
Andrej Brodnik
Françoise Tort (Eds.)

 123

LN
CS

 9
97

3

9th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2016
Münster, Germany, October 13–15, 2016, Proceedings

Informatics in Schools
Improvement of Informatics
Knowledge and Perception

Lecture Notes in Computer Science 9973

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andrej Brodnik • Françoise Tort (Eds.)

Informatics in Schools

Improvement of Informatics
Knowledge and Perception

9th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2016
Münster, Germany, October 13–15, 2016
Proceedings

123

Editors
Andrej Brodnik
University of Ljubljana
Ljubljana
Slovenia

Françoise Tort
ENS Paris-Saclay
Cachan
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46746-7 ISBN 978-3-319-46747-4 (eBook)
DOI 10.1007/978-3-319-46747-4

Library of Congress Control Number: 2016952522

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 9th International Conference on
Informatics in Schools: Situation, Evolution and Perspective – ISSEP 2016. The
conference, held during October 13–15, was hosted at the University of Münster,
Germany. The ISSEP series started in 2005 in Klagenfurt. It was followed by meetings
in Vilnius (2006), Torun (2008), Zürich (2010), Bratislava (2011), Oldenburg (2013),
Istanbul (2014), and Ljubljana (2015).

The conference focuses on educational goals and objectives of informatics or
computer science as a subject matter in primary and secondary schools (K-12 educa-
tion) and their different realization in compulsory and voluntary courses. It provides an
opportunity for researchers and educators to reflect upon the goals and objectives of the
subject, its curricula and various teaching and learning paradigms and topics, possible
connection to every day life, and various ways of establishing informatics education in
schools. Consequently, the papers published in this volume present different aspects of
computer science education and in particular computer science teaching with a goal to
improve informatics knowledge, and what is particular interesting, to change percep-
tion and attitude towards informatics and/or computer science. Papers address many
educational topics including teaching and learning materials, teacher training, various
forms of assessment, traditional and innovative educational research design, motivating
competitions like Bebras, and we are very happy that they also touch issues such as the
motivation of girls for computer science.

This year, the conference was held together with the 11th Workshop in Primary and
Secondary Computing Education – WiPSCE 2016. It gave the opportunity to bring
together both communities and get a broader dissemination of the results.

The conference received 50 submissions. Each submission was reviewed by at least
three Program Committee members and evaluated with respect to its quality, origi-
nality, and relevance to the conference. The committee decided to accept 17 papers to
be published in the LNCS proceedings, which corresponds to 34 % of received papers.
The decision process was made electronically using the EasyChair management sys-
tem. And last but not least, since the ISSEP was colocated with the WiPSCE, this,
besides bringing together a larger community and giving both conferences a bigger
dissemination impact, also made it possible to have three invited talks by Marc J. de
Vries, by Raymond Lister, and by Gilles Dowek. The abstract of the last one is also
included in this volume.

We would like to thank all those who contributed to this conference becoming a
success: the authors who responded to the call for papers, the members of the Program
Committee and the additional reviewers who carefully read the papers and wrote
reports that allowed authors to improve their submissions, the invited speakers who
shared their experience and thinking with the audience. Special thanks also goes to
Georges-Louis Baron, who organized the poster session, and Peter Micheuz for the
organization of work-shops. We would like to warmly thank Jan Vahrenhold, chair of

WIPSCE, who accepted an extra workload by hosting ISSEP and who managed to
make the co-hosting of both conferences a real success. We also thank the members
of the Organizing Committee from the University of Münster.

August 2016 Andrej Brodnik
Françoise Tort

VI Preface

Organization

Program Committee

Marc Berges Technische Universität München, Germany
Miles Berry University of Roehampton, UK
Javier Bilbao University of the Basque Country, Spain
Andreas Bollin University of Klagenfurt, Austria
Andrej Brodnik (Chair) University of Ljubljana and University of Primorska,

Slovenia
Valentina Dagiene Vilnius University, Lithuania
G. Barbara Demo Università Torino, Italy
Ira Diethelm Carl von Ossietzky Universität Oldenburg, Germany
Béatrice Drot-Delange Université Blaise Pascal - Clermont-Ferrand II, France
Michail Giannakos Norwegian University of Science and Technology,

Norway
Yasemin Gulbahar Ankara University, Turkey
Juraj Hromkovic ETH Zurich, Switzerland
Ivan Kalas UCL Institute of Education, UK
Peter Micheuz Alpen-Adria-Universität Klagenfurt, Austria
Christophe Reffay University of Franche-Comté, France
Ralf Romeike Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Carsten Schulte Freie Universität Berlin, Germany
Maciej Syslo Nicolaus Copernicus University in Toruń, University

of Wroclaw, Poland
Françoise Tort (Chair) ENS Paris-Saclay, France
Mary Webb King’s College London, UK

Posters

Georges-Louis Baron Université Paris V René Descartes, France

Workshops

Peter Micheuz Alpen-Adria-Universität Klagenfurt, Austria

Additional Reviewers

Michael Brinkmeier
Markus Dahinden
Spyros Doukakis
Varvara Garneli
Elio Giovannetti

Claudia Hildebrandt
Ludmila Jašková
Mehdi Khaneboubi
Dennis Komm
Pascal Lafourcade

Jens Maue
Malika More
Stéphanie Netto
Sofia Papavlasopoulou
Michal Winczer

Local Organization

Holger Danielsiek Westfälische Wilhelms-Universität Münster, Germany
Dana Glasmeyer Westfälische Wilhelms-Universität Münster, Germany
Jan Vahrenhold Westfälische Wilhelms-Universität Münster, Germany
Mirko Westermeier Westfälische Wilhelms-Universität Münster, Germany

Sponsoring Institution

École Normale Supérieur Université Paris-Saclay, France
Westfälische Wilhelms Universität Münster, Germany

VIII Organization

Elements to Define a Coherent Curriculum
for the K12 Education: The Example of France

(Invited Paper)

Gilles Dowek

Inria, ENS-Cachan, and Société Informatique de France
gilles.dowek@ens-cachan.fr

Since the beginning of this academic year, informatics has been taught at all levels in
the French K12 education system. This required, not only to define a curriculum for
each level, but also to build a global view of this teaching and of its organization over
time. The Scientific Committee of the Société Informatique de France has conducted
such a reflection.

This talk presents the new situation of informatics in the French education system
and some of the conclusions of this reflection.

The main idea is that teaching informatics requires to take into account three forms
of complexity of informatics itself. First, informatics is both a science and a technol-
ogy. Then, it articulates four concepts that existed before it, but that have been com-
pletely renewed. Finally, it is the yeast of a dramatic transformation of the world. This
requires, when teaching informatics, to take care of three equilibria: between scientific
and technological activities, between the concepts, and between the core of the subject
and its interfaces.

A Science and a Technology. Informatics is at the same time a science, that allows to
know, for instance, that there are no linear time sorting algorithms, and a technology
that allows to build, for instance, a program to sort data. The objects built in informatics
are often immaterial and their construction requires different skills than in other
technologies.

Learning how to write programs is a key step when learning informatics, as, this
way, the students become autonomous, and stop using objects built by others, to start
building their own. The students can start programming very early, using graphic
languages, even before recognizing the letters. But the right time to master program-
ming seems to be middle school.

This allows to divide the K12 curriculum in three major steps: discovering the
concepts of informatics in kindergarten and elementary school, mostly using unplugged
activities, acquiring programming skills in middle school, learning informatics as a
science in high school.

The fact that informatics is both a science and a technology also impacts its ped-
agogy, that must be project oriented at all levels. Like when learning to play music,
practicing is essential when learning informatics.

Four Concepts. A computer is a machine that executes algorithms. Although the
concepts of machine and algorithm existed before, they have been completely renewed
by informatics. Letting machines execute algorithms also requires to express them in a
formal language and to express the objects processed by these algorithms as sequences
of symbols. This brought two other concepts to informatics: language and information.
These two concepts too existed before informatics, but have been completely renewed.
At all levels, these concepts must be taught in a balanced way.

For each of these concepts, we can define a progression over time. For instance, we
suggest the following progression for the concept of language. In primary school, the
students may discover the notion of language, through a language describing simple
dance patterns, like “N3; E4; S3” for: three steps north, four steps east, three steps
south, or through the first elements of a programming language. They can also create
such languages by themselves. In middle school, the curriculum is focused on pro-
gramming and programming languages. In high school, they can learn advanced fea-
tures of programming languages, discover the notion of grammar, and invent and
implement their own tiny programming languages.

Similar progressions can be defined for other concepts. The details of the pro-
gressions are not important: it does not really matter whether this or that is taught in
eighth or in ninth grade. What is important is that they exist, so that the curricula for
each level can be defined in a coherent way.

The Yeast of a Transformation of the World. Informatics is the yeast of a dramatic
transformation of the world and this transformation is a wonderful lever to motivate the
students to learn informatics, and science and technology in general.

Informatics transforms the way the students communicate with their friends and, as
this affects them directly, it must be addressed in class. A simplistic, but wrong,
solution is to give to the students a list of “dos and don’ts using social media”, they
would understand neither the origin nor the meaning of. A better approach is to focus
on the properties of digital information—easy duplication, quick communication,
persistence over time…—and let the students define their own good practices on social
media, taking these properties into account.

Some of the questions related to the transformation of society, for instance the
transformation of encyclopedias, impact and motivate everyone. Others, for instance
the evolution of music composition, motivate only the students already interested in
some subject, for instance music. The choice of the topics to be developed thus must be
guided by the area of interest of the students.

In one case and in the other, these topics are wonderful opportunities for inter-
disciplinary projects. The rôle of the informatics teacher in these projects is to relate the
scientific and technological knowledge to their impact on society. For instance it is
pointless to note that the way photographers work has evolved. But it is fruitful to
remark how the digital representation of images has impacted the work of
photographers.

X G. Dowek

Contents

Research Papers

Teaching Computer Image Processing Subject to Middle School Students:
Cognitive and Affective Aspects . 3

Khaled Asad

Analyzing Conceptual Content of International Informatics Curricula
for Secondary Education . 14

Erik Barendsen and Tim Steenvoorden

It’s Computational Thinking! Bebras Tasks in the Curriculum 28
Valentina Dagienė and Sue Sentance

How to Attract the Girls: Gender-Specific Performance and Motivation
in the Bebras Challenge . 40

Peter Hubwieser, Elena Hubwieser, and Dorothee Graswald

Attitudes Towards Computer Science in Secondary Education: Evaluation
of an Introductory Course . 53

Daniel Lessner

Typifying Informatics Teachers’ PCK of Designing Digital Artefacts
in Dutch Upper Secondary Education . 65

Ebrahim Rahimi, Erik Barendsen, and Ineke Henze

Students’ Success in the Bebras Challenge in Lithuania: Focus on a
Long-Term Participation . 78

Gabrielė Stupurienė, Lina Vinikienė, and Valentina Dagienė

What Makes Situational Informatics Tasks Difficult? 90
Jiří Vaníček

Best-Practice Papers and Country Reports

A New Informatics Curriculum for Secondary Education
in The Netherlands . 105

Erik Barendsen, Nataša Grgurina, and Jos Tolboom

And Now What Do We Do with Our Schoolchildren? 118
G. Barbara Demo

http://dx.doi.org/10.1007/978-3-319-46747-4_1
http://dx.doi.org/10.1007/978-3-319-46747-4_1
http://dx.doi.org/10.1007/978-3-319-46747-4_2
http://dx.doi.org/10.1007/978-3-319-46747-4_2
http://dx.doi.org/10.1007/978-3-319-46747-4_3
http://dx.doi.org/10.1007/978-3-319-46747-4_4
http://dx.doi.org/10.1007/978-3-319-46747-4_4
http://dx.doi.org/10.1007/978-3-319-46747-4_5
http://dx.doi.org/10.1007/978-3-319-46747-4_5
http://dx.doi.org/10.1007/978-3-319-46747-4_6
http://dx.doi.org/10.1007/978-3-319-46747-4_6
http://dx.doi.org/10.1007/978-3-319-46747-4_7
http://dx.doi.org/10.1007/978-3-319-46747-4_7
http://dx.doi.org/10.1007/978-3-319-46747-4_8
http://dx.doi.org/10.1007/978-3-319-46747-4_9
http://dx.doi.org/10.1007/978-3-319-46747-4_9
http://dx.doi.org/10.1007/978-3-319-46747-4_10

Defining and Observing Modeling and Simulation in Informatics 130
Nataša Grgurina, Erik Barendsen, Bert Zwaneveld, Klaas van Veen,
and Cor Suhre

K-12 Computer Science Education Across the U.S. 142
Hai Hong, Jennifer Wang, and Sepehr Hejazi Moghadam

Combining the Power of Python with the Simplicity of Logo for a
Sustainable Computer Science Education . 155

Juraj Hromkovič, Tobias Kohn, Dennis Komm, and Giovanni Serafini

A New Interactive Computer Science Textbook in Slovenia 167
Nataša Mori and Matija Lokar

Computer Science in the Eyes of Its Teachers in French-Speaking
Switzerland . 179

Gabriel Parriaux and Jean-Philippe Pellet

Work in Progress

IT2School – Development of Teaching Materials for CS Through
Design Thinking . 193

Ira Diethelm and Melanie Schaumburg

“Why Can’t I Learn Programming?” The Learning and Teaching
Environment of Programming . 199

Zsuzsanna Szalayné Tahy and Zoltán Czirkos

Author Index . 205

XII Contents

http://dx.doi.org/10.1007/978-3-319-46747-4_11
http://dx.doi.org/10.1007/978-3-319-46747-4_12
http://dx.doi.org/10.1007/978-3-319-46747-4_13
http://dx.doi.org/10.1007/978-3-319-46747-4_13
http://dx.doi.org/10.1007/978-3-319-46747-4_14
http://dx.doi.org/10.1007/978-3-319-46747-4_15
http://dx.doi.org/10.1007/978-3-319-46747-4_15
http://dx.doi.org/10.1007/978-3-319-46747-4_16
http://dx.doi.org/10.1007/978-3-319-46747-4_16
http://dx.doi.org/10.1007/978-3-319-46747-4_17
http://dx.doi.org/10.1007/978-3-319-46747-4_17

Research Papers

Teaching Computer Image Processing Subject
to Middle School Students: Cognitive

and Affective Aspects

Khaled Asad1,2(&)

1 Alqasemi Academic College of Education, Baqa-El-Gharbia, Israel
kasad@qsm.ac.il

2 Beit-Berl Academic College of Education, Kfar-Saba, Israel

Abstract. Today’s youth are making extensive use of technological devices
such as smart phones and computers. These devices are based on
inter-disciplinary knowledge. Are these young students attracted to learn the
computer principles that these devices are based on? Many educators agree that
one of the methods to foster learning in school is to connect the topics of study
with students’ interests, experiences and daily life, ‘contextual learning’. This
paper describes a research aimed at examining the case of teaching a course on
computer image processing to middle school students, and evaluating its
influence on students cognitively and effectively. The study included the
development, implementation and evaluation of a computer image-processing
course. The course was taught to 34 9th-grade students in two groups. The
control population comprised 64 9th-grade students in three groups. The study
included developing an instructional model consisting of four phases: teaching
theory, manual and computerized practices, implementing challenging tasks,
and projects. Data were collected by using quantitative and qualitative research
tools, such as two exams, three projects and a half-opened attitude questionnaire
about learning computers, class observations and semi-structured interviews
with students and teachers. Findings showed that young students’ achievements
were very well in learning principles of image processing. In the mathematics
exam, the experimental students’ achievements were significantly higher than
the control students’ achievements. The students showed high motivation and
great interest in learning the course. Finding showed that the instructional model
developed in the study was the main component influencing the experimental
students’ achievements and motivation.

Keywords: Computer science education � Contextual learning �
Interdisciplinary learning � Constructive learning � Mathematics in context

1 Introduction

The educational literature strongly supports the notion of ‘contextual learning’, which
is about engaging students in learning subjects that interest them and close to their
world and daily lives. Mathematics, science and technology are taught in school as
separated subjects and students do not see the connection between them. Furthermore,

© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-46747-4_1

today’s youth are making extensive use of advanced technological devices such as
cellphones, digital cameras and computers. Teaching basic concepts on which these
modern devices are based on could serve as a good platform for fostering student’s
interest in technology and developing their higher-order intellectual skills such as
problem-solving and creativity.

This paper describes a research study that included the development, implemen-
tation and evaluation of a scientific-technological course on computer image pro-
cessing, which is considered a very challenging field [9]. The research was guided by
the following questions: To what extent can middle school students with no back-
ground in computers learn an advanced scientific-technological subject such as image
processing? How would such a course affect their perceptions about the subject matter,
their motivation and interest to pursue a career in computers and technology?

2 Theoretical Background and Related Work

This section first addresses some issues from the educational literature relating to
teaching advanced scientific-technological subjects to young students. After then, it
reviews the contents of the image processing course that was developed and explored
in the research.

2.1 Contextual Learning

The term contextual learning is mainly about learning that relates to a learner’s diverse
life contexts such as at home, leisure time, social or environmental activities, or the
work place [7]. Contextual learning is not only about what students learn but also how
they learn. They learn best when they deal with subjects that related to their own lives
and interests [4]. To gain the best of contextual learning and to achieve significant
learning, the problem or the task should be driven by a question that opens a door to
make a connection between activities and the related underlying conceptual knowledge
[8]. See Sect. 2.3 bellow.

2.2 Interdisciplinary Learning

Interdisciplinary learning is about providing the students with opportunities and space
for learning beyond subject boundaries and making connections between different areas
of learning [15]. Educators in the field of science and technology increasingly recog-
nize the need to develop curricula that combine learning issues in science, technology,
engineering and mathematics (STEM - Science, Technology, Engineering and Math-
ematics). Recently, this approach is intended to reflect the nature of science and
technology, and to increase students’ interest in learning these subjects [6]. Advocates
of more integrated approaches to K–12 STEM education argue that teaching STEM in
a more connected manner, especially in the context of real-world issues, can make the
STEM subjects more relevant to students and teachers [12].

4 K. Asad

2.3 Knowledge Types

Educators emphasize the importance of recognizing the types of knowledge in order to
assess the knowledge acquired by students [11]. In general, it is accepted to distinguish
between three types of knowledge: factual knowledge, procedural knowledge and
conceptual knowledge [1, 11], as follows:

Factual Knowledge is the part of knowledge that describes information such as
names of people, places, dates and events. It is about to know “what”. For example,
many people “know” that their phone digital camera has “8MP”, but maybe, they do
not understand the real meaning of this figure.

Procedural Knowledge clarifies how to do things according to the rules, laws,
formulas or algorithms. It is about to know “how to do”. For example, how to find the
roots of a quadratic equation, or how to calculate the equivalent resistance of resistors
connected in parallel circuit.

Conceptual Knowledge is the knowledge of the relationships and interactions
between knowledge items. It is more complex and more organized than factual
knowledge, and reflects a deep understanding of content. It is about to know “why”.
For example, understanding the concept of “energy” in physics, chemistry and biology;
or understanding the concepts of “ratio and scale” in mathematics and physics. Con-
ceptual knowledge is acquired by a prolonged study and experience, and cannot be
learned directly [3, 11, 14].

The taxonomy of knowledge types presented above represents another dimension
of Bloom’s taxonomy but is not intended to replace it [1].

The image processing course examined in this research was designed to put into
practice some of the ideas reviewed above, contextualizing learning in subjects that are
personally meaningful to the students, integrating the learning of subjects in science,
technology and mathematics, and creating a constructivist learning environment in
which students deal with challenging tasks and having opportunities for peer learning.
However, one must be aware that introducing advanced technological subjects such as
image processing into the school curriculum is not a simple task due to the complexity
of the subject and the need for integrating knowledge from a number of disciplines.
Therefore, the course was designed and delivered according to an instructional model
that combine short instruction periods by the teacher and task-based learning by the
students, as will be detailed later in this paper. Consequently, this research aimed at
exploring students’ learning, achievements and attitudes towards learning the new
subject. More specifically, the research was guided by the following questions:

• What is the impact of learning a course in computer image processing on students in
terms of their achievements in learning the subject and in mathematical aspects
regarding factual, procedural and conceptual knowledge?

• What is the effect of learning the course on students’ motivation to learn computers
at school, and their interest to pursue a computer career in the future?

• What elements of the curriculum and teaching method contributed to or subtracted
from learning the course?

Teaching Computer Image Processing Subject to Middle School Students 5

3 The Computer Image Processing Course

In the presented study, we developed a course on computer image processing that
included the following topics:

• Digital representation of an image: binary and decimal numbers, pixels, resolution,
colors.

• Image processing and enhancement, such as: producing a negative image, amending
and changing the image brightness and contrast by using simple and complex
mathematical operations, such as adding, multiplication and doing histogram
equalization.

• Image formats such as bmp, gif, jpg, png and compression methods such as RLE.
• Advanced mathematical operations for image processing such as, spatial filtering to

remove noise according to the average or median and creating artistic effects.
• Facial recognition – how a computer program can identify an individual by com-

paring its picture to other pictures stored in a database.

3.1 Computer Image Processing as an Interdisciplinary Subject

Computer image processing subject combines knowledge from the fields of science,
mathematics and computer science [13, 17, 18]. Following a primary example from the
course shows the strong connection between image processing and mathematics.

Example: Black-White and Color Images as Matrices of Numbers. An image we
see on a computer screen is a collection of pixels that are stored in a computer memory
as a matrix of numbers. Figure 1 illustrates how a small part of a picture is represented
as a matrix of n � m numbers. Each number in the matrix represents a pixel brightness
level. In black-white images, each pixel is represented by a value that ranges between
(0–255), where 0 represents (full black) and 255 (full white).

Fig. 1. Picture is composed of tiny pixels and each pixel has its own value that represents a
brightness level

6 K. Asad

The numbers 0, 100 and 150 in Fig. 1 are decimals. Students learn the smallest unit
of information in a computer is a bit that is represented by the values 0 or 1. The
brightness of each pixel is represented by 8 bits = 1 byte. Students learn how to
perform conversions in binary to decimal and vice versa. For color images, each pixel
is represented by three numbers in the field (0–255) which represent the three primary
colors: red (R), green (G) and blue (B). Therefore, a color image is represented by three
matrices as the one above. Computer image processing operations, such as changing
the brightness and contrast, moving, mirroring, rotating and noise removing are all
implemented by mathematical operations on the values of the pixels.

The example presented above illustrates the deep connection between the subject of
image processing and mathematics. Hence, one of the goals of this study was to
examine the effect of teaching the course on student achievements in mathematical
concepts related to the topics learnt in the course.

4 The Study

4.1 The Study Plan and Objectives

The central axis of the study involved the development, implementation and evaluation
of a course on computer image processing principles for middle school students. The
study is aimed to evaluate student achievements in learning the principles of computer
image processing and mathematical aspects related to the subject, with respect to three
types of knowledge: factual, procedural and conceptual. The research also examined
the impact of the course on students’ attitudes in terms of interest and motivation in
learning the subject.

4.2 The Study Population

The study took place in a middle school located in city in northern Israel. The study
population comprised of two experimental groups (n1 = 34) and three control groups
(n2 = 64). All students in the groups are of 9th grade. It’s important to say that all 9th
grade classes in school are similar and heterogeneous in terms of students’ achieve-
ments level in each class, according to sorting tests. This allowed us to have similar
groups of experimental and control.

4.3 Teaching the Course

Two qualified computer teachers have taught the course to the two experimental groups
under the supervision of the researcher. The course lasted 15 sessions of 90 min each
and included the study of theoretical and practical learning based on doing exercises,
challenging tasks and projects. As a result of the findings of the pilot study [2] con-
ducted earlier under similar conditions, in the current study we decided to reduce the
theoretical learning part and to increase the learning based on doing tasks and projects.
In the light of the experience gained in the mentioned pilot study, we developed an
instructional model, as shown in Fig. 2.

Teaching Computer Image Processing Subject to Middle School Students 7

The developed instructional model (TEIP) consists of four phases: theoretical
instruction and demonstrations (Theory); Manual and computerized practice (Exer-
cises) at a basic level; Performing challenging tasks and an advanced application by
professional software (Implementation); and Projects (Projects).

According to this model, the teaching-learning goes like this: For each topic, the
teacher gives short explanation and demonstrates a new topic with a presentation, for
25–30 min (Theory). Then, for 30 min, the students practice the theoretical learned
topic manually by hand-worksheet, and do exercise on computer (Exercises). 30 min
left, the students perform challenging tasks and apply the topics learned on a computer
by professional software (implementation). For every three to four sessions students
receive a comprehensive with larger scale tasks as a (project).

In the study and during the course, the experimental students learned authentic
topics, performed preliminary exercises and submitted three projects on topics from
real-world examples and related to students’ daily lives, such as image enhancement,
photographing and measuring building height, and facial recognition. The control
students have not studied the image-processing course; however, they shared the
experimental students the same mathematics regular classes.

4.4 Methodology and Data Collection Tools

In order to assess the impact of students’ learning course cognitively and effectively,
the study combined quantitative and qualitative methods aimed at collecting as much
information as possible on students’ activities in the class, their achievements and their
attitudes towards the course. As a qualitative tools we used a half close-ended ques-
tionnaire and two achievement exams: one exam in image processing principles for the
experimental group and the second exam in the related mathematical topics targeted
both the experimental and the control groups; as a quantitative tools we used class
observations, interviews with students and teachers, and analyzing three projects.

5 Findings

5.1 Achievements in Learning Image Processing Principles

The students’ achievements in image processing were evaluated by a 90 min com-
prehensive exam that conducted at the end of the course and through the analysis and

Fig. 2. Instructional model for teaching scientific-technological subjects

8 K. Asad

evaluation of three projects that were submitted by the students. The exam was com-
posed by the researcher and has been validated by three experts in computer science
education. They examined the validity of the exam in two aspects: examining the exam
questions according to the material content of the course; and the knowledge types that
the exam questions should test. The exam is comprised of seven questions that test
three types of knowledge: factual (38 %), procedural (32 %) and conceptual (30 %).

All the experimental students participated in the image processing exam (N = 34).
The average score of students in three types of knowledge (scale 0–100), were as
follows: factual knowledge �x ¼ 78:2 (SD = 14.95); procedural knowledge �x ¼ 83:1
(SD = 21.43); conceptual knowledge �x ¼ 69:5 (SD = 21.52).

From these results, we learn that middle school students have learned and dealt well
with the study of the subject, although their achievements were lower in the parts that
examined conceptual knowledge than the achievements in the parts that examined
procedural and factual knowledge.

5.2 Achievements in Project Work

As mentioned above, during the course the students performed three projects involving
semi-open tasks, as follows: The first project was about measuring the height of objects
using a digital camera. The second project was about shooting and enhancing pictures.
The third project was about face recognition. For example, the students in the second
project took pictures of things or scenes in different lighting conditions and improved
the pictures by mathematical operations. The students were given a full explanation and
details about the requirements and the learning objectives of each project.

The researcher and two teachers evaluated the students’ projects submitted
according to three assessment indicators. Each indicator covers some aspect to be
considered in each project according to its educational goals. Evaluating the projects
show that the students’ achievements on a scale (0–100) were as follows: Measuring
the height of objects �x ¼ 87:6 (n = 33, SD = 12.09); Enhancement of pictures �x ¼
80:9 (n = 32, SD = 16.23); Face recognition �x ¼ 75:0 (n = 29, SD = 8.27).

From these overall students’ achievements in projects, we learn that the students
have shown a good ability to deal with complex tasks on the subject. The first project
students’ achievements were better than their achievements in the second and third
project, which were more complex.

5.3 Achievements in Learning Mathematical Concepts

The students’ achievements in mathematics were evaluated by a 75-min exam that was
conducted at the end of the course for both the experimental and control students. The
exam was validated by three experts in mathematics education. They examined the
validity of the exam in two aspects: examining the exam questions to match the
mathematics curriculum in middle school, and examining the types of knowledge that
the exam questions should test. The exam included four questions that examine two
types of knowledge: procedural (56 %) and conceptual (44 %). The exam was given in

Teaching Computer Image Processing Subject to Middle School Students 9

parallel for both, the experimental and control groups in the school. In the exam were
participated 33 students from the experimental group and 64 students from the control.
To ensure the evaluation reliability of the exam, it was evaluated by the researcher and
two teachers of mathematics according to an assessment indicator. The graph in Fig. 3
shows the mean scores of the students in the mathematics exam.

By analyzing the school average scores in mathematics of the study’s population,
we found no significant differences between the control and experimental groups. This
finding indicates that the experimental and control groups have the same background in
mathematics.

The scores of the students in the mathematics exam developed in the study show
that the scores of the experimental group were significantly better than the scores of the
control group in procedural knowledge (t(95) = 2.26, p < .05), in conceptual knowledge
(t(95) = 5.95, p < .05) and in the average total scores of the exam (t(95) = 4.47,
p < .05). These findings indicate a positive impact of learning computer image pro-
cessing topic on student achievements in mathematics.

The graph in Fig. 3 shows that while the gap between the conceptual and the
procedural knowledge average score is about 21 points in the experimental group, this
gap is approximate 37 points in the control groups. This finding could indicate that the
experimental students have acquired conceptual knowledge of the mathematical topics
that were tested in the exam are beyond the ordinary materials that have been taught in
math classes at school. That is, due to the research course, the significant change in the
experimental students compared to students in the control groups was gaining con-
ceptual knowledge. This is related to the fact that the mathematical concepts in the
course were learnt in context of image processing.

Fig. 3. The average scores for the experimental and control groups in mathematics exam

10 K. Asad

5.4 Students’ Attitudes

In addition to the achievement results mentioned above, the study examined the atti-
tudes of students in terms of their motivation to study the subject matter, to study
computers at school, and their wellness to work in the field in the future. The study
examined these aspects by qualitative instruments such as, class observations and
interviews with students, and by quantitative tools such as, semi-open ended ques-
tionnaire about learning computer. For convenience and briefness matters in this article,
we present few of the findings on these issues.

Students’ Attitudes During Learning Theory Stage and Project-Based Learning
Stage. At the stage of theoretical study, the findings from classroom observations and
the interviews with students showed that students exhibited medium to high level of
interest and motivation to learn. However, as long as the theoretical topic being studied
was close to the world of students and dealt with issues related to their daily lives, their
interest and motivation to learn were higher. Throughout the study, results showed that
students preferred the practical learning than the theoretical learning. In particular, they
enjoyed learning when they performed exercises on a computer with professional
software, got engaged with challenging tasks and prepared individual projects that were
meaningful to them. Throughout these activities, the students demonstrated greater
interest and motivation in learning the course.

Here is an example of an interview with a student: Interviewer: “Tell me, what did
you like in the course?” Student: “the activities”. Interviewer: “What activities? Give
an example.” Student: “Coloring a picture that was in black and white.. I never thought
that’s possible to add colors and color black and white pictures.” Interviewer: “What
else interested you?” Student: “..that all natural colors can be obtained from only three
colors [Red, Blue, Green], at first I did not believe it was real, till I saw and tried it on
computer. This encouraged me to learn more.” This example represents what many
students have said and wrote about the course in the open section of the attitude
questionnaire.

In their reflection on the projects, some students wrote: “Working on the project
contributed to my knowledge and motivated me to do things on my own at home”; “At
first, we thought this subject was difficult, now after completing the project we saw how
easy it is”; “I would like to work in this profession and learn more about computers and
how it works.”

In addition to the above, the teachers who taught the course pointed out that the
students got interested most when they got involved with challenging tasks and pro-
jects. Another interesting finding was that while learning the image processing course,
the students naturally utilized mathematical concepts that were new for them without
any special difficulties.

Teaching Computer Image Processing Subject to Middle School Students 11

6 Discussion and Conclusions

The findings showed that middle school students were able to study the principles of
computer image processing, which is rich scientific-technological and interdisciplinary
subject, after adjusting the course contents to their previous knowledge in science and
mathematics. The two main factors that contributed well to the success and the
motivation of the students are:

• The instructional model (Theory, Exercise, Implementation, and Project - TEIP)
that was developed in the study that reducing the weight of teacher formal
instruction or solving pre-designed assignments and increasing the students
engagement in challenging tasks and open-ended assignments and projects.

• Allowing students to be engage in authentic content and to carrying out practical
tasks related to their world, such as improving their own images or applying the
facial recognition task to pictures of their classmates.

These findings are compatible with the theory of contextual learning in which
students acquire knowledge and learn well as they study topics that meaningful for
them and related to the real world [5]. The research findings also indicate the contri-
bution of Project-based learning (PBL) to help students make the connection between
what they learn in school and the real world outside [10, 16, 19]. Student success in
learning mathematical knowledge related to computer image processing topic, high-
lights the contribution of interdisciplinary learning that combine studies in science,
technology, engineering and mathematics (STEM) [6].

In conclusion, the study findings highlight that, despite the fact that computer image
processing is complex, in terms of students’ learning it was helpful, interesting and
challenging. This suggests that there is room to integrate teaching scientific-technological
subjects such as image processing, robotics or computer science in middle school.
However, it should be guided by constructive pedagogy while reducing the weight of
formal teacher instruction or engaging the students in solving pre-designed exercises.

References

1. Anderson, L.W., Krathwohl, D.R. (eds.): A Taxonomy for Learning, Teaching and
Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives: Complete Edition.
Longman, New York (2001)

2. Asad, K., Barak, M.: Teaching image processing concepts in junior high school: the role of
student-centered vs. traditional instruction. In: Technological Learning and Thinking
conference (TL&T), University of British Columbia, 17–21 June 2010

3. Ben-Hur, M.: Concept-rich Mathematics Instruction: Building A Strong Foundation for
Reasoning and Problem Solving. Association for Supervision and Curriculum Development
(ASCD), Alexandria (2006)

4. Brandt, R.S.: Powerful Teaching and Learning. Association for Supervision and Curriculum
Development, Alexandria (1998)

5. Brown, J.S., Collins, A., Duguid, P.: Situated cognition and the culture of learning. Educ.
Res. 18(1), 32–42 (1989)

12 K. Asad

6. Bybee, R.W.: Advancing STEM education: a 2020 vision. Technol. Eng. Teach. 70(1), 30–
35 (2010)

7. Dewey, J.: Experience and Education. The Kappa Delta Pi Lecture Series. Macmillan
Publishing Company, New York (1963)

8. Dolmans, D.H., De Grave, W., Wolfhagem, I.H., Van Der Vleuten, C.P.: Problem based
learning: future challenges for educational practice and research. Med. Educ. 39(7), 732–741
(2005)

9. Gonzales, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River
(2002)

10. Hmelo-Silver, C.E.: Problem-based learning: what and how do students learn? Educ.
Psychol. Rev. 16(3), 235–266 (2004)

11. McCormick, R.: Issues of learning and knowledge in technology education. Int. J. Technol.
Des. Educ. 14(1), 21–44 (2004)

12. National Academy of Science (NAS): STEM Integration in K-12 Education, Status,
Prospects, and An Agenda for Research. National Academies Press, Washington, DC
(2014). http://www.nap.edu/catalog.php?record_id=18612

13. Oldknow, A.: Mathematics from still and video images. Micromath 19, 30–34 (2003)
14. Rittle-Johnson, B., Alibali, M.W.: Conceptual and procedural knowledge of mathematics:

does one lead to the other? J. Educ. Psychol. 91(1), 175–189 (1999)
15. Rowntree, D.: A Dictionary of Education. Barnes and Noble, Totowa (1982)
16. Savery, J.R.: Overview of problem based learning: definitions and distinctions. Interdisc.

J. Probl. Based Learn. 1(1), 9–20 (2006)
17. Silverman, J., Rosen, G.: Supporting students interest in mathematics through applications

from digital image processing. J. Res. Center Educ. Technol. 6, 63–77 (2010). http://www.
rcetj.org/index.php/rcetj/article/view/138

18. Tanimoto, S., King, J., Rice, R.: Learning mathematics through image processing:
constructing cylindrical anamorphoses. In: Proceedings of MSET 2000, International
Conference on Mathematics/Science Education and Technology, San Diego, CA, 5–8
February 2000

19. Thomas, J.W.: A Review of Research on Project Based Learning. Autodesk, San Rafael
(2000). http://www.bie.org/files/researchreviewPBL.pdf

Teaching Computer Image Processing Subject to Middle School Students 13

http://www.nap.edu/catalog.php?record_id=18612
http://www.rcetj.org/index.php/rcetj/article/view/138
http://www.rcetj.org/index.php/rcetj/article/view/138
http://www.bie.org/files/researchreviewPBL.pdf

Analyzing Conceptual Content of International
Informatics Curricula for Secondary Education

Erik Barendsen1(B) and Tim Steenvoorden2

1 Radboud University and Open University, Nijmegen, The Netherlands
e.barendsen@cs.ru.nl

2 Radboud University, Nijmegen, The Netherlands
t.steenvoorden@cs.ru.nl

Abstract. Various countries are in the process of curriculum innova-
tion with respect to informatics, which makes it interesting to conduct
a systematic international comparison. As a first step, we focus on the
analysis of conceptual content of curriculum specifications, that is, for-
mal descriptions and guidelines. As a case study, we apply our method to
analyze five curriculum specifications, including the former (2007) and
new (2016) Dutch informatics curriculum for upper secondary education.
The results indicate interesting similarities and differences with respect
to emphasis of specific conceptual areas such as algorithms, software engi-
neering and social aspects. The method appears fruitful to determine, for
example, the position of the new Dutch curriculum relative to the former
curriculum and to the three other recent international specifications.

Keywords: Curriculum · Concepts · Content analysis

1 Introduction

In the past few years, several organizations and individuals in Europe and the
United States have expressed concerns about the state of informatics education
(Académie des Sciences 2013; Furber 2012; Gander et al. 2013; Kaczmarczyk
and Dopplick 2014; KNAW 2012; Samaey et al. 2014).

Although the underlying motivations vary, the common outcome of the above
reports is that our society is becoming more and more digitized and therefore
a broad group of people (especially children) need to learn about ict as well
as the skillful and responsible use of digital tools. Moreover, interested young
people should get the opportunity to receive further education in informatics.

Various countries are in the process of curriculum innovation or have recently
completed such a reform. The developments have been documented in formal
curriculum documents and in guidelines.

In England, for example, a new subject Computing has been introduced for
all students (British Department for Education 2013). The organization Com-
puting at School developed guidelines for the new subject (Computing at School
Working Group 2012). The US teacher organization csta published standards
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 14–27, 2016.
DOI: 10.1007/978-3-319-46747-4 2

Analyzing Conceptual Content of International Informatics Curricula 15

for K–12 computer science (CSTA 2011). In France, an informatics curriculum
has been introduced for grades 9–12 (Ministère de l’Éducation Nationale 2012).
The current informatics curriculum in The Netherlands for grades 10–12 dates
from 1998 and has not changed since then, except for a minor reformulation
in 2007 (Grgurina and Tolboom 2008). In March 2016, a new curriculum pro-
posal, commissioned by the Ministry of Education, was completed (Barendsen
and Tolboom 2016).

The variety of developments make it interesting to conduct a systematic
content analysis of curricula and guidelines, in order to support international
comparison and curriculum development. However, it is not easy to compare the
above curriculum documents, as the composition, length, and formulation of the
specifications vary a lot.

In order to support the development of a new curriculum in the Netherlands,
we were interested in the conceptual content (i.e., topics and ideas belonging to
the informatics subject matter) of existing curricula and guidelines.

