
Specifying Properties of Dynamic Architectures
Using Configuration Traces

Diego Marmsoler(B) and Mario Gleirscher

Technische Universität München, Munich, Germany
{diego.marmsoler,mario.gleirscher}@tum.de

Abstract. The architecture of a system describes the system’s overall
organization into components and connections between those compo-
nents. With the emergence of mobile computing, dynamic architectures
became increasingly important. In such architectures, components may
appear or disappear, and connections may change over time.

Despite the growing importance of dynamic architectures, the spec-
ification of properties for those architectures remains a challenge. To
address this problem, we introduce the notion of configuration traces to
model properties of dynamic architectures. Then, we investigate these
properties to identify different types thereof. We show completeness and
consistency of these types, i.e., we show that (almost) every property
can be separated into these types and that a property of one type does
not impact properties of other types.

Configuration traces can be used to specify general properties of
dynamic architectures and the separation into different types provides
a systematic way for their specification. To evaluate our approach we
apply it to the specification and verification of the Blackboard pattern
in Isabelle/HOL.

1 Introduction

A systems architecture provides a set of components and connections between
their ports. With the emergence of mobile computing, dynamic architectures
became more and more important [5,10,20]. In such architectures, components
can appear and disappear and connections can change, both over time.

Despite the increasing importance of dynamic architectures some questions
regarding their specification still remain:

– How can properties of dynamic architectures be specified in general?
– How can those properties be separated into different types?

A property of dynamic architectures characterizes executions of such architec-
tures. Consider, for example, the following property for a publisher-subscriber [8]
system: Whenever a component p of type Publisher provides a message for
which a Subscriber component s was subscribed, s is connected to p. Another
example describes a property of a Blackboard architecture [8]: Whenever a com-
ponent of type BlackBoard provides a message containing a problem to be solved,
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 235–254, 2016.
DOI: 10.1007/978-3-319-46750-4 14

236 D. Marmsoler and M. Gleirscher

a component of type KnowledgeSource , able to solve this problem, is eventually
activated. Usually, such properties can be separated into different types, such
as: (i) Behavior properties characterizing the behavior of certain components.
(ii) Activation properties characterizing the activation/deactivation of compo-
nents. (iii) Connection properties characterizing the dynamic connection between
components.

To answer the above questions, we first introduce a formal model of dynamic
architectures. Thereby we model an architecture as a set of configuration traces
which, in turn, is a sequence over architecture configurations. An architecture
configuration is modeled as a set of components, valuations of the component
ports with messages, and connections between these ports.

In a second step, we characterize behavior, activation, and connection prop-
erties. We show the distinct nature of those types of properties and investigate
their expressive power. Thereby we characterize the notion of separable architec-
ture property and show that each of them can be uniquely described through the
intersection of a corresponding behavior, activation, and connection property.

We evaluate our approach by specifying (and analyzing) the Blackboard pat-
tern for dynamic architectures using the Isabelle/HOL [22] interactive theorem
prover. Therefore, we first specify behavior, activation, and connection proper-
ties for Blackboard architectures. Then, we specify the pattern’s guarantee as
an architecture property. Finally, we verify the pattern by proving its guarantee
from the original properties using Isabelle’s structured proof language Isar [28].

The remainder of the article is organized as follows: Sect. 2 reviews existing
work in this area. Section 3 introduces the Blackboard pattern as a running
example. Section 4 introduces our model for dynamic architectures. Section 5
describes and investigates different types of properties for those architectures.
Section 6 presents an approach to systematically specify properties and applies
it to specify the Blackboard pattern. In Sect. 7 we provide a critical discussion
of possible weaknesses of the approach. Finally, Sect. 8 summarizes our results
and discusses potential implications and future work.

2 Background and Related Work

Related work can be found in three different areas: 1. Architecture Description
Languages, 2. Modeling of Architectural Styles, and 3. Modeling of Constraints
for Dynamic Architectures. In the following we briefly discuss each of them.

2.1 Architecture Description Languages

Over the last three decades, a number of so-called Architecture Description
Languages (ADLs) emerged to support the formal specification of architec-
tures. Some of them also support the specification of dynamic aspects such as
Rapide [17], Darwin [18], Dynamic Wright [2,3], Π-ADL [23], xADL [11], and
ACME [13].

Specifying Properties of Dynamic Architectures Using Configuration Traces 237

While ADLs support the formal specification of architectures, they were
developed with the aim to specify individual architecture solutions, rather than
properties for architectures which require more abstract specification techniques.
Nevertheless, these works provide the conceptual foundation for our work since
many of the abstractions used in our model are based on the concepts introduced
by ADLs.

2.2 Modeling Architectural Styles

Architectural styles focus on the specification of architectural constraints, rather
than specific architectures.

One of the first approaches to formalize architectural styles is discussed by
Abowd et al. [1]. There, the authors apply a denotational semantics approach to
software architectures by using the specification language Z [26]. Other examples
used to specify architectural styles include the Chemical Abstract Machine [15]
or Wright [3] which allow for the specification of architectural constraints for
static architectures. Two further ideas come from Moriconi et al. [21] and Penix
et al. [24]. Both apply algebraic specification to software architectures. Finally,
Bernardo et al. [4] use process algebras to specify architectural types which can
be seen as a form of architectural styles.

While these approaches focus on the specification of architectural constraints
rather than architectures, they do usually not allow for the specification of
dynamic architectural constraints which is the focus of this work. Nevertheless,
these works provide many important conceptual insights into the specification
of architectural constraints on which we build.

