr. There is no analog to this in the nearest neighbor search problem. Indeed,
it is often true that for a furthest neighbor query with many query points, the
results may contain the same reference point. This is easily demonstrated.

Define the rank of a reference point pr for some query point pq as the position
of pr in the ordered list of distances from pq. That is, if the rank of pr for some
query point pq is k, then pr is the k-furthest neighbor from pq.

We can obtain insight into the behavior of furthest neighbor queries by
observing the average rank of points on some example datasets from the UCI
dataset repository [23]. Figure 1 contains scatterplots displaying the average rank
of a reference point versus the mean-centered norm of the reference point for the
all-furthest-neighbors problem (that is, each point in the reference set is used as
a query point).

Figure 1 shows that there is a clear and unmistakable correlation between the
norm of a point and its average rank for the all-k-furthest-neighbor problem. For
the ozone dataset, we can see that there are only a few points with high norm,
and all of these have much lower average rank than the rest of the points.

This correlation is related to the phenomenon of hubness in the nearest neigh-
bor search literature [24]; specifically, points with low average rank may be seen
to be related to anti-hubs and distance-based outliers. In higher dimensions,
more anti-hubs may be expected [25]—thus we may conclude that high-norm

Fig. 1. Average rank vs. norm for a handful of datasets. Observe that a large norm is
correlated with a low rank.



Fast Approximate Furthest Neighbors 225

points (which have low average rank and are related to anti-hubs) are increas-
ingly important in high-dimensional settings. Therefore, an effective furthest
neighbors algorithm for high-dimensional data should take this structure into
account: high-norm points are more important than low-norm points.

5 The Algorithm: DrusillaSelect

Our collective observations motivate an algorithm for approximate furthest
neighbor search, which we introduce as DrusillaSelect in Algorithm 1. The
algorithm constructs a small collection of points by repeatedly choosing projec-
tion bases from the data points with largest norm.1 Then, the other points in the
dataset are projected onto the basis and are selected if they are good candidates.

Algorithm 1. DrusillaSelect: fast approximate k-furthest neighbor search.
1: Input: reference set Sr, query set Sq, number of neighbors k, number of projections

l, set size m
2: Output: array of furthest neighbors N []

3: {Pre-processing: mean-center data.}
4: m ← 1

n

∑
pr∈Sr

pr

5: Sr ← Sr − m; Sq ← Sq − m

6: {Pre-processing: build DrusillaSelect sets.}
7: for all pr ∈ Sr do n[pr] ← ‖pr‖ {Initialize norms of points.}
8: for all i ∈ {0, 1, . . . , l} do
9: pi ← argmaxpr∈Sr

n[pr] {Take next point with largest norm.}
10: vi ← pi/‖pi‖
11: {Calculate distortions and offsets.}
12: for all pr ∈ Sr such that n[pr] �= 0 do
13: O[pr] ← pT

r vi

14: D[pr] ← ‖pr − O[pr]vi‖
15: s[pr] ← |O[pr]| − D[pr]

16: {Collect points that are well-represented by pi.}
17: Ri ← points corresponding to largest m elements of s[·]
18: for all pr ∈ Ri do n[pr] = 0 {Mark point as used.}
19: for all pr ∈ Sr such that atan(D[pr]/O[pr]) ≥ π/8 do
20: n[pr] = 0 {Mark point as used.}
21: {Search for furthest neighbors.}
22: for all pq ∈ Sq do
23: for all Ri ∈ R do
24: for all pr ∈ Ri do
25: if d(pq, pr) > Nk[pq] then
26: update results N [pq] for pq with pr

1 This is where the algorithm gets its name; the first author’s cat displays the same
behavior when selecting a food bowl to eat from.



226 R.R. Curtin and A.B. Gardner

After this collection is built, each query point is simply compared with all points
in the collection in order to determine a good furthest neighbor candidate.

DrusillaSelect depends on two parameters: l, the number of projections,
and m, the number of points taken for each projection. Empirically we observe
that values in the range of l ∈ [2, 15] and m ∈ [1, 5] produce acceptably good
approximations for most datasets, with approximation levels between ε = 0.01
and ε = 1.1.

The primary intuition of the algorithm is that we want to collect points in
the sets Ri that are likely to be furthest neighbors of any query point. We know
from our earlier experiments that points with high mean-centered norms are
likely to be good furthest neighbor candidates. Thus, we start by selecting the
highest-norm mean-centered point pi as the primary point of the set Ri, and
collect m points that are not too distorted by a projection onto the unit vector
vi which points in the direction of pi. Any points that are not too distorted
by this projection but not collected are ignored for future projections (line 18).
In addition, points that lie within a cone pointing in the direction of vi are
also ignored (line 20). The value of π/8 was chosen for its decent empirical
performance, but it would be reasonable to select different values.

The words “not too distorted” deserve some elaboration: we wish to find
high-norm points that are well-represented by pi, but we do not wish to find
high-norm points that are not well-represented by pi. Ideally, those points will
be selected as the primary point of another set Rj . Therefore, for each point pj ,
we calculate the offset O[pj ]; this is the norm of the projection of pj onto vi.
Similarly, we calculate the distortion D[pj ]. Figure 2 displays a simple example
of offset and distortion.

Our goal is to balance two objectives in selecting points for Ri:

– Select high-norm points.
– Select points that are well-represented by vi.

The solution we have used here is to construct a score s[pj ] which is just the
distortion subtracted from the offset (see line 15). Figure 3 displays an example

Fig. 2. Distortion and offset for pj with base vector vi.



Fast Approximate Furthest Neighbors 227

Fig. 3. Example scores for a set of points; red: highest scores, blue: lowest scores. (Color
figure online)

vi with 20 points; each point is indexed by its position in the ordered score set
s[·]. In the context of DrusillaSelect, if we took m = 6 (so, 6 points were
selected for each vi), then vi and the five red points p1 through p5 would be
selected to make up the set Ri. Then, p7 would be chosen as vi+1 because it is
the point with largest norm that has not been selected (line 9).

Once we have constructed the sets Ri, then our actual search is a simple
brute-force search over every point contained in each set Ri. Because the total
number of points in R is only lm, brute-force scan is sufficient.

DrusillaSelect has a somewhat similar structure to the QDAFN algorithm
[12]; except for three important differences: (i) the vectors vi are drawn using
properties of the reference set, (ii) there is no priority queue structure when
scanning the sets, and (iii) the projection bases chosen cannot be too similar.
Although DrusillaSelect can involve more setup time, our empirical simula-
tions show it is able to provide better results with fewer sets and points in each
sets, resulting in better overall performance for a given level of approximation.

Table 1 gives a comparison of the runtimes of different approximate furthest
neighbor algorithms. Note that DrusillaSelect and QDAFN have the same
asymptotic setup time for the same l and m; but in practice, the overhead of
DrusillaSelect setup time is higher than QDAFN for equivalent l and m. But
again it must be noted that to provide the same results accuracy, l and m may
generally be set smaller with DrusillaSelect than QDAFN.



228 R.R. Curtin and A.B. Gardner

Table 1. Runtimes of approximate furthest neighbor algorithms.

Algorithm Setup time Search time

DrusillaHash O(ld|Sr| log |Sr|) O(|Sq|dlm)

QDAFN [12] O(ld|Sr| log |Sr|) O(|Sq|d(l log l + m log l))

Indyk [13] O(ld|Sr| log |Sr|) O(l|Sq|(d + log |Sr|) log d log log d

Brute-force None O(|Sq||Sr|)

6 Guaranteed Approximation

Next, we wish to consider the problem of an absolute approximation guarantee:
in what situations can we ensure that the furthest neighbor returned is an ε-
approximate furthest neighbor?

It turns out that this is possible with a modification of DrusillaSelect,
given in Algorithm 2 as GuaranteedDrusillaSelect. This algorithm, instead of
taking a number of projections l, takes an acceptable approximation level ε. The
algorithm uses a utility quantity, δ = ε/(6 + 3ε).

The algorithm is roughly the same as DrusillaSelect, except for that more
sets are added until all points with norm greater than δ maxpr∈Sr

‖pr‖ are con-
tained in some set Ri, and an extra point called the shrug point is held. The
shrug point is set to be any point within the small zero-centered ball of radius
δ maxpr∈Sr

‖pr‖. This is needed to catch situations where pq is close to every
point in some Ri, and serves to provide a “good enough” result to satisfy the
approximation guarantee.

Because GuaranteedDrusillaSelect collects potentially huge numbers of
sets that may contain most of the points in Sr, the algorithm is primarily of
theoretical interest. Although the algorithm will outperform brute-force search
as long as the sets do not contain nearly all of the points in Sr, it is not likely
to be practical for large Sr.

Now we may present our theoretical result. First, we need a utility lemma.

Lemma 1. Given a mean-centered set Sr and a query point pq with true furthest
neighbor pfn, if ‖pq‖ ≤ 1

3 maxpr∈Sr
‖pr‖, then ‖pfn‖ ≥ 1

3 maxpr∈Sr
‖pr‖.

Proof. This is a simple proof by contradiction: suppose ‖pfn‖ <
1
3 maxpr∈Sr

‖pr‖. Then, the maximum possible distance between pq and pfn

is bounded above as d(pq, pfn) < 2
3 maxpr∈Sr

‖pr‖. But the minimum possible
distance between pq and the largest point in Sr is bounded below as

d(pq, argmax
pr∈Sr

‖pr‖) ≥ max
pr∈Sr

‖pr‖ − 1
3

max
pr∈Sr

‖pr‖ =
2
3

max
pr∈Sr

‖pr‖. (3)

This means that the largest point in Sr is a further neighbor than pfn, which
is a contradiction. ��

We may now prove the main result.



Fast Approximate Furthest Neighbors 229

Algorithm 2. GuaranteedDrusillaSelect: guaranteed approximate k-furthest
neighbor search.
1: Input: reference set Sr, query set Sq, number of neighbors k, acceptable approxi-

mation level ε, set size m
2: Output: array of furthest neighbors N []

3: {Pre-processing: mean-center data.}
4: m ← 1

n

∑
pr∈Sr

pr; Sr ← Sr − m; Sq ← Sq − m

5: {Pre-processing: build GuaranteedDrusillaSelect sets.}
6: for all pr ∈ Sr do n[pr] ← ‖pr‖ {Initialize norms of points.}
7: δ ← ε

6+3ε

8: while maxpr∈Sr n[pr] > δ maxpr∈Sr ‖pr‖ do
9: pi ← argmaxpr∈Sr

n[pr] {Take next point with largest norm.}
10: vi ← pi/‖pi‖
11: {Calculate distortions and offsets.}
12: for all pr ∈ Sr such that n[pr] �= 0 do
13: O[pr] ← pT

r vi

14: D[pr] ← ‖pr − O[pr]vi‖
15: s[pr] ← |O[pr]| − D[pr]

16: {Collect points that are well-represented by pi.}
17: Ri ← points corresponding to largest m elements of s[·]
18: for all pr ∈ Ri do n[pr] = 0 {Mark point as used.}
19: {Set shrug point (if we can).}
20: psh ← ∅
21: if there is any point such that n[pr] �= 0 then
22: psh ← some point such that n[pr] �= 0

23: {Search for furthest neighbors.}
24: for all pq ∈ Sq do
25: for all Ri ∈ R do
26: for all pr ∈ Ri do
27: if d(pq, pr) > Nk[pq] then
28: update results N [pq] for pq with pr

29: if psh �= ∅ and d(pq, psh) > Nk[pq] then
30: update results N [pq] for pq with psh

Theorem 1. Given a set Sr and an approximation parameter ε < 1 and any
set size m > 0, GuaranteedDrusillaSelect will return, for each query point
pq, a furthest neighbor p̂fn such that

d(pq, pfn)
d(pq, p̂fn)

< 1 + ε (4)

where pfn is the true furthest neighbor of pq in Sr. That is, p̂fn is an ε-
approximate furthest neighbor of pq.



230 R.R. Curtin and A.B. Gardner

Proof. We know from Lemma 1 that if the norm of pq is less than or equal to 1/3
of the maximum norm of any point in Sr, then the true furthest neighbor must
have norm greater than or equal to 1/3 of the maximum norm of any point in
Sr. Since δ is always less than 1/3 in Algorithm 2, we know that any such point
will be contained in some set Ri, and thus the algorithm will return the exact
furthest neighbor in this case.

The only other case to consider, then, is when the norm of the query point
is large: ‖pq‖ > 1

3 maxpr∈Sr
‖pr‖. But we already know due to the way the

algorithm works, that if ‖pfn‖ ≥ δ maxpr∈Sr
‖pr‖, then pfn will be contained

in some set Ri and the algorithm will return pfn, satisfying the approximation
guarantee.

But what about when ‖pfn‖ is smaller? We must consider the case where
‖pfn‖ < δ maxpr∈Sr

‖pr‖. Here we may place an upper bound on the distance
between the query point and its furthest neighbor:

d(pq, pfn) ≤ ‖pq‖ + ‖pfn‖ < ‖pq‖ + δ max
pr∈Sr

‖pr‖. (5)

We may also place a lower bound on the distance between the query point and
its returned furthest neighbor using the shrug point psh. The distance between
pq and psh is easily lower bounded: d(pq, psh) ≥ ‖pq‖ − δ maxpr∈Sr

‖pr‖ > 0.
This is also a lower bound on d(pq, p̂fn). We may combine these bounds:

d(pq, pfn)
d(pq, p̂fn)

<
‖pq‖ + δ maxpr∈Sr

‖pr‖
‖pq‖ − δ maxpr∈Sr

‖pr‖ . (6)

Now, define the convenience quantity α as

α =
maxpr∈Sr

‖pr‖
‖pq‖ . (7)

Because of our assumptions on pq, we know that α < 3. Using these inequal-
ities, we may further simplify Eq. 6.

d(pq, pfn)
d(pq, p̂fn)

<
1 + δα

1 − δα
(8)

= 1 +
2δα

1 − δα
(9)

< 1 +
6δ

1 − 3δ
(10)

and because δ = ε
6+3ε , Eq. 10 simplifies to the result,

d(pq, pfn)
d(pq, p̂fn)

< 1 + ε (11)

and therefore the theorem holds. ��



Fast Approximate Furthest Neighbors 231

Note that the theorem holds if we set δ to the simpler quantity of ε/9; but
the quantity (ε/(6 + 3ε)) provides a tighter bound.

Although GuaranteedDrusillaSelect does not guarantee better search time
than brute force under all conditions, it does in most conditions. As one
example, consider a large dataset where the norms of points in the centered
dataset are uniformly distributed. Some of these points will have norm less than
(ε/15)maxpr∈Sr

‖pr‖. These points (except the shrug point psh) will not be con-
sidered by the GuaranteedDrusillaSelect algorithm, and this means that the
GuaranteedDrusillaSelect algorithm will inspect fewer points at search time
than the brute-force algorithm.

Next, consider the extreme case, where there exists one outlier po with
extremely large norm, such that the next largest point has norm smaller than
(ε/(6 + 3ε))‖po‖. Here, GuaranteedDrusillaSelect with m = 1 will only need
to inspect two points: the extreme outlier, and the shrug point psh.

On the other hand, there do exist cases where GuaranteedDrusillaSelect
gives no improvement over brute-force search, and every point must be
inspected. If the dataset is such that all points have norm greater than
(ε/(6 + 3ε))maxpr∈Sr

‖pr‖, then the sets Ri will contain every single point in
the dataset.

These theoretical results show that it is possible to give a guaranteed ε-
approximate furthest neighbor in less time than brute-force search, if the dis-
tribution of norms of Sr are not worst-case. But due to the algorithm’s storage
requirement, it is not likely to perform well in practice and so we do not inves-
tigate its empirical performance.

7 Experiments

Next, we investigate the empirical performance of the DrusillaSelect algo-
rithm, comparing with brute-force search, QDAFN [12], and dual-tree exact
furthest neighbor search as described by Curtin et al. [8]. Note that both brute-
force search and the dual-tree algorithm return exact furthest neighbors; QDAFN
and DrusillaSelect return approximations. Each implementation is either from
mlpack [26] or is built using mlpack. We test the algorithms on a variety of
datasets from the UCI dataset repository and randu, which is uniformly ran-
domly distributed. These datasets and their properties are given in Table 2.

First, we compare runtimes across all four algorithms. The approximate algo-
rithms are tuned to return, on average across the query set, ε = 0.05-approximate
furthest neighbors (using the parameters from Table 2). Table 3 shows the aver-
age runtimes of each of the four algorithms on each dataset across ten trials with
the dataset randomly split into 30 % query set, 70 % reference set. I/O times are
not included; the runtime only includes the time for the search itself, including
preprocessing time (building hash tables, sets, or trees).

The DrusillaSelect algorithm provides average ε = 0.05-approximate fur-
thest neighbors up to an order of magnitude faster than any other competing
algorithm, and it also needs to inspect fewer points to return an accurate approx-
imate furthest neighbor (with the exception of the pokerhand dataset). In many



232 R.R. Curtin and A.B. Gardner

Table 2. Datasets and parameters.

Dataset n d QDAFN params DrusillaSelect params

l m l m

Cloud 2048 10 30 60 2 1

Isolet 7797 617 40 40 2 1

Gisette 12500 5000 40 40 2 2

Corel 37749 32 5 5 2 1

p53 48192 5409 25 25 3 2

Randu 100000 10 15 15 5 2

Miniboone 130064 50 125 200 2 1

Phy 150000 78 12 12 4 1

Covertype 581012 55 15 20 6 2

Pokerhand 1000000 10 15 50 50 8

Susy 5000000 18 18 18 2 2

Higgs 11000000 28 32 32 2 2

Table 3. Runtimes for ε = 0.05-approximate furthest neighbor search

Dataset Brute-force Dual-tree QDAFN DrusillaSelect

Cloud 0.039 s 0.040 s 0.011 s 0.001 s

Isolet 6.754 s 7.706 s 0.165 s 0.041 s

Gisette 141.923 s 141.963 s 1.875 s 0.549 s

Corel 10.292 s 1.030 s 0.021 s 0.021 s

p53 2258.331 s 270.341 s 3.475 s 2.734 s

Randu 42.392 s 28.004 s 0.316 s 0.0619 s

Miniboone 187.262 s 4.105 s 2.165 s 0.104 s

Phy 370.061 s 58.720s 0.203 s 0.189 s

Covertype 4077.922 s 144.993 s 1.244 s 0.203s

Randu – 16.715 s 0.069 s 0.043 s

Pokerhand – 852.001 s 11.749 s 8.035 s

Susy – 88.295 s 21.678 s 2.4467 s

Higgs – 425.053 s 56.094 s 12.694 s

cases, DrusillaSelect only needs to inspect fewer than 10 points to find good
furthest neighbor approximations, whereas QDAFN must inspect 50 or more.

Our datasets have two extreme examples: the miniboone dataset, where the
data lies on a low-dimensional manifold, and the randu dataset.

For the miniboone dataset, DrusillaSelect is able to easily recover only
four points that provide average 1.05-approximate furthest neighbors. But



Fast Approximate Furthest Neighbors 233

Fig. 4. Maximum error for QDAFN and DrusillaSelect as a function of runtime.

because QDAFN chooses random projection bases, it takes very many to have a
high probability of recovering good furthest neighbors. In our experiments, we
were not able to achieve good approximation reliably until using as many as 125
projection bases. This effect was also observed with the covertype dataset.

DrusillaSelect also outperforms other approaches on the randu dataset,
despite there being no structure for DrusillaSelect to exploit. But the algo-
rithm is still able to outperform others; this is because the algorithm specifically
ensures that projection bases are not too similar (see lines 18–20).

Another important property of DrusillaSelect is that it gives a small max-
imum error compared to QDAFN. Figure 4 shows the maximum error of each
approach as the number of points scanned increase on the covertype dataset.
For QDAFN, we have swept with l = m from l = 20 to l = 250, and for
DrusillaSelect, we have set m = l/3 and swept l from 6 to 60.

Our experimental results have shown that DrusillaSelect gives excellent
approximation while only needing to scan few points. Whereas QDAFN seems
to perform poorly in high-dimensional settings where the data lie on a low-
dimensional manifold (because projection bases are random), DrusillaSelect
effectively captures the low-dimensional structure with few projection bases.

8 Conclusion

We have proposed an algorithm, DrusillaSelect, that builds a candidate set for
approximate furthest neighbor search by using the properties of the dataset. This
algorithm design is motivated by our empirical analysis of the structure of the
approximate furthest neighbor search problem, and the algorithm performs quite
compellingly in practice. It scales better with dataset size than other techniques.

We have also proposed a variant, GuaranteedDrusillaSelect, which is able
to give an absolute approximation guarantee. Under some assumptions, this
algorithm will provably outperform the brute-force approach at search time.
This is a benefit that no other furthest neighbor search scheme is able to provide.
However, this variant is not likely to be useful in practice due to the large number
of points it must search to satisfy the guarantee.



234 R.R. Curtin and A.B. Gardner

Interesting future directions for this line of research may include combining
a random projection approach with the approach outlined here. It would also
be possible to generalize our approach to arbitrary distance metrics, including
those where the points lie in an unrepresentable space. This could be done using
techniques similar to some that have been used for max-kernel search [27,28].
Lastly, we have focused on high-norm points as ‘important’; but a study con-
necting hubness (or anti-hubness) to the average furthest-neighbor rank would
be enlightening and may potentially guide future improvements to this approach.

References

1. Said, A., Kille, B., Jain, B.J., Albayrak, S.: Increasing diversity through furthest
neighbor-based recommendation. In: Proceedings of the Fifth International Con-
ference on Web Search and Data Mining (WSDM 2012), p. 12 (2012)

2. Said, A., Fields, B., Jain, B.J., Albayrak, S.: User-centric evaluation of a k-furthest
neighbor collaborative filtering recommender algorithm. In: Proceedings of the
2013 Conference on Computer Supported Cooperative Work, pp. 1399–1408. ACM
(2013)

3. Vasiloglou, N., Gray, A.G., Anderson, D.V.: Scalable semidefinite manifold learn-
ing. In: Proceedings of the 2008 IEEE Workshop on Machine Learning for Signal
Processing, 2008 (MLSP. 2008), pp. 368–373. IEEE (2008)

4. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4),
364–366 (1977)

5. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B.,
Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres,
B., Thallinger, G.G., Van Horn, D.J., Weber, C.F.: Introducing mothur: open-
source, platform-independent, community-supported software for describing and
comparing microbial communities. Appl. Environ. Microbiol. 75(23), 7537–7541
(2009)

6. Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algo-
rithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

7. Cheong, O., Shin, C.-S., Vigneron, A.: Computing farthest neighbors on a convex
polytope. Theoret. Comput. Sci. 296(1), 47–58 (2003)

8. Curtin, R.R., March, W.B., Ram, P., Anderson, D.V., Gray, A.G., Isbell Jr., C.L.:
Tree-independent dual-tree algorithms. In: Proceedings of the 30th International
Conference on Machine Learning (ICML 2013) (2013)

9. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry (SoCG 2004), pp. 253–262. ACM (2004)

10. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing (STOC 1998), pp. 604–613. ACM (1998)

11. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2006), pp. 459–468. IEEE (2006)

12. Pagh, R., Silvestri, F., Sivertsen, J., Skala, M.: Approximate furthest neighbor in
high dimensions. In: Amato, G. (ed.) SISAP 2015. LNCS, vol. 9371, pp. 3–14.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-25087-8 1

http://dx.doi.org/10.1007/978-3-319-25087-8_1


Fast Approximate Furthest Neighbors 235

13. Indyk, P.: Better algorithms for high-dimensional proximity problems via asym-
metric embeddings. In: Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2003), pp. 539–545. Society for Industrial
and Applied Mathematics (2003)

14. Toussaint, G.T., Bhattacharya, B.K.: On geometric algorithms that use the
furthest-point voronoi diagram. School of Computer Science, McGill University,
Technical report No. 81.3 (1981)

15. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23rd International Conference on Machine Learning (ICML
2006), pp. 97–104. ACM (2006)

16. Curtin, R.R., Lee, D., March, W.B., Ram, P.: Plug-and-play dual-tree algorithm
runtime analysis. J. Mach. Learn. Res. 16, 3269–3297 (2015)

17. Curtin, R.R.: Faster dual-tree traversal for nearest neighbor search. In: Amato, G.
(ed.) SISAP 2015. LNCS, vol. 9371, pp. 77–89. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-25087-8 7

18. Bespamyatnikh, S.: Dynamic algorithms for approximate neighbor searching. In:
Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG
1996), pp. 252–257 (1996)

19. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

20. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM
(JACM) 45(6), 891–923 (1998)

21. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions
via hashing. In: Proceedings of the Twenty-Fifth International Conference on Very
Large Data Bases (VLDB 1999), vol. 99, pp. 518–529 (1999)

22. Gray, A.G., Moore, A.W.: N-Body problems in statistical learning. In: Advances in
Neural Information Processing Systems 14 (NIPS 2001), vol. 4, pp. 521–527 (2001)

23. Lichman, M.: UCI machine learning repository, University of California Irvine,
School of Information and Computer Sciences (2013). http://archive.ics.uci.edu/
ml

24. Radovanoić, M., Nanopoulos, A., Ivanović, C.: Hubs in space: popular nearest
neighbors in high-dimensional data. J. Mach. Learn. Res. 11(Sep), 2487–2531
(2010)

25. Tomasev, N., Radovanović, M., Mladenic, D., Ivanović, M.: The role of hubness in
clustering high-dimensional data. IEEE Trans. Knowl. Data Eng. 26(3), 739–751
(2014)

26. Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray,
A.G.: MLPACK: a scalable C++ machine learning library. J. Mach. Learn. Res.
14(1), 801–805 (2013)

27. Curtin, R.R., Ram, P., Gray, A.G.: Fast exact max-kernel search. In: Proceedings
of the 2013 SIAM International Conference on Data Mining (SDM 2013), pp. 1–9.
SIAM (2013)

28. Curtin, R.R., Ram, P.: Dual-tree fast exact max-kernel search. Stat. Anal. Data
Min. 7(4), 229–253 (2014)

http://dx.doi.org/10.1007/978-3-319-25087-8_7
http://dx.doi.org/10.1007/978-3-319-25087-8_7
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


NearBucket-LSH: Efficient Similarity Search
in P2P Networks

Naama Kraus1(B), David Carmel2, Idit Keidar1,2, and Meni Orenbach1

1 Viterbi EE Technion, Haifa, Israel
naamakraus@gmail.com

2 Yahoo Research, Haifa, Israel

Abstract. We present NearBucket-LSH, an effective algorithm for sim-
ilarity search in large-scale distributed online social networks organized
as peer-to-peer overlays. As communication is a dominant considera-
tion in distributed systems, we focus on minimizing the network cost
while guaranteeing good search quality. Our algorithm is based on Local-
ity Sensitive Hashing (LSH), which limits the search to collections of
objects, called buckets, that have a high probability to be similar to
the query. More specifically, NearBucket-LSH employs an LSH extension
that searches in near buckets, and improves search quality but also sig-
nificantly increases the network cost. We decrease the network cost by
considering the internals of both LSH and the P2P overlay, and harness-
ing their properties to our needs. We show that our NearBucket-LSH
increases search quality for a given network cost compared to previous
art. In many cases, the search quality increases by more than 50%.

1 Introduction

User similarity search in Online Social Networks (OSNs) is the task of effectively
finding OSN users that are similar to a given user based on common interests.
It is used for many applications including recommending new friends [23,28], as
well as for recommending content based on preferences of similar users [2]. In
this work, we consider Peer-to-Peer (P2P) OSNs (e.g., [6,9,21,24]), which offer
increased scalability and avoid control by a single authority.

A similarity search algorithm in P2P OSNs faces several challenges: The
algorithm should be decentralized in order to fit the P2P architecture. As net-
work cost is a dominant consideration in P2P networks, the algorithm should be
network-efficient, while preserving a good search quality. Furthermore, the sim-
ilarity search should cope with the dynamic nature of OSNs: users join or leave,
and users dynamically modify their interests. We present a similarity search
algorithm in P2P OSNs that meets these requirements.

We base our algorithm on Locality Sensitive Hashing (LSH) [14,16], which is a
widespread randomized method for efficient similarity search in high-dimensional
spaces. LSH hashes an OSN user into a succinct representation, where the hash
values of similar users collide with high probability (w.h.p.). At a pre-processing

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 236–249, 2016.
DOI: 10.1007/978-3-319-46759-7 18



NearBucket-LSH: Efficient Similarity Search in P2P Networks 237

stage, LSH maps users into collections of objects called buckets based on com-
mon hashes. Upon receiving a query, LSH limits the search to buckets to which
the query is mapped; these contain similar users w.h.p. We follow a variant of
LSH, called MultiProb-LSH [20], which increases search quality by additionally
searching near buckets, which are buckets that are similar to the query’s bucket.

We present NearBucket-LSH, which integrates LSH into a P2P architecture.
For our P2P overlay we use Content Addressable Network (CAN) [25], which is
a good fit for a distributed LSH implementation. We use CAN to dynamically
map and store LSH buckets within nodes, and refresh bucket contents once in
a while in order to adjust to changes in the data. Upon search, we use CAN to
locate the buckets to search in.

In P2P settings, searching additional buckets entails contacting additional
nodes, which is a network-costly operation. We improve the network-efficiency
when searching near buckets by exploiting the internals of CAN: We observe
that in CAN, near buckets reside in a bucket’s neighboring nodes, and thus
contacting them incurs a low network cost. We further eliminate this network
cost by caching near buckets in each CAN node. We show, both analytically and
empirically, that the cache-based NearBucket-LSH provides the greatest search
quality for a given network cost, compared to other approaches.

2 Model and Problem Definition

In this section we detail the model we consider. We formally define the notion
of similarity search (Sect. 2.1), and provide details about P2P OSNs (Sect. 2.2).

2.1 User Similarity Search in OSN

An OSN user exposes an interest profile, which we represent as a non-negative
weighted feature vector in a high d-dimensional vector space V = (R+

0 )d. The
interests-weighting scheme may be arbitrary. A similarity function [8] measures
the similarity between two user vectors. It returns a similarity value within the
range [0, 1], where a similarity value of 1 denotes complete similarity, and 0
denotes no similarity.

An m-similarity search algorithm accepts as an input a query vector q ∈ V .
It returns a unique ideal result set of m user vectors that are most similar
to q, according to the given similarity function. An approximate m-similarity
search algorithm trades-off efficiency with accuracy. Given a query q, it returns
an approximate result set of m user vectors, which may differ from q’s ideal
result set. We consider the commonly used cosine similarity function [22], also
proposed in the context of similarity between OSN users [3].

2.2 P2P OSN and CAN

P2P networks are distributed systems organized as overlay networks with no
central management. Nodes (also called peers) are autonomous entities that



238 N. Kraus et al.

may join or leave at any time. P2P networks provide massive scalability, fault
tolerance, privacy, anonymity, and load balancing (see [18] for a survey). We
consider a P2P Online Social Network [6,9,21,24], in which users’ content is
distributed among nodes. Any node in the P2P OSN may initiate a similarity
search query.