The so-called Darmstadt Model is a more general framework for classifying
implementations of informatics education in various countries (Hubwieser et al.
2011; Hubwieser 2013). Our analysis relates to the categories knowledge and
intentions within the dimension educational relevant areas of the Darmstadt
Model. In the process of developing the framework, Hubwieser et al. (2011)
perform a global categorization of the learning objectives in four countries using
the acm classification scheme and the csta strands as categories.

In our study, we aimed for a detailed and in-depth analysis of concepts,
regardless of the skills or attitudes in which they appear (cf. Barendsen et al.
2015).

An alternative type of conceptual content analysis, based on a survey among
local experts, was part of a comparison of teaching practices in Germany and
the UK (Dagiene et al. 2013).

2 Aim of the Study

Part of the research was carried out during the construction of the new Dutch
informatics curriculum, aiming at positioning the ideas of the curriculum com-
mittee in international perspective (Steenvoorden 2015). The starting point of
the curriculum development was an international workshop in September 2014
at the Lorentz Center at Leiden University in the Netherlands. The curricula
and documents discussed in the workshop constituted the first sample for our
analysis: the former Dutch curriculum (Schmidt 2007), the French informatics
curriculum (Ministère de l’Éducation Nationale 2012), the cas guidelines (Com-
puting at School Working Group 2012), and the csta standards (CSTA 2011).

The other part of the research was conducted after completion of the new
curriculum (Barendsen and Tolboom 2016), to determine similarities and differ-
ences between the new curriculum and the other curricula investigated thus far.

16 E. Barendsen and T. Steenvoorden

The Dutch informatics subject only spans upper secondary education (grades
10–12). The French curriculum is intended for a similar range (grades 9–12). cas
and csta constructed guidelines for grades k–12. For a proper comparison, we
decided to analyze the latter documents as a whole instead of their respective
10–12 segments, since it is reasonable to expect that some basic concepts (com-
parable to those found in the Dutch and French 10–12 curricula) appear in the
K–9 part of cas and csta documents.

Our research question was: How can the conceptual content of the new Dutch
curriculum, the former Dutch curriculum, the French curriculum, and the cas
and csta guidelines be characterized?

3 Method

We used a variant of the method developed in Barendsen, Fisser, Krüger, and Tol-
boom (2014) and Steenvoorden (2015), also applied by Barendsen et al. (2015).

Our starting point was a classification of informatics subjects in terms of
knowledge categories, based on the ‘knowledge areas’ of the Computing Cur-
ricula (2013). These knowledge areas were developed for higher education, but
can be applied fruitfully in our case, since they are complete, that is, certainly
cover the secondary education topics. Moreover, the knowledge area descriptions
contain detailed specifications, which adds to the reliability of the analysis. The
knowledge areas have been clustered into a conveniently small number of cate-
gories while maintaining sufficient detail to distinguish variations in content, see
Table 1.

We applied an open coding procedure (Cohen, Manion and Morrison 2013) to
the documents to extract literal concepts from the curriculum texts. In a second
(more axial, cf. Cohen et al. (2013)) coding phase, similar codes were merged
into one, slightly more abstract, code. Then the resulting codes were grouped
into the general knowledge categories mentioned earlier.

The authors coded samples of the documents (10 %) together, while dis-
cussing and documenting the code descriptions. Then the remaining texts were
coded by the second author. About half of these were reviewed by the first
author. Coding differences were discussed and whenever necessary, the category
descriptions were refined to reflect the consensus reached in the discussions.

For the analysis, the resulting codes were first used to get a global overview of
occurrences of codes in each category. We regard the distribution of occurrences
over the categories as an indication of the relative importance of the categories.
Then we conducted a more qualitative, in-depth content analysis with respect
to selected categories, using the (relative) frequencies and codes as pointers to
relevant text segments.

Analyzing Conceptual Content of International Informatics Curricula 17

Table 1. Knowledge categories

Knowledge category Included ACM/IEEE knowledge areas

Algorithms Algorithms and complexity (AL)

Parallel and distributed computing (PD)

Algorithms and design (SDF/AL)

Remark: concepts about data
structures are covered by Data

Architecture Architecture and organization (AR)

Operating systems (OS)

System fundamentals (SF)

Modeling Computational science (CN)

Graphics and visualisation (GV)

Data Information management (IM)

Fundamental data structures (SDF/IM)

Engineering Software engineering (SE)

Development methods (SDF/SE)

Remarks: also contains ideas on collaboration;
concepts without an engineering component
are covered by programming

Intelligence Intelligent systems (IS)

Mathematics Discrete structures (DS)

Networking Networking and communication (NC)

Programming Programming languages (PL)

Platform based development (PBD)

Fundamental programming concepts (SDF/PL)

Security Information assurance and security (IAS)

Remark: concepts about privacy
are covered by society

Society Social issues and professional practice (SP)

Usability Human-computer interaction (HCI)

4 Results

We present our results in two ways. Firstly, in Table 2 we list the categories for
each curriculum, sorted according to (absolute) number of concept occurrences.
Secondly, we show the (relative) distribution of concepts across the categories
for every document in Fig. 1. The new Dutch curriculum consists of a core cur-
riculum and a number of elective themes. Below, we distinguish between the core
curriculum and the curriculum as a whole (including the elective themes).

The total number of concept occurrences (i.e., coded quotations) is given at
the bottom of each list in Table 2. The reason that France and the Netherlands

18 E. Barendsen and T. Steenvoorden

Table 2. Lists of knowledge categories for each curriculum document, sorted from
most to least occurring concepts. The number of concept occurrences in each category
is displayed between parentheses. The total number of concept occurrences in the
document is given at the end of each list.

CSTA

1. Algorithms (44)
2. Engineering (40)
3. Architecture (37)
4. Society (30)
5. Networking (27)
6. Programming (25)
7. Data (23)
8. Security (13)
9. Modeling (12)

10. Intelligence (11)
11. Mathematics (8)
12. Usability (2)
13. Rest (0)

(Total: 272)

CAS

1. Algorithms (44)
2. Networking (40)
3. Architecture (38)
4. Data (33)
5. Programming (19)
6. Engineering (17)
7. Mathematics (5)
8. Security (4)
9. Society (2)

10. Intelligence (1)
11. Modeling (0)

Rest (0)
Usability (0)

(Total: 203)

France

1. Data (28)
2. Programming (15)
3. Architecture (14)

Networking (14)
4. Algorithms (13)
5. Mathematics (8)
6. Society (5)
7. Engineering (4)

Modeling (4)
8. Intelligence (2)
9. Rest (1)

10. Security (0)
Usability (0)

(Total: 108)

Netherlands 2007

1. Architecture (13)
2. Data (12)
3. Engineering (10)
4. Networking (4)

Rest (4)
5. Programming (3)
6. Usability (3)
7. Modeling (2)
8. Security (1)
9. Algorithms (0)

Intelligence (0)
Mathematics (0)
Society (0)

(Total: 52)

Netherlands 2016 (core)

1. Programming (18)
2. Engineering (17)
3. Data (11)
4. Society (10)
5. Architecture (9)
6. Security (7)
7. Algorithms (6)
8. Usability (3)
9. Networking (2)

10. Intelligence (0)
Mathematics (0)
Modeling (0)
Rest (0)

(Total: 83)

Netherlands 2016 (complete)

1. Programming (22)
2. Architecture (19)

Society (19)
3. Data (18)

Engineering (18)
Usability (18)

4. Security (16)
5. Algorithms (14)
6. Networking (11)
7. Modeling (7)
8. Mathematics (4)
9. Intelligence (3)

10. Rest (0)

(Total: 169)

have less coded concepts, is that the learning goals are formulated in a relatively
compact way and concepts often are mentioned only once. The cas and the csta
documents formulate their guidelines in a more spiral-like way, first formulating
learning goals for lower grades and after that for higher grades.

Figure 1 provides a global overview of the five documents and how they
compare on the twelve respective knowledge categories and a rest category.

Analyzing Conceptual Content of International Informatics Curricula 19

Fig. 1. Relative distribution of concept occurrences across the knowledge categories.
The percentages show the fraction of the concept occurrences to the respective cate-
gories. For example, 25% of the concept occurrences in the csta guidelines concerns
data, while 7 % is about modeling. Categories are sorted by average occurrence.

The frequencies show that data, architecture, networking, algorithms and engi-
neering cover the biggest parts of the studied specifications.

In this paper we will highlight some interesting differences. Firstly, we note
the focus on data in the French curriculum and the gap until the next category,
programming, as we can see in Table 2. Next, the cas guidelines have the highest
score on algorithms. Algorithmic concepts appear frequently in several curricula
and guidelines. The old Dutch curriculum does not mention any concepts from
this category, however. Another interesting observation with respect to the top
five categories is the variation in scores within the engineering category. For
this category, the French curriculum has lower scores than the other documents.
Furthermore the high percentages with respect to society in the new Dutch
curriculum and the csta guidelines are remarkable. Finally, the high score of
the old Dutch curriculum in the rest category is exceptional.

Below, we will analyze the above observations in more depth. We illustrate
our findings with characteristic quotations from the curriculum. In the case of the
Dutch and French curricula, we have translated the original texts into English.

4.1 Data

The code frequencies suggest that the French curriculum has the highest empha-
sis on data (25 %), with programming appearing next in the ranking (13 %). This

20 E. Barendsen and T. Steenvoorden

difference of 12 % (13 concepts) may be explained by the structure of the cur-
riculum. Almost all (19 of 28) of the coded concepts in the Data category appear
in the section ‘Representation of Information’. This is the biggest section in the
curriculum description, containing more than a third of the total learning objec-
tives (8 of 21). Of the remaining concepts, 7 appear in the section on ‘Languages
and Programming’.

In the section on ‘Representation of Information’, the French curriculum
includes objectives about document formats and directory structure, which fur-
thermore appear only in the csta standards.

“Formats: Digital data is arranged to facilitate storage and processing. The
structuring of digital data respects either de facto standards or norms.
Skills: Identify some document formats, images and sound data. Choose
an appropriate format compared to a use or need, quality or limitations.”
(France)

The curriculum also mentions explicitly that students should learn about the
representation of characters, text, numbers, floating points and images.

“Digitalization: The computer handles only numeric values. A digitaliza-
tion step of physical world objects is essential.
Skills: Encode a number, a character through a standard code, a text in the
form of a list of numeric values. Encode an image or sound as an array
of numeric values. [. . .]” (France)

The cas and csta curricula only mention information representation in general
terms.

“Analyze the representation and trade-offs among various forms of digital
information.” (CSTA, p. 18)

The old Dutch curriculum does not contain any objectives regarding information
representation. The new Dutch curriculum however, specifies the ability to use
standard representations.

“The candidate is able to use standard representations of numerical data
and media, and is able to relate these to each other.” (Netherlands 2016)

In the section on ‘Languages and Programming’, the French curriculum
explicitly states which data types students should master.

“Data types: Integer; floating point; boolean; natural number; array; string.
Skills: Choosing a data type based on a problem to solve.” (France)

In contrast, the new Dutch curriculum refrains from explicitly mentioning spe-
cific data types. The same holds for the csta guidelines.

Analyzing Conceptual Content of International Informatics Curricula 21

“The candidate is able to represent data in a suitable data structure, keep-
ing the purpose in mind; the candidate is able to compare the elegance,
efficiency and implementability of various representations.” (Netherlands
2016)

When going down to the bit level, the csta prescribes the following objective.

“Demonstrate how 0s and 1s can be used to represent information. (csta,
p. 13)

The new Dutch curriculum describes this implicitly as a physical layer.

“The candidate is able to explain the structure and functioning of digital
artefacts through architectural elements, i.e., in terms of the physical, log-
ical and application layer levels, and in terms of the components in these
layers together with their interaction.” (Netherlands 2016)

The high score on data by the old Dutch curriculum can be attributed to the
learning objectives on information systems, databases, relational schemas and
query languages.

“The candidate can name the elements of a relational schema and describe
the significance of each element, and can convert information needs into
a command formulated in a query language for a relational database. He
can describe the features and aspects of database management systems, and
name and use them for specific systems [. . .]” (Netherlands 2007, p. 3)

All these concepts are absent from the other four curricula. In the new Dutch
curriculum, these concepts are treated in an elective theme on ‘Databases’.

4.2 Algorithms

In this category, the documents differ in the amount of detail in which the learn-
ing objectives are described. We observed the cas guidelines contains almost
three times as many different concepts on algorithms as the French curriculum.
The cas guidelines, for example, explicitly states the notions of sequence, selec-
tion and repetition.

“- The idea of a program as a sequence of statements written in a program-
ming language. - One or more mechanisms for selecting which statement
sequence will be executed, based upon the value of some data item. - One or
more mechanisms for repeating the execution of a sequence of statements,
and using the value of some data item to control the number of times the
sequence is repeated.” (cas, p. 14)

The csta guidelines go even further and, instead of repetition in general, explic-
itly specify iteration and recursion.

“Explain how sequence, selection, iteration, and recursion are building
blocks of algorithms.” (csta, p. 18)

22 E. Barendsen and T. Steenvoorden

Remarkably, the csta guidelines are the only curriculum specification in our
sample that includes recursion. Likewise, cas and the csta highlight the under-
lying notion of instruction, whereas France and the Netherlands do not.

“A computer program is a sequence of instructions written to perform a
specified task with a computer.” (cas, p. 14)

The new Dutch curriculum mentiones instruction only in the context of assembly
languages.

“The candidate is able to write a simple program in a machine language,
based on the description of an instruction set.” (Netherlands 2016)

We highlight some other concepts occurring in one single document.
Firstly, the explicit inclusion of concurrency, parallelism and thread in the

csta guidelines is interesting. It is the only document to include these concepts.

“Describe the process of parallelization as it relates to problem solving.”
(csta, p. 16)

“Demonstrate concurrency by separating processes into threads and divid-
ing data into parallel streams.” (csta, p. 21)

Next, although searching and sorting appear in the French curriculum and
the cas and csta guidelines, the French curriculum is the only one of the three
mentioning specific algorithms. It explicitly mentions merge sort, breadth first
search and depth first search.

“Advanced algorithms: Merge sort; search for a path in a graph by a depth
first search (DFS); finding a shortest path through a wide path (BFS).
Skills: Understand and explain (orally or in writing) an algorithm. Ques-
tioning the effectiveness of an algorithm” (France)

Finally, the French and new Dutch curriculum are the only ones including state
machines.

“. . . describe a single event system with a finite state machine.” (France)

“The candidate is able to use finite automata for the characterization of
certain algorithms.” (Netherlands 2016)

The old Dutch curriculum does not contain any concepts in the algorithm
category. The new curriculum states objectives on the usage of standard algo-
rithms and the correctness and efficiency of algorithms. It also provides an
elective theme on ‘Algorithms, Computability and Logic’.

Analyzing Conceptual Content of International Informatics Curricula 23

4.3 Engineering

In the French curriculum, the category engineering has lower presence (4 %)
compared to the other specifications. It does, however, contain pointers to testing
and verification.

“Fixing a program: Test; instrumentation; error situations or bugs.
Skills: Testing a developed program. Optional: using a development tool.”
(France)

Testing and verification can be found in all other curricula, except for the old
Dutch curriculum. The high score of the old Dutch curriculum in this category
can be explained by the section on project management and related concepts
like specification, requirement, client and prototype.

“The candidate can asses progress of a simple system development process,
test prototypes, verify whether the final product meets the specifications
of the client and evaluate whether the system meets the requirements.”
(Netherlands 2007, p. 3)

Although the curriculum of the csta does not explicitly state concepts like
specification and requirement, it does mention the software development process
and software life cycle and the creation of problem statements in general.

“Describe a software development process used to solve software problems
(e.g., design, coding, testing, verification).” (csta, p. 18)

Furthermore, the csta standards have a strong focus on collaboration during
software development. This is not surprising when we take the structure of the
document into account. One of the five strands the document is built on is
‘Collaboration’ and a substantial part of the curriculum is dedicated to this
strand. Concepts related to teamwork and collaboration are peers, experts, pair
programming, project teams, feedback, communication, feedback and socialization.
The csta document also mentions multiple productivity tools, development tools
and collaboration tools explicitly.

“Use productivity technology tools (e.g., word processing, spreadsheet, pre-
sentation software) for individual and collaborative writing, communica-
tion, and publishing activities. Use collaborative tools to communicate with
project team members (e.g., discussion threads, wikis, blogs, version con-
trol, etc.).” (csta, p. 13)

The new Dutch curriculum contains a section dedicated to ‘Informatics-specific
skills’, containing, amongst others, an objective on cooperation with(in) an inter-
and intradisciplinary teams.

“The candidate is able to structurally cooperate in a team during the design
and development of digital artefacts, and is able to cooperate with people
from an application field.” (Netherlands 2016)

The inclusion of collaboration and tools make the csta guidelines and the new
Dutch curriculum stand apart from the other specifications.

24 E. Barendsen and T. Steenvoorden

4.4 Society

A major difference between the csta guidelines and the new Dutch curriculum
on one hand and the other specifications on the other, is the focus on computer
science and society (both 11 %). One of the five strands of the csta guidelines is
‘Society’. Therefore the subject covers a substantial part of the curriculum. The
cas curriculum contains a reference to privacy, whereas the French curriculum
mentions personal information and ownership.

“Persistence of information: Data, including personal, may be stored for
long periods without control by the persons concerned.
Skills: Awareness of the persistence of information on digital networks.
Understand the general principles to behave responsibly in relation to the
rights of individuals in digital platforms.” (France)

The csta extends further with the inclusion of various other concepts rang-
ing from career perspectives, via software licenses to software piracy and legal
behavior.

“Exhibit legal and ethical behaviors when using information and technology
and discuss the consequences of misuse.” (csta, p. 17)

The new Dutch curriculum contains objectives on ‘Computer Science as a Per-
spective’ and ‘Ethical Conduct’, both in computer science specific skills section.
The curriculum includes a domain on ‘Interaction’, containing ‘Social Aspects’
and ‘Privacy’. Furthermore, an elective theme on ‘Social and Individual Influ-
ence of Informatics’ contains concepts on social as well as legal influences of
computer science on society.

“-The candidate is able to explain and predict the positive and negative
effects of informatics and the networking society on the lives of individuals
and on society. - The candidate is able to analyze legal aspects of the
application of informatics in society. - The candidate is able to investigate
the effects of technical, legal and social measures for privacy-related issues.
- The candidate is able to reason about the influence of informatics on
cultural expressions.” (Netherlands 2016)

4.5 Rest Category

The old Dutch curriculum contains a high number of concept occurrences in
the rest category (8 %). This can be explained by the fact that the curricu-
lum includes subjects on management and organization structures which are
not mentioned in the acm-ieee body of knowledge. The old Dutch curriculum
explicitly states students should know about project management and business
structures, for example in the following learning objective taken from the domain
‘Basic Concepts and Techniques’.

Analyzing Conceptual Content of International Informatics Curricula 25

“The candidate knows the overall organizational structure of companies.
He knows the characteristics of a project and can indicate why, during
major changes in a information system of a company, one often chooses
to use a project.” (Netherlands 2007, p. 2)

No other document, including the revised Dutch curriculum, contains these
kind of ‘contextual’ objectives.

5 Conclusion and Discussion

Our analysis suggests that there are similarities between recent curriculum spec-
ifications with respect to a number of knowledge categories such as algorithms
and data.

We also found differences with respect to emphasis. The French curriculum
specification appears to have a stronger emphasis on data. In the new Dutch cur-
riculum and the csta standards, concepts around engineering receive substantial
attention. The new Dutch curriculum and the csta guidelines appear to stress
societal aspects more than the other documents in our sample. Software engineer-
ing and social and ethical topics cover together a quarter of the concepts occur-
rences in the csta standards. We found the most specific descriptions with respect
to algorithms in the cas guidelines and in the French curriculum. The csta stan-
dards are more outspoken on collaboration in the context of engineering.

Compared to the old curriculum, the new Dutch core curriculum appears
to have smaller emphasis on hardware (architecture, networking) in favor of
software and engineering content.

Our method appeared very useful to compare curriculum documents that
differ considerably with respect to description style and level of detail. Moreover,
the combination of a quantitative and qualitative investigation turned out to be
valuable.

Our findings are consistent with those found for K–9 guidelines (Barendsen
et al. 2015), but some are more outspoken, for example with respect to algo-
rithms.

The categorization in our study has more categories than the acm classi-
fication used by Hubwieser et al. (2011) and appears to give a more balanced
distribution of conceptual content.

This paper contains a selection of observations; the full analysis was instru-
mental during the construction of the new Dutch curriculum. Our small-scale
study spanned a limited number of documents. We plan to apply our method to
a larger collection of curriculum documents and guidelines.

The stepwise procedure in this small-scale pilot study made it possible to code
an entire document in a reasonable amount of time. The authors quickly reached
consensus concerning coding differences. Throughout the process, the intercoder
agreement appeared high. We plan to analyze reliability of the method in a more
quantitative way.

26 E. Barendsen and T. Steenvoorden

It will be interesting to investigate whether conceptual differences between
curricula can be related to other characteristics, such as the global curriculum
intention in the sense of the ‘goals’ described by Biesta (2015).

References

Académie des Sciences: L’enseignement de l’informatique en France: Il est urgent
de ne plus attendre. http://www.academie-sciences.fr/pdf/rapport/rads 0513.pdf.
Accessed Apr 2016

ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer science curricula
2013 (Technical report). ACM Press and IEEE Computer Society Press, December
2013

Barendsen, E., Fisser, P., Krüger, J., Tolboom, J.: Herziening van het Nederlandse
informaticacurriculum havo-vwo. Paper presented at ORD 2014, Groningen (2014)

Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., Stupurienė,
G.: Concepts in K–9 computer science education. In: Proceedings of the 2015 ITiCSE
on Working Group Reports, pp. 85–116. ACM (2015)

Barendsen, E., Tolboom, J.: Advies examenprogramma informatica vwo-havo:
inhouden invoering. SLO, Enschede (2016)

Biesta, G.J.J.: Good Education in an Age of Measurement: Ethics, Politics, Democracy.
Routledge, Abingdon (2015)

British Department for Education: Computing programmes of study: key stages 1 and
2. National curriculum in England (2013). http://www.computingatschool.org.uk

Cohen, L., Manion, L., Morrison, K.: Research Methods in Education. Routledge, Lon-
don, New York (2013)

Computing at School Working Group: Computer science: a curriculum for schools
(2012). http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf.
Accessed Sep 2013

CSTA: K-12 computer science standards. ACM (2011). http://csta.acm.org/
Curriculum/sub/K12Standards.html

Dagiene, V., Jevsikova, T., Schulte, C., Sentance, S., Thota, N., et al.: A comparison of
current trends within computer science teaching in school in Germany and the UK.
In: Informatics in Schools: Proceedings of the 6th International Conference ISSEP
2013—selected papers, pp. 63–75 (2013)

Furber, S.: Shut down or restart? The way forward for computing in UK schools. The
Royal Society, London (2012)

Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A.,
Meyer, B.: Informatics education: Europe cannot afford to miss the boat. (Report
of the Joint Informatics Europe & ACM Europe Working Group on Infor-
matics Education) (2013). http://www.informatics-europe.org/images/documents/
informatics-education-europe-report.pdf. Accessed Aug 2013

Grgurina, N., Tolboom, J.: The first decade of informatics in Dutch high schools. Inf.
Educ. 7(1), 55–74 (2008)

Hubwieser, P.: The Darmstadt model: a first step towards a research framework for
computer science education in schools. In: International Conference on Informatics
in Schools: Situation, Evolution, and Perspectives, pp. 1–14 (2013)

Hubwieser, P., Armoni, M., Brinda, T., Dagienė, V., Diethelm, I., Giannakos, M.N.,
Schubert, S.: Computer science/informatics in secondary education. In: Proceedings
of the 16th Annual Conference Reports on Innovation and Technology in Computer
Science Education-Working Group Reports, pp. 19–38 (2011)

http://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf
http://www.computingatschool.org.uk
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://www.informatics-europe.org/images/documents/informatics-education-europe-report.pdf
http://www.informatics-europe.org/images/documents/informatics-education-europe-report.pdf

Analyzing Conceptual Content of International Informatics Curricula 27

Kaczmarczyk, L., Dopplick, R.: Preparing students for computing workforce needs in
the US. ACM SIGCSE Bull. 46(2), 8 (2014)

KNAW: Digitale geletterdheid in het voortgezet onderwijs: vaardigheden en atti-
tudes voor de 21ste eeuw. Koninklijke Nederlandse Akademie van Wetenschappen,
Amsterdam (2012)

Ministère de l’Éducation Nationale: Enseignement de spécialité d’informatique et sci-
ences du numérique de la série scientifique – classe terminale (2012). http://www.
education.gouv.fr/pid25535/bulletin officiel.html?cid bo=57572

Samaey, G., Van Remortel, J., Bersini, H., Bruynseraede, Y., Dekelver, J., Laender,
F.D., Wyffels, F.: Informaticawetenschappen in het leerplichtonderwijs. Koninklijke
Vlaamse Academie van België voor Wetenschappen en Kunsten, Brussel (2014)

Schmidt, V.: Handreiking schoolexamen informatica havo/vwo. SLO, Enschede (2007)
Steenvoorden, T.: Characterizing fundamental ideas in international computer sci-

ence curricula (unpublished Master’s thesis). Radboud University, The Netherlands
(2015)

http://www.education.gouv.fr/pid25535/bulletin_officiel.html?cid_bo=57572
http://www.education.gouv.fr/pid25535/bulletin_officiel.html?cid_bo=57572

It’s Computational Thinking! Bebras Tasks
in the Curriculum

Valentina Dagienė1 and Sue Sentance2(&)

1 Vilnius University Institute of Mathematics and Informatics,
Akademijos Street 4, 08663 Vilnius, Lithuania

valentina.dagiene@mii.vu.lt
2 Department of Education and Professional Studies, King’s College London,

150 Stamford Street, London SE1 9NH, UK
sue.sentance@kcl.ac.uk

Abstract. Bebras is an award-winning, international contest and challenge in
informatics that has been running for 12 years in primary and secondary schools,
with 50 countries now participating. From a single contest-focused annual event
the Bebras developed to a multifunctional challenge; an activities-based edu-
cational community-building network has grown up where the development of
Bebras tasks has taken a very significant role. Bebras tasks present a motivating
way to introduce computer science concepts to students as well as developing
computational thinking skills. Tasks are categorized in terms of the concepts
being covered, and each task includes an explanation of how the task relates to
informatics. In this paper we propose that Bebras tasks can be used within the
school curriculum (whether it is called informatics, computer science, com-
puting or information technology) to promote computational thinking and pro-
vide teaching materials. We give examples of Bebras tasks that could be
incorporated into the curriculum, and make recommendations for schools
wishing to develop children’s computational thinking skills.

Keywords: Bebras contest � Computational thinking � Computer science
education � Informatics curriculum � Informatics education � Task solving

1 Introduction

There is an increasing focus on computational thinking within the teaching of computer
science, computing or informatics (from here on referred to as informatics) in school.
Computational thinking was only recently popularised as a concept in 2006 by Wing
(2006), although the original definition stems from Papert (1996). Wing claims that
computational thinking is for everyone and involves “solving problems, designing
systems and understanding human behaviour, by drawing on the concepts fundamental
to computer science” (Wing 2006, p. 34). Some new informatics curricula have a
significant focus on computational thinking skills being developed, for example in
England (Brown et al. 2014) and Poland (Syslo and Kwiatkowska 2015). In the
longstanding Bebras contest (Bebras 2016), tasks are designed which demonstrate
computer science principles whilst engaging students in problem-solving in a moti-
vating way.

© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 28–39, 2016.
DOI: 10.1007/978-3-319-46747-4_3

Bebras is an informatics education community-building model and is designed to
promote informatics learning in school by solving short concept-based tasks (Dagiene
and Stupuriene 2016). Tasks are the most important component of the Bebras model.
Each Bebras task should include at least one informatics concept, attract children’s
attention by a story, picture or interactivity, be short (fits in a computer screen), and not
require specific technical knowledge. Some countries use the Bebras to strengthen
collaborative learning; for example, in Germany pupils solve Bebras tasks in pairs
during a contest and discussions are allowed between the pairs.

Alongside the initial goal of the Bebras project to motivate pupils to be more
interested in informatics topics there is a strong intention to deepen algorithmic, logical
and operational thinking and, more recently, computational thinking as well. The
Bebras challenge intends to promote students’ interest in informatics (also in a better
understanding of the usage of technology) from the very beginning at school and to
motivate students to learn and master technology (Dagiene and Futschek 2008). In the
past few years, the number of Bebras challenge participants has been notably growing
and exceeded 1.3 million during the Bebras week in November 2015.

In this paper we argue that Bebras is thus a non-formal activity and a possible way
in which to incorporate computational thinking into the primary and secondary school
curricula, and suggest some exemplar activities to incorporate this.

2 Computational Thinking

The term ‘computational thinking’ is primarily accredited to Jeanette Wing (Wing
2006), but actually originated with Seymour Papert (Papert 1996). There are differences
between these two definitions in that Wing’s definition is more focused on problem
solving and Papert’s definition is more focussed on ideas and analysis (Mannila et al.
2014). Subsequent research has expanded and interpreted the term further (Lu and
Fletcher 2009; Grover and Pea 2013; Selby and Woollard 2013).

Computational thinking is not entirely embraced by all; critics suggest that the term
is narrowing (Denning 2009) or that computational thinking processes are widespread in
other sciences (Hemmendinger 2010). Among other contributions coming from edu-
cators, Lee et al. (2011) suggest that we should start from practical examples of what we
mean by computational thinking, and identify the terms “abstraction”, “automation”,
and “analysis” as being particularly useful to understand how young pupils can deal with
novel problems. Indeed, there is a huge interest in computational thinking as a means of
explaining the thinking processes in informatics in school education (K-12); in USA
computational thinking underlies the new curricular developments of the Computer
Science Teacher Association in USA (CSTA) and Code.org; in England, computational
thinking is at the core of a mandatory new Computing curriculum from age 5 until 16
(Department for Education 2013); and Google have launched a teacher development
MOOC purely around computational thinking (Google 2016). Attention has turned to
the identification of a set of skills that can be seen to comprise a broad definition of
computational thinking, and that encompass the logical and problem-solving skills and
thought processes that are applied by computer scientists in their work.

It’s Computational Thinking! Bebras Tasks in the Curriculum 29

The work by Computing At School in the UK defines the five key computational
thinking skills used in K-12 as abstraction, decomposition, algorithmic thinking,
evaluation and generalisation (Csizmadia et al. 2015). There is also the question of how
much computational thinking development is around computer programming and
related topics, for example, physical computing (Przybylla and Romeike 2014). Lu and
Fletcher 2009 take the view that computational thinking can be separated from pro-
gramming, and should be taught before programming teaching starts. In addition,
Wing’s definition of computational thinking includes understanding the consequences
of scale, not only for reasons of efficiency but also for economic and social reasons.
CSTA in USA adds broader attitudes like the ability to deal with complexity and
open-ended problems, tolerance for ambiguity, and ability to work with others to
achieve a common goal (ISTE&CSTA 2011).

Computational thinking is explicitly mentioned in some curricular, for example,
here in the curriculum in England, referring to pupils aged 7–11: “Pupils should be
taught to: … Solve problems by decomposing them into smaller parts” (Department for
Education 2013).

3 Computational Thinking and Bebras

One of the drivers of the Bebras community is a shared understanding that learning
concepts at an early age is important for a deeper understanding of various informatics
topics. The Bebras learning model focuses on informatics concepts by supporting an
understanding of computer science phenomena and the development of computational
thinking. For the purposes of Bebras we adopt the broad view that computational
thinking is a problem-solving process that includes (but is not limited to) the following
characteristics (ISTE&CSTA 2011):

• Formulating problems in a way that enables us to use a computer and other tools to
help solve them.

• Logic and predicting analytics.
• Data organizing and analysing.
• Representing data through abstractions such as models and simulations.
• Automating solutions through algorithmic thinking (a series of ordered steps).
• Identifying, analysing, and implementing possible solutions with the goal of

achieving the most efficient and effective combination of steps and resources.
• Generalizing and transferring this problem solving process to a wide variety of

problems.

One suggested classification of computational thinking skills follows the work of Selby
and Woollard (2013) and has been adopted by Computing At School in the UK in
developing guidance on computational thinking for teachers (Csizmadia et al. 2015).
This describes aspects of computational thinking skills exhibited by students as falling
into the five categories below:

1. Abstraction
2. Algorithmic thinking

30 V. Dagienė and S. Sentance

3. Decomposition
4. Evaluation
5. Generalisation

Based on a previous Bebras categorisation system (Dagiene and Futschek 2008)
and further developments with relation to Bebras tasks’ content, we can identify the
main informatics concept introduced in the task and very broadly divide the content of
the task into one of these five areas (categories):

1. Algorithms and programming
2. Data, data structures and representations (includes graphs, data mining)
3. Computer architecture and processes (includes anything to do with how the com-

puter works - scheduling, parallel processing)
4. Communications and networking (includes cryptography, cloud computing)
5. Interaction (Human-Computer Interaction, HCI), systems and society

Analyses of the Bebras tasks used in the 2014 contest were conducted according to
the cognitive skills’ domains (Bloom taxonomy): this showed that the most tasks
demonstrated higher-order thinking skills in the Bloom’s taxonomy: Understanding,
Applying, Analysing and Evaluating (Dagiene and Stupuriene 2014). In another
analysis examining the topics of all Bebras tasks used between 2010 and 2014, the
most commonly occurring computational thinking topics were algorithms (66 %) and
data representation (38 %), followed by abstraction (16 %) (Barendsen et al. 2015).

In this paper we analyse Bebras tasks that were chosen by Lithuania and UK for all
age groups in 2015: in total these amount to 52 tasks, of which the two countries have
35 in common (presented in italics). For each task we allocated the primary and most
important computational thinking skill being developed in that task (Table 1), even
though we acknowledge that a given task may in some cases develop more than one
computational thinking skill.

In Table 1 we can see that of the 52 tasks chosen between the two countries, 22 of
them involved some degree of algorithmic thinking in finding a solution. 11 tasks
involve the skill of evaluation, 8 demonstrate abstraction, 6 decomposition, and 5
generalisation. Tasks can demonstrate more than one computational thinking skill but
in this instance we have highlighted the most dominant one. The emphasis on algo-
rithmic thinking (42 % of tasks) is interesting and supports the observations by
Barendsen et al. (2015) about previous tasks. Is it the case that computer scientists use
algorithmic thinking more than other computational thinking skills? Or do Bebras task
authors find it easier to write tasks that involve either executing, debugging or creating
an algorithm? We surmise that it may be a combination of these factors: Bebras tasks
are short and designed to be solved within 3 min. It may be difficult to generate tasks
that demonstrate a lot of decomposition or evaluation in a short task. However, a key
aspect of computer science at school level is the design and execution of algorithms,
which supports the development of programming skills, so it may not be surprising that
so many algorithmic thinking tasks make their way into the Bebras contest.

It’s Computational Thinking! Bebras Tasks in the Curriculum 31

Table 1. Bebras 2015 task analysis according to computational thinking (CT) skills

CT Skill Tasks Example

Abstraction Beaver the
Alchemist

Busy Beaver
Drawing Stars
Fried egg
Geocaching
Popularity
Trains
Walnut Animals

Walnut animals: With walnut animals, we
abstract from features like fur and size. We
represent the animal only by the structure of its
body; the rest is unimportant. This structure is
preserved even when the animals are
transformed. A computer scientist must
recognise what is important, what can be left
out, and how structures are similar

Algorithmic
thinking

Beaver Logs
Biber Hotel
Bowl Factory
Building a

Chip
Button Game
Car

Transportation
Chakhokhbili
Crane

operating
Cross Country
Decorating

Chocolate
Drawing

Patterns
Dream Dress
Fair Share
Irrigation
system

Left Turn!
Mushrooms
Pencils
Alignment

Reaching the
Target

Supper Power
Family
Theatre

Throw the
Dice

You Won’t
Find It

Biber hotel: The structure of the beaver hotel is a
so-called “binary tree”, meaning that from
every there are two branches leaving to further
rooms. The room number facilitates further
navigation. Data on a computer can also be
organised in such a way. Despite having
several millions of entries, an entry (or its
absence) can be found in less than 25
comparisons. In fact, with at most n
comparisons it is possible to distinguish
between 2n−1entries

Crane operating: In this task a sequence of
instructions is searched for. Two objects can
only be changed if one of the objects is placed at
an empty place. Most computers still work with
sequentially-run programs, so each exchange
operation in the memory of the computer also
needs an extra space

(Continued)

32 V. Dagienė and S. Sentance

4 Bringing Bebras into the Curriculum

As seen above, there is a clear link between Bebras tasks and the development of
computational thinking skills, thus demonstrating their potential to be used in the cur-
riculum to develop these skills. In addition, Bebras tasks can be used to demonstrate

Table 1. (Continued)

CT Skill Tasks Example

Decomposition Animation
Fireworks
Pirate Hunters
Stack
Computer
Quick Beaver
Code

Word Chains

Stack computer: The usual notation for
arithmetic expressions is not the easiest to
understand for a computer, or rather, it takes a
more complicated program to process such
expressions. However writing a program to
analyse expressions in postfix notation (or
stack computer) is much easier. To solve this
task the expression must be broken down
(decomposed) into its individual parts

Evaluation Animal
Competition

Beaver Gates
Beaver
Tutorials
Birds
Bracelet
Birthday
Balloons
Data
Protection

Email Scam
Robot the
Stairs

Setting the
Table

Turn the Cards

Bracelet: It is important to be able to recognise
patterns which may be useful to us.
Recognising patterns helps us to find
similarities in things that may look different at
first, but have something in common. This task
also deals with verifying a proposed solution:
the possible answers need to be checked
against the original bracelet to see if they meet
the required order of the shapes

Generalisation Beaver Lunch
Kangaroo
Mobiles
RAID Array
Spies

Mobiles: If you detach a stick (except the
uppermost one) from a mobile, you have a
mobile again, with the detached stick being the
uppermost stick now. That is, the parts of a
mobile are constructed in the same way as the
full mobile is constructed. If a single figure is
considered as a mobile, mobiles may be
defined as follows: a mobile is either (a) a
single figure, or (b) a stick with one or more
mobiles attached to it. In order to define a
“mobile”, we use the term “mobile” itself. That
is a recursive definition, an important concept
in computational thinking

It’s Computational Thinking! Bebras Tasks in the Curriculum 33

specific informatics topics and concepts. In this section, we will illustrate this with
some examples of previous Bebras tasks that could be incorporated into an Informatics
curriculum in any country. Three curriculum areas have been selected that are currently
taught in schools in England and Lithuania, together with some Bebras example tasks are
that can be used in school; these areas are: data structures, logical operators and
networks.

4.1 Learning About Data Structures

There have been many Bebras tasks in previous years that could be introduced to
students which might support an understanding of data structures such as trees, graphs,
stacks queues etc. Two examples are discussed below (Figs. 1 and 2).

The structure of the beaver den is a so-called “binary tree”, meaning that from every
room (a node) there are (possibly) two branches leaving to further rooms. The
room-number (or any other ordered data) serves to navigate and find a room again.
Data on a computer can also be organised in such way (like for instance names and
phone numbers). In fact, with at most n comparisons (depth of the tree) it is possible to
distinguish between 2n−1 entries. For n = 10 we have 1023 possible entries, for n = 20
we have a little over 1 million entries and for n = 30 over one billion.

