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Abstract. Spatial constraint systems are algebraic structures from con-
current constraint programming to specify spatial and epistemic behav-
ior in multi-agent systems. We shall use spatial constraint systems to
give an abstract characterization of the notion of normality in modal
logic and to derive right inverse/reverse operators for modal languages.
In particular, we shall identify the weakest condition for the existence
of right inverses and show that the abstract notion of normality corre-
sponds to the preservation of finite suprema. We shall apply our results
to existing modal languages such as the weakest normal modal logic,
Hennessy-Milner logic, and linear-time temporal logic. We shall discuss
our results in the context of modal concepts such as bisimilarity and
inconsistency invariance.

Keywords: Modal logic · Inverse operators · Constraint systems ·
Modal algebra · Bisimulation

1 Introduction

Constraint systems (cs’s) provide the basic domains and operations for the
semantic foundations of several declarative models and process calculi from con-
current constraint programming (ccp) [3,8,9,11,15,18,23,25]. In these calculi,
processes can be thought of as both concurrent computational entities and logic
specifications (e.g., process composition can be seen as parallel execution and
conjunction). All ccp process calculi are parametric in a cs that specifies partial
information upon which programs (processes) may act.

A cs is often represented as a complete algebraic lattice (Con, �). The ele-
ments of Con, the constraints, represent partial information and we shall think
of them as being assertions. The intended meaning of c � d is that d specifies
at least as much information as c (i.e., d entails c). The join operation �, the
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bottom true and the top false of the lattice (Con, �) correspond to conjunc-
tion, the empty information and the join of all information, respectively. The
ccp operations and their logical counterparts typically have a corresponding ele-
mentary construct or operation on the elements of the constraint system. In par-
ticular, parallel composition and conjunction correspond to the join operation,
and existential quantification and local variables correspond to a cylindrification
operation on the set of constraints [25].

Similarly, the notion of computational space and the epistemic notion of belief
in the sccp process calculi [15] correspond to a family of functions [·]i :Con →
Con on the elements of the constraint system Con that preserve finite suprema.
These functions are called space functions. A cs equipped with space functions is
called a spatial constraint system (scs). From a computational point of view the
assertion (constraint) [c]i specifies that c resides within the space of agent i. From
an epistemic point of view, the assertion [c]i specifies that agent i considers c to
be true (i.e. that in the world of agent i the assertion c is true). Both intuitions
convey the idea of c being local to agent i.

The Extrusion Problem. Given a space function [·]i, the extrusion problem con-
sists in finding/constructing a right inverse of [·]i, called extrusion function, sat-
isfying some basic requirements (e.g., preservation of finite suprema). By right
inverse of [·]i we mean a function ↑i :Con → Con such that [↑ic]i = c. From a
computational point of view, the intended meaning of [↑ic]i = c is that within a
space context [·]i, ↑ic extrudes c from agent i’s space. From an epistemic point of
view, we can use [↑ic]i to express utterances by agent i, i.e., to specify that agent
i wishes to say c to the outside world. One can then think of extrusion/utterance
as the right inverse of space/belief.

Modal logics [21] extend classical logic to include operators expressing modal-
ities. Depending on the intended meaning of the modalities, a particular modal
logic can be used to reason about space, knowledge, belief or time, among oth-
ers. Some modal logics have been extended with inverse modalities to specify,
for example, past tense assertions in temporal logic [24], utterances in epistemic
logic [13], and backward moves in modal logic for concurrency [19], among others.
Although the notion of spatial constraint system is intended to give an algebraic
account of spatial and epistemic assertions, we shall show that it is sufficiently
robust to give an algebraic account of more general modal assertions.

Contributions. We shall study the extrusion problem for a meaningful family
of scs’s that can be used as semantic structures for modal logics. These scs’s
are called Kripke spatial constraint systems because its elements are Kripke
structures. We shall show that the extrusion functions of Kripke scs’s, i.e. the
right inverses of the space functions, correspond to right inverse modalities in
modal logic. We shall derive a complete characterization for the existence of right
inverses of space functions: The weakest restriction on the elements of Kripke
scs’s that guarantees the existence of right inverses. We shall also give an alge-
braic characterization of the modal logic notion of normality as maps that pre-
serve finite suprema. We then give a complete characterization and derivations of
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extrusion functions that are normal (and thus they correspond to normal inverse
modalities). Finally, we use the above-mentioned contributions to the problem
of whether a given modal language can be extended with right inverse oper-
ators. We discuss the implications of our results for specific modal languages
and modal concepts such the minimal modal logic Kn [10], Hennessy-Milner
logic [14], a modal logic of linear-time [20], and bisimulation.

2 Background: Spatial Constraint Systems

In this section we recall the notion of basic constraint system [3] and the more
recent notion of spatial constraint system [15]. We presuppose basic knowledge
of order theory and modal logic [1,2,10,21].

The concurrent constraint programming model of computation [25] is para-
metric in a constraint system (cs) specifying the structure and interdependencies
of the partial information that computational agents can ask of and post in a
shared store. This information is represented as assertions traditionally referred
to as constraints.

Constraint systems can be formalized as complete algebraic lattices [3]1. The
elements of the lattice, the constraints, represent (partial) information. A con-
straint c can be viewed as an assertion (or a proposition). The lattice order � is
meant to capture entailment of information: c � d, alternatively written d � c,
means that the assertion d represents as much information as c. Thus we may
think of c � d as saying that d entails c or that c can be derived from d. The
least upper bound (lub) operator � represents join of information; c � d, the
least element in the underlying lattice above c and d. Thus c � d can be seen
as an assertion stating that both c and d hold. The top element represents the
lub of all, possibly inconsistent, information, hence it is referred to as false. The
bottom element true represents the empty information.

Definition 1 (Constraint Systems [3]). A constraint system (cs) C is a
complete algebraic lattice (Con, �). The elements of Con are called constraints.
The symbols �, true and false will be used to denote the least upper bound (lub)
operation, the bottom, and the top element of C, respectively.