In our algorithm, we use CAN [25] as our overlay, which naturally fits a
distributed LSH implementation, as we later show. CAN implements a self-
organizing P2P network representing a virtual c-dimensional Cartesian coordi-
nate space on a c-torus. The Cartesian space is dynamically partitioned into
zones, which are distributed among CAN nodes. CAN implements a Distributed
Hash Table (DHT) abstraction, which provides a distributed lookup operation
that accepts a vector as key, and returns a node that owns the zone to which
the vector belongs. Each node maintains a table of neighbors, which are nodes
that own zones adjacent to its own. These tables are used for routing messages
within CAN.

3 Background and Previous Work

Before diving into our algorithm, we provide essential background and overview
previous work. In Sect. 3.1, we overview LSH [14,16] and its space-efficient vari-
ant, MultiProb-LSH [20]. Section 3.2 discusses Layered-LSH [4,15], which is a
distributed LSH implementation that optimizes network cost. In addition to dis-
tributed solutions, there are also parallel LSH variants, e.g. [26]. However, these
do not focus on improving network-efficiency, which is not of essence in a par-
allel setting. Other P2P similarity search methods have been proposed [5], in
particular, Falchi et al. [12] use CAN as their overlay. However, these methods
are not based on LSH, which is the focus of our work.

3.1 Locality Sensitive Hashing

Locality sensitive hashing [14,16] is a widely used approximate similarity search
algorithm for high-dimensional spaces, with sub-linear search time complexity.
LSH limits the search to vectors that are similar to the query vector w.h.p.
instead of linearly searching over all vectors. This reduces the search time com-
plexity at the cost of missing similar vectors with a some probability.

LSH uses hash functions that map a vector in the high dimensional input
space (R+

0 )d into a representation in a lower dimension k << d, so that the
hashes of similar vectors are likely to collide. LSH executes a pre-processing
(index building) stage, where it assigns vectors into buckets according to their
hash values. Then, given a query vector, the similarity search algorithm computes
its hashes and searches vectors in the corresponding buckets. The LSH algorithm
is parametrized by k and L, where k is the hashed domain’s dimension, and L
is the number of hash functions used. Formally [7]: a locality sensitive hashing
with similarity function sim is a distribution on a family H of hash functions on
a collection of vectors, h : V → {0, 1}, such that for two vectors u, v,

Prh∈H [h(u) = h(v)] = sim(u, v). (1)



NearBucket-LSH: Efficient Similarity Search in P2P Networks 239

We use here a hash family H for angular similarity [7], which fits cosine-based
similarity search [7]. In order to increase the probability that similar vectors are
mapped to the same bucket, the algorithm defines a family G of hash functions,
where each g(v) ∈ G is a concatenation of k functions chosen randomly and
independently from H. In the case of angular similarity, g : V → {0, 1}k, i.e., g
hashes v into a binary sketch vector, which encodes v in a lower dimension k. For
two vectors u, v, Prg∈G [g(u) = g(v)] = (sim(u, v))k, for any randomly selected
g ∈ G. The larger k is, the higher the precision.

In order to mitigate the probability to miss similar items, the LSH algorithm
selects L functions randomly and independently from G. The item vectors are
now replicated in L hash tables, where each vector is mapped to L buckets.
Upon query, search is performed in L buckets. This increases the recall at the
cost of additional storage and processing. In order to reduce the storage cost,
MultiProb-LSH [20] additionally searches in near buckets within the same hash
table, which are buckets that slightly differ from the query’s exact bucket g(q),
and have a high probability to contain vectors similar to the query.

3.2 Layered LSH

In P2P networks, buckets are distributed over the overlay nodes. Contacting a
near bucket involves performing a DHT lookup of its node, which incurs high
network cost. Prior art [4,15] suggests Layered-LSH, which maps buckets to
nodes using a second LSH, such that near buckets are assigned to the same
node w.h.p. Queries now access a single node holding the desired buckets, which
reduces the network cost. In Sect. 5.1, we show that in the case of cosine sim-
ilarity, Layered-LSH is equivalent to the basic LSH for an appropriate choice
of k.

4 Algorithm

We describe NearBucket-LSH, our network-efficient P2P user similarity search
that is based on MultiProb-LSH. We construct a dedicated overlay above the
CAN infrastructure, and exploit its internals for reducing search network cost
when searching near buckets.

The Overlay. We use a k-dimensional CAN (i.e., c = k) to store and lookup
LSH buckets in a decentralized manner. For simplicity, we assume that N = 2k,
where N denotes the number of CAN nodes. Each CAN node owns the zone
of a single k-dimensional binary vector v representing some LSH sketch vector,
and maintains the bucket of user vectors that are mapped to v by some hash
function g ∈ G. We name such a node the bucket node of v. The bucket node
provides a local similarity search facility over its locally stored user vectors. The
local search time is typically proportional to the searched bucket size [14]. The
internal bucket data-structure and local search implementation are orthogonal
to this research.



240 N. Kraus et al.

Each CAN node in our overlay has k neighbors; the i-th neighbor of node
v owns a vector u that differs from v in the i-th entry only. Routing a message
from node v to one of its neighbors requires a single hop, i.e., a single message.
Routing a message from an arbitrary source node v to an arbitrary target node
u, entails modifying the binary vector entries that differ between u and v. Two
vectors of length k, differ in k/2 entries in expectation, and thus, the expected
path length is k/2 hops1.

The L hash functions g = {g1, · · · , gL} are randomly selected from G a priori.
They are given to the distributed algorithm as a configuration parameter, and
are known to all bucket nodes. CAN supports multiple hash functions [25], which
we use for supporting multiple gi’s and mapping each user vector into L bucket
nodes.

Bucket Maintenance. Our algorithm constructs and refreshes the buckets con-
tinuously, in a decentralized manner. Each user periodically re-hashes its vector
using LSH into L sketch vectors. It then performs DHT lookups to locate the
corresponding bucket nodes, and sends them the fresh user vector. Note that the
user vector may or may not have changed since the previous update message.

We do not construct buckets a priori. Rather, bucket construction is triggered
by vector update messages. A CAN node becomes an active bucket node when it
first receives a notification of some user vector. Since user vectors change dynam-
ically, their hashes change accordingly. Obsolete vectors that are not refreshed
for a certain predefined length of time are garbage-collected from bucket nodes.

Query Processing. Algorithm 1 depicts NearBucket-LSH query processing pro-
cedure: Each P2P node may trigger an m-similarity search request for an input
query q. The initiating node, denoted n, hashes q into L sketch vectors gi(q),
looks-up the corresponding exact bucket nodes, and sends them m-similarity
search requests in parallel. Once a query request reaches some exact bucket
node gi(q), the node performs a local similarity search in its own bucket, and
also forwards the request to the k near bucket nodes that differ from gi(q) in
exactly one entry. All (exact and near) bucket nodes send back a set of up to m
results to node n. Node n merges the result sets and returns a final m-result set
to the caller.

As a CAN node maintains a table of k neighbors that differ from it in exactly
one entry, these neighbors hold the desired near buckets. Thus, contacting a near
bucket node costs a single message, and a total of kL messages per query. We
further eliminate these additional messages by caching k near buckets at each
CAN node. In order to maintain fresh caches, each node periodically sends its
bucket to its neighbors. The cache requires an additional storage of size kB at
each node, where B is the average bucket size.

It is possible to cache all k near buckets or any subset of them. For the purpose
of the analysis and evaluation in the next sections, we refer to the following two

1 Note that in a general c-dimensional CAN of N nodes, the expected routing length

is c/4
(
N1/c

)
[25], which equals k/2 for c = k and N = 2k.



NearBucket-LSH: Efficient Similarity Search in P2P Networks 241

extremes: we name NB-LSH a NearBucket-LSH that does not use caching at all,
and CNB-LSH a NearBucket-LSH that caches all k near buckets. In addition,
we refer in LSH to the basic LSH algorithm, which completely avoids searching
near buckets.

Algorithm 1. NearBucket-LSH Query Processing
1: function Query(q) � At the query node
2: pforeach gi ∈ g do � A parallel foreach
3: vi ← gi(q)
4: ni ← DHT.lookup(vi) � Lookup bucket node
5: ni.SendReq(SimSearchNB, q, n) � Send request
6: end pforeach
7: hits ← collect results from bucket nodes
8: return top m hits � Rank and return top m
9: end function

10: function SimSearchNB(q, n) � Query q from n
11: res ← Bucket.LocalSimSearch(q) � Local search
12: n.SendRes(res) � Send back result
13: pforeach j ∈ {1, · · · , k} do � A parallel foreach
14: nj ← Neighbors.j � Extract the j-th neighbor
15: if Bucketj is cached then � Neighbor’s bucket is cached
16: res ← Bucketj .LocalSimSearch(q) � Local search
17: n.SendRes(res) � Send back result
18: else
19: nj .SendReq(SimSearch, q, n) � Forward request
20: end if
21: end pforeach
22: end function

23: function SimSearch(q, n) � Query q from n
24: res ← Bucket.LocalSimSearch(q) � Local search
25: n.SendRes(res) � Send back result
26: end function

5 Theoretical Analysis

We theoretically analyze an algorithm’s capability of retrieving similar objects,
and show the superiority of NearBucket-LSH to successfully retrieve similar
objects for a given network cost.

5.1 Success Probability Formulation

The basic building block in our analysis is the success probability [20] of an
algorithm A to find object y that has a similarity value s to query object q, under
a random selection of g ∈ G. We denote this success probability by SP (A, s).



242 N. Kraus et al.

LSH. Let LSH(k, L) denote the angular-LSH algorithm with parameters k and
L, and let s denote the angular similarity between query q and searched object
y. According to the LSH theory [7], for a randomly selected h ∈ H:

Prh∈H [h(q) = h(y)] = s, and Prh∈H [h(q) �= h(y)] = (1 − s). (2)

LSH(k, L) searches in L exact buckets independently, thus, it finds y in any of
these buckets with probability:

Proposition 1.

SP (LSH(k, L), s) = 1 − (
1 − sk

)L
.

NearBucket-LSH. We define b-near buckets to be buckets that differ from an
exact bucket in 0 ≤ b ≤ k entries (note that a 0-near bucket is an exact bucket).
The success probability of finding y in a b-near bucket of g(q) is:

sk−b(1 − s)b. (3)

As our vectors are non-negative, their angular similarities s satisfy that s ∈
[0.5, 1]. This implies that ∀s, (1 − s) ≤ s, and therefore, for 0 ≤ b1 < b2 ≤ k,
sk−b2(1 − s)b2 ≤ sk−b1(1 − s)b1 , thus:

Proposition 2. The success probability when searching in a b1-near bucket is
greater or equal to the success probability when searching in a b2-near bucket, for
any 0 ≤ b1 < b2 ≤ k. Hence, NearBucket-LSH’s selection of k 1-near buckets is
optimal, with respect to any other k buckets selected for search, in addition to
the exact bucket.

The exact bucket and its near buckets are disjoint, as an object is mapped
to exactly one bucket according to a specific g. NearBucket-LSH searches in L
exact buckets each along with its k 1-near buckets. Thus,

Proposition 3.

SP (NearBucket-LSH(k, L), s) = 1 − (1 − (sk + ksk−1(1 − s)))L.

Layered-LSH. We show that for the angular similarity, Layered-LSH is equivalent
to the basic LSH. Layered-LSH maps near buckets to the same node w.h.p.,
which can be achieved by using Hamming-based LSH [8,14] as follows. Let gang
be the angular-LSH used for mapping vectors to buckets. By definition, gang is a
concatenation of hi angular-LSH functions. Let gham be the Hamming-LSH used
for mapping buckets to nodes. Hamming-based LSH hashes a binary vector to
another binary vector of a lower dimension k, by randomly and independently
selecting k entries of the input vector. In our case, this resorts to randomly
and independently selecting k entries from gang(v), each of which corresponds
to some hi ∈ H. We get that gham(gang(v)) maps v to a node according to k
randomly selected h ∈ H functions, which is equivalent to using the angular-LSH
with parameter k.



NearBucket-LSH: Efficient Similarity Search in P2P Networks 243

5.2 Success Probability Comparison

We use Propositions 1 and 3 to compare the success probabilities of LSH,
Layered-LSH, and NearBucket-LSH. We compute an algorithm’s success proba-
bility as a function of the cosine similarity between the query and the searched
object2. As Layered-LSH is equivalent to LSH, we refer to both as LSH in this
discussion. For the purpose of the demonstration, we present graphs for selected
k and L values. Note however that we observed the same trend for other k and
L values; we omit the respective graphs from this text.

Constant Number of Hash Functions. We compare LSH and NearBucket-LSH
for a constant L. Figure 1 depicts their success probabilities for k = 12 and for
increasing L values of 1, 10, and 100. As the graphs demonstrate, the success
probability of NearBucket-LSH is greater than or equal to the success prob-
ability of LSH for all similarities, for a constant L This stems from the fact
that NearBucket-LSH searches in kL additional near buckets, which increases
its success probability.

Fig. 1. Analytical success probability as a function of L (k = 12). NearBucket-LSH
guarantees a greater or equal success probability compared to LSH and Layered-LSH,
as it searches in more buckets (namely, near buckets). The gap increases as L increases.

Network Efficiency. As we have seen, for a constant L, NearBucket-LSH
increases the success probability of LSH at the cost of contacting additional
buckets. We proceed to analyzing the success probability as a function of the
network cost. We measure the network cost by the average number of messages
per query. We distinguish between the cached (CNB-LSH) and non-cached (NB-
LSH) versions of NearBucket-LSH.

The first column of Table 1 summarizes the number of bucket nodes contacted
(and searched) by each of the algorithms, for given k and L parameters. Looking
up an exact bucket node requires an average of k/2 routing hops, and contacting
a neighbor node costs one message. The second column in Table 1 summarizes
the average number of messages per query, for given k and L parameters.
2 We transform cosine similarity into angular similarity and then apply the success

probability formulas.



244 N. Kraus et al.

Table 1. Summary of costs of similarity search in CAN-based LSH variants for given
k, L LSH parameters.

Number of Average number Number of Number of
nodes contacted of messages vectors stored vectors searched
per query per query in a node per query

LSH L 1
2
kL B LB

Layered-LSH L 1
2
kL B LB

NB-LSH L(1+k) 1 1
2
kL B L(k + 1)B

CNB-LSH L 1
2
kL (k + 1)B L(k + 1)B

Figure 2 depicts success probability for k = 12 and an increasing network
costs of 18, 180, and 1800 average number of messages. The graphs illustrates
that, thanks to the low network cost of searching near buckets, NearBucket-LSH,
(and more notably CNB-LSH), improves LSH’s success probability for all sim-
ilarity values, for a constant average number of messages. Note that one could
further extend NearBucket-LSH to search in near buckets that differ from the
query’s bucket in more than one entry. The success probability of such buckets
decreases (Proposition 2), whereas the network cost in NB-LSH and the stor-
age cost in CNB-LSH increases compared to 1-near buckets. Thus, searching
additional buckets is expected to be less effective.

Fig. 2. Analytical success probability as a function of network cost for k = 12. NB-
LSH exploits the low lookup cost of near buckets in CAN, and increases LSH’s and
Layered-LSH’s success probability for a given network cost. CNB-LSH further saves
messages by caching near buckets, and achieves the greatest success probability for a
given network cost.

Other Considerations. Our work focuses on minimizing the network cost, which
is a dominant cost in P2P networks. For completeness, we present in the third and
fourth columns of Table 1 other costs which tradeoff with network-efficiency. We
denote the average bucket size by B. In terms of storage capacity, NB-LSH pre-
serves the same space complexity as LSH and Layered-LSH. CNB-LSH increases



NearBucket-LSH: Efficient Similarity Search in P2P Networks 245

the space complexity due to caching, while being more network-efficient than
NB-LSH. Both NearBucket-LSH variants search over a larger number of vectors
than LSH, implying more processing work per query. As our algorithm searches
the buckets in parallel, and the average bucket size is equal in all algorithms,
this does not affect the query latency.

6 Evaluation

We empirically evaluate our algorithm on three real world OSN datasets of vary-
ing sizes, and demonstrate the superiority of CNB-LSH over other approaches.

6.1 Search Quality Measures

Recall. (at m) is defined as follows [20]:

Definition 1 (recall at m). Given a query q, let Im(q) denote its ideal m-
result set. Let Am(q) denote the approximate m-result set of q returned by some
algorithm A. An algorithm’s recall for query q is the fraction of results from q’s
m-ideal result set that are returned by A:

recall@m(A, q) =
|Am(q) ∩ Im(q)|

|Im(q)| . (4)

An algorithm’s recall, recall@m (A), is the mean of the queries’ recall averaged
over a query set Q.

Normalized Cumulative Similarity. We measure an algorithm’s precision by com-
paring the similarity scores of its m-result set to those of the ideal m-result set.
We define the following ratio, which we name the normalized cumulative simi-
larity (NCS):

Definition 2 (NCS at m). Given a query q, let CumSim(Im, q) denote the
sum of the similarity values to q of the results in q’s ideal m-result set.

Let CumSim(Am, q) denote the sum of the similarity values to q of the
results in q’s m-result set of a given algorithm A. Then,

NCS@m(A, q) =
CumSim(Am, q)
CumSim(Im, q)

(5)

We measure the NCS of an algorithm, NCS@m(A), by averaging it over the
query set Q.

Note that CumSim(Im, q) ≥ CumSim(Am, q), and both are positive. Therefore,
NCS@m(A) ∈ [0, 1].



246 N. Kraus et al.

6.2 Methodology

Datasets. We use three real-world publically-available datasets of OSNs [29]:

– DBLP [11], the computer science bibliography database: Authors are users,
and venues are interests. We use a crawl of 13,477 interests, and 260,998 users
that have at least one interest.

– LiveJournal [17] blogging-based OSN: Users publish blogs and form interest
groups, which users can join. The LiveJournal crawl consists of 664,414 such
groups, which we consider as user interests. There are 1,147,948 users with at
least one interest.

– Friendster [13] online gaming network: Similarly to LiveJournal, Friendster
allows users to form interest groups, which we consider as interests. The
dataset consists of 1,620,991 interest groups, and 7,944,949 users with at least
one interest.

All datasets contain anonymous user ids and interest information. We filtered
out users having no interest.

Parameters. We set k = 10 in DBLP, k = 12 in LiveJournal and k = 15 in
Friendster. We follow previous art [4,15] that uses k values between 10 and
20, and bucket sizes of a few hundreds [14]. Thus, we have 1,024 buckets in
DBLP, 4,096 in LiveJournal, and 32,768 in Friendster. The average bucket size
is approximately 250 vectors in all datasets. We set m, the number of search
results, to 10.

Creating Sketch Vectors. We construct users’ weighted interest vectors according
to the dataset at hand. We weight each interest I based on its inverse frequency
in user vectors [1]: w(I) = ln( Nu

NI+1 ) + 1, where Nu denotes the total number of
users, and NI denotes the number of users having interest I. The user vector
entry vi is zero or w(I) according to whether the user is associated with specific
interest I. We use TarsosLSH’s [27] for mapping vectors into LSH buckets.

Simulator. We implement a simulator of our CAN-based overlay using Apache
Lucene 4.3.0 [19] centralized search index. We simulate distributing user vectors
in bucket nodes by indexing vectors by their hash values (sketch vectors). The
hash is then used for looking up a specific bucket node, and local similarity
search is performed by limiting the search to the selected bucket (using Lucene’s
Filter mechanism). We additionally use Lucene to compute the ideal result set
of a given query, by executing the query over the whole dataset. We score results
according to the cosine similarity.

Evaluation Set. We construct a query set of 3,000 randomly sampled users. For
each query q, we retrieve its ideal result set, as well as the result sets according
to the algorithms we compare. For each dataset, we measure recall and precision
over the query set in use.



NearBucket-LSH: Efficient Similarity Search in P2P Networks 247

6.3 Search Quality Results

Figure 3 illustrates our experimental results as a function of network cost. As in
Sect. 5.2, we measure the network cost by the average number of messages per
query according to Table 1. We increase the network cost by gradually increasing
L, which increases search quality for all datasets as expected. We use larger values
of k for larger datasets in order to preserve a common average bucket size. This
ensures that local search takes the same time, and the cache sizes are identical.
The larger k is, the lower the success probability is, thus, we expect a decrease
in search quality when the dataset size increases, which is indeed demonstrated
in the graphs.

The three datasets show a similar trend. Layered-LSH’s search quality equals
that of the basic LSH as expected. NearBucket-LSH (both cached and non-
cached) demonstrates an increase in search quality compared to LSH and
Layered-LSH, which is achieved by searching in additional near buckets stored
at neighboring nodes or the node itself. For example, in LiveJournal (second col-
umn), LSH requires an average of 96 messages per query in order to achieve 0.59
precision, whereas CNB-LSH achieves a precision of 0.57 using only 12 messages.
CNB-LSH also improves recall significantly, for example, achieving a 0.59 recall
using 72 queries, compared to a recall of 0.35 for LSH. In all cases, NB-LSH is
between LSH and CNB-LSH.

Fig. 3. Search quality as a function of the average number of messages per query,
for three real world datasets: DBLP, LiveJournal, and Friendster (k = 10, k = 12,
k = 15, respectively). For all datasets, CNB-LSH provides the greatest search quality
as a function of the network cost, according to two metrics: recall and precision.



248 N. Kraus et al.

7 Conclusions and Future Work

We presented NearBucket-LSH, a network-efficient LSH algorithm for P2P
OSNs, which provides good search quality. We first analytically showed that,
for angular similarity, our choice of searched near buckets is optimal, that is,
near buckets that differ in a single entry from the query’s bucket are more likely
to contain similar vectors than other near buckets. We then showed, both math-
ematically and empirically, that one may dramatically lower the additional net-
work cost for searching in these buckets by exploiting CAN’s internal structure
and judicious caching.

Our proposed overlay focuses on angular-LSH, which fits OSN similarity
search. It would be of an interest to extend our overlay to support other LSH
families such as lp-LSH, which map vectors to hashes in Z

k [10]. We expect
such an extension to naturally fit our CAN overlay: According to lp-LSH, Near
buckets are computed by adding {−1,+1} to an entry of a given hash vector [20].
Thus, when constructing a CAN over Z

k, a near bucket’s node resorts to the
current node or its neighbor [25], which follows our design.

Acknowledgments. Naama Kraus is grateful to the Hasso-Plattner-Institut (HPI)
for the scholarship for doctoral studies.

References

1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230
(2001)

2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

3. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Effects of user simi-
larity in social media. WSDM 2012, pp. 703–712 (2012)

4. Bahmani, B., Goel, A., Shinde, R.: Efficient distributed locality sensitive hashing.
In: CIKM 2012, pp. 2174–2178 (2012)

5. Batko, M., Novak, D., Falchi, F., Zezula, P.: Scalability comparison of peer-to-peer
similarity search structures. Future Gener. Comp. Syst 24(8), 834–848 (2008)

6. Buchegger, S., Schiöberg, D., Vu, L.H., Datta, A.: PeerSoN: P2P social networking -
early experiences and insights. In: SNS 2009, pp. 46–52, 31 March 2009

7. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
STOC 2002, pp. 380–388 (2002)

8. Chierichetti, F., Kumar, R.: LSH-preserving functions and their applications. In:
SODA 2012, pp. 1078–1094 (2012)

9. Cutillo, L.A., Molva, R., Önen, M., Safebook: a distributed privacy preserving
online social network. In: WOWMOM, pp. 1–3 (2011)

10. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: SCG 2004, pp. 253–262 (2004)

11. DBLP. http://www.informatik.uni-trier.de/ley/db/
12. Falchi, F., Gennaro, C., Zezula, P.: A content–addressable network for similarity

search in metric spaces. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H.,
Ouksel, A.M. (eds.) DBISP2P 2005-2006. LNCS, vol. 4125, pp. 98–110. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-71661-7 9

http://www.informatik.uni-trier.de/ley/db/
http://dx.doi.org/10.1007/978-3-540-71661-7_9


NearBucket-LSH: Efficient Similarity Search in P2P Networks 249

13. Friendster. http://www.friendster.com/
14. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-

ing. In: VLDB 1999, pp. 518–529 (1999)
15. Haghani, P., Michel, S., Aberer, K.: Distributed similarity search in high dimen-

sions using locality sensitive hashing. In EDBT 2009, pp. 744–755 (2009)
16. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the

curse of dimensionality. In: STOC 1998, pp. 604–613 (1998)
17. Livejournal. http://www.livejournal.com/
18. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison

of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutorials 7, 72–93
(2005)

19. Lucene. http://lucene.apache.org/core/
20. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: efficient

indexing for high-dimensional similarity search. In: VLDB 2007, pp. 950–961 (2007)
21. Mani, M., Nguyen, A.-M., Crespi, N.: Scope: a prototype for spontaneous P2P

social networking. In: PerCom Workshops, pp. 220–225 (2010)
22. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.

Cambridge University Press, Cambridge (2008)
23. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in

social networks. Ann. Rev. Sociol. 27, 415–444 (2001)
24. Narendula, R., Papaioannou, T.G., Aberer, K.: Towards the realization of decen-

tralized online social networks: an empirical study. In: ICDCS Workshops, pp.
155–162 (2012)

25. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM 2001, pp. 161–172, New York, NY, USA
(2001)

26. Sundaram, N., Turmukhametova, A., Satish, N., Mostak, T., Indyk, P., Madden,
S., Dubey, P.: Streaming similarity search over one billion tweets using parallel
locality-sensitive hashing. Proc. VLDB Endow. 6(14), 1930–1941 (2013)

27. TarsosLSH. https://github.com/jorensix/tarsoslsh
28. Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social

networks. In: WWW 2010, pp. 981–990 (2010)
29. Yang, J., Leskovec, J.: Defining, evaluating network communities based on ground-

truth. In: MDS 2012, pp. 3: 1–3: 8 (2012)

http://www.friendster.com/
http://www.livejournal.com/
http://lucene.apache.org/core/
https://github.com/jorensix/tarsoslsh


Speeding up Similarity Search by Sketches

Vladimir Mic(B), David Novak, and Pavel Zezula

Masaryk University, Brno, Czech Republic
xmic@fi.muni.cz

Abstract. Efficient object retrieval based on a generic similarity is one
of the fundamental tasks in the area of information retrieval. We propose
an enhancement for techniques that use the distance-based model of
similarity. This enhancement is based on sketches–compact bit strings
compared by the Hamming distance which represent data objects from
the original space. The sketches form an additional filter that reduce the
number of accessed data objects while practically preserving the search
quality. For a certain class of state-of-the-art techniques, we can create
the sketches using already known information, thus the time overhead is
negligible and the memory overhead is subtle. According to the presented
experiments, the sketch filtering can reduce the number of accessed data
objects by 60–80 % in case of M-Index, and 30% in case of PPP-Codes
index while hurting the recall by less than 0.4 % on 10-NN search.

1 Introduction

Similarity retrieval represents a fundamental challenge of modern data process-
ing. Handling objects according to their mutual similarity closely corresponds
to the human perception of reality [6], therefore similarity retrieval can pro-
vide a natural way to access various types of data. Independently of a specific
measure of similarity, we focus on the efficient similarity-based retrieval in large
data collections. We adopt the broad model of the metric space that considers a
data domain D together with a distance function d : D ×D �→ R to express the
dissimilarity of two data objects from domain D. The distance function must sat-
isfy properties of non-negativity, identity, symmetry and triangle inequality [19];
the triangle inequality is not explicitly utilized by the proposed technique. We
assume an approximate evaluation of k-NN queries. The approximation quality
is measured by recall, i.e. the relative size of the intersection of the approximate
k-NN answer with the precise one. In our case the recall is equal to precision.
We focus on speeding up existing distance-based similarity indexes. Majority of
these indexes break the data collection down into disjoint partitions that are
supposed to contain data objects mutually similar. Given a query object q ∈ D,
the most promising partitions are identified; the union of data objects in these
partitions forms a candidate set for the query q. Data objects x from the can-
didate set are accessed and distances d(q, x) are evaluated to return the k most
similar objects; this phase is further denoted as refinement of the candidate
set. In high dimensional spaces, majority of data objects in the candidate set
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 250–258, 2016.
DOI: 10.1007/978-3-319-46759-7 19



Speeding up Similarity Search by Sketches 251

are usually non-relevant [15], but these are uncovered only during the generally
expensive refinement phase.

Objectives, Approach and Related Work

We propose to enrich a generic indexing technique with compact bit strings,
called sketches, for all data objects and use them to reduce the candidate set. In
order to be effective, this additional filter is supposed to work on a different space
partitioning principle. Experiments with two indexes on two high-dimensional
datasets show that the effect of the sketch filtering can be radical.

The basic reasoning behind our proposal is the following:

– The quality and efficiency of the approximate similarity search is closely
related to the candidate set, i.e. the set should contain all relevant data objects
and be as small as possible. By filtering out non-relevant data objects from
the set, we can save the evaluations of the distance function d (which can be
expensive) during the refinement phase and, if the data objects are stored on
the disk, reduce the I/O costs.

– Many successful indexing techniques use a static set of reference objects (piv-
ots) and the distances between each data object o and each pivot are eval-
uated during the preprocessing phase [1,5,12,15,17]. In these cases, we can
create sketches using the already known object-pivot distances (see Sect. 2 for
details). Then the time overhead introduced by the additional sketch filtering
is negligible and the memory overhead subtle in comparison with the potential
gain.

Combining different space partitionings is not a new idea and it seems to
be a viable approach to fight the curse of dimensionality. A typical approach
is to apply the same space partitioning principle but with different randomized
parameters (e.g. sets of pivots) [5,10,13,15]. The data objects are either kept in
memory and only accessed “from different points of view” [10], replicated on the
disk [5,13], or kept separately from the memory indexes on an SSD disk [15].
There are also techniques that combine completely different principles of space
partitioning into a single index, for instance the Pivoting M-Tree [16]. We do not
know about any work that would propose a secondary filtering for approximate
similarity search that would use the same pivot set for a different partitioning.

Section 2 of this paper describes the proposed approach and its properties in
detail. Section 3 contains evaluation of the effectiveness of the sketch filtering on
two indexes M-Index and PPP-Codes (Sect. 3.1) and on two datasets (CoPhIR
and DeCAF – Sect. 3.2). The paper is concluded in Sect. 4.

2 Bit-String Sketches for Candidate Set Reduction

The sketch of data object o ∈ D is a bit string in Hamming space which approx-
imates the location of o in the original space (D, d). In particular, each bit value
of sketch(o) limits a subspace in (D, d) where the object o is located by means of



252 V. Mic et al.

Fig. 1. Similarity search with additional sketch based filtering

a certain space partitioning. A typical example is a generalized hyperplane par-
titioning (GHP) which divides the data objects to two parts by means of their
distances from two selected pivots p1, p2 ∈ D [8,11,19]. Several authors study the
similarity search based on sketches [4,8,11,18], and they usually achieve promis-
ing results for different data types, data dimensions, and distance functions.