Fig. 1. Biber hotel: a task on a binary tree concept (Ivo Blöchliger, Switzerland)

The Animation task shown in Fig. 2 deals with a data structure concept, in par-
ticular that of class, which is very important concept in object oriented programming.

B-taro is planning an animation, which shows a sequence of pictures of a face. The
animation should run smoothly. The order of the pictures will be correct if only one
attribute of the face changes from one picture to the next. Unfortunately, the pictures
got mixed up. Now B-taro must find the correct order again. Luckily, he knows which
picture is last. He labels the five other pictures with letters A to E.

In order to find the differences between the pictures, pupils have to find out about
the essential attributes of the depicted faces first. The list of attributes and their possible
values is: ears: small, large; mouth: plain, smile; nose: small, large; number of teeth: 2,
3; whiskers: curly, straight. For instance, pupils can describe the first face as a list of
attribute-value pairs: (ears: small; mouth: plain; nose: large; number of teeth: 3;
whiskers: straight).

34 V. Dagienė and S. Sentance

4.2 Learning About Logical Operations

In many countries, understanding logical operations is a key part of the informatics
curriculum. In the national curriculum in England, pupils have to “understand simple
Boolean logic [for example, AND, OR and NOT] and some of its uses in circuits and
programming” at ages 11–14 (Department for Education 2013). Bebras tasks can be
focused around different aspects of this topic, particularly tasks where students have to
demonstrate an understanding of AND, OR and NOT, or combinations of these
operations, in order to solve a task (Fig. 3). The use of such tasks can have a direct
applicability to the curriculum.

The Dream Dress task involves statements (conditions) that must be evaluated
(determined to be true or false) for a set of objects (coats). Conditions and their
evaluation is an important part of programming and algorithmic thinking. Conditions
can be simple statements. However, more complex statements can be formed using
logical operators such as AND, OR, NOT, etc. This task uses the AND operator.

Fig. 3. Dream dress (Karolína Mayerová, Slovakia)

Fig. 2. Animation – a task on a class concept of object-oriented programming (Tomohiro
Nishida, Japan))

It’s Computational Thinking! Bebras Tasks in the Curriculum 35

4.3 Learning About Networks

The topic of networks is very broad; it can be found in various forms in many
countries’ informatics curricular (Barendsen et al. 2015). At school level, this topic
could cover topologies, communication, networking protocols, security and the way
that the internet is structured. The communication offered by networking can also be
seen in examples of social networks, as in the following task (Fig. 4).

A social network is a network used for communication and will be familiar to many
students engaging in the Bebras contest. Social networks present us with examples of
large and complex networks. It is not always obvious that by posting something on a
friend’s page, it might be available to people other than the close friend.

Social networks themselves are incredibly powerful tools in today’s world. Com-
puting statistics on their users and their pages is useful to marketing departments and
anyone else trying to understand a person or group of people. Instadam could also be
interpreted as a model of a miniature internet, with the beavers being websites and
friends as pages “linked to”. Search engines typically rank these websites by some
measure of popularity or importance, at least by the number of links to and from the
website. A widely used way to find the result by using a computer is to use the flood fill
algorithm which can cope with systems with more than the two iterations in this
example.

Another key aspect of networks which will be covered in the school curriculum is
security. The example Spies (Fig. 5), focusing on spies exchanging information,
illustrates a Bebras way of introducing this in school.

These examples illustrate the direct connection from topic to task which can be
exploited in the classroom. All examples given here are from the 2015 contest, but as
the competition has run since 2004, there are many more examples of tasks that
demonstrate computer architecture, principles of operating systems, cryptography and
other concepts relevant to the curriculum.

Fig. 4. Popularity (J.P. Pretti, Canada, Cristian Datzko, Switzerland, Sarah Hobson, Australia)

36 V. Dagienė and S. Sentance

5 Pedagogical Issues

The question remains as to the identification of teaching approaches that can draw on
Bebras tasks as a resource. To a certain extent the country’s curriculum will dictate
which tasks are appropriate to be incorporated into a scheme of work. However the
tasks lend themselves to being interesting starter tasks for the beginning of a lesson or
plenary tasks, for the formative assessment part of a lesson. Currently many teachers
use previous tasks as preparation for their students prior to the contest each November;
with the growing number of available tasks Bebras tasks could be used in teaching all
year round.

Planning lessons around relevant Bebras tasks can only be achieved if Bebras tasks
are available and the content is clearly signposted. A new two-dimension categorisation
system being proposed for Bebras tasks (Dagiene and Sentance in review) will assist
with this. Within this categorisation, each task is classified in terms of its computational
thinking skills and informatics concepts. Teachers will be able to use this categorisation
to select material for teaching. One situation that can be envisaged is that each country
(or countries sharing a common language) has a database of previous tasks that could
be searched via concept or computational thinking skill.

Fig. 5. Spies (Janez Demsar, Slovenia)

It’s Computational Thinking! Bebras Tasks in the Curriculum 37

Another key area for consideration is assessment. In the Bebras contest, tasks are
marked automatically and teachers have access to the final results of their students. By
using the tasks for formative assessment in lessons, teachers can track their students’
progress in developing computational thinking skills.

6 Conclusion

Bebras tasks present a motivating way to introduce informatics concepts to students as
well as developing computational thinking skills. Bebras task developers seek to
choose interesting tasks (problems) for enabling students to understand informatics and
to think deeper about technology. Moving forward these tasks should cover a range of
as many different informatics topics as possible. In addition tasks can be designed
which aid the development of core computational thinking skills such as abstraction,
algorithmic thinking, decomposition, evaluation and generalisation.

In this paper, the use of Bebras tasks in teaching to promote computational thinking
and the introduction of concepts has been suggested through possible examples. Bebras
tasks are categorized in terms of the concepts being covered, and can also include a
categorisation by computational thinking skill. To support teachers developing lessons,
each task includes an explanation of how the task relates to informatics. This can also
support teachers who are not fully confident in the subject matter around the tasks, and
add to their own professional development. Further work is needed to evaluate the
extent to which the use of these tasks in the classroom can support the learning and
assessment of computational thinking.

Acknowledgements. The authors thank all members of the international Bebras community
who took part in task development and in this way influenced the outcomes of this paper. In
addition, we are grateful to Chris Roffey for the development of the UK Bebras Answer Booklet
2015 from which we have taken some ideas for explanation of the example tasks in this paper.

References

Aarts, R.M.: Gossiping. FromMathWorld–AWolframWebResource. Created byWeisstein, E.W.
(2016). http://mathworld.wolfram.com/Gossiping.html. Accessed 30 Apr 2016

Barendsen, E., Manilla, L., Demo, B., Izu, C., Grugina, N., Mirono, C., Sentance, S., Settle, A.,
Stupuriene, G.: K-9 concepts in computer science education. ITICSE Working Group report
(2015)

Bebras International Challenge on Informatics and Computational Thinking. http://www.bebras.
org/en/facts. Accessed 30 Apr 2016

Brown, N., Sentance, S., Crick, T., Humphreys, S.: Restart: the resurgence of computer science
in UK schools. ACM Trans. Comput. Educ. 14(2), 9 (2014)

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., Woollard, J.:
Computational Thinking: A Guide for Teachers (2015). http://computingatschool.org.uk/
computationalthinking. Accessed 10 Apr 2016

38 V. Dagienė and S. Sentance

http://mathworld.wolfram.com/Gossiping.html
http://www.bebras.org/en/facts
http://www.bebras.org/en/facts
http://computingatschool.org.uk/computationalthinking
http://computingatschool.org.uk/computationalthinking

Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer literacy:
criteria for good tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS, vol.
5090, pp. 19–30. Springer, Heidelberg (2008)

Dagiene, V., Sentance, S.: Computational thinking and the Bebras challenge: developing a new
task categorization system (in review)

Dagiene, V., Stupuriene, G.: Informatics education based on solving attractive tasks through a
contest. Commentarii informaticae didacticae 7, 97–115 (2014)

Dagiene, V., Stupuriene, G.: Bebras - a sustainable community building model for the concept
based learning of informatics and computational thinking. Inform. Educ. 15(1), 25–44 (2016)

Denning, P.J.: Beyond computational thinking. Commun. ACM 52(6), 28–30 (2009)
Department for Education: The National Curriculum in England: Computing Programmes of

Study (2013). https://www.gov.uk/government/publications/national-curriculum-in-england-
computing-programmes-of-study. Accessed 30 Apr 2016

Google for Educators: Exploring Computational Thinking (2016). https://www.google.com/edu/
resources/programs/exploring-computational-thinking. Accessed 30 Apr 2016

Grover, S., Pea, R.: Using a discourse-intensive pedagogy and Android’s App Inventor for
introducing computational concepts to middle school students. In: Proceedings of 44th
SIGCSE Technical Symposium on Computer Science Education, pp. 723–228. ACM (2013)

Hemmendinger, D.: A plea for modesty. ACM Inroads 1(2), 4–7 (2010)
ISTE&CSTA (International Society for Technology in Education & the Computer Science

Teachers Association): Operational definition of computational thinking for K-12 education
(2011). https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., Werner, L.:
Computational thinking for youth in practice. ACM Inroads 2(1), 32–37 (2011)

Lu, J.J., Fletcher, G.H.: Thinking about computational thinking. ACM SIGCSE Bull. 41(1), 260–
264 (2009)

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., Settle, A.:
Computational thinking in K-9 education. In: Proceedings of Working Group Reports of the
2014 on Innovation & Technology in Computer Science Education Conference,
ITiCSE-WGR, pp. 1–29. ACM, New York (2014)

Papert, S.: An exploration in the space of mathematics educations. Int. J. Comput. Math. Learn.
1, 95–123 (1996)

Przybylla, M., Romeike, R.: Physical computing and its scope - towards a constructionist
computer science curriculum with physical computing. Inform. Educ. 13(2), 225–240 (2014)

Selby, C., Woollard, J.: Computational thinking: the developing definition (2013). http://eprints.
soton.ac.uk/356481. Accessed 30 Apr 2016

Syslo, M.M., Kwiatkowska, A.B.: Introducing a new computer science curriculum for all school
levels in Poland. In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378,
pp. 141–154. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25396-1_13

Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

It’s Computational Thinking! Bebras Tasks in the Curriculum 39

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.google.com/edu/resources/programs/exploring-computational-thinking
https://www.google.com/edu/resources/programs/exploring-computational-thinking
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
http://eprints.soton.ac.uk/356481
http://eprints.soton.ac.uk/356481
http://dx.doi.org/10.1007/978-3-319-25396-1_13

How to Attract the Girls: Gender-Specific
Performance and Motivation in the Bebras

Challenge

Peter Hubwieser(B), Elena Hubwieser, and Dorothee Graswald

Technical University of Munich, TUM School of Education,
Arcisstrasse 21, 80333 Munich, Germany

{peter.hubwieser,elena.hubwieser,dorothee.graswald}@tum.de
http://www.ddi.tum.de

Abstract. Potentially, the international Bebras Challenge could pro-
vide a facility to arouse the enthusiasm of girls for Computer Science.
Yet, its effect will depend on the personal success in the challenge, which
is likely to correlate with personal motivation. Thus, we have compared
the performance of the girls and the boys in the German Bebras chal-
lenge of 2014. Overall, the boys were more successful. The differences
increase dramatically with the age of the participants. Additionally, we
have compared the average performance of boys and girls in every task.
It turned out that girls performed better in a certain task, if three con-
ditions of Kellers ARCS model of motivation are met: the tasks have to
look nice to attract the attention of the girls, they have to represent a
situation relevant for real life, and they have to be comparably easy to
solve.

Keywords: Bebras challenge · Gender differences · Informatics ·
Computer science · Motivation · Self-efficacy

1 Introduction

The attempt to engage more women in Computer Science (CS) has turned out
to be a substantial challenge over many years in many countries, for example
in Germany [24]. As one of the reasons was found that in our society woman
regard themselves to be weaker performing in Mathematics and Computer Sci-
ence compared to men [20]. Due to the obvious urgency of this problem, over the
last decades many projects have been launched to motivate women to engage
in Computer Science. Yet, as already very young girls seem to have different
attitudes toward CS compared to even-aged boys [8], all attempts to influence
adult women might come too late. In this regard, the international Bebras chal-
lenge provides a dawn of hope, as it aims to raise the interest and motivation in
CS, addressing children at the age of 10 already. Yet, as it has turned out that
intrinsic motivation requires the experience of competence [12], the challenge
will have a positive impact on girls only if they are able to solve a satisfying
number of tasks. To find out if this is the case and to detect differences between
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 40–52, 2016.
DOI: 10.1007/978-3-319-46747-4 4

How to Attract the Girls: Gender-Specific Performance 41

boys and girls, the outcomes of the challenge have to be analyzed regarding the
gender of the participants. In certain tasks of the German Bebras challenge of
2009, we have already found significant differences between boys and girls [14].
In this paper, we compare the performance of boys and girls in the German
Bebras challenge of 2014. In average, the girls had a significantly lower per-
formance compared to the boys. Yet, in the two younger age groups, the girls
outperformed the boys in certain tasks. The analysis of these tasks demonstrates
that girls can be motivated by the first three factors of Kellers ARCS Model [17]:
Attention, Relevance and Confidence.

2 Theoretical Background

The concept of self-efficacy describes the self-assessment of a person regarding
his/her ability to master certain tasks or to reach certain goals [2]. A persons’
self-efficacy also seems to represent a reasonable predictor for his/her efforts to
master these tasks, because people tend to estimate their future performance
according to past successes or failures [3]. It has been found that women assess
their self-efficacy in general lower than men on the same performance level [19].
The different working practices of young people were investigated for example
by Lamoureux, Beheshti, Abuhimed and AlGhamdi [19]. They observed the
behavior of their probands during the work on a project and found that girls were
less confident. On the other hand, in case of problems, young men were found
to give up earlier. In total, the girls worked more carefully and purposefully and
also showed more satisfaction at the end of the project.

A study of Cen, Ruta, Powell and Ng [7] investigated the collaboration in
single-sex groups. The female groups showed clearly more collaboration and
achieved better results than the male groups. Hubwieser and Mühling have
confirmed this effect in the context of the German Bebras Challenge of 2009,
restricting their analysis to a set of tasks that seem to require spatial intelli-
gence only [14].

To explain the constantly low portion of young women among computer
science students, numerous studies on gender differences have been conducted,
see [23,24]. It turned out that certain stereotypes regarding computer science
have established [15]. For example, Graham and Latulipe reported that girls
regard programmers as “geeky” [13]. On the other hand, many women lack
confidence to master a computer science course due to their low perception of self-
efficacy. Additionally, they regard themselves as gifted only in a few partial fields
of computer science. In consequence, they do not enroll in such courses or drop
out quite early [5,20]. Even after receiving a computer science degree, stereotypes
and prejudices form barriers for women. Often they are simply not regarded as
evenly competent as their male colleagues [22]. In addition, it has been reported
that they tend to underestimate their skills, even if they have the same or better
grades compared to their male fellows [5,21]. Boys seem to be more interested in
Computer Science because they like problem solving [23]. They work on problems
that can be solved on a computer more often and more intensively compared to

42 P. Hubwieser et al.

women. By this way, they seem to learn certain technical skills better, which
provides additional advantages compared to girls, who generally seem to start
their studies in Computer Science with less prior experience [21]. Furthermore,
men often do programming just for itself and therefore work more frequently
in a trial and error method [16]. Out of these experiences, they tend to have a
more relaxed and more playful approach of technology than women [5]. Other
studies have detected differences between boys and girls already in the child age.
A study of Chen [8] shows that boys perceive computer science to be more useful
than girls and thus show more motivation as a result. Girls, however, often better
understand the concepts and perform better than boys.

Based on his empirical investigations, J.M. Keller developed the ARCS Model
of Instructional Design as a “method for improving the motivational appeal of
instructional materials” [18]. The model contains four conceptual categories that
“subsume many of the specific concepts and variables that characterize human
motivation” [18]: Attention, Relevance, Confidence and Satisfaction. Addition-
ally, it proposes strategies to enhance the motivational appeal of instruction.
In summary, it sketches a systematic design process, called motivational design.
The four conceptual categories are defined by Keller as follows [18]:

– Attention has not only to be directed to the appropriate stimuli, but also
sustained during the learning process.

– Relevance provides the answer to the question “’Why do I have to study this?”
– Confidence can influence a student’s persistence and accomplishment. Confi-

dent people tend to believe that they can effectively accomplish their goals by
means of their actions, while unconfident people want to impress others and
worry about failing.

– Satisfaction makes people feel good about their accomplishments.

3 The Bebras Challenge

The first Bebras Challenge was organized in October 2004 in Lithuania by V.
Dagiene [11]. The goal of Bebras “is to promote Informatics (or Computer Sci-
ence, or Computing) and Computational Thinking especially among teachers
and pupils of all ages, but also to the public at large by extent”1. Up to now, the
project has reached a tremendous dissemination, attracting more than 1 300 000
participants from 35 countries in 20151. Bebras is offered annually in these states,
separated in different age groups. Although the test is performed usually in
schools and the students have to be registered by their teachers, the participa-
tion is voluntary [4]. The students are free to work on their own or in a team.
Each age group has to solve a different set of tasks, which are created by the
national Bebras boards, which also classify them in one of the difficulty levels
easy, medium or hard [9]. Some tasks are offered to more than one age group,
providing opportunities to compare these age groups at least in some regard.
For an actual, comprehensive overview see [10].

1 www.bebras.org.

www.bebras.org

How to Attract the Girls: Gender-Specific Performance 43

The German challenge is performed annually during one week in November
in all 16 federal states, separated in 4 age groups for students of grades 5/6,
7/8, 9/10 and 10–13 respectively. During this week, students can solve the 18
tasks of their age group on any day. A user or a team has to solve all tasks
during 40 min from logging in on the website. When starting, each participant
or team has a credit of 54 points. For solving a task correctly, depending from
its difficulty level, 6, 9, or 12 points are added. For wrong solutions, 2, 3 or 4
points are subtracted. At the end, each participant or team can achieve a total
score from 0 to 216 points.

4 The Data

In this study, we have analyzed the results of the of the German Bebras challenge
of 2014 with 217 604 registered users, see Tables 1 and 22.

Table 1. Age group distribution

Grade 5, 6 Grade 7, 8 Grade 9, 10 Grade 11–13 Total

Number 52 465 71 331 62 915 30 795 217 506

Percentage 24.1 % 32.8 % 28.9 % 14.2 % 100%

Table 2. Gender distribution over the age groups

Grade 5, 6 Grade 7, 8 Grade 9, 10 Grade 11–13 Total

Boys 51.1 % 53.0 % 58.8 % 67.7 % 56.3 %

Girls 48.8 % 46.7 % 40.8 % 32.2 % 43.4 %

Not ind 0.2 % 0.3 % 0.4 % 0.2 % 0.3 %

Basically, the responses of the individual participants to the tasks are
assigned to teams. Every team consists of one or two members. We restricted our
analysis to teams that had responded at least to one task. By this restriction,
the number of analyzed participants was reduced to 214 811.

Regarding the team size, 60.7 % of the participants had worked alone, while
39.3 % had preferred to collaborate in pairs. As expected, the percentage of
collaborating girls (39.2 % to 41.1 % over the age groups) was higher compared
to the boys (from 35.0 % to 37.7 %). According to a χ2-test on the fourfold tables
gender×team size, the hypothesis that team size and gender were independent
could be rejected in all age groups with probabilities below 0.01.

For the analysis of the individual performances, we produced a dichotomous
matrix for each of the 4 age groups, consisting of one line per participating
team (one or two persons) and one column per task of the respective age group,

2 www.informatik-biber.de/archiv/informatik-biber-2014.

www.informatik-biber.de/archiv/informatik-biber-2014

44 P. Hubwieser et al.

18 in total. In the cells, we entered 1 if the respecting team solved this task
correctly or 0 in all other cases (incorrect answer, no response, or task not even
opened).

To calculate the empirical difficulty of every task, we calculated the average
over each column of this matrix, which is equivalent to the relative frequency
of correct responses to the respective task. For the average success rates of any
subset of participants (girls or boys, singles or pairs) in a certain task, we cal-
culated the average of the respective column restricted to this subset, e.g. by
filtering all single girls among the participating teams.

We restricted this analysis to students that have indicated their gender, work-
ing alone or in same-gender teams, excluding mixed-gender groups by this way.
Over all age groups, the portion of mixed pairs among all pairs increased from
5.2 % in the youngest to 14.3 % in the eldest age group.

5 Results

5.1 Differences over All Tasks

Our first goal was to compare the performances of boys vs. girls and of same-
gender pairs vs. singles over all tasks. For this purpose, we could have used the
Bebras overall score. Yet, as explained above, the Bebras score values depend
from the difficulty levels of the tasks, as classified by the Bebras boards. The
calculation of the Spearman Rank Correlation [6] between the empirical difficulty
(average over all participants on our 0/1 scale) and the task level as classified
by the Bebras board for all four age groups (easy, medium, hard) varied from
0.41 to 0.81 over the four age groups. Thus we did not regard the Bebras overall
scores as sufficiently valid for the individual performance. Instead, we calculated
the average performances directly from our dichotomous matrices, without any
weighting of the tasks. For this purpose, we subtracted the averages over the
compared subgroups, e.g. the average over all single girls from the average over
all single boys, see Table 3.

To test the significance of the detected differences according to the ordinal
level of measurement (19 discrete values between 0 and 1), we applied a two-
sided Wilcoxon Rank-Sum test, see [25]. For the rejection of the hypothesis that
the distributions of two subgroups were equal, we choose a significance level of of
p < 0.05. According to this level, all the differences indicated in Table 3 turned
out to be significant.

As the results in Table 3 show, the boys performed significantly better in all
age groups compared to the girls, as well working alone as in pairs. Yet, the
differences increase dramatically from the youngest up to the eldest group. For
both gender groups, the pairs were more successful than the single participants.
Surprisingly, the difference between paired and single girls was lower compared
to the difference between paired and single boys. In this regard, we could not
confirm the results of [7] and [14].

How to Attract the Girls: Gender-Specific Performance 45

Table 3. Significant differences of average performance over all tasks (p< 0.05)

Grade 5–6 Grade 7–8 Grade 9–10 Grade 11–13

SingleBoys-SingleGirls 0.004 0.021 0.055 0.086

PairedBoys-PairedGirls 0.008 0.037 0.057 0.102

PairedBoys-SingleBoys 0.070 0.074 0.067 0.064

PairedGirls-SingleGirls 0.066 0.059 0.065 0.049

5.2 Differences on Task Level

To analyze the gender differences on task level, we subtracted the average perfor-
mance of the girls from the average performance of the boys for each task. This
was performed separately for single participants and pairs in each age group. In
the two elder age groups, the boys had outperformed the girls in all 18 tasks.
Yet, in the two younger age groups, the girls worked better in several tasks.
Therefore, we restricted our analysis to these age groups. For significance, we
applied a two-sided Wilcoxon-Rank-Sum test again (see Sect. 5.1). Because two
tasks (295 and 335) had differences that exceeded the usual significance level
p = 0.05 very closely, we raised this level slightly to p< 0.057.

Altogether, 27 different tasks were presented to the two younger age groups,
of which four (307, 334, 337, and 340) did not show any significant difference
between the performance of girls and boys. In grades 5 and 6, the differences
were nearly symmetric: the girls outperformed the boys significantly in seven
tasks, as singles as well as in pairs. In turn, the boys were significantly better in
eight tasks, also independent of team size. The girls of grades 7 and 8, showed
a significantly better performance compared to the boys in 3 tasks, in one of
these (288) only as singles. Two tasks (303 and 308) seemed to be particularly
attractive to girls, because they were solved significantly better by single as well
as by paired girls in both inspected age groups. The boys of grade 7 and 8
outperformed the girls in 13 tasks significantly, in one of these (309) only as
singles, in another (316) one only in pairs.

For the following analysis, we grouped the 27 tasks as follows, see Table 4:

1. Girls Tasks: all tasks that were solved significantly better by single and paired
girls,

2. Boys Tasks: all tasks that were solved significantly better by single and paired
boys,

3. Neutral Tasks: the rest of the tasks, either without any significant gender
difference or showing such a difference in only one case (singles or pairs),
containing the tasks 288, 307, 309, 316, 334, 337, and 340.

46 P. Hubwieser et al.

Table 4. Absolute values of significant differences in the performances of girls and
boys for the groups Girls Tasks and Boys Tasks (“NA” means “task was not available
in this age group”)

TaskNr Grade 5–6
Singles

Pairs Grade 7–8
Singles

Pairs

Girls tasks

294 0.033 0.030 NA NA

295 0.010 0.019 NA NA

296 0.020 0.020 NA NA

300 0.044 0.033 NA NA

303 0.022 0.012 0.019 0.008

308 0.033 0.035 0.024 0.020

327 0.060 0.050 NA NA

Boys tasks

292 NA NA 0.048 0.075

297 0.088 0.085 NA NA

299 0.031 0.036 NA NA

301 0.013 0.028 0.025 0.045

302 0.037 0.036 0.038 0.031

304 0.024 0.039 0.049 0.057

311 NA NA 0.009 0.018

313 NA NA 0.025 0.053

323 NA NA 0.083 0.114

333 0.034 0.052 0.058 0.073

335 0.011 0.014 0.030 0.050

336 0.054 0.059 0.082 0.098

338 NA NA 0.009 0.028

6 Application of the ARCS Model

As explained above, most participants were encouraged to participate in Bebras
by their teachers. Yet, the students solved the tasks individually on the computer
without direct control of their teachers. Therefore, the individual motivation of
the students might play a dominant role for their performance. To investigate this
role, we will analyze the tasks3 according to the motivation factors of Kellers
ARCS Model [17], see Sect. 2. As the effects of Satisfaction seemed relevant
predominantly regarding subsequent challenges, we will drop this factor here.

3 www.informatik-biber.de/archiv/informatik-biber-2014.

www.informatik-biber.de/archiv/informatik-biber-2014

How to Attract the Girls: Gender-Specific Performance 47

Fig. 1. Pictures of the tasks

6.1 Attention

According to the ARCS model [17], attention is a relevant factor for motivation
and, in consequence, also for success. Assuming that attention has to be attracted
by each task for itself, its first glance appearance is likely to be crucial. Therefore,
most of all, its graphical elements like pictures or diagrams, will be relevant
for the attention it gets (see Fig. 1). Several task numbers are underlined to
demonstrate that these tasks had produced differences in all four columns of
Table 4.

Looking at the graphical elements of the Girls Tasks, we find that these
are mostly representing animals, jewelry or food. The only exceptions are task
294 (keyboard) and partly 327, which displays a beaver, but also the rest of an

48 P. Hubwieser et al.

id card. It is apparent that most of these pictures look at least partly lovely
and likable, except task 294. Yet, the latter might be attractive for girls by
the relevance of the picture, assuming that girls like to use their phones (see
below). Regarding the Boys Tasks, the dominating elements are mostly abstract
rectangular figures, graphs or technical apparel. The Neutral Tasks have an
appearance that is more or less similar to the Boys Tasks, except task 309,
which looks more like a girls task. Yet, this task is relatively difficult, which may
have caused a low confidence level of the girls, see Sect. 6.3.

6.2 Relevance

According to The Glossary of Education Reform [1], “in education, the term rel-
evance typically refers to learning experiences that are either directly applicable
to the personal aspirations, interests, or cultural experiences of students (per-
sonal relevance) or that are connected in some way to real-world issues, problems,
and contexts (life relevance)”. Applied to the Bebras tasks and the personal sit-
uation of 10–13 year old students, these criteria might be represented by the
closeness of the situation that is described in the Bebras task to the personal life
and experience of the students. In other words, the relevance will be determined
by the probability that the participants or their friends have experienced or will
experience a similar situation. Keller [17] describes this by the term Familiarity.

In this sense, obviously, all of the Girls Tasks have a certain relevance, refer-
ring to situations, which actually could occur to the children in their daily life:

– 294: How to write the name of a friend on a phone keyboard?
– 295: How to identify your bracelet?
– 296: How to order scoops of ice cream according your preference?
– 300: How to assemble stickers to the picture of an aquarium?
– 303: How to find out which photograph your friend wants to get?
– 308: How can kids get the proper toothbrush?
– 327: How to secure your id card?

On the other hand, all of the Boys Tasks lack this relevance based on everyday
experiences in some regard, at least for girls:

– 292: How to cover a territory by mobile phone transmitting masts?
– 297: How can a robot cross a labyrinth?
– 299: How many friends can a Beaver visit in four days in a given rectangular

(!) set of channels and ponds?
– 301: How can a draw bot draw a certain figure?
– 302: Which path can a Beaver travel in a polygonal river system with a certain

amount of Energy?
– 304: How many mobile phone transmitting masts have to be installed to cover

all houses of a certain village?
– 311: How to find the cheapest way over a set of toll bridges?
– 313: How to generate trunk patterns?
– 323: How to catch a monster in a labyrinth?

How to Attract the Girls: Gender-Specific Performance 49

– 333: How to arrange portholes of different colors?
– 335: How to move a robot on a certain path?
– 336: How to optimize the payload of a ship?
– 338: How to synchronize the events of an abstract ceremony?

The Neutral Tasks 307, 334 and 337 lack this relevance more or less, in
contrary to the tasks 288, 309, 316 and 340. Yet, 288, 316 and 340 might fail to
attract girls by their comparably abstract pictures, while 309 is quite difficult
and thus could reduce the confidence level (see below).

– 288: How can Beavers cross potholes?
– 307: How to move a robot to a certain point
– 309: How many pretzels have been sold?
– 316: How to optimize walking distance to hotel rooms?
– 334: Which number is represented by this constellation?
– 337: How to represent one- and two-way streets in a matrix?
– 340: Which flower gets water in this constellation of valves?

According to Kellers’ Model, for both genders relevance should support moti-
vation. Yet, as shown by [23], boys tend to like problem solving for itself much
more than girls, see Sect. 2, which could explain the better performance of the
boys in the comparably irrelevant tasks.

6.3 Confidence

One of the relevant factors of confidence is the likelihood of success with a given
amount of effort and ability [17]. In consequence, the apparent difficulty of a task
will influence the motivation to solve it. To assess the difficulty of a task before
solving it, the participants can take this information directly from the classified
level (as displayed by the Bebras system) or guess how difficult the solution
might be. Therefore, we analyzed the empirical task difficulty (in other words the
average performance over all participants) as well as the difficulty level classified
by the Bebras board. As already mentioned in Sect. 5.1, the Spearman Rank
Correlation [6] between these two values varies strongly (0.76 in the youngest
age group, but only 0.41 in the group of grades 7,8). Table 5 compares these two
difficulty measures for the Boys and the Girls Tasks. Please note that a task is
the more difficult so solve, the lower the values of empirical difficulty (solution

Table 5. Comparison of task difficulties

Grades 5–6
Boys tasks

Girls tasks Grades 7–8
Boys tasks

Girls tasks

Overall empirical difficulty 0.35 0.82 0.37 0.91

Classified easy 13% 57% 27 % 100 %

Classified medium 25% 43% 36 % 0 %

Classified hard 63% 0% 36 % 0 %

50 P. Hubwieser et al.

Table 6. Empirical and classified difficulties of the neutral tasks

TaskNr Grades 5–6
Empirical diff

Classified Grades 7–8
Empirical diff

Classified

288 NA NA 0.58 Hard

307 NA NA 0,51 Medium

309 NA NA 0.47 Hard

316 NA NA 0,49 Medium

334 0,52 Medium 0,67 Easy

337 0,09 Hard NA NA

340 0,83 Easy NA NA

percentage) are. Apparently, the girls tend to perform better in easy and medium
tasks. As an explanation, the self-efficacy of girls was found to be lower compared
to boys [19], see Sect. 2, therefore the girls might drop difficult tasks. On the other
hand, the boys show higher willingness to deal with challenging problem solving
activities by trial and error [16], see Sect. 2.

Table 6 displays the difficulties of the Neutral Tasks, which might explain,
why both genders are comparably successful. Task 288 looks like a typical boys
task, supported by its difficulty. Yet, its high relevance could have motivated the
girls also. The tasks 307, 316 and 334 have medium difficulty and a quite abstract
or technical appearance. While 316 is comparably relevant, 307 and 334 are not.
The task 309 looks like a girls task, but due to its difficulty, the confidence of
the girls might have been low. In case of task 337, the extraordinary difficulty
might explain the missing differences between boys and girls, as only 9 % of all
participants have solved this task at all. The remaining task 340 seems to attract
both genders equally, by combining easiness, a “male” picture and a situation
comparably relevant for girls.

7 Conclusion and Future Work

In this paper, we have demonstrated that three factors of motivation according
to Kellers ARCS-Model are particularly relevant for the performance of the 10–
13 year old girls. This result could be utilized by the Bebras boards to construct
tasks that motivate particularly the younger girls: (1) look for a situation that is
likely to occur in girls’ everyday life, (2) construct a task for this situation that
is not too difficult and (3) draw a nice picture that contains a person, an animal
or other lovely objects. This might be also a good advice for computer science
teachers looking for tasks that are motivating for younger girls.

Nevertheless, our study has some weaknesses. Most important, we did not
decide between unanswered or incorrectly answered tasks, although the psy-
chological reasons might be very different in both cases. Further studies could
analyze this effect as well as apply our methodology to other Bebras Challenges,
as there are about 34 each year around the world.

How to Attract the Girls: Gender-Specific Performance 51

References

1. Abbott, S. (ed.): The glossary of education reform. http://edglossary.org/
relevance/

2. Bandura, A.: Self-efficacy: toward a unifying theory of behavioral change. Psychol.
Rev. 84(2), 191–215 (1977)

3. Bandura, A.: Self-efficacy. In: Encyclopedia of human behavior, vol. 4, pp. 71–81.
Academic Press, New York (1994)

4. Bebras Community: Statutes - RC3 (2015). http://www.bebras.org/sites/default/
files/BebrasStatutes rc3.pdf

5. Beyer, S., Rynes, K., Perrault, J., Hay, K., Haller, S.: Gender differences in com-
puter science students. In: Grissom, S., Knox, D., Joyce, D., Dann, W. (eds.) Pro-
ceedings of the Thirty-Fourth SIGCSE Technical Symposium on Computer Science
Education. SIGCSE bulletin, vol. 35(1), pp. 49–53. ACM, New York (2003)

6. Spearman, C.: The proof and measurement of association between two things. Am.
J. Psychol. 15(1), 72–101 (1904). http://www.jstor.org/stable/1412159

7. Cen, L., Ruta, D., Powell, L., Ng, J.: Does gender matter for collaborativelearning?
In: International Conference on Teaching, Assessment and Learning (TALE), pp.
433–440. IEEE, Piscataway (2014)

8. Chen, M.P.: The effects of prior computer experience and gender on high school
students’ learning of computer science concepts from instructional simulations. In:
Jemni, M., Kinshuk, S.D., Spector, M.J. (eds.) Proceedings 10th IEEE Interna-
tional Conference on Advanced Learning Technologies, pp. 610–612. IEEE, Los
Alamitos (2010)

9. Dagiene, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: criteria for good tasks. In: Mittermeir, R.T., Syslo, M.M. (eds.)
Informatics Education - Supporting Computational Thinking. LNCS, vol. 5090,
pp. 19–30. Springer, Berlin (2008)

10. Dagienė, V., Stupurienė, G.: Bebras - a sustainable community building model
for the concept based learning of informatics and computational thinking. Inform.
Educ. 15(1), 25–44 (2016)

11. Dagiene, V., Žalys, D.: Bebras - informaciniu technologiju konkursas. Kompiuterija
11(87), 50 (2004)

12. Deci, E.L., Â Ryan Richard M.: Intrinsic motivation and self-determination in
human behavior. Plenum Press, New York (1985)

13. Graham, S., Latulipe, C.: CS girls rock: Sparking Interest in Computer Science and
Debunking the Stereotypes. In: Grissom, S., Knox, D., Joyce, D., Dann, W. (eds.)
Proceedings of the Thirty-Fourth SIGCSE Technical Symposium on Computer
Science Education. SIGCSE bulletin, vol. 35, pp. 322–326. ACM, New York, N.Y.
(2003)

14. Hubwieser, P., Muhling, A.: Investigating the Psychometric Structure of Bebras
Contest: Towards mesuring Computational Thinking skills. In: Lee, G.C.,
Berglund, A., Wuh, C.C. (eds.) Proceedings of the 2015 International Conference
on Learning and Teaching in Computing and Engineering, pp. 62–69. IEEE, Los
Alamitos, California (2015)

15. Joshi, K.D., Schmidt, N.L.: Is the information systems profession gendered? char-
acterization of IS professionals and IS career. ACM SIGMIS Database 37(4), 26–41
(2006)

16. Katz, S., Aronis, J., Allbritton, D., Wilson, C., Soffa, M.L.: Gender and Race
in Predicting Achievement in Computer Science. IEEE Technology and Society
Magazine 22(3), 20–27 (2003)

http://edglossary.org/relevance/
http://edglossary.org/relevance/
http://www.bebras.org/sites/default/files/BebrasStatutes_rc3.pdf
http://www.bebras.org/sites/default/files/BebrasStatutes_rc3.pdf
http://www.jstor.org/stable/1412159

52 P. Hubwieser et al.

17. Keller, J.M.: Motivational design of instruction. In: Reigeluth, C.M. (ed.)
Instructional-Design Theories and Models: An Overview of Their Current Status,
Erlbaum, Hillsdale, NJ [u.a.], vol. 1, pp. 383–434 (1983)

18. Keller, J.M.: Development and use of the arcs model of instructional design. Journal
of Instructional Development 10(3), 2–10 (1987)

19. Lamoureux, I., Beheshti, J., Abuhimed, D., AlGhamdi, M.J.: Gender Differences in
Inquiry-Based Learning at the Middle School Level. In: Grove, A. (ed.) Proceedings
of the Annual Meeting of the Association for Information Science and Technology.
Association for Information Science and Technology, Maryland (2013)

20. Madigan, E.M., Goodfellow, M., Stone, J.A.: Gender, Perceptions, and Real-
ity: Technological LiteracyAmong First-Year Students. In: Russell, I., Haller, S.,
Dougherty, J.D., Rodger, S. (eds.) Proceedings of the 38th SIGCSE technical sym-
posium on Computer science education, pp. 410–414. ACM, New York, NY (2007)

21. Murphy, L., Richards, B., McCauley, R., Morrison, B.B., Westbrook, S., Fossum,
T.: Women catch up: Gender Differences in LearningProgramming Concepts. In:
Baldwin, D., Tymann, P., Haller, S., Russell, I. (eds.) Proceedings of the thirty-
seventh SIGCSE Technical Symposium on Computer Science Education, pp. 17–21.
ACM Press, New York (2006)

22. Patitsas, E., Craig, M., Easterbrook, S.: A historical examination of the social
factors affecting female participation in computing. In: Cajander, Å., Daniels, M.,
Clear, T., Pears, A. (eds.) Proceedings of the 2014 conference on Innovation and
technology in computer science education, pp. 111–116. ACM, New York, N.Y.
(2014)

23. Redmond, K., Evans, S., Sahami, M.: A large-scale quantitative study of women
in computer science at Stanford University. In: Camp, T., Tymann, P., Dougherty,
J.D., Nagel, K. (eds.) Proceeding of the 44th ACM Technical Symposium on Com-
puter Science Education, pp. 439–444. ACM Press, New York (2013)

24. Schelhowe, H.: Gender questions and computing science. In: Morrell, C., Sanders,
J. (eds.) Proceedings of the international symposium on Women and ICT creating
global transformation. ACM Press, New York (2005)

25. Wilcoxon, F.: Probability tables for individual comparisons by ranking methods.
Biometrics 3, 119–122 (1947)

Attitudes Towards Computer Science
in Secondary Education: Evaluation

of an Introductory Course

Daniel Lessner(B)

Charles University, Prague, Czechia
lessner@ksvi.mff.cuni.cz

Abstract. Computer science (CS) is not being taught at Czech gram-
mar schools (15–18 years old students). In our effort to change that, we
developed and piloted a basic CS course. It introduces the fundamen-
tal ideas of CS comprehensively and in relation to existing subjects and
real world applications. In this paper we describe the course program
briefly and present the part of evaluation that focuses on students’ point
of view. We assessed how they perceive the subject of CS in context
of other school subjects using a questionnaire with a qualitative and a
quantitative part.

