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Abstract. This paper is concerned with the interplay of the expres-
siveness of model and graph transformation languages, of assertion for-
malisms making correctness statements about transformations, and the
decidability of the resulting verification problems. We put a particular
focus on transformations arising in graph-based knowledge bases and
model-driven engineering. We then identify requirements that should be
satisfied by logics dedicated to reasoning about model transformations,
and investigate two promising instances which are decidable fragments
of first-order logic.
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1 Introduction

We tackle the problem of model transformations and their correctness, where
transformations are specified with the aid of rules and correctness properties are
stated as logical formulas. By model we intend a graph structure enriched with
logical formulas which label either nodes or edges. In our approach, a rule is
composed of a left-hand side which is a graph annotated with logical formulas,
and a right-hand side which is a sequence of actions. The shape of the graph and
the formulas yield an applicability condition of the rule at a matching subgraph
of the model; the right-hand side transforms this subgraph with actions such as
creation, deletion or cloning of nodes or insertion and deletion of arcs.

Rewrite systems come with a specification in the form of pre- and postcon-
ditions, and we aim at full deductive verification, ascertaining that any model
satisfying the precondition is transformed into a model satisfying the postcon-
dition.

The correctness of model transformations has attracted some attention in the
last years. One prominent approach is model checking, such as implemented by
the Groove tool [13]. The idea is to carry out a symbolic exploration of the state
space, starting from a given model, in order to find out whether certain invariants
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are maintained or certain states (i.e., model configurations) are reachable. The
Viatra tool has similar model checking capabilities [25] and in addition allows
the verification of elaborate well-formedness constraints imposed on models [23].
Well-formedness is within the realm of our approach (and amounts to checking
the consistency of a formula), but is not the primary goal of this paper which is
on the dynamics of models.

The Alloy analyser [17] uses bounded model checking for exploring rela-
tional designs and transformations (see for example [5] for an application in
graph transformations). Counter-examples are presented in graphical form. All
the aforementioned techniques use powerful SAT- or SMT-solvers, but do not
carry out a complete deductive verification. In our paper, we aim at full-fledged
verification of transformations.

General-purpose program verification with systems such as AutoProof [24]
and Dafny [18] becomes increasingly automated and thus interesting as push-
button technology for model transformations. In this context, fragments of first-
order logic have been proposed that are decidable and are useful for dealing with
pointer structures [16].

The question explored in this paper is: which requirements does a logic have
to fulfill in order to allow for such a verification technique to succeed?

Several different logics have been proposed over the years to tackle the prob-
lem of graph transformation verification. Among the most prominent approaches
figure nested conditions [15,20] that are explicitly created to describe graph prop-
erties. Another widely used logic in graph transformation verification is monadic
second-order logic [10,21] that allows to go beyond first-order definable proper-
ties. [4] introduces a logic closer to modal logic that allows to express both graph
properties and the transformations at the same time.

Nonetheless, these approaches are not flawless. They are all undecidable in
general and thus either cannot be used to prove correctness of graph transfor-
mations in an automated way or only work on limited classes of graphs. Starting
from the other side of the logical spectrum, one could consider using Descrip-
tion Logics to describe graph properties [1,6] that are decidable. Another choice
could be the use of modal logics as they are suited to reason about programs.
Obviously, this comes at a cost in term of expressiveness.

Separation logic [22] is another choice that is worth considering when dealing
with transformations of graphs. It has been developed especially to be able to
talk about pointers in conventional programming languages.

In this paper, we proceed in an orthogonal direction. Instead of introducing
a logic and advising users to tailor their problem so that it is expressible in our
logic and that its models comply with the restrictions so that the verification is
actually possible, we aim at providing a means for the users to decide whether
the logic they have used to represent their problem will actually allow them to
prove their transformations correct or whether they have to use several different
systems in parallel.

We are in particular interested in decidable logics, and so we instantiate our
general framework with two decidable logics: Two-variable logic with counting
(in Sect. 5.1) and logics with exists-forall-prefix (in Sect. 5.2). The fragment of
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effectively propositional logic [19], that is implemented by the Z3 prover [11]
and is closely related to the logical fragment we discuss in Sect. 5.2, has been
known for a long time to be decidable [8]. The use of two-variable logics [14]
for the verification of model transformation is relatively novel even though it
contains all Description Logics without role inclusions. Once more the goal is
not to advocate the use of any logic but to give the user the ability to decide if
the logics that are planned to be used satisfy some minimal conditions so that
the verification can be carried out effectively.

The rest of the paper is structured as follows: we start with an example,
in Sect. 2, motivating our model transformation approach, which we then make
more formal in Sect. 3. In Sect. 4, we propose general principles that a logic
has to fulfill to be usable for verifying model transformations. Then, in Sect. 5,
we illustrate our proposal through the two aforementioned logics. Concluding
remarks are provided in Sect. 6.

2 Motivating Example

In order to better illustrate our purpose, an example modelling a sample of the
information system of a hospital is introduced. Figure 1 is the UML model of
this sample.