In our previous paper [8], we analysed three properties of sketches desir-
able for efficient similarity search purely based on sketches. Having a set of
sketches created for a given dataset, we have shown that (1) bit values of each
sketch(o) should strongly depend on the position of object o in space (D, d),
(2) the sketches should have balanced bits, i.e. each bit should be set to 1 in one
half of the sketches, and (3) bits of sketches should be mutually as low correlated
as possible. The first requirement is satisfied e.g. by sketches created using the
GHP partitioning and other requirements can be satisfied by proper selection of
specific pivots for GHP.

In this paper, we propose to use such sketches to enrich practically any
distance-based search indexing technique. In particular, we propose to main-
tain a sketch(o) for each indexed data object o and use these sketches to reduce
the candidate set to be refined (see Fig. 1). Given a query object q, the sketch(q)
is created and we filter out some candidate objects o based on Hamming distance
between sketch(q) and sketch(o). Either, we can remove all data objects o with
the sketch distance higher than some threshold, or we can filter out a given per-
centage of the candidate objects with the highest sketch distances. The distance
threshold approach can be applied already during the primary candidate set
generation. On the other hand, the percentage to be filtered can be determined
without any knowledge about the Hamming space. According to our rigorous
testing, the results of these approaches are comparable and thus we present only
results of the second one which are slightly better.

The expenses of the sketch filtering are the following: (1) CPU time to inves-
tigate pivot pairs suitable for the sketches; this step is performed during the
preprocessing. (2) CPU time to obtain sketch(o) for each object o and query



Speeding up Similarity Search by Sketches 253

sketch sketch(q); using the GHP partitioning, this means evaluation of 2 · b dis-
tances to pivots, where b is the sketch length; in indexes with a fixed set of pivots
all the object-pivot distances are often known. In these cases sketches are cre-
ated practically for free. (3) CPU time to evaluate the Hamming distances; this
operation is very efficient on modern CPUs in comparison with often expensive
evaluations of distance d. (4) Memory overhead of keeping sketch(o) for each
data object o; we show that even short sketches with lengths b = 32 or b = 64
can be very effective.

In general, the additional filtering can be employed in the following two ways.
Either we can (1) reduce the number of refined data objects while, in ideal case,
preserving the search quality (recall), (2) or we can preserve the number of
refined data objects by adding more data objects instead of the ones filtered out
by sketches; in this way, we can improve the search quality. Results presented in
Sect. 3 can be interpreted in both ways.

3 Evaluation

In this section, we present evaluation of the similarity search with the addi-
tional sketch filtering. We conducted experiments using two different indexing
techniques (see Sect. 3.1) and two real-life datasets (see Sect. 3.2). The sketch
filtering was evaluated using sketches of lengths 32 and 64 bits and the results
are presented and discussed in Sect. 3.3.

3.1 Similarity Indexes

The first index structure is the M-Index [12]. It uses a fixed set of pivots to
perform Voronoi partitioning and each Voronoi cell is recursively partitioned by
the same principle. The depth of this partitioning is determined dynamically
according to occupation of the leaf partitions. Each data object is then stored
according to its several closest pivots (according to prefix of a pivot permutation).
Given a query object, the M-Index uses the query-pivot distances to determine
the most promising partitions to contain query-relevant data objects [12].

The PPP-Codes search structure [14,15] has a slightly different architecture.
It maintains a memory index which determines the set of candidate objects by
their unique IDs and this set is retrieved from a disk storage (SSD) and refined.
The space partitioning is also based on pivot permutation prefixes (PPP) but
the candidate set can be an order of magnitude smaller than for M-Index [15].
The effect is achieved by decomposing the pivot set into several sets and thus
creating several PPPs for each data object. Given a query object, the candidate
set is determined by a selective combination of candidate sets from individual
pivot spaces. In this way, PPP-Codes can appropriately filter out objects that
seem to be relevant in one pivot space but the other spaces indicate the opposite.
The process of candidate set formation is more computationally demanding.



254 V. Mic et al.

3.2 Testing Data

The experiments are conducted on two real-life data collections, both consisting
of visual descriptors extracted from images. The first set is formed by DeCAF
descriptors [3] – 4096-dimensional vectors taken as an output from the last hid-
den layer of a deep convolutional neural network [7]. These descriptors were
extracted from a 1M subset of the Profiset collection1. The DeCAF descriptors
are compared by the Euclidean distance to form the metric space (D, d).

The second dataset consists of a combination of five MPEG-7 visual descrip-
tors [9] as provided by the CoPhIR2 data collection [2]. Each of these descriptors
is accompanied with a suitable distance function [9] and the descriptors extracted
from each image are combined into a single metric space (D, d) by a weighted
sum of individual distances [2]. In total, this representation can be viewed as a
280-dimensional vector. We take a 1M subset of CoPhIR.

For each dataset, we have randomly selected a set of 512 pivots that are
used by M-Index and PPP-Codes for indexing. In order to create sketches, we
investigate all

(
512
2

)
pivot pairs. Each pair has been used to partition a random

subset of 100,000 data objects by GHP and in this way we have identified those
pairs that divide the data into parts balanced at least 55% to 45%. From these
balanced pivot pairs (≈8,000) we further select those producing sketches with low
correlated bits using a heuristics described in [8]. Both 1M subsets of datasets,
query objects and pivots were selected randomly and are publicly available.

3.3 Results

In this section, we evaluate the ability of the sketches to filter out non-relevant
data objects from the candidate set. In the first set of experiments, we let the M-
Index identify the candidate set with the 50,000 most promising data objects for
a representative query object q; such set is denoted M50K. Let us first observe the
distribution of distances d(q, x) for all 50 K data objects x in this candidate set.
This distribution is denoted ddM50K and is depicted by the black curve in Fig. 2.
Further, we denote M50K,S50% the same candidate set with 50 % data objects
filtered out by sketches (according to Hamming distances from sketch(q)); the
respective query-object distance distribution ddM50K,S50% is also depicted in
Fig. 2. Please, note that these plots are taken for a single query on the DeCAF
dataset and that both plots are the same, just the right one uses a logarithmic
scale of axis y. The y axis expresses the frequency, formally:

∫ ∞

−∞
ddM50K(x) dx = 1, therefore:

∫ ∞

−∞
ddM50K,S50%(x) dx = 0.5.

This example illustrates the ability of the sketches to preserve relevant data
objects, since the beginnings of both curves are the same (see marked point from
which these curves differs). In particular 499 out of 500 data objects with the
smallest distances to the query object are preserved in this example.
1 http://disa.fi.muni.cz/profiset/.
2 http://cophir.isti.cnr.it/.

http://disa.fi.muni.cz/profiset/
http://cophir.isti.cnr.it/


Speeding up Similarity Search by Sketches 255

Fig. 2. Distance distributions on data objects M50K and M50K,S50 %, left plot with
linear scale and right plot with logarithmic scale

In the rest of this section, we present results averaged over 1,000 randomly
selected queries. We focus on the probability of false negatives, i.e. that the
actual kth nearest neighbour from the candidate set is filtered out by sketches.
Figure 3 depicts these probabilities for the DeCAF dataset, M50K data objects
and filtering out 50 % of these data objects by sketches. Results for 32 bit and
64 bit sketches are presented. The genuine results are depicted in a gray color
and the trend curves are in black. The results show significantly better ability of
64 bit sketches over 32 bit to preserve the most similar data objects in an answer.

Fig. 3. Chances of omitting the kth most similar object by additional sketch filtering,
left plot with 32 bit sketches and right plot with 64 bit sketches

In the final set of experiments, we use 64 bit sketches and we focus on overall
k-NN recall for k = 10 (denoted as recall@10). Figures 4 and 5 show results for
CoPhIR and DeCAF datasets, respectively, always for candidate sets from both
M-Index and PPP-Codes. The vertical axes represent the average recall@10 after
the sketch filtering. The horizontal axes show the relative size of the candidate
set with respect to the size of dataset (which is 1 million). Individual curves cor-
respond to percentages of this candidate set filtered out by the sketches (curves
sketch filter 0% show original results of M-Index and PPP-Codes).



256 V. Mic et al.

Fig. 4. Recall of double filter and refine similarity retrieval on CoPhIR dataset

We can read these graphs in two ways: (1) For a given number of refined
objects, we can observe which combination of original candidate set size and
percentage of sketch filtering gives the highest recall, and (2) for a required
recall level, we can look for parameters leading to the smallest number of refined
objects. For instance, for recall below 0.95, the most efficient is letting the
sketches filter out even 80 % of the M-Index candidates and over 30 % in case
of PPP-Codes. For a highly accurate retrieval with recall about 0.99, it is bet-
ter to use a bigger original candidate set and filter out about 50–60 % in case of
M-Index and 30 % objects for PPP-Codes. Let us observe specific selected values
for DeCAF (Fig. 5): The pure M-Index must refine 100,000 objects to achieve
recall 97.57, while the sketches can filter out all but 40,000 objects and preserve
average recall of 97.21. In case of PPP-Codes, only 14,000 objects instead of
20,000 have to be refined while the recall value decreases from 97.32 to 97.13.

Fig. 5. Recall of double filter and refine similarity retrieval on DeCAF dataset



Speeding up Similarity Search by Sketches 257

4 Conclusions

We have proposed and evaluated an enhancement of traditional similarity search
techniques with an additional sketch-based filtering. Sketches, compact binary
strings, can be created practically for free for techniques that use a static set of
pivots. Their contribution to the quality of filtering can be huge, as shown on
two state-of-the-art indexes M-Index and PPP-Codes and two real-life datasets.
We have demonstrated the ability of the sketches to filter out many non-relevant
data objects while preserving almost all relevant ones. In case of M-Index, the
number of refined data objects can be reduced by 60–80 % and in case of PPP-
Codes by 30 % while the decrease of the recall@10 was only negligible.

Acknowledgements. This work was supported by the Czech Science Foundation
project GA16-18889S.

References

1. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable
approximate similarity search. Multimedia Tools Appl. 71(3), 1333–1362 (2014)

2. Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidub-
sky, J., Zezula, P.: Building a web-scale image similarity search system. Multimedia
Tools Appl. 47(3), 599–629 (2010)

3. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell,
T.: DeCAF: a deep convolutional activation feature for generic visual recognition.
arXiv preprint arXiv:1310.1531 (2013)

4. Dong, W., Charikar, M., Li, K.: Asymmetric distance estimation with sketches for
similarity search in high-dimensional spaces. In: Proceedings of ACM SIGIR 2008,
pp. 123–130. ACM (2008)

5. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inf. Process. Manage. 48(5), 889–902 (2012)

6. Kemler, D.G.: Classification in young and retarded children: the primacy of overall
similarity relations. Child Dev. 53(3), 768–779 (1982)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

8. Mic, V., Novak, D., Zezula, P.: Improving sketches for similarity search. In: Pro-
ceedings of MEMICS 2015, pp. 45–57 (2015)

9. MPEG7: Multimedia content description interfaces. part 3: Visual (2002)
10. Muja, M., Lowe, D.G.: Scalable nearest neighbour algorithms for high dimensional

data. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 1–14 (2014)
11. Muller-Molina, A.J., Shinohara, T.: Efficient similarity search by reducing i/o with

compressed sketches. In: Proceedings of SISAP 2009, pp. 30–38. IEEE Computer
Society (2009)

12. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

13. Novak, D., Zezula, P.: Performance study of independent anchor spaces for simi-
larity searching. Comput. J. 57(11), 1741–1755 (2014)

http://arxiv.org/abs/1310.1531


258 V. Mic et al.

14. Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similar-
ity search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.)
DEXA 2014. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-10085-2 4

15. Novak, D., Zezula, P.: PPP-codes for large-scale similarity searching. In:
Hameurlain, A. (ed.) TLDKS XXIV. LNCS, vol. 9510, pp. 61–87. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49214-7 2

16. Skopal, T., Pokorny, J., Snasel, V.: PM-Tree: pivoting metric tree for similarity
search in multimedia databases. In: Proceedings of ADBIS 2004, pp. 99–114 (2004)

17. Tellez, E.S., Chavez, E., Navarro, G.: Succinct nearest neighbor search. Inf. Syst.
38(7), 1019–1030 (2013)

18. Wang, Z., Dong, W., Josephson, W., Lv, Q., Charikar, M., Li, K.: Sizing sketches:
a rank-based analysis for similarity search. SIGMETRICS Perform. Eval. Rev.
35(1), 157–168 (2007)

19. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: the Metric Space
Approach. Advances in Database Systems, vol. 32. Springer Science & Business
Media, New York (2006)

http://dx.doi.org/10.1007/978-3-319-10085-2_4
http://dx.doi.org/10.1007/978-3-319-10085-2_4
http://dx.doi.org/10.1007/978-3-662-49214-7_2


Fast Hilbert Sort Algorithm Without
Using Hilbert Indices

Yasunobu Imamura1(&), Takeshi Shinohara1, Kouichi Hirata1,
and Tetsuji Kuboyama2

1 Department of Artificial Intelligence,
Kyushu Institute of Technology, Kitakyushu, Japan

imamura.kit@gmail.com
2 Computer Centre, Gakushuin University,

Toshima, Japan

Abstract. Hilbert sort arranges given points of a high-dimensional space with
integer coordinates along a Hilbert curve. A naïve method first draws a Hilbert
curve of a sufficient resolution to separate all the points, associates integers
called Hilbert indices representing the orders along the Hilbert curve to points,
and then, sorts the pairs of points and indices. Such a method requires an
exponentially large cost with respect to both the dimensionality n of the space
and the order m of the Hilbert curve even if obtaining Hilbert indices. A known
improved method computes the Hilbert index for each point in O(mn) time. In
this paper, we propose an algorithm which directly sorts N points along a Hilbert
curve in O(mnN) time without using Hilbert indices. This algorithm has the
following three advantages; (1) it requires no extra space for Hilbert indices,
(2) it handles simultaneously multiple points, and (3) it simulates the Hilbert
curve in heterogeneous resolution, that is, in lower order for sparse space and
higher order for dense space. It, therefore, runs much faster on random data in O
(NlogN) time. Furthermore, it can be expected to run very fast on practical data,
such as high-dimensional features of multimedia data.

1 Introduction

Hilbert curve [4], one of the space-filling curves, can be defined in any dimensionality.
In Fig. 1 Hilbert curves in the 2-dimensional space of the first to the third order are
shown. It is known that any interval of sorted objects along a Hilbert curve forms a
relatively good cluster. For example, R-tree, which is one of the hierarchical spatial
index structures, exhibits high performance when constructing such clusters [6]. In this
paper we consider Hilbert sort problem which sorts given objects in high-dimensional
space with integer coordinate values along a Hilbert curve.

This work was partially supported by Grant-in-Aid for Scientific Research 16H02870, 26280090,
15K12102, 26280085 and 16H01743 from the Ministry of Education, Culture, Sports, Science and
Technology, Japan.

© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 259–267, 2016.
DOI: 10.1007/978-3-319-46759-7_20



A naïve method of Hilbert sort first draws the Hilbert curve of the m-th order with a
sufficient resolution to separate all the points, associates integers called Hilbert indices
representing the orders along the Hilbert curve to points, and then, sorts the pairs of
points and indices. Such a method requires an exponential cost with respect to both the
dimensionality n of the space and the order m of the Hilbert curve only for obtaining
Hilbert indices [5]. A known improved method [1–3] computes the Hilbert index for
each point in O(mn) time. Thus, we have already known the Hilbert sort for N objects
in n-dimensional space of m-th order can be solved in O(mnN + mnNlogN) = O
(mnNlogN) time.

In this paper, we propose an algorithm that directly sorts N points along a Hilbert
curve in O(mnN) time without using Hilbert indices, which was originally introduced
by Tanaka [7]1. This algorithm has three advantages; (1) it requires no extra space for
Hilbert indices, (2) it handles simultaneously multiple points, and (3) it simulates the
Hilbert curve in heterogeneous resolution, that is, in lower order for sparse space and
higher order for dense space. As shown later, it can be observed to run very fast on
practical data, such as multimedia data with high-dimensional features. It runs much
faster on random data in O(NlogN) time.

2 Outline of Proposed Algorithm

In this section, we explain the outline of the proposed algorithm by using an example.
Let’s consider 9 points in 2-dimensional space shown in Fig. 2. To separate all the
points we have to draw the Hilbert curve of the third order, where the dimensionality
n is 2, the order (resolution) m of Hilbert curve is 3, and the space is divided into
2mn = 64 subspaces. Without loss of generality we can deal with every point in the set
represented by nm-bit unsigned integers. For example, the rightmost one in the 9 points
is in the position (5, 6) represented by “101110”.

Our algorithm simulates the Hilbert curve by dividing space into two in an axis.
Here we trace it in a breadth-first manner, while it runs in a depth-first manner by a
recursive call in a natural implementation.

We represent the start point, end point and crossing area of the Hilbert curve by an
arc-like arrow. For example, Fig. 3 shows that the Hilbert curve crosses the square
from the lower left corner to the lower right.

Fig. 1. Hilbert curves of the first order to the third order in two-dimensional space

1 We found that Tanaka’s implementation has O(mn2N) running time.

260 Y. Imamura et al.



First, we divide the space into two in
the horizontal axis as in Fig. 4. Note that
this division is done by tests on the first
bits, which are enclosed by a dashed line
in Fig. 4. At this stage, 8 points in the
left subspace are decided to precede a
point in the right subspace. Since just
one point exists in the right side, no
more division is necessary,

The next division in the vertical axis
is applied only to the left subspace
(Fig. 5). Then the simulation of the first
order of the Hilbert curve is complete.

The simulation of the second order is
applied only to the upper left subspace
(Fig. 6). The simulation of the third
order is shown in Fig. 7.

Finally, in this example, to sort 9
points, 9 space divisions are done to
generate 10 subspaces.

If we adopt the algorithm in [2, 3] to
compute Hilbert indices for 9 points,
then the number of simulations at the
smallest level amounts to mnN = 54,
where m = 3 is the order of Hilbert
curve, n = 2 is the dimensionality and
N = 9 is the number of points. In con-
trast, our algorithm requires only 9

simulations, which is the same as the number of divisions. Thus, the proposed algo-
rithm can reduce the cost to sort objects.

Fig. 2. 9 points separated by Hilbert curve of the third order

Fig. 3. Arc-like arrow of Hilbert curve

Fig. 4. Division in the horizontal axis

Fast Hilbert Sort Algorithm Without Using Hilbert Indices 261



It is obvious that the number of
testing bits to compute Hilbert indices is
mnN = 54, which is the same as the
number of simulations. On the other
hand, the number of testing bits by our
sort algorithm without using Hilbert
indices is 9 + 8 + 7 + 6 + (2 + 4) +
(2 + 2 + 2) = 42, which is the sum of
the number of points in subspaces except
leaves as shown in Fig. 8. Here the dif-
ference is not large, because m is small
and many points need to be simulated in
the largest order. However, the larger the
order m is, the larger the difference is.

Fig. 5. Division in the vertical axis

Fig. 6. Simulation of the second order

Fig. 7. Simulation of the third order

262 Y. Imamura et al.



3 Pseudo-code of Proposed Algorithm

In Fig. 9, we present C++ like pseudo-code of the proposed algorithm Hilbert-Sort,
which consists of two functions partition and HSort. The constants m and n,
which are the order of Hilbert curve and the dimensionality of data, are defined
externally, such as macros. For clarity, here we use bitset<m> to represent coor-
dinate values. In practice, we may use an integer type, such as unsigned char for
m = 8, or unsigned long for m = 32. To sort N objects, we call HSort with
parameters: st = 0, en = N - 1, od = m - 1, c = 0, e = bitset<m>(), d = 0,
di = false, cnt = 0.

The function partition arranges data in a similar way as the famous partition
function in quick sort. The function HSort is the main sorting function, which sim-
ulates Hilbert curve in almost the same way as in Hilbert-Index [2, 3]. Therefore we
omit the formal proof of the correctness of simulation. The key difference of
Hilbert-Sort from Hilbert-Index is the bit-wise simulation, which avoids redundant
simulations to provide practical high speed.

4 Experiments

In this section, we demonstrate effectiveness of proposed algorithm Hilbert-Sort by
running experiments. We use a library function sort in C++STL to sort using indices
calculated by Hilbert-Index.

We use three kinds of data to be sorted, (1) random data, (2) random pair data, and
(3) feature data extracted from images. Every bit of random data is expected to divide
uniformly. A set of random pairs data is made by duplicating the half size random data,
which is expected to derive the worst running time by the proposed algorithm because
the deepest order simulation of Hilbert curve is necessary and the advantage of
simultaneous simulations for multiple points is hard to preserve. For feature data, we
prepare about 7 million image data extracted from video by processing grayscale
transformation, down scaling and 2-dimensional FFT. Dimensionality of image fea-
tures is 64. Each axis is represented by an 8 bits unsigned char.

Fig. 8. The number of points in subspaces

Fast Hilbert Sort Algorithm Without Using Hilbert Indices 263



Fig. 9. Pseudo-code of Hilbert-Sort

264 Y. Imamura et al.



Fig. 10. Influence of dimensionality n

Fig. 11. Influence of data size N

Fast Hilbert Sort Algorithm Without Using Hilbert Indices 265



In all the experiments, we fix m = 8, n = 64, N = 1,048,576 (=1024k) unless we
explicitly vary the values. We present two graphs for each data to observe the effect of
the dimensionality n and the number N of data. Every graph is plotted on a log-log
scale.

As shown in Fig. 10, for random data, Hilbert-Sort runs extremely faster than
Hilbert-Index in sublinear time with respect to n, whereas Hilbert-Index runs in just
linear time. On the other hand, as shown in Fig. 11, for random data, both algorithms
run in linear time with respect to the number N of data.

For random pair data, Hilbert-Sort has no advantage compared with Hilbert-Index
in computational complexity, however, in our implementations, Hilbert-Sort runs about
twice as fast as Hilbert-Index. (Figs. 10 and 11). For feature data, Hilbert-Sort runs
about 5 times as fast as Hilbert-Index (Figs. 10 and 11).

From Fig. 11, the running time of Hilbert-Sort for feature data looks like worse
than linear. The feature data are extracted from videos, which contain many similar
data. Since we prepare the different sizes of images by random selection from 7 million
data, the larger the size of data set is, the higher the probability of similar data is. Thus,
the results for them are similar as ones for random data in smaller size, while they have
many similar pairs like random pair data. Therefore, we can conclude that the running
time of Hilbert-Sort is linear even for feature data.

Additional experiments on colors, one of SISAP databases, also show a similar
behavior as on the image feature data.

5 Conclusion

Whereas we can observe no improvement in the order of computation time for practical
feature data of images as expected unfortunately, we can achieve sufficient speed-up in
practice. One of reasons for improvement can be explained by the advantage of
Hilbert-Sort that simulates Hilbert curve in heterogeneous resolution. A similar tech-
nique for calculating Hilbert indices is possible with introducing variable length
indices. However, when a new data set is added, even if we use variable length indices,
we have to re-calculate indices for old data. Thus, Hilbert-Sort has more advantage in
dynamic situations. We have already implemented Hilbert-Merge to add a bulk data set
to sorted data without using Hilbert indices [8]. Finally, our laboratory can realize
compact Hilbert R-trees as online versions of Hilbert R-tree [6] without Hilbert indices,
which can also be used even in dynamical situations.

References

1. Butz, A.R.: Alternative algorithm for Hilbert’s space-filling curve. IEEE Trans. Comput. 20,
424–426 (1971)

2. Hamiltonm, C.: Compact Hilbert indices. Technical report CS-2006–07, Faculty of Computer
Science, Dalhousie University (2006)

266 Y. Imamura et al.



3. Hamilton, C.: Compact Hilbert indices: space-filling curves for domains with unequal side
lengths. Inf. Process. Lett. 105, 155–163 (2008)

4. Hilbert, D.: Uber die stetige Abbildung einer Linie auf ein Flachenstuck. Math. Ann. 38, 459–
460 (1891)

5. Kamata, S., Perez, A., Kawaguchi, E.: A computation of Hilbert’s curves in N dimensional
space. IEICE J76-D-II, 797–801 (1993)

6. Kamel, I., Faloutsos, C.: Hilbert R-tree: an improved R-tree using fractals. In: The 20th
International Conference on Very Large Data Bases (VLDB), pp. 500–509 (1994)

7. Tanaka, A.: Study on a fast ordering of high dimensional data to spatial index. Master thesis,
Kyushu Institute of Technology (2001). (in Japanese)

8. Tashima, K.: Study on efficient method of insertion for spatial index structure by using Hilbert
sort. Master thesis, Kyushu Institute of Technology (2011). (in Japanese)

Fast Hilbert Sort Algorithm Without Using Hilbert Indices 267



Time-Evolving Data



Similarity Searching in Long Sequences
of Motion Capture Data

Jan Sedmidubsky(B), Petr Elias, and Pavel Zezula

Masaryk University, Brno, Czech Republic
xsedmid@fi.muni.cz

Abstract. Motion capture data digitally represent human movements
by sequences of body configurations in time. Searching in such spatio-
temporal data is difficult as query-relevant motions can vary in lengths
and occur arbitrarily in the very long data sequence. There is also a
strong requirement on effective similarity comparison as the specific
motion can be performed by various actors in different ways, speeds or
starting positions. To deal with these problems, we propose a new sub-
sequence matching algorithm which uses a synergy of elastic similarity
measure and multi-level segmentation. The idea is to generate a mini-
mum number of overlapping data segments so that there is at least one
segment matching an arbitrary subsequence. A non-partitioned query is
then efficiently evaluated by searching for the most similar segments in a
single level only, while guaranteeing a precise answer with respect to the
similarity measure. The retrieval process is efficient and scalable which
is confirmed by experiments executed on a real-life dataset.

1 Introduction

Current motion capturing technologies can accurately record a human motion at
high spatial and temporal resolutions. The recorded motion is represented as an
ordered sequence of poses that describe skeleton configurations in corresponding
video frames. The skeleton configuration is represented by a set of 3D coordi-
nates determining positions of the captured body joints in space. The recorded
motion sequences can be used in a variety of applications, e.g., in sports to com-
pare performance of athletes, in law-enforcement to detect suspicious events, in
health care to determine the success of rehabilitative treatments, or in computer
animation to synthesize and generate realistic human motions for production of
high-quality games or movies.

These applications require efficient subsequence searching: Given a short
query sequence and a long data sequence, search the data sequence and locate its
subsequences that are the most similar to the query sequence. For example, find
occurrences of acrobatic elements within a 5-minute dancing exercise. Locating
such query-relevant subsequences constitutes a hard task since their lengths and
positions (i.e., beginnings and endings) are not known in advance. Moreover, the
query need not correspond to any semantic action, so textual-annotation-based

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 271–285, 2016.
DOI: 10.1007/978-3-319-46759-7 21



272 J. Sedmidubsky et al.

retrieval cannot be applied. To deal with these problems, a proper segmentation
technique along with an effective similarity measure are needed.

The contribution of this paper is an efficient subsequence retrieval algorithm
based on a new multi-level segmentation. The proposed multi-level structure
produces a minimal number of segments with respect to the elasticity property
of the used similarity measure. The elasticity allows segments to be shifted much
larger than of a single frame, which speeds up the retrieval process.

2 Related Work

Subsequence retrieval methods for motion capture data generally require a (1)
segmentation technique to partition a data sequence into meaningfully-long seg-
ments, (2) similarity measure to compare query and data segments, and (3)
retrieval algorithm to efficiently localize query-relevant subsequences.

Segmentation. A segmentation technique partitions the data sequence [3] into
short segments to be comparable with segment(s) of the query sequence. The
segmentation can be done in a semantic way by localizing non-overlapping seg-
ments which correspond to the predefined actions (e.g., walking, kicking and
jumping) [9,11]. Another kind of approaches identifies segments according to
some property, such as changes in pose distribution or intrinsic dimensional-
ity [1] or occurrences of repetitive movements [17]. However, these methods are
not suitable for universal subsequence retrieval as they do not cope well with
queries that search for motions that are not annotated or occur on the boundaries
of segments. We avoid this problem by a multi-level overlapping segmentation
to ensure that an arbitrary query-relevant data subsequence (bounded in length
by the user) highly overlaps with at least one data segment of a similar length.

Similarity Measure. Motion data are usually represented as a sequence of
poses representing how the specific features change in time, such as joint coordi-
nates, angles and velocity. To determine similarity of two motion sequences, tem-
poral alignment techniques are commonly used, such as Dynamic Time Warping
(DTW) and its variants [2,8,16], Longest Common Subsequence (LCS) [14] and
Smith-Waterman distance [19]. Sometimes, motion sequences are described via
lower-dimensional feature representations such as 160-bit signatures in [18] that
are compared by the Hamming distance. We also benefit from lower-dimension
representations by extracting fixed-size feature vectors using the convolutional
neural network and comparing them by the Euclidean distance.

Subsequence Retrieval. Having the segmentation technique and similarity
measure defined, a subsequence retrieval algorithm is used to locate query-
relevant parts within a long data sequence. A trie-based structure is used in [6]
to efficiently access numerical features whose values are quantized into fixed-size
intervals. Based on quantized intervals of the query features, the trie structure
is traversed to identify query-relevant parts in the data sequence. However, the
evaluation of search effectiveness on any standard dataset is not provided. Simi-
larly in [18], the search accuracy is only commented on several query results eval-
uated on the perceptual level. In this paper, we analyze the search accuracy of



Similarity Searching in Long Sequences of Motion Capture Data 273

our search algorithm on the largest annotated motion capture dataset and com-
pare the results with a subsequence retrieval algorithm introduced in [15]. The
algorithm in [15] partitions a query sequence into short fixed-size segments whose
first poses are used to search for the most similar poses in the data sequence.
The obtained ranked sets of candidate poses are post-processed in temporal order
to identify query-relevant subsequences. We demonstrate that our approach is
much more efficient because we do not split a query into segments.

Our Contributions. We present a new algorithm for subsequence matching in
motion capture data. In particular, we propose a multi-level overlapping segmen-
tation ensuring a traceability of an arbitrary query-relevant data subsequence
which is bounded in its size. The number of segments in all levels is constructed
to be minimal with respect to the ability of a similarity measure to compare
slightly cropped/extended motions. We employ a similarity measure which is
tolerant to slightly changed motions and also generates fixed-size feature vectors
for motions of variable lengths. As the fixed-size features are compared by the
Euclidean distance, the segments in each level can be very efficiently indexed.
This makes our approach very efficient for subsequence searching, potentially in
a 121-day long motion sequence within one second.

3 Similarity of Motion Data

To compare a pair of motion sequences, we employ an elastic similarity measure
that attributes very convenient properties for subsequence matching because it
(1) extracts very effective and fixed-size 4, 096-dimensional feature vectors for
motions of variable lengths, (2) compares these vectors by the efficient Euclidean
distance, and (3) is able to tolerate a non-trivial degree of segmentation error
when comparing similar motions.