It turns out that our approach to CS is considered intellectually very
demanding, yet this does not seem to affect other features (interest, use-
fulness) too negatively. CS does not show extreme values in other mea-
sured attributes in comparison to other science subjects.

Keywords: Qualitative study · Computer science education ·
Secondary education · Student attitudes

1 Introduction

Computer science (CS) is not included in general education in Czechia. Even
though we have subjects with “informatics” in their name, they focus mostly
on developing digital skills. We will refer to these subject as “ICT” for the sake
of clarity. The commonly shared idea is that CS is a specialized field, irrelevant
and too complex for everyday life. One of the results of this is that the students
are not even aware of the existence of CS as a study of efficient information
processing.

In order to improve this situation, we developed a curriculum for introduc-
tory CS which would fit our grammar schools (15–18 years old students). The
general approach towards our project stemmed from design based research. We
have iteratively tested, evaluated and improved the CS programme. It gave us
empirical ground to answer questions such as “What can CS look like at Czech
grammar schools?”, “Can the students even manage it?” and “What good can
that bring?”.

c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 53–64, 2016.
DOI: 10.1007/978-3-319-46747-4 5

54 D. Lessner

In this paper we examine how students perceive the subject and why. We
wanted to further investigate the aspect of difficulty, as it was coming up repeat-
edly during the teaching in conversations with both students and colleagues. We
also wanted to know whether students noticed improvements in problem solv-
ing and communication skills and how do they regard CS in comparison with
other subjects. However, as the nature of our survey was partially qualitative,
unexpected topics emerged as well.

The paper begins with a brief review of relevant work. Then we describe
the conditions of our experimental teaching. Section 4 deals with the process of
collecting data for our research and Sect. 5 describes the process of evaluation.
Section 6 introduces the results logically organized in topical subsections. A short
section of recommendations for similar surveys is the last before final conclusions.

2 Relevant Previous Work

Here we summarize what is known about attitudes towards rigorous CS at
schools and how does our work relate to it. We proceed from general studies
to those more specifically related to this paper. A general overview of research
on students’ attitudes towards scientific school subjects is given in [11]. Klopfer
in [7] categorizes affective behaviors in science education and distinguishes atti-
tudes towards science and scientists, acceptance of scientific methods, enjoy-
ment of learning science and developing interest in science related activities and
careers. It needs to be pointed out that “scientific attitudes”, “attitudes towards
science” and “attitudes towards school science” are three related, but different
constructs. We are interested in the latter in this paper.

Furthermore, attitude is not the only nor the dominant determining factor
of behavior [11]. The context of the situation matters. To link attitudes and
behavior, stronger understanding of attitudes and the context is necessary. This
implies the need to employ qualitative methodologies for exploring specific issues
of students’ attitudes to school science [11,12]. We took their recommendations
into account in our study.

A study of 600 students compares different groups to find out that their
expectations depend on prior experience with computers and that they are gen-
der specific [14]. In a detailed quantitative evaluation of 238 students attitudes
towards programming, Czech and Slovak students assessed the subject of pro-
gramming as “rather interesting”, “rather necessary” and “rather usable” for
their future [19]. However, they are students of schools with special focus on
programming, ICT and CS.

One of the few large and complex studies in our country is [13]. The authors
conclude that teachers consider as least important those topics which they also
understand the least, such as algorithms and programming, effectively developing
and supporting a misplaced view of the subject among pupils. The authors also
tried to examine pupil attitudes to specific topics. Many topics appear to be
alternately both liked and disliked. Pupils seem to consider topics which include
systematic work and use of memory and logic as less important, not fun, and
difficult. This includes virtually anything beyond digital skills.

Attitudes Towards Computer Science in Secondary Education 55

A different source [10] is based on data collected after the Bebras contest
[4]. Once again, answers to open questions clearly show that many pupils and
students hold a rather misguided conception of CS: according to them, Bebras
is not even a CS contest, because there is too much logic and thinking, and too
few computers.

The closest study to ours is [17]. Its authors investigate changes in students’
views following CS lessons based on the CS Unplugged activities [2]. It works
with a small sample of students of similar age. Moreover, many (not all) of
the activities we use are unplugged and adhere to similar principles as the CS
Unplugged resources. The study found that even though the activities improved
students’ understanding of the nature of CS, the intentions to study it further
actually declined.

3 Preconditions, Decisions

In this section we describe the circumstances under which our experiment took
place, loosely following the Darmstadt Model [6] where appropriate.

3.1 Organizational Aspects

Grammar schools, also known as “Gymnasium” in Central Europe and Germany,
are one of the branches of secondary education in Czechia. They focus mostly on
traditional academic disciplines and should prepare the student to continue at
virtually any type of university. Their programme is defined in the Framework
Educational Programme (FEP) [1]. Mentions of proper CS in FEP are sparse
and confused and thus usually not reflected in the school programmes. This was
the case on our pilot school as well.

One of the compulsory subjects is called “informatics” (ICT). Although in
reality, students learn there how to use digital technologies. Our class had one
and two lessons of ICT per week in the two previous years, respectively. In our
school year we had one lesson (45 min) each week. To fit in the classroom with
computers, the class was split into halves which had their lessons separately.

The course was taught by the author. This was a necessity in the given
organizational constraints, not a deliberate choice. To reduce the negative effect
on the quality of our research, we took detailed notes immediately after the lesson
(or during the lesson, when possible), sometimes recording it, anonymizing the
questionnaire data and discussed the methods and results with other researchers.

3.2 Sociocultural Related Factors

The common conception of computer related education in both primary and
secondary education revolves around consuming the technology. “Actual” or
“proper” CS is generally interpreted as coding, what is something unattainably
abstract and overall useless for anyone but programmers. This applies also for

56 D. Lessner

our pilot school, where our colleagues perceived our task as “mainly teaching
them all those applications”. The subject is regarded as auxiliary.

Our 32 students were 15–16 years old, 17 females and 15 males. They were
in the first year of the second half of the 8-year cycle, i.e. in the first year in
actual secondary education. Our lessons were compulsory. This ensured a full
range of students’ characteristics. A few students had some previous experience
with programming, some were in advance already strongly uninterested in CS.

3.3 Educational Objectives and Content

Here we describe briefly the course plan itself. The objectives are derived from
the general objectives for Czech grammar schools: developing key competences
(the most relevant for CS are problem solving, communication and learning)
and providing general knowledge. The course should introduce CS to grammar
school students in a similar manner as other scientific subjects do, as promoted
for example in [5]. Students should know the basic terms, topics, and questions of
the field, methods it uses, fundamental results, open problems, and applications
and connections to other areas. They should be able to apply their knowledge
and skills efficiently also when solving ordinary problems in everyday life (outside
CS), exhibiting basic computational thinking [18].

To achieve such goals, we have found appropriate fundamental ideas in the
spirit of [3,15]. It seemed more efficient than adapting existing curricula into our
constraints (even though we worked with them as well). The course covers the
following topics on an introductory level:

1. Information: what it is, efficient questions, measuring, encoding, binary sys-
tem, decision trees

2. Graphs: what are they good for, representation, Eulerian paths, isomorphism
3. Problem solving and state space: representing a problem, traversal, limita-

tions
4. Algorithms: properties, representations (free text, flowcharts), distinguishing

algorithms, existence of limitations
5. Programming: automating calculations with Python, basic flow control struc-

tures
6. Efficiency: counting steps, upper bounds, sorting examples and efficient

processing of sorted lists, recognizing and avoiding exponential processes
7. Advanced topics: topological sorting and critical path method, Turing test

and the current state of artificial intelligence, expected development

Presented topics may seem overly complex for the given age and time frame. We
indeed had to simplify them significantly. The most abstract topics (e.g. halting
problem) is regarded as similarly abstract topics in other subjects (e.g. modern
physics): students should be aware of it and know some implications, but we
do not expect everyone to understand it fully. More details on the course are
provided in [8]. We also develop an online textbook1 which will give a virtually
complete specification [9].
1 With the kind support of Google’s CS4HS program.

Attitudes Towards Computer Science in Secondary Education 57

4 Data Collection

In this section we describe the process of collecting the data. Some comments
on the actual teaching are necessary first, since it somewhat differed from the
plan. The timetable only allowed 45 min of weekly direct teaching instead of
the expected 90. We had to prioritize our goals and add more homework than
planned, sacrificing popularity for mastery. There was some homework almost
every week, and it was designed to last approximately 30–45 minutes. Even
though we have discussed it with the students beforehand, they were surprised
and found the homework to be a burden.

One of the measures we took to help students with the transition from ICT
to CS was a questionnaire and focused discussion at mid-term. The aims were to
investigate the students’ difficulties and to find some solutions and recommenda-
tions. We used the results to better inform the design of this study as well. One
of the unintended positive side-effects was that based on their previous experi-
ence, students considered the final questionnaire as something potentially useful
and worthwhile. They also knew that open and honest answers do not pose any
threat for them.

At the very end of the school year we organized an extra lesson to give out the
questionnaire we designed for this purpose. We checked whether students under-
stood the questions correctly and extended the instructions where necessary to
increase the validity of their answers. The grades were already determined and
the students knew it (so we could expect credible and authentic answers). We
collected 31 questionnaires from the total of 32 students.

The questionnaire had a qualitative and a quantitative part and consisted of
both open and closed questions. Literature (such as [11]) shows how misleading
can quantitative studies be. Further explanations and reasoning was encouraged
everywhere. It covered mainly the following areas:

– What is CS
– Emotions related to CS lessons
– Key competences developed during CS lessons
– Attitudes towards specific topics
– Thorough comparison of CS and other subjects

The areas, comparison criteria and specific questions were based on previous
interviews with students, the experiences from mid-term and partially on the cat-
egorization given in [11,12]. The questionnaire gave us certainty that every voice
is heard (unlike in a group discussion) while keeping a reasonable time frame
within the regular school schedule (unlike individual interviews). We learned
what lays in the background of students’ answers and also how frequent are
individual attitudes (because informal discussions often give a rather distorted
view).

5 Data Processing and Evaluation

Our approach to analyze the answers from open questions was based on open
coding [16], a technique used also in [13]. Meaningful fragments of text are tagged

58 D. Lessner

with a code, guided by our interests (e.g. motivations, challenges, attitudes etc.).
The code serves as a shorthand for the meaning of the text fragment. Each
code represents a group of fragments. Our data consist of relatively short texts
structured according to the questionnaire, what makes the process of coding
simpler. The disadvantage of brief answers is that we can not get very deep in
our interpretations.

The process of coding is done iteratively, the texts are reread and recoded.
Codes with similar meanings are joined, new codes are discovered. The meaning
of the codes can shift and develop during the process. To improve the research
validity, we recoded the texts multiple times, until the converged meaning was
used consistently. The resulting codes give an overview on what do the texts talk
about.

It is often argued in Czechia that CS is something just too extreme to be
included into mainstream education. We were therefore very interested where
would students put it relative to other subjects in terms of (self-reported) pop-
ularity, interest, usefulness, difficulty of subject matter, difficulty of achieving a
good grade and level of own achieved mastery. As the rest of the questionnaire,
these attributes were based mainly on our previous interviews with students
and findings of the mid-term survey [8]. This constituted a table with these
attributes as rows and compared subjects as columns. An extra row was present
for similarity of all the subjects to CS, and an extra column for ICT from the
previous year. Students were filling in values of 1–100 to the cells. Our reason
to prefer scores over more usual rankings is the possibility to represent various
distributions of each attribute with such system and obtain more meaningful
data (as suggested in [11]).

The reported values allowed us to quantify the attributes in context with
other subjects. We have also compared groups of subjects, such as languages,
humanities and sciences. We used averages, quartiles, extremes and rank mea-
sures for comparisons. We will be discussing medians unless we say otherwise,
because the values are most often nicely distributed so even medians describe
the measured aspects sufficiently. With a sample of our size and character any
more advanced statistics would be meaningless.

Aside from the questionnaires, we worked with our notes taken immediately
after lessons, with data in Moodle (e.g. submitted assignments, achieved points)
and with the school agenda (final grades from all subjects, absences). These
extra sources together with some redundancy in the questionnaire (e.g. asking
very related questions) allowed us to confirm that students’ opinions and other
data stand in accordance and thus helped the reliability of our results. They also
added more context and allowed deeper understanding of the answers.

6 Results

The information obtained from all the available data is too much to describe
completely in this paper, so we describe only the most interesting findings. We
organized this section along topics which arose from the evaluation in the spirit

Attitudes Towards Computer Science in Secondary Education 59

of qualitative methodology. The rate of achieving educational goals is not the
topic of this paper, yet a brief comment is important for interpretation. There is
of course room for improvement, but the students have accomplished the course
goals satisfactorily overall. This claim is based on examining their grades, in-
class performance and assignments. They did not master 100 % of the matter,
but their skills and understanding fall within the range of other subjects

6.1 Difficulty, Emotions, Homework and Popularity

Let us begin with the deepest of the examined aspects. Students answered the
question “What inspires your strongest emotions when studying informatics, end
which emotions are they?” (note that “informatics” is the official name of the
subject, both for our CS course and the previous ICT). A feedback loop known
from our small mid-term research emerged: failure inspires negative emotions,
success (solving a problem, understanding a concept) inspires positive emotions.
However, a closer look revealed more details about the sources of those feelings.

Negative emotions reports outnumbered the positives. Students mention
despair, fear, anger, sadness and others, mostly when facing homework. The issue
of homework came up also in explanations of popularity. Apparently, homework
was a high ranking factor in decreasing reported popularity, even though only a
minority of students saw homework as an issue.

Students reported also more specific factors than the mere existence of home-
work: incomprehension of instructions, existence of deadlines, amount of work
and subject difficulty were among the sources of their issues. Inability to under-
stand the instructions was reported most frequently. But when investigated indi-
vidually, students actually were able to read and understand what the question
is sufficiently. The true source of their confusion was that we did not tell them
explicitly and exactly what to do.

Almost all students say that once it was clear what to do, the homework was
doable, the matter understandable and interesting and a good grade achievable.
This is in accord with mastery both measured in grades and declared in the
questionnaire. Students’ answers suggest that with better balanced difficulty
and workload and more carefully formulated tasks, their overall experience would
significantly improve.

Other often declared factors determining reported popularity are usefulness
of CS and interest towards CS. This is supported also by students’ reasoning
about specific topics and by higher mutual correlations of these attributes in
reported quantitative data (both ca. 0.65). All these attribute correlations are
stronger in CS then in average (over all subjects). While popularity, usefulness,
interest and difficulty clearly are related (all our data suggest that), none of them
completely determines any other. We can not rely on e.g. emphasizing usefulness
to increase interest in all students.

60 D. Lessner

6.2 Key Competences

We let students to asses the change in their ability to solve problems, to com-
municate efficiently and to study. Students were to make a mark in the form on
a scale from decrease over no change, slight increase and significant increase to
maximum possible increase. This asymmetry is based on our previous knowledge:
virtually no one perceives a decrease, the question is how big is the perceived
increase.

As a whole (considering mean, median and mode), students declare slight
increase in problem solving skills. The other two abilities also changed positively,
but the effect is not considered that strong. No one declared any decrease. The
improvement in communication (where declared) is attributed mostly to writing
algorithms. The improvement in studying is attributed rather to the process
than to the subject itself: the necessity to actually work, to meet the deadlines
etc.

Most interesting answers are related to problem solving. We asked about
the cause of the changes. Students say they learned new approaches to solve
problems, new useful technologies (seen as a tool, not the subject). Many mention
efficiency as a criterion to judge different approaches. Some say training and
examples, some say motivation and fun doing it. However, most express in one
way or another that improvement in problem solving is an inherent feature of
studying computer science.

6.3 CS, ICT and Other Subjects

Until we started our experimental teaching, the subject named informatics
focused on using ICT. So we were curious to see how does the previous app-
roach compare with ours in the eyes of our students. Changes were organiza-
tional (home assignments, employment of Moodle), methodological (complex
tasks requiring independent decisions instead of following given instructions)
and of course in content. Students suddenly had to think on a different level and
deal with a new kind of problems. Technology was less of a subject to study and
more of a tool to use. Efficiency became a fundamental issue.

Here we briefly comment on the quantitative data. We discuss the middle
mass of the classroom (between the first and third quartile). Students often
used the full range (1–100), so the extremes do not give much information. We
have shown the medians in Table 1.

The rigorous CS was on average clearly less popular then the usual ICT from
the previous year. The declared reasons for that are discussed above. While it
has its influence, our data shows that difficulty is not a dominant factor in deter-
mining popularity or interest into a subject. However, other factors can also be
linked to interest when looking at the other subjects and students’ comments
from the qualitative part: Generally speaking, having fun learning implies inter-
est (according to students; any actual causality is probably trickier). Lack of
usefulness on the other hand implies lack of interest.

Attitudes Towards Computer Science in Secondary Education 61

Table 1. Median reported scores for attributes and subject groups

Popularity Interest Usefulness Mastery Diff. of mastery Diff. of grade

Mathematics 60 50 90 70 50 40

Sciences 50 50 60 70 50 40

CS (pilot) 50 60 60 70 70 30

ICT (last year) 80 52 50 100 10 1

Languages 70 65 99 75 20 50

Humanities 55,5 75 60 80 18 40

The difficulty to master the subject has risen enormously (from 10 to 70).
In fact, our subject was clearly regarded as the most difficult to understand of
all. This is interesting especially in combination with other aspects: while being
the most difficult, it was still considered more interesting and more useful than
standard ICT.

Another important note regards mastery. Despite being the most difficult
subject to understand, our students declared they have mastered it relatively
well (70, that is the same or better than mathematics, biology or chemistry).
There were some who did not feel confident in CS, but the majority evaluates
their mastery higher than 50. Our grades confirm this. It shows that students
are more capable than it is generally thought and that they probably do not use
their potential fully in other subjects.

Looking at the data for all the subjects, we may conclude: In the tracked
attributes, CS fits quite well among mathematics and sciences.

6.4 What Is “informatics”

We asked students to “explain what is informatics in one sentence” during the
introductory lesson. The absolutely dominant conception was about using appli-
cations, searching the internet and creating documents. That is in accord with
their school experience and also not unusual, see [10,13,17].

In the final questionnaire, the most frequent answer to the same question was
some variation on “the science about computers”. 22 students consider informat-
ics to be connected to technology strongly enough to mention it in their explana-
tion. Another strong motive is investigating processes (most often “in computers
and software”, but not only). This is in accord with remarks from elsewhere in
the questionnaire, that informatics investigates how and why do “things really
work inside” (implying that this is specific for CS). Some students emphasize the
use of mathematics, logic or thinking in general. Others emphasize the general
problem-solving nature of informatics. These aspects are mentioned on various
places of the questionnaire.

Data show an obvious shift in the conception of “informatics” in students.
From using ICT at the beginning of our intervention, vast majority of them
recognizes the deeper and more general meaning. 22 answers call informatics a

62 D. Lessner

science (in contrast with none at the beginning of the course). It is even more
interesting considering that outside our lessons and homework, students were
exposed virtually exclusively to the ICT conception.

6.5 Why Is CS Necessary in General Education

We conclude this section with broader implications. We will discuss how useful
CS is in the eyes of students, and how special it is compared to other subjects.
This is motivated by two common lines of argumentation against CS in general
education: “It is only useful for specialists” and “Thinking and problem solving is
covered in existing subjects”. However, students find that CS teaches something
both useful and special.

Students have clearly identified various benefits of studying CS. They con-
sider it more useful than the usual ICT and also than biology, chemistry and a
few other subjects. From sciences, only mathematics and physics are considered
more useful. This is an impressive result, since all other science subjects have
more time in the weekly schedule, appear during several years and are gener-
ally recognized as proper subjects. Advantages mentioned by students include
efficient behavior in general, efficient problem solving, abstract, logical, “differ-
ent” thinking, ability to formulate clear and quality instructions. Ability to solve
problems permeates the answers in various form fields, including the question
“What makes informatics unique among other school subjects?”

When seeking similarities, students find links in the use of numbers and
logic, thus relating CS to mathematics and sciences. They also see our relation
to computers, and thus similarity to the last years ICT. However, this relation is
perceived as weaker. Quantitative expression of subject similarities to CS shows
a clear order: the most similar subject to CS is mathematics, with median at 70.
It is followed by last years ICT, with median at 50 and a surprisingly symmetric
and broad distribution with quartiles at 15 and 95. The next is physics (med. at
35), then chemistry and biology.

We may conclude that students recognize special qualities in CS which they
do consider important and which they do not see in other subjects. The strongest
difference they see lays in focus on rigorous thinking and problem solving.

7 Methodological Recommendations

We do not see such small-scale, long-term studies very often, so we decided to
include a few recommendations based on our experience.

– To get unbiased results, it must be clear to the students (and teachers) that
e.g. “I do not see the use of this topic” is considered a valuable feedback, not
a personal insult. Students’ answers must not influence their grades.

– Using the results to apparently improve the lessons quality is an important
motivational factor for sincere participation on such evaluations.

Attitudes Towards Computer Science in Secondary Education 63

– Group interviews are an important, but potentially also misleading tool. Sat-
isfied, introvert and other students might not be motivated enough to express
their views. It is important to assess the overall opinions in the group per
individual student, e.g. in a survey.

– It seems to be fruitful to combine different approaches. Interview can help
to focus the questionnaire to the important topics, and the questionnaire can
provide overheard motives worthy to follow up on.

– Answers such as “CS is not very useful” are rather meaningless without con-
text. Is it more useful than last year, is it more useful than certain other sub-
jects? Does the student consider any subjects useful? Has the student already
decided about some future career? Context makes answers truly informative.

8 Conclusions

We have designed a comprehensive introductory CS course for general secondary
education and piloted it in a regular classroom with 32 approximately 16 years
old students within one school year. The course aimed to introduce computer sci-
ence as a rigorous scientific subject and covered some most fundamental aspects
of it (at an appropriately basic level). As a part of this experiment we assessed
students’ views toward the subject and their causes. The results of this sur-
vey are the core of this paper. We have described the course plan, the piloting
conditions, the data collection and evaluation process and the results.

It turned out that students coped with the advanced topics and recognized
some advantages, such as improvement in their problem solving skills or efficient
behavior. They consider CS challenging, partially because they just have not
been used to the necessary way of studying, working and thinking. However,
students still found the subject interesting and useful, even in comparison with
and other subjects and the usual “informatics” in Czechia (aiming at digital
skills). Our students’ conception of CS went through a significant shift towards
a more appropriate idea of a science which involves logical and abstract thinking,
efficient solutions to wide range of problems and creating and using technology
as a tool to save resources.

Students’ attitudes serve as yet another puzzle piece to show that rigorously
constructed CS education could and should be a part of general education. Stu-
dents can not only cope with it, they can also appreciate its benefits and regard
it as a decent subject on par with mathematics and sciences.

References

1. Framework Education Programme for Secondary General Education (Grammar
Schools). Výzkumný ústav pedagogický v Praze, Praha (2007)

2. Bell, T., Witten, I.H., Fellows, M., Adams, R., McKenzie, J.: Computer science
unplugged: an enrichment and extension programme for primary-aged children.
No. December (2006). http://csunplugged.org/

3. Bruner, J.S.: The Process of Education, vol. 115. Harvard University Press,
Massachusetts (1977)

http://csunplugged.org/

64 D. Lessner

4. Dagiene, V., Stupuriene, G.: Bebras a sustainable community building model for
the concept based learning of informatics and computational thinking. Inform.
Educ. 15(1), 25–44 (2016)

5. Hromkovič, J., Steffen, B.: Why teaching informatics in schools is as important as
teaching mathematics and natural sciences. In: Kalaš, I., Mittermeir, R.T. (eds.)
ISSEP 2011. LNCS, vol. 7013, pp. 21–30. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24722-4 3

6. Hubwieser, P.: The Darmstadt model: a first step towards a research framework
for computer science education in schools. In: Diethelm, I., Mittermeir, R.T. (eds.)
ISSEP 2013. LNCS, vol. 7780, pp. 1–14. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36617-8 1

7. Klopfer, L.: Evaluation of learning in science. In: Bloom, B., Hastings, J.,
Madaus, G. (eds.) Handbook of Formative and Summative Evaluation of Student
Learning. McGraw-Hill, London (1971)

8. Lessner, D.: Jak žáci gymnázia vńımaj́ı výuku informatiky jako vědy. In: Didinfo
2013 - Zborńık pŕıspevkov. Univerzita Mateja Bela, Banská Bystrica (2013)

9. Lessner, D.: Informatika pro každého (2015). http://ksvi.mff.cuni.cz/ucebnice
10. Lessner, D., Vańıček, J.: Bob́ık uč́ı informatiku. Matematika - Fyzika - Informatika

22(5), 374–382 (2013)
11. Osborne, J., Simon, S., Collins, S.: Attitudes towards science: a review of the

literature and its implications. Int. J. Sci. Educ. 25(9), 1049–1079 (2003)
12. Potter, J., Wetherell, M.: Discourse and Social Psychology: Beyond Attitudes and

Behaviour. Sage Publications Inc., London (1987)
13. Rambousek, V.: Výzkum informačńı výchovy na základńıch školách. Koniáš, Plzen

(2007)
14. Schulte, C., Magenheim, J.: Novices’ expectations and prior knowledge of software

development. In: Proceedings of the 2005 international workshop on Computing
education research - ICER 2005, New York, USA, pp. 143–153. ACM, New York,
October 2005

15. Schwill, A.: Fundamental ideas: rethinking computer science education. Learn.
Lead. Technol. 25(1), 28–31 (1997)

16. Strauss, A.L., Corbin, J.M.: Basics of Qualitative Research, 2nd edn. Sage Publi-
cations Inc, Thousand Oaks (1998)

17. Taub, R., Armoni, M., Ben-Ari, M.: CS unplugged and middle-school students’
views, attitudes, and intentions regarding CS. Trans. Comput. Educ. 12(2), 8:
1–8: 29 (2012)

18. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
19. Zahorec, J., Haskova, A., Munk, M.: Quality of education in programming in results

of students’ rating. In: Proceedings of WSEAS International Conference. Recent
Advances in Computer Engineering Series, pp. 177–182. WSEAS, Paris (2012)

http://dx.doi.org/10.1007/978-3-642-24722-4_3
http://dx.doi.org/10.1007/978-3-642-24722-4_3
http://dx.doi.org/10.1007/978-3-642-36617-8_1
http://dx.doi.org/10.1007/978-3-642-36617-8_1
http://ksvi.mff.cuni.cz/ucebnice

Typifying Informatics Teachers’ PCK
of Designing Digital Artefacts in Dutch

Upper Secondary Education

Ebrahim Rahimi1(B), Erik Barendsen2, and Ineke Henze3

1 Radboud University, Nijmegen, The Netherlands
e.rahimi@cs.ru.nl

2 Radboud University and Open University, Nijmegen, The Netherlands
e.barendsen@cs.ru.nl

3 Delft University of Technology, Delft, The Netherlands
f.a.henze-rietveld@tudelft.nl

Abstract. This paper reports on the results of the first phase of an
ongoing research project in design-oriented education in informatics in
Dutch upper secondary education. Our study focused on eliciting and
categorizing the pedagogical content knowledge (PCK) with respect to
design of digital artefacts of the informatics teachers participating in the
research project. Our results suggest that teachers’ PCK on design can
be typified in terms of two aspects, namely (i) teachers’ knowledge about
objectives and goals of designing digital artefacts by students, and (ii)
teachers’ knowledge about ways to assess students’ understanding and
performance. As to (i), we distinguish an orientation towards more con-
ceptual objectives, and one towards more practical objectives. Also with
respect to (ii), we found two types of teachers’ knowledge, one focused
on process-based assessment and another on product-based assessment.

Keywords: Pedagogical content knowledge · Informatics education ·
Design education · Secondary education

1 Introduction

Design-oriented education is a well-established instructional approach to teach-
ing informatics in secondary education in the Netherlands. As a general app-
roach, informatics teachers define and follow different sorts of individual or
group-based projects for designing and developing digital artefacts in different
forms including software applications, algorithms, web sites, games, videos, pod-
casts, etc. [4,18]. These design projects are meant to act as a vehicle for learn-
ing, by providing opportunities for application, making errors, iteration, testing,
revising and refining of newly developing conceptions and solutions, reflection,
communication, representation, decision making and collaboration [13].

Design-oriented education in informatics has several theoretical and practi-
cal underpinnings. From the theoretical perspective, the learning implications
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 65–77, 2016.
DOI: 10.1007/978-3-319-46747-4 6

66 E. Rahimi et al.

and advantages of designing has been widely recognized. Design activities and
challenges might lead to the creation and establishment of a participatory and
collaborative learning environment around the under construction projects [2].
Through the lens of the constructionist learning theory [17], these “participatory
learning environments support learners” building of understanding through the
collaborative construction of an artefact and sharable product’ [2] (p. 77). It is
also known that design education can contribute to the understanding of scien-
tific concepts [13], but this side of design education is hardly exploited. From
a practical perspective, the learning-by-making strategy is consistent with the
epistemological view of informatics as an engineering discipline [6].

This study is a part of a three-year research project called Formative assess-
ment of conceptual development in design education in the context of Dutch
secondary education. This project has been inspired by the new chemistry and
informatics curricula in secondary education in the Netherlands [1,5] both stress-
ing conceptual learning and design. In this project teachers and researchers
from informatics and chemistry participate and collaborate in a joint research.
The rationale behind combining informatics and chemistry is to support cross-
fertilization of the design-based and conceptual learning approaches which seem
to form the core educational activities in these subjects, respectively. The partic-
ipants in the project include four researchers from Radboud University (respon-
sible for the informatics part) and Delft University of Technology (responsible for
the chemistry part), and a consortium of 12 schools/teachers (6 teachers for each
part). The main purpose of this joint project is to develop appropriate assess-
ment instruments to monitor the conceptual development of students during
design activities, and to investigate the teacher knowledge required to imple-
ment design education for conceptual learning. To this end, during this project
design-oriented teaching and test materials for authentic design scenarios in both
chemistry and informatics will be developed and tested. The development process
of these materials is combined with an investigation of the development of the
teachers’ PCK on the concepts to be learned and the PCK on designing digital
artefacts (hereafter referred to as PCK on design).

As the first step in this joint project, we captured, described and typified
the informatics teachers’ PCK on design. We will use the results of this study
to construct an analytical framework meant to scrutinize the design practices of
the participants in the next phases of the project. Also, the results will direct
the required professional development plans for the participants.

2 Pedagogical Content Knowledge (PCK)

The PCK concept has been introduced by Shulman [21] and refers to “the ways
of representing and formulating the subject that make it comprehensible to oth-
ers” (p. 9). A critical feature of teachers’ PCK is their strategic knowledge or
‘pedagogical know-how’. This strategic knowledge describes the processes that
teachers follow and employ in response to the challenges of teaching specific
subjects to particular learners in specific settings [22]. From a socio-cultural

Typifying Informatics Teachers’ PCK of Designing Digital Artefacts 67

perspective, PCK embodies a type of teachers’ professional knowledge focusing
on effective and flexible transformation of subject-matter knowledge in the com-
munication process between teachers and learners during classroom practices.
PCK is integrally and inherently situated in the everyday practices of teachers
and not only residing in individuals but also is distributed in their surrounding
environment including books, tools, and their communities [8,10].

Capturing PCK from teachers is a difficult and challenging task. One reason
for this stems from the complex nature of PCK and ways it develops. Indeed,
PCK represents a personal and often tacit knowledge seldom explicitly shared
between teachers [3,15] and developed and shaped after years of experience in
teaching a topic [21]. The development of PCK proceeds through a non-linear,
iterative and constructive process where new information is integrated with prior
experiences, knowledge and beliefs captured from various domains, practices, and
interactions [10].

Several models and instruments have been proposed for investigating teach-
ers’ PCK of a specific topic including: the PCK model of Magnusson et al. [16],
the Content Representation (CoRe) instrument [14], the reformulation of PCK
by Grossman [9], and the teacher professional knowledge and skill model [7]. Fol-
lowing [16], we consider four elements of teacher’s PCK on a given topic: knowl-
edge about learning goals and objectives connected to the topic (M1), knowledge
about students’ understanding (M2), knowledge about instructional strategies
(M3), and knowledge about ways to assess students’ understanding of the specific
topic (M4). The Content Representation (CoRe) instrument [14] captures the
key ideas connected to a specific topic, and elicits the teachers’ knowledge about
each idea through 8 questions. These questions cover the above four aspects of
PCK. Grossman’s reformulation of PCK relates it to these key questions: why
to teach a specific topic? what to teach? learning difficulties associated to the
topic? and how to teach the topic? The teacher professional knowledge and skill
model [7] introduces amplifiers and filters to the PCK model as influential fac-
tors in amplifying or filtering teacher’s learning and practice. Teacher beliefs,
orientation, prior knowledge or experience, and contextual variables might serve
as amplifier or filter for teacher’s learning [7].

Traditionally, the PCK concept has been introduced and investigated mainly
by scholars and practitioners in the context of science education. Using PCK for
eliciting and portraying teachers’ knowledge in computer science is an upcom-
ing approach (e.g., [3,11,19,20]). The results of these few studies emphasize the
fruitfulness of the PCK approach to investigate professional knowledge of infor-
matics teachers [3]. In this study we aim to use the PCK concept to investigate
the nature of knowledge the informatics teachers hold and utilize to support
their students in their design projects. Although, the focus of the PCK concept
is on capturing teachers’ pedagogical knowledge in a specific topic, however,
we argue that the nature of design-supporting knowledge held by teachers is a
practical knowledge in a specific domain and can be captured using the PCK
approach.

68 E. Rahimi et al.

3 The Study Setting

The participants of this study were a group of six enthusiastic and experi-
enced informatics teachers participating in the informatics part of the “formative
assessment in design education” project. Table 1 gives the relevant information
about the participants.

Table 1. The informatics teachers participating in the research

Teacher Gender (age) Education Teaching (subject: duration)
and other relevant experience

1 F (44) Informatics (MSc), physics
(BA)

Informatics: 8 years, Software
engineer

2 M (62) Informatics (BA), primary
education (BA)

Informatics: 12 years, Dutch
language: 20 years

3 M (48) Informatics (MSc) CS and mathematics: 20 years,
university lecturer

4 M (59) Language Language (Dutch, English): 18
years, Informatics: 18 years,
Developing help files for
companies, chess player

5 M (60) Sport Sport, math, economics: 18
years, Informatics: 16 years,
Network building experience

6 F (56) Language Language, Informatics

Two below research questions directed this study:
Q1: How can informatics teachers’ PCK on design be described?
Q2: Which parameters could be used to categorize informatics teachers’
PCK on design?
Due to the exploratory nature of this study, we chose qualitative research

methods for data collection and analysis. Given its in-depth and exploratory
approach, we selected the interview as the main method to collect data (cf.
[10,15]). We used the four constituting elements of PCK (i.e., M1, M2, M3,
M4) [16] together with a combination of CoRe questions [14] and Grossman’s
[9] questions to construct a set of interview questions to elicit teachers’ PCK on
design, see Table 2.

Six individual semi-structured interviews were conducted with the partici-
pants. Five of the interviews were conducted in the participants’ schools and
one interview took place at Radboud University. Each interview lasted about
two hours. All interviews were recorded using a voice recorder for further analy-
sis. The collected data then were analyzed by the research team. The analysis
procedure included transcribing audio data verbatim, coding data, reading the

Typifying Informatics Teachers’ PCK of Designing Digital Artefacts 69

Table 2. The interview questions for eliciting informatics teachers’ PCK on design

PCK elements ([16]) Questions about CS design projects (adapted from [14]
and [9])

M1. Knowledge of goals and
objectives

1. Why do you ask your students to do software
projects in your CS courses?

2. What do you like/not like about software develop-
ment projects by your students?

M2. Knowledge of students’
understanding and
practices

3. What sorts of skills do students need to acquire in
order to be able to develop software?

4. What are the learning difficulties/problems con-
cerned with the software development projects in your
classrooms?

5. What do students actually learn from their software
development projects?

M3. Knowledge about
instructional strategies

6. What to teach students to achieve the project devel-
opment objectives?

7. How to teach students to achieve the project devel-
opment objectives?

8. What are the teaching difficulties/problems con-
cerned with the software development projects in your
classrooms?

9. What technological tools do you use in your class-
rooms?

M4. Knowledge about ways
to assess students’
understanding

10. How do you assess your students’ learning and
achievement during their project development expe-
riences?

transcripts organized by codes, writing memos, recoding and merging similar
codes as necessary, grouping codes into categories, reviewing and confirming
codes by all the research members, and writing up conclusions.

We used the teacher professional knowledge and skill model [7] in addition to
the four PCK elements [16] as the analytical framework for coding the data and
investigation the relationship between the emerged codes. Furthermore, to code
the technology knowledge of the participants we borrowed some codes from the
Technological Pedagogical and Content Knowledge (TPACK) model [12].

4 Results

In this section we use the processed data to answer the first research question
and describe the informatics teachers’ PCK on design and its amplifiers and
filters.

70 E. Rahimi et al.

Knowledge About Goals and Objectives (M1). We concluded that the
informatics teachers’ knowledge about objectives of design contains 10 objectives
that can be divided into three main categories:

(i) Conceptual objectives: this category of objectives emphasize the importance
of developing digital artefacts as a means for learning and understanding
computer science (CS) concepts. The identified conceptual objectives for
design projects include: learning CS concepts, realizing students’ knowledge
gap, acquiring programming knowledge and skills, and incorporating theory
and practice (emphasized mainly by the teachers 1, 2, 3, 4).

(ii) Motivational objectives: this category emphasizes the ‘fun’ and motivational
aspects of design practices to trigger students’ learning and engagement.
This category consists of three objectives, namely: recognizing and address-
ing students’ differentiation, motivation and preparing students for ICT-
based jobs and subjects, and making a workable product (mainly for real
customers) as a means for making students learning tangible and also touch
their feeling of accomplishment, ownership, and sharing (asserted by all par-
ticipants).

(iii) Practical objectives: the focus of this category is mainly on the practical
benefits and advantages of developing digital artefacts. It involves three
objectives: acquiring soft and design skills (i.e. problem solving, communi-
cation, collaboration, design thinking, etc.); experiencing real world prob-
lems, challenges, and way of thinking ; becoming an independent learner ;
and learning about the latest ICT developments and trends (emphasized
mainly by the teachers 4, 5, 6).