2.3 Specification of Constraints for Dynamic Architectures

Work in this area is most closely related to our work.
The approach of Le Métayer [16] applies graph theory to specify architectural

evolution. The author proposes the use of graph grammars to specify architec-
tural evolution. A similar approach comes from Hirsch and Montanari [14] who
employ hypergraphs as a formal model to represent styles and their reconfig-
urations. While we also apply a graph-based approach to model architectural
properties, the major difference lies in the specification of behavior. While the
discussed approaches focus on structural aspects, we aim at a combination of
structural and behavioral aspects.

Another, closely related approach is the one of Wermlinger et al. [29]. The
authors combine behavior and structure to model dynamic reconfigurations. One
major difference to our work concerns the underlying model of interaction. While
the authors use an action synchronization communication model, our model is
based on time-synchronous communication. Both communication models have
their advantages and drawbacks. Thus, by providing a time-synchronous alter-
native, we actually complement their work.

Recently, categorical approaches to dynamic architecture reconfiguration
appeared such as the work of Castro et al. [9] or Fiadeiro and Lopes [12].

238 D. Marmsoler and M. Gleirscher

While these approaches provide fundamental insights into the specification of
dynamic architecture properties, their model remains implicitly in the categor-
ical constructions. Thus, we complement their work by providing an explicit
model of dynamic architecture properties.

Finally, we do not know of any existing work investigating different types of
properties of dynamic architectures. However, as stated in the introduction, this
is an important aspect to systematically specify properties of dynamic archi-
tectures. In this work we provide a formal investigation of properties which is
another contribution to current literature.

3 Running Example: Specifying Blackboard Architectures

In this paper, we use the Blackboard architecture design pattern as a running
example to show our approach to the specification and verification of dynamic
architectures. This pattern was described, for example, by Shaw and Garlan [25],
Buschmann et al. [8], and Taylor et al. [27].

Blackboards work with problems and solutions for them. Hence, we denote by
PROB the set of all problems and by SOL the set of all solutions. Complex problems
consist of subproblems which can be complex themselves. To solve a problem,
its subproblems have to be solved first. Therefore, we assume the existence of a
subproblem relation ≺ Ď PROB×PROB. For complex problems, this relation may
not be known in advance. Indeed, one of the benefits of a Blackboard architecture
is that a problem can be solved also without knowing this relation in advance.
However, the subproblem relation has to be well-founded (wf) for a problem to
be solvable. In particular, we do not allow cycles in the transitive closure of ≺.

While there may be different approaches to solve a problem (i.e. several ways
to split a problem into subproblems), we assume that the final solution for a
problem is unique. Thus, we assume the existence of a function solve : PROB →
SOL which assigns the correct solution to each problem. Note, however, that this
function is not known in advance and it is one of the reasons of using this pattern
to calculate this function.

4 A Model of Dynamic Architectures

In the following we introduce our model of dynamic architectures. It is based on
Broy’s Focus theory [6] and an adaptation of its dynamic extension [7]. A prop-
erty is modeled as a set of configuration traces which are sequences of architecture
configurations that, in turn, consist of a set of active components, valuation of
their ports with type-conform messages, and connections between their ports.
The model serves the specification of properties for dynamic architectures as
shown by the running example.

4.1 Foundations

This section introduces basic concepts of our model such as ports which can be
valuated by messages.

Specifying Properties of Dynamic Architectures Using Configuration Traces 239

Convention 1. In the following, we denote by X ��� Y , the set of partial func-
tions from a set X to a set Y . For a partial function f : X ��� Y , we denote
by:

– dom (f) the domain of f ,
– ran (f) the range of f , and by
– f |X′ the restriction of f to the set X ′ Ď X. If X = N and x ∈ N we denote

by f ↓x def
= f |{n∈N|n�x} the restriction of f to the first x numbers.

If dom (f) = X, f is called total and denoted by f : X → Y .

Messages and ports. In our model, components communicate by exchanging
messages over ports. Thereby, ports are typed by a set of messages which can go
through the corresponding port. Thus, we assume the existence of the following
sets:

– set M containing all messages,
– sets Pi and Po containing all input and output ports, respectively, and set

P = Pi Y Po containing all ports. We require a port to be either input or
output, but not both:

Pi X Po = ∅. (1)

Moreover, we assume the existence of a type function which assigns a set of
messages to each port:

(Tp)p∈P, with Tp Ď M for each p ∈ P. (2)

Valuation. In our model, components communicate by sending and receiving
messages through ports. This is achieved through the notion of port valuation.
Roughly speaking, a valuation for a set of ports is an assignment of messages to
each port. Note that in our model, ports can be valuated by a set of messages
meaning that a component can send/receive no message, a single message, or
multiple messages at each point in time.

For ports P Ď P, we denote by P the set of all possible port-valuations,
formally,

P
def= {μ : P → ℘(M) | ∀p ∈ P : μ(p) Ď Tp}. (3)

Moreover, we denote by [p1, p2, . . . �→ {m1}, {m2}, . . .] the valuation of ports
p1, p2, . . . with sets {m1}, {m2}, . . . , respectively. For singleton sets we shall
sometimes omit the set parentheses and simply write [p1, p2, . . . �→ m1,m2, . . .].

4.2 Components and Interfaces

This section introduces the basic notions of component and interface.

Components. In our model, the basic unit of computation is a component. A
component is identified by a component identifier which is why we postulate the
existence of the set of all component identifiers C.

240 D. Marmsoler and M. Gleirscher

Component port valuation. In our model, the same port can be reused by differ-
ent components. Thus, to uniquely identify a component port, we need to combine
it with the corresponding component. Therefore, we generalize the notion of port
valuation introduced in Eq. (3) to component ports P Ď C× P as follows:

P
def= {μ : P →℘(M) | ∀(c, p)∈P : μ((c, p)) Ď Tp}.

Interfaces. A component communicates with its environment through an inter-
face by sending and receiving messages over ports.