Fig. 1. A sample UML model for the hospital example

We consider persons (shortened to PE). Some of them work in the hospital
and form the medical staff (MS) and others are patients (PA). The medical staff
is partitioned into physicians (PH) and nurses (NU). In addition, the hospital
is split into several departments (DE) or services. Documents pertaining to
patients are stored in folders (FO).
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Each member of the medical staff is assigned (denoted by works in) to a
department. The same way, each patient is hospitalized (hospitalized in) in one
of the departments. There may be several members of the medical staff that
may collaborate to treat (treats) a patient at a given time but one of them
is considered as the referent physician (referent phys), that is to say she is in
charge of the patient. Part of the medical staff can access the folder containing
the documents about (is about) a patient either to read (read access) or to write
(write access) information.

The fact is the hospital is bound to evolve: new patients arrive to be cured
and others leave, new medical staffers are hired and others move out. To illustrate
our purpose, four possible transformations are specified below.

Transformation 1. The first transformation is New Ph(ph1, d1). It creates a
new physician to which is associated an identifier ph1. This physician will be
working in the department identified with d1.

Transformation 2. The second transformation is New Pa(pa1, ph1, fo1). It
adds a new patient. The patient pa1 is created alongside his folder fo1. She is
then assigned ph1 as referent physician.

Transformation 3. The third transformation is Del Pa(pa1). It modifies data
so that patient pa1 is no more hospitalized.

Transformation 4. The last transformation is Del Ph(ph1, ph2). It deletes the
physician ph1 and forwards all his patients to the physician ph2. ph1 and ph2

have to work in the same department.

Despite the transformations, there are some properties of the hospital that
should not be altered. We give a list of six such expected properties in the
following.

Expected property 1. Each member of the medical staff is either a nurse or
a physician but not both.

Expected property 2. All patients and all medical staffers are persons.

Expected property 3. Each person that can write in a folder can also read it.

Expected property 4. Each person that can read a folder about a patient
treats that patient.

Expected property 5. Only medical staffers can treat persons and only
patients can be treated.

Expected property 6. Every patient has exactly one referent physician.
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3 A Model Transformation Framework

In this section, a framework used to describe models as well as their transfor-
mations is introduced. A model is considered hereafter as a graph, labeled by
logical formulae. The logic in which these formulae are expressed is considered
as a parameter, say L, of the proposed framework. Required features of such a
logic are discussed in the next section. Nevertheless, we assume in this section
that the logic L is endowed with a relation |= over its formulae. That is to say,
n |= B (resp. e |= B) should be understood as “formula B is satisfied at node
n (resp. edge e)”.

Definition 1 (Graph). Let L be a logic. A graph G is a tuple (N , E, C, R,
φN , φE, s, t) where N is a set of nodes, E is a set of edges, C is a set of (node)
formulae (of L) or concepts, R is the set of edge formulae (of L) or roles, φN

is the node labeling function, φN : N → P(C), φE is the edge labeling function,
φE : E → R, s is the source function s : E → N and t is the target function
t : E → N .

Labeling a graph with logical formulae is quite usual in Kripke structures. In
this paper, labeling formulae will play a role either in the transformation process
or in the generation of proof obligations for the properties intended to be proved.

Transformations of models are performed by means of graph rewrite systems.
These rewrite systems are extensions of those defined in [12] where graphs are
labeled with formulae. Thus, the left-hand sides of the rules are labeled graphs
as defined in Definition 1, whereas the right-hand sides are defined as sequences
of elementary actions. Elementary actions constitute a set of basic transforma-
tions used in graph transformation processes. They are given in the following
definition.

Definition 2 (Elementary action, action). An elementary action, say a,
has one of the following forms:

– a concept assignment c := i where i is a node and c is an atomic formula (a
unary predicate). It sets the valuation of c such that the only node labeled by
c is i.

– a concept addition c := c + i (resp. concept deletion c := c − i) where i is
a node and c is an atomic formula (a unary predicate). It adds the node i to
(resp. removes the node i from) the valuation of the formula c.

– a role addition r := r + (i, j) (resp. role deletion r := r − (i, j)) where i and j
are nodes and r is an atomic role (a binary predicate). It adds the pair (i, j)
to (resp. removes the pair (i, j) from) the valuation of the role r.

– a node addition new(i) (resp. node deletion delI(i)) where i is a new node
(resp. an existing node). It creates the node i. i has no incoming nor outgoing
edge and there is no atomic formula such that i belongs to its valuation (resp.
it deletes i and all its incoming and outgoing edges).

– a global incoming edge redirection i �in j where i and j are nodes. It redirects
all incoming edges of i towards j.
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– a global outgoing edge redirection i �out j where i and j are nodes. It rede-
fines the source of all outgoing edges of i as j.

– a node cloning clone(i, i′) where i is a node, i′ is a node that does not exist yet.
It creates a new node i′ that has the same labels as i and the same incoming
and outgoing edges1 (see Fig. 3).

The result of performing the elementary actionα on a graphG = (NG, EG, CG,RG,
φG

N , φG
E , sG, tG) produces the graph G′ = (NG′

, EG′
, CG′

,RG′
, φG′

N , φG′
E sG′

, tG
′
) as

defined in Fig. 2 and write G′ = G[α] or G ⇒α G′. An action, say α, is a sequence
of elementary actions of the form α = a1; a2; . . . ; an. The result of performing α
on a graph G is written G[α]. G[a;α] = (G[a])[α] and G[ε] = G, ε being the empty
sequence.