Knowledge About Students’ Understanding and Performance (M2).
We divided teachers’ knowledge about students’ understanding and practice that
influences teacher’s instruction into eight categories as follows:

(i) Students’ faced problems: according to the interviewees, students experi-
ence different sorts of problems during their design practices, including:
group issues (i.e., free riding, peer assessment), technical problems, orien-
tation/planning problems, difficulty in finding real case projects, superfi-
cial/ shallow learning mainly due to following a non-reflective approach
to designing by students, difficulty in understanding the semantic of a
problem, inability to transfer their theoretical knowledge into action to
solve real problems (i.e. inability to breakdown a problem and using CS
concepts such as loop to solve it or difficulty in generating appropriate
algorithms). Addressing these problems significantly shape and influence
the participants’ instruction.

(ii) Development of students’ soft and design skills:referring to teacher’s
knowledge and understanding of the level and development of soft and
design skills in students.
“In a game making project, my students experienced several problems
about social skills and customer relationship. Accordingly, I decided to

Typifying Informatics Teachers’ PCK of Designing Digital Artefacts 71

change my plan for projects to define two extra roles in our project,
being: manager (undertaken by the teacher) and customer to help
students to learn appropriate social skills by observing the manager
(teacher) communication by the customers” (Teacher 3).

(iii) Students’ learning process: representing teachers’ knowledge of the speci-
fications of students’ learning process including their learning and design
goals, planning, activities, intermediate products, faced problems, taken
solutions, revisions, etc. (remarked by the teachers 2, 3, 4). To capture
this type of knowledge (M4), the participants use different approaches
such as tracing and analyzing students’ log book Teacher 4), observing
students’ practices, or using SCRUM methodology (Teacher 2).

(iv) Students’ understanding of their projects’ structure: referring to the teach-
ers’ knowledge about students’ understanding of their projects’ purposes,
structure, content, and concepts underpinning their products.

(v) Development of students’ conceptual understanding: meaning teachers’
knowledge and awareness on students’ conceptual knowledge and knowl-
edge gaps. This type of M2 knowledge has an inviable position in shaping
and influencing participants’ instructional activities (M3), as expressed by
one of the teachers:
“After analyzing their log files, I realized many students cannot cal-
culate the average of a list of numbers in SQL. Thus, I decided to
adjust my teaching materials and teach lessons about AVG and other
mathematical functions in SQL” (Teacher 2).

(vi) Students’ reaction and perception: entailing teachers’ knowledge and
awareness of students’ reaction on and perception of design projects. The
influence of this understanding on teachers’ instruction (M3) is shown
below:
“As an educational system you have to compete with other systems
that make learning fun for children. The social components of class-
rooms are the most competitive advantage and favourite part of the
school activities for students. We should invest on these social com-
ponents to make schools fun and meaningful for students” (Teacher
5).

(vii) Students’ preferences and orientation: referring to teachers’ knowledge
of students learning preferences and orientations. Capturing this type
of knowledge is essential for recognizing and addressing differentiation
between students (M3) as a educational principle promoted by many
schools:
“When I started introducing and using Appinventor in my course,
there were a lot of students who liked to be hacker and know about
cyber security. Accordingly, we made some different modules where
they could choose what they liked to learn” (Teacher 5).

(viii) Students’ level of performance in their projects: referring to teachers’
knowledge about the activeness of students in their group projects. Teach-
ers use this type of knowledge to grade, trigger and encourage students

72 E. Rahimi et al.

to actively participate in their group projects. The participants mentioned
different approaches to achieve this knowledge ranging from direct observa-
tion of students working (the teachers 1, 2, 4, 5, 6) to asking students them-
selves to rank their peers’ level of performance and activeness (Teacher 3).

Knowledge About Instructional Strategies (M3). We identified and
divided the teachers’ knowledge about instructional strategies associated with
conducting design projects into 8 categories as described below:

(i) Project development and management: referring to teachers’ knowledge
about shaping the students’ activities according to the respective phases
of software development, and teachers’ skill and ability to manage and
scaffold students to construct their projects and achieve their project’s
objectives.

(ii) Linking conceptual content: meaning teachers’ knowledge and skills to eval-
uate, develop and update content required by individual students for devel-
oping their projects.

(iii) Digital resources: implying teachers’ knowledge and ability to use technol-
ogy to provide new ways of teaching CS concepts. For example, Teacher 1
uses the code.org service to teach complex CS and programming concepts
through providing simple examples.

(iv) Digital tools: referring to teachers’ knowledge about the affordances and
constraints of technology as an enabler of different teaching approaches,
that is, technology enhanced learning. For example, Teacher 4 uses the
itslearning learning management system to log, monitor and trace the
learning process of students.

(v) Stimulating student-centric, flexible, differentiated and collaborative learn-
ing: referring to teachers’ knowledge and ability to implement and support
student-centric, differentiated and collaborative learning scenarios. This
sort of knowledge is embodied in different instructional activities of the
participants including involving students in choosing their project subjects,
implementing peer review activities, asking and encouraging students to
participate in generating teaching materials and even defining final exams’
questions (Teacher 5), supporting flexible learning by providing students
with learning choices and allowing them what, when, where and how to
learn (the teachers 1, 4), promoting differentiated learning through teach-
ing various content and providing separate assignments for different stu-
dents (Teacher 1), encouraging students to reflect on the structure of their
projects and their individual and group performance (the teachers 2, 3, 6).

(vi) SCRUM-based project development: referring to teachers’ knowledge and
ability to implement SCRUM methodology in their classrooms (Teacher 2).

(vii) Customer-students relationship management: referring to teachers’ knowl-
edge about the management of relationship between customers and devel-
opers of projects.

(viii) Drama: referring to teachers’ knowledge and ability to implement drama
in their classrooms to ease teaching CS concepts (Teacher 3).

Typifying Informatics Teachers’ PCK of Designing Digital Artefacts 73

Knowledge About Ways to Assess Students’ Learning and Perfor-
mance (M4). We described teachers’ knowledge about ways to assess students’
understanding and performance using these codes: final and intermediate design
products, presentations, tests (traditional or automated tests), short quizzes,
daily check questions, assignments, customers’ feedback on developed products,
peer assessment, students’ reports, students’ log book, teacher’s observation, dis-
cussion. Among these assessment tools, customer’s feedback represents a new
approach being used by the teachers 2, 3, 4, 5. Diverse approaches have been
followed by these teachers to choose projects’ customers, including: defining real
customers (by the teachers 2 and 4), defining another teacher to play the role
of customer (Teacher 3), and playing the role of customer by teacher himself
(Teacher 5). Interestingly, while four teachers see significant learning benefits in
customer’s feedback, Teacher 6 does not follow this approach as she believes find-
ing appropriate customers with realistic expectations consistent with students’
knowledge and level of expertise is difficult.

5 Elaboration

In this section we elaborate on the aforementioned results to find parameters that
can be used to categorize informatics teachers’ PCK on design. Two highlights
of informatics teachers’ PCK on design can be inferred from the results. First,
with regard to teachers’ knowledge about objectives and goals of design, a diverse
set of objectives have been identified that direct the design-based instruction of
the participants. These objectives form a continuum, shown in Fig. 1, consisting
of 10 objectives ranging from more conceptual objectives on one side to more
practical objectives on the other side.

One reason for this diversity in objectives stems from the flexible, less struc-
tured and teacher-dependent characteristics of informatics education in the

Fig. 1. The continuum of teachers’ knowledge of objectives and goals of design projects

74 E. Rahimi et al.

Fig. 2. Ways used by participants to assess students’ understanding and performance

Netherlands. This categorization has led to the emergence of two sets of teach-
ers, namely a set a consisting of the teachers 1, 2, 3 with more emphasis on
conceptual objectives, and a set b of the teachers 4, 5, 6 with more emphasis on
practical objectives. Interestingly, as described in Table 1, the teachers in set a
have an informatics related educational background, while the teachers in set b
have a non-informatics related educational background. This relation resembles
the observations by Barendsen et al. concerning the perceived learning objectives
of programming between teachers with informatics-related education and other
teachers [3].

The second highlight of the teachers’ PCK on design concerns the teach-
ers’ knowledge of ways to assess students’ understanding and performance. As
described earlier, the participants have knowledge about diverse ways to assess
their students’ learning and performance. These ways form a continuum ranging
from more process-based assessment (i.e. observation and discussion) on one end
to more product-based assessment (i.e. final products, assignments, tests) on the
other end, as shown in Fig. 2.

Two sets of teachers can be discerned on the basis of this continuum: set c
involving the teachers 2, 3, 4 with more emphasis on process-based assessment,
and set d consisting of the teachers 1, 5, 6 with more emphasis on product-based
assessment.

Based on these two PCK elements, we can typify teachers’ PCK on design.
Combining the elements M1 and M4 results in the identification of four types
of informatics teachers’ PCK, as shown in Fig. 3, namely: conceptual-product-
based PCK (mainly held by Teacher 1), conceptual-process-based PCK (mainly
held by the teachers 2 and 3), practical-product-based PCK (mainly held by the
teachers 5 and 6), and practical-process-based PCK (mainly held by Teacher 4).
These four types of teachers’ PCK can be understood as representing teachers’
individual orientation toward design-based education in informatics that support
or shape their design-based instruction:

Typifying Informatics Teachers’ PCK of Designing Digital Artefacts 75

Fig. 3. A model to categorize informatics teachers’ PCK on design

– Conceptual-product-based PCK represents teacher’s orientation toward: recog-
nizing and fulfilling more conceptual objectives for design projects (element
M1) and understanding students’ development of conceptual learning (M2)
through product-based assessment approaches (M4) and linking conceptual
content, digital resources, and digital tools (M3).

– Conceptual-process-based PCK refers to teacher’s emphasis on: address-
ing more conceptual objectives (M1) and understanding students’ develop-
ment of conceptual learning (M2) through mainly process-based assessment
approaches (M4) and SCRUM-based or drama instructional strategies (M3).

– Practical-product-based PCK represents teacher’s orientation toward: fulfilling
more practical objectives (M1) and understanding students’ development
of soft and design skills (M2) through mainly product-based assessment
approaches (M4) and rich knowledge of digital resources (M3).

– Practical-process-based PCK refers to teacher’s emphasis on: addressing more
practical objectives (M1) and understanding students’ development of soft and
design skills (M2) through mainly process-based assessment approaches (M4)
and rich knowledge about digital resources and digital tools (M3).

76 E. Rahimi et al.

6 Conclusion and Discussion

In this paper we elicited and typified the PCK on design of six informatics teach-
ers in the context of upper secondary school in the Netherlands. The results sug-
gest that two distinguishing aspects of teachers’ PCK can be used to typify infor-
matics teachers’ PCK on design, namely, their knowledge of objectives and ways
of assessment. By combining these two elements, a model has been identified
with four types of informatics teachers’ PCK on design. This model represents
teachers’ orientations toward design that support or direct their design-based
instruction in the classroom.

The model could serve to provide insight on knowledge patterns, themes,
differences, and similarities among the informatics teachers with regard to their
design-based instruction. The provided insight has a multi-folded functionality.
First, it might inform the required professional development plans for the partici-
pating teachers. Moreover, the typified knowledge might be used as an analytical
and planning framework to analyse, scrutinize, and prescribe the design prac-
tices of the teachers. Finally, we expect the results to provide us with good
practices and evidence of empirical and contextualized design principles, leading
to a model needed to direct the development of the course and test materials in
our joint project.

The small number of participants can be seen as a limitation of the study.
However, the diversity among our teachers with respect to the PCK elements M1
and M4 appears to resemble the variation in the practice of Dutch informatics
teachers found in a wider study with 178 informatics teachers covering 59 percent
of the population of informatics teachers in the Netherlands [4]. Whether the
classification into four PCK types will still hold in the larger population, is to
be investigated.

It is known that amplifiers and filters influence teachers’ PCK development,
see Sect. 2. Our data appeared to be sufficiently rich for an in-depth analysis of
these influencing factors. We will report on this in a later paper.

References

1. Apotheker, J.H.: Developing a new chemistry curriculum in The Netherlands. Abs.
Pap. Am. Chem. Soc. 237, 1155 (2009)

2. Barab, S.A., Barnett, M., Yamagata-Lynch, L., Squire, K., Keating, T.: Using
activity theory to understand the systemic tensions characterizing a technology-
rich introductory astronomy course. Mind Cult. Act. 9(2), 76–107 (2002)

3. Barendsen, E., Dagienė, V., Saeli, M., Schulte, C.: Eliciting computer science teach-
ers’ PCK using the content representation format: experiences and future direc-
tions. In: Gülbahar, Y., Karataş, E., Adnan, M. (eds.) Proceedings of the 7th
International Conference on Informatics in Schools: Situation, Evolution and Per-
spectives (ISSEP 2014), pp. 71–82 (2014). Selected Papers

4. Barendsen, E., Fisser, P., Krüger, J., Tolboom, J.: Herziening van het Nederlandse
informaticacurriculum havo-vwo Paper presented at ORD 2014, Groningen (2014)

Typifying Informatics Teachers’ PCK of Designing Digital Artefacts 77

5. Barendsen, E., Mannila, L., Demo, B., Grgurina, N., Izu, C., Mirolo, C., Sentance,
S., Settle, A., Stupurienė, G.: Concepts in K-9 computer science education. In:
Proceedings of the 2015 ITiCSE on Working Group Reports, pp. 85–116. ACM
(2015)

6. Berglund, A., Lister, R.: Introductory programming and the didactic triangle. In:
Proceedings of the Twelfth Australasian Conference on Computing Education, vol.
103, pp. 35–44. Australian Computer Society, Inc. (2010)

7. Gess-Newsome, J.: A model of teacher professional knowledge and skill including
PCK. In: Berry, A., Friedrichsen, P., Loughran, J. (eds.) Re-examining Pedagogical
Content Knowledge in Science Education, pp. 28–42. Routledge (2015)

8. Greeno, J.G., Collins, A.M., Resnick, L.B.: Cognition and learning. In: Berliner,
D.C., Calfree, R.C. (eds.) Handbook of educational psychology, pp. 15–46.
Macmillan, New York (1996)

9. Grossman, P.L.: The Making of a Teacher: Teacher Knowledge and Teacher Edu-
cation. Teachers College Press, New York (1990)

10. Henze, I., Van Driel, J.H.: Toward a more comprehensive way to capture PCK in
its complexity. In: Berry, A., Friedrichsen, P., Loughran, J. (eds.) Re-examining
Pedagogical Content Knowledge in Science Education, pp. 120–134. Routledge
(2015)

11. Hubwieser, P., Magenheim, J., Mühling, A., Ruf, A.: Towards a conceptualiza-
tion of pedagogical content knowledge for computer science. In: Proceedings of the
Ninth Annual International ACM Conference on International Computing Educa-
tion Research, pp. 1–8. ACM (2013)

12. Koehler, M.J., Mishra, P.: What is technological pedagogical content knowledge?
Contemp. Issues Technol. Teach. Educ. 9(1), 60–70 (2009)

13. Kolodner, J.L., Camp, P.J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Pun-
tambekar, S., Ryan, M.: Problem-based learning meets case-based reasoning in the
middle-school science classroom: putting learning by design (tm) into practice. J.
Learn. Sci. 12(4), 495–547 (2003)

14. Loughran, J., Mulhall, P., Berry, A.: In search of pedagogical content knowledge
in science: developing ways of articulating and documenting professional practice.
J. Res. Sci. Teach. 41(4), 370–391 (2004)

15. Loughran, J., Mulhall, P., Berry, A.: Exploring pedagogical content knowledge in
science teacher education. Int. J. Sci. Educ. 30(10), 1301–1320 (2008)

16. Magnusson, S., Krajcik, J., Borko, H.: Nature, sources, and development of peda-
gogical content knowledge for science teaching. In: Gess-Newsome, J., Lederman,
N.G. (eds.) Examining pedagogical content knowledge, pp. 95–132. Dordrecht,
Kluwer (1999)

17. Papert, S., Harel, I.: Situating constructionism. Constructionism 36, 1–11 (1991)
18. Rahimi, E.: A design framework for personal learning environments. Ph.D. thesis,

Delft University of Technology, The Netherlands (2015)
19. Saeli, M.: Teaching programming for secondary school: a pedagogical content

knowledge based approach. Ph.D. thesis, Eindhoven University of Technology, The
Netherlands (2012)

20. Saeli, M., Perrenet, J., Jochems, W.M.G., Zwaneveld, B.: Teaching programming
in secondary school: a pedagogical content knowledge perspective. Inform. Educ.
10(1), 73–88 (2011)

21. Shulman, L.S.: Those who understand: knowledge growth in teaching. Educ.
Researcher 15(2), 4–14 (1986)

22. Shulman, L.S.: PCK: Its genesis and exodus. In Berry, A., Friedrichsen, P.,
Loughran, J., eds.: Re-examining Pedagogical Content Knowledge in Science Edu-
cation, pp. 3–13. Routledge (2015)

Students’ Success in the Bebras Challenge
in Lithuania: Focus on a Long-Term

Participation

Gabrielė Stupurienė, Lina Vinikienė, and Valentina Dagienė(&)

Vilnius University Institute of Mathematics and Informatics,
Akademijos Street 4, 08663 Vilnius, Lithuania

{gabriele.stupuriene,lina.vinikiene,

valentina.dagiene}@mii.vu.lt

Abstract. The paper deals with students’ participation in the Bebras challenge
on Informatics and Computational Thinking in Lithuania in 2010–2015. As
noticed, secondary school students have an opportunity to learn the basic
informatics concepts during the participation in the Bebras challenge. Analyses
of a large amount of data from participants’ task solving records are provided.
Additionally, observation of the task difficulty level of the Bebras contest in the
past 6 years is presented. The target group, on which a research study was
focused, is a group of students who solved tasks 6 years in turn. A detailed
overview of their results provides an understanding how the participants have
solved tasks over these years. The importance of algorithmic thinking as an
opportunity for students to learn and understand the basics of informatics as well
as develop their computational thinking skills is emphasised. The results of data
analysis highlight the importance of students’ achievements by a long-term
participation.

Keywords: Bebras challenge � Informatics education � Learning algorithms �
Problem solving � Task difficulty � Computational thinking

1 Introduction

The Bebras challenge on Informatics and Computational Thinking continues growing
and expanding into new countries [3]. Students’ interest in solving puzzle-based
informatics tasks, gamification, and attractiveness are the main reasons for growing.
Students get introduced to informatics concepts basically without any requirement of
pre-knowledge in informatics. The Bebras challenge is designed for all school students
from primary education until school leaving age [10]. In Lithuania, the Bebras chal-
lenge is considered as a part of learning/teaching process. Teachers are ready to present
examples of Bebras tasks when starting introductory parts to various topics of Infor-
matics and willing to attract students’ attention to the basics of informatics by solving
short tasks.

Students are asked to participate in the challenge during information technology
(IT) lessons: in Lithuania the IT course (including Informatics topics) is mandatory
from the 5th to 10th grades. Over 530 schools participated in Lithuania in 2015.

© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 78–89, 2016.
DOI: 10.1007/978-3-319-46747-4_7

Participants were asked to answer multiple-choice questions, solve open-ended tasks,
and interactive tasks. The tasks were designed with a view to influence students’
understanding of informatics concepts and developing some computational thinking
skills, for example, execution of algorithms, representation of data and data analysis,
problem solving, modelling, abstraction of structures and processes [6].

The paper is aimed to give an overview of students’ performance in the Bebras
challenge in a long-term participation (up to 6 years) in Lithuania. The participation in
the contest during the so-called Bebras week is a short-term activity due to the defined
domain and time taken for task solving. Students have to solve tasks within 45 min;
their willingness to solve tasks next year is not known. A long-term participation is
indicated in the sense of six-year continuity of participation and perseverance to be a
success despite the task content and difficulty.

We are going to discuss students’ participation in the Bebras contest and solving
tasks during 6 years (2010–2015). The average of students’ scores gained during
contests, difficulty levels of the given tasks, and time taken for solving each task are
analysed in detail. Students’ passion to solve Bebras tasks each year in turn can be
considered as a successful way of learning or teaching informatics.

The research questions we address in this paper are:

1. Are students interested to participate in the Bebras contest year-by-year?
2. Did students’ results improve during a long-term participation?
3. Have task difficulties influenced students’ participation?

These research questions may provide understanding how the challenge is relevant
to students, how they succeed, and which informatics concepts can be trained/learned
while solving tasks.

2 Related Works

The Bebras challenge helps to motivate students in solving tasks, attract their attention
to informatics concepts. According to White [18], learners have intrinsic motivation
when they learn something new or succeed in solving tasks. Similarly, Palmer (2005)
claims that motivation to learn is based on students’ capabilities and activities that
incite their imagination and abilities to compare the real life situation to practical task
solving. Palmer (2005) claims that students are able to range the personal and per-
formance goal. Also, he has approved, that students demonstrate their abilities when
they achieve success in solving a task, but their results could be influenced by moti-
vation to focus on other participants’ achievements rather than on the content of the
task. A driving motif in learning activities and achievements is interest. Interest can be
classified as long-term and short-term. A long–term interest is described as the pref-
erence to a particular domain (personal interest), while a short–term interest focuses on
a specific temporary situation. Furthermore, students’ interest in activities is relevant to
novelty, meaningfulness, and involvement of a particular domain. A short–term suc-
cess is a source of self–efficacy. This success is a success “in understanding science
concepts rather than in passing assessment tasks” [17]. The long–term success is
supported by opportunities to practice learnt concepts. Moreover, in the teaching

Students’ Success in the Bebras Challenge in Lithuania 79

process a difficulty of tasks should be chosen carefully: tasks solved successfully in a
few minutes; concepts selected according to the task difficulty; a task should not require
a sequence of experiences before the students understand it; the learning should be
performed step-by-step; the importance of creativity, fantasy, imagination, and feed-
back is desirable [17]. These ideas are emphasized in the teaching process and
implemented in the Bebras tasks [9].

The Bebras challenge can be considered as an approach to learn informatics fun-
damentals. Students are able to develop some computational thinking skills and to
solve tasks in a logical and systematic way.

Computational thinking is considered as a fundamental skill that includes a problem
solving process, understanding of human behaviour and development of new solution
methods [13, 15]. In computer science education, CSTA distinguishes concepts and
capabilities such as data analysis, data collection, data representation, problem decom-
position, abstraction, algorithms and procedures, parallelization, and simulation [6].

Generally speaking, students in lower grades show better results. They gain new
knowledge and develop skills faster [2]. That is why new knowledge and skills should
be taught gradually and practiced over a long period.

Bebras tasks developers have created tasks based on the new knowledge of
informatics and intention to develop students’ computational thinking. Organizers of
Bebras challenge ask students to participate in the contest from early age and improve
their knowledge constantly. Interactivity, visualization, correctness, solvability, inde-
pendent of the curriculum are Bebras tasks attributes [4, 7, 15]. Informatics tasks
should be based on the logical thinking and unconventional solution in order to develop
students’ computational thinking skills [2]. Interactivity and visualization are very
important in the development of student imagination or creativity [17], students’ ability
to be creative is a source of intrinsic motivation.

Bellettini (2015) has noted that tasks, used in the challenge, are either easier or more
difficult than expected by task developers. For example, a growing number of topics in
the programming contest [11] is emphasized as one of the reasons of increasing task
difficulty. According to Forišek (2010), participants should solve more difficult tasks
each year due to the experience in learning (a practice). In the case of the Bebras
challenge, task difficulty is related not only with the practice, but also with interrelation
between criteria and competence requirement, complexity of task, interface peculiarities
of a competition, task presentation on the screen, etc. [10]. It is an important observation,
that depending on a task, “a student with a high level of thinking has the possibility but
not the necessity to react on the highest possible level” [20].

Bebras tasks give a deeper understanding of algorithms used in everyday situations.
Algorithms and data representation make up the main part in the Bebras tasks. Forišek
(2010) mentioned that the trend of tasks, based on the computational thinking problem,
required algorithms. Learning of algorithms becomes easier and more understandable
due to visualization of algorithms [12]. By Futschek (2006), the possibility to try
algorithms visually gives “a feeling why algorithms work and how algorithms may be
improved”. Participants are able to learn and design better through the visualization.
Concepts of algorithms are taught in schools and play an important role in the cur-
riculum [8, 14]. The understanding of algorithms perceives the sense of real life sit-
uation, and digital life experience [5]. For example, our social life is unimaginable

80 G. Stupurienė et al.

without Facebook, Twitter. These platforms render a good opportunity for developing
algorithmic thinking.

Interactive elements of the task (graphic, animation, etc.) support student under-
standing of a content and how they construct meaning from the presented content. The
following goals of the interactive tasks benefit could be mentioned: greater validity,
increased student engagement and motivation, measurement of higher order thinking
skills, promoted students’ reflection by solving tasks, better evaluating the cognitive
and problem-solving skills [21]. For example, the interactivity of Bebras tasks makes
the challenge more attractive if interactivity means manipulation with mouse. If tasks
stem out from real life situations, it will be appreciated by older contestants. Younger
will enjoy motivation through the fairy tale character of Bebras [23].

3 Data Analysis

Data from the Bebras contest are collected in 2010–2015. We have recorded the data
from 131310 participants in total. The analysis is based on the overview of data of
participants’ grades and scores gained for each task as well as task difficulty and the
time taken to solve each task. Also, the informatics concepts involved in tasks during
the chosen period are discussed. The data analysis consists of the following steps:

1. Selecting data about participants of the Bebras contests from 2010 to 2015 and
selection of students who participated in each challenge (6 years in turn).

2. Comparing participants’ results and time taken to solve each task.
3. Reviewing tasks that were solved by the target group according to task difficulty

and the average of students’ scores.

Participants are divided into 5 age groups and solved from 18 to 24 tasks within 45
or 55 min. Each task has one of the three difficulty levels (easy, medium, hard) as
prescribed by developers. The set of tasks consists of 6 (or 8 in the case of the 24 task
set) tasks of each difficulty level.

Our target group is 137 students who participated and solved tasks in all the 6 years
of Bebras contests (2010–2015).

3.1 Students Are Interested to Participate in the Bebras Contest
Year-by-Year

A distribution of participants (by grades, percentages of boys and girls) in the Bebras
contests in the period of 2010–2015 is provided in Table 1. The results show that the
number of participants was almost stabilized, especially when keeping in mind that the
number of students is declining of late years. Girls are interested in the participation as
well as boys. There is a tendency that girls of lower grades (from 3rd to 8th) are more
interested in the participation. For this age the percentage of girls is close to 50 %. The
percentage of girls does not exceed 44 % each year in the 9th and 10th grades and is less
than 33 % in the 11th and 12th grades. The declined number of girls in the 11th and 12th

grades might be influenced by motivation to select the IT (informatics) exam as a

Students’ Success in the Bebras Challenge in Lithuania 81

maturity exam (and also selection of the optional programming module related to the
exam).

Slight changes in participation numbers are notable from 2014. The declining
numbers (from 0.4 % to 1.13 %) of participants tend to vary due to a declined pop-
ulation in Lithuania (and the number of children). OECD (Organization for Economic
Co-operation and Development) reports that the number of students decreased by
30.6 % in general education schools during 2005–2012 and the inhabitants’ number
dropped to 16 % in Lithuania from 2011 to 2014 [16].

In Lithuania school leaving students are required to take at least 3 but not more than 6
matriculation exams and IT (half based on the optional programming module) is one of
them. In the 9th grade students have to make a decision on their interest domain and

Table 1. Participants’ distribution in the Bebras contest during 2010–2015.

2010 2011

Grade G* B* T* G* B* T*

3–4 - - - - - -

5–6 43.2 56.8 3106 43.4 56.6 5306

7–8 43.2 56.8 3344 42.4 57.6 5038

9–10 39.0 61.0 3808 38.8 61.2 5561

11–12 29.4 70.6 2660 31.6 68.4 3323

Number of participants 12918 19228

2012 2013

Grade G* B* T* G* B* T*

3–4 47.6 52.4 2049 44.9 55.1 2175

5–6 45.3 54.7 6333 51.9 48.1 6210

7–8 42.9 57.1 6423 43.3 56.7 6547

9–10 39.9 60.2 6168 40.2 59.8 6485

11–12 32.1 67.9 3416 31.8 68.2 3671

Number of participants 24389 25088

2014 2015

Grade G* B* T* G* B* T*

3–4 43.3 56.7 2410 44.8 55.2 2374

5–6 38.2 61.8 6268 46.8 53.2 7100

7–8 49.5 50.5 7169 44.2 55.8 5810

9–10 43.7 56.3 5990 43.9 57.1 6114

11–12 30.4 69.6 3148 31.2 68.8 3304

Number of participants 24985 24702

*G – girls, B – boys, T – total number of participants

82 G. Stupurienė et al.

select the desired learning subjects. Learning IT “is aimed at summarizing and system-
atizing students’ knowledge drawing attention to the right application of technologies and
their legitimacy” [8] in the 9th and 10th grades. Additionally, there is a possibility to
choose one of three optional modules: basics of programming, web design or electronic
publishing. The IT curriculum of grades 5–8 emphasizes the ability to apply computers in
the learning process, creativity of knowledge construction, critical thinking, self-
confidence, ability to express their own view, and attitude to process data using software.
Informatics teaching is implemented in after-school activities.

We have defined that 137 students participated in the Bebras contest 6 years in turn.
They started to participate from the 5th, 6th, and 7th grades, respectively. 52 participants
started to solve tasks from the 5th grade and participated each year, 50 participants
entered at the 6th grade, and 35 participants started from the 7th grade.

A detailed overview of 137 students has showed that 44.2 % of girls from the 5th

grade, 16 % of girls from the 6th grade, and 17 % of girls from the 7th grade were
involved in a long–term participation. These numbers show that girls are interested in
long–term task solving when they are involved from the earlier age (lower grades).
Additionally, we see a tendency that boys are more interested in solving tasks and
participating in contests.

3.2 Participants Are Able to Improve Their Results During a Long-Term
Participation

We have observed students task solving results in the Bebras contests for many years.
Students’ achievements were reviewed in the following three steps:

1. Studying the results of each participant through a long–term participation (6 years);
2. Analysing how many participants solve tasks correctly using informatics concepts;
3. Comparing the score averages of the target group and students who solved the same

set of tasks.

Six participants are able to solve correctly over 52.4 % of tasks during the Bebras
contests in a long–term period (6 years). 10 participants are successful in 54 % of tasks
in the period of 5 years. 9 out of 137 participants achieve a success in solving more
than 90 % of tasks (students, who solved correctly over 90 % of tasks, achieved the
highest scores).

The results of the most successful participants are presented in Table 2. The results
are distributed by grades, task scores are distributed by years, and the highest scores
collected by the participants who solved the same set of tasks. Note that, one partic-
ipant has solved over 90 % of tasks correctly 5 years in turn and achieved the highest
score 2 years in turn. Most of the participants with the best results are in grades 8–12.
4 out of 137 participants have achieved the highest score (marked in italics). Only 2
girls have solved over 90 % of the set of tasks.

Only one participant has solved the set of tasks better each year in a long–term
period. He was solving correctly about 5 % more of tasks each year. 44 students solved
tasks correctly in the period of several years. 35 of them solved tasks better each year in
the period of 3 years, 7 participants solved tasks successfully 4 years in turn and 1

Students’ Success in the Bebras Challenge in Lithuania 83

participant got better results 5 years in turn. Most of these students tried to solve more
tasks correctly in grades 6–9. The results of other students are different each year
(higher or lower than in the previous year).

The number of correct answers distributed by difficulty of the tasks were analysed
in detail. The data of participants who started to solve tasks in the 5th grade are
demonstrated in Table 3. It is obvious how the number of correct answers is distributed
by the task difficulty provided by developers of tasks.

The tasks introduce algorithmic problems each year. More students solve the tasks
correctly each year, except 2014 and 2015 (grade 9–10). The same situation is with the
percentage of correct solutions in groups of participants who solved tasks from the 6th

Table 2. Participants who have solved correctly more than 90 % of tasks.

Year Grade
Correctly

solved tasks
Gender

Scores collected by par-
ticipants of the target

group

Highest
score in a set

of tasks

2013 8 95.2 % Female 83.75 100
2013 8 90.5 % Male 83.75 100
2014 9 94.4 % Male 208 216
2012 7 100 % Male 100 100

2014 10 94.4 % Female 200 216
2011 7 91.7 % Male 112.5 115
2012 8 95.8 % Male 116.25 120
2013 9 95.2 % Male 100 100

2014 10 100 % Male 216 216

2015 11 94.4 % Male 200 216

2015 12 94.4 % Male 200 216
2014 11 100 % Male 216 216

2010 7 95.8 % Male 116.25 116.25

Table 3. The percentage of students who solved tasks, focussed on algorithms, correctly

Algorithms
Year Easy Medium Hard

2010 37.5 30.77 29.81
2011 59.62 46.63 31.73
2012 62.5 40.87 31.54
2013 67.95 58.33 53.85
2014 15.38 56.73 19.23
2015 57.69 35.26 32.05

84 G. Stupurienė et al.

and 7th grades 6 years in turn, respectively. The tasks which introduced algorithms
were solved by all the participants each year. The percentage of correct solutions is
decreasing from the 9th grade. The participants are not able to solve “hard” tasks very
well in grades 9–12 (solvability of tasks decreased up to 19 %).

Participants tried to achieve a success searching for the best solution and to improve
their results.

The score averages of participants were calculated in each year contest (Table 4).
Due to the score variety, the scores of participants were normalized up to 100 according
to the highest scores, collected by students in the respective grade.

It is evident, that the participants who have solved tasks in a long–term period are
able to achieve better results. They collect higher scores than the average of groups.
They tried to improve their knowledge because the score average is slightly growing
through the year. The participants tend to have higher results in the 11th and 12th grades
(over 50 scores), – we can say that they are more motivated to learn informatics and
probably have chosen the optional programming module or participated in extracur-
ricular informatics activities.

3.3 Value of Task Difficulty

A further analysis of the value of task difficulty is needed in order to find a relation
between the participants’ success in answers and task difficulty, provided by devel-
opers. This analysis is necessary because not all the participants are able to solve more
than 50 % of tasks in the set correctly. Besides, there are some tasks that can be solved
correctly only by a small part of participants.

The value of difficulty of each task was calculated. A calculation of the task
difficulty value involves all participants’ abilities to solve the task. The value of dif-
ficulty is considered as a ratio between the number of correct answers and the total
number of answers (the number of tasks that students have not tried to solve at all).
Lower values indicate more difficult tasks and higher values indicate easier tasks [1].
The value of difficulty 1 indicates a very easy task and a task with the value of difficulty

Table 4. The score averages of participants distributed by years.

Year Aa AAb Ba BBb Ca CCb

2010 41.58 40.45 53.35 43.71 47.61 41.89
2011 43.11 38.60 52.8 37.61 49.26 41.26
2012 41.39 35.35 50.85 38.11 60.66 37.82
2013 53.26 45.41 47.05 35.87 51.05 39.86
2014 44.87 37.12 54.52 39.96 53.98 48.19
2015 45.16 39.15 59.20 43.87 55.23 48.97
aA, B, C – averages of students who started to solve tasks from grade 5, 6, 7, respectively.
bAA, BB, CC – averages of all students who solved tasks at the same time as the students from
the 5th, 6th, 7th grades, respectively.

Students’ Success in the Bebras Challenge in Lithuania 85

0 indicates a very difficult task. The value of difficulty depends on the tasks and
participants. It can be limited by the presentation on the screen, the number of attempts,
etc. [19]. The value of task difficulty is calculated for all the participants who took part
in the Bebras contest during 2010–2015. The data of tasks on algorithms of participants
from the 5th to 10th grade are processed. The interval of the value of difficulty is
presented according to the task difficulty, provided by task developers (Fig. 1). The
box-and-whisker plot is used to show the distribution of difficulty values graphically.

In Fig. 1, the ends of boxes show the value of the task difficulty outside the upper and
lower quartiles. Vertical lines in the boxes show the median. Two lines outside the box
show the highest and lowest value of the task difficulty. Note that, many tasks go in line
with the difficulty level “easy”, but tasks of the “medium” and “hard” level are too difficult
for students. The most part of tasks has a high value of difficulty. The tasks provided for
participants in 2014–2015 have the lowest value of task difficulty (for example, “easy”
task had a difficulty level with value 0.1 in 2014). The value of difficulty of tasks, that
represent algorithmic thinking, varied from 0.1 to 0.7 in each grade. The lowest value is
found in grades 9-10 (26.28 % of correct answers). Furthermore, the value of task diffi-
culty was smaller than 0.5 (only 50 % participants are able to solve tasks correctly) in
most algorithmic tasks in 2010 and 2012. 100 % of algorithmic tasks had the difficulty
value smaller than 0.5 in 2010 and 90 % - in 2012. In general, the values of task difficulty
were smaller than 0.5 in 44.44 % of tasks in 2015 and 50 % in 2012.

The students’ time taken for task solving correctly is related to the difficulty level.
The time average was about 102 s solving easy tasks and 105 s were spent to medium
tasks. The participants solved difficult tasks about 109 s. Summarizing we can say that
motivation of the target group (students who solved tasks over 6 years) is not influ-
enced by the value of task difficulty. Students’ results are getting better each year
(Table 4). Also, there are tasks that are very difficult to solve correctly and require more
time for solving them.

Multiple choice questions are more common among the Bebras tasks. 80.4 % of
such questions were focused on algorithmic skills. Only 6.6 % tasks were the tasks

Fig. 1. Values of task difficulties distributed according to the difficulty, provided by task
developers

86 G. Stupurienė et al.

requiring to click something and 13.3 % of tasks consist of drag-and-drop questions.
However, students spent more time for solving interactive tasks such as clicking or
drag-and-drop. Students spent 181–220 s to solve interactive tasks. On the contrary, for
multiple choice questions students spent twice less time, only 87–103 s.

As we have noticed, students are motivated to participate in the Bebras contest
despite the difficulty of tasks.

In order to know reasons why students take part in the challenge, a deeper analysis
is needed. There are several studies about task difficulties [22]. The Item Response
theory (IRT) is used in most studies. IRT is usually applied to decide how students’
results meet the task difficulty, estimated by task developers. We used the tasks diffi-
culty and scores distribution to provide an overview of the interest in Bebras tasks on
the long-term participation.

4 Conclusion

Students from the 3rd to 8th grades are the most active participants in the Bebras
contest. Girls are interested in solving informatics tasks as well as boys. The lowest
number of the participants is in the 11th and 12th grades, especially girls. The partic-
ipants’ number is slightly decreasing in 2014 and 2015.

Students are interested in a long-term participation. There are participants who are
able to achieve the higher scores (9 participants from 137 who participated 6 years in
the contest). 2 out of 9 participants who got the highest scores in a long period
participation are girls.

We noticed that, students who solved less than 50 % of tasks correctly during the
contest are interested in a long-term participation. They continued their participation in
the challenge despite the fail on previous years. But on the other hand, the participants
who have solved tasks in a long–term period are able to achieve better results than the
average of group. Although, less students participate from the 11th and 12th grades, but
most of them try to have better results and achieve the highest scores. Students get an
experience, practice solving tasks in a long-term participation in the Bebras challenge.
There is a belief that students’ motivation and success are encouraged by well-balanced
and interesting task content.

The value of the tasks difficulty is related to students’ success. Including algorithms
more difficult tasks are with difficulty “hard” (provided by tasks developers). The
lowest values of tasks difficulty are noted in 2014 and 2015. Students spent more time
for solving the difficult tasks.

Solving interactive tasks requires more time than solving multiple choice questions.
A deeper analysis is needed to evaluate students’ abilities to solve task according to the
value of tasks default and type of tasks.