We shall use the following notions and notations from order theory.

Notation 1 (Lattices). Let C be a partially ordered set (poset) (Con, �).
We shall use

⊔
S to denote the least upper bound (lub) (or supremum or join)

of the elements in S, and
�

S is the greatest lower bound (glb) ( infimum or
meet) of the elements in S. We say that C is a complete lattice iff each subset
of Con has a supremum and an infimum in Con. A non-empty set S ⊆ Con
is directed iff every finite subset of S has an upper bound in S. Also c ∈Con
is compact iff for any directed subset D of Con, c � ⊔

D implies c � d for

1 An alternative syntactic characterization of cs, akin to Scott information systems, is
given in [25].
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some d ∈ D. A complete lattice C is said to be algebraic iff for each c ∈ Con,
the set of compact elements below it forms a directed set and the lub of this
directed set is c. A self-map on Con is a function f :Con → Con. Let (Con,
�) be a complete lattice. The self-map f on Con preserves the supremum of
a set S ⊆ Con iff f(

⊔
S) =

⊔{f(c) | c ∈ S}. The preservation of the infi-
mum of a set is defined analogously. We say f preserves finite/infinite suprema
iff it preserves the supremum of arbitrary finite/infinite sets. Preservation of
finite/infinite infima is defined similarly.

Spatial Constraint Systems. The authors of [15] extended the notion of cs to
account for distributed and multi-agent scenarios where agents have their own
space for local information and for performing their computations.

Intuitively, each agent i has a space function [·]i from constraints to con-
straints. Recall that constraints can be viewed as assertions. We can then think
of [c]i as an assertion stating that c is a piece of information residing within a
space attributed to agent i. An alternative epistemic logic interpretation of [c]i
is an assertion stating that agent i believes c or that c holds within the space of
agent i (but it may not hold elsewhere). Both interpretations convey the idea that
c is local to agent i. Similarly, [[c]j]i is a hierarchical spatial specification stating
that c holds within the local space the agent i attributes to agent j. Nesting of
spaces can be of any depth. We can think of a constraint of the form [c]i � [d]j as
an assertion specifying that c and d hold within two parallel/neighboring spaces
that belong to agents i and j, respectively. From a computational/ concurrency
point of view, we think of � as parallel composition. As mentioned before, from
a logic point of view the join of information � corresponds to conjunction.

Definition 2 (Spatial Constraint System [15]). An n-agent spatial con-
straint system (n-scs) C is a cs (Con,�) equipped with n self-maps [·]1, . . . , [·]n
over its set of constraints Con such that: (S.1) [true]i = true, and (S.2) [c � d]i =
[c]i � [d]i for each c, d ∈ Con.

Axiom S.1 requires space functions to be strict maps (i.e. bottom preserving).
Intuitively, it states that having an empty local space amounts to nothing. Axiom
S.2 states that the information in a given space can be distributed. Notice that
requiring S.1 and S.2 is equivalent to requiring that each [·]i preserves finite
suprema. Also S.2 implies that each [·]i is monotonic: I.e., if c � d then [c]i � [d]i.

Extrusion and utterance. We can also equip each agent i with an extrusion
function ↑i : Con → Con. Intuitively, within a space context [·]i, the assertion ↑ic
specifies that c must be posted outside of (or extruded from) agent i’s space. This
is captured by requiring the extrusion axiom [ ↑ic ]i = c. In other words, we view
extrusion/utterance as the right inverse of space/belief (and thus space/belief as
the left inverse of extrusion/utterance).

Definition 3 (Extrusion). Given an n-scs (Con,�, [·]1, . . . , [·]n), we say that
↑i is extrusion function for the space [·]i iff ↑i is a right inverse of [·]i, i.e., iff
[ ↑ic ]i = c.
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From the above definitions it follows that [c � ↑id]i = [c]i � d. From a spatial
point of view, agent i extrudes d from its local space. From an epistemic view
this can be seen as an agent i that believes c and utters d to the outside world.
If d is inconsistent with c, i.e., c � d = false, we can see the utterance as an
intentional lie by agent i: The agent i utters an assertion inconsistent with their
own beliefs.

The Extrusion/Right Inverse Problem. A legitimate question is: Given
space [·]i can we derive an extrusion function ↑i for it? From set theory we
know that there is an extrusion function (i.e., a right inverse) ↑i for [·]i iff [·]i
is surjective. Recall that the pre-image of y ∈ Y under f : X → Y is the set
f−1(y) = {x ∈ X | y = f(x)}. Thus the extrusion ↑i can be defined as a
function, called choice function, that maps each element c to some element from
the pre-image of c under [·]i.

The existence of the above-mentioned choice function assumes the Axiom
of Choice. The next proposition from [13] gives some constructive extrusion
functions. It also identifies a distinctive property of space functions for which a
right inverse exists.

Proposition 1. Let [·]i be a space function of scs. Then

1. If [false]i 	= false then [·]i does not have any right inverse.
2. If [·]i is surjective and preserves arbitrary suprema then ↑i : c 
→ ⊔

[c]−1
i is a

right inverse of [·]i and preserve arbitrary infima.
3. If [·]i is surjective and preserves arbitrary infima then ↑i : c 
→ �

[c]−1
i is a

right inverse of [·]i and preserve arbitrary suprema.

We have presented spatial constraint systems as algebraic structures for spatial
and epistemic behaviour as that was their intended meaning. Nevertheless, we
shall see that they can also provide an algebraic structure to reason about Kripke
models with applications to modal logics.

In Sect. 4 we shall study the existence, constructions and properties of right
inverses for a meaningful family of scs’s; the Kripke scs’s. The importance of
such a study is the connections we shall establish between right inverses and
reverse modalities which are present in temporal, epistemic and other modal
logics. Property (1) in Proposition 1 can be used as a test for the non-existence
of a right-inverse. The space functions of Kripke scs’s preserve arbitrary suprema,
thus Property (2) will be useful. They do not preserve in general arbitrary (or
even finite) infima so we will not apply Property (3).