Definition 3 (Rule, Graph Rewrite Systems). A rule ρ[n] is a pair (lhs,α)
where n is a vector of concept variables. These variables are instantiated by
means of actual concepts when a rule is applied. lhs, called the left-hand side, is
a graph and α, called the right-hand side, is an action. Rules are usually written
ρ[n] : lhs → α. Concept variables ni in n may appear both in lhs and in α. A
graph rewrite system is a set of rules.

Notice that a rule ρ[n] : lhs → α may be considered as a generic rule which
yields an actual rewrite rule for every instance of the variables n. We write ρ[c]
to denote the rule obtained from ρ[n] : lhs → α by replacing every variable
concept ni appearing either in lhs or in α by the actual concept ci. Now let us
define when a rule can be applied to a graph.

Definition 4 (Match). Let ρ[n] : lhs → α be a rule and G be a graph. Let
ρ[c] be an instance of rule ρ[n] and inst be the instance function defined as
inst(ni) = ci for i ∈ {0, . . . , k}. We say that the instance ρ[c] matches the graph
G via the match h = (hN , hE), where hN : N lhs → NG and hE : Elhs → EG if
the following conditions hold:

1. ∀n ∈ N lhs,∀d ∈ φNlhs
(n), hN (n) |= inst(d)

2. ∀e ∈ Elhs,∀r ∈ φElhs
(e), hE(e) |= inst(r)2

3. ∀e ∈ Elhs, sG(hE(e)) = hN (slhs(e))
4. ∀e ∈ Elhs, tG(hE(e)) = hN (tlhs(e))

The third and the fourth conditions are classical and say that the source and
target functions and the match have to agree. The first condition says that for
every node n of the left-hand side, the node to which it is associated, hN (n), in
G has to satisfy every concept that n satisfies. This condition clearly expresses
additional negative and positive conditions which are added to the “structural”
pattern matching. The second condition expresses the same conditions on the
edges.
1 This action has the same effect as the one defined by means of sesquipushout [9].
2 inst(r) (resp. inst(d)) replaces in r (resp. in d) every occurrence of a concept variable

ni by its instance ci. The formal definition of the function inst depends on the
structure of the considered concepts and roles.
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α = c := i α = new(i)

NG′
= NG EG′

= EG CG′
= CG RG′

= RG NG′
= NG ∪ {i} i

φG′
N (n) =

{
φG

N (n) ∪ {c} n = i
φG

N (n)\{c} n �= i
φG′

E = φG
E ,

sG′
= sG tG′

= tG

EG′
= EG CG′

= CG RG′
= RG,

φG′
N (n) =

{ ∅ n = i
φG

N (n′) n �= i

α = c := c + i φG′
E = φG

E sG′
= sG tG′

= tG

NG′
= NG EG′

= EG CG′
= CG RG′

= RG α = del(i)

φG′
E = φG

E φG′
N (n) =

{
φG

N (n) ∪ {c} n = i
φG

N (n) n �= i
NG′

= NG\{i}, CG′
= CG, RG′

= RG,

EG′
= EG\{e|sG(e) = i ∨ tG(e) = i}

sG′
= sG tG′

= tG φG′
N φG

N NG′

α = c := c − i φG′
E φG

E EG′

NG′
= NG EG′

= EG CG′
= CG RG′

= RG sG′
sG EG′

φG′
E = φG

E φG′
N (n) =

{
φG

N (n)\{c} n = i
φG

N (n) n �= i
tG′

tG EG′

If α = i �in j then :

sG′
= sG tG′

= tG NG′
= NG, EG′

= EG, CG′
= CG,

If α = r := r + (i, j) then : RG′
= RG, φG′

N = φG
N φG′

E = φG
E

NG′
= NG, CG′

= CG, RG′
= RG,

EG′
= EG ∪ {e} e

sG′
= sG tG′

(e) =

{
j tG(e) = i
tG(e) tG(e) �= i

φG′
N = φG

N φG′
E (e′) =

{
r e′ = e
φG

E(e′) e′ �= e

α = i �out j

NG′
= NG, EG′

= EG, CG′
= CG,

sG′
(e′) =

{
i e′ = e
sG(e′) e′ �= e

,

tG′
(e′) =

{
j e′ = e
tG(e′) e′ �= e

RG′
= RG, φG′

N = φG
N , φG′

E = φG
E ,

φG′
N = φG

N , tG′
= tG,

sG′
(e) =

{
j sG(e) = i
sG(e) sG(e) �= i

α = r := r − (i, j) α = clone(i, i′)
NG′

= NG CG′
= CG RG′

= RG CG′
= CG RG′

= RG

EG′
= EG\ri,j , NG′

= NG ∪ {i′} EG′
= EG ∪ E′

i

ri,j = {e ∈ EG|sG(e) = i ∧ tG(e) = j ∧ φG
E(e) = r}

φG′
N = φG

N , φG′
E φG

E EG′

sG′
sG EG′

E′
i = Ein

i ∪ Eout
i ∪ Eloop

i

Ein
i = {ein| ∃e ∈ EG, tG(e) = i}

Eout
i = {eout| ∃e ∈ EG, sG(e) = i}

Eloop
i = {eloop|∃e ∈ EG, sG(e) = tG(e) = i}

tG′
tG EG′

φG′
N (n) =

{
φG

N (n) n �= i′

φG
N (i)