Definition 2. An interface is a pair (Pi, Po) with:

– input ports Pi Ď Pi, and
– output ports Po Ď Po.

The set of all interfaces is denoted by I.

Similar to components, interfaces have an identifier which is why we postulate
the existence of the set of all interface identifiers I.

Interface port valuation. As for components, the same port can be used by differ-
ent interfaces. Thus, to uniquely identify an interface port, we need to combine
it with the corresponding interface identifier. Therefore, we can generalize the
notion of valuation introduced in Eq. (3) to interface ports I × P as done for
component port valuations.

4.3 Interface Specifications

An interface specification declares a set of component and interface identifiers.
Moreover, it associates an interface identifier with each component identifier and
an interface with each interface identifier.

Definition 3. An interface specification is a 4-tuple (C, I, tc, ti) consisting of:

– a set of component identifiers C Ď C,
– a set of interface identifiers I Ď I,
– a mapping tc : C → I, assigning an interface identifier to each component,
– a mapping ti : I → I, which assigns an interface to each interface identifier.

The set of all interface specifications is denoted by SI .

Convention 4. For an n-tuple Z = (z1, . . . , zn), we denote by
[
z
]i = zi with

1 � i � n the projection to the i-th component of Z.

Convention 5. For interface specification Si = (C, I, tc, ti) ∈ SI we denote by:

– in(I ′, Si)
def
=

⋃
i∈I′({i} ×

[
ti(i)

]1) the set of input ports,

– out(I ′, Si)
def
=

⋃
i∈I′({i} ×

[
ti(i)

]2) the set of output ports,

– port(I ′, Si)
def
= in(I ′, Si) Y out(I ′, Si) the set of all ports,

for a set of interface identifiers I ′ Ď I, respectively.
The same notation can be used to denote the ports for a set of component

identifiers C ′ Ď C by substituting ti(i) with ti(tc(c)) for each c ∈ C ′ in the above
definitions.

Specifying Properties of Dynamic Architectures Using Configuration Traces 241

4.4 Architecture Configurations and Configuration Traces

Architectures are modeled as sets of configuration traces which are sequences
over architecture configurations.

Architecture Configurations. In our model, an architecture configuration
connects ports of active components. It consists of a set of active components
and a so-called connection relation connecting the component ports.

Definition 6. An architecture configuration over interface specification Si =
(C, I, tc, ti) ∈ SI is a triple (C ′, N, μ), consisting of:

– a set of active components C ′ Ď C,
– a connection N : in(C ′, Si) ��� ℘(out(C ′, Si)),
– a valuation μ ∈ port(C ′, Si).

We require connected ports to be consistent in their valuation, i.e. if a compo-
nent provides messages at its output port, these messages are transferred to the
corresponding connected input ports:

∀pi ∈ dom (N) : μ(pi) =
⋃

po∈N(pi)

μ(po). (4)

The set of all possible architecture configurations for interface specification Si ∈
SI is denoted by K(Si).

Note that connection N is modeled as a set-valued, partial function from
component input ports to component output ports, meaning that:

– input/output ports can be connected to several output/input ports, respec-
tively, and

– not every input/output port needs to be connected to an output/input port,
respectively.

Convention 7. In the following we use c :: I to denote that component vari-
able c requires the corresponding component to have the assigned interface I.
Moreover, port names are used to denote the corresponding port valuation.

Example 1. Assuming p1, p2, p3, (p1, s1), (p2, s2) ∈ M, ks1 , ks2 , bb ∈ C, ip, is ∈
Pi, and op, os ∈ Po. Figure 1 shows an architecture configuration (C ′, N, μ) for
interface specification SBB (as defined in Sect. 4.5 with C = {ks1 , ks2 , bb}), with:

– active components C ′ = {ks1 , bb};
– connection N , with N((bb, op)) = {(ks1, ip)}, N((bb, os)) = {(ks1, is)}, N((ks1,

op)) = {(bb, ip)}, N((ks1, os)) = {(bb, is)}; and
– valuation

μ=[(ks1,ip),(ks1,op),(bb,os),··· �→{p1,p2,p3},{(p2,{p4})},{(p1,s1)},···].
Convention 8. For an architecture configuration k = (C ′, N, μ) ∈ K(Si) over
interface specification Si = (C, I, tc, ti) ∈ SI we denote by

inoc(Si, k)
def
= in(C ′, Si) \ dom (N) , (5)

the set of open input configuration ports.

242 D. Marmsoler and M. Gleirscher

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

bb.op = ks1.ip = {p1, p2, p3}
bb.os = ks1.is = {p1, s1}
bb.ip = ks1.op = {p2, tp4}
bb.is = ks1.os = { p2, s2}

Fig. 1. Architecture configuration

Equivalences Between Architecture Configurations. Architecture config-
urations can be related according to several aspects. In the following we introduce
several notions of architecture configuration equivalence.

Definition 9. Two architecture configurations k = (C ′, N, μ), k′ = (C ′′, N ′, μ′)
over interface specification Si ∈ SI , with k, k′ ∈ K(Si), are behavior equivalent,
written k ≈b k′, iff

∀p ∈ port(C ′ X C ′′, Si) : μ(p) = μ′(p). (6)

Definition 10. Two architecture configurations k = (C ′, N, μ), k′ = (C ′′, N ′,
μ′) over interface specification Si ∈ SI , with k, k′ ∈ K(Si), are activation equiv-
alent, written k ≈a k′, iff

C ′ = C ′′. (7)

Definition 11. Two architecture configurations k = (C ′, N, μ), k′ = (C ′′, N ′,
μ′) over interface specification Si ∈ SI , with k, k′ ∈ K(Si), are connection equiv-
alent, written k ≈n k′, iff

∀p ∈ in(C ′ X C ′′, Si) : N(p) = N ′(p). (8)

These relations suffice to determine architecture configuration equivalence.