It is worth to point out that the derived extrusion ↑i in Property (3), preserves
arbitrary suprema, this implies ↑i is normal in a sense we shall make precise next.
Normal self-maps give an abstract characterization of normal modal operators, a
fundamental concept in modal logic. We will be therefore interested in deriving
normal inverses.
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3 Constraint Frames and Normal Self Maps

Spatial constraint systems are algebraic structures for spatial and mobile behav-
ior. By building upon ideas from Geometric Logic and Heyting Algebras [26]
we can also make them suitable as semantics structures for modal logic. In this
section we give an algebraic characterization of the concept of normal modality
as those maps that preserve finite suprema.

We can define a general form of implication by adapting the corresponding
notion from Heyting Algebras to constraint systems. Intuitively, a Heyting impli-
cation c → d in our setting corresponds to the weakest constraint one needs to
join c with to derive d: i.e., the greatest lower bound

�{e | e � c � d}. Similarly,
the negation of a constraint c, written ∼c, can be seen as the weakest constraint
inconsistent with c, i.e., the greatest lower bound

�{e | e � c � false} = c →
false.

Definition 4 (Constraint Frames). A constraint system (Con,�) is said to
be a constraint frame iff its joins distribute over arbitrary meets: More precisely,
c � �

S =
�{c � e | e ∈ S} for every c ∈ Con and S ⊆ Con. Given a

constraint frame (Con,�) and c, d ∈ Con, define Heyting implication c → d as�{e ∈ Con | c � e � d} and Heyting negation ∼c as c → false.

The following basic properties of Heyting implication are immediate conse-
quences of the above definitions.

Proposition 2. Let (Con,�) be a constraint frame. For every c, d, e ∈ Con we
have: (1) c�(c → d) = c�d, (2) c � (d → e) iff c�d � e, and (3) c → d = true
iff c � d.

In modal logics one is often interested in normal modal operators. The formulae
of a modal logic are those of propositional logic extended with modal operators.
Roughly speaking, a modal logic operator m is normal iff (1) the formula m(φ)
is a theorem (i.e., true in all models for the underlying modal language) when-
ever the formula φ is a theorem, and (2) the implication formula m(φ ⇒ ψ) ⇒
(m(φ) ⇒ m(ψ)) is a theorem. Since constraints can be viewed as logic assertions,
we can think of modal operators as self-maps on constraints. Thus, using Heyt-
ing implication, we can express the normality condition in constraint frames as
follows.

Definition 5 (Normal Maps). Let (Con,�) be a constraint frame. A self-
map m on Con is said to be normal if (1) m(true) = true and (2) m(c → d) →
(m(c) → m(d)) = true for each c, d ∈ Con.

We now prove that the normality requirement is equivalent to the requirement of
preserving finite suprema. The next theorem basically states that Condition (2)
in Definition 5 is equivalent to the seemingly simpler condition: m(c � d) =
m(c) � m(d).
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Theorem 1 (Normality & Finite Suprema). Let C be a constraint frame
(Con,�) and let f be a self-map on Con. Then f is normal if and only if f
preserves finite suprema.

Proof. It suffices to show that for any bottom preserving self-map f , ∀c, d ∈
Con : f(c → d) → (f(c) → f(d)) = true iff ∀c, d ∈ Con : f(c � d) = f(c) � f(d).
(Both conditions require f to be bottom preserving, i.e., f(true) = true, and
preservation of non-empty finite suprema is equivalent to the preservation of
binary suprema.) Here we show the only-if direction (the other direction is
simpler).

Assume that ∀c, d ∈ Con : f(c → d) → (f(c) → f(d)) = true. Take two
arbitrary c, d ∈ Con. We first prove f(c � d) � f(c) � (d). From the assumption
and Proposition 2(3) we obtain

f((c � d) → d) � f(c � d) → f(d). (1)

From Proposition 2(3) (c � d) → d = true. Since f(true) = true we have
f((c � d) → d) = true. We must then have, from Eq. 1, f(c � d) → f(d) = true
as well. Using Proposition 2(3) we obtain f(c � d) � f(d). In a similar fashion,
by exchanging c and d in Eq. 1, we can obtain f(d � c) � f(c). We can then
conclude f(c � d) � f(c) � f(d) as wanted.

We now prove f(c) � f(d) � f(c � d). From the assumption and Propo-
sition 2(3) we have

f(c → (d → c � d)) � f(c) → f(d → c � d). (2)

Using Proposition 2 one can verify that c → (d → c � d) = true. Since
f(true) = true then f(c → (d → c � d)) = true. From Eq. 2, we must then
have f(c) → f(d → c � d) = true and by using Proposition 2(3) we conclude
f(c) � f(d → c � d). From the assumption and Proposition 2(3) f(d → c � d) �
f(d) → f(c � d). We then have f(c) � f(d → c � d) � f(d) → f(c � d).
Thus f(c) � f(d) → f(c � d) and then using Proposition 2(2) we obtain
f(c) � f(d) � f(c � d) as wanted. �
By applying the above theorem, we can conclude that space functions from con-
straint frames are indeed normal self-maps, since they preserve finite suprema.

4 Extrusion Problem for Kripke Constraint Systems

This is the main and more technical part of the paper. Here we will study the
extrusion/right inverse problem for a meaningful family of spatial constraint
systems (scs’s); the Kripke scs. In particular we shall derive and give a complete
characterization of normal extrusion functions as well as identify the weakest
condition on the elements of the Kripke scs’s under which extrusion functions
may exist. To illustrate the importance of this study it is convenient to give some
intuition first.
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Kripke structures (KS) [16] are a fundamental mathematical tool in logic
and computer science. They can be seen as transition systems and they are
used to give semantics to modal logics. A KS M provides a relational structure
with a set of states and one or more accessibility relations i−→M between them:
s

i−→M t can be seen as a transition, labelled with i, from s to t in M . Broadly
speaking, the Kripke semantics interprets each modal formula φ as a certain
set �φ� of pairs (M, s), called pointed KS’s, where s is a state of the KS M . In
modal logics with one or more modal (box) operators �i, the formula �iφ is
interpreted as ��iφ� = {(M, s) | ∀t : s

i−→M t, (M, t) ∈ �φ�}.
Analogously, in a Kripke scs each constraint c is equated to a set of pairs

(M, s) of pointed KS. Furthermore, we have [c]i = {(M, s) | ∀t : s
i−→M

t, (M, t) ∈ c}. This means that formulae can be interpreted as constraints and
in particular �i can be interpreted by [·]i as ��iφ� = [ �φ� ]i.