3.1 An Elastic Similarity Measure

The used similarity measure firstly normalizes and transforms a motion sequence
into a visual image representation [4], as illustrated in Fig. 1. This image is then
processed by a neural network [7] to extract a 4, 096-dimensional feature vector.
The whole process is described in the following four steps.

1. Normalization. Spatio-temporal motion data are normalized in order to
suppress the actor’s absolute location in space, facing direction and sizes
of limbs. This helps to unify motions that are perceived as the same but
represented in different styles, e.g., “adult walking from left to right” and
“infant walking from right to left” become the same “walking”.

2. Quantization. Normalized 3D joint coordinates are then quantized into a
discrete space of 2563 bins. The quantization is very practical for the next
visualization step, while introducing only millimeter errors in the joint coor-
dinates with respect to the non-quantized data.



274 J. Sedmidubsky et al.

Fig. 1. Each pose is (a) normalized and (b) quantized into 2563 space. The quantized
positions of joints define a stripe of colors for each pose (c). The concatenation of these
stripes forms a compact motion visualization (d). (Color figure online)

3. Visualization. Every joint position in the quantized space constitutes a
triplet that assigns a given color in the RGB color space. All joints visu-
alized one-by-one on the vertical axis of the resulting image change colors as
their quantized positions change in time on the horizontal axis (see Fig. 1).

4. Feature extraction. Deep convolutional neural network [7] is used to dis-
cover inherent visual patterns in the diversely colorful motion images. The
output of the last hidden layer of the network is a 4, 096-dimensional feature
vector that describes a motion sequence with a high descriptive power.

The extracted feature vectors are then compared by the Euclidean distance to
determine similarity of given motion sequences.

3.2 Properties of the Elastic Similarity Measure

The following paragraphs highlight important properties of the similarity mea-
sure and demonstrate its suitability for segment-based subsequence retrieval.

– High descriptive power. Effectiveness of the feature vectors can be even
increased by fine-tuning the neural network for the specific application pur-
pose. The features are also able to cluster similar images of categories on which
the network has never been explicitly trained.

– High efficiency. Motions of variable lengths are described by fixed-size fea-
ture vectors that are compared by the Euclidean distance, which can be effi-
ciently indexed to speed-up the retrieval process.

– Compression of original data. 5-second motion of 120-Hz frequency occu-
pies 223 kB (55,800 floats for 31 joints) while the 4, 096-D vector only 16 kB.
The features compress original motion data longer than 44 frames.

– Elasticity. The measure is robust when comparing motions that slightly differ
in beginning and/or ending parts but are otherwise similar. Figure 2 shows how
much different beginnings and endings influence effectiveness of the measure,
which still works well for motions that lose as much as 10% or carry as much
as 20% extra content with regards to their original length.

The elasticity property has a very positive impact to subsequence retrieval
where automatic segmentation of motion data sequences introduces displacement



Similarity Searching in Long Sequences of Motion Capture Data 275

Fig. 2. Effectiveness of elasticity is measured by the precision using 1-nearest-neighbor
search on a database of 2, 345 motions that are (a) cropped or (b) extended by 5, 10, 15,
20 and 25% with respect to their original frame content. The features extracted using
the fine-tuned neural network generally achieve a higher precision, but with similar
trends as the features from the not-tuned network.

between the query and data segments. This property implies that the proposed
measure can confidently match motions that are slightly different but overlapping
in most of their content. For example, two subsequences of a similar length that
are “slightly” shifted within a long motion sequence have a mutual distance
close to 0. We quantify the maximum possible shift of consecutive overlapping
segments as a covering factor cf and utilize it to segment data sequences.

4 Subsequence Retrieval by A Multi-level Segmentation

To search for query-relevant subsequences, the data sequence has to be par-
titioned into segments. Traditional methods [5] suggest partitioning the data
sequence into disjoint (non-overlapping) segments, while the query sequence
into overlapping segments using the sliding window principle (or vise-versa).
Such partitioning facilitates locating relevant data segments that are similar to
some query segments. Although the data segments can be indexed and efficiently
retrieved, this concept has the following disadvantages:

• Longer queries are partitioned into a larger number of query segments. For
each query segment an independent search (i.e., sub-query) has to be executed
to retrieve the most similar data segments;

• The retrieved data segments of all sub-queries have to be intelligently merged
respecting chronological order of query and retrieved segments to construct
a set of relevant subsequences as the query result.

To overcome these problems, we propose to consider the query as a single
segment. It means that only a single search is executed without the need of any
other merging procedure. However, this would require sliding data segments for
every potential query size, which results in a huge number of data segments.
Such number can be dramatically reduced when the used similarity function can
deal with a certain versatility in segmentation – sliding data segments can be
then shifted much more than of a single frame only and can be constructed just
for the specific sizes of queries.



276 J. Sedmidubsky et al.

Table 1. Table of symbols.

Symbol Description

m Data sequence

|m| Length of data sequence in number of frames

m[i : j] Subsequence of data sequence m starting at the i-th frame
(inclusive) and ending at the j-th frame (exclusive), i.e.,
|m[i : j]| = j − i

mQ Query sequence

n Number of segmentation levels

nr Number of segments within the r-th segmentation level

lr Length of segments at the r-th segmentation level

srj Starting frame of the j-th segment at the r-th segmentation level

rf Replication factor

cf Covering factor – used-defined parameter

lmin, lmax Minimum/maximum query length – used-defined parameters

4.1 Problem Formalization

We partition the data sequence into segments in a way that an arbitrary data
subsequence (bounded in length) overlaps with at least one segment in the
majority of frames. Consequently, having a query as a single segment, each
query-relevant data subsequence highly overlaps with at least one data segment.
The high overlap ensures that relevant subsequences are always findable just by
searching for similar segments. To quantify the high overlap between the specific
subsequence and segment, we define covering factor cf ∈ [0, 1) which deter-
mines the maximum ratio between the number of their non-overlapping frames
and the segment length. In other words, the covering factor denotes how much
the similarity function is tolerant towards cropped/added content of two similar
motions. The following definition defines the covering factor formally.

Definition 1. Given data sequence m and covering factor cf ∈ [0, 1): We say
that any subsequence m[i′ : j′] is cf -covered by segment m[i : j] if and only if
|i′−i|+|j′−j|

j−i ≤ cf .

Our objective is to partition the data sequence into segments having optimal
sizes and minimum possible overlaps with respect to the covering factor. To
ensure that an arbitrary subsequence is covered by at least one segment, we
need to restrict the subsequence length by the minimum lmin ∈ N and maximum
lmax ∈ N value (the maximum length is supposed to be much shorter than the
length of the data sequence). According to these limits (Table 1), we partition
the data sequence according to the following objective.

Objective 1. Given data sequence m and minimum lmin and maximum lmax

subsequence length: Partition sequence m into a minimum number of segments



Similarity Searching in Long Sequences of Motion Capture Data 277

so that an arbitrary subsequence m[i : j] (bounded in length lmin ≤ j− i ≤ lmax)
is cf-covered by at least one segment.

4.2 Multi-level Segmentation

A query sequence mQ is also restricted to a limited length in [lmin, lmax] and
always considered as a single segment. To partition the data sequence m accord-
ing to Objective 1, we need to cover all potential query-relevant subsequences.
Since positions (beginning and ending frames) of relevant hits are not known
in advance, all possible data subsequences of the restricted length have to be
covered.

Our idea is to define segmentation levels responsible for groups of queries in
certain length intervals. Each level has its own size of segments that overlap by a
fixed-size margin to cf -cover an arbitrary data subsequence. We naturally require
to minimize the number of such levels as well as the size of overlaps between
segments with respect to the predefined covering factor cf . These observations
imply the following important lemma.

Lemma 1. A single segmentation level with segments of fixed-size l can cf-cover
the subsequences having their lengths in range [l · (1 − cf), l · (1 + cf)].

Proof. According to Lemma 1, a single level with segments of fixed-size l can
cover only the subsequences which are maximally l · (1 + cf) long. Suppose that
this statement is not true, then some segment m[i, j] can also cover subsequence
m[i′ : j′] which is longer than l · (1 + cf) = (j − i) · (1 + cf) frames:

j′ − i′ > (j − i) · (1 + cf)
j′ − i′ > j − i + j · cf − i · cf
j′ − i′ > j − i + cf · (j − i)

j′ − i′ − j + i > cf · (j − i)
j′ − i′ − j + i

j − i
> cf

|i − i′| + |j − j′|
j − i

> cf,

which is in contradiction with Definition 1. Similarly, a segment of l frames can
cover the subsequences which have minimally l · (1 − cf) frames. Due to the
analogy with the previous case, the proof is omitted. ��

Lengths of Segments. To minimize the total number of segmentation levels
(i.e., also the total number of segments), the individual levels have to cover
subsequences of the possibly largest length interval. At the same time, the first
level with segments of length l1 needs to cover the shortest possible subsequences
of length lmin:

lmin = l1 · (1 − cf) ⇔ l1 =
lmin

1 − cf



278 J. Sedmidubsky et al.

Consequently, this level also covers the subsequences which are up to l1 · (1+cf)
frames long (based on Lemma 1). The second level then covers the subsequences
of at least l1 · (1 + cf) frames, so l2 = l1 · (1 + cf)/(1 − cf). Similarly as the first
level, the second one covers maximally the subsequences of l2 · (1 + cf) frames.
This continues until the n-th segmentation level covers the longest possible sub-
sequences of lmax frames:

ln−1 · (1 + cf) < lmax ≤ ln · (1 + cf) ⇔ ln ≥ lmax

1 + cf
.

Respecting these properties, the segment length is determined by constructing
the individual levels. The fixed length lr of segments at the r-th level (r ∈ [1, n])
can be recursively defined as:

l1 =
lmin

1 − cf
lr = lr−1 · 1 + cf

1 − cf
. (1)

Number of Segmentation Levels. The number n of segmentation levels can
be calculated as n = �x	 + 1, where x denotes the power parameter needed to
skip to another level and is computed as:

lmin

1 − cf
·
(

1 + cf

1 − cf

)x

=
lmax

1 + cf
(

1 + cf

1 − cf

)x

=
lmax · (1 − cf)
lmin · (1 + cf)

x · log
(

1 + cf

1 − cf

)

= log
lmax · (1 − cf)
lmin · (1 + cf)

x = log 1+cf
1−cf

(
lmax · (1 − cf)
lmin · (1 + cf)

)

⇒ n =
⌈

log 1+cf
1−cf

(
lmax · (1 − cf)
lmin · (1 + cf)

)⌉

+ 1. (2)

Overlaps of Segments. The size of overlap among segments in each level is
selected to minimize the number of segments while they all together cf -cover all
possible subsequences bounded in length [lmin, lmax]. The lowest possible overlap
we can afford corresponds exactly to the 100 · (1 − cf)% frames with respect to
the segment length. The initial position sij of the j-th segment at the r-th level
is then recursively defined as:

sr1 = 1 srj = srj−1 + lr · cf. (3)

Lemma 2. The segments at the specific r-th level have to be maximally shifted
by lr ·cf frames to cf-cover any subsequence of length in [lr ·(1−cf), lr ·(1+cf)].

Proof. Given the specific r-th segmentation level with segments of fixed length
lr and an arbitrary subsequence m[i, j] belonging to this level, then:



Similarity Searching in Long Sequences of Motion Capture Data 279

Fig. 3. Graphical illustration of segmentation: Based on covering factor cf = 0.2 and
query length limits lmin = 100 and lmax = 500, the four segmentation levels are
computed (left) and used to partition the data sequence (right), where only third-
level segments are visualized. E.g., the third-level segments can 0.2-cover any data
subsequence of length in [224, 336].

1. We show that the shift between segments about lr ·cf frames is of a maximum
possible size. Assume that the shift is higher, i.e., lr · cf + 1 frames, and
there exist two consecutive segments m′[i : i + lr] and m′′[i + lr · cf + 1 :
i+ lr · cf + 1 + lr] between which subsequence m[i+ lr·cf+1

2 , i+ lr·cf+1
2 + lr]

of the same length lr is located. Then this subsequence has the same number
of non-overlapping frames with both the segments m′ and m′′. Considering
m′ and according to Definition 1, then:

∣
∣
∣i + lr·cf+1

2 − i
∣
∣
∣ +

∣
∣
∣i + lr·cf+1

2 + lr − (i + lr)
∣
∣
∣

lr
≤ cf ⇒

∣
∣
∣ l

r·cf+1
2

∣
∣
∣ +

∣
∣
∣ l

r·cf+1
2

∣
∣
∣

lr
≤ cf ⇒ lr · cf + 1

lr
≤ cf ⇒ cf +

1
lr

≤ cf,

which is not valid for any (positive) length lr of segment. ��
2. It can be shown that an arbitrary subsequence of length in range [lr · (1 −

cf), lr · (1 + cf)] is covered by at least one segment. This can be proven via
an induction step but the proof is omitted due to space limitations.

��
Figure 3 illustrates the multi-level segmentation structure along with seg-

ments generated at the third level.

Number of Segments. When we partition the data sequence m of |m| frames,
the number nr of segments at the r-th level is determined as:

nr = 1 +
⌊ |m| − lr

lr · cf
⌋

. (4)

Replication Factor. The covering factor cf has the most important influence
on the number of segmentation levels as well as the total number of generated



280 J. Sedmidubsky et al.

segments. To get an idea about “global” overlaps, we define the replication factor
rf that indicates how many times the same frame is repeated in segments. Sup-
posing that the length of data sequence is much longer than lengths of segments,
we express the replication factor rf as:

rf �
n

cf
, (5)

where n stands for the number of segmentation levels. For example, having the
covering factor cf = 0.2 and four segmentation levels, each frame of the original
data sequence is involved twenty times in the specific segments.

4.3 Index Construction

The data sequence is preprocessed to be partitioned into the multi-level seg-
mentation structure. Having specified covering factor cf and minimum lmin and
maximum lmax query length, the number n of segmentation levels is calculated
according to Eq. 2. In each r-th level (r ∈ [1, n]), the data sequence is parti-
tioned into nr segments of a fixed length of lr frames by applying Eqs. 1 and 3.
As the data sequence is partitioned, each segment is independently processed to
extract the 4, 096-dimensional feature vector using the deep convolutional neural
network – see Sect. 3.1 for more detailed information.

The feature vectors within each level can be also independently indexed to
speedup the retrieval process. As the feature vectors are compared by the Euclid-
ean distance, any metric-based index structure can be utilized. We confront the
naive sequential scan with the usage of indexing structure in the experimen-
tal evaluation in Sect. 5. In addition, the whole multi-level structure is dynamic
because it simply enables adding the feature vectors of segments of new data
sequences into each level.

4.4 Retrieval Algorithm

The objective of the retrieval phase is to search the data sequence and locate
such subsequences that are the most similar to the query sequence, which is
bounded in length [lmin, lmax]. Since each segmentation level is responsible for
a certain interval of queries, only a single level is always searched for the most
similar segments. Then the result contains segments of the same length that
differs maximally about 100 · cf % with respect to the query length. Although
the result segments need not be perfectly aligned with relevant subsequences,
they should overlap in the majority of frames.

To search for similar segments, we evaluate a k-nearest-neighbor (k-NN)
query. The query is specified by the number k of the most similar segments
to be returned and sequence mQ as the query object. The query sequence is
firstly preprocessed to extract its 4, 096-dimensional feature vector which is then
compared to the feature vectors within the responsible segmentation level. Index



Similarity Searching in Long Sequences of Motion Capture Data 281

i of the responsible segmentation level for the query of |mQ| frames is determined
by the following formula:

i =

{
1 |mQ| ≤ lmin · 1+cf

1−cf

1 +
⌈
log 1+cf

1−cf

(
|mQ|·[1−cf ]
lmin·[1+cf ]

)⌉
otherwise.

(6)

Considering the example in Fig. 3, the second segmentation level (i.e., i = 2) is
responsible for a query ranging from 150 to 224 frames.

The advantage of retrieval is its high efficiency because of (1) comparing
the fixed-size feature vectors, (2) evaluating only a single query segment, (3)
accessing only a single segmentation level, and (4) presenting the results of the
k-NN query directly without the need of any further post-processing. From the
effectiveness point of view, the great advantage is the possibility to retrieve
segments which are performed slowly/quickly or are not perfectly aligned with
relevant subsequences up to 100 · cf % with respect to the query length. The
actual effectiveness depends on the quality of the similarity measure and its
tolerance to imprecise segmentation and accelerated/slowed motions.

5 Experimental Evaluation

The effectiveness and efficiency of the proposed subsequence retrieval algorithm
is evaluated on the largest annotated motion capture dataset HDM05 [10]. This
dataset contains 324 sequences performed by 5 different actors (with sampling
frequency of 120Hz). Similarly as in [11,15], we use a subset of 102 motion
sequences (68min in total) for which a ground truth is provided. This ground
truth describes 1, 464 actions (subsequences within the 102 sequences) by 15 non-
uniformly populated motion categories. The shortest action takes only 0.34 s (41
frames) while the longest one has 17.2 s (2, 063 frames).

5.1 Methodology

We concatenate 102 sequences into a single 68-minute data sequence and set the
minimum lmin = 41 and maximum lmax = 2, 063 query length according to the
shortest and longest ground-truth actions. We evaluate search effectiveness and
efficiency in 5 settings of the covering factor cf ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. These
settings reflect the ability of the similarity measure to deal with variously-size
crops or extensions of motion content (see results in Fig. 2). All the settings
follow the common methodology:

– For each cf setting, the multi-level segmentation structure is built and 4096-
dimensional feature vectors are extracted using by a fine-tuned convolutional
neural network model. The model is trained on a completely different HDM05
subset of 130 motion categories, which is also provided with the dataset;



282 J. Sedmidubsky et al.

Table 2. Effectiveness and efficiency evaluation of the preprocessing and retrieval phase
of the 68-minute motion sequence for different settings of covering factor cf .

cf # of levels # of segments rf Feature
ext. [min]

Sequential
search
[ms]

Precision

Total 1st level k = 1 k = 5

0.1 18 631,746 111,774 180.0 263.2 447 87.30 84.37

0.2 9 150,971 51,230 45.0 62.9 205 86.75 84.13

0.3 6 66,972 31,526 20.0 27.9 126 86.89 82.98

0.4 5 37,345 21,955 12.5 15.6 88 85.79 82.65

0.5 4 23,669 16,393 8.0 9.9 66 84.43 81.99

– A k-NN query is constructed for each of 1, 464 ground-truth subsequences,
that are used as query objects. Each query is then evaluated against the multi-
level structure to obtain the k most relevant segments, excluding the segments
that overlap with the query-object subsequence. We also exclude less-relevant
segments that overlap with more relevant ones to finally obtain the k non-
overlapping segments as the query result.

5.2 Analysis of Effectiveness

The query effectiveness is measured by precision as a ratio between positively
retrieved segments and all retrieved segments (i.e., the number k). The segment
is marked as positive if it overlaps with some ground-truth subsequence that
is labeled with the same category as the query object. The global precision is
then averaged over all 1, 464 queries. As the sparsest category in the dataset has
only 6 motion instances, we use k = 5 to evaluate the search effectiveness. The
precision @5 is above 84% as seen in the last column of Table 2 and decreases
with an increasing covering factor cf . The “finer-grained” segmentation slightly
improves the search accuracy, however, it brings a non-linear increase in the
number of generated segments, i.e., efficiency is much worse.

To compare how much error is introduced by the proposed subsequence
retrieval algorithm, we classify the same 1, 464 actions by comparing them each
other using the 1-nearest neighbor search with the 93.9% accuracy. Based on
the results in Table 2, we can reach a very high precision of 87.3% which is
only about 6.6% worse. It is important to realize that our search space is much
bigger, e.g., 111, 774 segments are generated for cf = 0.1, while the annotations
constitute only 1, 464 objects.

5.3 Analysis of Efficiency

Efficiency of the preprocessing and retrieval phase depends on the total number
of generated data segments, which is primarily influenced by the setting of cf .



Similarity Searching in Long Sequences of Motion Capture Data 283

Preprocessing phase. The bottleneck of the preprocessing phase is the extrac-
tion of the 4, 096-dimensional feature vector for each segment, which takes 25ms
using the GPU implementation – see Table 2 for total extraction times. However,
we can still process the whole 68-minute sequence in real time using cf = 0.2
or higher. During the extraction, we can also simultaneously index the feature
vectors within each segmentation level. For example, by employing the PPP-
Codes [13] structure with 1, 000 pivots, we need only about 10min to index all
150, 971 features (for cf = 0.2) using a single CPU (i7 960 at 3.2GHz).

Retrieval phase. As the retrieval algorithm accesses only a single segmentation
level, the most-populated first level is considered for evaluating the upper bound
on search performance. Without any indexing structure, the first-level segments
can be stored in main memory and sequentially accessed by a single CPU that is
able to perform approximately 250, 000 distance computations per second. The
actual search times presented in Table 2 range from 66 to 447ms per query based
on the setting of the covering factor, while the approach in [2] needs about 36 s to
search the 100k motion database. Importantly, our search times can be decreased
by two orders of magnitude by applying the PPP-Codes [13] structure that has
already proved to retrieve a similar kind of 4, 096-dimensional image features in
a collection of 50 million images up to 1 second [12] (this time is measured by
approximate search with the 90% recall when the feature vectors are stored on
SSD disk). In this way, we would possibly search online in a sequence of 121-day
long with the same setting as in Fig. 3.

The proposed algorithm employing PPP-Codes indexing has search complex-
ity log(|m|/(|lQ| ·cf)), where |m| and |lQ| denote lengths of the data and average
query sequence. This is much more efficient compared to existing approaches
whose complexity increases much with the query length, such as |m| · |lQ| in [15].

6 Conclusions

We propose a new subsequence matching algorithm which uses a synergy of
elastic similarity measure and multi-level segmentation. The search space com-
prises overlapping segments of various sizes that ensure the bounded coverage
of arbitrary parts within very long motion sequences. The size of overlaps and
the total number of generated segments are bounded to be formally minimal
with respect to the covering factor parameter, which reflects the versatility and
effectiveness of the used similarity measure. Due to the efficient comparison
of 4, 096-dimensional segment features by the Euclidean distance, the retrieval
process is also very efficient, e.g., sequential search within the 68-minute motion
sequence takes only 126ms and has the accuracy of 87%. The advantage is
that the segmentation levels can be processed independently and additionally
indexed to speedup retrieval by two orders of magnitude. The segments of new
data sequences can be also dynamically added.

Acknowledgements. This research was supported by GBP103/12/G084.



284 J. Sedmidubsky et al.

References

1. Barbič, J., Safonova, A., Pan, J.Y., Faloutsos, C., Hodgins, J.K., Pollard, N.S.:
Segmenting motion capture data into distinct behaviors. In: Graphics Interface,
pp. 185–194. Canadian Human-Computer Communications Society (2004)

2. Beecks, C., Hassani, M., Obeloer, F., Seidl, T.: Efficient query processing in 3D
motion capture databases via lower bound approximation of the gesture matching
distance. In: 2015 IEEE International Symposium on Multimedia (ISM 2015), pp.
148–153 (2015)

3. Bouchard, D., Badler, N.I.: Semantic segmentation of motion capture using Laban
movement analysis. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G.,
Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 37–44.
Springer, Heidelberg (2007)

4. Elias, P., Sedmidubsky, J., Zezula, P.: Motion images: an effective representation
of motion capture data for similarity search. In: Amato, G., et al. (eds.) SISAP
2015. LNCS, vol. 9371, pp. 250–255. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25087-8 24

5. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. SIGMOD Rec. 23(2), 419–429 (1994)

6. Kapadia, M., Chiang, I.K., Thomas, T., Badler, N.I., Kider Jr., J.T.: Efficient
motion retrieval in large motion databases. In: ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (I3D 2013), pp. 19–28. ACM (2013)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012)

8. Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity
searches in large motion capture databases. In: ACM Symposium on Computer
Animation, SCA 2010, pp. 1–10. Eurographics Association (2010)

9. Lan, R., Sun, H.: Automated human motion segmentation via motion regularities.
Vis. Comput. 31(1), 35–53 (2015)

10. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Docu-
mentation Mocap database HDM05. Technical report CG-2007-2. Universität Bonn
(2007)

11. Müller, M., Baak, A., Seidel, H.P.: Efficient and Robust annotation of motion
capture data. In: ACM Symposium on Computer Animation (SCA 2009), p. 10.
ACM Press (2009)

12. Novak, D., Cech, J., Zezula, P.: Efficient image search with neural net features.
In: Amato, G., et al. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 237–243. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-25087-8 22

13. Novak, D., Zezula, P.: Rank aggregation of candidate sets for efficient similarity
search. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA
2014, Part II. LNCS, vol. 8645, pp. 42–58. Springer, Heidelberg (2014)

14. Ren, C., Lei, X., Zhang, G.: Motion data retrieval from very large motion databases.
In: International Conference on Virtual Reality and Visualization (ICVRV 2011),
pp. 70–77 (2011)

15. Sedmidubsky, J., Valcik, J., Zezula, P.: A key-pose similarity algorithm for
motion data retrieval. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu,
D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 669–681. Springer,
Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-319-25087-8_24
http://dx.doi.org/10.1007/978-3-319-25087-8_24
http://dx.doi.org/10.1007/978-3-319-25087-8_22


Similarity Searching in Long Sequences of Motion Capture Data 285

16. Valcik, J., Sedmidubsky, J., Zezula, P.: Assessing similarity models for human-
motion retrieval applications. Computer Animation and Virtual Worlds (2015)

17. Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of
human motion. In: ACM Symposium on Computer Animation (2014)

18. Wang, Y., Neff, M.: Deep signatures for indexing and retrieval in large motion
databases. In: 8th ACM Conference on Motion in Games, pp. 37–45. ACM (2015)

19. Wu, S., Wang, Z., Xia, S.: Indexing and retrieval of human motion data by a hierar-
chical tree. In: 16th ACM Symposium on Virtual Reality Software and Technology
(VRST 2009), pp. 207–214. ACM, New York (2009)



Music Outlier Detection Using Multiple
Sequence Alignment and Independent Ensembles

Dimitrios Bountouridis(B), Hendrik Vincent Koops, Frans Wiering,
and Remco C. Veltkamp

Department of Information and Computing Sciences,
Utrecht University, Utrecht, Netherlands

d.bountouridis@uu.nl

Abstract. The automated retrieval of related music documents, such
as cover songs or folk melodies belonging to the same tune, has been
an important task in the field of Music Information Retrieval (MIR).
Yet outlier detection, the process of identifying those documents that
deviate significantly from the norm, has remained a rather unexplored
topic. Pairwise comparison of music sequences (e.g. chord transcriptions,
melodies), from which outlier detection can potentially emerge, has been
always in the center of MIR research but the connection has remained
uninvestigated. In this paper we firstly argue that for the analysis of musi-
cal collections of sequential data, outlier detection can benefit immensely
from the advantages of Multiple Sequence Alignment (MSA). We show
that certain MSA-based similarity methods can better separate inliers
and outliers than the typical similarity based on pairwise comparisons.
Secondly, aiming towards an unsupervised outlier detection method that
is data-driven and robust enough to be generalizable across different
music datasets, we show that ensemble approaches using an entropy-
based diversity measure can outperform supervised alternatives.

1 Introduction

The World Wide Web (WWW) has revolutionized music, from its creation, pro-
duction, distribution to the way people currently listen to it. Due to its open
nature, WWW has put users in the center of content generation. Popular web-
sites such as Chordify1, UltimateGuitar2, WhoSampled3 or Midomi4, allow users
to submit their own chord transcriptions, tabs, discovered covers or sung inter-
pretations of a song. However, this pleasant development does not come without
shortcomings; it stands to reason that user content is not always trustworthy
due to human error, malicious editing and so on.

1 www.chordify.net.
2 www.ultimate-guitar.com.
3 www.whosampled.com.
4 www.midomi.com.

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 286–300, 2016.
DOI: 10.1007/978-3-319-46759-7 22

www.chordify.net
www.ultimate-guitar.com
www.whosampled.com
www.midomi.com


Music Outlier Detection Using Multiple Sequence Alignment 287

Identifying and filtering out untrusted documents is of major importance for
these content providing services, therefore techniques such as user ratings (e.g.
star rating, social media “shares”) have been frequently employed. However, rat-
ings not only require large amount of users but, at least for chord transcriptions,
have been shown to be uncorrelated to the quality of the document [18].

Outlier detection, the general task of locating those observations that “...
deviate so much from the other observations as to arouse suspicions that they
were generated by a different mechanism” [14], has found major applications in
bio-informatics, fraud detection, medical diagnosis and other fields. It is therefore
surprising that it has remained rather unexplored in the field of Music Informa-
tion Retrieval (MIR). This can be attributed to the nature of outlier detection
algorithms which by definition have two components [6]: the scores indicating
level of “outliernes” of each sample, and their conversion to a binary decision
by imposing thresholds based on their statistical distribution. “Outliernes” in
MIR however, has been considered a welcome byproduct of music similarity. A
strong music similarity model would assign low similarity scores to any docu-
ments that “do not belong.” Therefore, outlier detection would be practically
rendered obsolete.

In this paper we argue that, since music similarity is inherently ambiguous,
it (a) has remained largely an unsolved problem (b) has been typically based
on music heuristics or learning, thus becoming very task- and domain-specific
and (c) relies on pairwise comparisons which can be time-consuming and unre-
alistic for large collections. Even if a strong theoretical model of similarity had
been established, outlier detection in practice would be still non-trivial due to
the following: first, the number of samples is usually small, and therefore an
underlying “normal” model cannot be assumed or learned. Secondly, music is
inherently pattern-based: therefore songs that do not belong to the reference set
might share commonalities (e.g. similar chord progressions) and thus might not
be deviating significantly. Consequently, the boundary between “normal” and
anomalies becomes fuzzy.

Contribution: This paper’s contribution is twofold. We firstly exploit the
sequential nature of certain kinds of musical content, such as melodies and
chord progressions, and the advantages of Multiple Sequence Alignment (MSA)
in terms of sequence analysis. A sequential, music-agnostic representation of
music allows for the development of tools that generalize across collections. The
extensive work on MSA, mostly in the field of computational biology, allows for
the adoption of tools that can separate better outlier sequences from the rest
thus limiting the undesirable shortcomings of pairwise comparisons. Secondly,
we present an almost settings-free outlier detection method that can find robust
application to any form of music sequences. We use ensembles of different outlier
solutions to form more informative decisions that avoid dependencies on specific
artifacts related to a particular similarity method or data set.