Property 1. Two ACs k, k′ ∈ K(Si) are the same iff they are behavior equivalent,
connection equivalent and activation equivalent:

k = k′ ⇐⇒ k ≈b k′ ∧ k ≈n k′ ∧ k ≈a k′.

However, not every relation is indeed an equivalence relation.

Property 2. Activation equivalence is an equivalence relation. Behavior and con-
nection equivalence are reflexive, symmetric, but not transitive.

Example 2 (Why behavior and connection equivalence are not necessarily tran-
sitive). Consider three architecture configurations k′ = (C ′′, N ′, μ′), k =
(C ′, N, μ), k′′ = (C ′′′, N ′′, μ′′) ∈ K(Si), such that C ′ Ď C ′′ and C ′ Ď C ′′′ but
there exists a c ∈ C ′′ X C ′′′ which is not in C ′ and μ′(c, p) �= μ′′(c, p) for some
port p. Furthermore, assume k′ ≈b k and k ≈b k′′. Since μ′(c, p) �= μ′′(c, p), we
have k′ �≈b k′′.

A similar example can be given for connection equivalence.

Specifying Properties of Dynamic Architectures Using Configuration Traces 243

Configuration traces. A configuration trace consists of a series of configura-
tion snapshots of an architecture during system execution. Thus, a configuration
trace is modeled as a sequence of architecture configurations at a certain point
in time.

Definition 12. A configuration trace (CT) over interface specification Si ∈ SI

is a mapping N → K(Si). The set of all CTs for Si is denoted by Kt(Si).

Example 3. Figure 2 shows a configuration trace t ∈ Kt(Si) with corresponding
configurations t(0) = k0, t(1) = k1, and t(2) = k2. Configuration k0, for example,
is shown in Example 1.

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k0

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k1

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k2

Fig. 2. Configuration trace (port valuations not shown, see Fig. 1 for an example)

Note that an architecture property is modeled as a set of configuration traces,
rather than just one single trace. This is due to the fact that component behavior,
as well as the appearance and disappearance of components, and the reconfig-
uration of the architecture is usually non-deterministic and dependent on the
current input provided to an architecture.

Moreover, note that our notion of architecture is highly dynamic in the fol-
lowing sense:

– components may appear and disappear over time and
– architecture configurations may change over time.

4.5 Running Example: Blackboard Interface Specification

A Blackboard architecture consists of a BlackBoard component and several
KnowledgeSource components. Figure 3 shows an interface specification SBB =
(C, I, tc, ti) ∈ SI of the pattern.

BlackBoard interface. A BlackBoard (BB) is used to capture the current state
on the way to a solution of the original problem. Its state consists of all currently
open subproblems and solutions for subproblems.

A BlackBoard expects two types of input: 1. via ip: a problem p ∈ PROB
which a KnowledgeSource is able to solve, together with a set of subproblems
P Ď PROB the KnowledgeSource requires to be solved before solving the original
problem P , 2. via is: a problem p ∈ PROB solved by a KnowledgeSource, together
with the corresponding solution s ∈ SOL.

244 D. Marmsoler and M. Gleirscher

A BlackBoard returns two types of output: 1. via op: a set P Ď PROB which
contains all the problems to be solved, 2. via os: a set of pairs PS Ď PROB×SOL.
Thus, we require the port types: Tip = PROB × ℘(PROB), and Tis = PROB × SOL,
Top = PROP and Tos = PROB× SOL.

KnowledgeSource interface. A KnowledgeSource (KS) is a domain expert able
to solve problems in that domain. It may lack expertise of other domains. More-
over, it can recognize problems which it is able to solve and subproblems which
have to be solved first by other KnowledgeSources.

A KnowledgeSource expects two types of input: 1. via ip: a set P Ď PROB
which contains all the problems to be solved, 2. via is: a set of pairs PS Ď
PROB× SOL containing solutions for already solved problems.

A KnowledgeSource returns one of two types of output: 1. via op: a problem
p ∈ PROB which it is able to solve together with a set of subproblems P Ď PROB
which it requires to be solved before solving the original problem, 2. via os: a
problem p ∈ PROB which it was able to solve together with the corresponding
solution s ∈ SOL. Thus, we require the port types: Tip = PROB and Tis = PROB×
SOL and Top = PROB× ℘(PROB) and Tos = PROB× SOL.

A KnowledgeSource can solve only certain types of problems which is why we
assume the existence of a mapping prob : C → PROB to associate a set of problems
with each KnowledgeSource. Then we require for each KnowledgeSource that
it only solves problems given by this mapping:

∀k ∈ K(SBB), (c, p) ∈ out(Si, k) : tc(c) = KS =⇒ [[
k
]3(p)

]1 ∈ prob(c). (9)

While we assume only one BlackBoard component bb ∈ C, the number of
KnowledgeSource components is not restricted.

KS

ip is op os

BB

op os ip is

Fig. 3. Interface specification for Blackboards.

5 Specifying Properties of Dynamic Architectures

Properties of dynamic architectures can be specified as sets of configuration
traces over an interface specification. In the following, we investigate the nature
of such properties and introduce the notion of behavior, activation, and connec-
tion properties as special kinds of architecture properties to our model. Moreover,
we introduce the notion of separable architecture property and show that such a

Specifying Properties of Dynamic Architectures Using Configuration Traces 245

property can always be represented as the intersection of corresponding behav-
ior, activation, and connection properties. Then, we show that the intersection of
such properties is guaranteed to be non-empty, given that the properties them-
selves are non-empty.

This way, we get a step-wise method for the specification of properties for
dynamic architectures by concentrating on the three different property-types as
shown below by our running example.