Acknowledgements. The research is partially supported by the Google CS4HS initiative –

many thanks! Also, the authors would like to explicitly thank all members of the international
Bebras challenge on informatics and computational thinking community that took part in task
development and influenced in this way the outcome of this paper.

Students’ Success in the Bebras Challenge in Lithuania 87

References

1. Aesaert, K., van Braak, J.: Gender and socioeconomic related differences in performance
based ICT competences. Comput. Educ. 84, 8–25 (2015)

2. Atanasova, G.E., Hristova, P.T.: Methodological aspects of the initial training of students for
participation. In: Programming Contest in Proceedings of 2015 Balkan Conference on
Informatics: Advances in ICT, Romania, pp. 1–9 (2015)

3. Bebras International Challenge on Informatics and Computational Thinking. http://www.
bebras.org/en/facts. Accessed 30 Apr 2016

4. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morourgo, A., Torelli, M.: How
challenging are bebras tasks? An IRT analysis based on the performance of Italian students.
In: Proceedings of 2015 ACM Conference on Innovation and Technology in Computer
Science Education, pp. 27–32 (2015)

5. Bucher, T.: The algorithmic imaginary: exploring the ordinary affects of Facebook
algorithms. Inf. Commun. Soc., 1–15 (2016). http://dx.doi.org/10.1080/1369118X.2016.
1154086

6. CSTA & ISTE: Operational definition of computational thinking for K-12 education (2011).
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

7. Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer
literacy: criteria for good tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS,
vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

8. Dagiene, V., Jevsikova, T.: Reasoning on the content of informatics education for beginners.
Socialiniai mokslai 78(4), 84–90 (2012)

9. Dagienė, V., Mannila, L.A, Poranen, T., Rolandsson, L., Söderhjelm, P.: Students’
performance on programming-related tasks in an informatics contest in Finland, Sweden and
Lithuania. In: Proceedings of 2014 Conference on Innovation & Technology in Computer
Science Education, Uppsala, Sweden, 21–25 June 2014

10. Dagienė, V., Stupurienė, G.: Bebras- a sustainable community building model for the
concept based learning of informatics and computational thinking. Inform. Educ. 15(1), 25–
44 (2016)

11. Forišek, M.: The difficulty of programming contests increases. In: Hromkovič, J., Královič,
R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 72–85. Springer, Heidelberg
(2010)

12. Futschek, G.: Algorithmic thinking: the key for understanding computer science. In:
Mittermeir, R.T. (ed.) ISSEP 2006. LNCS, vol. 4226, pp. 159–168. Springer, Heidelberg
(2006)

13. Yadav, A., Mayfield, Ch., Zhou, N., Hambrusch, S., Korb, J.T.: Computational thinking in
elementary and secondary teacher education. ACM Trans. Comput. Educ. 14(1), 5 (2014)

14. Kalelioğlu, F., Gülbahar, Y.: The effects of teaching programming via scratch on problem
solving skills: a discussion from learners’ perspective. Inform. Educ. 13(1), 33–55 (2014)

15. Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., Settle, A.:
Computational thinking in K-9 education. In: Proceedings of Working Group Reports of the
2014 on Innovation & Technology in Computer Science Education Conference,
ITiCSE-WGR 2014, pp. 1–29 (2014)

16. OECD: Review of Policies to Improve the Effectiveness of Resource Use in Schools (Scholl
Resources review). Country Background report for Lithuania (2015). https://www.oecd.org/
edu/school/Lithuania_CBR_OECD-SRR_May2015.pdf

17. Palmer, D.: Research report: a motivation view of constructivist-informed teaching. Int.
J. Sci. Educ. 27(10), 1853–1881 (2005)

88 G. Stupurienė et al.

http://www.bebras.org/en/facts
http://www.bebras.org/en/facts
http://dx.doi.org/10.1080/1369118X.2016.1154086
http://dx.doi.org/10.1080/1369118X.2016.1154086
https://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
https://www.oecd.org/edu/school/Lithuania_CBR_OECD-SRR_May2015.pdf
https://www.oecd.org/edu/school/Lithuania_CBR_OECD-SRR_May2015.pdf

18. White, R.W.: Motivation reconsidered: the concept of competence. Psychol. Rev. 66, 297–
333 (1959)

19. Peerear, J., Van Petegem, P.: Measuring integration of information and communication
technology in education: an item response modelling approach. Comput. Educ. 58, 1247–
1299 (2012)

20. Perrenet, J., Groote, J.F., Kaasenbrood, E.: Exploring students’ understanding of the concept
of algorithm: levels of abstraction. In: Proceedings of 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education, pp. 64–68 (2005)

21. Strain-Seymour, E., Way, W., Dolan, R.P.: Strategies and Processes for Developing
Innovative Items in Large-Scale Assessments. Pearson Education, Inc., New York (2009).
http://images.pearsonassessments.com/images/tmrs/StrategiesandProcessesforDeveloping
InnovativeItems.pdf

22. Van der Vegt, W.: Predicting the difficulty level of Bebras task. Olymp. Inform. 7, 132–139
(2013)

23. Vaníček, J.: Bebras informatics contest: criteria for good tasks revised. In: Gülbahar, Y.,
Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17–28. Springer, Heidelberg (2014)

Students’ Success in the Bebras Challenge in Lithuania 89

http://images.pearsonassessments.com/images/tmrs/StrategiesandProcessesforDevelopingInnovativeItems.pdf
http://images.pearsonassessments.com/images/tmrs/StrategiesandProcessesforDevelopingInnovativeItems.pdf

What Makes Situational Informatics
Tasks Difficult?

Jiří Vaníček(&)

University of South Bohemia in České Budějovice,
České Budějovice, Czech Republic

vanicek@pf.jcu.cz

Abstract. Organizers of the informatics contest Bebras in many countries face
the obstacle of how to state the difficulty of contest tasks and problems accu-
rately. This is essential if tasks with good prediction of success are to be selected
for the contest.
The paper discusses five different indicators of a contest task difficulty. We

study which of the indicators are correlated. Index of task difficulty was defined
as a combination of indicators with the aim of pinpointing the factors that have
impact on a contest task difficulty. The index has been constructed on the basis
of calculations from some of these indicators.
Using statistical analysis of data from Czech Beaver of Informatics contest we

try to assess if some of the proposed factors can be reliable indicators of whether
a task is more or less difficult. The findings show that there is a provable link
between a task difficulty and the use of formalized description of the task,
structuring, optimization, task assignment reading comprehension difficulty and
interactivity of answers. The findings of this research study will be useful for
organizers of informatics contests as well as school curricula developers.

Keywords: Bebras � Beaver of informatics � Situational informatics task � Task
difficulty � Difficulty factors

1 Introduction

Organizers of informatics contests such as Beaver of informatics1 have been consis-
tently focusing on development of new type of informatics tasks that are not based
neither on a practical activity, nor on project work and creativity. This kind of task is
not “develop a program, create an algorithm, propose a solution to the problem”. The
new type of task is referred to as a situational task. In a situational task solvers emerge
into a described situation in which they must grasp, get to understand the used concepts
and terms, find an informatics principle the task is based on, solve the problem using
cognitive and thinking skills and select the right answer from the offered choices. The
contest tasks always have informatics background but are set in situations and envi-
ronments from the contestants’ lives. This allows the contestants to imagine and
visualize the situation and to use their experience. No knowledge is prerequisite to

1 http://www.bebras.org/, Czech national contest: http://www.ibobr.cz.

© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 90–101, 2016.
DOI: 10.1007/978-3-319-46747-4_8

http://www.bebras.org/
http://www.ibobr.cz

solution of these tasks. This type of tasks was named after the competition “Bebras
tasks”.

Situational tasks can be expected to become an important part of future school
informatics or computer science curricula which will focus more on development of
computational thinking. Thus it is important to study the factors that affect a task
difficulty. Changing some parameters of such tasks can change their difficulty or can
allow their modification for different age groups. A particular informatics principle is
quite likely to be comprehensible even to younger pupils if it is presented through age
appropriate tasks from which those factors that make the task more difficult have been
removed and factors making the task easier included.

Many authors of contest tasks have tried to analyze the contest tasks from different
perspectives – selection of tasks [1], the role of pictures and illustrations [2], the
process of development of a task [3], translation of tasks and their implementation in
different national environments [4]. Many authors of this type of tasks have also been
interested in the difficulty of tasks that are developed for the contest. The main reason is
that stating a task difficulty has impact on contestants’ performance and success in the
contest test. The quality of tasks is crucial for the success of a contest [5]. The contest
tasks are divided into three levels of difficulty with different scores. The contestant gets
more points for a more difficult task if it is solved correctly and loses more points if
their answer is incorrect. The organizers therefore want to be able to predict accurately
which of the tasks will be seen as hard and which will be taken for easy in the contest.
There are Slovak [6, 7] and other [8, 9] studies focusing on a contest task difficulty
presenting qualitative analysis of individual tasks with respect to their difficulties
available.

The above listed reasons made us start research into what affects a task difficulty,
what criteria of a task difficulty already exist but also what factors can be used to assess
a task difficulty.

2 How to Set the Test Item Difficulty

Analysis of existing literature focusing on contest task difficulty and analyses of contest
systems in different states show that a task difficulty is understood as the contestants’
success when solving the tasks. It is very often expressed as correct answer ratio.
However, data from contests provide more information that can be used to state a task
difficulty. For example if a significant number of contestants refuse to answer a par-
ticular item, the task can be assessed as very difficult because it put the contestants off
attempting to solve it. A problem difficulty is thus to a certain extent also the con-
testants’ subjective attitude, not only the objective measured number of correct
answers.

Pozdnyakov and his team [9] are aware of this fact and define two parameters of
difficulty. Cлoжнocть (translated as Complexity – probably good translation is Com-
plicacy) is an objective factor and it is calculated as the ratio of participants who gave a
correct answer among those who decided to solve the task. Tpyднocть (translated as
difficulty) is understood as a subjective factor, i.e. how a participant interprets a task,
and is expressed as a proportion of participants who chose the “no answer” option in a

What Makes Situational Informatics Tasks Difficult? 91

particular task. Both these factors should be taken into account [9]. These parameters
may provide interesting findings but do not help us define one unique index of diffi-
culty that would allow to assess, classify and place tasks into a contest test.

Van der Vegt presents an interesting way of predicting a test task difficulty based
on the use of a questionnaire for difficulty level estimation. The questions focus on two
areas: The question answering process and the size of the problem [8].

3 What Affects a Task Difficulty

A difficulty of a task is affected by a number of factors that can be divided into the so
called general and subject specific factors. General (formal) factors are such that can be
come across in knowledge tests in general and are not specific for a particular disci-
pline. These are for example:

– length of the text
– demands on reading comprehension (how attentively the text must be read)
– task formulation (e.g. is the posed question negative?)
– formulation of answer (e.g. presence of distractors or confusing answers, tricks)
– use of an explanatory picture
– use of an illustrative example

Subject specific factors are tied to informatics and are specific for an informatics
contest. A task difficulty can then be affected e.g. by:

– area (e.g. whether optimization tasks are more difficult than algorithm tasks)
– way of solution (competences needed for the solution of the task)
– situation (to what extent the situation is close to the contestant’s life experience)
– presence of formal description (code, programme, formula)
– expertness of task assignment (to what extent it uses technical terminology whose

insufficient knowledge may result in failing to understand the task itself)

General factors of task difficulty in Bebras contest are discussed by Gujberová [10]
who draws attention to cognitive aspects of tasks. In her study she has proven an
impact of formal aspects on overall task difficulty. In this respect Pohl provides rec-
ommendations on a task formal aspects resulting in higher quality of the task, e.g. short
sentences, a one-to-one relationship between words and objects, appropriate analogies
[3]. Some factors have different consequences in works of different authors. E.g.
Pozdnyakov states that “among numerous ways of assessment of difficulty of a text, the
most straightforward is the length of the statement” [9, p. 34]. In contrast results of
Gujberová’s research suggest no correlation between the length of the assignment and
task difficulty [10].

Some subject specific factors were studied by Křížová [11], namely the area,
presence of formal description and way of solution (needed competences). These
comparisons have only shown a significant correlation between presence of formal
description and task difficulty.

92 J. Vaníček

4 Method

In the first stage of our research we focused on defining the index of a test task
difficulty. At the second stage we were looking for factors that (in our opinion and in
literature) have impact on a task difficulty and at the same time can be identified in
assignments reliably.

The basic set of analyzed tasks was the set of all tasks from Czech national rounds
of Bebras contests from 2012–2015, which is 283 contest tasks in 5 age categories for
pupils from 9 to 19. The smallest number of contestants solving one task was 2492, the
average number of solvers per one task was 7198.

The reason why we excluded tasks from foreign contests was linguistic – it is very
difficult to analyze tasks posed in foreign languages (e.g. how to assess demands on
reading comprehension from the contestant’s point of view). Another reason is that
different countries organize the contest differently and the systems do not provide
comparable data for stating which tasks were solved successfully and which quanti-
tative factors might have had impact on success rates (e.g. data about time needed for
solving the task) (Fig. 1).

4.1 Selection of Indicators for Stating Difficulty Index

We determined five indicators that describe and allow prediction of difficulty of Beaver
of Informatics contest tasks. These indicators were compared. We explored to what
extent they can be regarded as relevant. These indicators are:

– Contestants’ success rate – what percentage of contestants gave a correct answer (in
case of multiple choice task chose the correct alternative).

– No answer – the proportion of contestants who skipped this task, chose not to
answer it.

– Authors’ opinion – how the authors of the tasks or test (i.e. pedagogical experts)
define the task difficulty (the tasks are classified as easy, middle and hard; a test in
each category includes the same number of tasks of each difficulty).

– Solving time – how long it took the contestants to answer the task.
– Contestants’ opinions – how many respondents (contestants) marked the particular

task as the most difficult in a questionnaire filled in immediately after the contest.

Each of these indicators has its limits. Sometimes a different interpretation than
interpretation pointing at a task difficulty may be possible. Thus the data these indi-
cators provide cannot always be perceived as absolutely reliable.

Fig. 1. Relationship between indicators and factors of task difficulty

What Makes Situational Informatics Tasks Difficult? 93

– Contestants’ success rate might be affected by cheating, by helping each other out
and whispering answers. Analysis of cheating in Czech contest shows that this
objection is far from purely hypothetical [12].

– No answer may also be caused by a situation when the contestants’ do not have
enough time to complete the test and thus do not get to some of the tasks.

– In case of tasks adopted from other countries, opinions of authors’ on task difficulty
may be affected by different distribution of contestants to age categories.

– Solving time is given as the difference between the time of subjecting the answer to
the previous and the currently solved task. However, this may not be the time in
which the contestant was really solving the given task.

– The follow-up questionnaire is voluntary, which means data from all contestants are
not available.

4.2 Comparison of Indicators to State a Task Difficulty

The above listed indicators are complementary to each other and if they are combined
they can determine a task difficulty more precisely and more complexly. What we tried
to do was to take into account all these indicators to define the coefficient of mean
difficulty. We tried to find out how individual indicators differ from each other, from
the mean, what their variance is and which of the indicators best corresponds to the
others.

The sources of data for this part were reduced to the results of the 2012 and 2013
national rounds of the Beaver of Informatics in upper secondary school categories.
These provided the data for the first for above listed indicators. The data came from
18653 evaluated contestants in 60 tasks. The reason for this reduction of the set of data
was that contestants’ comments on the task difficulty given after the contest were
available only for this set of tasks. These comments were from 1414 respondents of the
questionnaire in which the selected the most difficult test task in the category.

For all indicators, the order of tasks for a given age category was stated as follows:

– Success rate: correct answer ratio.
– No answer: the most difficult task is skipped by the greatest number of contestants.
– Authors’ opinion: the order of tasks of a given difficulty (easy, middle, hard).
– Solving time: the most difficult problem took most time to solve.
– Contestants’ opinion: the task was selected as most difficult by contestants.

To be able to assess which of these indicators has most impact on a task difficulty,
we studied the distance of individual indicators from the mean value of order, to what
extent, if compared in pairs, the indicators provide similar results, and in how many
tasks the particular indicators differ extremely from other indicators.

4.3 Search for Factors with Impact on a Task Difficulty

Based on an analysis of task text assignments we were looking for those properties of a
task that are easy to detect in tasks across age categories and that are present in a
significant number of tasks. For this reason some factors that looked very promising at

94 J. Vaníček

first had to be dropped. The greatest risk especially in case of qualitative factors is the
subjectivity in deciding whether a factor is present in a task or not. Full set of tasks
from 2012–2015 was used for this part of research.

In the end we defined a total of 20 possible factors that were grouped according to
how they can affect higher/lower difficulty of a task type: topic, way of answering, type
of interactivity, other general factors and subject specific factors.

Difficulty Given by the Task Topic. The thematic area or topic of a contest task is
given according to Dagienė and Futschek [13]. This is used by International Bebras
Committee for categorization of proposed tasks in national contests: algorithmization,
understanding information and its representation, understanding structures and problem
solving. We wanted to find out whether any of these 4 categories could be factors of
difficulty, i.e. whether the topic itself can determine task difficulty.

Difficulty Given by the Way of Answering. The contest test allows three types of
answers:

– Multiple-choice – selection of one out of four possible answers. It limits the choice
of answers, it involves distractors – trick choices and allows the solving strategy
“going through all choices and comparing them”.

– Textbox – entering text into a textbox (most often using a number or a word from
the assignment). This form allows more variety than multiple-choice but it is sen-
sitive to syntactical errors.

– Interactive – most often by manipulating objects on desktop, by moving them,
putting them in a different order, changing their appearance by clicking. Some of
the tasks were programmed as games or allowed keyboard input.

Type of Interactivity. Since we anticipated that this research will verify popularity of
interactive assignments and as there are several variants of interactive solutions,
interactive tasks were divided into subcategories and different factors were linked to
these categories:

– Drag and drop – moving objects on desktop e.g. to the right order, making pairs
– Click – tagging objects by clicking (appearance of objects changes)
– Text – controlling interactivity by writing a text, e.g. by writing a programme code
– Game – more complex control described by rules, often resembles control of a game

(puzzle, maze).

Other General Factors. General factors are those that can be come across in test tasks
regardless of the discipline they come from. These are:

– length of the text – number of signs in the assignment
– demands on reading comprehension – how difficult it is to read the text and how

much attention is needed (long sentences, repetition of similar words, precisely
described situations). This difficulty may not necessarily be related to scientific
demands of the text.

– illustrative picture – a picture that illustrates the situation, explains a concept

What Makes Situational Informatics Tasks Difficult? 95

– example – a concrete example that illustrates the rules described in the assignment
and which allows to check understanding of the assignment

– negative question – question that is formulated as e.g. “Who is not?” instead of
“Who is?”. Children may miss the negation in the question and answer it as a
positive one

Subject Specific Factors. In informatics these are:

– Technical terminology – terms and concepts from informatics and computer sci-
ence. If technical terminology is used, contestants’ success will be affected by their
expert knowledge which depends on the curriculum implemented at their school.

– Formal description – e.g. use of code, formula, excerpts from programmes, chains
of seemingly disconnected signs, abridged description etc. Tasks that include a
graph, table, diagram do not fall in this category, unless some code is included as
well.

– Graphical structures – there is a graph, diagram, map or scheme in the task
assignment. Contestants must be able to read information in graphical structures,
grasp them, fill in data into them or to construct them from the given data.

– Optimization – optimization tasks can be perceived as a stand-alone thematic cat-
egory, optimization does not appear in test task topics according to [13]. That is
why we include it here. In some cases tasks looking for maximum or minimum are
included in this category.

Hypotheses on impact of factors on a task difficulty were formulated for these
general and subject specific factors. The null hypotheses were formulations of the type
“The difference in the mean value of difficulty of tasks with the given factor and
without this factor is zero”. By comparing it to the task difficulty index we assessed
whether the given factor affects success rate. As the hypothesis of equal variances in
most of the studied factors was disproved, Welch’s statistics that takes into account
unequal variances was used. We considered impact of a factor to be proved if the null
hypothesis was disproved on 95 % level of significance. If a test proved a statistical
significant difference in comparison of mean values in both sets of tasks, it could be
derived whether the given factor makes the task simpler or more difficult.

The only factor that was assessed differently was the length of the text. Here the
parameter of stating the length was the numerical value of the number of signs in the
task assignment. This allowed linear regression.

5 Research and Results

5.1 Defining a Task Difficulty Index

First we analyzed which of the indicators differs from the mean difficulty. In 16 out of
60 tasks we could observe that authors’ opinion on a task difficulty is quite different
from the other factors. What we found astounding was that it was the factor contes-
tants’ opinion that was closest to the mean difficulty. It differed least and also showed

96 J. Vaníček

the smallest variance. On the contrary the indicator that differed most was solving time
(which means that according to our method it gives least information on a task
difficulty).

In the next step, pairs of indicators of a task difficulty were compared to analyze to
what extent they provide similar results. The greatest difference between all ten com-
pared pairs of indicators was in the pair authors’ opinion – success rate. Indicators with
most similar results were no answer – contestants’ opinion. This would mean that
contestants mark as most difficult those tasks they skipped in the test and did not answer.
However, the criterion does not seem to be reasonable enough to use it for determining
as the most difficult the task that put off most contestants. It is also quite interesting that
the contestants’ opinion states a task difficulty more accurately than authors’ opinion.

We studied variance between different factors. In some tasks one indicator was
significantly distant from the others and its omission would have resulted in a signif-
icantly smaller variance. The values that were left out by this in the greatest number of
tasks was the indicator authors’ opinion but surprisingly also the indicator success rate,
which has so far been taken as the most dominant indicator of a task difficulty. The
indicator that was excluded least often was the indicator no answer.

Based on results of the above described analysis, two most suitable indicators were
used for definition of index of a task difficulty: incorrect answer ratio in answered tasks
(signaling real difficulty) and no answer ratio (signaling perceived difficulty) according
to Pozdnyakov [9]. These indicators described difficulty well together so their values
were added. As the reason for not answering a task might be lack of time when solving
the test causing that the contestant did not get to the task at all, this indicator does not
give a task difficulty unequivocally and thus it is divided by two in the calculation.

Index of difficulty from absolute number of answers is expressed by the formula

i ¼ ð1� n� cÞ=ð1� nÞþ n=2

where i – is index of a task difficulty, c – correct answers ratio, n – no answer ratio.
This index was used by factors impact calculations on all of 283 tasks.

We were interested in how the two basic components of index of difficulty change
with age of contestants. Graph on the left in Fig. 2 shows a huge difference in the

Fig. 2. Relations of unanswered tasks ratio and difficulty index to a contestant’s age

What Makes Situational Informatics Tasks Difficult? 97

number of test items with no answer at lower and upper secondary school level. The
number increases abruptly at the age of 15 and almost doubles. This is in contrary to
real difficulty of tasks (on the right). The reason for this might be that the contestants
start to perceive tasks as difficult or that they understand the rules of the contest better
and do not want to run the risk of losing points.

5.2 Factors Affecting a Task Difficulty

Proved Impact on A Task Difficulty. Statistical calculations prove impact of the
following five factors:

– Presence of formal description increases a task difficulty. An informatics task is
more difficult if it includes a code, programme, formula, chain of texts conveying
some meaning. It can be inferred that the need to grasp formal description is
connected to abstraction, generalization and non-trivial mental operations that the
task demands from the contestant.

– Structural tasks are more difficult. In contrast e.g. to algorithmization or informa-
tion comprehension, to looking for a structure of objects and phenomena, orien-
tation in structures (including traditional structures as trees or containers) represent
a difficulty for the contestants.

– Presence of optimization increases a task difficulty. Contestants face problems in
the process of optimization when they are to select the best choice from a set of
possible choices (which is often large).

– Demands of reading comprehension increase a task difficulty. It is very interesting
to see that neither the length of the text, nor its difficulty have so much impact as
demands on reading comprehension itself. More difficult are those tasks in which
the data needed for its solution are harder to be detected in the text and remembered.

– Interactivity of a task lowers its difficulty. However, it depends on the type of
interactivity. Of all the sub-factors into which interactivity factor was divided, only
the types Drag and drop and Game actually decrease a task difficulty.

In all cases the presence of the particular factor in the task assignment brought
about a significant change in the mean value of the difficulty index.

Unproven Impact on A Task Difficulty. Let us now present some potential factors
whose impact on a task difficulty was not proved.

– Presence of an illustrative picture or example does not decrease a task difficulty.
We explain this by the fact that authors decide to use such a picture or example only
if they find the assignment difficult. Thus these aids are not likely to be present in
easy tasks.

– The need to work with a diagram, graph, map, scheme has no impact on a task
difficulty. This could imply that children have no problems when working with
visual data or that authors of tasks are very careful when making the decision
whether to use these tasks in younger categories.

98 J. Vaníček

– Entering text into a textbox (surprisingly) has no significant impact to difficulty. But
we have to keep in mind that we have used this type of answer very rarely.

– A negative question has no impact on a task difficulty. This might be caused by the
fact that this kind of question is always alerted to by its format or other warning to
make sure the contestants do not fail to notice it.

– Length of a text has no significant impact on real difficulty (Fig. 3). The result of
linear regression shows that no significant impact of the length of a text on the
actual difficulty of a task (given by index of difficulty) was proved. The graph
shows that in the set of 283 tasks only weak or moderate dependence of difficulty on
length of the text was proved, coefficient of determination R2 in linear regression
model was only 0.11 and Pearson’s correlation coefficient 0.34.

– The length of the text has no significant impact on perceived difficulty. Significant
impact of the length of the text on perceived difficult was not proved (given by no
answer ratio). Pearson’s correlation coefficient 0.55 indicates moderate dependence.
So our results agree with [11] and disagree with [9] in this case.

Perceived Task Difficulty in Contrast to Its Real Difficulty. In 5 out of 20 assessed
factors we could observe a difference between actual and perceived test task difficulty
(given by no answer ratio). This means that the impact of some factors on real task
difficulty did not affect the real difficulty statistically but affected the perceived diffi-
culty (or vice versa).

Tasks of type problem solving (strategies, logical tasks) were perceived as easier by
the contestants but the ratio of correct answer showed no difference. Multiple-choice
tasks were perceived as more difficult but in reality they were not. Also subtype of
interactive tasks with clicking on objects was perceived as more difficult. Optimization
problems were not perceived as more difficult but in reality were more difficult. What
we found most striking was that the presence of an illustrative picture makes the task
appear more difficult to the contestants, as this type of tasks was answered by relatively

Fig. 3. A low dependence of a task difficulty index on the length of assignment text.

What Makes Situational Informatics Tasks Difficult? 99

fewer contestants. This might be explained by the assumption that the author decided to
use this illustration out of their fear that the task was too difficult. The author seems to
anticipate this difficulty thanks to some other signal. And contestants seem to perceive
the task difficulty intuitively thanks to the same signal. It is this “other” signal, not the
presence of an illustration or example that causes more refusals to solve the task. If the
contestant decides to solve the problem in the end, the example will help them and the
task will not be as difficult in the end.

6 Conclusion

Comparison of different indicators for stating difficulty of contest tasks shows that the
criterion of success rate (i.e. what proportion of contestants chose the correct answer)
does not always correspond to other indicators and that the indicator no answer
describes a task difficulty very well. Thus a task difficulty will be more accurately
predicted if we take into account not only the indicator success rate but also the
indicator no answer. Thus our recommendation is to use the rule based on both of these
indicators.

Presence of formalized description, structuring, optimization and demands of
assignment reading comprehension are also substantial factors making a task more
difficult. Interactivity of answering appears to be a significant factor making the task
less difficult. On the other hand factors as the length of the text, use of technical
terminology, algorithmization, diagrams, negative questions, illustrative pictures or
examples did not prove to affect the difficulty of an informatics task.

It must be stressed at this point that the discovered statistical dependencies do not
automatically mean there is some causality. We do not claim that the presence of any of
these indicators and factors is responsible for a task difficulty. For example the cause of
difficulty of structuring and formal description may be the higher level of necessary
abstraction. However, this is hard to detect. We had to look for factors that can be
detected in a task assignment more or less accurately and use such for determination of
a task difficulty. The real difficulty of a task will always have to be detected only
experimentally, i.e. when it is actually solved in the contest.

Results of this research study cast some light on the area of predicting difficulty of
situational informatics tasks and at the same time indicate in which direction to con-
tinue in research: to look for links between individual factors, to study these factors in
different age and gender groups, in a child’s development, compare these factors across
countries or school subjects.

Accurate determination of the difficulty of test tasks for an informatics contest will
be of benefit when constructing contest tests, for development of new tasks designed
for a particular age group or level of difficulty. If some elements of a task prove to
contribute to its difficulty, it will be possible to modify the tasks and tune the test. Also
findings on sources of difficulties of informatics tasks may contribute to development
of higher quality informatics curricula.

Acknowledgment. The research was supported by the project GAJU 121/2016/S.

100 J. Vaníček

References

1. Dagienė, V.: What kinds of tasks are good for contests? In: 6th International Conference on
Creativity in Mathematics Education and the Education of Gifted Students, Riga, Latvia,
pp. 62–65 (2011). ISBN 9789984453606

2. Tomcsányiová, M., Kabátová, M.: Categorization of pictures in tasks of the Bebras contest.
In: Diethelm, I., Mittermeir, R.T. (eds.) ISSEP 2013. LNCS, vol. 7780, pp. 184–195.
Springer, Heidelberg (2013). ISBN 978-3-642-36616-1

3. Pohl, W., Hein, H.-W.: Aspects of quality in the presentation of informatics challenge tasks.
In: Jekovec, M. (ed.) The Proceedings of International Conference on Informatics in
Schools: Situation, Evolution and Perspectives — ISSEP 2015, pp. 21–32. Založba FRI,
Ljubljana (2015)

4. Tomcsányi, P., Vaníček, J.: International comparison of problems from an informatic
contest. In: ICTE 2009: Information and Communication Technology in Education 2009,
pp. 219–221. University of Ostrava, Ostrava (CZ) (2009). ISBN 978-80-7368-459-4

5. Dagienė, V., Stupurienė, G.: Bebras – a sustainable community building model for the
concept based learning of informatics and computational thinking. Inform. Educ. 15(1), 25–
44 (2016)

6. Tomcsányi, P.: Náročnosť úloh v súťaži Informatický bobor (Difficulty of tasks in
Informatický bobr contest. In: Konferencia DidInfo 2009. Univerzita Mateja Bela, Banská
Bystrica (SK) (2009). ISBN 978-80-8083-720-4

7. Tomcsányiová, M., Tomcsányi, P.: Analýza riešení úloh súťaže iBobor v školskom roku
2013/14. (Analysis of solutions in iBobor contest tasks in 2012/13 year). Konference
DidactIG 2014. Technical University, Liberec (CZ) (2014)

8. van der Vegt, W.: Predicting the difficulty level of a Bebras task. Olympiads Inform. 7, 132–
139 (2013)

9. Yagunova, E., Podznyakov, S., Ryzhova, N., Razumovskaia, E., Korovkin, N.: Tasks
classification and age differences in task perception. Case study of international on-line
competition “Beaver”. In: Jekovec, M. (ed.) The Proceedings of International Conference on
Informatics in Schools: Situation, Evolution and Perspectives — ISSEP 2015, pp. 33–43.
Založba FRI, Ljubljana (2015)

10. Gujberová, M.: Výber úloh do informatickej súťaže iBobor (Collection tasks for informatics
contest iBobor. In: Konference DidactIG 2014. Technical Universoty, Liberec (CZ) (2014)

11. Vaníček, J., Křížová, M.: Kritéria obtížnosti testových otázek v informatické soutěži (criteria
of informatics contest tasks difficulty). In: Lovászová, G. (ed.) DidInfo 2014, pp. 191–199.
Univerzita Mateja Béla, Banská Bystrica (SK) (2014)

12. Šimandl, V.: Odhalování podvádění v online soutěžích (detecting of cheating in online
competitions). J. Technol. Inf. Educ. 6(2), 114–121 (2014). ISSN 1803-537X

13. Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer
literacy: criteria for good tasks. In: Mittermeir, R.T., Sysło, M.M. (eds.) ISSEP 2008. LNCS,
vol. 5090, pp. 19–30. Springer, Heidelberg (2008)

What Makes Situational Informatics Tasks Difficult? 101

Best-Practice Papers
and Country Reports

A New Informatics Curriculum for Secondary
Education in The Netherlands

Erik Barendsen1(B), Nataša Grgurina2, and Jos Tolboom3

1 Radboud University and Open University, Nijmegen, The Netherlands
e.barendsen@cs.ru.nl

2 University of Groningen, Groningen, The Netherlands
n.grgurina@rug.nl

3 SLO Institute for Curriculum Development, Enschede, The Netherlands
j.tolboom@slo.nl

Abstract. In The Netherlands, the current informatics curriculum for
upper secondary education was introduced in 1998 and only slightly mod-
ified in 2007. Meanwhile, both the scientific discipline and its impact on
society have developed substantially. For this main reason, a curriculum
reform has been carried out which has led to a new curriculum specifying
the intended learning outcomes. This country report specifies the edu-
cational context in which the reform takes place. Moreover, it decribes
the reform process from various perspectives, highlights and explains
the underlying design principles that guided the development of the new
curriculum, and presents its main results.

Keywords: Informatics · Curriculum · Secondary education · Reform

1 Introduction

This country report focuses on the ongoing curriculum reform for the elec-
tive informatics subject in upper secondary education in The Netherlands. The
intended learning outcomes have recently been specified by a curriculum commi-
tee. The current state of affairs – after completion of the learning outcomes, but
before the implementation of the curriculum in schools – seems a good occasion
to discuss the background, design principles and content of the new curriculum.

Since 2010, there has been a growing concern about informatics educa-
tion among European and American teachers, scientists and industry [10,13].
Remarkably, in recent years, the call for reform of informatics education could
increasingly be heard outside the informatics community [1,9,14,17]. By now,
several countries have already innovated their informatics education.

In the Dutch educational system, informatics is an elective subject in upper
secondary education. Its curriculum was established in 1998, and was adjusted
only slightly in 2007. The subject has been evaluated several times, last time in
2007 [18], but this has not led to major modifications. This is remarkable, as infor-
matics curricula in higher education have been adapted several times since 1998.
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 105–117, 2016.
DOI: 10.1007/978-3-319-46747-4 9

106 E. Barendsen et al.

Reference curricula have been periodically updated, accommodating new themes
[2]. Moreover, all science subjects in Dutch secondary education have been thor-
oughly revised in the past few years.

Triggered by concerns expressed by the Dutch academy of sciences [14], the
Ministry of Education ordered a study [20] into the teaching practice of the sub-
ject, see also [4]. The researchers conducted a literature review, teacher inter-
views, a survey and expert consultations. The questionnaire was completed by
a representative part for the teacher population.

The study confirmed that the situation was alarming. This led the Ministry of
Education to decide in favour of a curriculum reform for informatics in the upper
level of upper secondary education. A curriculum committee of 9 members was
installed in September 2014, in which teachers, computing education specialists,
experts from universities and universities of applied sciences, and curriculum
and assessment specialists were represented. The curriculum was conceived in
2015 and the advisory report was formally presented in March 2016. The min-
istry is expected to formally adopt the curriculum by the summer of 2016. The
curriculum will come into effect in schools by August 2019.

This paper is structured as follows. We start with an introduction to the
Dutch educational context in Sect. 2. In Sect. 3, we explore some challenges for
the new curriculum and explain the design principles underlying the curriculum
and its description. An outline and some characteristic examples of the contents
of the curriculum are described in Sect. 4.

2 Educational Context in The Netherlands

2.1 The Dutch Educational System

In the Netherlands, students complete elementary school at the age of twelve.
The Dutch system offers three main types of secondary education, two of which
offer informatics.

The havo type of school (senior general secondary education, in Dutch: hoger
algemeen vormend onderwijs) spans five years (grades 7 through 11) and pre-
pares students for higher professional education, while the vwo type of school
(pre-university education, in Dutch: voorbereidend wetenschappelijk onderwijs)
spans six years (grades 7 through 12) and is geared towards further education
at a university.

The final assessment of secondary education consists of two parts: national
exams and school exams. Nearly all subjects have both type of exams — except
informatics and a few others, which only have a school exam. The Dutch gov-
ernment decides on the curriculum, which prescribes the learning objectives and
the way they are assessed (through a school exam only or through both a school
and a national exam).

Dutch curricula are formulated as a collection of learning objectives, i.e., the
knowledge, insight, skills and professional attitude that a student should have
acquired upon completion of the subject. It is common to formulate a global,

A New Informatics Curriculum for Secondary Education in The Netherlands 107

considerably abstract description for each of the intended learning outcomes.
This approach is in line with the Dutch principle of letting the government
only prescribe what is learned; the ‘how’ is left to teachers, schools and text-
book authors. For example, the time dedicated to teaching a particular learning
objective is for the teachers to decide.

In havo and vwo almost all students have the same curriculum in grades 7
through 9 with respect to most of the subjects. From grade 10 on, they choose
one of the following four tracks: Culture and Society, Economics and Societys,
Nature and Health, and Nature and Technology. Informatics can be chosen as an
elective subject within all tracks.

2.2 Informatics in Dutch Upper Secondary Education

In 1998, the subject of Informatics was designed to be well within the capabilities
of all students, regardless of which track they choose. This resulted in a subject of
a multidisciplinary nature. Furthermore, since Informatics was not a prerequisite
for any subsequent study at the university or college level, it was felt that there
was no need for a national exam: the subject would be assessed through a school
exam.

The student workload of the secondary Informatics curriculum is 320 study
hours for havo and 440 hours for vwo. The first curriculum drew its inspiration
from the 1994 UNESCO/IFIP curriculum [19].

The learning objectives in Dutch curricula are grouped into so-called
domains, each of which is subdivided into one or more subdomains. Each subdo-
main is then specified by a specific learning goal. The 1998 curriculum contained
53 learning goals described in great detail. In the 2007 revision, the curriculum
was brought down to 18 learning goals described in general terms. In Table 1
we present the domains and subdomains of the 2007 revision. For a detailed
description of this curriculum and its implementation, see [12].

Table 1. Domains and subdomains in informatics, 1998 curriculum after 2007 revision

Domain Subdomains

A: Informatics in perspective Science and technology, society, study and
career, the individual

B: Terminology and skills Data representation in a computer, hardware,
software, organizations

C: Systems and their structures Communication and networks, operating
systems, systems in practices, development
of information systems, information flow,
information analysis, relational databases,
human-computer interaction, system
development lifecycle

D: Usage in a context

108 E. Barendsen et al.

3 Design Principles

In this section, we will discuss some of the challenges of the curriculum innova-
tion, each together with the chosen solution in terms of design principles.

Towards a Sustainable Curriculum Specification. The current curriculum
description is considered outdated. Indeed, it stems from a time when the world
wide web was used very little, and corporate automation was the main appli-
cation of computers. When asked for their opinion about the curriculum, many
teachers indicated that they were missing modern applications of computer sci-
ence such as games and mobile devices, apart from recent fundamental themes
such as security and data science [4,20].

For the curriculum committee, one of the main goals of the new curricu-
lum was to ensure relevancy in the long term. Observing the rapid development
(‘revolutions’) of applications and the more ‘evolutionary’ development of fun-
damental concepts, the committee decided to follow a so-called concept-context
approach.