Summary: The rest of the paper is organised as follows. Section 2 is a brief
overview of related outlier detection approaches in MIR. Sections 3 and 4 describe



288 D. Bountouridis et al.

the music datasets and the basic outlier detection method considered in our work.
Sections 5 and 6 break down the outlier detection into two components (simi-
larity methods and extreme value analysis) and further analyse them. Section 7
introduces the independent ensemble approach for outlier detection, which is
evaluated in Sect. 8.

2 Related Work in MIR

There are only a few published approaches that explicitly aim to tackle the task
of outlier detection in music. Panteli et al. [20] specifically focus on world music
and use data mining techniques on audio-features (e.g. rhythmic, melodic, har-
monic) to detect outliers. Lukashevich and Dittmar [17], aiming towards improv-
ing a GMM mood classifier, use a Support Vector Machine (SVM) classifier as a
preliminary stage to filter out outlying samples. Livshin and Rodet [16] focus on
automatic removal of bad samples from an instrument music library. Their algo-
rithms are supervised variations of the Interquartile Range. Hansen et al. [13]
use a combination of supervised and unsupervised learning to clean-up large-
scale databases that included metadata (e.g. genre information). They model
the relation between metadata and audio features by training conditional den-
sities. Unconditional densities are modeled for spotting unlikely music features.
Tangential to the outlier detection problem, with common methodologies [19],
is novelty detection, the automatic differentiation between known and unknown
object information during testing. Most notably, Flexer et al. compared different
rejection rules and novelty detection methods in a genre classification context
[7,8]. In general, all the published approaches are either supervised and domain
specific or dependent on abundant samples.

3 Music Datasets

Before going into detail about the outlier detection problem, we should describe
the different music datasets investigated and how they were represented as
sequences in our work (available online5). We use four datasets of varying size
and nature, ranging from expert-annotated melodies to non-expert chord tran-
scriptions found online. This allows us to generalize any observations, derived
from this work, to almost any music dataset of sequential nature. The data sets
are further explained below, while summary statistics are presented in Table 1.

The Annotated Corpus of the Meertens Tune Collections [32] is a set of
360 Dutch folk songs grouped into 26 “tune families.” Each contains a group
of melody variations related through an oral transmission process. For this
TuneFam-26 data set, expert annotators assessed the perceived similarity of
every melody over a set of dimensions (contour, rhythm, lyrics, etc.) to a set
of 26 prototype “reference melodies.” The Cover Song Variation data set [2], or
Csv-60, on the other hand is a set of expert-annotated, symbolically-represented

5 www.projects.science.uu.nl/COGITCH/outlier.

www.projects.science.uu.nl/COGITCH/outlier


Music Outlier Detection Using Multiple Sequence Alignment 289

Table 1. Summary statistics for the four datasets of our experiments.

TuneFam-26 Csv-60 Shs-50 Beatles

Number of cliques 26 60 50 174

Number of sequences 360 243 467 948

Avg. cliques size 13.0 (4.0) 4.0 (1.1) 9.34 (3.5) 5.66 (3.61)

Avg. sequence length 43.0 (14.9) 53.0 (21.4) 130 (78.58) 74.17 (58.20)

vocal melodies derived from matching structural segments (such as verses and
choruses) of different renditions of sixty pop and rock songs. Melodies in both
datasets are represented as pitch contours, a series of relative pitch transitions
constrained to the region between +11 and −11 semitones.

The Second Hand Song dataset6 contains metadata for around 18,000 cover
songs grouped into 6,000 cliques. In order to keep computations to a practi-
cable level, we randomly picked 50 cliques (of more than 6 songs per cliques).
We denote this subset Shs-50. Songs are represented as sequences of major-
minor chords by finding the shift that maximises the correlation between the
Krumhansl-Kessler profiles [26] and the chroma vector of each beat-frame (as
extracted by the Echonest7 API).

From UltimateGuitar we web-mined 948 user chord transcriptions corre-
sponding to the 174 songs of the complete Beatles discography as provided by
the famous Beatles dataset8. All transcriptions in the Beatles dataset are key-
normalised and reduced to major-minor chord sequences.

It should be pointed out that each group of related music sequences in the
datasets is not guaranteed to contain any outliers, despite the fact that some
sequences might be more dissimilar than others. In our work, the “outlier” is
a randomly chosen sequence injected to the group that comes from the same
dataset as the group, e.g. a chord transcription of “Let it be” injected in a group
of “Yellow submarine” transcriptions by The Beatles.

4 Basic Outlier Detection

There are many outlier detection methods in the literature; however their
applicability is dependent on the nature of the data, e.g. number of samples,
number of outliers and so on. Therefore, picking the appropriate one, in the con-
text of music documents, is not trivial. In this work we decided to focus on the
interpretability criterion, which is of crucial importance for the analyst, since it
can answer the question of why a sample is considered an outlier [6].

Extreme value analysis is the most basic and interpretable outlier detection
method and has two components (see Fig. 1). It works on one-dimensional data

6 www.secondhandsongs.com.
7 www.echonest.com.
8 www.isophonics.net/content/reference-annotations-beatles.

www.secondhandsongs.com
www.echonest.com
www.isophonics.net/content/reference-annotations-beatles


290 D. Bountouridis et al.

Fig. 1. The basic outlier detection pipeline using extreme value analysis.

(first component) and it assumes that outlier values are too small or too large
with regard to the rest of the value distribution. In the music context, the input
values correspond to the similarity ∈ R of each music document to the rest.
Defining what constitutes an extreme value is typically performed by modelling
the data distribution and its statistical tails (second component). The problem
comes down to finding the best combination of the two components, which we
analyse in the following sections. Each combination is an outlier detection setting.

5 Similarity Scoring Methods

We will now present the similarity scoring methods that we consider in our work
(see Fig. 1, A). All are generic in the sense that they do not incorporate music
heuristics. As a consequence they can be used for any form of sequences.

5.1 Pairwise Alignment

Sequence matching is typically performed using pairwise alignment (PW), the
process of making two sequences have the same length by introducing gaps “-”
while aligning related symbols. Sequence alignment via dynamic programming
[31] is widely used for approximate string matching, and found early application
in MIR. The quadratic-time Needleman and Wunsch [30] algorithm finds an
optimal alignment of two sequences and returns a score that represents the cost,
and can be interpreted as a quality measure. It should be noted that the score is
highly dependent on the penalties for inserting and extending gaps. In our work,
the PW score of a sequence in a group is the average of its pairwise scores.

In contrast to pairwise alignment, the following methods base their scoring
on a multiple sequence alignment rather on multiple pairwise comparisons.

5.2 Multiple Sequence Alignment Based Methods

Before computing the similarity of each sequence in an MSA, the MSA itself
needs to be computed. The optimal MSA of a group of sequences has exponential-
time complexity, therefore it cannot be used in practice. Instead, the focus is on
heuristic approaches that give good alignments not guaranteed to be optimal.
Our work considers two algorithms: progressive alignment (PA) and MAFFT.



Music Outlier Detection Using Multiple Sequence Alignment 291

The most popular approach, PA, starts by building a pairwise similarity tree.
Working from the leaves of the tree to the root, PA aligns the alignments, until
reaching the root of the tree, where a single MSA is built. MAFFT [25] on the
other hand, uses the fast Fourier transform to identify short subregions of one
sequence or intermediate alignment that are high-scoring matches with same-
length subregions from another sequence or alignment. Based on the MSA, our
work considers the following similarity scoring methods:

Percentage Identity (Pid). A popular similarity scoring between pairs
of sequences is the Percentage Identity (PID). It corresponds to the number
of identities, meaning the number of same characters divided by the number of
characters compared (gap positions excluded). In our case, the Pid of a sequence
in an MSA is the average of the its pairwise PID scores.

Neighbor-Joining Tree (NJ-T). Neighbor-Joining Tree, is a clustering
method for building phylogenetic trees of biological sequences [22]. NJ-T takes
as input a distance matrix, typically based on PID, and at each stage the two
nearest nodes of the tree are chosen and joined. The process is performed recur-
sively until all of the nodes are paired and the tree is constructed. We ommit the
details of the formulation of “nearest” nodes due to lack of space. We use the
branch length from each leaf (sequence) to the root as a measure of similarity.

Majority-Vote Consensus (MJ-conc). A multiple alignment can be summa-
rized to generate a single sequence that we call consensus. For each column, the
voting process determines if the frequency of the most common symbol is above
a threshold. If so, that symbol represents that column in the consensus; if not,
the column is represented by an ambiguous symbol. The similarity score of each
sequence is the pairwise alignment score of itself with the consensus.

Data Fusion (DF). Data Fusion can be seen as an extension of majority voting
in the sense that in addition to finding the most common symbol per column, it
also uses the agreement between rows as a weight to favor values of rows with
higher agreement [3]. The data fusion consensus happens in two steps: after
computing the probabilities for each symbol for each column, a source accuracy
is computed for each row by taking the mean of its column probabilities. The
values of each row are then weighted by multiplying them with their source
accuracy. The intuition is that rows with higher agreement with other rows will
be more trustworthy. The process of computing symbol probabilities and source
accuracy is repeated until the probabilities of the values converge. For each row,
the value with the highest probability is taken as the output value. In our work
we consider the source accuracy of each sequence as its similarity to the rest.

Profile Hidden Markov Models (HMM-P). Profile Hidden Markov Models
(HMMs) are essentially generative probabilistic automata that represent a mul-
tiple sequence alignment as a probabilistic, position-dependent scoring system
[4]. Profile HMMs contain five types of states whose details are omitted due
to lack of space. A query sequence can be represented as a stochastic traversal
of the profile’s states. As a consequence, comparing an arbitrary sequence to a



292 D. Bountouridis et al.

profile HMM is performed by using the Viterbi or the Forward algorithm [5] for
Markov models. The similarity of each sequence is the output of its comparison
to a profile HMM built from the remaining sequences.

Alignment Gap Metric (Gap-based). Jehl et al. [15] presented an MSA-
based outlier detection pipeline (called OD-seq) that majorly focused on effi-
ciency since it was aimed to be used on large number of biological sequences.
As such it used a gap-based distance metric that considered gap-less pairwise
alignments to be of high quality and vice versa. Variations that distinguished
between fewer, longer gaps or more, shorter gaps were also presented. In our
work, we consider only the linear metric that treats all gaps equally.

5.3 Inlier-Outlier Separation

Although the similarity scoring methods are merely components of the whole
outlier detection pipeline, we are interested in answering to which extent each
similarity can better separate between outlier and inlier music sequences. Opti-
mally a scoring method should assign high similarity scores to inliers and low
scores to outliers with as minimal overlap as possible.

For each similarity method (besides PW) we compute the two score distrib-
utions (outlier and inlier sequences) over each dataset and MSA method. PW is
computed only for each set since it is independent of the MSA. However, since
pairwise alignment is dependent on the gap penalties, we try three different gap
open and gap extend settings (.5, .2), (.8, .4) and (1, 0) with an identity substi-
tution matrix (matches get a score of 1, while mismatches a score of −1). Table 2
presents the area under the receiver operating characteristic (ROC) curve, typ-
ically called AUC, for each scoring over each dataset and MSA algorithm.

We can make the following observations: first, there is at least one similarity
method for each dataset that has higher AUC score than pairwise alignment.

Table 2. Area Under the Curve (AUC) % for each similarity method over each dataset
and MSA type.

Csv-60 TuneFam-26 Shs-50 Beatles

MAFFT PA MAFFT PA MAFFT PA MAFFT PA

PW-.5-.2 95.95 95.95 96.52 96.52 61.66 61.66 86.34 86.34

PW-.8-.4 96.44 96.44 96.66 96.66 62.64 62.64 86.86 86.86

PW-1.0-.0 97.16 97.16 96.73 96.73 61.35 61.35 91.18 91.18

Pid 97.47 91.69 91.82 79.1 60.55 54.38 87.96 88.06

NJ-T 98.5 95.07 89.56 82.09 60.55 55.96 84.9 85.34

MJ-conc 99.07 95.09 91.68 88.81 57.7 54.42 83.74 80.39

DF 99.22 95.65 92.12 83.14 63.79 57.52 87.97 88.25

HMM-P 94.88 91.11 98.29 96.84 75.62 66.7 94.76 93.25

Gap-based 91.65 89.46 92.99 90.55 65.55 58.19 83.5 88.17



Music Outlier Detection Using Multiple Sequence Alignment 293

Therefore, we have shown that one can use MSA as a more reliable basis for
outlier detection. Secondly, profile HMMs show generally the highest separation
between outliers and inliers over all datasets. Thirdly, it becomes obvious that
the MAFFT-based MSA results to generally higher separation than progres-
sive alignment. Finally, Csv-60 and Shs-50 seem to be the “easiest” and most
difficult datasets respectively to perform outlier detection on.

6 Extreme Value Analysis Algorithms

In the previous section we presented a number of similarity scoring methods. In
this section we briefly present five extreme value analysis algorithms that work
on top of the similarity scores (see Fig. 1, B). The list is definitely incomplete,
however it captures a wide range of algorithms.

Thresholding, classifying as outliers those documents with similarity
smaller than a predefined threshold θ, is the simplest form of extreme-value
outlier detection. The Z-score is one of the simplest ways to avoid using a
fixed absolute threshold. It represents the amount of standard deviations σ a
value is from the mean. However, one should decide on a threshold θz, above
which a value would be considered anomalous. The Grubb’s test [11] is used to
detect single outliers on data following approximately a normal distribution. The
Grubb’s test statistic is the largest absolute deviation from the sample mean in
units of the sample standard deviation. Grubb’s test requires us to decide on the
significance level a. Since the presence of outliers is likely to affect the mean and
the standard deviation, Z-score and Grubb’s test can become unreliable. The
median, however, is typically more robust to outliers. The Median Absolute
Deviation (MAD) score is the median of the absolute deviations from the
data’s median. A data point xi is considered an outlier if |xi−median(X)|/MAD
is larger than θMAD. Finally, the percentile is used in statistics to indicate the
value below which a given percentage of observations fall. For large normally-
distributed populations, percentiles represent the area under the normal curve,
increasing from left to right. A percentile based outlier detection method
requires us to set a percentile threshold θp above which a value is considered
anomalous.

6.1 Evaluation

In order to evaluate each extreme value analysis algorithm, one should analyse
their behaviour with respect to their corresponding threshold and each similarity
scores they were applied on. However, we are rather interested in validating
our initial hypothesis; similar to any classification problem, it comes to reason
that different outlier detection settings (similarity scoring and outlier algorithm)
would behave differently depending on the nature of the dataset.

For each of our music datasets, we brute-force find a single outlier detection
setting that results to the best overall outlier prediction (measured with the F1
score). We then apply the same setting on the remaining datasets. The F1 scores



294 D. Bountouridis et al.

Table 3. The F1 score for each optimised setting applied to all datasets. The standard
deviation (std) for each dataset is also presented. The optimised settings per dataset
are: Csv-60setting: NJ-T & z-score & θz = 1.56, TuneFam-26setting: HMM-P & z-score
& θz = 1.8, Shs-50setting: HMM-P & thresholding & θ = .22, Beatlessetting: HMM-P
& thresholding & θ = .13.

Csv-60 TuneFam-26 Shs-50 Beatles

Csv-60setting 0.945 0.676 0.588 0.725

TuneFam-26setting 0.639 0.889 0.630 0.610

Shs-50setting 0.665 0.820 0.668 0.683

Beatlessetting 0.501 0.684 0.626 0.769

std 0.161 0.090 0.028 0.058

for each setting applied to each dataset are presented in Table 3. It becomes
obvious that different optimised settings applied to different datasets result in
major fluctuations in performance.

7 Independent Ensembles

In contrast to the previously presented methods, we are interested in an unsu-
pervised outlier detection method that is parameter-free and generalizable so
that it can be applied almost “out-of-the-box” in various music collections.

Independent ensembles [6] are based on different instantiations (parameter
settings) of one or more outlier detection algorithms. The parameters even the
algorithms themselves can be randomly selected and the output of their execu-
tion is combined to form the final decision. The principle behind independent
ensembles is to achieve robustness by avoiding dependencies on specific artifacts
related to a particular algorithm or data set. In addition, it is assumed more diffi-
cult to design a single sophisticated algorithm than to optimize the combination
of algorithms with relatively lower complexity [9].

Independent ensembles, depending on the task and context, appear with
different names in the literature ranging from “committees” and Multiple
Classifier Systems (MCS) to clustering or classification ensembles. However,
the fundamental problem is generally the same: given an unlabeled data set
D = {x1, x2, ..., xn} and a set of classification solutions {C1, C2, ..., Ck} that
map the data to a class fj(x) = m we are interested in a single “resultant”
solution f∗ that combines the classification solutions. The “accuracy” of the
ensemble is measured by the match between the solution produced and the ref-
erence ground-truth. The problem, in our outlier-detection-for-music context,
can be considered a special, binary case with m ∈ {0, 1} (where 0 corresponds to
“inlier” and 1 to “outlier”) and with the classification solutions being the output
of different outlier detection settings.



Music Outlier Detection Using Multiple Sequence Alignment 295

7.1 Diversity

An ongoing issue with ensembles in general is how to select the set of classi-
fication solutions. A set of similar classification solutions is not guaranteed to
lead to the best solution, therefore the concept of diversity has been introduced.
Although diversity has been shown to be fundamental for an ensemble’s suc-
cess [9], a consistent relation between the ensemble’s diversity and the solution’s
accuracy has not been shown. In addition, diversity can be formulated in various
ways. Hadjitodorov et al. [12] have shown the potential of moderate diversity
based on Adjusted Rand Index [21], but avoided generalizing their observations.

7.2 Diversity Experiment

In this section we describe an experiment to investigate the behaviour of different
diversity measures on music datasets. We also answer whether Hadjitodorov’s
hypothesis, denoted as Soft-Correlation Rule by [9], holds for our particular task.

Each dataset is split into a training and a test set (70 %–30 % split). The
training sets combined form the grouped training set. For each group of related
music documents in the grouped training set, we compute the output-solution of
every possible outlier detection setting. We shuffle them and randomly select 10
ensembles of 25 solutions each, similar to [12]. We finally compute the diversity
and quality of each ensemble. There are three important factors to consider.

As Zimek [23] mentions, an important issue with outlier detection ensembles
is how to combine the different individual solutions to derive a consensus or
ensemble result. The problem is not trivial especially when the outlier detectors
output solutions that are ranked lists or score vectors. In our case however, each
solution is a binary vector we therefore employ the intuitive majority voting.

The second important issue is the question of how to measure an ensemble’s
quality. Given a ground truth it is typical to use measures such as Rand index
and Adjusted Rand index [23]. Similarly one can compute the average F-measure
score over all solutions as we do in our paper. Yet using ground truth information
to assess quality is debatable [22], especially considering we are aiming for an
unsupervised outlier detection method, however as [23] states “there is probably
no better approach available to assess clustering quality w.r.t. external knowl-
edge.” The third issue is which diversity measures should be investigated. Our
work considers all diversity measures described [12] which are divided into two
general groups, pairwise and non-pairwise. The pairwise method DP , is based
on the Adjusted Rand Index and on pairwise comparisons between all the solu-
tions in the ensemble. Four of the non-pairwise measures Dnp−1,Dnp−2, Dnp−3

and Dnp−4 are based on the difference of each solution from the final ensemble
decision. The measure proposed by [10], denoted by [12] as H, is based on the
entropy of the “consensus” matrix, which stores the co-agreement between all
ensembles solutions. In our work, we consider two additional diversity measures,
denoted Dfsa and E, which are based on data fusion and entropy respectively.
In Sect. 5.2 we presented data fusion, a byproduct of which is a source accuracy
measure for every sequence in the set that we aim to “fuse.” Considering that



296 D. Bountouridis et al.

high source accuracy corresponds to all sequences being similar and vice versa,
one can use their average complement as a measure of diversity. The E mea-
sure makes use of the binary nature of our task which allows us to convert each
solution vector to a decimal representation, thus represent the ensemble as a
sequence of decimal numbers. The entropy of the sequence can act as a measure
of diversity.

Scatter plots of the different diversity measures plotted against the ensemble
quality are presented in Fig. 2 (four omitted due to lack of space). The Pearson
and Spearman’s coefficients for the linearity and monotonicity tests respectively
are presented in Table 4. It becomes obvious that the entropy-based diversity
measure E is the most correlated to the ensemble quality. Dfsa follows (negative
correlation), while the rest do not show any particular pattern of correlation (e.g.
the closer to the median the better). Therefore, the Soft-Correlation rule cannot
be applied to our particular case. Based on the results we can hypothesize that
the best strategy for music outlier detection using independent ensembles is
picking the ensemble with the highest diversity as measured by the measure E.

Table 4. The Pearson’s and Spearman’s coefficients for linearity and monotonicity
tests.

DP Dnp−1 Dnp−2 Dnp−3 Dnp−4 H E Dfsa

Pearson’s −0.12 −0.13 0.08 0.10 0.09 0.05 0.48 −0.23

Spearman’s −0.11 −0.11 0.02 0.06 0.09 0.03 0.51 −0.21

Fig. 2. Diversity (x-axis) versus quality (measured as average F1 score) scatter plots
for four of the eight different diversity measures.

8 Independent Ensembles Evaluation

We are interested in evaluating our independent ensembles method with regard
to its outlier detection generalization ability. We compare it against two super-
vised approaches that do not treat all datasets independently: (a) a system that



Music Outlier Detection Using Multiple Sequence Alignment 297

applies the same, but optimised, outlier setting to all datasets, and (b) a system
that applies a setting to each dataset i, optimised for a different dataset j.

The first supervised approach learns the outlier detection setting that maxi-
mizes the prediction ability (measured using the F1 score) on the grouped train-
ing set. This model, denoted Full, is therefore trained on all music datasets but
aims at finding the setting that balances among them. The learned setting is
applied on each music dataset in the test set. The second supervised method,
called Individual, firstly learns the optimal outlier detection settings for each
music dataset in the training set. Secondly, for each example in a music dataset
belonging to test set it randomly applies a learned setting from a different set.

For each example in the test set, our ensemble approach that uses an entropy-
based diversity (called Ensemble-E ) starts by computing the output-solution of
every possible outlier detection setting. We shuffle them and randomly select 50
ensembles of 25 solutions each. We finally select the ensemble with the highest
diversity E and compute the final prediction.

The F1 scores of a 40-fold, cross-validation are presented in Table 5. We
compare the methods’ distributions using the Wilcoxon rank-sum test (the scores
do not follow a normal distribution). The results show that the Ensemble-E
method significantly outperforms the rest for all datasets not only as a whole
(see “Grouped” on Table 5) but individually also. For Csv-60 the Full method
shows better performance than Ensemble-E but not at a significant level.

Table 5. F1 scores for the three outlier detection approaches. pi,e and pf,e are the
p-value for the statistical significance tests between Ensemble-E vs Individual and
Ensemble-E vs Full respectively.

Individual Full Ensemble-E pi,e pf,e

Csv-60 0.61 (0.09) 0.92 (0.04) 0.91 (0.02) < 10−7 0.0526

TuneFam-26 0.72 (0.07) 0.79 (0.05) 0.81 (0.04) < 10−7 0.0141

Shs-50 0.56 (0.04) 0.55 (0.03) 0.58 (0.04) 0.0187 < 10−5

Beatles 0.68 (0.04) 0.74 (0.03) 0.77 (0.02) < 10−7 < 10−7

Grouped 0.67 (0.02) 0.75 (0.02) 0.77 (0.02) < 10−7 < 10−7

Our experiments so far were based on the assumption that only one outlier
can exist in a group of related music documents. In reality the outliers can be
more (but definitely less than half the number of documents). Table 6 presents
the results for the same experiment applied on the same train and test sets but
now with two outliers per group. Our ensemble approach shows again superior
performance for all sets individually (except for Csv-60) and as a whole.

9 Discussion and Conclusions

Working towards an unsupervised outlier detector for music sequences we pre-
sented an ensemble approach that outperformed supervised approaches. However,



298 D. Bountouridis et al.

Table 6. F1 scores for the three outlier detection approaches on the datasets with two
outliers per group.

Individual Full Ensemble-E pi,e pf,e

Csv-60 0.73 (0.05) 0.80 (0.03) 0.81 (0.03) < 10−7 0.5908

TuneFam-26 0.68 (0.05) 0.81 (0.04) 0.84 (0.04) < 10−7 < 10−4

Shs-50 0.55 (0.03) 0.53 (0.04) 0.58 (0.03) < 10−5 < 10−7

Beatles 0.65 (0.04) 0.75 (0.04) 0.77 (0.02) < 10−7 < 10−2

Grouped 0.66 (0.02) 0.74 (0.03) 0.76 (0.01) < 10−7 < 10−2

we should be careful before generalizing our observations. The diversity measure
employed was selected based on ground truth knowledge. And although there is
currently no other way to assess the relationship between a diversity measure
and quality, we should avoid calling our approach strictly “unsupervised.” In
addition, the effect of the ensemble size (beside the number of ensembles from
which we pick one) was not investigated and should be addressed in future work.

Despite these reservations our approach shows great potential due to the fol-
lowing: it is based on interpretable components, namely MSA-based similarity
and extreme value analysis. MSA is a structure that potentially holds informa-
tion that is left unexplored using pairwise comparisons. Extreme value analysis
is intuitive and extremely efficient. Combining outlier detectors using ensembles,
renders the approach domain-agnostic. This advantage is not be taken lightly:
modelling the domain is fundamental for any outlier detection algorithm [6],
therefore avoiding it for an unknown music dataset can be extremely beneficial.

References

1. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song
dataset. In: Proceedings of the 12th International Society for Music Information
Retrieval Conference, pp. 591–596 (2011)

2. Bountouridis, D., Van Balen, J.: The cover song variation dataset. In: The Inter-
national Workshop on Folk Music Analysis (2014)

3. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: the role
of source dependence. Proc. VLDB Endow. 2(1), 550–561 (2009)

4. Eddy, S.R.: Profile hidden Markov models. Bioinformatics 14(9), 755–763 (1998)
5. Eddy, S.R.: Accelerated profile HMM searches. PLoS Comput. Biol. 7(10),

e1002195 (2011)
6. Aggarwal, C.C.: Outlier analysis. In: Aggarwal, C.C. (ed.) Data Mining, pp. 237–

263. Springer, New York (2015)
7. Flexer, A., Pampalk, E., Widmer, G.: Novelty detection based on spectral similarity

of songs. In: ISMIR, pp. 260–263 (2005)
8. Flexer, A., Schnitzer, D.: Using mutual proximity for novelty detection in audio

music similarity. In: Proceedings of 6th International Workshop on Machine Learn-
ing and Music (MML), pp. 31–34. Citeseer (2013)



Music Outlier Detection Using Multiple Sequence Alignment 299

9. Freitas, C.O.A., Carvalho, J.M., Oliveira, J.J., Aires, S.B.K., Sabourin, R.: Confu-
sion matrix disagreement for multiple classifiers. In: Rueda, L., Mery, D., Kittler,
J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 387–396. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-76725-1 41

10. Greene, D., Tsymbal, A., Bolshakova, N., Cunningham, P.: Ensemble clustering
in medical diagnostics. In: 17th IEEE Symposium on Computer-Based Medical
Systems, CBMS 2004, Proceedings, pp. 576–581. IEEE (2004)

11. Grubbs, F.E.: Sample criteria for testing outlying observations. Ann. Math. Stat.
21, 27–58 (1950)

12. Hadjitodorov, S.T., Kuncheva, L.I., Todorova, L.P.: Moderate diversity for better
cluster ensembles. Inf. Fusion 7(3), 264–275 (2006)

13. Hansen, L.K., L.-Schioler, T., Petersen, K.B., Arenas-Garcia, J., Larsen, J., Jensen,
S.H.: Learning and clean-up in a large scale music database. In: 2007 15th European
Signal Processing Conference, pp. 946–950. IEEE (2007)

14. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Netherlands (1980)
15. Jehl, P., Sievers, F., Higgins, D.G.: OD-seq: outlier detection in multiple sequence

alignments. BMC Bioinf. 16(1), 269 (2015)
16. Livshin, A., Rodet, X.: Purging musical instrument sample databases using auto-

matic musical instrument recognition methods. IEEE Trans. Audio Speech Lang.
Process. 17(5), 1046–1051 (2009)

17. Lukashevich, H., Dittmar, C.: Improving GMM classifiers by preliminary one-
class svm outlier detection: application to automatic music mood estimation. In:
Locarek-Junge, H., Weihs, C. (eds.) Classification as a Tool for Research, pp. 775–
782. Springer, Heidelberg (2010)

18. Macrae, R., Dixon, S.: Guitar tab mining, analysis and ranking. In: ISMIR, pp.
453–458 (2011)

19. Markou, M., Singh, S.: Novelty detection: a reviewpart 1: statistical approaches.
Signal Process. 83(12), 2481–2497 (2003)

20. Panteli, M., Benetos, E., Dixon, S.: Automatic detection of outliers in world music
collections. In: Fourth International Conference on Analytical Approaches to World
Music (AAWM 2016) (2016)

21. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971)

22. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

23. Zimek, A., Campello, J.G.B., Sander, J.: Ensembles for unsupervised outlier detec-
tion: challenges and research questions a position paper. ACM SIGKDD Explor.
Newsl. 15(1), 11–22 (2014)

24. Gómez, E., Klapuri, A., Meudic, B.: Melody description and extraction in the
context of music content processing. J. New Music Res. 32(1), 23–40 (2003)

25. Katoh, K., Misawa, K., Kuma, K.-I., Miyata, T.: MAFFT: a novel method for
rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids
Res. 30(14), 3059–3066 (2002)

26. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal
organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334
(1982)

27. Li, S.Z.: Content-based audio classification and retrieval using the nearest feature
line method. Speech Audio Process. 8(5), 619–625 (2000)

28. Malt, B.C.: An on-line investigation of prototype and exemplar strategies in clas-
sification. J. Exp. Psychol. Learn. Mem. Cogn. 15(4), 539 (1989)

http://dx.doi.org/10.1007/978-3-540-76725-1_41


300 D. Bountouridis et al.

29. Martin, B., Brown, D.G., Hanna, P., Ferraro, P.: Blast for audio sequences align-
ment: a fast scalable cover identification. In: 13th International Society for Music
Information Retrieval Conference, p. 529 (2012)

30. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–
453 (1970)

31. Sankoff, D., Kruskal, J.B.: Time warps, string edits, and macromolecules: the the-
ory and practice of sequence comparison. Addison-Wesley Publishing Company,
Reading (1983)

32. van Kranenburg, P., de Bruin, M., Grijp, L., Wiering, F.: The shs-50 tune collec-
tions. In: Shs-50 Online Reports (2014)



Scalable Similarity Search in Seismology: A New
Approach to Large-Scale Earthquake Detection

Karianne Bergen1(B), Clara Yoon2, and Gregory C. Beroza2

1 Institute for Computational and Mathematical Engineering,
Stanford University, Stanford, CA 94305, USA

kbergen@stanford.edu
2 Department of Geophysics, Stanford University, Stanford, CA 94305, USA

Abstract. Extracting earthquake signals from continuous waveform
data recorded by networks of seismic sensors is a critical and challeng-
ing task in seismology. Earthquakes occur infrequently in long-duration
data and may produce weak signals, which are challenging to detect while
limiting the number of false discoveries. Earthquake detection based on
waveform similarity has demonstrated success in detecting weak signals
from small events, but existing techniques either require prior knowledge
of the event waveform or have poor scaling properties that limit use to
small data sets. In this paper, we describe ongoing research into the use
of similarity search for large-scale earthquake detection. We describe Fin-
gerprint and Similarity Thresholding (FAST), a new earthquake detec-
tion method that leverages locality-sensitive hashing to enable waveform-
similarity-based earthquake detection in long-duration continuous seis-
mic data. We demonstrate the detection capability of FAST and compare
different fingerprinting schemes by performing numerical experiments on
test data, with an emphasis on false alarm reduction.