5.1 Architecture Properties

We first introduce a basic notion of architecture property which serves as a foun-
dation for all classes of architecture properties discussed below. An architecture
property is a set of configuration traces which does not constrain valuation of
open input ports. Thus, an architecture property is defined as a set of configu-
ration traces fulfilling a special closure property.

Definition 13. An architecture property (AP) is a set of configuration traces
P , such that input port valuations are not restricted:

∀t ∈ P, n ∈ N, μ ∈ inoc(Si, t(n)) ∃t′ ∈ P : t′ ↓n−1= t ↓n−1 ∧
∀p ∈ inoc(Si, t(n)) :

[
t′(n)

]3(p) = μ(p). (10)

5.2 Behavior Properties

A behavior property is an architecture property which does not constrain con-
nections and activations. Thus, a behavior property is defined as a set of config-
uration traces fulfilling a special closure property.

Definition 14. A behavior property (BP) for an interface specification Si =
(C, I, tc, ti) ∈ SI , is an AP B Ď Kt(Si), such that connections and activations
are not restricted:

∀t ∈ B,n ∈ N, k ∈ {k ∈ K(Si) | k ≈b t(n)}
∃t′ ∈ B : t′ ↓n−1= t ↓n−1 ∧t′(n) ≈a k ∧ t′(n) ≈n k. (11)

Example 4. Figure 4 shows how an architecture property B can violate
Definition 14: Assume that B allows a configuration trace t with t(0) and denies
some k with k ≈b t(0) at n = 0, i.e. � ∃t′ ∈ B : t′(0) ≈a k ∨ t′(n) ≈n k. Hence,
B constrains activation and, thus, contains unnecessary parts of an activation
property.

Running Example: Behavior Property Specification. We provide behav-
ior properties for both, BlackBoard and KnowledgeSource components. Thereby
we use a temporal-logic notation (based on [19]) to specify sets of configu-
ration traces. Variables denote component identifiers, problems and solutions.
Port names are used to denote port valuations and c :: I is used to denote that

246 D. Marmsoler and M. Gleirscher

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

t 0 t B

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k K Si

Fig. 4. Example of an ill-formed behavior property.

component identifier c has interface I.

BlackBoard behavior. A BlackBoard provides the current state towards solving
the original problem. If a KnowledgeSource requires subproblems to be solved,
the BlackBoard redirects those problems to other KnowledgeSources. Moreover,
the BlackBoard provides available solutions to all KnowledgeSources.

We view a BlackBoard as a set of configuration traces Kt(SBB) specified by
three behavior properties:

– if a solution to a subproblem is received on its input, then it is eventually
provided at its output:

� ((p, s) ∈ (bb, is) =⇒ ♦ ((p, s) ∈ (bb, os))) , (12)

– if solving a problem requires a set of subproblems to be solved first, those
problems are eventually provided at its output:

� ((p, P) ∈ (bb, ip) =⇒ (∀p′ ∈ P : ♦ (p′ ∈ (bb, op)))) , (13)

– a problem is provided as long as it is not solved:

�
(
p ∈ (bb, op) =⇒ ((p ∈ (bb, op)) W ((p, solve(p)) ∈ (bb, is)))

)
. (14)

KnowledgeSource behavior. A KnowledgeSource receives open problems via ip
and solutions for other problems via is. It might contribute to the solution of the
original problem by solving subproblems. Hence, it performs one of two possible
actions: 1. If it has solutions for all the required subproblems, it solves the prob-
lem and publishes the solution via os, 2. If it requires solutions to subproblems,
it notifies the BlackBoard about its ability to solve the problem and about these
subproblems via op.

We view a KnowledgeSource as a set of configuration traces Kt(SBB) spec-
ified by the following behavior properties:

– if a KnowledgeSource gets correct solutions for all the required subproblems,
then it solves the problem eventually:

�∀ks ::KS , (p, P)∈(ks , op) :
(

(∀p∈P : ♦ ((p, solve(p))∈(ks , is)))=⇒♦(p, solve(p))∈(ks , os)
)
, (15)

Specifying Properties of Dynamic Architectures Using Configuration Traces 247

– in order to solve a problem, a KnowledgeSource requires solutions only for
smaller problems:

�∀ks ::KS : ((p, P)∈(ks , op)=⇒∀p′∈P : p′≺p) , (16)

– if a KnowledgeSource is able to solve a problem it will eventually communicate
this:

�∀ks ::KS : p∈prob(ks) ∧ p∈(ks, ip)=⇒♦(∃PĎPROB : (p, P)∈(ks, op)). (17)

Note that Eqs. (12)-(17) constrain only the behavior of components. They
do neither restrict activation nor connections. Thus, the resulting architecture
property is indeed an example of a behavior property as defined in Definition 14.

5.3 Activation Properties

An architecture property is an activation property if it does neither restrict
behavior nor connection. Thus, activation properties are again defined by means
of a special closure property.

Definition 15. An activation property (AP) for interface specification Si ∈ SI ,
is an AP A Ď Kt(Si), such that connections and behavior are not restricted:

∀t ∈ A,n ∈ N, k ∈ {k ∈ K(Si) | k ≈a t(n)}
∃t′ ∈ A : t′ ↓n−1= t ↓n−1 ∧t′(n) ≈n k ∧ t′(n) ≈b k. (18)

Running Example: Activation Property Specification. Activation prop-
erties of the Blackboard pattern are described in a configuration diagram (Fig. 5):
The double solid frame for an interface (e.g. BB) denotes the condition that com-
ponents have to be active from the beginning on whereas interfaces with a single
frame (e.g. KS) allow components to be de-/activated over time.