Inverse modalities �−1
i , also known as reverse modalities, are used in many

modal logics. In tense logics they represent past operators [22] and in epis-
temic logic they represent utterances [13]. The basic property of a (right) inverse
modality is given by the axiom �i(�−1

i φ) ⇔ φ. In fact, given a modal logic one
may wish to see if it can be extended with reverse modalities (e.g., is there a
reverse modality for the always operator of temporal logic?).

Notice that if we have an extrusion function ↑i for [·]i we can provide the
semantics for inverse modalities �−1

i by letting ��−1
i φ� = ↑i( �φ� ). We then have

��i(�−1
i φ)� = �φ� thus validating the axiom �i(�−1

i φ) ⇔ φ. This illustrates the
relevance of deriving extrusion functions and establishing the weakest conditions
under which they exist. Furthermore, the algebraic structure of Kripke scs may
help us stating derived properties of the reverse modality such as that of being
normal (Definition 5).

4.1 KS and Kripke SCS

We begin by recalling some notions and notations related to Kripke models.

Definition 6 (Kripke Structures). An n-agent Kripke Structure (KS) M
over a set of atomic propositions Φ is a tuple (S, π,R1, . . . ,Rn) where S is a
nonempty set of states, π : S → (Φ → {0, 1}) is an interpretation associating
with each state a truth assignment to the primitive propositions in Φ, and Ri is
a binary relation on S. A pointed KS is a pair (M, s) where M is a KS and s
is a state of M .

We shall use the following notation in the rest of the paper.

Notation 2. Each Ri is referred to as the accessibility relation for agent i. We
shall use i−→M to refer to the accessibility relation of agent i in M . We write
s

i−→M t to denote (s, t) ∈ Ri. We use �i(M, s) = {(M, t) | s
i−→M t} to

denote the pointed KS reachable from the pointed KS (M, s). The interpretation
function π tells us what primitive propositions are true at a given state: p holds
at state s iff π(s)(p) = 1. We shall use SM and πM to denote the set of states
and interpretation function of M .
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We now define the Kripke scs wrt a set Sn(Φ) of pointed KS.

Definition 7 (Kripke Spatial Constraint Systems [15]). Let Sn(Φ) be a
non-empty set of n-agent Kripke structures over a set of primitive propositions Φ
and let Δ be the set of all pointed Kripke structures (M, s) such that M ∈ Sn(Φ).
We define the Kripke n-scs for Sn(Φ) as K(Sn(Φ)) = (Con,�, [·]1, . . . , [·]n)
where Con = P(Δ), � = ⊇, and

[c]i
def= {(M, s) ∈ Δ | �i(M, s) ⊆ c}. (3)

The structure K(Sn(Φ)) = (Con,�, [·]1, . . . , [·]n) is a complete algebraic lattice
given by a powerset ordered by reversed inclusion ⊇. The join � is set intersec-
tion, the meet  is set union, the top element false is the empty set ∅, and bottom
true is the set Δ of all pointed Kripke structures (M, s) with M ∈ Sn(Φ). Notice
that K(Sn(Φ)) is a frame since meets are unions and joins are intersections so the
distributive requirement is satisfied. Furthermore, each [·]i preserves arbitrary
suprema (intersection) and thus, from Theorem 1 it is a normal self-map.

Proposition 3. Let K(Sn(Φ)) = (Con,�, [·]1, . . . , [·]n) as in Definition 7. Then
(1) K(Sn(Φ)) is a spatial constraint frame and (2) each [·]i preserves arbitrary
suprema.

4.2 Existence of Right Inverses

We shall now address the question of whether a given Kripke constraint sys-
tem can be extended with extrusion functions. We shall identify a sufficient and
necessary condition on accessibility relations for the existence of an extrusion
function ↑i given the space [·]i. We shall also give explicit right inverse construc-
tions.

Notation 3. For notational convenience, we take the set Φ of primitive propo-
sitions and n to be fixed from now on and omit them from the notation. E.g., we
write M instead of Mn(Φ).

The following notions play a key role in our complete characterization, in terms
of classes of KS, of the existence of right inverses for Kripke space functions.

Definition 8 (Determinacy and Unique-Determinacy). Let S and R be
the set of states and an accessibility relation of a KS M , respectively. Given
s, t ∈ S, we say that s determines t wrt R if (s, t) ∈ R. We say that s uniquely
determines t wrt R if s is the only state in S that determines t wrt R. A state
s ∈ S is said to be determinant wrt R if it uniquely determines some state
in S wrt R. Furthermore, R is determinant-complete if every state in S is
determinant wrt R.

Example 1. Figure 1 illustrates some typical determinant-complete accessibility
relations for agent i. Notice that any determinant-complete relation i−→M is
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(iii)M3
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u3
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i
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i

i

i

i

i

(iv) M4

v

i

(v) M5

Fig. 1. Accessibility relations for an agent i. In each sub-figure we omit the correspond-

ing KS Mk from the edges and draw s
i−→ t whenever s

i−→Mk t.

necessarily serial (or left-total): i.e., For every s ∈ SM , there exists t ∈ SM

such that s
i−→M t. Tree-like accessibility relations where all paths are infinite

are determinant-complete (Fig. 1(ii) and (iii)). Also some non-tree like struc-
tures such as Fig. 1(i) and (v). Figure 1(iv) shows a non determinate-complete
accessibility relation by taking the transitive closure of Fig. 1(iii).