φG′
E (e) =

{
φG

E(e) e �∈ E′
i

φG
E(co(e))

tG′
(e) =

⎧⎨
⎩

tG(e) e �∈ E′
i

tG(co(e)) e ∈ Eout
i

i′ e ∈ Ein
i ∪ Eloop

i

sG′
(e) =

⎧⎨
⎩

sG(e) e �∈ E′
i

sG(co(e)) e ∈ Ein
i

i′ e ∈ Eout
i ∪ Eloop

i

e′ ∈ E′ co(e′) e
e′

Fig. 2. Summary of the effects of atomic actions
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i : C i : C i′ : C

Fig. 3. Example of node cloning. The action clone(i, i′) is performed.

Definition 5 (Rule application). We define the applicability condition as:
App(ρ[c], G) iff there exists a match h from the instance ρ[c] to G. A graph G
rewrites to graph G′ using a rule ρ[c] : lhs → α iff App(ρ[c], G) holds and G′ is
obtained from G by performing actions in h(α)3. Formally, G′ = G[h(α)]. We
write G →ρ[c] G′ or G →ρ[c],h G′.

Example 1. Let us consider again the example given in Sect. 2. We provide in
Fig. 4, for every transformation already presented informally, a corresponding
rewrite rule.

i : { 1 DE}1 1

j 1 PH PH j

MS MS j PE PE j

(j, i)

i : { 1 PH} j

1 1 1

k 1 PA PA k

PE PE k

l 1 FO FO l

(i, k)

(i, k)

(l, k)

(i, l)

(i, l)

(k, j)

i : { 1 PA} j (i, j)1

i : { 1 PH} j

k : { 2 PH}
1 2

(i, j);

i �in k; i �out k

Fig. 4. Transformation rules for the sample hospital model

3 h(α) is obtained from α by replacing every node name, n, of lhs by h(n).
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Very often, transforming models by means of rewrite rules necessitates the
use of the notion of strategies. Informally, a strategy acts as a recipe indicating
in which order the rules are applied.

Definition 6 (Strategy). Given a graph rewriting system R, a strategy is a
word of the following language defined by s:

s := ρ[c0, . . . , ck] (Rule application) s∗ (Closure)
s; s (Composition) s ⊕ s (Choice) where ρ[c0, . . . , ck] is an

instance of a rule in R.
We write G ⇒S G′ when G rewrites to G′ following the rules given by the

strategy S.

Informally, the strategy “ρ1; ρ2” means that rule ρ1 should be applied first,
followed by the application of rule ρ2. Notice that the strategies as defined above
allow one to define infinite derivations from a given graph G because we have
included the Kleene star construct s∗ as a constructor of strategies. Handling
the Kleene star does not introduce much more difficulties but requires the use
of the notion of invariants in the verification procedures, as it is the case for
while loops in imperative languages. It also requires us to extend the notion of
applicability from rules to strategies:
App(s∗, G) = true App(s0; s1, G) = App(s0, G)
App(s0 ⊕ s1, G) = App(s0, G) ∨ App(s1, G)

In Fig. 5, we provide the rules that specify how strategies are used to rewrite
a model (graph). Notice that a closure free strategy is always terminating while
a choice free strategy is always confluent.

Fig. 5. Strategy application rules

To end this section we define the notion of a specification which consists in
providing Pre and Post conditions that one may want to ensure for a given
strategy. More precisely, we propose the following definitions.

Definition 7 (Program, Specification). A program is a tuple (R,S) where
R is a graph rewrite system and S is a strategy. A specification SP is a tuple
(Pre, Post, P) where Pre and Post are formulae and P is a program.
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Notice that Pre and Post are supposed to be formulae of a given logic. We
do not specify such a logic in the above definition. We provide actual examples
in Sect. 5. A specification (Pre, Post, P) asserts that for all models G that
satisfies the formula Pre, all models G′ obtained after rewriting G according to
strategy S of program P = (R,S), (i.e. G ⇒S G′), G′ satisfies formula Post.

4 General Logical Framework

Our aim in this section is to discuss general requirements for a logic, say L, that
might be considered either to specify pre and post conditions of specifications
or to label models.

Let SP = (Pre, Post, P) be a specification. If SP is correct, then if a
model G satisfies Pre (G |= Pre) and G rewrites to model G′ via a strategy S
of a program P = (R,S) (G ⇒S G′), then G′ satisfies Post (G′ |= Post). In
addition to the general requirements for logics L, a Hoare-like calculus dedicated
to prove the correctness of specifications is also discussed in this section.

The first, and most obvious, requirements for a logic, L, is that it can express
the labeling of models with formulae which specify nodes and edges.

Requirement 1. Node formulae (concepts in C) should be adequate to the
notion of nodes. That is to say, nodes might be candidates to interpret node
formulae.

Requirement 2. Edge formulae (roles in R) should be adequate to the notion
of edges. That is to say, edges might be candidates to interpret edge formulae.