KS

ip is op os

BB

op os ip is

Fig. 5. Configuration diagram
of Blackboards for activation
and connection

Fig. 6. Architecture violating Eq. (21)

248 D. Marmsoler and M. Gleirscher

Moreover, we require that whenever a knowledge source offers to solve some
problem, it is always activated when solutions to the required subproblems are
provided1:

�∀c ::KS, (p, P) ∈ (k, op) :
(∀q ∈ P : ♦(q, solve(q)) ∈ (bb, os)) =⇒ ♦(q, solve(q)) ∈ (bb, os) ∧ ‖c‖. (19)

Note that the activation constraints induced by the diagram in Fig. 5 as well
as Eq. (19) constrain only the activation of components. They do neither restrict
connections nor behavior which is why the resulting architecture property is
indeed an example of an activation property as defined in Definition 15.

5.4 Connection Properties

A connection property is not allowed to restrict neither behavior nor activation.
Again this is described by a special closure property.

Definition 16. A connection property (CP) for interface specification Si ∈ SI ,
is an AP N Ď Kt(Si), such that activations and behavior are not restricted:

∀t ∈ N,n ∈ N, k ∈ {k ∈ K(Si) | k ≈n t(n)}
∃t′ ∈ N : t′ ↓n−1= t ↓n−1 ∧t′(n) ≈a k ∧ t′(n) ≈b k. (20)

Running Example: Connection Property Specification. Connection
properties are also specified graphically in the configuration diagram in Fig. 5.
The solid arcs denote a constraint requiring that the ports of a KnowledgeSource
component are connected with the corresponding ports of a BlackBoard com-
ponent as depicted, whenever both components are active.

Note that the connection constraints induced by the diagram in Fig. 5 con-
strain only the connection of components. They do neither restrict activation
nor behavior. Thus, the resulting architecture property is indeed an example of
a connection property as defined in Definition 16.

5.5 Separable Architecture Properties

A separable architecture property is an architecture property which can be spec-
ified as the intersection of the types above.

Definition 17. A separable architecture property (SAP) for interface speci-
fication Si = (C, I, tc, ti) ∈ SI , is an AP K Ď Kt(Si), such that activation,
connection, and behavior do not influence each other:

∀t ∈ Kt(Si), n ∈ N :
((∃tb ∈ K : tb ↓n−1= t ↓n−1 ∧tb(n) ≈b t(n)

)∧
(∃tn ∈ K : tn ↓n−1= t ↓n−1 ∧tn(n) ≈n t(n))∧
(∃ta ∈ K : ta ↓n−1= t ↓n−1 ∧ta(n) ≈a t(n))

)

=⇒ ∃t′ ∈ K : t′ ↓n= t ↓n . (21)
1 We use ‖c‖ to denote that component c is active at the corresponding time.

Specifying Properties of Dynamic Architectures Using Configuration Traces 249

Example 5 (Architecture violating Eq. (21)). Figure 6 shows an example of an
architecture property K which violates the condition required by Eq. (21): t′′(0)
is connection and activation equivalent with t(0), and behavior equivalent with
t′(0). Hence, architectural property K has to permit t′′.

Running Example: Blackboard Guarantee. In the following, we specify a
guarantee of blackboard architectures as a separable architecture property over
the interface specification SBB .

Theorem 1. Assuming that knowledge sources are active when required:

�
(
p ∈ (bb, op) =⇒ ♦

(
∃ks ::KS : p ∈ prob(ks)∧

(∀p′ ∈ P : (♦ ((p′, s) ∈ (bb, os) =⇒ ‖ks‖)))
))

, (22)

a Blackboard architecture guarantees to solve the original problem:

�
(
p ∈ (bb, ip) =⇒ ♦

(
(p, solve(p)) ∈ (bb, os))

))
. (23)

Proof (Sketch. A detailed proof is given in Isabelle/HOL.). The proof is by well-
founded induction over the problem relation ≺: We are sure that for each prob-
lem eventually a KnowledgeSource exists which is capable to solve the prob-
lem, Eq. (22). The required subproblems are provided to the BlackBoard by
the connection constraint of Fig. 5. The BlackBoard will provide these sub-
problems eventually on its output op, Eq. (13). Since the subproblems provided
to the BlackBoard are strictly less, Eq. (16), they will be solved and provided
by the BlackBoard by induction over the steps 1 to 4. A KnowledgeSource
will eventually be activated for each solution, Eq. (22), and connected to the
BlackBoard (Fig. 5). This KnowledgeSource eventually has all solutions to its
subproblems and will then solve the original problem by Eq. (15). The solution
is received eventually by the BlackBoard due to Fig. 5. Finally, this solution is
provided by the BlackBoard due to Eq. (12).

5.6 Completeness

In the following we discuss an important property of the proposed methodology
which ensures that each separable architectural property can be described as the
intersection of a corresponding behavior, connection, and activation property.

Theorem 2. Each SAP K Ď Kt(Si) for interface specification Si ∈ SI can be
uniquely described through the intersection of a BP B Ď Kt(Si), CP N Ď Kt(Si),
and AP A Ď Kt(Si):

B X N X A = K. (24)

Proof (Sketch). Given an AP, construct the corresponding BP, AP, and CP.
Then show equality of the original property and the intersection.

250 D. Marmsoler and M. Gleirscher

5.7 Consistency

Another important property of the proposed methodology regards the consis-
tency of the different properties. It ensures that the methodology does indeed
not introduce any inconsistencies. Formally, we show that the intersection of
behavior, activation, and connection properties is always non-empty if the cor-
responding properties are non-empty.

Theorem 3. For each BP B Ď Kt(Si), CP N Ď Kt(Si), and AP A Ď Kt(Si),
such that the properties are non-empty:

B,N,A �= ∅, (25)

the intersection is non-empty: B X N X A �= ∅.