This approach, often referred to as context-based education, is mainly known
as a pedagogical principle and has been applied in several science subjects, e.g.,
[3,8]. In this approach, science content is connected with social, professional
and scientific contexts [11] which appeal to a broad group of students. The
concept-context approach aims, among other things, to change students’ atti-
tudes towards science and make science more ‘meaningful’ and more ‘relevant’
to students [6,15].

The curriculum committee applied the concept-context idea as a description
mechanism by separating fundamental concepts from the more volatile contexts
(i.e., application domains and situations). In the curriculum description, the con-
cepts have been specified concretely, but the contexts only in a generic way. In
line with the concept context approach in the science subjects, the commitee dis-
tinguishes between: social contexts (including environmental contexts), profes-
sional contexts, and scientific contexts. Other important contexts for informatics
are other school subjects (that apply informatics).

In order to help teachers and textbook authors to design appropriate con-
texts by instantiating the generic context descriptions, the institute for curricu-
lum development (SLO) will develop guidelines for the implementation of the
curriculum in classroom teaching and assessment.

Dealing with Diversity. Dutch students in informatics vary greatly with
respect to interest and computing experience [20]. A complicating factor is that
the subject is not only an elective within the Nature and Technology track, but
should cater for students of all tracks.

Differentation is facilitated by two mechanisms. First, the new curriculum
is divided into a core curriculum, intended for all students, and a collection
of elective themes. The core curriculum has been composed in such a way

A New Informatics Curriculum for Secondary Education in The Netherlands 109

that all students are at least able to communicate with peers who have spe-
cialised through a particular elective theme. This opens possibilities for working
in project teams consisting of students with different expertise. A second mech-
anism is the concept-context approach described above. Since the curriculum is
parametric with respect to contexts, these contexts can be differentiated accord-
ing to the chosen tracks or specific personal interests of students. This can be
done, e.g., by distinguishing social, economic, cultural and technical contexts.

Differentiation Between School Types. The curricula for havo and vwo
will differ at least in extent: the vwo students spend more time on the subject
than their havo counterparts. This is taken into account via the number of
elective themes to be chosen: two for havo students and four for vwo students.

Making a distinction with respect to attainment level of the learning goals
turned out to be difficult. Dutch science curricula for havo and vwo often differ
with respect to complexity and abstraction levels. The curriculum committee has
included distinct vwo and havo variants of the goals in a few cases where this
seemed logical and obvious. In general, however, characterizing the difference
between havo and vwo students in informatics turned out to be difficult. At
a focus group session, the teachers agreed that each of them could think of a
student in their havo classes that would also excel in the corresponding vwo
class. In the case of informatics, the difference between individual havo and vwo
students is often smaller than the difference between students from the Culture
and Society track and students from the Nature and Technology track. Therefore
the curriculum committee decided to refrain from further differentiation on the
formal curriculum level.

Informatics and Engineering. Informatics is seen by many as a construc-
tive discipline: a subject area where creating things (mostly digital artefacts) is
the key element [7]. In this epistemic view, informatics as a scientific discipline
supplies the conceptual and procedural knowledge about such artefacts and the
creation process.

The ‘creation’ perspective is an attractive starting point for the subject. It
offers a recognisable and dynamic look, and provides a nice contrast with other,
more analytical, science subjects. Moreover, creating digital products does not
require any complicated physical tools or materials: in most cases a computer
will suffice. This means that students are not limited to designing a product (as
is mostly the case in other science subjects), but will actually be able to build
it. Finally, the teachers consulted during the curriculum reform often pointed to
the fun factor : creating digital products can be fun and engaging.

Therefore, the committee has decided to position ‘design and development’
as a central skill in the new curriculum.

Balancing Guidance and Freedom. One of the goals of the Curriculum
Committee was to find a balance between providing guidance and offering free-
dom. According to the informatics teachers, the previous curriculum was too

110 E. Barendsen et al.

general and therefore provided too little guidance [20]. Therefore, the committee
has drafted more comprehensive learning goals. The core curriculum contains 30
learning goals, of which 13 are in the Skills domain. The remaining 34 learing
goals describe the elective themes that offer schools the opportunity to shape
the informatics education according to their own preference. The committee feels
that this creates the intended balance between providing guidance and offering
freedom.

4 The New Curriculum

In this section we will depict the overall structure of the curriculum. Then we will
describe the domains of the core curriculum and give some examples of elective
themes. The complete curriculum can be found in [5].

4.1 Curriculum Structure

The core curriculum consists of a skills domain and five knowledge domains. The
skills domain (A) addresses both informatics specific skills and general scientific
and technical skills. The latter are roughly the same as for science subjects such
as chemistry and physics. The elective themes span domains G–R. See Table 2.
The havo students choose two elective themes, whereas the vwo students select
four.

Table 2. Domains of the informatics curriculum

Core curriculum Elective themes

Domain A Skills Domain G Algorithmics, computability and logic

Domain B Foundations Domain H Databases

Domain C Information Domain I Cognitive computing

Domain D Programming Domain J Programming paradigms

Domain E Architecture Domain K Computer architecture

Domain F Interaction Domain L Networks

Domain M Physical computing

Domain N Security

Domain O Usability

Domain P User experience

Domain Q Social and individual impact of informatics

Domain R Computational science

The following three sections will offer more explanation about the elements
of the curriculum: first, the Skills domain, then the knowledge domains of the
core curriculum, and finally the knowledge domains for the elective themes.

A New Informatics Curriculum for Secondary Education in The Netherlands 111

Grey boxes are used to display text segments from the curriculum description.
The curriculum often refers to digital artefacts. This collective term is used to
indicate products that have been designed and/or developed and/or produced
based on informatics knowledge: programs, computer systems, interfaces, etc.

4.2 Domain A: Skills

Three types of skills are considered essential and characteristic for the subject of
informatics: (1) designing and developing, (2) using informatics as perspective,
and (3) cooperation and interdisciplinarity. We will describe these central skills
below in the form of their subdomains. Other skills include the subdomains
Ethical conduct, Using informatics tools, and Working in contexts. Moreover,
for symmetry and completeness, the committee has included general skills and
scientific skills from other science curricula.

Subdomain: Designing and Developing. This subdomain concerns devel-
opment of digital artefacts. In the new curriculum this is considered as more
than just a technical affair. Instead, contexts and users are the starting points.
These contexts offer the opportunity to connect to the interests and the tracks of
the students, allowing designing and developing to become creative challenges,
more than just solving ready-made tasks to write a computer program, cf. [16].

Designing and developing
The candidate is able

– to spot opportunities for the application of digital artefacts in a certain context;
– to translate these opportunities into a design and development objective, taking

the technical, environmental and human factors into account;
– to specify the wishes and requirements, and to assess their feasibility;
– to design a digital artefact;
– to weigh the options in the design of a digital artefact by means of research and

experimentation;
– to implement a digital artefact;
– to evaluate the quality of digital artefacts,

and to combine the above skills in the development of digital artefacts.

The knowledge domains (B–F and G–R) will supply knowledge and tools to
execute developmental activities, such as programming, but also social impact
and quality aspects like user interaction, correctness, efficiency and security.

The formulation of the above learning goal allows to vary the degrees of free-
dom with respect to the students’ formulation of the development objective. The
committee regards this as a valuable option for differentiation. For instance, an
nontrivial open situation, where the formulation of a suitable objective requires
consideration and research, will likely suit vwo students, while a concrete devel-
opment objective seems to be a typical starting point for the havo students.
There is a lot of room for variation between these two extremes; this depends on
apects such as the complexity of the context. The committee has decided against
formulating a generic distinction between havo and vwo in this subdomain.

112 E. Barendsen et al.

Subdomain: Using Informatics as a Perspective. Informatics has an ana-
lytical element, in addition to the creative perspective: knowledge in this area
allows students to explain certain phenomena in their daily lives and in society.
A student who completes this subject will not only be able to accurately discuss
the possible causes for the malfunctioning of the home Wi-Fi network, but will
also be able to explain whether we should worry about our bank balance when
an on-line banking site is unavailable due to a DDoS attack.

Using informatics as a perspective
In contexts, the candidate is able to

– indicate, interpret and explain phenomena in terms of informatics;
– recognise and interconnect informatics concepts;
– estimate the possibilities and limitations of digital artefacts and reason about

these in terms of informatics concepts.

This learning goal contains elements of computational thinking [21]. This
includes analytical skills to formulate problems in such a way that one can use
computers and other tools to help solve them, as well as problem solving skills,
such as finding solutions in terms of algorithms and data. When ‘using informat-
ics as perspective’, students use informatics concepts as spectacles to look at the
world around them. This skill matches the analytical aspect of computational
thinking, while our interpretation of ‘designing and developing’ links up with
the aspect of problem solving.

Subdomain: Cooperation and Interdisciplinarity. Computer scientists
rarely work alone. Creating digital products is usually a team effort: on the
one hand because the products are often complex, on the other hand because
the development requires expertise from various fields. Through the choice of
core domains, the committee intended to enable this latter form of cooperation.
For example, all students will be sufficiently informed about man-machine inter-
action (core curriculum, domain F) to cooperate effectively with a team member
who has learned to design user interfaces (elective theme, domain O).

Software engineering has yielded various methods for structured teamwise
development. The committee considers it important that students are able to use
at least one of these structured approaches, but has refrained from prescribing
a specific version.

Cooperation and interdisciplinarity
The candidate is able

– to structurally cooperate in a team during the design and development of digital
artefacts;

– to cooperate with people from an application field.

4.3 Knowledge Domains of the Core Curriculum

Domain B: Foundations. This domain provides an abstract view on digital
artefacts independent of any concrete implementation.

A New Informatics Curriculum for Secondary Education in The Netherlands 113

Algorithms
The candidate is able

– to develop a provisional solution for a problem into an algorithm;
– to recognise and apply standard algorithms;
– to investigate the correctness and efficiency of digital artefacts using the

underlying algorithms.
Data structures
The candidate is able to compare the elegance and efficiency of abstract data structures.
Automata
The candidate is able to use finite automata for the characterisation of certain
algorithms.
Grammars
The candidate is able to use grammars as tools for the description of languages.

The underlying rationale for the incorporation of automata and grammars
is the following. Automata (state transition systems) often allow for an elegant
and simple description or design of artefacts without directly lapsing into pro-
gram code. Grammars also offer structure (and simplicity) to the descriptions of
(programming) languages. These two theoretical models are intended to be used
as instruments, rather than objects of a deep theoretical study.

Domain C: Information. This domain deals with information and concrete
data. The identification and representation of data is the core of this domain,
with special attention paid to the representation of numbers and media, and to
the use of existing data bases.

Objectives
The candidate is able to distinguish specific purposes for information and data
processing, such as searching and processing.
Identifying
The candidate is able to identify information and data in contexts, taking the purpose
into account.
Representing
The candidate is able to represent data in a suitable data structure, keeping the purpose
in mind; the candidate is able to compare the elegance, efficiency and implementability
of various representations.
Standard representations
The candidate is able to use standard representations of numerical data and media,
and is able to relate these to each other.
Structured data
The candidate is able to translate an information request into a search query for a
collection of structured data.

Domain D: Programming. The Programming domain is related to both the
development and the understanding and adaptation of programs. We expect
students to gain skills in handling an imperative programming language. The
selection of the language is left to the teachers and authors. As software is often

114 E. Barendsen et al.

built up from components, we use the term ‘program component’ instead of the
classical term ‘program’.

Developing
The candidate is able, for a given objective,

– to develop program components in an imperative programming language;
– to use programming language constructs that support this abstraction;
– to structure a program component in such a way that they can be easily

understood and evaluated by others.
Inspecting and adapting
The candidate is able

– to explain the structure and functioning of certain program components;
– to adapt such program components based on evaluation or changing

requirements.

Domain E: Architecture. The core curriculum focusses on the structure and
operation of digital artefacts. Architectural elements are a good stepping stone
for the introduction of security aspects, insofar as they are related to techni-
cal risks and measures. The human factors related to security are part of the
Interaction core domain.

Decomposition
The candidate is able to explain the structure and functioning of digital artefacts
through architectural elements, i.e., in terms of the physical, logical and applica-
tion layer levels, and in terms of the components in these layers together with their
interaction.
Security
The candidate is able to name some security threats and common technical measures,
and relate these to architectural elements.

Domain F: Interaction. This domain is related to the link between informatics
and the environment. The committee has added three perspectives to the core
curriculum: the interaction between digital artefact and user (usability), the
impact of informatics on society, and the impact of informatics on the individual
(privacy in particular). These three perspectives offer good starting points for
the socio-technical part of security, as an addition to the more technical aspects
that are part of the Architecture domain.

Usability
The candidate is able

– to evaluate user interfaces for digital artefacts using heuristics;
– to apply principles of good design when designing and developing interfaces of

digital artefacts.
Social aspects
The candidate is able to recognise the impact of digital artefacts on social interaction
and individual privacy, and is able to put this in a historical perspective.

A New Informatics Curriculum for Secondary Education in The Netherlands 115

Privacy
The candidate is able to reason about the consequences for personal freedom given the
increasing possibilities of digital artefacts.
Security
The candidate is able to recognise security threats and common socio-technical
measures, and relate these to social and human factors.

4.4 Elective Themes

The elective themes offer students the opportunitys to deepen (e.g., Algorithms,
computability and logic) or broaden (e.g., Cognitive computing) their informatics
skills and knowledge. Below we give three examples of elective themes.

Domain J: Elective Theme Programming Paradigms. The core curricu-
lum includes learning to program in at least one imperative programming lan-
guage. In this elective theme, the students have the possibility to broaden their
programming repertoire with, e.g., functional, logical, or object oriented para-
digms.

Alternative programming paradigm
The candidate is able to describe the characteristics of at least one additional
programming paradigm, and is able to develop and evaluate programs according to
that paradigm.
Choosing a programming paradigm
The candidate is able to assess the suitability of programming paradigms for the
solution of a particular problem.

Domain P: Elective Theme User Experience. This optional theme deals
with digital artefacts that require a user interaction design that is more extensive
than the design of a user interface. This is more advanced than the scope of the
elective theme O, Usability. Possible examples are interactive artefacts such as
games, and applications that exploit the user interaction to increase the user
engagement, such as gamification of existing applications. User experience may
not just be influenced by the direct interaction, but also by other modalities,
such as imaging (animation, video) and sound (music).

Analysis
The candidate is able to explain the relationship between the design choices for an
interactive digital artefact and the expected cognitive, behavioural and affective
changes or experiences.
Design
The candidate is able to design the user interaction for a digital artefact, justify the
design decisions, and implement it for a simple application.

116 E. Barendsen et al.

Domain R: Elective Theme Computational Science. This domain is an
extension of the sub-domain Modelling of the Skills domain A in the core cur-
riculum. As many of our students are going to pursue scientific and engineering
careers outside of informatics, they need to be equipped with skills that allow
them to formulate problems in such a way that these can be solved with the help
of a computer, cf. [21].

Modelling
The candidate is able to model aspects of another scientific discipline in computational
terms.
Simulating
The candidate is able to construct models and simulations, and to use these for the
research of phenomena in that other science field.

References

1. Académie des Sciences: L’enseignement de l’informatique en France: Il est urgent
de ne plus attendre (2013)

2. ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer Science Cur-
ricula 2013. Technical report, ACM Press and IEEE Computer Society Press,
December 2013

3. Apotheker, J., Bulte, A., De Kleijn, E., Van Koten, G., Meinema, H., Seller, F.:
Scheikunde in de dynamiek van de toekomst. Over de ontwikkeling van scheikunde
in de school van de 21e eeuw. Eindrapport van de Stuurgroep Nieuwe Scheikunde
2004–2010. SLO, Enschede (2010)

4. Barendsen, E., Fisser, P., Krüger, J., Tolboom, J.: Herziening van het Nederlandse
informaticacurriculum havo-vwo. Paper presented at ORD 2014, Groningen (2014)

5. Barendsen, E., Tolboom, J.: Advies Examenprogramma Informatica vwo-havo:
inhoud en invoering. SLO, Enschede (2016)

6. Bennett, J., Holman, J.: Context-based approaches to the teaching of chemistry:
what are they and what are their effects? In: Gilbert, J.K., De Jong, O., Justi,
R., Treagust, D.F., Van Driel, J.H. (eds.) Chemical Education: Towards Research-
Based Practice, pp. 165–184. Kluwer, Dordrecht (2002)

7. Berglund, A., Lister, R.: Introductory programming and the didactic triangle. In:
Proceedings of the Twelfth Australasian Conference on Computing Education, vol.
103, pp. 35–44. Australian Computer Society, Inc. (2010)

8. Boersma, K.T., Van Graft, M., Harteveld, A., De Hullu, E., De Knecht-van Eekelen,
A., Mazereeuw, M.: Leerlijn biologie van 4 tot 18 jaar. Uitwerking van de concept-
contextbenadering tot doelstellingen voor het biologieonderwijs. CVBO, Utrecht
(2007)

9. Furber, S.: Shut Down or Restart? The Way Forward for Computing in UK Schools.
The Royal Society, London (2012)

10. Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold, J., McGettrick, A., Boyle,
R., Drechsler, M., Mendelson, A., Stephenson, C., Ghezzi, C., Meyer, B.: Informat-
ics education: Europe cannot afford to miss the boat. Report of the Joint Infor-
matics Europe & ACM Europe Working Group on Informatics Education (2013)

11. Gilbert, J.K.: On the nature of ‘context’ in chemical education. Int. J. Sci. Educ.
28(9), 957–976 (2006)

A New Informatics Curriculum for Secondary Education in The Netherlands 117

12. Grgurina, N., Tolboom, J.: The first decade of informatics in Dutch high schools.
Inf. Educ. 7(1), 55–74 (2008)

13. Kaczmarczyk, L., Dopplick, R.: Preparing students for computing workforce needs
in the US. ACM SIGCSE Bull. 46(2), 8–8 (2014)

14. KNAW: Digitale geletterdheid in het voortgezet onderwijs: vaardigheden en atti-
tudes voor de 21ste eeuw. Koninklijke Nederlandse Akademie van Wetenschappen,
Amsterdam (2012)

15. Koubek, J., Schulte, C., Schulze, P., Witten, H.: Informatik im Kontext (IniK):
Ein integratives Unterrichtskonzept für den Informatikunterricht. In: INFOS, pp.
268–279 (2009)

16. Romeike, R.: What’s my challenge? The forgotten part of problem solving in com-
puter science education. In: Mittermeir, R.T., Sys�lo, M.M. (eds.) ISSEP 2008.
LNCS, vol. 5090, pp. 122–133. Springer, Heidelberg (2008)

17. Samaey, G., Van Remortel, J., Bersini, H., Bruynseraede, Y., Dekelver, J., Laen-
der, F.D., Deschoolmeester, D., Gistelinck, P., Martens, B., Martens, L., Neven, F.,
Snoeck, M., Steels, L., Tempels, M., Vandenabeele, P., Vanderborght, B., Vande-
walle, J., Uffelen, S.V., Vercauteren, G., Verschaffel, L., Waerniers, P., wyffels, F.:
Informaticawetenschappen in het leerplichtonderwijs. Koninklijke Vlaamse Acad-
emie van België voor Wetenschappen en Kunsten, Brussel (2014)

18. Schmidt, V.: Vakdossier Informatica. SLO, Enschede (2007)
19. Tinsley, J.D., Van Weert, T.J.: Informatics for secondary education, a curriculum

for schools (1994)
20. Tolboom, J., Krüger, J., Grgurina, N.: Informatica in de bovenbouw havo/vwo:

Naar aantrekkelijk en actueel onderwijs in informatica. SLO, Enschede (2014)
21. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

And Now What Do We Do with Our
Schoolchildren?

G. Barbara Demo(B)

Dipartimento di Informatica – Università di Torino,
Corso Svizzera 185, 10149 Torino, Italy

barbara@di.unito.it

Abstract. After training activities introducing computing, many teach-
ers seem to ask themselves “And now: what do we do with our school-
children?”. When we had to design a course for about twenty-five teach-
ers, from twelve primary and middle schools, our first concern was trying
to change this. For about twelve hours of the course meetings we intro-
duced programming, then we discussed with attendees three frameworks
of long programming activities: telling stories, creating group and class
quizzes and relative answers, inventing riddles modeled by equations.
The participants were asked to invent, design and implement an activity
adapting to their students one of the frameworks discussed. Some were
able to actually work with their pupils in schools, at least partly, during
the course as we invited. This approach is of interest in other teachers
training courses since the suggested activity frameworks can be inflected
with contents that schoolchildren are dealing with in school. Also, the
teachers are helped overcoming their apprehension in proposing a first
long activity to their students because they can carry on such an expe-
rience during the training.

Keywords: Teachers training · Primary and middle school · New
curricula · Questioning · Activity framework

1 Introduction

The Scuola2.0 project was promoted in 2014 by the Municipality of Torino (Italy)
for improving digital competencies in primary and middle schools. One of the
components of the initiative was the request to organize a pilot course during the
school year 2015–16 for about twenty-five in-service teachers. From our previous
retraining experiences we knew to have several constraints: most of the in-service
teachers have little time for retraining and, even younger ones, know little about
computing. Almost all only have experienced digital literacy activities, i.e. they
have been using the web and computer tools specific for an educational purpose
[5]. Other peculiar constraints of the project were that only few of the teachers
were volunteers and that we had to cut into two phases the meetings having half
of them during autumn 2015 and the other half from beginning March 2016 to
the end of April. We ended up organizing ten meetings of three hours each.
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 118–129, 2016.
DOI: 10.1007/978-3-319-46747-4 10

And Now What Do We Do with Our Schoolchildren? 119

In our country there is no mandatory curriculum for informatics in educa-
tion neither commonly accepted suggestion when optional activities are possible.
There are several formal and informal proposals going from educational robotics
to programming (using different languages), from CS Unplugged to coderdojo
and fablab type of activities, naming just some of the most popular ones. Also
when deciding the contents of retraining projects we need to consider recent
criticisms toward the digital presence in education till nowadays coming from
different sources, for example OECD [8].

After having for years experienced the above mentioned approaches, we sup-
port introducing basic principles of computing by programming as a contribution
to defining new digital curricula for schools. With our proposals we are then in
line with the suggestions by Schulte in [11], Ben Ari in [1] and with those coming
from the English National curriculum for primary school where we read:

The role of programming in computer science is similar to that of practical
work in the other sciences: it provides motivation, and a context within
which ideas are brought to life [2].

Moreover, our project concerns k-8 education: thus a practical programming
work complies with Piaget’s theory where we have that the “concrete opera-
tional” stage of children cognitive development is peculiar of the primary school
age. Practical experiences also facilitate in-service teachers who must be intro-
duced to computing with short courses. As for the type of the activities to be
proposed we have in mind also Martha Nussbaum’s concern on the contraction
of the humanistic component in the curricula contents:

More and more often we treat education as if its primary goal should
be to teach students to be economically productive rather than to think
critically and to become informed and empathetic citizens [7].

The Italian National Indications for k-8 education appear to share Nussbaum’s
concern.

The introductory programming environment we propose for all ages is Scratch
because of the reasons summarized by Shneiderman [12] and by Romeike [10] to
characterize programming development environments suitable for introductory
experiences.

With all the above motivations in mind, our proposal for the Scuola2.0
project was to devote the first five meetings to introduce unplugged activities
plus elements of programming using Scratch and the remaining five to consider
types of activities that the attendees could immediately implement in school
adapted to their pupils while our lectures were continuing. Previous experiences
had shown that at the end of retraining courses many of the participants had
not felt able to design articulated activities adapted to their classes or, not hav-
ing colleagues in the same school to share the experience with, they had been
afraid to tackle alone a first field-activity. For this reason often we saw replicated
some of the examples and exercises from a programming course with results not
always connected to each other and with the rest of the teaching. We asked the

120 G.B. Demo

attendees to implement one activity suitable for their students choosing out of
three types of activities that we presented and discussed with them. The activity
had to be developed while the second part of the meetings was going on so that
the problems encountered could be discussed in person with the other attendees
and the lecturer. After the end of the course, the virtual community environ-
ment of the project is still available for discussions but a starting phase where
problems are discussed in persons is necessary, again from our past experiences.
The three types of activities proposed are:

– inventing a narration that would gather the most relevant aspects of a topic
covered in school or that might be of interest to the schoolchildren,

– inventing quizzes choosing a curriculum topic and deciding, first in group then
with the entire class, a set of questions with multiple-choice answers better
representing the topic,

– for middle schools: inventing riddles each modeled and solved by a linear
equation.

We offered programming integrated with unplugged activities of the type sug-
gested in [4] because we have closely worked for years with teachers in schools
becoming quite respectful of their competencies in the pedagogical and method-
ological components of educational activities.

Here we describe how the lectures of the project went on. In Sect. 2 the gen-
eral motivations are briefly resumed with a summary of the first five meetings.
Sections 3 and 4 concern last five meetings. First story telling and riddles inven-
tion activities are described. Section 4 is entirely dedicated to the activities of
questions & answers, organized as group and class quizzes, whose proposal and
materials have been methodically organized more recently than the others.

2 Key Principles of the Project and First Meetings

In primary education activities count for what children acquire during the
process of developing an activity as much as for the result produced. Digital
experiences also should take into account this kind of methodological approach.

2.1 Scuola2.0 Principles

The key principles inspiring the activities suggested during Scuola2.0 are the
following:

– every activity, including programming, shall be a learning environment con-
tributing to the overall growth of the child in its ethical, social and intellectual
capabilities, from the beginning to the end of the activity development,

– every action must have a specific educational goal and be integrated to the
overall pedagogical and disciplinary contents of the grade it is proposed to,

– particularly in the early years, programming must be conceived as one of the
“hundred” languages children shall use to create and express themselves, as
from Loris Malaguzzi of Reggio Emilia schools [3].

And Now What Do We Do with Our Schoolchildren? 121

The project could count on ten meetings, three hours each. During the first
five meetings we introduced attendees to the CS Unplugged activities presented
in [2] and to basic programming concepts, using Scratch, shortly summarized in
this section.

2.2 Unplugged Programming

We have been introducing programming for years with activities that often were
sort of an easier version of those present in first programming courses at the uni-
versity or in technical upper secondary schools. Soon we felt mandatory to offer
different activities more integrated to the educational contents and pedagogical
methodologies particularly, though not only, in k-8 education. Thus we began the
Teachers for teachers (T4T) experience where we work with teachers and collect
suggestions from the field. We revisited Logo activities and CS Unplugged activ-
ities developed in schools. In [4], three primary school teachers of the T4T group
describe various types of computer-related activities they have created with their
pupils. For first grades of primary schools, they have experimented CS Unplugged
activities, for example those moving a human-robot. The latter are activities on
a school chessboard-like playground or similar where a pupil moves from one
square to another one according to the instructions her/his mates give. Only
four instructions are available at the beginning (forward, backward, turn-left
and turn-right), then the instruction set is gradually enriched, for example
with instructions for bringing something from a square to another one. Also
pupils are requested to perform different activities such as:

– comparing the different paths obtained from different sequences of commands,
– comparing lengths of instruction sequences written by different groups.

The presence of an obstacle on the playground, in one of our schools there is a
slide, enriches the possible activities since children must avoid the obstacle. Also:
first writing down inside the school the instructions for a path, then verifying
them on the playground, makes teachers and pupils concretely see the sequence
of commands and better catch the concept. Besides, having only few lines where
writing the sequence often generates the idea of parameters, forward(n) for
example, or repeat(n). This is the same ruse used in other environments, for
example in Lightbot, https://lightbot.com/). Also, attendees shall find out that
the human-robot written sequence of instructions corresponds to the sequence
of actions we perform in some real world situations, for example similar to the
sequence of actions written on the Fire Alarm Table, i.e. the actions we (must)
perform when we hear the fire alarm in school. Learning achievements during
unplugged programming make easier the activities that follow.

2.3 Plugged in Activities During the First Part of Scuola2.0

Like many authors recommend, programming can be present in k-8 educa-
tion using an environment suitable to the age of the students. Besides, as we

https://lightbot.com/

122 G.B. Demo

wrote earlier, we shall propose suitable activities. Alessandro Rabbone with
his pupils developed MicroWorlds activities such as those entitled “Let’s sing”
(“Si canta”) and “The auger” (“La trivella”) during the 2004–2006 project
KidsIdeasActivities (BambiniIdeeProgetti) whose final video can be seen at
http://win.rabbone.it/ irreMMjr/progetti.asp#. The mentioned titles are self
explaining and suggest that the relative activities are quite different from those
one can find in a university or technical school course for programming. We
also saw stories in Alice that some teachers had developed in secondary schools.
The Scratch workshop led at ISSEP 2011 by Kataŕına Mikolajová and Mar-
tina Kabátová [6], and Lawrence Williams’ visit to our department in 2013,
who showed us several stories in Scratch [13], brought materials to our idea of
changing the kind of activities we were proposing in our projects going on using
Scratch.

An introduction to basic programming concepts by writing easy stories using
the Scratch environment was given during our first five meetings of the Scuola2.0
project. A story telling activity allows pupils to express their creativity whether
using digital tools or not. Using development environments such as Scratch this
activity can be done at very different levels of familiarity with the tool, see
again [13] and its references. For this reason Scratch is often proposed in courses
introducing computing.

First we show on the big screen a story whose code, not considered at the
beginning, is a sequence of actions only. Then we look inside the code and disas-
semble it asking attendees to find components of the story we just saw that is,
using the theatre metaphor, they find actors/sprites, backgrounds, the costumes
changed by the actors, the songs that are produced. Attendees start doing some-
thing of their own by changing costumes, dialogues. Then they continue with
reviewing the synchronization among actions and so on according to the princi-
ple of remixing recommended by Resnick and the group of researchers authors of
Scratch [9]. While developing stories, basic programming principles are recalled
from previous CS Unplugged activities or are newly introduced together with
some achievements from the actual use of the tool:

1. command sequences,
2. very simple repeat (repeat n times), typically to move a sprite or changing

backdrops one after the other,
3. synchronization using seconds (because it is the easier to begin with) by

designing a timeline of the story,
4. some interactions, for example to ask the user’s name in order to personalize

the execution of an activity.

The “story telling” pattern is suitable also for schoolchildren who can barely
read and write and is interesting because it can smoothly evolve toward stories
requiring a long time for the design and for planning the several activities to
produce the narration such as the drawing of the sprites and of the backdrops,
deciding the dialogues, and so on.

During the interval between the first and the second part of the Scuola2.0
meetings, some teachers were able to develop CS Unplugged activities with their

http://win.rabbone.it/_irreMMjr/progetti.asp

And Now What Do We Do with Our Schoolchildren? 123

pupils. They recognized patterns of commands used in those activities within
the Scratch scripts and were more confident than the other teachers in reading
the scripts of the first Scratch stories.

3 Long Activities to Be Proposed in Schools

Revising a curriculum trying to maintain a satisfying coexistence among old
and new contents is a difficult task. Those who propose to introduce digital
competencies in education assume a great responsibility on the one hand with
respect to the contents of the other disciplines that are declined to make way
for new contents, on the other hand with respect to time and money resources
that are diverted to the new activities. In choosing the types of activities to be
proposed during our project one of our intents was to conciliate the contents
already present in k-8 education with the digital activities proposed to teachers
and students. The first two activity-frameworks we proposed allow to begin with
very simple activities yet introducing some programming principles and then
continue with gradually increased complexity.

3.1 The “Story Telling” Pattern

As we already said, the “story telling” pattern is interesting because it can
smoothly evolve from short plain narrations, sequential in their digital imple-
mentation, toward long stories involving an entire class as the “Red Riding
Hood” tale produced in Scratch by fourth grade children [4]. This activity had
many educational components equally important as the acquisition of computer
skills. Think of the design components, the planning, the collaborative work,
the definition and organization of contributions, the timing and verification of
the results, the children’s feeling of responsibility for finishing in time the work
assigned to them: all this next to the digital implementation of the story [4].
But here we shall focus on the five meetings whose goal was to make attendees
design and implement a Scratch activity with their schoolchildren while attend-
ing the project. Thus what happened in schools and possible problems could be
discussed and solved with the other teachers and the lecturer.

Obviously, the discussions during the second phase of the project also gave
way to enrich the knowledge and experience on programming acquired during the
first meetings, in particular to solve the problems arising from the inventiveness of
the schoolchildren (beginning with the typical in the field programming problems:
for example those concerning how to delete a figure background to create a new
sprite). The Scuola2.0 meetings had the role of organizing the different activities,
defining new steps, with colleagues’ suggestions, and receiving help with respect
to the problems found while developing such activities in the school.

Some forms of interaction in story telling often lead to the idea of developing
quiz activities. In this way we have a smooth transition from storytelling and
easy types of quiz activities. Which also means a smooth introduction of variables
for storing scores or remembering errors.

124 G.B. Demo

One of the narration activities was developed by a teacher with her second
grade pupils. It concerns animals and environments where they live. Children
decided to have: the house, the forest, the sea and the savanna and drew appropri-
ate backdrops. They also drew some animals for each environment, for example
a red fish for the house, a lion for the savanna. First idea was to have animals
appearing on the screen, each with the proper backdrop, saying something about
its life. But the teacher during our meetings liked better to have an activity to
practice English. Thus she and a second teacher implemented a quiz where, when
an animal appears on the screen, the child sitting in front of the screen enters the
animal’s English name. For this first attempt children drew the backdrops and
the animals. Thus the result is only partially developed with children. But for the
Scuola2.0 project we consider positive that a teacher who knew nothing of pro-
gramming at the beginning of the project, after six/seven meetings introducing
her to computing had the initiative of proposing to her pupils this activity. She
had to organize her schoolchildren deciding with them the four environments, and
then divide pupils in groups, each group working on four animals one for each set-
ting. This teacher’s idea is to ask pupils to modify current year activity letting
pupils dig into the code and producing something of their own at the beginning
of the next year when they will be in their third grade.

Another Scuola2.0 attendee worked with his pupils on a long story about
myths of ancient Greece with different components each developed by a differ-
ent group of pupils. During our meetings we discussed about an easy way of
putting together the components and together we found how. Among problems
to be solved we had the question of global variables, i.e. variables every sprite
can see, whose copies were all maintained when the projects developed by each
group were integrated in a single activity. All these conquests came from working
contemporarily in schools and with colleagues during the Scuola2.0 meetings.

Going toward a quiz activity, even if very simple like the one on animal
names, programming concepts introduced are:

1. selection: for verifying the answers,
2. variables: introduced if we want to count the score,
3. repeat until condition: possibly introduced depending on the type of quiz (in

the case of the animal names, repeat until “the answer specifying the name
of the animal is correct”).

3.2 Inventing Riddles

Retraining courses using Scratch are very well received by teachers because they
appreciate the use of a simple tool through which students can get rewarding
results. Also teachers appreciate they are asked to work on activities fit to their
students and with contents that can be interesting for other disciplines and then
for fellow teachers. Examples of interdisciplinary activities are the programs
“think a number (and I guess it)” in which each group of students invents its
own riddle through an experimental activity on linear equations. Here we refer
to a type of riddle popular in our country played between two students s1 and
s2. An example of this kind of riddle is the following list of requests:

And Now What Do We Do with Our Schoolchildren? 125

1. s1 to s2: - think a number (let’s call it x)
2. s1 to s2: - add 7
3. s1 to s2: - multiply by 3
4. s1 to s2: - subtract twice the number you thought
5. s1 to s2: - add 4
6. s1 to s2: - finally divide by 5
7. s1 to s2: - what number you end up with?
8. s2 to s1 : - I have 9
9. s1 to s2: - thus, you thought 20!

This riddle corresponds to the equation:

(3(x + 7) − 2x + 4)/5 = 9

then 3x + 21 − 2x + 4 = 45 and x = 20.
We can write a Scratch activity where the student s1 is a Scratch sprite.
Let us call a the answer in 8 of student s2 to the question in 7 of student s1.

In such activity x = 5a− 25. With answer 9 at point 8 we have x = 5 · 9 − 25.
But you can also have another type of requests where x is cancelled. All

requests are from student s1 to student s2 as in the following example:

1. think a number (again we call it x)
2. add 7
3. multiply by 2
4. subtract 4
5. subtract twice the number you thought
6. finally divide by 5
7. You got 2! How come I can guess right?

This riddle corresponds to the expression, where variable x disappears:

(2(x + 7) − 4 − 2x)/5

and 10/5 is the final value.
In both cases the corresponding Scratch activities are very simple: each is a

sequence of instructions for conducting the dialogue. The valuable part of the
activity is once again, and particularly in this case, the phase where the students
begin playing the riddle unplugged, are asked to build a riddle of their own which
can be done when they understand that a riddle can be modeled by an equation.
And then they invent other riddles.

4 Questioning

The questioning activity has been suggested by various sources in the pedagogical
literature where questioning techniques are largely discussed [10]. Not least the
fact that a Scratch activity designed as an exercise to introduce the variables
(in this case the “score” variable) in a quiz has been very well received in all

126 G.B. Demo

courses in which it was proposed because considered appealing for schoolchildren.
Discussions with teachers, involved in the Scuola2.0 project and outside, has also
shown that a type of very simple exercise such as a quiz has computing value in
introducing a gradual use of the variables but also offers original ways of learning:
each group of students creates its own quiz where questions are proposed on
the topics of a lesson that most affected the group. These are examples of the
many activities that promote the involvement of teachers in other disciplines and
thus the gradual upgrade of the digital skills of these teachers also: involvement
essential if you want to get to use the digital as a tool for constructively learning
various disciplines.

The questioning activities we propose will have two phases:

Group work: with groups of two or three pupils per group. During this step
each group produces a quiz with 3 or 4 questions on a topic, that can be
a curricular one. We chose to suggest having multiple answers to increase
the work by each pupil in the group. During this phase the members of the
group review the topic and decide which are its representative components
candidate to become matter of queries. Similarly the relevant answers to the
chosen questions are decided to build a multiple-choice quiz. The group-quiz
is finished with images and sounds;

Class work: at school each group shows to the entire class questions and answers
present in its group-quiz. The goal is to produce a class-quiz from group-
quizzes with more questions. Questions and answers are chosen among those
proposed in the group-quizzes, both can result from different formulation of
what contained in group-quizzes to take into account aspects deemed impor-
tant by the children or according to teachers’ suggestions.

The class-quiz can have various uses: for example, can be shared with another
class having the same subject in curriculum. This will assess the pupils’ ability
both to answer questions and to evaluate possibly missing important aspects of
the considered topic.

Positive aspects of this activity are:

– the discussions that are developed on the topic,
– the active learning aspect,
– the possibility to involve all students. In the digital implementation maybe

you can choose to put in the class-quiz at least the figures of a group or of a
student disappointed with respect to questions/answers, for example because
the ones he has proposed have been discarded.

Working to build a quiz stimulates a series of reflections and activities that
involve different learning areas. As in the story telling, the planning phase
requires the choice of a topic and the definition of the objectives, the selection
of materials and the definition of tasks and deadlines, then the organization of a
scrum board. Later and during the development of the activity, critical compar-
isons are necessary and then, a self evaluation test at the end of the activity on
the strengths and critical points of the process and of the result. Figure 1 shows

And Now What Do We Do with Our Schoolchildren? 127

a screenshot of a quiz on neurons (from an activity by Carlotta Craveri, student
of Educational Sciences in our university during the academic year 2014–15).
The figure shows the question “How do neurons communicate?” whose proposed
answers are:

A. Using smoke signals
B. Using WhatsApp
C. By means of the synapses

This example has been shown to the attendees of the Scuola2.0 meetings. In
fact for each activity type, because of the short time available, it was decided to
show and discuss with the teachers a framework, i.e. a very simple yet running
example for each one of the proposed activity, and then let them start working
on such frameworks.