The conditions Pre and Post are properties of models. Thus, we have the
following requirement.

Requirement 3. Assertions Pre and Post should be adequate to the notion of
graphs (i.e. models). That is to say, models might be candidates to interpret Pre
and Post assertions.

The main ingredient of the verification calculus consists in computing weakest
preconditions of postconditions (see function wp defined in Fig. 6). The basic
cases of the computations of weakest precondition deal with elementary actions.
For that, to every elementary action is associated a so called substitution. Such
substitutions are the elementary building blocks allowing the verification of a
program.

Definition 8. Let a be an elementary action, as defined in Definition 2. The
substitution [a] associated to the elementary action a is the formula constructor
which associates, to each formula φ of L, the formula φ[a]. Given a model M,
φ[a] is defined such that M |= φ[a] ⇔ for all models M′,M ⇒a M′ implies
M′ |= φ.

A logic L′ is said to be closed under substitutions if for each action a, for
each formula φ of L′, φ[a] is also a formula of L′.
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wp(ρ[c], Q) = App(tag(ρ[c])) ⇒ wp(tag(αρ[c]), Q)
wp(s0; s1, Q) = wp(s0, wp(s1, Q)) wp(s∗) = invs

wp(s0 ⊕ s1, Q) = wp(s0, Q) ∧ wp(s1, Q)

Fig. 6. Weakest preconditions for strategies.

vc(ρ[c], Q) = vc(s0; s1, Q) = vc(s0, wp(s1, Q)) ∧ vc(s1, Q)
vc(s0 ⊕ s1, Q) = vc(s0, Q) ∧ vc(s1, Q)
vc(s∗, Q) = (invs ∧ App(s) ⇒ wp(s, invs)) ∧ (invs ∧ ¬App(s) ⇒ Q)

∧vc(s, invs) ∧ vc(s1, Q)

Fig. 7. Verification conditions for strategies.

Weakest preconditions for actions come in two flavors: for elementary actions
a, we have wp(a,Q) = Q[a], and for composite actions, wp(a;α, Q) =
wp(a, wp(α, Q)). On this basis, weakest preconditions for strategies can be
easily computed as depicted in Fig. 6. These preconditions follow the principles
of Hoare Logic calculi except for the one dedicated to rules, viz. wp(ρ[c], Q). This
latter corresponds essentially to an “if-then” structure in imperative programs.
Put it simply, it checks three properties that are required for the application of a
rule to be correct. Up to now, App depended on G. However, correctness proofs
should hold for all possible models (graphs). That is way we modify App to be
dependent only on the rules and strategies. First, App is a function which applies
to a rule ρ[c] and returns a formula of L stating that there exists a match from the
left-hand side of ρ[c] to a potential graph. If the formula App(ρ[c]) is satisfied, the
rule can be performed. Second, whenever the formula App(ρ[c]) ⇒ wp(αρ[c], Q)
is valid, then if there exists a match, the conditions, viz. wp(αρ[c], Q), which
ensure the postcondition to be satisfied, are satisfied too. This corresponds to
the usual weakest-precondition in Hoare Logic.

There is one additional issue which deserves to be handled carefully. Actually,
one same rule can be fired several times during the execution of a program. It is
thus mandatory to keep track of where each occurence of the rule is applied. To
be more precise, App introduces a condition that uses the names of the nodes in
the left-hand sides of rules. As these names uniquely define nodes and edges, if a
same rule were used several times with the same names of nodes and edges, the
rule would be applied to the exact same nodes and edges. This issue is solved by
renaming the individuals (i.e., nodes and edges) each time the rule is fired. This
is done through the function tag. That is why wp(ρ[c], Q) = App(tag(ρ[c])) ⇒
wp(tag(αρ[c]), Q).

Finally, the closure of a strategy, s∗, which is close to while structures in
imperative programs, needs the definition of an invariant, invs, and the intro-
duction of verification conditions, vc(s∗, Q), shown in Fig. 7. Basically, the idea is
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that a closure is considered as a subprogram whose correctness is proven on the
side. The verification condition checks that the specification of this subprogram
whose pre and post conditions are the invariant.

From the discussion above, we come to a new requirement about the logic L,
regarding the use of substitutions within weakest preconditions.

Requirement 4. L must be closed under substitutions.

If this last requirement is not satisfied, the computation of weakest precondi-
tions may lead to formulas not expressible in L. In this case, the verification of
the correctness of specifications would need new proof procedures different from
those of L.

In addition, App(ρ[c]) must be definable in L. Obviously, this depends mainly
on the rules one wants to use. It is thus possible, for a given problem, to use
one logic that may not be powerful enough for other problems. Nonetheless,
one of the requirements this entails on L is that it must allow some kind of
existential quantification so that the graph can be traversed to look for a match.
Obviously, the ∃-quantifier of first-order logic is a prime candidate but some
other mechanisms like individual assertions a : C in Description Logics [3] or the
@ operator of hybrid logic [2] can be used.

Requirement 5. L must be able to express App(ρ[c]) for all rules ρ[c] of the
graph rewrite system under study.