Proof (Sketch). Show

∀n ∈ N ∃t ∈ Kt(Si), tb ∈ B, tn ∈ N, ta ∈ A : t ↓n= tb ↓n= ta ↓n= tn ↓n
by induction over n to have ∃t ∈ B X N X A.

6 Specifying Properties of Dynamic Architectures

In this section, we describe an approach to the specification of separable prop-
erties of dynamic architectures based on the theory discussed so far.

Properties can be specified directly by a set of configuration traces. Moreover,
Fig. 7 depicts an overview of the proposed approach to separate the specification
into the different types.

In a first step one has to specify an interface. Based on the interface spec-
ification one can then define behavior properties, connection properties, and
activation properties. The intersection of the corresponding configuration traces
represent the specified architectures.

Specifying interfaces. To specify interfaces first one has to specify a set of ports
and corresponding types of messages. This can be achieved by traditional spec-
ification techniques such as algebraic specifications [30]. Interfaces can then be
specified by grouping a set of ports.

Specifying behavior properties. Based on an interface specification, one can spec-
ify behavior properties. This can be achieved e.g. by specifying execution traces
over the ports of an interface.

Specifying activation properties. Finally, activation properties may be specified
by traces over a set of components. Such traces specify the set of active compo-
nents at each point in time.

Specifying connection properties. Connection properties have to be specified as
special kind of configuration traces.

Specifying Properties of Dynamic Architectures Using Configuration Traces 251

Fig. 7. Specifying Architectural Styles

Running Example: Blackboard Verification. For the verification of the
blackboard architecture pattern, we transferred behavior, activation, and con-
nection properties (see Sects. 5.2, 5.3, and 5.4) as well as the pattern’s guarantee
(see Sect. 5.5) into Isabelle/HOL [22]. There, we proved that each implemen-
tation complying with the three individual properties fulfills the architecture
property describing the guarantee underlying any blackboard architecture2

7 Discussion

In the following, we briefly discuss our approach and possible limitations.
Thereby, we critically examine some of its potential weaknesses in more detail.

Dynamic interfaces. One possible weakness concerns the nature of our under-
lying model. Definition 12 does not allow components to change their interface
over time. This could be seen as a restriction of the model, however, it was a
deliberate decision since for now, we did not yet find the need for components
to change their interfaces. Indeed, it remains an open question whether dynamic
interfaces are useful, at all. However, if the need for them arises, it should be
noted, that the underlying model can be adapted to allow for dynamic interfaces
as well.

2 The script can be downloaded at http://www.marmsoler.com/pattern/Blackboard.
thy

http://www.marmsoler.com/pattern/Blackboard.thy
http://www.marmsoler.com/pattern/Blackboard.thy

252 D. Marmsoler and M. Gleirscher

Mapping to Isabelle/HOL. Another possible weakness concerns the encoding of
the blackboard example into Isabelle/HOL. The resulting Isabelle/HOL speci-
fication is indeed specific to the blackboard pattern and cannot be applied to
other patterns. However, the methodology of how a pattern specification can
be systematically translated into a corresponding Isabelle/HOL specification is
indeed generalizable to other patterns as well. Indeed, the mapping could be
fully automated for specifications in our language.

Quality attributes. A last point which needs to be discussed in more detail
regards an important aspect of software architectures in general. Our approach
does actually not provide means to directly specify quality attributes such as
performance, availability, etc. However, as our example shows, it allows us to
specify the technical realization of such aspects. The theorem provided for the
blackboard pattern ensures, that a problem can be solved also in the absence of
certain components. This can be actually seen as one possible implementation
(or technical definition) of what is sometimes called reliability.

8 Conclusion

In this article, we provide a formal notion of properties for dynamic architec-
tures and investigate different types of properties. The major results can be
summarized as follows:

– We provide a novel model for dynamic architectures and a formal notion of
properties for these kind of architectures (Sect. 4). Thereby we introduce the
notion of architecture configuration and configuration traces (Definition 6).
Then we model an architecture property as a set of configuration traces (Def-
inition 12) for which open input port valuations are not restricted (Defini-
tion 13).

– We provide a characterization of behavior properties, activation properties,
and connection properties for dynamic architectures (Sect. 5). Each property-
type is defined as an architecture property fulfilling a special closure prop-
erty: A behavior property is not allowed to restrict activations or connections
(Definition 14). An activation property, on the other hand, is neither allowed
to restrict connections nor behavior (Definition 15). Finally, a connection prop-
erty is not allowed to restrict activation or behavior (Definition 16).

– We provide a characterization of separable architecture properties, architec-
ture properties which can be separated into behavior, activation, and con-
nection parts (Definition 17). We show that each separable architecture prop-
erty can indeed be separated into behavior, activation, and connection prop-
erties (Theorem 2). We show that the intersection of behavior, activation,
and connection properties always yields a non-empty architecture property
(Theorem 3).

We evaluated our results by deriving a systematic way to specify properties for
dynamic architectures and apply it to the specification of blackboard architec-
tures (Sect. 6):

Specifying Properties of Dynamic Architectures Using Configuration Traces 253

– We specified the constraints imposed by the pattern as behavior, activation,
and connection properties.

– We formulated the pattern’s guarantee as an architecture property.
– We verified the correctness of the pattern by proving its guarantee from the

pattern’s constraints in Isabelle/HOL.

We imagine the following implications of our results: (i) The proposed model
can be used to specify properties for dynamic architectures. (ii) The results on
the different types of properties provide a systematic way to specify separable
architecture properties for those kinds of architectures by focusing on different
aspects of a dynamic architecture.