Keywords: Similarity search · Locality-sensitive hashing · Time series ·
Data mining · Earthquake detection · Template matching · Signal
processing

1 Introduction

Seismology is an observational science that relies on data collected from seismic
sensors to study and interpret processes within the earth. Earthquake detection,
the use of signal processing to identify seismic signals in continuous ground
motion measurements, is critical for enabling discoveries in the field. Modern
seismic networks include hundreds to thousands of sensors, each recording data
continuously. As the volume of available data grows, the seismology community
is increasingly recognizing the need to adopt state-of-the-art algorithms and
data-intensive computing techniques to process large seismic data sets.

There are a number of challenges and requirements for the earthquake detec-
tion problem. The events of interest, earthquakes, occur infrequently and their
signals are short in duration (seconds to tens of seconds). Therefore, earthquake
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 301–308, 2016.
DOI: 10.1007/978-3-319-46759-7 23



302 K. Bergen et al.

detection requires processing months to years of data, most of which contains
only background signals, including local, persistent noise sources. A practical
earthquake detection system should be able to detect weak signals from small
earthquakes while controlling the false alarm rate; a large number of false detec-
tions could easily overwhelm true events, so maintaining high precision is critical
when processing large data sets. Small, low signal-to-noise events are hard to
detect and can often only be confidently distinguished from noise by identifying
coherent signals across an array of sensors. Sensor dropout and changes in sensor
array configuration are not uncommon, so we focus on network-based detection
approaches that detect independently on each channel as an initial step. This
paper will focus on the single-channel detection problem.

The STA/LTA algorithm [1], widely used for general earthquake detection,
identifies rapid increases in the signal energy to detect events with impulsive
wave arrivals. This approach is attractive because it can be easily applied in
near real-time to streaming data, but the simplicity of the detection statistic
does not take advantage of the shape of the recorded waveforms.

Earthquake waveforms contain valuable information for detection; it has been
widely observed that earthquakes originating at neighboring locations generate
similar waveforms at a fixed sensor (Fig. 1). In recent years, seismologists have
exploited waveform similarity, measured by the normalized cross-correlation, to
detect small earthquakes with weak signals similar to those of known template
events [6]. However, the performance of template matching is limited by the
quality and availability of template waveforms from earthquake catalogs, which
are known to be incomplete, especially for low magnitude events. We seek a
general similarity-based earthquake detector that can identify similar earthquake
waveforms without templates. Previous efforts toward that goal have proposed
a brute-force blind search for similar waveforms [5], but the quadratic scaling of
this approach makes it infeasible for large data sets.

In this paper we present on-going work to incorporate similarity search into
a modern, scalable earthquake detection pipeline. We have introduced a new
earthquake detection approach called Fingerprint and Similarity Thresholding
(FAST) [8] to detect earthquakes by identifying similar waveforms in continuous

Fig. 1. Similar earthquake waveforms recorded during five distinct events over a period
of years at a fixed sensor, station CCOB in Northern California



Scalable Similarity Search in Earthquake Seismology 303

seismic data. FAST is modeled after scalable content-based audio identifica-
tion systems [3]. Given continuous waveform data recorded by a single sensor,
we extract a binary waveform fingerprint for each short-duration time inter-
val. Then we perform an approximate similarity search using locality-sensitive
hashing (LSH) to identify similar waveforms, which are labeled as candidate
earthquakes. Below we describe our similarity-search-based approach for large-
scale earthquake detection and discuss strategies to lower the false alarm rate
and enable the detection of low signal-to-noise events.

2 Our Approach: FAST Earthquake Detector

The Fingerprint and Similarity Thresholding earthquake detection method iden-
tifies earthquakes using an efficient blind search for similar waveforms. The two
key steps in the FAST detector are feature extraction and approximate similar-
ity search. Feature extraction maps each short-duration waveform segment into
a sparse binary fingerprint. The approximate similarity search, which employs
locality-sensitive hashing [2] for computational efficiency, identifies similar pairs
of fingerprints. Waveform segments corresponding to similar fingerprint pairs are
classified as candidate earthquake signals.

2.1 Data

FAST operates on single-channel, continuous, high frequency (up to 100 Hz) data
recorded by seismometers that measure ground motion at fixed locations. The
data contain seismic signals embedded in background noise. We apply a 1–10 Hz
bandpass filter and use a 10 s event window, corresponding to the predominant
frequencies and duration of seismic waves for small local earthquakes.

2.2 Feature Extraction

Earthquake waveforms are searched using sparse binary waveform fingerprints.
The feature extraction approach used in FAST is adapted from the Waveprint [3]
method for audio fingerprinting. Audio fingerprinting provides a good starting
point for the development of earthquake waveform fingerprints – there is struc-
tural similarity between the data and both applications require fingerprints that
are robust to small variations and additive noise. The feature extraction process
converts short-duration waveforms into sparse binary fingerprints (Fig. 2) and is
described in the following steps.

1. Spectrogram. We convert the time series data to the spectrogram, a time-
frequency representation computed with the short-time Fourier transform.

2. Spectral Images. We divide the spectrogram into short (10 second) overlap-
ping segments, and resize spectral images to fixed dimensions: 32 frequency
bins and 64 time bins. The spectral domain provides some shift invariance,
unlike the time domain where waveforms must be precisely aligned; this allows
a larger lag between adjacent intervals (1.0 vs. 0.05 s) and fewer fingerprints
total, but the trade-off is reduced detection sensitivity.



304 K. Bergen et al.

Fig. 2. Feature Extraction process in FAST: (A) continuous data, (B) spectrogram, (C)
spectral image, (D) discrete Haar wavelet transform, (E) adjusted wavelet coefficients,
(F) coefficient selection, (G) conversion to binary fingerprint

3. Haar Wavelet Transform. For each spectral image, we compute the two-
dimensional discrete Haar wavelet transform.

4. Coefficient Selection and Conversion to Binary. We select the K most
anomalous Haar coefficients (as described in Sect. 2.4) for each spectral image.
K is typically selected in the range of 200–800 (out of 2048). For the selected
coefficients, we retain only the sign value and set all other coefficients to zero.
We convert the sign values to binary using two bits per coefficient, resulting
in sparse binary fingerprints of dimension 4096 with K non-zeros.

2.3 Similarity Search

The computational efficiency of FAST comes from the use of locality-sensitive
hashing [2] to perform a fast approximate similarity search. The Jaccard simi-
larity coefficient quantifies the similarity between fingerprints. In the similarity
search step, hash signatures are generated using MinHash [4] to preserve the
Jaccard similarity, and LSH is used to identify fingerprints with similar signa-
tures. The use of MinHash and LSH provides a significant improvement over the
quadratic scaling of a brute-force all-to-all search. For instance, when applied
to one week of continuous data, FAST has demonstrated a factor 140 speed-up
over the brute-force search and detected 89 events compared with 24 events in
the earthquake catalog (see [8] for details).

2.4 Haar Coefficient Selection

The effectiveness of similarity search is highly dependent upon the data repre-
sentation. Fingerprints must be discriminative, that is similar waveforms map
to similar fingerprints under the Jaccard metric. The imbalanced data set poses
an additional challenge; the signals of interest, similar earthquake waveforms,
appear infrequently in data dominated by background noise. In our template-
free search, the potential for false detections is high because we search the full



Scalable Similarity Search in Earthquake Seismology 305

seismic data record for similar pairs of waveforms to identify weak earthquake
signals. Therefore we require fingerprints corresponding to background signals
to be mutually dissimilar, even in the presence of persistent noise sources, to
distinguish weak seismic signals while also limiting the number of false alarms.

The original feature extraction approach, following Waveprint, creates a com-
pact representation using Haar wavelets by retaining the coefficients that are
largest in magnitude. While this approach has been successfully applied in audio
fingerprinting, when it is applied to seismic data the resulting fingerprints provide
an inefficient representation; the largest magnitude coefficients often belong to
a subset of frequently selected coefficients, while the majority of the coefficients
are rarely selected. For instance, on a test data set with K = 400 selected coef-
ficients, 16% of the coefficients are “frequently selected” (i.e. active in at least
25% of fingerprints) while 50% are “rarely selected” (active in fewer than 1% of
fingerprints). This inefficiency impacts the performance of earthquake similarity
search by increasing the average similarity between “background” fingerprints,
thus making it more difficult to distinguish weak earthquake signals. Therefore
we adjust our approach to select coefficients that are more discriminative with
respect to background signals.

We select the Haar coefficients that the most discriminative or anomalous,
rather than those that are largest in magnitude. To achieve this, we compute
adjusted Haar coefficients by standardizing each coefficient based on its distri-
bution across the full, background-dominated data set. We model the unknown
coefficient distributions using simple statistics: with mean and standard devia-
tion (Z-score), or with the median and median absolute deviation (MAD). These
metrics allow us to choose coefficients that are not largest in magnitude, but
farthest on the tails of the distribution. Empirically, this approach suppresses
detections of persistent noise sources while maintaining high accuracy on earth-
quake signals (Fig. 3). We compare these fingerprinting schemes in Sect. 3.1.

Fig. 3. Comparison of fingerprinting schemes applied to background noise. The Jaccard
similarities between the fingerprints are: 0.266 (original), 0.117 (Z-score), and 0.040
(MAD).



306 K. Bergen et al.

3 Experiments

We compare the performance of the fingerprinting schemes described in Sect. 2.4
and demonstrate their accuracy for earthquake waveforms, then demonstrate
the performance of FAST on a planted waveform test set in which earthquake
waveforms are embedded in recorded background signals at known times and
signal-to-noise ratio. All data used in the tests below were recorded at Northern
California Seismic Network station CCOB, and sample earthquake waveforms
were selected using the Northern California Earthquake Catalog.

3.1 Performance of Feature Extraction

We compare the three feature extraction schemes described in the previous
section: (1) original, (2) Z-score-, and (3) MAD-adjusted fingerprints.

We test two criteria to measure the quality of fingerprints for our earthquake
detection problem: fingerprint accuracy and baseline similarity. Accuracy is a
measure of the quality of the fingerprints of earthquake waveforms for similarity-
based detection under additive noise. Baseline similarity quantifies the similarity
between background fingerprints in the presence of persistent noise to estimate
false detection rates.

To assess accuracy, we compare the fingerprints of clean earthquake wave-
forms to low signal-to-noise versions of the same waveform embedded in noise:

accuracy(i, j) = jaccard
(
FP(x(i)), FP(αx(i) + n(j))

)
, (1)

where FP is the feature extraction operation, x(i) is the i-th earthquake wave-
form, n(j) is the j-th background waveform, and α is a scaling factor to control
the signal-to-noise ratio (SNR). We use waveforms from 300 known earthquakes
and embed each one in 10 noise segments at a low SNR ranging from 1.0 to 5.0.
To test the robustness of the fingerprints, the signals were bandpass filtered to
1–10 Hz and include persistent noise in the 1.5–3.5 Hz range. We directly com-
pute the Jaccard similarity between the clean and noisy fingerprints and report
the median for each feature extraction scheme in Table 1. The MAD-adjusted
fingerprints consistently have the highest accuracy.

Table 1. Median Jaccard similarity of clean and low-SNR earthquake waveforms

SNR Fingerprint accuracy

Original Z-score MAD

1.0 0.3093 0.3629 0.4760

2.0 0.5123 0.6736 0.7279

4.0 0.7354 0.8561 0.8735

The baseline similarity distribution is estimated from the Jaccard similarities
for 5000 pairs of background fingerprints:



Scalable Similarity Search in Earthquake Seismology 307

baseline(k, �) = jaccard
(
FP(n(k)), FP(n(�))

)
. (2)

The similarity between background fingerprints is substantially lower for MAD-
and Z-score adjusted fingerprints than for the original top magnitude finger-
prints, with median Jaccard similarities of 0.047, 0.071, and 0.185, respectively.

’In order to maintain high overall precision in an imbalanced data set,
we require both high accuracy for fingerprints and low baseline similarity to
limit false detections. We characterize the trade-off between false detections and
missed detections, specifically for the case of identifying low SNR earthquakes
similar to clear earthquake waveforms, using in a ROC curve (Fig. 4a). For a
given Jaccard similarity threshold, the true positive rate is defined as the rate
at which the accuracy exceeds this threshold, and the false positive rate is the
rate at which the baseline similarity exceeds the same threshold. We also con-
sider the more challenging and relevant case in which we seek to identify pairs
of similar low SNR earthquake waveforms, i.e. both instances of the waveform
include additive noise in a modified accuracy formula (Fig. 4b).

3.2 Detection Performance

To have a clear ground truth for measuring detection performance, we inject
real earthquake waveforms into a dataset consisting of 16 hours of recorded
background signal. Twelve pairs of known event waveforms are embedded in the
background at low SNR. We report the results for MAD-adjusted fingerprints
with K = 400 non-zeros, and 100 hash tables with 4 hash functions per table in
the LSH search. The detection statistic is the fraction of hash tables in which
a fingerprint appears in the same hash bucket as its nearest neighbor. FAST
successfully identifies all 24 low SNR events with only 4 false detections (85.71%
precision). FAST has shown promising initial results on real earthquake sequence

Fig. 4. Trade-off between detection rate for weak signals (SNR 1.0) and false detections.
Multiple lines represent results for several different values of K.



308 K. Bergen et al.

data, detecting previously unknown events with a manageable number of false
detections in months of continuous data.

4 Discussion

In this paper, we present an application of approximate similarity search with
LSH to the problem of earthquake detection in continuous seismic data. This
work represents a new direction for waveform-similarity-based earthquake detec-
tion that does not require prior knowledge of event waveforms and has suf-
ficient computational efficiency to allow for application to long-duration data
that would not be feasible using a brute-force search. Our initial experiments
with FAST demonstrate that this approach can successfully detect previously
unknown small earthquakes using blind similarity search. Furthermore, we have
demonstrated that modifications to audio fingerprinting methods based on the
empirical data distribution can improve accuracy on imbalanced data sets, which
contain relatively few pairs of moderate-to-high similarity. Scalable similarity
search has the potential to impact both the study of earthquakes and earth and
environmental monitoring more broadly. Imbalanced data sets appear in many
of these applications, such as acoustic recordings used for mining bioacoustic
soundscapes in ecological studies [7], and we believe the techniques developed
for FAST can be applied in these domains.

Acknowledgments. This research was supported by NSF grant EAR-1551462 and
by the Southern California Earthquake Center (contribution no. 6325). Waveform data,
metadata, or data products for this study were accessed through the Northern Califor-
nia Earthquake Data Center, doi:10.7932/NCEDC. We thank Ossian O’Reilly for his
assistance with the hashing techniques used in this work.

References

1. Allen, R.: Automatic phase pickers: their present use and future prospects. Bull.
Seismol. Soc. Am. 72(6B), S225–S242 (1982)

2. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM 51(1), 117–122 (2008)

3. Baluja, S., Covell, M.: Waveprint: efficient wavelet-based audio fingerprinting. Pat-
tern Recogn. 41(11), 3467–3480 (2008)

4. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000)

5. Brown, J.R., Beroza, G.C., Shelly, D.R.: An autocorrelation method to detect low
frequency earthquakes within tremor. Geophys. Res. Lett. 35(16), L16305 (2008)

6. Gibbons, S.J., Ringdal, F.: The detection of low magnitude seismic events using
array-based waveform correlation. Geophys. J. Int. 165(1), 149–166 (2006)

7. Servick, K.: Eavesdropping on ecosystems. Science 343(6173), 834–837 (2014)
8. Yoon, C.E., O’Reilly, O., Bergen, K.J., Beroza, G.C.: Earthquake detection through

computationally efficient similarity search. Sci. Adv. 1(11) (2015)



Scalable Similarity Search



Feature Extraction and Malware Detection
on Large HTTPS Data Using MapReduce

Přemysl Čech1(B), Jan Kohout2, Jakub Lokoč1, Tomáš Komárek2,
Jakub Maroušek1, and Tomáš Pevný2

1 SIRET Research Group, Faculty of Mathematics and Physics, Department of
Software Engineering, Charles University in Prague, Prague, Czech Republic

{cech,lokoc}@ksi.mff.cuni.cz, marousej@artax.karlin.mff.cuni.cz
2 FEE, Cognitive Research Center in Prague, Czech Technical University in Prague,

Cisco Systems, Inc., Prague, Czech Republic
{jkohout,tpevny}@cisco.com, komartom@gmail.com

Abstract. Secure HTTP network traffic represents a challenging
immense data source for machine learning tasks. The tasks usually try
to learn and identify infected network nodes, given only limited traffic
features available for secure HTTP data. In this paper, we investigate
the performance of grid histograms that can be used to aggregate traffic
features of network nodes considering just 5-min batches for snapshots.
We compare the representation using linear and k-NN classifiers. We also
demonstrate that all presented feature extraction and classification tasks
can be implemented in a scalable way using the MapReduce approach.

Keywords: Hadoop · MapReduce · HTTPS data · Intrusion detection ·
Approximate similarity join

1 Introduction

The detection of secure HTTP (HTTPS) connections related to malicious activ-
ity is a pressing problem for increasing volumes of HTTPS traffic on the Inter-
net. Unlike traditional malware detection systems that can rely on known byte
sequences in packets [14], information about HTTPS connections—because of
the encryption—are limited just to very high-level features such as the num-
ber of uploaded/downloaded bytes and a duration of the connection. Even the
visited URLs might not be available to the detection system if the privacy of
the users has to be fully preserved. For these reasons, the encrypted HTTPS
communication has been employed also by malware to prevent its detection.
Nevertheless, recent works [7,8] demonstrate that statistical descriptors1 x ∈ R

d

of servers based on the available information for HTTPS connections can be
effectively used to detect malware or group servers that are running similar
applications. Whereas most of the approaches that employ statistical modeling
1 The statistical descriptor is a d-dimensional vector x capturing statistical properties

of the communication. For more details see Sect. 2.

c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 311–324, 2016.
DOI: 10.1007/978-3-319-46759-7 24



312 P. Čech et al.

of network traffic work on the packet level [4,6,15], our work is based on descrip-
tors extracted from high-level web proxy logs that does not require packet level
captures. Although the descriptors investigated both for linear and k-NN-based
classification [10] showed promising results, the efficiency and effectiveness of
statistical decriptors require further improvements for practical use cases.

Since the volume of network communication has been constantly rising and
also new malware variants are emerging every day [1], the malware detection
systems have to face scalability issues because they have to process more and
more data effectively. Therefore, traffic analysis systems require distributed
approaches [9] often relying on the MapReduce programming model [5] - a par-
adigm often used in large-scale data processing.

Each MapReduce program consists of a Map procedure performing filter-
ing and sorting, and a Reduce method evaluating a summary operation. The
MapReduce model is suitable for the creation of statistical descriptors as it nat-
urally supports selection of high-level communication features in the Map phase
and their aggregation into one descriptor in the Reduce phase (for more details
see Sect. 3). Furthermore, the MapReduce approach enables efficient implemen-
tation of a linear classification on the top of the descriptors. Hence, after the
feature extraction job is finished, the classification job can be evaluated. How-
ever, the descriptors representing malware and benign communications might
not be linearly separable [10]. In such cases, a k-NN classifier that employs an
annotated reference database of statistical descriptors can be utilized. Since the
numbers of classified descriptors and reference descriptors can become very large,
a scalable distributed similarity join operation for efficient k-NN classification is
required [11].

In this paper, we address both effectiveness and efficiency of malware detec-
tion systems relying on communication descriptors extracted from HTTPS con-
nections. We investigate related work which used grid-based histograms [7,8]
as the descriptors. Since modern malware detection systems should collect and
analyze a vast amount of network traffic data, we investigate also the robustness
and stability of k-NN classifiers with growing reference datasets of descriptors.
Last but not least, considering huge datasets we focus also on the scalability
of malware detection systems based on descriptors. More specifically, we inves-
tigate the MapReduce approach for descriptors creation and classification. In
the experiments, we demonstrate that the MapReduce approach is suitable for
descriptors creation from HTTPS connections and also that the MapReduce
approach can handle expensive similarity joins for efficient k-NN classification.

The paper is organized as follows. Section 2 presents the adopted approach
to create descriptors of HTTPS communication. Section 3 focuses on MapRe-
duce implementation of the feature extraction and the classification. Since for
the k-NN classification of descriptors the exact similarity join algorithm is not
sufficiently fast, we investigate approximate similarity join approach in Sect. 4.
Section 5 presents experimental evaluation and finally Sect. 6 concludes the
paper.



Feature Extraction and Malware Detection on Large HTTPS Data 313

2 HTTPS Feature Extraction and Classification

The goal of this work is to be able to identify users whose machines are infected
with malware communicating over HTTPS. This involves representation of the
snapshots of the users’ communication such that these snapshots can be stored as
(preferably compact) objects and effectively compared to each other and assessed
by detectors of malware. To achieve this, we split the continuous stream of
HTTPS traffic from each client’s machine into 5-min batches to create so called
communication snapshots. One communication snapshot is defined as a set of
all requests for establishing an SSL tunnel (which is used for the HTTPS com-
munication) issued by the same user during one 5-min interval. To effectively
represent this set of requests, we need to define a transformation which trans-
forms the set into one feature vector of fixed dimension. This fixed-size real
vector is called a descriptor of the communication snapshot. Transforming the
sets into descriptors makes them easy to compare and classify. However, the
transformation has to be chosen carefully such that it retains maximum possible
information. The approach that we have adopted is following: We see each com-
munication snapshot as a set of messages interchanged in the communication. In
our case, the messages are the individual requests for establishing an encrypted
SSL tunnel. These requests are typically logged as separate proxy log lines by
the web proxies. Furthermore, we assume that each message can be represented
by a real vector m ∈ R

n. This assumption is realistic as the web proxies usually
log multiple data fields that can be used as numerical features - e.g., amounts of
transferred bytes within the tunnel. In this paper, we use four numerical features
to represent the messages (i.e., n = 4), namely:
1. bytes sent: mup through the tunnel from the user’s machine to the target

server,
2. bytes received: mdown by the client’s machine from the server,
3. duration: mdur of the tunnel, i.e., the length of the time interval for which

the tunnel was active,
4. inter-arrival time: mia (in seconds) elapsed between two consecutive

requests for establishing a tunnel from the same user and server.

A message m (one SSL tunnel) is then represented as a 4-tuple

m = (log(1 + mup), log(1 + mdown), log(1 + mdur), log(1 + mia)).

The logarithmic scale is used to suppress noise and decrease ranges of the fea-
tures. Having the numerical representation of messages defined, each communi-
cation snapshot is then treated as a finite sample from an n-dimensional random
variable with unknown probability distribution p. The messages are treated as
individual realizations of this random variable. The question of building the
descriptor of the communication snapshot then becomes a question of building
the descriptor of the distribution p based on a finite sample from it. For such
task, there has been a large amount of approaches proposed in the literature
that aim at representation of probability distributions. In this work, we chose an
approach which is based on smoothed histograms capturing frequencies of the
observed features. This approach is described in the following subsection.



314 P. Čech et al.

2.1 Communication Descriptors Based on Histograms

Histograms have been widely used to capture frequencies of observations and
represent them as a real vector of fixed dimension in many different domains.
The way how we utilize histograms for creating descriptors of the communication
snapshots was described in [7] and also used for similar purpose in [10]. The
joint histogram is formed from 4-dimensional messages belonging to the same
communication snapshot. The contribution of each message is distributed among
multiple bins. The bins are fitted and centered into a lattice L = {0, ..., 11}4, thus
final descriptor is represented by a feature vector of fixed dimension 114 = 14641.
Thanks to all this, the histogram-based representation is purely unsupervised
and can be constructed without fitting any parameters.

2.2 Classification of Communication Descriptors

The classifiers assign a confidence value to all analyzed communication descrip-
tors x ∈ Q ⊂ R

d. Given the confidence value, all the analyzed histograms can
be ordered, and the objects that are highly ranked in that ordering are assumed
to correspond to descriptors of communication belonging to hosts infected by
malware. Since the problem of malware detection is known to be a highly imbal-
anced with a strong prevalence of legitimate traffic, the quality of the ordering is
measured by the false alarm rate at 50 % recall on malware [13] (further called
FP-50). The FP-50 error measure was designed for domains where significant
emphasis is put on very low false-positive, such as steganalysis and anomaly
detection in security. This makes it a good error measure for our problem, too
(because of the strong prevalence of legitimate traffic, the false-positive rate is
very important if the method is used in practice). For these reasons, we prefer
the FP-50 measure to other error measures, such as average accuracy. Formally,
the value of the FP-50 error e is defined as follows:

e =
1

|I−|
∑

i∈I−
I
[
f(xi) > median{f(xj)|j ∈ I+}]

,

where I− are indexes of the negative (benign) training samples (descriptors),
I+ are indexes of the expositive training samples (descriptors of communication
snapshots that contain malicious traffic), f(x) is the output of the classifier
(the confidence value) for the descriptor x ∈ Q and I is an indicator function.
The motivation for FP-50 is that missing 50 % of malware is acceptable for the
benefit of having extremely low false positive rate. The exponential Chebyshev
Minimizer (ECM) proposed in [13] is a suitable linear classifier optimizing the
FP-50 measure. We use the ECM in the experiments.

For problems that are not linearly separable, this paper considers also a
simple nearest-neighbor based classifier [10] employing the Euclidean norm L2

as a distance between two samples. The classification rule for a test sample x ∈ Q

is based on its k nearest neighbors from a given training reference set S ⊂ R
d.

The k-NN query is defined for k ∈ N
+, x ∈ R

d and S as:

kNN(x) = {X ⊂ S; |X| = k ∧ ∀y ∈ X, z ∈ S − X : L2(x, y) ≤ L2(x, z)}.



Feature Extraction and Malware Detection on Large HTTPS Data 315

In order to enable ordering of test samples x ∈ Q, the k-NN classifier assigns
two values to each test sample x ∈ Q. The first value v1 represents the number
of malicious objects in kNN(x), while the second value v2 aggregates the sum
of distances to the malicious objects in kNN(x). The samples then supports
multi-value sorting by v1 in descending order followed by v2 in the ascending
order. This ordering is the input for the FP-50 measure.

3 Scalable Processing of HTTPS Data

In this section we describe architecture of our MapReduce framework which
is composed of a feature extraction job and a classification job. Note that we
assume that data are already in a tabular form and that parameters of feature
extraction and classifiers are trained in a preprocessing phase.

3.1 Feature Extraction

The first MapReduce job performs transformation of raw data collected by Cisco
cloud to descriptors using the histogram approach presented in Sect. 2.1. The job
assumes that raw input data which are initially stored in text log files are con-
verted to a table format with eight columns: ID of five minute interval, client
ID, domain (server) ID, bytes sent, bytes received, duration of a request, time
between requests for the fixed client-domain pair and a label describing whether
a request is considered malicious or not. To be more specific, feature columns are
already precomputed from pure text logs, values are stored in a logarithmic scale
and inter-arrival time between requests was evaluated (see [7]). This preprocess-
ing is performed separately from the MapReduce job and the precomputed table
is the input for the map phase.

In the map phase <key; value> pairs for further processing are generated.
In this paper, the key is composed of the client ID and five minute interval
ID column. The usage of five-minute intervals has been widely adopted in a
network security, hence, we also adopt this size for our experiments. However,
the designed method would be able to work with an arbitrary size of the time
interval. Note that the presented malware detection focuses only for clients and
ignores domain part of communications (not completely available for HTTPS
data). Thus all records which has the same value in these two key columns will
be grouped together and will form one histogram. All features and the infected
label column belong to a value part.

The reduce phase takes sets with the same key. For each key, transforma-
tion of features (quadruplets) into a histogram is performed using the algorithm
described in Sect. 2. Also every histogram is labeled infected or not if any request
(from which histogram was created) was labeled infected. Because a lot of his-
togram bin values are usually empty (equal to zero) we use a space-saving format
for storing the result histograms. More specifically, each sparse histogram is rep-
resented as a set of pairs binID:value, where pairs with value = 0 are omitted.



316 P. Čech et al.

The output key of the reduce phase remains the same and the value is a com-
puted descriptor. Format is also depicted in the Fig. 1 where output descriptors
are formed. The first number represents infected label and then all non zero pairs
binID:value separated by semicolons follow.

The whole feature extraction job scheme is also summarized in the Fig. 1.

Fig. 1. A scheme of the feature extraction job.

3.2 Classification

The second MapReduce job is dedicated to a classification task of communication
histograms from the database Q ⊂ R

d obtained from the previous job. Since the
final sorting for the FP-50 measure is not a bottleneck task, the main goal of the
second MapReduce job is to efficiently classify a large number of query objects
stored in HDFS.

Given weights trained [13] in a preprocessing step, the MapReduce implemen-
tation of the linear classifier is straightforward. Besides histograms, the MapRe-
duce job also takes trained weights for the classifier and uses only the map phase
to compute a classification score for all histograms. The final classification score
is the result of a scalar product of the histogram and weights plus addition of
a hyperplane offset w0. In the linear classifier scenario a reduce phase is not
needed.

For the k-NN classification of HTTPS data, Lokoc et al. [10] have presented
a centralized memory based approach that uses Voronoi partitioning and met-
ric filtering rules for efficient approximate k-NN search [3,12,18]. However, for
large sets Q of query objects and S of reference objects available in advance,
an efficient implementation of similarity joins is necessary [2,16,17]. Recently, a
MapReduce implementation of exact similarity joins has been introduced [11],
where Lu et al. propose a method employing Voronoi partitioning, metric filtering



Feature Extraction and Malware Detection on Large HTTPS Data 317

rules and the replication of reference database objects from S for efficient exact
similarity join processing. However, the good efficiency results of exact similarity
joins are reported just for data with different properties than our communication
descriptors. Whereas in the paper Lu et al. used low-dimensional vectors, the
communication descriptors investigated in this work are sparse high-dimensional
vectors, with imbalanced sparsity settings across the whole dataset. Furthermore,
the distance space (i.e., descriptors in connection with the Euclidean distance)
suffers from high intrinsic dimensionality. Therefore, in the following section we
present a new approximate similarity join algorithm for MapReduce program-
ming model inspired by both works of Lu et al. [11] and Lokoc et al. [10].