Theorem 1 (Soundness). Let L be a logic satisfying requirements 1 to 5.
Let SP = (Pre, Post, (R,S)) be a specification. If (Pre ⇒ wp(S, Post)) ∧
vc(S, Post) is valid in L, then for all graphs G, G′ such that G ⇒S G′, G |= Pre
implies G′ |= Post.

Proof (Sketch). The proof of this theorem is quite straightforward. One just has
to check for every atomic strategy s that if Pre ⇒ wp(s, Post) and G |= Pre
then G′ |= Post. We give the proof for the rule application which is the most
complex.

Assume S = ρ[c] where ρ[c] is a rule of R. Let us assume Pre ⇒ wp(ρ[c], Post)
is valid. Because wp(ρ[c], Post) = App(tag(ρ[c])) ⇒ wp(tag(αρ[c]), Post), also
(Pre ∧ App(tag(ρ[c]))) ⇒ wp(tag(αρ[c]), Post) is valid. Let G be a graph. If G |=
App(ρ[c]), there is a match h. Let G′ be such that G ⇒ρ[c],h G′. By definition of the
substitutions,G ⇒ρ[c],h G′ andG |= wp(tag(αρ[c]), Post) impliesG′ |= Post.On
the other hand, if G�|= App(ρ[c]), there does not exist any G′ such that G ⇒ρ[c] G′

and thus the program fails. Thus G |= Pre implies that G′ |= Post �.

After performing the calculus, one gets a formula vc(S, Post) ∧ (Pre ⇒
wp(S, Post)). Obviously, in order to be able to decide whether or not a pro-
gram is correct, one has to prove that the obtained formula is valid. Hence the
following requirement.

Requirement 6. The validity problem for L is decidable.

Nevertheless, this last requirement could be optional if interactive theorem
provers are preferred.
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5 Instances of the Example

Hereafter, we illustrate the general logical framework proposed in the previous
section through the Hospital example by providing logics which fulfill the six
proposed requirements. In [7] another instance is proposed using an extension of
propositional dynamic logic is proposed.

First, let us observe that all of the invariants that we defined can be expressed
in first-order logic (Formulae on the right).

Property 1:
MS = NU PH � ∀x. MS(x) ⇔ (NU(x) ∧ ¬ PH(x))∨

(¬NU(x)∧ PH(x))
Property 2:
PA ∪ MS ⊆ PE � ∀x.PA(x)∨MS(x) ⇒ PE(x)
Property 3:
write access ⊆ read access � ∀x, y.write access(x, y) ⇒

read access(x, y)
Property 4:
read access ◦ is about⊆ treats � ∀x, y, z.read access(x, y)∧is about(y, z)

⇒ treats(x, z)
Property 5:
treats ⊆ MS× PA � ∀x, y.treats(x, y) ⇒ MS(x)∧ PA(y)
Property 6:
PA⇒ ∃=1 referent phys � ∀x.PA(x) ⇒ (∃y. referent phys(x, y)∧

∀z.referent phys(x, z) ⇒ z = y)
First-order logic is not decidable though, and thus one may want to use a

different logic in order to be able to decide the correctness of the considered
properties. In the following, we use the 2-variable fragment of first-order logic
with counting (C2) [14] and ∃∗∀∗ , the fragment of first-order logic whose formula
in prenex form are of the form ∃i0, . . . , ik.∀j0, . . . , jl.A(i0, . . . , ik, j0, . . . , jl).

In order to be able to distinguish between nodes of a model (active
nodes) and those which are not part of a given model, we add to the sig-
nature of the logic a unary predicate Active which ranges over nodes and
edges. Creating a new node becomes adding it to the Active nodes. This also
requires to add that ∀x, y.¬Active(x) ⇒ (

∧
ψ an atomic unary predicate ¬ψ(x) ∧∧

r an atomic binary predicate ¬r(x, y) ∧ ¬r(y, x)). I.e., non active nodes are not
assumed to satisfy any property.

Let SPH be the specification (Pre, Post,P) associated to the hospital exam-
ple. Assume the strategy is S = New Ph[nph,neonat];Del Pa[opa] while the
considered rewrite system R is the one from Fig. 4. This program P creates a
new physician nph and lets the patient opa leave the hospital. Let inv denote
the conjunction of the expected properties. Let the precondition Pre be inv ∧
∃x.(neonat(x)∧DE(x))∧∃x.(opa(x)∧PA(x))∧∀x.¬nph(x). Let the postcondi-
tion Post be inv∧∃x, y.(nph(x)∧PH(x)∧works in(x, y)∧neonat(y)∧DE(y)).
Proving the correctness of SPH amounts to proving that Pre ⇒ wp(S, Post) is
valid. This is a formula in first-order logic. In the following two subsections, this
specification is proven to be correct using two different decidable logics that are
able to express parts of Pre and Post.



328 J.H. Brenas et al.

5.1 Two-Variable Logic with Counting : C2

C2 is the two-variable fragment of first-order logic with counting. Its formulas
are those of first-order logic than can be expressed with only two variables and
using the counting quantifier constructor ∃<nx.P expressing that there are less
than n values x that satisfy P . In our case, this constructor will mostly be used
to express that there exist less than n different r-successors of a given node.