We need to introduce some notation.

Notation 4. Recall that �i(M, s) = {(M, t) | s
i−→M t} where i−→M denotes

the accessibility relation of agent i in the KS M. We extend this definition to
sets of states as follows �i(M,S) =

⋃
s∈S �i(M, s). Furthermore, we shall write

s
i

�M t to mean that s uniquely determines t wrt i−→M .

The following proposition gives an alternative definition of determinant states.

Proposition 4. Let s ∈ SM . The state s is determinant wrt i−→M if and only
if for every S′ ⊆ SM : If �i(M, s) ⊆ �i(M,S′) then s ∈ S′.

The following theorem provides a complete characterization, in terms of classes
of KS, of the existence of right inverses for space functions.

Theorem 2 (Completeness). Let [·]i be a spatial function of a Kripke scs
K(S). Then [·]i has a right inverse if and only if for every M ∈ S the accessibility

relation i−→M is determinant-complete.
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Proof. – Suppose that for every M ∈ S, i−→M is determinant-complete. By
the Axiom of Choice, [·]i has a right inverse if [·]i is surjective. Thus, it
suffices to show that for every set of pointed KS d, there exists a set of
pointed KS c such that [c]i = d. Take an arbitrary d and let c = �i(M ′, S′)
where S′ = {s | (M, s) ∈ d}. From Definition 7 we conclude d ⊆ [c]i. It
remains to prove d ⊇ [c]. Suppose d 	⊇ [c]. Since d ⊆ [c] we have d ⊂ [c].
Then there must be a (M ′, s′), with M ′ ∈ S, such that (M ′, s′) 	∈ d and
(M ′, s′) ∈ [c]. But if (M ′, s′) ∈ [c]i then from Definition 7 we conclude that�i(M ′, s′) ⊆ c = �i(M ′, S′). Furthermore (M ′, s′) 	∈ d implies s′ 	∈ S′. It then
follows from Proposition 4 that s′ is not determinant wrt i−→M ′ . This leads
us to a contradiction since i−→M ′ is supposed to be determinant-complete.

– Suppose [·]i has a right inverse. By the Axiom of Choice, [·]i is surjective.

We claim that i−→M is determinant-complete for every M ∈ S. To show this
claim let us assume that there is M ′ ∈ S such that i−→M is not determinant-
complete. From Proposition 4 we should have s ∈ S and S′ ⊆ S such that�i(M ′, s) ⊆ �i(M ′, S′) and s 	∈ S′. Since [c′]i is surjective there must be
a set of pointed KS c′ such that {(M ′, s′) | s′ ∈ S′} = [c′]i. We can then
verify, using Definition 7, that �i(M,S′) ⊆ c′. Since �i(M ′, s) ⊆ �i(M ′, S′)
then �i(M ′, s) ⊆ c′. It then follows from Definition 7 that (M ′, s) ∈ [c′]i. But
[c′]i = {(M ′, s′) | s′ ∈ S′} then s ∈ S′, a contradiction. �

Henceforth we use MD to denote the class of KS’s whose accessibility relations
are determinant-complete. It follows from Theorem 2 that S = MD is the largest
class for which space functions of a Kripke scs K(S) have right inverses.

4.3 Right Inverse Constructions

Let K(S) = (Con,�, [·]1, . . . , [·]n) be the Kripke scs. The Axiom of Choice and
Theorem 2 tell us that each [·]i has a right inverse (extrusion function) if and
only if S ⊆ MD. We are interested, however, in explicit constructions of the right
inverses.

Remark 1. Recall that any Kripke scs K(S) = (Con,�, [·]1, . . . , [·]n) is ordered
by reversed inclusion (i.e., c � d iff d ⊆ c). Thus, for example, saying that some
f is the least function wrt ⊆ satisfying certain conditions is equivalent to saying
that f is the greatest function wrt � satisfying the same conditions. As usual
given two self-maps f and g over Con we define f � g iff f(c) � g(c) for every
c ∈ Con.

Since any Kripke scs space function preserve arbitrary suprema (Proposition 3),
we can apply Proposition 1.2 to obtain the following canonical greatest right-
inverse construction. Recall that the pre-image of c under [·]i is given by [c]−1

i =
{d | c = [d]i}.
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Definition 9 (Max Right Inverse). Let K(S) = (Con,�, [·]1, . . . , [·]n) be
a Kripke scs over S ⊆ MD. We define ↑M

i
as the following self-map on Con:

↑M
i

: c 
→ ⊔
[c]−1

i .

It follows from Proposition 1.2 that ↑M
i

is a right inverse for [·]i, and furthermore,
from its definition it is clear that ↑M

i
is the greatest right inverse of [·]i wrt �.

Nevertheless, as stated in the following proposition, ↑M
i

is not necessarily
normal in the sense of Definition 5. To state this more precisely, let us first
extend the terminology in Definition 8.

Definition 10 (Indeterminacy and Multiple Determinacy). Let S and
R be the set of states and an accessibility relation of a KS M , respectively. Given
t ∈ S, we say that t is determined wrt R if there is s ∈ S such that s determines
t wrt R, else we say that t is indetermined (or initial) wrt R. Similarly, we say
that t is multiply, or ambiguously, determined if it is determined by at least two
different states in S wrt R.

The following statement and Theorem 1 lead us to conclude that the presence
of indetermined/initial states or multiple-determined states causes ↑M

i
not to be

normal.

Proposition 5. Let K(S) = (Con,�, [·]1, . . . , [·]n) and ↑M
i

as in Definition 9.

Let nd(S) = {(M, t) | M ∈ S & t is indetermined wrt i−→M} and md(S) =
{(M, t) | M ∈ S & t is multiply determined wrt i−→M}:
– If nd(S) 	= ∅ then ↑M

i
(true) 	= true.