4 Approximate Similarity Join Using MapReduce

The work of Lu et al. [11] focuses on distributed exact similarity joins of two
large sets Q and S. The proposed method consists of two steps - preprocessing
and a similarity join k-NN job. In the preprocessing phase, data from Q and
S are split into partitions in order to exploit efficient algorithm parallelization
and evaluation using Hadoop MapReduce distributed environment. The metric
space Voronoi partitioning is used to split data descriptors into Voronoi cells ci
corresponding to pivots pi ∈ S. Since the number of reducers is limited, the cells
ci are grouped into bigger parts called groups Gj , which are later processed by
reducers in the k-NN job. With small changes, our new approximate similarity
join algorithm takes the preprocessing phase and the organization of the dataset
into groups2 as presented by Lu et al. [11]. However, the similarity join k-NN job
requires approximate approaches for both data replication method and also for
k-NN query evaluation at a particular reducer. The approximate k-NN query
processing at a reducer uses approximate search strategy presented by Lokoc
et al. [10].

4.1 Preprocessing Phase

For the Voronoi-based partitioning, pivots pi from the database S have to be
selected. Since we consider a high number of pivots, a random pivots selection
is employed as a sufficient and not computationally intensive method. In our
work we use 2000 pivots. Given a set of pivots, the partitioning of descriptors
to cells ci according to the selected pivots pi has to be performed. This task is
done only by the map job mentioned in [11], where input objects (descriptors)
are processed by mappers and for each descriptor the nearest pivot is found. To
each descriptor we add and save the nearest pivot ID information plus distance to
this pivot [11]. Finally, also statistics for each cell ci are stored including number
of objects, size of objects and distance from the pivot pi to the furthest object
from S assigned to the cell ci, which comes in handy for filtering techniques in
the k-NN job. The partitioning is computed for objects in both sets Q and S,
so all objects store ID of their nearest pivot.
2 We would like to thank Lu et al. [11] for sharing their codes with us.



318 P. Čech et al.

After the partitioning is performed, the Voronoi cells are organized into
groups Gj = {ci1 , . . . , cim} using the geometry grouping algorithm [11]. More
specifically, the Voronoi cells whose corresponding pivots pi are near to each
other are put into the same group. To better balance the computation workload
of similarity joins, groups are eventually even up to contain the same number of
objects from S [11]. However, for high-dimensional sparse descriptors with dif-
ferent sparsity settings, the count criterion can lead to an imbalanced workload.
Therefore, we investigate also a heuristic that balances the groups to reach a
similar sum of sizes of objects in the groups. The pseudo code for the grouping
technique is depicted in the Algorithm 1.

Algorithm 1. GeoGroupingBySize
1: N = number of groups
2: pk = max

pj∈pivots

∑
pi∈pivots d(pi, pj) //most distant pivot from others

3: P = pivots – {pk} //all pivots except the initial one
4: U = pk //used pivots
5: G1 = {pk} //first group contains initial pivot
6: G2, ..., GN = ∅ //rest result groups are empty
7: for (i = 2; i < N ; i++) do
8: pk = max

pj∈P

∑
pi∈U d(pi, pj) //most distant pivot from P to all pivots in U

9: P = P − {pk}; U = U ∪ {pk}; Gi = {pk}
10: end
11: while P �= ∅ do
12: Gi = group with the smallest size of objects
13: pk = min

pj∈P

∑
pi∈Gi

d(pi, pj) //nearest pivot to all pivots in Gi

14: P = P − {pk}; Gi = Gi ∪ {pk}
15: end
16: return G1, G2, ..., GN

4.2 Similarity Join Evaluation Using MapReduce

After the preprocessing phase (finding for all objects from Q and S their cor-
responding cell ci, and grouping cells to groups Gj), the similarity join can be
performed on j reducers. The similarity join on j-th reducer consists of k-NN
searches for objects assigned to group Gj in a Map phase [11]. More specifically,
the similarity join at j-th reducer finds for all objects from Q assigned to Voronoi
cells in group Gj the k closest database objects from S that are either assigned
to Voronoi cells in group Gj or replicated from close Voronoi cells belonging to
different groups. Note that the replication was introduced to guarantee exact
search results for distributed processing based on partitioning into groups [11].

Detailed MapReduce job for the k-NN search is depicted in Algorithm 3,
including also two new approximation parameters replicationThreshold and fil-
terThreshold. Before the Map phase, the nearest groups Gj for all pivots pi are
computed (see the Algorithm 2). Then in the Map phase, objects from Q and S



Feature Extraction and Malware Detection on Large HTTPS Data 319

are assigned to particular reducers by specifying GroupId as the key part and
object’s descriptor as the value part. Initially, all objects from Q and S have
GroupId of their corresponding Voronoi cell, while some object from S are fur-
ther replicated with different GroupId. The first proposed approximate search
extension is to reduce the amount of replication of objects from S to different
groups. Even if we use the upper and lower bound pruning techniques described
in [11], the high intrinsic dimensionality of the distance space could lead to mas-
sive replication of all database objects to all groups/reducers. In such cases the
reducers quickly run out of a random access memory (RAM). Therefore, our
method replicates database objects s ∈ ci ⊂ S only to groups Gj that contain
pivots that are within the replicationThreshold closest pivots to pi. If all the
replicationThreshold closest pivots to pi are from the same group Gj as pi,
then the objects s ∈ ci ⊂ S are not replicated at all. Detailed pseudo code is
mentioned in the Algorithm2.

In the reduce phase of the main k-NN algorithm, incoming objects are parsed
and query and database sets for every reducer are established. The database
objects S assigned to reducer j are further organized as a list of Voronoi cells
cSi . Then similar evaluation to the work of Lokoc et al. [10] is performed. For
every query object q at reducer j, the method precomputes distances to all pivots
determining cells cSi and sorts the list of Voronoi cells with respect to d(q, pi).
Then, for each cell query ball overlap check3 is performed (the Algorithm 3 row
number 21) followed by the lower bound filtering for specific database objects
in the cell (row number 23). If the database object was not filtered, a distance
between query and database object is computed and if the distance is lower
than the actual query radius, the result k-NN candidate set and the actual
query radius are updated. Also the constant filterThreshold is used to evaluate
neighbors only in the nearest Voronoi cells cSi , with respect to d(q, pi). At the
end, the algorithm produces an approximate k-NN result for every query object
and also includes a classification score to the output. As described in Sect. 2.2,
the k-NN classification score is composed of two values v1 and v2.

5 Experiments

In this section, we experimentally evaluate the proposed MapReduce framework.
The emphasis is put on verification of scalability of the solution, while we also
present preliminary results showing that the k-NN classifier is able to achieve
promising results when compared to the linear classifier. All the experiments ran
on a virtualized Hadoop cluster with 20 worker nodes, each with 8 GB RAM and
2 core CPU (Intel(R) Xeon(R) running at 2.20 GHz).

5.1 Dataset Used

The dataset used for the experiments is the same as the one used in [10]. How-
ever, the original work extracted descriptors of web servers from the data. In our
3 The cell cSi query ball is defined by pivot pi and radius that equals to max d(pi, oj)

for all oj ∈ cSi determined in the preprocessing phase.



320 P. Čech et al.

Algorithm 2. ComputeNearestGroups
1: nearestGroups = array of size equals to pivot count
2: foreach pi in pivots do
3: distpi = ∅ //empty set of distances to all other pivots
4: foreach pj in pivots do //for each pivot combination
5: groupID = GetGroupID(pj) //group id where pj belongs
6: dist = d(pi, pj) //distance between pivots
7: add pair <groupId; dist> to distpi
8: end
9: sort distpi in ascending order by dist in pairs

10: nearestGroups = ∅
11: pivCount = 0 //number of considered nearest pivots - for approximation
12: foreach <groupId; dist> in distpi do
13: if not nearestGroups contains groupId then
14: add groupId to nearestGroups
15: endif
16: pivCount++
17: if pivCount > replicationThreshold then break
18: end
19: pivotID = GetPivotID(pi)
20: nearestGroups[pivotID] = nearestGroups
21: end
22: return nearestGroups

case, we used the data to extract descriptors of the communication snapshots,
as described in Sect. 2. This presents a complementary approach to modelling
behavior of servers, which relies on the context of the complete user’s commu-
nication to identify malicious activity in it. The dataset is composed of HTTPS
proxy logs covering 24 h of traffic in 500 corporate networks. In total, the dataset
contains 145 822 799 proxy log lines representing individual requests for estab-
lishing SSL tunnels for HTTPS communication. The dataset also contains labels
indicating for each SSL tunnel whether it was requested by a malicious binary
or not. These labels were used in our experiments for assessment of the classifi-
cation. A communication snapshot was considered malicious, if it contained at
least one request for SSL tunnel issued by a malicious binary. Otherwise, the
communication snapshot was considered benign. For more detailed information
about this data set, see [10].

From the dataset we totally extracted 8642368 unique descriptors of commu-
nication snapshots, out of which were 7591651 (5.3 GB) were used to construct
the set S (the training set for the linear classifier and the set of reference objects
for the k-NN classifier) and the remaining 1050717 (0.6 GB) descriptors were
used to construct the set Q (query objects).

5.2 Feature Extraction Experiment

The aim of the first experiment was to measure the gain of using the MapRe-
duce framework for building the descriptors of communication snapshots.



Feature Extraction and Malware Detection on Large HTTPS Data 321

Algorithm 3. kNNJoinApprox
1: map-setup
2: nearestGroups = ComputeNearestGroups()

3: map (k1, v1)
4: if k1.dataset = Q then //query object
5: groupID = GetGroupID(k1.cell)
6: output(groupID, (k1, v1))
7: else //database object
8: pivotID = GetPivotID(k1.pivot)
9: foreach groupID in nearestGroups[pivotID] do

10: output(groupID, (k1, v1))
11: end
12: endif

13: reduce (k2, v2)
14: parse objects from Q into DQ and from S into list L of Voronoi cells cSi
15: foreach q in DQ do
16: compute distance to pivots d(q, pi) and sort Voronoi cells cSi in L
17: kNN = ∅ //kNN result
18: r = MAX VALUE //query radius
19: foreach cSi in L do // for each Voronoi cell check its objects
20: if i > filterThreshold then break //approximation
21: if d(q, pi) > cSi .ri + r then continue //query-cell overlap check
22: foreach oS in cSi do
23: if |d(q, pi) − d(oS , pi)| > r then continue // lower bound filter
24: distance = d(q, oS)
25: if distance ≥ r then continue
26: update kNN by oS
27: r = d(q, kNN [k]) //radius = distance from q to k-th object oS
28: end
29: end
30: output(q, kNN)
31: end

We measured the computational time needed for building descriptors from total
amount of 1.28 GB of input data for different numbers of utilized mappers and
reducers. The process of building the descriptors was described in Sect. 2. For the
map phase, the input data were split into blocks and each block was processed
by one mapper. Therefore, the preset block size determined the number of used
mappers. The number of reducers was set directly. The amount of time needed
for building the descriptors depending on the number of mappers and reduc-
ers is shown in Fig. 2. The graph demonstrates that moving the creation of the
descriptors to the MapReduce environment is a promising way to go as even the
relatively low number of reducers can significantly contribute to the decrease of
time needed for the computation.



322 P. Čech et al.

Fig. 2. Time needed for building descriptors from 1.28 GB of input data depending on
the number of mappers and reducers used. The number of mappers was determined by
the block size.

5.3 Classification Experiment

The second experiment was focused on evaluation of the performance and accu-
racy of the k-NN classifier working on top of the descriptors. The implementa-
tion of the k-NN classifier was described in Sect. 3. This experiment compares
the computational time and the classification error (measured by the FP-50
measure) for different settings of the classifier’s parameters, which are:

1. ApproxThreshold—the number of considered nearest Voronoi cells for both
parameters replicationThreshold and filterThreshold.

2. Grouping—the method for balancing Groups.
3. K—the number of nearest neighbours used for assigning the confidence value

to a given query object.

The number of pivots used by the classifier was always fixed at the value 2000.
Furthermore, the FP-50 error of the k-NN classifier was compared to the FP-50
error of the linear classifier trained on the same data that were used as reference
objects for the k-NN classifier (see Sect. 2 for details about the implementation
of the linear classifier). Both classifiers were tested on the set of query objects
Q (containing 1050717 descriptors), while the set S was used as the reference
database (i.e., training data) for the classifiers. The results of this experiment are
summarized in Fig. 3 and Table 1. We can see that the k-NN classifier is able to
achieve superior accuracy (by means of the FP-50 error) over the linear classifier,
which was trained specifically to minimize the FP-50 error. The column Objects
of S presents the number of replicated objects, where for ApproxThreshold = 1
no data objects from S are replicated (the value corresponds to the number
of objects in S) and only one Voronoi cell is visited. This results in high FP-50
error. However, for growing value of ApproxThreshold the FP-50 error improves
drastically. Also the number of replications grows significantly and the number
of visited Voronoi cells increases. Note that the number of visited cells affects
the number of evaluated distance computations and computation time. We may
also observe, that for ApproxThreshold = 10, the Count grouping strategy ran
out of memory on our HW (indicated by dashes).



Feature Extraction and Malware Detection on Large HTTPS Data 323

Fig. 3. FP-50 error for different K and ApproxThreshold parameters.

Table 1. Results of the classification experiments on test data.

k-NN search

Grouping ApproxThreshold Time (s) Objects of S Dist. computations K FP-50 (%)

Size 1 1227 7591651 6999248972 20 6.855

2 1841 11094657 12055185114 20 0.746

3 2586 14145252 17351667470 20 0.731

5 4017 18799234 26952251002 20 0.668

7 7425 23106879 37155010644 20 0.548

10 14828 28992207 50691392745 20 0.551

Count 1 2333 7591651 6984716770 20 8.043

2 4417 11077234 12433727942 20 0.756

3 5554 14075694 17654051467 20 0.700

5 8165 18447445 26972030752 20 0.672

7 10972 22484608 36421226362 20 0.620

10 – – – – –

Linear classifier 6.434

6 Conclusion

In this paper, we have introduced descriptors representing communication snap-
shots of five-minute batches of HTTPS communication from individual users in
a network. We have proposed a MapReduce framework for extracting and clas-
sification of the descriptors. For the classification, we have adapted the related
work MapReduce approach for similarity joins to support approximate k-NN
searches. In the experiments, we demonstrate that the framework represents a
scalable solution for malware detection systems. In the future, we would like
to focus on more effective data replication and k-NN search strategies using
repetitive Voronoi partitioning.

Acknowledgments. This project was supported by the GAČR 15-08916S and GAUK
201515 grants.



324 P. Čech et al.

References

1. Cisco Annual Security Report 2016 (2016). http://www.cisco.com/c/en/us/
products/security/annual security report.html

2. Bohm, C., Kriegel, H.P.: A cost model and index architecture for the similarity
join. In: Proceedings of the 17th International Conference on Data Engineering,
pp. 411–420 (2001)

3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

4. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple
statistical fingerprinting. SIGCOMM Comput. Commun. Rev. 37, 5–16 (2007)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Tunnel hunter: detecting
application-layer tunnels with statistical fingerprinting. Comput. Netw. 53, 81–
97 (2009)

7. Kohout, J., Pevny, T.: Automatic discovery of web servers hosting similar applica-
tions. In: 2015 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM) (2015)

8. Kohout, J., Pevny, T.: Unsupervised detection of malware in persistent web traffic.
In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2015)

9. Lee, Y., Lee, Y.: Toward scalable internet traffic measurement and analysis with
hadoop. SIGCOMM Comput. Commun. Rev. 43(1), 5–13 (2012)

10. Lokoc, J., Kohout, J., Cech, P., Skopal, T., Pevný, T.: k-NN classification of mal-
ware in HTTPS traffic using the metric space approach. In: Chau, M., Wang, G.A.
(eds.) PAISI 2016. LNCS, vol. 9650, pp. 131–145. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-31863-9 10

11. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of k nearest neighbor
joins using MapReduce. Proc. VLDB Endow. 5(10), 1016–1027 (2012)

12. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

13. Pevny, T., Ker, A.D.: Towards dependable steganalysis. In: IS&T/SPIE Electronic
Imaging (2015)

14. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of
the 13th USENIX Conference on System Administration, LISA 1999, pp. 229–238.
USENIX Association, Berkeley (1999)

15. Wright, C., Monrose, F., Masson, G.M.: On inferring application protocol behaviors
in encrypted network traffic. J. Mach. Learn. Res. 7, 2745–2769 (2006)

16. Xia, C., Lu, H., Ooi, B.C., Hu, J.: Gorder: an efficient method for KNN join
processing. In: Proceedings of the Thirtieth International Conference on Very Large
Data Bases, VLDB 2004, vol. 30, pp. 756–767. VLDB Endowment (2004)

17. Yu, C., Cui, B., Wang, S., Su, J.: Efficient index-based KNN join processing for
high-dimensional data. Inf. Softw. Technol. 49(4), 332–344 (2007)

18. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Springer, New York (2005)

http://www.cisco.com/c/en/us/products/security/annual_security_report.html
http://www.cisco.com/c/en/us/products/security/annual_security_report.html
http://dx.doi.org/10.1007/978-3-319-31863-9_10


Similarity Search of Sparse Histograms
on GPU Architecture

Hasmik Osipyan1,2(B), Jakub Lokoč2, and Stéphane Marchand-Maillet3

1 National Polytechnic University of Armenia, Yerevan, Armenia
hasmik.osipyan.external@worldline.com

2 SIRET Research Group, Faculty of Mathematics and Physics,
Charles University in Prague, Prague, Czech Republic

lokoc@ksi.ms.mff.cuni.cz
3 University of Geneva, Geneva, Switzerland

stephane.marchand-maillet@unige.ch

Abstract. Searching for similar objects within large-scale database is a
hard problem due to the exponential increase of multimedia data. The
time required to find the nearest objects to the specific query in a high-
dimensional space has become a serious constraint of the searching algo-
rithms. One of the possible solution for this problem is utilization of
massively parallel platforms such as GPU architectures. This solution
becomes very sensitive for the applications working with sparse dataset.
The performance of the algorithm can be totally changed depending on
the different sparsity settings of the input data. In this paper, we study
four different approaches on the GPU architecture for finding the sim-
ilar histograms to the given queries. The performance and efficiency of
observed methods were studied on sparse dataset of half a million his-
tograms. We summarize our empirical results and point out the optimal
GPU strategy for sparse histograms with different sparsity settings.

Keywords: GPU · Similarity search · High-dimensional space · Sparse
dataset

1 Introduction

Similarity search in high-dimensional data [27] is a frequently used operation in
many areas like multimedia retrieval/exploration, machine learning, computer
vision etc. In order to perform similarity search, objects from a particular dataset
have to be transformed into a descriptor space U with a distance function assign-
ing a similarity score for two descriptors (smaller distance, higher similarity, and
vice versa). The descriptors are often modeled as vectors (histograms) in R

m

while the similarity function between vectors o, q ∈ R
m is usually modeled by

means of the Euclidean distance L2(o, q) =
√∑m

i=1(oi − qi)2. One of the most
popular similarity operations is the kNN query defined for k ∈ N

+, a query
object x ∈ R

m and a dataset D ⊂ R
m as: kNN(x) = {X ⊂ D; |X| = k ∧ ∀y ∈

X, z ∈ D − X : L2(x, y) ≤ L2(x, z)}. In some scenarios, the dataset D and a set
c© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, pp. 325–338, 2016.
DOI: 10.1007/978-3-319-46759-7 25



326 H. Osipyan et al.

of query objects Q are both available in advance and the task is to evaluate all
the kNN queries within a limited time period (e.g. online kNN classification).

For finding the nearest objects from D to the given query qi ∈ Q, the sequen-
tial search approach can be used. Here, the distances between the query qi and
all objects in D are computed. Then, the distances are sorted and the nearest
objects are taken. Whereas the sequential search has been outperformed by var-
ious indexing/hashing techniques on classical CPU architectures [8,27,30], novel
many core GPU architectures [24] cause renaissance of sequential searching as it
constitutes a trivial data parallel problem efficiently applicable on a commodity
hardware. Furthermore, brute force kNN search is more robust against high
dimensionality of vectors and high number of required nearest objects [16].

In this paper, we investigate brute force kNN search in a dataset consist-
ing of sparse vectors, focusing on various sparsity settings of the dataset. We
assume that the query objects are collected dynamically (e.g. online malware
detection in persistent web traffic [12]) and they have to be processed within a
short time interval, preventing from additional vector space transformation oper-
ations. Although additional optimizations considering compact representations
of sparse vectors may result in more efficient performance on a CPU platform
(see Algorithm 1 in Sect. 4), the same optimizations may suffer from novel GPU
designs and specifics. Therefore, we revisit brute force kNN sequential search in
sparse vector datasets and confront compact form representation with GPUs.

The rest of the paper is organized as follows. In Sect. 2, we review the litera-
ture related to similarity search algorithms on GPUs. Section 3 revises the GPU
architecture fundamentals. The analysis of the similarity search algorithm along
with the proposed methods are summarized in Sect. 4. In Sect. 5, we describe our
experimental setup and perform the empirical evaluation. Section 6 concludes the
paper.

2 Related Work

In the literature, many approaches were proposed to improve both exact and
approximate similarity search algorithms. For obtaining best speedup, some of
these methods even use multi-core CPUs or heterogeneous systems based on the
GPUs. In this section, we review the most recent parallel approaches of similarity
search algorithms as well as their individual steps for sparse dataset.

Matsumoto et al. [20] presented new exact kNN search algorithm based on
the partial heap sort. Implementing distance calculation on the GPU combined
with the fast heap sorting on the CPU, authors achieved better performance
compared to the existing methods on GPUs. In general, this performance is the
result of the new heap sort method based on the minimal overhead threshold
and compression that outperformed even the sorting algorithms on the GPU.

For approximate similarity search on GPUs Krulis et al. [13] showed good
performance for permutation-based indexing algorithm. This algorithm based on
the sequential indexing was presented in the work of Mohammed et al. [21]. In
this case, except distance calculation on GPU [14], the postprocessing steps of



Similarity Search of Sparse Histograms on GPU Architecture 327

obtained distances were implemented on GPUs as well. That includes selection
of top-k nearest objects and their sorting with bitonic sort algorithm.

Another approach of approximate similarity search on GPUs was suggested
by Teodoro et al. [28]. A new parallel framework, Hypercurves, was able to
answer approximate kNN queries with high speed. Based on the filter-stream
programming paradigm this method divided the dataset into partitions giving
the opportunity to access them independently in a parallel manner. Then kNN
run on the GPU. Several papers described different kNN approaches on the GPU
architectures [7,17,26]. However, the method in the paper [28] outperformed
previous approaches by using heaps for selection procedure of top-k points. This
dynamic partitioning along with kNN implementation reduced query responses
approximately 80× compared to sequential version.

In [16], authors suggested a parallel approach of brute-force kNN for multiple
queries. Here, distance matrix calculation was based on the standard dot product
calculation on GPUs. Each portion of the divided distance matrix was computed
by a block of threads. Then merge sort was implemented on the GPU to sort
each portion parallel and the final k points were obtained after merging.

Several works present GPU approaches for individual steps of similarity
search algorithms as a standalone problem. Chang et al. [3] obtained 40× faster
results on GPU hardware for pairwise distance calculation. The authors pre-
sented two different implementations. In the first approach, they used 1D grid
and 1D block and the threads were organized into blocks of 256. In this case,
shared memory was used to process one row of the data matrix and to calculate
its distances to the 256 rows corresponding to the threads in the block. In the
second approach, authors used 16 × 16 threads in each blocks where one thread
computed one entry in the output. This led to better performance than the
first implementation. Li et al. [15] suggested another way of Euclidean distance
calculation on GPUs which achieved approximately 15× speedup for a dataset
comprising million objects. Authors used map-reduce technique to split up the
final distance matrix into smaller ones. Then, the partial distance matrices were
calculated on the GPU and the final solution was obtained after merging.

All discussed works described different algorithms of similarity search on par-
allel architectures. However, none of them solved the performance issues arising
in the applications working with sparse datasets [9]. Different methods were
suggested to learn efficiently similarity measure of sparse dataset [4,18,29]. Nev-
ertheless, the main constraint of these methods remains the computation time.
A few papers discuss the suitability of GPUs for the applications of sparse data
model but all of them are concentrated on the sparse matrix multiplication.

In their continuous work, Neelima et al. [22,23] presented different sparse
matrix formats that increased application performance with respect to GPU. For
example, in one representation, they have defined two data structures for non-
empty elements, one for data itself and the second for column and row indexes.
For the row wise computation values, the better performance is achieved by
using the latency hiding mechanism of the GPU. Another approach of sparse
matrix vector multiplication was suggested by Ashari et al. [2]. In this approach,



328 H. Osipyan et al.

the non-empty elements of the rows were grouped into the constant number of
blocks, which helped to reduce the thread divergence. Liu et al. [19] provided
another storage format, Compressed Sparse Row 5 (CSR5), for sparse matrix.
This format is an extension of CSR (Compressed Sparse Row) including the
avoiding of structure dependent parameter tuning and the applicability for reg-
ular and irregular matrices. In the paper, for sparse matrix vector multiplication
[5] the standard segmented sum algorithm was redesigned by prefix-sum scan.

For sparse data processing, the performance of discussed methods strongly
depends on the sparsity of the input data. Hence, the implementation of applica-
tions for sparse dataset on heterogeneous systems needs the careful understand-
ing of underlying architecture and the usage of the right data format.

3 GPU Architecture

In this section, we present the basics of GPU architecture with particular empha-
sis on the aspects, which have great importance in the light of the studied prob-
lem. We will focus mainly on the NVIDIA Kepler [24] architecture as it was used
in our experiments.

A GPU card is a peripheral device connected to the host system via the PCI-
Express (PCIe) bus. It consists of several streaming multiprocessor units (SMPs),
which share only the main memory bus and the L2 cache. The GPUs employ
a parallel paradigm called data parallelism where the concurrency is achieved
by processing multiple data items simultaneously by the same routine (kernel).
Each thread executes the kernel code, but has a unique thread ID, which is used
to identify the portion of the work processed by the thread.

The threads are grouped together into blocks of the same size. Threads from
different blocks are not allowed to communicate with each other directly, since
it is not even guaranteed that any two blocks will be executed concurrently.
Furthermore, threads in a block are divided into subgroups (warps). The number
of threads in warps is usually fixed for each architecture (current NVIDIA GPUs
use 32 threads per warp).

Fig. 1. Host and GPU memory organization scheme



Similarity Search of Sparse Histograms on GPU Architecture 329

The other main difference from CPU architecture is the memory organization
which is depicted in Fig. 1. The host memory is the operational memory of
the computer, which cannot be accessed by GPU. At first input data needs to
be transferred from the host memory (RAM) to the GPU memory (VRAM)
via PCI-Express, which is rather slow (8 GB/s) when compared to the internal
memory buses. The global memory can be accessed from the GPU cores, and it
shows both high latency and limited bandwidth. The shared memory is shared
among threads within one group. It is rather small (tens of kB) but almost as
fast as the GPU registers. The shared memory can play the role of a program-
managed cache for the global memory, or it can be used to exchange intermediate
results by the threads in the block. The private memory belongs exclusively to a
single thread and corresponds to the GPU core registers. Its size is very limited;
therefore, it is suitable just for a few local variables. The L2 cache is shared by
all SMPs and transparently caches all access to global memory. The L1 cache is
private to each SMP and caches data from global memory selectively.

Another important issue on GPUs is the branching problems. When threads
in a warp choose different code branches (if or while statements), all branches
must be executed by all threads. Thread masks instruction execution according
to their local conditions to ensure correct results, but heavily branched code
does not perform well on GPUs.

Two programming techniques were proposed to work directly with GPU
hardware: Compute Unified Device Architecture (CUDA) developed by NVIDIA
[25] and Open Computing Language (OpenCL) developed by Khronos Group
[11]. Although for some applications OpenCL can be a good alternative to CUDA
[6], it is shown that CUDA is the best choice for high performance needs [10].
Hence, in our research, we will base on the CUDA technique.

4 Searching for Nearest Sparse Histograms

In our work, we consider sparse vectors that can be represented in a compact
form as an array of pairs [ID, value]. Given such compact representation, the
Euclidean distance evaluation can be implemented efficiently for CPU processing
considering only non-empty bins as presented in Algorithm1. In this case, the
final result is obtained from the sum of distances for the values with the same IDs
and the squares of remaining values. However, when considering GPU architec-
tures, the distance evaluation, consisting of many if−statements, may represent
a new performance bottleneck, despite lower memory requirements. Therefore,
we revisit kNN sequential search in sparse vector datasets and confront compact
form representation with GPU architectures. Note that the sequential search is
quite memory-intensive, so it has to be implemented in a cache-aware manner to
achieve optimal performance. For a sparse dataset, the performance of distance
calculation on GPU depends also on the internal sparsity settings of given data.
Hence, we need to consider the scope of individual parameters of used dataset,
so that we can optimize technical details of our implementation.

We examine four possible approaches - a conditional solution (CDS) based on
the if-statements, naive solution (NS) based on the data division, compressing



330 H. Osipyan et al.

Algorithm 1. Distance for compact sparse histograms qj ∈ Q and oi ∈ D

1: d = 0, kQ = 0, kD = 0
2: while kQ < qj .length ∧ kD < oi.length do
3: if qj [kQ].binId == oi[kD].binId then
4: d += (qj [kQ].value − oi[kD].value)2, kQ += 1, kD += 1
5: else if qj [kQ].binId < oi[kD].binId then
6: d += (qj [kQ].value)2, kQ += 1
7: else
8: d += (oi[kD].value)2, kD += 1
9: end if

10: end while
11: while kQ < qj .length do
12: d += (qj [kQ].value)2, kQ += 1
13: end while
14: while kD < oi.length do
15: d += (oi[kD].value)2, kD += 1
16: end while
17: return

√
(d)

solution (CS) based on the compressing of query and object data and finally,
column-based solution (CBS) inspired by inverted files. CDS method is the base-
line GPU implementation of Algorithm 1 where the performance suffers from
the branching problems. This method shows worse performance compared even
with the standard CPU-only solution. Hence, in the next subsections we will
only explain the NS, CS and CBS methods. As a baseline CPU solutions, we
consider standard solution (STS ) based on the if-statements and the inverted
files solution (IFS ) [1]. In IFS, the object database is represented by the list of
values with the same IDs, which accelerates the retrieving time of the values for
each query.

4.1 Naive Solution

To solve the issues of CDS, we have adjusted Algorithm 1 to better use the
architecture of GPU. We proposed to keep if-statements on the CPU during the
reading of the data and send already arranged data on the GPU.

Hence, we have two kernels on GPU. The first one is responsible for distance
calculation of two arrays containing only the bins with the same ID. The second
one calculates the Euclidean norm of the array, which contains the remaining
points from query and data object. Then, the results of our two kernels are
merged on the CPU side. Simple data division example is shown in Fig. 2.