Definition 9. Let U be a set of unary predicates, u ∈ U , B be a set of binary
predicates, b ∈ B, n an integer. A formula φ of C2 is defined as:
φ := � | φ ∧ φ | ¬φ | ∃<nx.φx | ∃<ny.φy

φx := φ | u(x) | b(x, x) | φx ∧ φx | ¬φx | ∃<nx.φx | ∃<ny.φx,y

φy := φ | u(y) | b(y, y) | φy ∧ φy | ¬φy | ∃<ny.φy | ∃<nx.φx,y

φx,y := φx | φy | b(x, y) | b(y, x) | φx,y ∧ φx,y | ¬φx,y | ∃<nx.φx,y | ∃<ny.φx,y

As usual, ⊥ means ¬�, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ,
∃≥nv.φ means ¬∃<nv.φ, ∃v.φ means ∃≥1v.φ, ∀v.φ means ¬∃v.¬φ.

Definition 10. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We define the val-
uation of formulae as follows:
�I = true
(φ ∧ ψ)I = φI and ψI

(¬φ)I = not φI

(∃<nx.φx)I =

⎧
⎨

⎩

true if there does not exist n nodes m1, . . . ,mn,
mi �= mj for 0 < i < j ≤ n such that mi |= φx

false otherwise
(∃<ny.φy)I is defined the same as (∃<nx.φx)I but replacing x’s with y’s
Let us now focus on m |= φx:
m |= φ iff φI

m |= u(x) iff u ∈ φN (m)
m |= b(x, x) iff there exists e ∈ E.s(e) = m, t(e) = m and b = φE(e)
m |= (φx ∧ ψx) iff m |= φx and m |= ψx

m |= ¬φx iff m � |= φx

m |= ∃<nx.φx iff there does not exist n nodes m′
1, . . . ,m

′
n,

mi �= mj for 0 < i < j ≤ n such that m′
i |= φx

m |= ∃<ny.φx,y iff there does not exist n nodes w1, . . . , wn,
wi �= wj for 0 < i < j ≤ n such that (m,wi) |= φx,y

m |= φy is defined the same way but swapping the x’s and the y’s. Let us
now focus on (m,m′) |= φx,y:

(m, m′) |= φx iff m |= φx

(m, m′) |= φy iff m′ |= φy

(m, m′) |= b(x, y) iff there exists e ∈ E.s(e) = m, t(e) = m′ and b = φE(e)
(m, m′) |= b(y, x) iff there exists e ∈ E.s(e) = m′, t(e) = m and b = φE(e)
(m, m′) |= (φx,y ∧ ψx,y) iff (m, m′) |= φx,y and (m, m′) |= ψx,y

(m, m′) |= ¬φx,y iff (m, m′) � |= φx,y

(m, m′) |= ∃<nx.φx,y iff there does not exist n nodes m1, . . . , mn,mi �= mj

for all 0 < i < j ≤ n such that (mi, m
′) |= φx,y

(m, m′) |= ∃<ny.φx,y iff there does not exist n nodes m′
1, . . . , m′

n, m′
i �= m′

j

for all 0 < i < j ≤ n such that (m, m′
i) |= φx,y
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Theorem 2 ([14]). The validity problem of C2 is decidable.

Let us now check the six requirements of the previous section. C2 contains
unary predicates that are interpreted on nodes and binary predicates that are
interpreted on edges. Pre and Post are interpreted on graphs.

Theorem 3. C2 is closed under substitutions.

The proof relies on the fact that first-order logic is closed under substitution.
The proof provides a system of rewrite rules that removes substitutions. As it
does not introduce new variables, it also works for C2. We give three example
rules to understand better how does it work:

– (φ ∧ ψ)[σ] � φ[σ] ∧ ψ[σ] as if φ ∧ ψ is satisfied after performing σ, so must be
φ and ψ and the other way round.

– r(x, y)[r := r + (i, j)] � r(x, y) ∨ (i(x) ∧ j(y)) as rI′
is rI ∪ (iI , jI).

– r(x, y)[clone(i, i′)] � r(x, y) ∨ (i′(x) ∧ ∃x.(i(x) ∧ r(x, y))) ∨ (i′(y) ∧ ∃y.(i(y) ∧
r(x, y))) ∨ (i′(x) ∧ i′(y) ∧ ∃x.(i(x) ∧ r(x, x))).

Example 2. C2 can express all the predicates App(ρ) for the rules of the consid-
ered example (see Fig. 4):

– App(New Ph[ph1,d1]) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x) ∧ ph1(x))
– App(New Pa[pa1,ph1, fo1]) = ∃x, y.(ph1(x)∧PH(x) ∧ works in(x, y)) ∧

∃x.(¬Active(x) ∧ pa1(x)) ∧ ∃x.(¬Active(x) ∧ fo1(x))
– App(Del Pa[pa1]) = ∃x, y.(pa1(x)∧PA(x) ∧ hospitalized in(x, y))
– App(Del Ph[ph1,ph2]) = ∃x, y.(ph1(x)∧PH(x)∧works in(x, y)∧∃x.(ph2(x)∧

PH(x) ∧ works in(x, y)))

One should also be interested in the ability of the logic to express the prop-
erties to be verified.