– If md(S) 	= ∅ then ↑M
i
(c � d) 	= ↑M

i
(c) � ↑M

i
(d) for some c, d ∈ Con.

In what follows we shall identify right inverse constructions that are normal.
The notion of indeterminacy and multiply determinacy we just introduced in
Definition 10 will play a central role.

4.4 Normal Right Inverses

The following central lemma provides distinctive properties of any normal right
inverse.

Lemma 1. Let K(S) = (Con,�, [·]1, . . . , [·]n) be the Kripke scs over S ⊆ MD.
Suppose that f is a normal right-inverse of [·]i. Then for every M ∈ S, c ∈ Con:

1. �i(M, s) ⊆ f(c) if (M, s) ∈ c,
2. {(M, t)} ⊆ f(c) if t is multiply determined wrt i−→M , and
3. true ⊆ f(true).

The above property tell us what sets should necessarily be included in every
f(c) if f is to be both normal and a right inverse of [·]i. It turns out that it is
sufficient to include exactly those sets to obtain a normal right inverse of [·]i. In
other words the above lemma gives us a complete set of conditions for normal
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right inverses. In fact, the least self-map f wrt ⊆, i.e., the greatest one wrt the
lattice order �, satisfying Conditions 1, 2 and 3 in Lemma 1 is indeed a normal
right-inverse. We call such a function the max normal right inverse ↑MN

i
and is

given below.

Definition 11 (Max Normal-Right Inverse). Let K(S) = (Con,�, [·]1, . . . ,
[·]n) be a Kripke scs over S ⊆ MD. We define the max normal right inverse for
agent i, ↑MN

i
as the following self-map on Con:

↑MN
i

(c) def=

{
true if c = true

{(M, t) | t is determined wrt i−→M & ∀s : s
i

�M t, (M, s) ∈ c}
(4)

(Recall that s
i

�M t means that s uniquely determines t wrt i−→M .)

We now state that ↑MN
i

(c) is the greatest normal right inverse of [·]i wrt �.

Theorem 3. Let K(S) = (Con,�, [·]1, . . . , [·]n) and ↑MN
i

as in Definition 11.

– The self-map ↑MN
i

is a normal right inverse of [·]i,
– For every normal right-inverse f of [·]i, we have f � ↑MN

i
.

Notice that ↑MN
i

(c) excludes undetermined states if c 	= true. It turns out that we
can add them and obtain a more succinct normal right inverse:

Definition 12 (Normal Inverse). Let K(S) = (Con,�, [·]1, . . . , [·]n) be a
Kripke scs over S ⊆ MD. Define ↑N

i
: Con → Con as ↑N

i
(c) def= {(M, t) | ∀s :

s
i

�M t, (M, s) ∈ c}.

Clearly ↑N
i
(c) includes every (M, t) such that t is indetermined wrt i−→M .

Theorem 4. Let K(S) = (Con,�, [·]1, . . . , [·]n) and ↑N
i

as in Definition 12. The
self-map ↑N

i
is a normal right inverse of [·]i.

We conclude this section with the order of the right-inverses we identified.

Corollary 1. Let K(S) = (Con,�, [·]1, . . . , [·]n) be a Kripke scs over S ⊆
MD. Let ↑M

i
, ↑MN

i
, and ↑N

i
as in Definitions 9, 11 and 12, respectively. Then

↑N
i

� ↑MN
i

� ↑M
i
.

5 Applications

In this section we will apply and briefly discuss the results obtained in the
previous section in the context of modal logic. First we recall the notion of
modal language.
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Definition 13 (Modal Language). Let Φ be a set of primitive propositions.
The modal language Ln(Φ) is given by the following grammar: φ, ψ, . . . := p |
φ ∧ ψ | ¬φ | �iφ where p ∈ Φ and i ∈ {1, . . . , n}. We shall use the abbreviations
φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ ⇒ ψ for ¬φ ∨ ψ, φ ⇔ ψ for (φ ⇒ ψ) ∧ (ψ ⇒ φ), the
constant false ff for p ∧ ¬p, and the constant tt for ¬ff.

We say that a pointed KS (M, s) satisfies φ iff (M, s) |= φ where |= is defined
inductively as follows: (M, s) |= p iff πM (s)(p) = 1, (M, s) |= φ∧ψ iff (M, s) |=
φ and (M, s) |= ψ, (M, s) |= ¬φ iff (M, s) 	|= φ, and (M, s) |= �iφ

iff (M, t) |= φ for every t such that s
i−→M t. This notion of satisfiability is

invariant under a standard equivalence on Kripke structures: Bisimilarity, itself
a central equivalence in concurrency theory [14].

Definition 14 (Bisimilarity). Let B be a symmetric relation on pointed KS’s.
The relation is said to be a bisimulation iff for every ((M, s), (N, t)) ∈ B:
(1) πM (s) = πN (t) and (2) if s

i−→M s′ then there exists t′ s.t. t
i−→N t′

and ((M, s′), (N, t′)) ∈ B. We say that (M, s) and (N, t) are bisimilar, written
(M, s) ∼ (N, t) if there exists a bisimulation B such that ((M, s), (N, t)) ∈ B.

The well-known result of bisimilarity-invariance for modal satisfiability implies
that (M, s) and (M, t) satisfy the same formulae in Ln(Φ) whenever (M, s) ∼
(N, t) [14].

Modal logics are typically interpreted over different classes of KS’s obtained
by imposing conditions on their accessibility relations. Let Sn(Φ) be a non-empty
set of n-agent Kripke structures over a set of primitive propositions Φ. A modal
formula φ is said to be valid in Sn(Φ) iff (M, s) |= φ for each (M, s) such that
M ∈ Sn(Φ).

We can interpret modal formulae as constraints in a given Kripke scs C =
K(Sn(Φ)) as follows.