We perceive future work in three major areas:

– Based on the insights provided by our results, we aim to build specialized
specification and analysis techniques for the three identified property-types:
activation, connection, and behavior properties. Especially the specification
of behavior properties remains an open issue since they are usually specified
locally to a component instead of over the whole architecture. Thus, we are
currently investigating how such local specifications can be transformed to
specifications over dynamic architectures where the specified component can
be activated/deactivated over time.

– Another direction of work concerns the transformation of specifications to
(interactive) theorem provers to support the verification of specifications. Cur-
rently we are working on a systematic way to transform specifications in the
presented formalism to corresponding Isabelle/HOL specifications.

– Finally, the approach should be applied to specify and investigate patterns for
dynamic architectures to further evaluate our approach and (maybe even more
important) to provide detailed insights into the nature of existing patterns as
well as to discover new patterns for dynamic architectures.

Acknowledgments. We would like to thank Jonas Eckhardt, Vasileios Koutsoumpas,
and the reviewers of ICTAC 2016 for their comments and helpful suggestions.

References

1. Abowd, G.D., Allen, R., Garlan, D.: Formalizing style to understand descriptions
of software architecture. ACM TOSEM 4, 319–364 (1995)

2. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998). doi:10.1007/BFb0053581

3. Allen, R.J.: A formal approach to software architecture. Technical report, DTIC
Document (1997)

4. Bernardo, M., Ciancarini, P., Donatiello, L.: On the formalization of architectural
types with process algebras. ACM SIGSOFT SEN 25, 140–148 (2000)

5. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: WOSS (2004)

6. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

http://dx.doi.org/10.1007/BFb0053581

254 D. Marmsoler and M. Gleirscher

7. Broy, M.: A model of dynamic systems. In: Bensalem, S., Lakhneck, Y., Legay,
A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 39–53. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54848-2 3

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: A system of
patterns: Pattern-oriented software architecture (1996)

9. Castro, P.F., Aguirre, N.M., López Pombo, C.G., Maibaum, T.S.E.: Towards
managing dynamic reconfiguration of software systems in a categorical setting.
In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC
2010. LNCS, vol. 6255, pp. 306–321. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14808-8 21

10. Clements, P.C.: A survey of architecture description languages. In: IWSSD (1996)
11. Dashofy, E.M., Van der Hoek, A., Taylor, R.N.: A highly-extensible, xml-based

architecture description language. In: WICSA, IEEE (2001)
12. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented

architectures. Softw. Syst. Model. 12(2), 349–367 (2013)
13. Garlan, D.: Formal modeling and analysis of software architecture: components,

connectors, and events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS,
vol. 2804, pp. 1–24. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39800-4 1

14. Hirsch, D., Montanari, U.: Two graph-based techniques for software architecture
reconfiguration. Electron. Notes Theor. Comput. Sci. 51, 177–190 (2002)

15. Inverardi, P., Wolf, A.L.: Formal specification and analysis of software architectures
using the chemical abstract machine model. IEEE TSE 21, 373–386 (1995)

16. Le Métayer, D.: Describing software architecture styles using graph grammars.
IEEE TSE 24, 521–533 (1998)

17. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and analysis of system architecture using Rapide. IEEE TSE 21,
336–355 (1995)

18. Magee, J., Kramer, J.: Dynamic structure in software architectures. ACM SIG-
SOFT SEN 21, 3–14 (1996)

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New york (2012)

20. Medvidovic, N.: ADLs and dynamic architecture changes. In: ISAW (1996)
21. Moriconi, M., Qian, X., Riemenschneider, R.A.: Correct architecture refinement.

IEEE TSE 21, 356–372 (1995)
22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. Springer Science & Business Media, Heidelberg (2002)
23. Oquendo, F.: π-ADL: an architecture description language based on the higher-

order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT SEN 29, 1–14 (2004)

24. Penix, J., Alexander, P., Havelund, K.: Declarative specification of software archi-
tectures. In: ASE (1997)

25. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline, vol. 1. Prentice Hall Englewood Cliffs, Upper Saddle River (1996)

26. Spivey, J.M., Abrial, J.: The Z notation (1992)
27. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,

Theory, and Practice. Wiley Publishing, Hoboken (2009)
28. Wenzel, M.: Isabelle/Isar: a generic framework for human-readable proof docu-

ments. From Insight to Proof: Festschrift in Honour of Andrzej Trybulec 10, 277–
298 (2007)

29. Wermelinger, M., Lopes, A., Fiadeiro, J.L.: A graph based architectural (re) con-
figuration language. ACM SIGSOFT SEN 26(5), 21–32 (2001)

30. Wirsing, M.: Algebraic Specification. MIT Press, Cambridge (1991)

http://dx.doi.org/10.1007/978-3-642-54848-2_3
http://dx.doi.org/10.1007/978-3-642-14808-8_21
http://dx.doi.org/10.1007/978-3-642-14808-8_21
http://dx.doi.org/10.1007/978-3-540-39800-4_1

	Specifying Properties of Dynamic Architectures Using Configuration Traces
	1 Introduction
	2 Background and Related Work
	2.1 Architecture Description Languages
	2.2 Modeling Architectural Styles
	2.3 Specification of Constraints for Dynamic Architectures

	3 Running Example: Specifying Blackboard Architectures
	4 A Model of Dynamic Architectures
	4.1 Foundations
	4.2 Components and Interfaces
	4.3 Interface Specifications
	4.4 Architecture Configurations and Configuration Traces
	4.5 Running Example: Blackboard Interface Specification

	5 Specifying Properties of Dynamic Architectures
	5.1 Architecture Properties
	5.2 Behavior Properties
	5.3 Activation Properties
	5.4 Connection Properties
	5.5 Separable Architecture Properties
	5.6 Completeness
	5.7 Consistency

	6 Specifying Properties of Dynamic Architectures
	7 Discussion
	8 Conclusion
	References