Example 3. C2 is not able to express Property 4: read access◦ is about⊆ treatsas
one would need to keep track of three variables at a time. On the other hand,
Property 6: ∀x.PA(x) ⇒ ∃=1referent phys.� is a formula of C2.

5.2 Exist-Forall-Prefix

The logic ∃∗∀∗ is the fragment of first-order logic such that its prefix in prenex
normal form is composed of a sequence of existential quantifiers and then a
sequence of universal quantifiers.

Definition 11. Let U be a set of unary predicates, u ∈ U and B a set of binary
predicates, b ∈ B. Let x1, . . . , xk, a1, . . . , al be variables and v, w denote two of
them. A formula φ of ∃∗∀∗ is defined as:
φ := ∃x0, . . . , xk,∀a0, . . . , al.ψ(x1, . . . , xk, a1, . . . , al)
ψ := � | ψ ∧ ψ | ¬φ | u(v) | b(v, w)

As usual, ⊥ means ¬�, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ.
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Definition 12. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We defined the
valuation of formulae: (∃x1, . . . , xk,∀a1, . . . , al.ψ(x0, . . . , xk, a0, . . . , al))I = N
iff there exist k nodes (x1, . . . , xk) such that for all choices of l nodes (a1, . . . , al),
(x1, . . . , xk, a1, . . . , al) |= ψ. Let us define (x1, . . . , xk, a1, . . . , al) |= ψ:
(x1, . . . , al) |= �
(x1, . . . , al) |= (φ ∧ ψ) iff (x1, . . . , al) |= φ and (x1, . . . , al) |= ψ
(x1, . . . , al) |= (¬φ) iff (x1, . . . , al) � |= φ
(x1, . . . , al) |= u(v) iff u ∈ φN (v)
(x1, . . . , al) |= b(v, w) iff there exists e ∈ E. s(e) = v, t(e) = w and b = φE(e)

Theorem 4. The validity problem of ∃∗∀∗ is decidable.

This is a well-known result ([8], Chap. 6).
The six requirements of the previous section clearly hold for this logic. ∃∗∀∗

contains unary predicates that are interpreted on nodes and binary predicates
that are interpreted on edges.

Theorem 5. ∃∗∀∗ is closed under substitutions.

The proof is exactly the same as the one for C2 and FO. One needs to be
careful though as additional quantifiers are introduced. They are always of the
form ∃x.(i(x) ∧ c(x)) or ∃x.(i(x) ∧ r(x, y)) that can be rewritten as ∀x.(¬i(x) ∨
c(x)) or ∀x.(¬i(x)∨r(x, y)). Thus one can consider that only universal quantifiers
are introduced.

Example 4. ∃∗∀∗ can express all the predicates App(ρ) for the rules of the con-
sidered example (see Fig. 4):

– App(New Ph[ph1,d1]) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x) ∧ ph1(x))
– App(New Pa[pa1,ph1, fo1]) = ∃x, y.(ph1(x)∧PH(x) ∧ works in(x, y)) ∧

∃x.(¬Active(x) ∧ pa1(x)) ∧ ∃x.(¬Active(x) ∧ fo1(x))
– App(Del Pa[pa1]) = ∃x, y.(pa1(x)∧PA(x) ∧ hospitalized in(x, y))
– App(Del Ph[ph1,ph2]) = ∃x, y, z.(ph1(x)∧PH(x) ∧ works in(x, y) ∧ ph2(z)∧

PH(z) ∧ works in(z, y))

It is worth noting that the definition of App(ρ) introduces new existential
quantifiers as it checks for the existence of a match. This could seem to lead to a
problem as the formula no longer is in ∃∗∀∗. Actually, as the existentially quan-
tified variables do not depend on the previously defined universally quantified
variables, it is possible to move them at the beginning thus yielding a formula
in ∃∗∀∗.

Once more one has to check whether all properties can be expressed in the
chosen logic.

Example 5. ∃∗∀∗ is not able to express Property 6: PA⇒ ∃=1 referent physas
it needs an existential quantifier after the universal ones to express the exis-
tence of an edge labeled with referent phys. On the other hand, Property 4:
∀x, y, z.read access(x, y) ∧ is about(y, z) ⇒ treats(x, z) is part of ∃∗∀∗.
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6 Conclusions

We considered the verification problem of model/graph transformations. We
introduced a notion of specification consisting of pre- and postcondition which
specify the correctness of the run of rewrite rules performed according to a given
rewrite strategy.

Deciding the correctness of a given specification is not an easy and decidable
task in general. We proposed some criteria which may be helpful to choose
the most appropriate logics one can use to express proof obligations related to
the correctness problem. We illustrated our proposal by considering a running
example for which two decidable logics have been used to prove its correctness.

Even in the relatively simple considered example, none of the investigated
logics is expressive enough to be able to deal with all the discussed properties.
This is a deliberate choice. Our point is that one has to select for each problem
one or several logics that are relevant and we proposed some criteria that help
to select such logics.
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July 2014, pp. 966–973 (2014)

2. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation
and complexity. J. Symb. Log. 66(3), 977–1010 (2001)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

4. Balbiani, P., Echahed, R., Herzig, A.: A dynamic logic for termgraph rewriting. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
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