Definition 15 (Kripke Constraint Interpretation). Let C be a Kripke scs
K(Sn(Φ)). Given a modal formula φ in the modal language Ln(Φ), its interpre-
tation in the Kripke scs C is the constraint C�φ� inductively defined as follows:

C�p� = {(M, s) | πM (s)(p) = 1}
C�φ ∧ ψ� = C�φ� � C�ψ�

C�¬φ� = ∼ C�φ�

C��iφ� = [ C�φ� ]i

Remark 2. One can verify that for any Kripke scs K(Sn(Φ)), the Heyting nega-
tion ∼ c (Definition 4) is Δ\c where Δ is the set of all pointed Kripke structures
(M, s) such that M ∈ Sn(Φ) (i.e., boolean negation). Similarly, Heyting impli-
cation c → d is equivalent to (∼ c) ∪ d (i.e., boolean implication).

It is easy to verify that the constraint C�φ� includes those pointed KS (M, s),
where M ∈ Sn(Φ), such that (M, s) |= φ. Thus, φ is valid in Sn(Φ) if and only
if C�φ� = true.
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Notice that from Proposition 3 and Theorem 1, each space function [·]i of
K(Sn(Φ)) is a normal self-map. From Definitions 5 and 15 we can derive the
following standard property stating that �i is a normal modal operator: (Neces-
sitation) If φ is valid in Sn(Φ) then �iφ is valid in Sn(Φ), and (Distribution)
�i(φ ⇒ ψ) ⇒ (�iφ ⇒ �iψ) is valid in Sn(Φ).

Right-Inverse Modalities. Reverse modalities, also known as inverse modal-
ities, arise naturally in many modal logics. For example in temporal logics they
are past operators [20], in modal logics for concurrency they represent backward
moves [19], in epistemic logic they correspond to utterances [13].

To illustrate our results in the previous sections, let us fix a modal lan-
guage Ln(Φ) (whose formulae are) interpreted in an arbitrary Kripke scs C =
K(Sn(Φ)). Suppose we wish to extend it with modalities �−1

i , called reverse
modalities also interpreted over the same set of KS’s Sn(Φ) and satisfying some
minimal requirement. The new language is given by the following grammar.

Definition 16 (Modal Language with Reverse Modalities). Let Φ be a
set of primitive propositions. The modal language L+r

n (Φ) is given by the fol-
lowing grammar: φ, ψ, . . . := p | φ ∧ ψ | ¬φ | �iφ | �−1

i φ where p ∈ Φ and
i ∈ {1, . . . , n}.

The minimal semantic requirement for each �−1
i is that, regardless of the inter-

pretation we give to �−1
i φ, we should have:

�i�−1
i φ ⇔ φ valid in Sn(Φ). (5)

We then say that �−1
i is a right-inverse modality for �i (by analogy to the

notion of right-inverse of a function).
Since C��iφ� = [ C�φ� ]i, we can use the results in the previous sections to

derive semantic interpretations for �−1
i φ by using a right inverse ↑i for the space

function [·]i in Definition 15. Assuming that such a right inverse exists, we can
then interpret the reverse modality in C as

C��−1
i φ� = ↑i( C�φ� ). (6)

Since each ↑i is a right inverse of [·]i, it is easy to verify that the interpretation
satisfies the requirement in Eq. 5. Furthermore, from Theorem 2 we can conclude
that for each M ∈ Sn(Φ), i−→M must necessarily be determinant-complete.

Normal Inverse Modalities. We can choose ↑i in Eq. 6 from the set
{↑N

i
, ↑MN

i
, ↑M

i
} of right-inverse constructions in Sect. 4.3. Assuming that ↑i is a

normal self-map (e.g., either ↑N
i

or ↑MN
i

), we can show from Definition 5 and Eq. 6
that �−1

i is itself a normal modal operator in the following sense: (1) If φ is valid
in Sn(Φ) then �−1

i φ is valid in Sn(Φ), and (2) �−1
i (φ ⇒ ψ) ⇒ (�−1

i φ ⇒ �−1
i ψ)

is valid in Sn(Φ).

Inconsistency Invariance. Since we assumed a right inverse for [·]i, from
Proposition 1(1) we should have

¬�iff valid in Sn(Φ) (7)
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(recall that ff is the constant false). Indeed using the fact that [·]i is a normal
self-map with an inverse ↑i and Theorem 1, we can verify the following:

C��iff� = C��i(ff ∧ �−1
i ff)� = C��iff ∧ �i�−1

i ff� = C��iff ∧ ff� = C�ff�

This implies �iff ⇔ ff is valid in Sn(Φ) and this means that ¬�iff is valid in
Sn(Φ).

Modal systems such Kn or Hennessy-Milner logic [14] where ¬�iff is not
an axiom cannot be extended with a reverse modality satisfying Eq. 5 (without
restricting their models). The issue is that the axiom ¬�iff, typically needed in
epistemic, doxastic and temporal logics, would require the accessibility relations
of agent i to be serial (recall that determinant-complete relations are necessarily
serial). In fact �iff is used in HM logic to express deadlocks wrt to i; (M, s) |=
�iff iff there is no s′ such that s

i−→M s′. Clearly there cannot be state deadlocks
wrt i if i−→M is required to be serial for each M .

Bisimilarity Invariance. Recall that bisimilarity invariance says that bisimilar
pointed KS’s satisfy the same formulae in Ln(Φ). The addition of a reverse
modality �−1

i may violate this invariance: Bisimilar pointed KS’s may not longer
satisfy the same formulae in L+r

n (Φ). This can be viewed as saying that the
addition of inverse modalities increases the distinguishing power of the original
modal language. We prove this next.

Let us suppose that the chosen right inverse ↑i in Eq. 6 is any normal self-map
whatsoever. It follows from Lemma 1(2) and Eq. 6 that if t is multiply-determined
wrt i−→M then (M, t) |= �−1

i ff. We can use Lemma 1(1) and Eq. 6 to show
that if t is uniquely determined wrt i−→M then (M, t) 	|= �−1

i ff.
Now take v and s4 as in Fig. 1. Suppose that πM5(v) = πM1(si) for every si

in the states of M1. Clearly (M1, s4) ∼ (M5, v). Since s4 is multiply determined
and v is uniquely determined, we conclude that (M1, s4) |= �−1

i ff but (M1, v) 	|=
�−1

i ff. Thus �−1
i ff can tell uniquely determined states from multiply determined

ones but bisimilarity cannot.