This method is based on two dimensional thread organization. Shared mem-
ory (48 kB) was used to cache the query data points. The cached data are asso-
ciated with y thread grid dimension while the non-cached data are addressed by
x coordinates. Different streams are used for two kernels and the results of each
kernel are kept on the CPU while processing the next portion of the data. This
helps to avoid the synchronization between two kernels as the results are merged



Similarity Search of Sparse Histograms on GPU Architecture 331

Fig. 2. Data arrangement for NS

in the final stage. Each thread/block size was tested for different configurations
and the efficient configuration was selected in the final results.

Despite the avoidance of warp divergence in this approach, the division of
two kernels may reduce the performance. Depending on the number of bins with
the same IDs, the time required for transferring the data between CPU and
GPU can exceed the time spent on the operation itself, therefore, increasing
the total computation time. Theoretically, in the worst case, when there is no
bin with the same ID, the time complexity required for reading from file/data
arrangement is equal to O(kQ+kD) and another O(kQ+kD) for Euclidean norm
calculation, which leads to total O(2kQ+2kD). Here, kD and kQ are the number
of non-empty bins of object and query respectively. In the average case, when
the number of the bins with the same bin ID is p, the time complexity becomes
O(2kQ + kD − p)(O(kQ + 2kD − p) in case where kD > kQ).

4.2 Compressing Solution

To avoid data division, the query or database objects can be changed in the way
to fill out the missing bin IDs with 0 values. Hence, for each query/database
object the array with size of equal to the (last bin ID - first bin ID) value can
be created. Although this approach avoids if-statements in the final distance
calculations, it is very sensitive to sparse dataset itself. The higher the value
of the (last bin ID - first bin ID), the more memory is used for keeping all
corresponding 0 values. Considering the small amount of available memory on
GPU hardware, this approach limits the number of simultaneously processed
histograms, which affects on the final performance of the algorithm.

To make the approach less sensitive to the value of bin IDs, a new compressing
solution (CS ) was proposed. In the distance calculation, all if-statements were
avoided by compressing the query/object data based on the bin ID information.
Our simple data compressing example is shown in Fig. 3.



332 H. Osipyan et al.

Fig. 3. Compressing for CS

The bins, which ID exists at least in one histogram, are processed by adding
0 values in the corresponding empty bin. In the worst-case scenario, the memory
required for holding query/object data is equal to the number of non-empty
unrepeatable participants of both sides. Hence, the performance is also sensitive
to the internal structure of the dataset.

This approach could decrease the execution time compared to previously
described methods as more data points can be processed simultaneously. After
the compression procedure, the distance calculations become completely inde-
pendent and each distance is computed by the exact same number of arithmetical
operations on the GPU. The organization of work among the threads and thread
blocks remains the same as for NS method. Theoretically, in the worst-case,
time complexity for reading from file including data arrangement (compression)
is O(kQ + kD). For the distance calculation we have O(kQ + kD), which leads to
O(2kQ+2kD) total time complexity. In the average case, when the number of the
bins with the same bin ID is p, the time complexity becomes O(2kQ+2kD −2p).

4.3 Column-Based Solution

Given sparse query vectors, inverted files represent a popular efficient index in
document and multimedia retrieval systems. Inverted files are usually coupled
with the cosine similarity, hence only a fraction of the data files (corresponding
to non-zero query bins) has to be visited to correctly answer a query. Inspired by
the inverted files, sparse vectors can be organized in columns such that vector ci
represents i–th dimension from all database vectors (not in compact form). This
database organization can be efficiently used with the Euclidean distance if the
size of each database vector is precomputed or if all the vectors are normalized.

More specifically, let Iq, Io represent sets of non-zero bin IDs for vectors of
query |q| = 1 and data object |o| = 1. Then, the squared Euclidean distance can



Similarity Search of Sparse Histograms on GPU Architecture 333

be simply transformed to the following form:
∑

i∈{1...d}
|qi − oi|2 =

∑

i∈Iq∪Io

|qi − oi|2 =
∑

i∈Iq

|qi − oi|2 +
∑

i∈Io−Iq

o2i

=
∑

i∈Iq

|qi − oi|2 + 1 −
∑

i∈Iq

o2i = 1 +
∑

i∈Iq

(|qi − oi|2 − o2i )

To follow this form, before starting distance calculations the size of each data
object need to be computed (o2i ). Hence, in this approach, we have two kernels.
The first one is responsible for computing the size of vectors on GPU. The second
one computes the Euclidean distance (|qi−oi|2) after compressing the query and
object vectors. The main advantage of this approach compared with previous
ones is that the Euclidean distance calculation only requires values stored in few
bins with indexes from Iq. Thus, in CBS, a large portion of data objects can be
used for each iteration of GPU calculations. However, depending on the size of
the overlap Io ∩ Iq, there could be also a calculation overhead. Theoretically, in
the worst-case, the time complexity for vector size computation is O(kD + kQ),
for data compressing - O(kQ) and for 2 ∗ qi ∗ oi - O(p) when the number of bins
with the same ID is p. Hence, for each query and object the total time complexity
is O(2kQ + kD + p).

5 Experimental Results

In this section, we present the hardware and dataset used for the experiments
along with the results for different configurations.

5.1 Hardware Setup

Our experiments were conducted on a PC with an Intel Core i3-4010U CPU
clocked at 1.7 GHz, which have 4 physical cores and 4 GB of RAM. The desktop
PC is equipped with NVIDIA GeForce GT 740M (Kepler architecture [24]),
which have 2 SMPs comprising 192 cores each (384 cores total) and 4 GB of
global memory. The host used Windows 7 as operating system and CUDA 5.1
framework for the GPGPU computations. The experiments were timed using the
real-time clock of the operating system. Each experiment was conducted 10× and
the arithmetic average of the measured values is presented as the result.

The results of four approaches were measured for random generated sparse
datasets (475k objects, 400k queries) with different sparsity settings (query and
objects have different number of bins with the same IDs). Dataset is loaded from
the file where each line corresponds to one histogram. Each histogram is in the
compact form containing only non-empty bins. The bins are separated by the
comma and each bin includes the pair of ID and value (ID:V alue).



334 H. Osipyan et al.

Fig. 4. Performance for various block sizes (k = kQ = kD = 1000, p = k/2, Q =
{10k}, D = {475k})

5.2 Results

In Fig. 4, we summarize the results of our three algorithms for different block
sizes to find out the optimal GPU configuration. The CDS algorithm is not
presented in Fig. 4 as it is very slow (∼11×) compared even with the results of
the worse GPU configuration (4 × 256 block size).

Euclidean norm was calculated using CuBLAS library function
(cublasSnrm2), which automatically picks optimized block size. Let us note that
the y component of the block size represents the number of query points cached

Fig. 5. Performance for different number of bins with the same ID (k = kQ = kD =
1000, Q = {1}, D = {475k})



Similarity Search of Sparse Histograms on GPU Architecture 335

Fig. 6. Performance for different dimensions (kQ = 1000, Q = {1}, D = {475k})

in the shared memory. The optimal performance for each algorithm is achieved
when smaller amount of query points are cached (4 to 8) while larger number of
object points are processed by the thread block. The difference between perfor-
mances of various block sizes is due to the available amount of shared memory
on our GPU (48 kB). Therefore, the algorithms should perform better on a new
generations of GPUs, which are expected to have even more shared memory
per SMP. For the next experiments, the most efficient block size configuration
(256 × 4) was selected.

Figure 5 presents the measured times for different number of bins with the
same ID (p), when the number of non-empty bins in the query and data objects
are equal. NS and CS algorithms are very sensitive to the p while the CBS
algorithm is more stable. We explain the differences of results by the fact that
CBS algorithm is working only with the non-empty bins of the query. Conversely
NS and CS rearrange query and object data where the number p plays a key
role. For large p number, our NS and CS algorithms give better results as they
does not require vector size computation. Hence, CBS can outperform other
solutions if the vector sizes are precomputed.

In Fig. 6, we show the kernel times obtained for different numbers of non-
empty bins in objects (kD). The experiments were conducted for the number of
bins with the same ID equal to kQ/2 if kQ < kD (kD/2 if kD < kQ). For small
ratios kD 
 kQ, our three algorithms on GPU give approximately same results
outperforming the CPU baseline IFS method approximately 2−3×. For larger
ratios kD � kQ, CBS algorithm outperforms other GPU algorithms.

This explains by the fact that in our CBS method the objects are used
only for vector size computation and not all of them participate in distance
calculation. We show that IFS method is the best choice only for larger ratios
while CBS-GPU is the best for the other cases.



336 H. Osipyan et al.

Fig. 7. Performance summary for different algorithms (kD = kQ = 1000, p =
kQ/2, Q = {400k}, D = {475k})

To have final overview, in Fig. 7, we present the total measured times for
baseline CPU solutions (STS, IFS ) and four different GPU (CDS, NS, CS, CBS )
implementations for a huge query/object dataset. The non-empty bins of queries
(kQ) and objects (kD) are equal to 1000 and the number of same bin IDs p =
kQ/2 = 500. For all methods (CPU and GPU), we use the same postprocessing
steps (quick sort, top-k selection), which totally take less than 8min. Finally,
let us note that NS, CS and CBS algorithms on the GPU give approximately
7−9× faster results than CPU baseline STS method. CBS method itself provides
2−3× faster results than CPU baseline IFS method for huge kQ and 11−14×
faster results than GPU baseline CDS implementation.

6 Conclusions

In this work, we have analyzed the performance issues of similarity search for
the sparse dataset. In the high-dimensional spaces, the most time consuming
operation is the distance calculation. For sparse dataset, this operation becomes
more expensive due to the conditional structure. We have studied four hybrid
approaches on the GPU and find out the optimal/fastest solution for different
sparsity settings.

We showed that NS, CS and CBS approaches on the GPU outperformed
CDS-GPU and CPU-only STS baseline solutions significantly and showed a
promising potential for future scaling. Experiments showed that for huge query
dimensions our CBS method is faster even compared to the IFS-CPU method.
In addition, the internal structure of the sparse dataset played key role in the
final performance. Depending on the number of bins with the same ID, the
CBS solution can be a better choice than NS and CS solutions and vice versa.
We finally note that CBS solution is the best choice if the vector sizes are
precomputed.



Similarity Search of Sparse Histograms on GPU Architecture 337

As a future work, we are going to use frequently bin IDs for distance calcula-
tions where we will track the occurrence of each bin ID and will use it for later
queries. After thousands of queries, our learning system would be able to find
similar objects in a faster way as only frequently asked bins will be processed
on the GPU. In addition, we are going to implement IFS GPU method and use
it as a baseline solution. We are going also to discuss other potential distance
functions and to evaluate their affect on the solutions discussed.

Acknowledgments. This paper was supported by the Czech Science Foundation
project 15-08916S and by the project SVV-2016-260331 and in relation to the SNF
(Swiss National Foundation) project MAAYA (grant number 144238).

References

1. Amato, G., Savino, P.: Approximate similarity search in metric spaces using
inverted files. In: Proceedings of the 3rd International Conference on Scalable Infor-
mation Systems, pp. 28:1–28:10 (2008)

2. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P.: An efficient two-
dimensional blocking strategy for sparse matrix-vector multiplication on GPUs.
In: ICS 2014, Muenchen, Germany, 10–13 June 2014, pp. 273–282 (2014)

3. Chang, D., Jones, N.A., Li, D., Ouyang, M., Ragade, R.K.: Compute pairwise
Euclidean distances of data points with GPUs. In: Proceedings of the IASTED
International Symposium on CBB, Florida, USA, 16–18 November 2008, pp. 278–
283 (2008)

4. Cui, B., Zhao, J., Cong, G.: ISIS: a new approach for efficient similarity search
in sparse databases. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.)
DASFAA 2010. LNCS, vol. 5982, pp. 231–245. Springer, Heidelberg (2010)

5. Dotsenko, Y., Govindaraju, N.K., Sloan, P.J., Boyd, C., Manferdelli, J.: Fast scan
algorithms on graphics processors. In: Proceedings of the 22nd Annual ICS, Island
of Kos, Greece, 7–12 June 2008, pp. 205–213 (2008)

6. Fang, J., Varbanescu, A.L., Sips, H.J.: A comprehensive performance comparison
of CUDA and OpenCL. In: ICPP, Taipei, Taiwan, September 2011, pp. 216–225
(2011)

7. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU.
In: IEEE Conference on CVPR, Anchorage, USA, 23–28 June 2008, pp. 1–6 (2008)

8. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of the 25th International Conference on VLDB 1999, pp. 518–
529. Morgan Kaufmann Publishers Inc., San Francisco (1999)

9. Goumas, G.I., Kourtis, K., Anastopoulos, N., Karakasis, V., Koziris, N.: Under-
standing the performance of sparse matrix-vector multiplication. In: 16th Euromi-
cro International Conference on PDP, pp. 283–292 (2008)

10. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and
OpenCL. CoRR abs/1005.2581 (2010)

11. Khronos OpenCL Working Group: The OpenCL Specification, version 1.0.29, 8
December 2008

12. Kohout, J., Pevny, T.: Unsupervised detection of malware in persistent web traffic.
In: IEEE International Conference on ICASSP (2015)



338 H. Osipyan et al.

13. Krulǐs, M., Osipyan, H., Marchand-Maillet, S.: Optimizing Sorting and top-k selec-
tion steps in permutation based indexing on GPUs. In: Morzy, T., Valduriez,
P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol. 539, pp. 305–317. Springer,
Heidelberg (2015)

14. Krulis, M., Osipyan, H., Marchand-Maillet, S.: Permutation based indexing for
high dimensional data on GPU architectures. In: 13th International Workshop on
CBMI, Prague, Czech Republic, 10–12 June 2015, pp. 1–6 (2015)

15. Li, Q., Kecman, V., Salman, R.: A chunking method for Euclidean distance matrix
calculation on large dataset using multi-GPU. In: The Ninth ICMLA, Washington,
DC, USA, 12–14 December 2010, pp. 208–213 (2010)

16. Li, S., Amenta, N.: Brute-force k -nearest neighbors search on the GPU. In: Amato,
G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp.
259–270. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25087-8 25

17. Liang, S., Liu, Y., Wang, C., Jian, L.: A cuda-based parallel implementation of
k-nearest neighbor algorithm. In: Cyber-Enable Distributed Computing and
Knowledge Discovery, pp. 291–296 (2010)

18. Liu, K., Bellet, A., Sha, F.: Similarity learning for high-dimensional sparse data. In:
Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, AISTATS, San Diego, California, USA, 9–12 May 2015 (2015)

19. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM on ICS 2015, New-
port Beach/Irvine, CA, USA, 8–11 June 2015, pp. 339–350 (2015)

20. Matsumoto, T., Yiu, M.L.: Accelerating exact similarity search on CPU-GPU sys-
tems. In: ICDM, Atlantic City, NJ, USA, 14–17 November 2015, pp. 320–329 (2015)

21. Mohamed, H., Osipyan, H., Marchand-Maillet, S.: Multi-core (CPU and GPU) for
permutation-based indexing. In: Traina, A.J.M., Traina Jr., C., Cordeiro, R.L.F.
(eds.) SISAP 2014. LNCS, vol. 8821, pp. 277–288. Springer, Heidelberg (2014)

22. Neelima, B., Raghavendra, P.S.: CSPR: column only sparse matrix representation
for performance improvement on GPU architecture. In: Advances in Parallel Dis-
tributed Computing, Tirunelveli, India, 23–25 September 2011, pp. 581–595 (2011)

23. Neelima, B., Reddy, G.R.M., Raghavendra, P.S.: A GPU framework for sparse
matrix vector multiplication. In: IEEE 13th International Symposium on Paral-
lel and Distributed Computing, ISPDC, Marseille, France, June 2014, pp. 51–58
(2014)

24. Corporation, N.: Kepler GPU Architecture. http://www.nvidia.com/object/
nvidia-kepler.html

25. NVIDIA Corporation: NVIDIA CUDA C programming guide, version 3.2 (2010)
26. Pan, J., Manocha, D.: Fast GPU-based locality sensitive hashing for k-nearest

neighbor computation. In: 19th ACM SIGSPATIAL International Symposium on
Advances in Geographic Information Systems, Chicago, IL, USA, pp. 211–220
(2011)

27. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

28. Teodoro, G., Valle, E., Mariano, N., da Silva Torres, R., M Jr., W., Saltz, J.H.:
Approximate similarity search for online multimedia services on distributed CPU-
GPU platforms. VLDB J. 23(3), 427–448 (2014)

29. Wang, C., Wang, X.S.: Indexing very high-dimensional sparse and quasi-sparse
vectors for similarity searches. VLDB J. 9(4), 344–361 (2001)

30. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach, 1st edn. Springer, New York (2010)

http://dx.doi.org/10.1007/978-3-319-25087-8_25
http://www.nvidia.com/object/nvidia-kepler.html
http://www.nvidia.com/object/nvidia-kepler.html


Erratum to: Pruned Bi-directed K-nearest
Neighbor Graph for Proximity Search

Masajiro Iwasaki(&)

Yahoo Japan Corporation, Tokyo, Japan
miwasaki@yahoo-corp.jp

Erratum to:
Chapter 2 in: L. Amsaleg et al. (Eds.)
Similarity Search and Applications
DOI: 10.1007/978-3-319-46759-7_2

In an older version of the paper starting on p. 20 of the SISAP proceedings (LNCS
9939), Fig. 5(b) was represented incorrectly. This has been corrected.

The updated original online version for this Chapter can be found at
DOI: 10.1007/978-3-319-46759-7_2

© Springer International Publishing AG 2016
L. Amsaleg et al. (Eds.): SISAP 2016, LNCS 9939, p. E1, 2016.
DOI: 10.1007/978-3-319-46759-7_26

http://dx.doi.org/10.1007/978-3-319-46759-7_2
http://dx.doi.org/10.1007/978-3-319-46759-7_2


Author Index

Amato, Giuseppe 93, 196
Arafa, Mona 3

Benedetti, Fabio 164
Beneventano, Domenico 164
Bergamaschi, Sonia 164
Bergen, Karianne 301
Beroza, Gregory C. 301
Blažek, Adam 117
Bountouridis, Dimitrios 286
Brown, Kyle 181

Calders, Toon 3
Cardillo, Franco Alberto 51
Carmel, David 236
Čech, Přemysl 311
Connor, Richard 51, 65, 210
Cui, Cewei 34
Curtin, Ryan R. 221

Dang, Zhe 34

Elias, Petr 271

Falchi, Fabrizio 93, 196

Gardner, Andrew B. 221
Gennaro, Claudio 93, 196
Gouda, Karam 3
Guevara, Pedro 125

Hirata, Kouichi 259

Imamura, Yasunobu 259
Iwasaki, Masajiro 20

Keidar, Idit 236
Kohout, Jan 311
Komárek, Tomáš 311
Konaka, Fumito 151
Koops, Hendrik Vincent 286
Kraus, Naama 236

Kuboň, David 117
Kuboyama, Tetsuji 259

Lokoč, Jakub 117, 311, 325

Marchand-Maillet, Stéphane 79, 325
Maroušek, Jakub 311
Martínez, Fredy 125
Mic, Vladimir 250
Miura, Takao 151
Mohamed, Hisham 79

Nielsen, Frank 79, 109
Nock, Richard 109
Novak, David 250

Orenbach, Meni 236
Osipyan, Hasmik 325

Pevný, Tomáš 311

Rabitti, Fausto 51, 196
Reed, Jason 181
Rendón, Angelica 125
Roman-Rangel, Edgar 79
Rong, Chuitian 181

Sedmidubsky, Jan 271
Shinohara, Takeshi 259
Silva, Yasin N. 181
Skala, Matthew 137

Vadicamo, Lucia 51, 93
Veltkamp, Remco C. 286

Wadsworth, Adelbert 181
Wiering, Frans 286

Yoon, Clara 301

Zezula, Pavel 250, 271


	Preface
	Organization
	Keynotes
	Data-Dependent Hashing for Similarity Search
	Defying the Gravity of Learning Curves: Are More Samples Better for Nearest Neighbor Anomaly Detectors?
	Partial Similarity Match with Multi-Instance Multi-Label Learning
	Contents
	Graphs and Networks
	BFST_ED: A Novel Upper Bound Computation Framework for the Graph Edit Distance
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Graph Editing and Graph Edit Distance
	2.3 Graph Mapping

	3 A Novel Upper Bound Computation Framework
	3.1 Random and Degree-Based BFSTs Matching
	3.2 An Efficient BFSTs Matching Method
	3.3 Improving the Overestimation: BFST_ED_ALL

	4 Experimental Evaluation
	4.1 Comparison with Exact Methods
	4.2 Comparison with Approximation Methods

	5 Conclusion
	References

	Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search
	1 Introduction
	2 KNNG-Based Proximity Search
	2.1 Proximity Search Algorithm
	2.2 Problem Definition

	3 Our Approach
	3.1 Pruned Bi-directed K-nearest Neighbor Graph
	3.2 Pruned ANNG

	4 Experimental Results
	5 Conclusion
	References

	A Free Energy Foundation of Semantic Similarity in Automata and Languages
	1 Introduction
	2 A Free Energy Theory of Automata and Languages
	3 A Free-Energy Based Similarity Metric for Automata and Languages
	References

	Metric and Permutation-Based Indexing
	Supermetric Search with the Four-Point Property
	1 Introduction
	1.1 Metric Spaces and Finite Isometric Embeddings
	1.2 Supermetric Spaces: Isometric 4-Embedding in 23

	2 Tetrahedral Projection onto a Plane
	3 Indexes Based on Tetrahedral/Planar Projection
	4 Partitions of the 2D Plane
	4.1 Reference Point Separation
	4.2 Arbitrary Partitions
	4.3 Balance

	5 Experiments and Results
	5.1 Results

	6 Conclusions
	References

	Reference Point Hyperplane Trees
	1 Introduction and Background
	1.1 Notation and Basic Indexing Principles
	1.2 Partition Trees
	1.3 Balancing the Partition

	2 Balanced and Monotonous Partition Trees
	3 The Effect of Depth
	4 Balancing and Pivot Exclusion
	5 Reference Point Hyperplane Trees
	5.1 Permutation Trees
	5.2 Leanest Trees
	5.3 Leanest Trees with LAESA

	6 Analysis
	7 Conclusions and Further Work
	References

	Quantifying the Invariance and Robustness of Permutation-Based Indexing Schemes
	1 Introduction
	2 Related Work
	3 Formal Modeling of Permutation-Based Indexing Schemes
	3.1 Invariance
	3.2 Geometry
	3.3 Invariance and Robustness

	4 Experiments
	4.1 Original Versus Permutation-Based Distances
	4.2 Local Invariance Properties
	4.3 Real Data

	5 Conclusion
	References

	Deep Permutations: Deep Convolutional Neural Networks and Permutation-Based Indexing
	1 Introduction
	2 Related Work
	3 Background
	3.1 Permutation-Based Indexing
	3.2 Deep Features

	4 Permutation Representation for Deep Features
	5 Experiments
	5.1 Experimental Settings
	5.2 Evaluation in a Similarity Search Task
	5.3 Evaluation in a Multimedia Information Retrieval Task

	6 Conclusion
	References

	Multimedia
	Patch Matching with Polynomial Exponential Families and Projective Divergences
	1 Introduction and Prior Work
	2 Patch Matching with Polynomial Exponential Families
	2.1 Polynomial Exponential Families: Definition and Estimation
	2.2 Statistical Projective Divergences
	2.3 Fast PEF Estimations Using Summed Area Tables

	3 Experiments
	4 Concluding Remarks
	References

	Known-Item Search in Video Databases with Textual Queries
	1 Introduction
	2 Reference Known-Item Search Tool
	3 Textual Queries for Known-Item Search in Video
	3.1 External Image Search Engine
	3.2 ImageNet Labels

	4 User Study
	5 Conclusion
	References

	Combustion Quality Estimation in Carbonization Furnace Using Flame Similarity Measure
	1 Introduction
	2 Problem Statement
	3 Methodology
	4 Results
	5 Conclusions
	References

	Text and Document Similarity
	Bit-Vector Search Filtering with Application to a Kanji Dictionary
	1 Introduction
	1.1 About the Application
	1.2 Related Work
	1.3 Notation

	2 Bit-Vector Search with Enhancements
	2.1 Blocks with Bounds
	2.2 Sorting
	2.3 Clustering

	3 Experimental Results
	4 Discussion and Conclusions
	References

	Domain Graph for Sentence Similarity
	1 Introduction
	2 Word Similarity
	3 Domain Graph and Similarity
	4 Experiments
	4.1 Similarity Among Words
	4.2 Semantic Textual Similarity

	5 Conclusion
	References

	Context Semantic Analysis: A Knowledge-Based Technique for Computing Inter-document Similarity
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Inter-document Similarity
	3.2 Knowledge Base
	3.3 PageRank

	4 Context Semantic Analysis
	4.1 Contextual Graph Extraction
	4.2 Semantic Context Vectors
	4.3 CSA Similarity

	5 Evaluation
	5.1 Evaluation - Correlation with Human Judges
	5.2 Scalability Evaluation - Hierarchical Document Clustering

	6 Conclusion and Future Work
	References

	Comparisons and Benchmarks
	An Experimental Survey of MapReduce-Based Similarity Joins
	Abstract
	1 Introduction
	2 MapReduce-Based Similarity Join Algorithms
	2.1 Classification of the Algorithms
	2.2 Description of the Studied Similarity-Join Algorithms

	3 Experimental Comparison
	3.1 Comparison of Algorithms for Vector Data – Euclidean Distance
	3.2 Comparison of Algorithms for Variable-Length String Data – Edit Distance
	3.3 Comparison of Algorithms for Fixed-Length Strings – Hamming Distance
	3.4 Comparison of Algorithms for Set Data – Jaccard Distance

	4 Conclusions
	References

	YFCC100M-HNfc6: A Large-Scale Deep Features Benchmark for Similarity Search
	1 Introduction
	2 Related Work
	3 The YFCC100M-HNfc6 Dataset
	3.1 The HNfc6 Deep Features

	4 Statistical Analysis
	4.1 Online CBIR Systems Using YFCC100M-HNfc6

	5 Performance Evaluation of Similarity Search Techniques
	5.1 Performance Evaluation Example

	6 Conclusion
	References

	A Tale of Four Metrics
	1 Introduction
	2 Definitions
	3 Metric Properties
	4 Semantics
	5 Runtime Evaluation Costs
	6 Query Evaluation Costs
	7 Triangular Distance as an Approximation of JSD/SED
	8 Conclusions
	References

	Hashing Techniques
	Fast Approximate Furthest Neighbors with Data-Dependent Candidate Selection
	1 Introduction
	2 Notation and Formal Problem Description
	3 Related Work
	4 Furthest Neighbor Point Distribution
	5 The Algorithm: DrusillaSelect
	6 Guaranteed Approximation
	7 Experiments
	8 Conclusion
	References

	NearBucket-LSH: Efficient Similarity Search in P2P Networks
	1 Introduction
	2 Model and Problem Definition
	2.1 User Similarity Search in OSN
	2.2 P2P OSN and CAN

	3 Background and Previous Work
	3.1 Locality Sensitive Hashing
	3.2 Layered LSH

	4 Algorithm
	5 Theoretical Analysis
	5.1 Success Probability Formulation
	5.2 Success Probability Comparison

	6 Evaluation
	6.1 Search Quality Measures
	6.2 Methodology
	6.3 Search Quality Results

	7 Conclusions and Future Work
	References

	Speeding up Similarity Search by Sketches
	1 Introduction
	2 Bit-String Sketches for Candidate Set Reduction
	3 Evaluation
	3.1 Similarity Indexes
	3.2 Testing Data
	3.3 Results

	4 Conclusions
	References

	Fast Hilbert Sort Algorithm Without Using Hilbert Indices
	Abstract
	1 Introduction
	2 Outline of Proposed Algorithm
	3 Pseudo-code of Proposed Algorithm
	4 Experiments
	5 Conclusion
	References

	Time-Evolving Data
	Similarity Searching in Long Sequences of Motion Capture Data
	1 Introduction
	2 Related Work
	3 Similarity of Motion Data
	3.1 An Elastic Similarity Measure
	3.2 Properties of the Elastic Similarity Measure

	4 Subsequence Retrieval by A Multi-level Segmentation
	4.1 Problem Formalization
	4.2 Multi-level Segmentation
	4.3 Index Construction
	4.4 Retrieval Algorithm

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Analysis of Effectiveness
	5.3 Analysis of Efficiency

	6 Conclusions
	References

	Music Outlier Detection Using Multiple Sequence Alignment and Independent Ensembles
	1 Introduction
	2 Related Work in MIR
	3 Music Datasets
	4 Basic Outlier Detection
	5 Similarity Scoring Methods
	5.1 Pairwise Alignment
	5.2 Multiple Sequence Alignment Based Methods
	5.3 Inlier-Outlier Separation

	6 Extreme Value Analysis Algorithms
	6.1 Evaluation

	7 Independent Ensembles
	7.1 Diversity
	7.2 Diversity Experiment

	8 Independent Ensembles Evaluation
	9 Discussion and Conclusions
	References

	Scalable Similarity Search in Seismology: A New Approach to Large-Scale Earthquake Detection
	1 Introduction
	2 Our Approach: FAST Earthquake Detector
	2.1 Data
	2.2 Feature Extraction
	2.3 Similarity Search
	2.4 Haar Coefficient Selection

	3 Experiments
	3.1 Performance of Feature Extraction
	3.2 Detection Performance

	4 Discussion
	References

	Scalable Similarity Search
	Feature Extraction and Malware Detection on Large HTTPS Data Using MapReduce
	1 Introduction
	2 HTTPS Feature Extraction and Classification
	2.1 Communication Descriptors Based on Histograms
	2.2 Classification of Communication Descriptors

	3 Scalable Processing of HTTPS Data
	3.1 Feature Extraction
	3.2 Classification

	4 Approximate Similarity Join Using MapReduce
	4.1 Preprocessing Phase
	4.2 Similarity Join Evaluation Using MapReduce

	5 Experiments
	5.1 Dataset Used
	5.2 Feature Extraction Experiment
	5.3 Classification Experiment

	6 Conclusion
	References

	Similarity Search of Sparse Histograms on GPU Architecture
	1 Introduction
	2 Related Work
	3 GPU Architecture
	4 Searching for Nearest Sparse Histograms
	4.1 Naive Solution
	4.2 Compressing Solution
	4.3 Column-Based Solution

	5 Experimental Results
	5.1 Hardware Setup
	5.2 Results

	6 Conclusions
	References

	Erratum to: Pruned Bi-directed K-nearest Neighbor Graph for Proximity Search
	Erratum to: Chapter 2 in: L. Amsaleg et al. (Eds.) Similarity Search and Applications DOI: 10.1007/978-3-319-46759-7_2

	Author Index