Temporal Operators. We conclude this section with a brief discussion on
some right-inverse linear-time modalities. Let us suppose that n = 2 in our
modal language Ln(Φ) under consideration (thus interpreted in Kripke scs C =
K(S2(Φ)). Assume further that the intended meaning of the two modalities �1

and �2 are the next operator (©) and the henceforth/always operator (�),
respectively, in a linear-time temporal logic. To obtain the intended meaning
we take S2(Φ) to be the largest set such that: If M ∈ S2(Φ), M is a 2-agent
KS where 1−→M is isomorphic to the successor relation on the natural numbers
and 2−→M is the reflexive and transitive closure of 1−→M . The relation 1−→M is
intended to capture the linear flow of time. Intuitively, s

1−→M t means t is the
only next state for s. Similarly, s

2−→M t for s 	= t is intended to capture the
fact that t is one of the infinitely many future states for s.

Let us first consider the next operator �1 = ©. Notice that 1−→M is
determinant-complete. If we apply Eq. 6 with ↑1 = ↑M

1
, i.e., the greatest right
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inverse of [·]1, we obtain �−1
1 = �, a past modality known in the literature as

strong previous operator [20]. The operator � is given by (M, t) |= � φ iff
there exists s such that s

M−→1 t and (M, s) |= φ. If we take ↑i to be the normal
right inverse ↑N

i
, we obtain �−1

1 = �̃ the past modality known as weak previous

operator [20]. The operator �̃ is given by (M, t) |= �̃ φ iff for every s if s
M−→1 t

then (M, s) |= φ. Notice that the only difference between the two operators is
the following: If s is an indetermined/initial state wrt 1−→M then (M, s) 	|= � φ
and (M, s) |= �̃ φ for any φ.

Let us now consider the always operator �2 = �. Notice that 2−→M is not
determinant-complete: Take any sequence s0

1−→M s1
1−→M . . . The state s1 is

not determinant because for every sj such that s1
2−→M sj we have s0

2−→M sj .
Theorem 2 says that there is no right-inverse ↑2 of [·]i that can give us a �−1

2

satisfying Eq. 5.
By analogy to the above-mentioned past operators, one may think that the

past operator it-has-always-been � [24] may provide a reverse modality for � in
the sense of Eq. 5. The operator is given by (M, t) |= �φ iff (M, s) |= φ for
every s such that s

2−→M t. Clearly ��φ ⇒ φ is valid in S2(Φ) but φ ⇒ �� φ
is not.

6 Concluding Remarks and Related Work

We studied the existence and derivation of right inverses (extrusion) of space
functions for the Kripke spatial constraint systems. We showed that being
determinant-complete is the weakest condition on KS’s that guarantees the exis-
tence of such right inverses. We identified the greatest normal right inverse of
any given space function. We applied these results to modal logic by using space
functions and their right inverses as the semantic counterparts of box modali-
ties and their right inverse modalities. We discussed our results in the context
of modal concepts such as bisimilarity invariance, inconsistency invariance and
temporal modalities.

Most of the related work was discussed in the previous sections. In previous
work [13] the authors derived an inverse modality but only for the specific case
of a logic of belief. The work was neither concerned with giving a complete char-
acterization of the existence of right inverse nor deriving normal inverses. The
constraint systems in this paper can be seen as modal extension of geometric
logic [26]. Modal logics have also been studied from an algebraic perspective by
using modal extensions of boolean and Heyting algebras in [2,4,17]. These works,
however, do not address issues related to inverse modalities. Inverse modalities
have been used in temporal, epistemic and logic for concurrency. In [24] the
authors discuss inverse temporal and epistemic modalities from a proof theory
perspective. The works [5,12,19] use modal logic with reverse modalities for
specifying true concurrency and [6,7] use backward modalities for characteriz-
ing branching bisimulation. None of these works is concerned with an algebraic
approach or with deriving inverse modalities for modal languages.
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2007. LNCS, vol. 4670, pp. 271–285. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74610-2 19

12. Goltz, U., Kuiper, R., Penczek, W.: Propositional temporal logics and equivalences.
In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 222–236. Springer,
Heidelberg (1992). doi:10.1007/BFb0084794

13. Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: An algebraic view of space/belief
and extrusion/utterance for concurrency/epistemic logic. In: PPDP 2015, pp. 161–
172. ACM (2015)

14. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM (JACM) 32(1), 137–161 (1985)

15. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic
modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.)
CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32940-1 23

16. Kripke, S.A.: Semantical considerations on modal logic. Acta Philos. Fennica 16,
83–94 (1963)

17. Macnab, D.: Modal operators on heyting algebras. Algebra Univers. 12(1), 5–29
(1981)

18. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint pro-
gramming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188
(2002)

19. Phillips, I., Ulidowski, I.: A logic with reverse modalities for history-preserving
bisimulations. In: EXPRESS 2011. EPTCS, vol. 64, pp. 104–118 (2011)

http://dx.doi.org/10.1007/3-540-53487-3_53
http://dx.doi.org/10.1007/BFb0039058
http://dx.doi.org/10.1007/978-3-540-74610-2_19
http://dx.doi.org/10.1007/978-3-540-74610-2_19
http://dx.doi.org/10.1007/BFb0084794
http://dx.doi.org/10.1007/978-3-642-32940-1_23
http://dx.doi.org/10.1007/978-3-642-32940-1_23


232 M. Guzmán et al.

20. Pnueli, A., Manna, Z.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

21. Popkorn, S.: First Steps in Modal Logic, 1st edn. Cambridge University Press,
Cambridge (1994)

22. Prior, A.N.: Past, Present and Future, vol. 154. Oxford University Press, Oxford
(1967)
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