Fig. 1. How do neurons communicate?

5 Conclusions

This is not a contribution toward defining digital competencies needed to future
k-8 teachers. It is a contribution to deciding how in-service teachers can be
trained to gradually gain the competencies for developing with their pupils the
digital activities we need to offer in k-8 education without further delay. Of
course it requires we define, at least partially, what we consider the proper digital
curriculum for k-8 education so that we can go toward the chosen direction.

Here we shortly report what has been the computing training for a group
of k-8 teachers. The paper particularly concerns the second half of the training
meetings where we pushed the teachers to develop with their schoolchildren an
activity lasting for the two last months of the school year (April and May in

128 G.B. Demo

our country because June is to be left for conclusive verification activities). The
teachers were suggested three types of activities aiming to have all attendees
working on a program that lasted for several weeks.

The seventeen primary school teachers attending the Scuola2.0 meetings have
all chosen the story telling activity that is in fact an activity feasible at very
different levels of difficulty: one can start by modifying a given story that, in
our case, is the given reference framework. Instead, teachers in middle schools
judged feasible in their classes all three kinds of activities but, perhaps because
they are all mathematicians, they focused on stories and riddles (the latter also
because more directly related to mathematics) motivating the choices with the
short time available in this end of school year 15/16.

The operating methodology we chose provided the course attendees with a
framework of each of the suggested types of activity, i.e. a working simplified
version of it. According to the participants this method is proving to be very
useful. Also useful the Moodle community where participants could ask for help
with problems and discuss solutions during the two months when the meetings
took place. The community is almost essential after the end of the course. Not
all teachers could attend the last meetings and only few of the attendees could
actually develop almost entirely the chosen activity with their pupils. From the
meetings assessment, the teachers motivated this failure with their short and
busy time when the end of the school year is approaching. As we wrote, digital
activities in primary school are learning environments to be entirely developed
from the design phase without aiming for the final result only. Thus the request
of the teachers to have all the meetings in the very beginning of the school year
could be a way to increase the actual transfer of their experience inside their
schools.

We do not have an assessment of our experience yet, but we have seen teach-
ers curious of implementing something that on the one hand they felt near and
useful for what they were doing every day, on the other hand new and fitting
the direction schools shall take in the future. Also, the teachers considered quite
positively the narrative and the question/answer frameworks as a continuation
of each other. This was perceived as having an activity to develop with pupils
lasting for several sessions and consequently not an occasional exercise that is
one of their frequent complaints. The second half meetings turned out to largely
be a discussion time for solving implementation problems, for reciprocally show-
ing the activities, exchanging ideas and pedagogical comments, acquiring new
abilities from colleagues’ suggestions. The general feeling was that the activities
developed during the meetings helped overcoming the teachers’ fear of inventing
something of their own. The integration of educational content specific to the
class where an activity is proposed is an outcome of the active involvement of
the teachers.

An open question concerns the MOOC with the same contents of the course
here described, that the Municipality recently requested us. Our doubts on its
effectiveness come from considering that the in person meetings gave a funda-
mental contribution to the success of this course.

And Now What Do We Do with Our Schoolchildren? 129

References

1. Ben-Ari, M.M.: In defense of programming. ACM Inroads 7(1), 44–46 (2016).
doi:10.1145/2827858

2. Berry, M.: Computing in the national curriculum. A guide for primary teach-
ers. Computing at School (2013). http://www.computingatschool.org.uk/data/
uploads/CASPrimaryComputing.pdf

3. Cagliari, P., Castagnetti, M., et al.: Loris Malaguzzi and the Schools of Reggio
Emilia. Routledge, Abingdon (2016)

4. Ferrari, F., Rabbone, A., Ruggiero, S.: Experiences of the T4T group in primary
schools. In: Jekovec, M. (ed.) The Proceedings of International Conference on Infor-
matics in Schools: Situation, Evolution and Perspectives - ISSEP 2015. University
of Ljubljana, Faculty of Computer and Information Science, October 2015

5. Gander, W., et al.: Informatics education: Europe cannot afford to miss the
boat. Report of the Joint Informatics Europe & ACM Europe Working Group on
Informatics Education, ACM Europe, April 2013. http://europe.acm.org/iereport/
ACMandIEreport.pdf

6. Kabátová, M., Mikolajová, K.: Fostering creativity through programming - scratch
workshop. In: Bezáková, D., Kalaš, I. (eds.) ISSEP 2011 Proceedings of Selected
Papers. Comenius University, Faculty of Mathematics, Physics and Informatics,
Bratislava, October 2011. http://www.issep.2011.org/files/workshops/w07.pdf

7. Nussbaum, M.C.: Not for Profit: Why Democracy Needs the Humanities. Princeton
University Press, Princeton (2010)

8. OECD: Students, Computers and Learning. OECD Publishing (2015). http://dx.
doi.org/10.1787/9789264239555-en

9. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.:
Scratch: programming for all. Commun. ACM 52(11), 60–67 (2009). doi:10.1145/
1592761.1592779

10. Romeike, R.: Three drivers for creativity in computer science education. In:
Benzie, D., Iding, M. (eds.) Proceedings of the Working Joint IFIP Conference
Informatics, Mathematics, and ICT: a ‘golden triangle’, IMCT 2007, Boston (2007)

11. Schulte, C.: Reflections on the role of programming in primary and secondary com-
puting education. In: Proceedings of the 8th Workshop in Primary and Secondary
Computing Education, WiPSE 2013, pp. 17–24. ACM, New York (2013). http://
doi.acm.org/10.1145/2532748.2532754

12. Shneiderman, B.: Creativity support tools: accelerating discovery and innovation.
Commun. ACM 50, 20–32 (2007)

13. Williams, L., Černochová, M.: Literacy from scratch. In: Proceedings of the 10th
IFIP World Conference on Computers in Education, WCCE 2013, pp. 17–27.
Copernicus University, Torun (2013)

http://dx.doi.org/10.1145/2827858
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf
http://europe.acm.org/iereport/ACMandIEreport.pdf
http://europe.acm.org/iereport/ACMandIEreport.pdf
http://www.issep.2011.org/files/workshops/w07.pdf
http://dx.doi.org/10.1787/9789264239555-en
http://dx.doi.org/10.1787/9789264239555-en
http://dx.doi.org/10.1145/1592761.1592779
http://dx.doi.org/10.1145/1592761.1592779
http://doi.acm.org/10.1145/2532748.2532754
http://doi.acm.org/10.1145/2532748.2532754

Defining and Observing Modeling
and Simulation in Informatics

Nataša Grgurina1(&), Erik Barendsen2, Bert Zwaneveld3,
Klaas van Veen1, and Cor Suhre1

1 Teaching and Teacher Education, University of Groningen,
Groningen, The Netherlands

{n.grgurina,klaas.van.veen,c.j.m.suhre}@rug.nl
2 Radboud University and Open University, Nijmegen, The Netherlands

e.barendsen@cs.ru.nl
3 Open University, Heerlen, The Netherlands

g.zwaneveld@uu.nl

Abstract. Computational Thinking (CT) is gaining a lot of attention in edu-
cation. In this study we focus on the CT aspect modeling and simulation. We
conducted a case study analyzing the projects of 12th grade high school
informatics students in which they made models and ran simulations of phe-
nomena from other disciplines. We constructed an analytic framework based on
literature about modeling and analyzed students’ project documentation,
recordings of student groups at work and during presentations, survey results
and interviews with individual students. We examined how to discern the ele-
ments of our framework in the students’ work. Moreover, we determined which
data sources are suitable for observing students’ learning. Finally, we investi-
gated what difficulties students encounter while working on modeling and
simulation projects. Our findings result in an operational definition of modeling
and simulation, and provide input for future development of both assessment
instruments and instructional strategies.

Keywords: Computational thinking � Modeling and simulation � Informatics �
Secondary education

1 Introduction

Following the increasing availability of computers in schools, several initiatives have
been employed to aid students’ learning in various disciplines through the use of
computer models [2, 23, 24]. Nowack and Caspersen [6] argue why they “believe
understanding and creating models are fundamental skills for all pupils as it can be
characterized as the skill that enable us to analyze and understand phenomena as well
as design and construct artifacts.”Wilensky argues, “Computational modeling has the
potential to give students means of expressing and testing explanations of phenomena
both in the natural and social worlds” [27]. Granger claims: “Modeling is the new
literacy” [9]. This belief is also expressed in the fact that as of 2019, modeling and
simulation (together called Computational Science), will be included in the new Dutch

© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 130–141, 2016.
DOI: 10.1007/978-3-319-46747-4_11

high school informatics curriculum, described by the following high level learning
objectives: “Modeling: The candidate is able to model aspects of a different scientific
discipline in computational terms” and “Simulation: The candidate is able to construct
models and simulations, and use these for the research of phenomena in that other
science field.” Modeling itself will be a part of the compulsory core curriculum,
described as “Modeling: The candidate is able to use context to analyze a relevant
problem, limit this to a manageable problem, translate this into a model, generate and
interpret model results, and test and assess the model. The candidate is able to use
consistent reasoning” [1].

Modeling and simulation can be viewed as aspects of Computational Thinking
(CT) [30] as they involve decomposition of open-ended problems and the construction
and evaluation of models that simulate the nature of these problems in order to be able
to provide solutions to those problems. The present study is part of a larger research
project on CT in Dutch secondary education, investigating pedagogical aspects of CT
and teachers’ pedagogical content knowledge (PCK, [22]) about these aspects. Fol-
lowing Magnusson et al. [17], we distinguish four aspects of content-specific peda-
gogy: (1) goals and objectives, (2) students’ understanding and difficulties,
(3) instructional strategies, and (4) assessment. In the first phase of the project, we
refined the CSTA definition of CT [10], explored teachers’ PCK [11, 12]; and made an
initial exploration of the computational modeling process [13].

Aim of the Study. In this study we focus on CT skills related to modeling and
simulation and we explore highly cognitively complex set of students’ activities related
to modeling, in particular as an aspect of CT rather than as an aspect of e.g. mathe-
matics [16]. We address the following research questions:

1. How can the intended learning outcomes of Computational science (modeling and
simulation) be described in operational terms?

2. What data sources are suitable to monitor students’ learning outcomes when
engaging in modeling activities?

3. What specific challenges do the students experience when engaging in modeling
activities?

The first question addresses Magnusson’s aspect (1). The second contributes to aspect
(4) – we plan to use our findings as input for a later study into a CT assessment
instrument. The third question addresses aspect (2); our findings will help design
teaching materials for modeling and simulation and thus indirectly contribute to (3).

Related Work. Previous work on characterizing modeling is done mainly in the areas
of mathematics and natural sciences; see the following section. Research on making
students’ learning process and outcomes visible has focused mostly on CT aspects such
as algorithmic thinking or programming. The employed assessment instruments range
from tests with closed questions [8], tests with open questions [18, 26], surveys [26],
recordings or observations of students at work [18], examination of programming
projects [4, 18, 26] to interviews with students [4, 14] and teachers [18]. In particular,
Brennan and Resnick [4] “are interested in the ways that design-based learning
activities […] support the development of computational thinking in young people” and
explore three approaches to assessment of the development of CT of the children

Defining and Observing Modeling and Simulation in Informatics 131

engaged in such activities. They discuss strengths and limitations of each of these
approaches extensively and subsequently advocate a comprehensive approach to
assessment that utilizes several data sources.

Context of the Study. Our exploratory case study was carried out during a project-
based lesson series within a regular informatics course in the 12th grade of high school
where students studied modeling and simulations. They used NetLogo to program
models of phenomena from other disciplines and to explore them through running
simulations. During a six-weeks period they studied Modeling and Simulations with
NetLogo. The first three weeks were dedicated to studying the textbook material.
During the rest of the period, the fourteen students comprising this class worked in
seven groups on a practical assignment where they investigated a phenomenon of their
choosing by making a model in NetLogo and exploring it through running simulations.
When necessary, students were assisted in formulating their hypotheses or research
questions. The entire process was strictly planned and contained milestones when the
students turned in the required project documentation. At the end of the period, each
group presented its model to the rest of the class and the students were encouraged to
discuss their models, results, design choices, programming issues and other relevant
questions. After the presentations, they turned in the final part of the project docu-
mentation where they described the feedback they got and their reaction to it. A few
days later, twelve students (six groups) who finished their projects, turned in their final
reports and NetLogo programs.

2 Modeling and Simulation

There is extensive literature on modeling in science and especially in mathematics. We
take the latter as starting point and discuss simulation modeling as a special case of
modeling.

2.1 Modeling

Van Overveld et al. [25] distinguishes two purposes of modeling: scientific research
and technological design, and lists a number of goals that can be obtained through
modeling: explanation, prediction, compression, abstraction, unification, analysis,
verification, communication, exploration, decision, optimization, specification, steering
and control and finally: training. The mathematical modeling process can be viewed as
a problem solving activity (cf. [20]). We adopt the operationalization by Van Overveld
et al. [25]:

1. Definition stage: the problem is stated and researched in the context domain (this is
also considered a core aspect of CT [30]). The purpose of the model is formulated
and a study is planned.

2. Conceptualization stage: Data are collected and a conceptual model is constructed
and validated. In the process of abstraction it is decided what details to highlight
and what details to ignore.

132 N. Grgurina et al.

3. Formalization stage: the conceptual model is transformed into a formal model.
4. Execution stage: the model is being used for its purpose: this means solving the

mathematical problem.
5. Conclusion stage: the results of the execution stage are analyzed and translated

back into the problem domain, involving the presentation and interpretation of the
results.

In addition, Perrenet and Zwaneveld [19] explicitly distinguish between the
non-mathematical world containing the definition stage, conceptualization stage and
conclusion stage on the one hand, and the mathematical world containing the formal-
ization and execution stages on the other hand. Following each of these stages, reflection
needs to take place: to check if any revisions are necessary by repeating that stage, to
validate and verify the model, to assess the plausibility of the result and answer the
initial purpose, to communicate the results and to learn from what one has done. After
the completion of the modeling process, a reflection takes place and the whole process
is possibly repeated. Hence, modeling can be seen as a cyclic process [19, 25].

2.2 Simulation Modeling

Simulation modeling can be seen as a special case of modeling in which the model
consists of a computer program and therefore is executable. In comparison to the
mathematical modeling process, the simulation modeling process shows a computa-
tional – rather than mathematical – interpretation of the conceptualization, formaliza-
tion and execution stages:

1. Conceptualization stage: Data are collected and a conceptual model is constructed
and validated. In the process of abstraction it is decided what details to highlight
and what details to ignore. Problem is formulated in a way that enables us to use a
computer and other tools to help solve them [5].

2. Formalization stage: a computer program is constructed, i.e. requirements and
specifications are stated and the system is implemented and tested [7]. This
includes making pilot runs, verifying the program and checking validity of the
simulation model. If necessary the program is adjusted [15]. Thus, the formalization
stage is a cyclic process in itself.

3. Execution stage: the model is being used for its purpose: designing and running
experiments [15].

Simulation modeling encompasses three methods: (1) System dynamics, associated
with high level of abstraction where the individual objects are aggregated. The models
can be described in terms of differential equations that are often non-trivial to solve.
(2) Discrete event modeling, where the system modeled is considered to be a process,
“i.e. a sequence of operations being performed across entities”. The level of
abstraction is lower. (3) Agent based modeling (ABM), which is made possible with
recent growth of availability of CPU power and memory, does not assume any par-
ticular abstraction level. Agents have their properties and behavior and one can start
building a model by identifying agents and describing their behavior even without

Defining and Observing Modeling and Simulation in Informatics 133

knowing how a system behaves as a whole. ABM makes it possible to model systems
that are difficult to capture with older modeling approaches [3]. In our view, the last
two characteristics of the ABM make it a suitable modeling method for our students
who often lack deep understanding of the phenomena they model and make models
specifically to deepen their understanding. To conclude, we consider conceptual rep-
resentation which could be realized through the employment of ABM methods and
software, in which “you give computational rules to individual agents and then
observe, explore analyze the resultant aggregate patterns” [27] suitable for use in
secondary informatics class “because the individual-level behavior of agents is rela-
tively simple, [and] ABMs feature relatively simple computer programs that control the
behaviors of their computational agents” [28].

In simulation modeling, repeating the conceptualization stage or going back and
forth between the conceptualization stage and formalization stage are considered to be
an integral part of the modeling process [15]. In the specific case of ABM, the
boundaries between all modeling stages are blurred and it is considered a good mod-
eling practice to develop a model in minute increments, cycling continuously through
all modeling stages [29].

3 Method

The data were collected by the first author during the project based lesson series. In
view of existing studies involving algorithmic thinking and programming (see the
introduction), we decided to use a combination of several data sources as a promising
approach for our exploration of the students’ activities and learning difficulties in their
projects.

During their work in the class and the final presentations, screen and voice recordings
were made of students’ groups. (No recordings were made of students working elsewhere,
such as at home). Except for a few corrupted recordings, they were all transcribed ver-
batim. The project documentation of each group was collected. After receiving their
grades, twelve students filled in an online survey individually where they were asked
about how they approached the work on this project, difficulties they encountered, what
they have learned, what they liked or disliked, and what suggestions they had for the
improvement of the assignment. Students were also invited to be interviewed. Five
semi-structured interviews were conducted with individual students. The students were
requested to describe their projects and they were asked if they could design a new
NetLogo model on the fly (i.e., draw a sketch of the interface on paper and describe the
model in terms of agents and interactions). Finally, they were asked what they learned
during their work on the projects. The interviews were recorded and transcribed verbatim.

Using atlas.ti CAQDAS software we performed a qualitative analysis of the
recordings, project documentation, survey results, and interviews, with coding cate-
gories based on the elements of our operational definition (i.e., boldface items in
Sect. 2): purpose, research, abstraction, formulation, requirements, specification,
implementation, verification, validation, experiment, analysis, and finally, reflection.
After coding, we ascertained the visibility of the modeling elements in each of the data

134 N. Grgurina et al.

sources and examined the students’ activities more in-depth, looking specifically for
indications of students’ difficulties connected to each of the elements.

4 Results

There were seven project teams. Five teams consisted of two students; one of three
students, and one student opted to work by himself. Six of seven projects were suc-
cessful; Team 5 did not finish theirs and did not turn in all the required project
documentation. We first present an overview of visible occurrences of the elements of
our modeling operationalization, organized by data source and student (team): see
Table 1. Some elements were combined – see the descriptions below.

We now summarize the findings of our more in-depth analysis, organized by the
elements of our operational description. We state our findings in general terms and
illustrate them with characteristic text segments taken from the data.

Purpose. In the project documentation all teams clearly stated the purpose of their
models. However, in the recordings we saw students tinkering with NetLogo and
looking at existing models before deciding what phenomenon they wanted to model
and explore. In answering the survey question whether it was difficult to decide what
phenomenon to model and explore, four students answered affirmative and told us they
had difficulties figuring out what could or could not be modeled. For S4a, who explored
the behavior of partygoers together with S4b, the most important lesson learned during
his work on this project was that it was important to have a clear idea of the purpose of
the model before engaging in the modeling process – a thought shared by three other
students in the survey.

Research. In the recordings we saw three students from two groups searching the
Internet to learn about the phenomena they modeled. Team 3 reported in the docu-
mentation of their project about the possibilities to control the spread of the Ebola
virus: “Virus: does not spread through the air but through contact with an Ebola
patient (sex, blood), slaughtering and eating of a sick animal, non-sterile needles. […]
incubation about 21 days, 9 out of 10 people die”, without reporting the source. In the
survey, S3b mentioned consulting her sister who studied medicine. Team 6, exploring
the effect of ambient warmth and the presence of food on life of bacteria, did not report
any research in their project documentation. Others did not visibly engage in research
but developed their models based on what they already knew about the phenomena
they modeled (e.g. Team 1 who explored chemical reactions – in the survey S1a wrote
they learned that in chemistry lessons) or their presumptions (e.g. Team 7, who
explored whether mousetraps were more effective than cats in catching mice, or Team
5, who explored the influence of weather on ice cream sales).

Abstraction. All students engaged in abstracting: choosing a level of abstraction,
based on the decision they made with respect to relevancy of particular features and
deciding what to include into their models and what to leave out.

In the recording we observed several students struggling to determine such a level of
abstraction. For example, Team 1 - who initially neglected teacher’s instruction to

Defining and Observing Modeling and Simulation in Informatics 135

study the textbook first - had difficulties understanding the idea behind ABM and got
‘stuck’ in the notion of an aggregate state, e.g. thinking about pH as a contributing
factor in a chemical reaction rather than the result of it. During the interview, S7a told
us that he wanted his mice to reproduce but did not include this feature because he did

Table 1. Frequencies of simulation modeling elements per data source per team or student. For
example, Team 3 consists of students S3a and S3b.

 P

ur
po

se

 R
es

ea
rc

h

A
bs

tr
ac

ti
on

 F
or

m
ul

at
in

g

 R
eq

ui
re

m
en

ts

 a
nd

 s
pe

ci
fi

ca
ti

on

 I
m

pl
em

en
ta

ti
on

 V
er

if
ic

at
io

n
an

d

 V
al

id
at

io
n

 E
xp

er
im

en
t

A
na

ly
si

s

 R
ef

le
ct

io
n

P
ro

je
ct

do

cu
m

en
ta

ti
on

 Team 1

Team 2

Team 3

Team 4

Team 5
Team 6

Team 7

Su
rv

ey
s

S1a
S1b
S1c
S2
S3a
S3b
S4a
S4b
S5a
S6a
S7a
S7b

In
te

rv
ie

w
s S1a

S2
S3a
S3b
S7a

R
ec

or
di

ng
s

Team 1
Team 2
Team 3
Team 4
Team 5
Team 6
Team 7

 Presentations

136 N. Grgurina et al.

not know how to implement males and females. It did not occur to him that gender of
the mice was not relevant in his model. Finally, as required, all students who finished
the project turned in wish lists with features or aspects that were not implemented yet
but should be considered for the next version of the model, thus demonstrating they
were able to decide what to include or leave out.

Formulation. The assignment required a description of the behavior of the model in a
natural language, and all the students who finished their projects did that. However,
several students needed help to formulate their problems appropriately: e.g. only after
choosing the right level of abstraction did Team 1 manage to formulate their problem
appropriately and in the recordings we heard S1a say, “Two of these things have to
collide with each other and then something needs to happen”.

Requirements and Specification. In the recordings it turned out to be hard to observe
a distinction between requirements and specifications – see the results on Testing for a
comprehensive example.

A description of requirements and specifications was a part of project documentation
and all the students who finished their projects provided it. Team 7 wrote, “The
mousetraps need to be placed at random locations since we don’t know what the
perfect locations would be. If a mouse contacts a mousetrap, then the mouse needs to
die/disappear.” In their project documentation, Team 1 stated requirements: “In our
program, two particles react to form two other particles. The probability that two
particles react can be specified, as well as the reaction speed of the particles.” Then
they wrote specifications extensively: “If two initial turtles (red and yellow) meet, then
the current catalyst value (the left slider) determines whether they react.” Team 3
wrote, “In our model there is only one [breed of] turtles and it stands for people. These
turtles can have various properties, such as being ill or healthy. They can be influenced
by external factors such as medicine and their life span.”

Implementation. While all students managed to implement something, some of them
experienced difficulties. In the recordings we heard S1a say, “I know what I want to do,
but I don’t know how to code it. I don’t think it’s all that difficult, but…” During the
interview, S7a told us he refrained from including mouse reproduction because he did
not know how to design this feature and program it. When constructing their programs,
only one team worked top-down: the others rather engaged in bottom-up incremental
development constantly adding new features to their models.

Verification and Validation. The recordings revealed a complex picture in which the
distinction between validation and verification was not always clear. Team 4’s approach
is representative of students’ strategy: they constructed their model (program) by cycling
among stating requirements and specifications, implementing and testing, in minute
steps: “We have to do that with time, man, that they can only drink one beer in ten
seconds or so, otherwise they drink too much!” When testing, it was not clear whether
they were validating their model or verifying their code: often they would run their
program, see remarkable behavior and subsequently change the code. S4b: “All dead.”
S4a: “It begins to deteriorate now [in the simulation, the beer is gone and people leave

Defining and Observing Modeling and Simulation in Informatics 137

the party quickly]” S4b: “But how could they all get the same amount of beer?” S4a:
“That’s because of that piece of code.” S4b: “Really? Can’t that be changed? How did
they do it with the sheep? [Referring to an example from NetLogo’s models library]”
Subsequently they would change their code and continue their work in a similar fashion.
Team 6 worked similarly. It was not clear whether S6b was validating or experimenting:
“It works now but it is not balanced, so to speak.” S6a: “Yeah.” S6b concluded: “Yeah.
That remains to be done” and went on to change the code. Later on they tried again. S6b:
“And if we make this one a bit lower, say seven or so, then they die, that is really abrupt,
like, either they live or so, or all dead.”

In the project documentation, all of the students reported that their models behaved
as expected (validation). Several students described validating their models and
adjusting when necessary. To this end, Team 1 wrote: “to prevent particles from
reacting with each other immediately following a reaction, we built in a reaction
pause. […] That way you prevent particles from being stuck in a constant forth-and-
back reaction.”

Experiment. Team 7 was the only team who documented systematically performed
experiments with their model: they reported the initial parameter values (e.g. ten cats
and nine mice) and included the resulting data plots in their project documentation. In
the recordings we saw other students engage in experimenting to various degrees, but
most failed to mention this in the project documentation.

Analysis. Not all the students provided an analysis of the results of the experiments,
but in the project documentation, they all reported answers to the purpose of their
models. Team 7’s analysis revealed, “The mousetraps were not always effective. Some
mousetraps go off but the mouse manages to escape.” Finally, they concluded that
mousetraps were more effective than cats in catching mice. In the recordings we saw
Team 3 analyze their data, without reporting it in the project documentation, and their
conclusion was, “We expected that the new medicine would decrease the spreading of
Ebola. It turned out that the medicine worked rather quickly, but that the rate of
infectiousness was of influence as well.”

Reflection. As required, all the students reflected on their models in the project doc-
umentation. Team 7 wrote: “Not everything in our model corresponds with the reality.
But it is nice to experiment with it. You can make your model as large and complex as
you wish.” In the survey the students were asked what they learned. S3b wrote: “It
[modeling] is a good means to predict/research hypotheses. A good aid for research.
I take chemical reactions as an example. You can make it and thus see (visualize) what
happens,” a thought reflected by S1a too. S4a learned that it was important to have a
clear idea of the purpose of the model before engaging in the modeling process and that
models and simulations never completely correspond to the reality. Contrary to S4a’s
reply, during the interview S1a expressed his astonishment about how easy it was to
make a model that “actually reasonably corresponded” to what was modeled. He even
went on to show it to his chemistry teacher.

138 N. Grgurina et al.

5 Conclusion and Discussion

As to the first research question – How can the intended learning outcomes of Com-
putational science (modeling and simulation) be described in operational terms – we
have obtained an operational description based on literature on modeling and simulation.
The elements of the description turned out to be suitable to classify simulation modeling
activities of the students in our study. However, some of these had to be grouped together
since the separate elements could not be distinguished. The resulting operationalization
contains the elements purpose, research, abstraction, formulation, requirements/
specification, implementation, verification/validation, experiment, analysis, reflection.
This ‘blurring’ of activities is also described by Wilensky and Rand [29].

In answering our second research question – What data sources are suitable to
monitor students’ learning outcomes when engaging in modeling activities – we found
that every source enabled us to observe some aspects of the modeling process. The
interviews provided the opportunity to observe all the aspect of the modeling process,
closely followed by recordings of students at work. In the project documentation, the
description of the model and the reflection are well represented and experimenting and
analysis not so: contrary to the presentations, where exactly the opposite happens. The
surveys, in their present form, did not provide much insight into the modeling stages
the students engage in.

We are planning to use our results to develop an assessment instrument. In order for
such an instrument to be feasible for classroom usage, a combination of project doc-
umentation and class presentation are promising data sources that enabled us to capture
all aspects of students’ work. Our findings suggest that the instructions for docu-
mentation and presentation could be sharpened to improve visibility of (systematic)
experimentation and data analysis within the model.

Finally, in answering our third research question – What specific challenges do the
students experience when engaging in modeling activities – we identified some diffi-
culties. Many students could not decide what to model exactly, and found it hard to
decide on the level of abstraction and formulate the problem suitably for modeling
through ABM. While all students managed to program something, not all of them were
able to program all they wanted because either they could not decide on the relevance of
a feature, or they did not know enough NetLogo to code it. During testing it appeared to
be difficult to attribute unexpected behavior to a fundamental modeling mistake, a pro-
gramming error, or unexpected (i.e. emergent) behavior that was characteristic for the
phenomenon under scrutiny. Students tend to rely on an incremental trial-and-error
strategy while implementing their simulation model. Only a few conducted systematic
and well documented experiments. Most of these experiments, together with the analysis
of the results, were intermingled with the construction of the models.

This incremental development is consistent with description of the modeling
practice, for example by Wilensky and Rand [29]. An ad hoc incremental development
(trial-and-error strategy) is typical for novices [21].

General Remarks. Although this was a small study with a limited number of par-
ticipants, we learned a lot about students’ understanding of modeling and simulation.

Defining and Observing Modeling and Simulation in Informatics 139

Also, our findings indirectly informed us about the quality of the instruction, which
leaves room for improvement.

Several students told us that through work on this project, they learned about the
phenomena they modeled, which is in line with earlier findings [2, 24]. We often heard
them laugh during their work and we observed that many students enjoyed working on
this project. We saw that these informatics students were able to utilize their
informatics/CT knowledge and skills to advance their learning in other disciplines.

In conclusion, we believe that the results of this research will contribute to the
development of (1) suitable learning activities both within the informatics courses as
elsewhere and (2) knowledge about teaching, monitoring and assessment of the CT
aspect modeling and simulation. They will contribute to the development of the
informatics curriculum in secondary education in the Netherlands, informatics teacher
training and informatics education in general.

Acknowledgments. This work is supported by The Netherlands Organisation for Scientific
Research grant nr. 023.002.138.

References

1. Barendsen, E., Tolboom, J.: Advisory Report (Intended) Curriculum for Informatics for
Upper Secondary Education. SLO, Enschede (2016)

2. Blikstein, P., Wilensky, U.: An atom is known by the company it keeps: content,
representation and pedagogy within the epistemic revolution of the complexity sciences
(2009)

3. Borshchev, A.: The Big Book of Simulation Modeling: Multimethod Modeling with
AnyLogic 6. AnyLogic North America, Chicago (2013)

4. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development of
computational thinking (2012)

5. CSTA Computational Thinking Task Force. Operational Definition of Computational
Thinking for K-12 Education. http://csta.acm.org/Curriculum/sub/CurrFiles/
CompThinkingFlyer.pdf. Accessed 16 Oct 2013

6. Caspersen, M.E., Nowack, P.: Model-Based Thinking & Practice
7. Comer, D.E., Gries, D., Mulder, M.C., Allen Tucker, A., Turner, J., Young, P.R.,

Denning, P.J.: Computing as a discipline. Commun. ACM 32(1), 9–23 (1989)
8. Gouws, L., Bradshaw, K., Wentworth, P.: First year student performance in a test for

computational thinking. ACM, East London, South Africa (2013)
9. Granger, C.: Coding is not the new literacy. http://www.chris-granger.com/2015/01/26/

coding-is-not-the-new-literacy/. Accessed 09 Oct 2015
10. Grgurina, N.: Computational thinking in Dutch secondary education (2013)
11. Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., Stoker, I.: Computational

thinking skills in Dutch secondary education: exploring pedagogical content knowledge.
ACM (2014)

12. Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., Stoker, I.: Computational
thinking skills in Dutch secondary education: exploring teacher’s perspective. ACM (2014)

13. Grgurina, N., Barendsen, E., van Veen, K., Suhre, C., Zwaneveld, B.: Exploring students’
computational thinking skills in modeling and simulation projects: a pilot study. ACM
(2015)

140 N. Grgurina et al.

http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/
http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/

14. Grover, S.: Robotics and engineering for middle and high school students to develop
computational thinking (2011)

15. Law, A.M.: Simulation Modeling and Analysis, 5th edn. McGraw-Hill, New York (2015)
16. Maaß, K.: What are modelling competencies? ZDM Math. Educ. 38(2), 113–142 (2006)
17. Magnusson, S., Krajcik, J., Borko, H.: Nature, sources, and development of pedagogical

content knowledge for science teaching. In: Gess-Newsome, J., Lederman, N.G. (eds.)
Examining Pedagogical Content Knowledge, pp. 95–132. Springer, Netherlands (1999)

18. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning computer science concepts with
scratch. Comput. Sci. Educ. 23(3), 239–264 (2013)

19. Perrenet, J., Zwaneveld, B.: The many faces of the mathematical modeling cycle. J. Math.
Model. Appl. 1(6), 3–21 (2012)

20. Polya, G.: How to Solve It: A New Aspect of Mathematical Method. Princeton University
Press, Princeton (2008)

21. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a review and
discussion. Comput. Sci. Educ. 13(2), 137–172 (2003)

22. Shulman, L.S.: Those who understand: knowledge growth in teaching. Educ. Res. 15(2), 4–
14 (1986)

23. Spodniakova Pfefferova, M.: Computer simulations and their influence on students’
understanding of oscillatory motion. Inform. Educ. 14(2), 279–289 (2015)

24. Taub, R., Armoni, M., Ben-Ari, M.M.: Abstraction as a bridging concept between computer
science and physics. ACM (2014)

25. Van Overveld, K., Borghuis, T., van Berkum, E.: From problems to numbers and back. In:
Lecture Notes to ‘A Discipline-Neutral Introduction to Mathematical Modelling’. Eindhoven
University of Technology, Eindhoven (2015)

26. Werner, L., Denner, J., Campe, S., Kawamoto, D.C.: The fairy performance assessment:
measuring computational thinking in middle school. ACM, Raleigh, North Carolina, USA
(2012)

27. Wilensky, U.: Computational thinking through modeling and simulation. White paper
Presented at the Summit on Future Directions in Computer Education, Orlando, FL (2014).
http://www.stanford.edu/*coopers/2013Summit/WilenskyUriNorthwesternREV.pdf

28. Wilensky, U., Brady, C.E., Horn, M.S.: Fostering computational literacy in science
classrooms. Commun. ACM 57(8), 24–28 (2014)

29. Wilensky, U., Rand, W.: An Introduction to Agent-Based Modeling: Modeling Natural,
Social, and Engineered Complex Systems with NetLogo. MIT Press, Cambridge (2015)

30. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

Defining and Observing Modeling and Simulation in Informatics 141

http://www.stanford.edu/%7ecoopers/2013Summit/WilenskyUriNorthwesternREV.pdf

K-12 Computer Science Education
Across the U.S.

Hai Hong, Jennifer Wang(&), and Sepehr Hejazi Moghadam

1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
jennifertwang@google.com

Abstract. Our multi-year national research study examines knowledge and
perceptions of computer science (CS), disparities in access, and barriers to
offering CS in the United States. The first year of the study surveyed 1,673
students, 1,685 parents, 1,013 teachers, 9,693 principals, and 1,865 superin-
tendents, and the second year surveyed 1,672 students, 1,677 parents, 1,008
teachers, 9,244 principals, and 2,227 superintendents. We found that while large
majorities of respondents from all groups continue to hold positive perceptions
of computer science work as fun, exciting, and socially impactful, perceptions of
who can do CS remained narrow. Despite support from large majorities in all
groups for having CS in schools, few teachers or administrators strongly agree
that CS is a top priority in their school or district, and principals report mixed
support for CS from key stakeholders. Few principals and superintendents
describe demand for CS from students and parents as high, while few parents
and teachers report having specifically expressed support for CS education to
school officials. Our paper also uncovers overall opportunities to learn CS in-
and out-of-school. We see an increase in the percent of schools teaching com-
puter programming/coding. Even if opportunities exist, students and parents
may not know about them; just over half of students and teachers and 43 % of
parents are aware of CS learning opportunities in the community, with slightly
higher percentages of students and parents aware of online opportunities.
Barriers to offering CS in schools remain largely unchanged from year one of
the study, with principals continuing to cite a lack of teachers with the necessary
skills and a prioritization of courses related to testing requirements as reasons
why CS is not offered in their schools. To overcome such barriers, we discuss a
potential opportunity for teachers to incorporate CS into existing school
subjects.

Keywords: K-12 � Pre-university � Girls � Gender � Underrepresented � Black �
Hispanic � School � Student � Parent � Teacher � Principal � Superintendent �
Technology � Computational thinking

1 Introduction

Technical advancements and the expansion of professions in which computer science
(CS) is relevant make it more important than ever for all students to have opportunities
to learn CS. Traditionally, CS is not part of academic required subjects nor is it
available in all U.S. K-12 schools [1]. With growing efforts and support for CS

© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 142–154, 2016.
DOI: 10.1007/978-3-319-46747-4_12

education, including districts, cities, and even states planning to implement CS across
K-12 schools as well as a federal initiative announced in early 2016 called Computer
Science for All, we conducted comprehensive U.S. research on CS at the K-12 level to
evaluate the progression. We sought to understand the landscape and perceptions of CS
for students across the U.S. in order to inform these efforts and to advance CS edu-
cation at the K-12 level.

We focus on the landscape of access because positive correlations between com-
puter use and attitudes towards computing have been well-documented [1, 2]. In fact,
from the 1980s–90s, U.S. policies widely implemented technology in schools in an
attempt to equalize educational opportunity [1, 3]. However, little was done to ensure
these technologies were used effectively across demographics, even within schools.
Lack of emphasis on advanced computing excluded CS advancement for those without
the opportunity to learn CS otherwise. Further, home computer use was much lower for
Blacks and Hispanics [4], while access was lower and later for girls [5]. We analyze a
national sample to provide updates on which students have access and exposure to tech
and CS, decades after the policies.

One major challenge in CS education is the lack of diversity. Specifically in the
U.S., the lack of diversity includes the underrepresentation of women, Blacks, and
Hispanics. At the high school level, Advanced Placement (AP) CS A participation is
low overall, but drastically lower for Black and Hispanic students, comprising only
3.9 % and 8.8 % of test takers in 2014, respectively. At the university level, only
11.4 % of CS degrees were awarded to Blacks and 8.5 % awarded to Hispanics in 2012
[6]. And with the release of diversity data by top technology companies, the lack of
diversity is sounding the alarm for action.

Perceptions, encouragement, and exposure play important roles in the lack of
participation and interest [7]. Incorrect or lack of perceptions as well as stereotypes
may discourage students from studying CS [8, 9]. Similarly, self-perceptions in one’s
own ability has been found to be correlated with interest and participation in STEM and
CS [10–12].

External influences involve encouragement from adults as well as peers and
increase the likelihood of pursuing and persisting in STEM and CS [10, 13, 14].
Adults, including teachers, can powerfully influence students [1]. Teachers’ low
expectations have negatively affected students’ short- and long-term performance [15,
16]. Traditional roles and the “geek,” male, and White stereotype may exclude many
from feeling a belonging in CS [17] while influencers may disproportionately
encourage certain types.

The lack of CS education exposure to students is possibly a large reason for the lack
of knowledge and encouragement in the field [8]. Therefore, beyond perceptions and
encouragement, we wanted to dig deeply to understand the landscape of CS access for
students in the United States and investigate the interrelated factors behind the low
numbers pursuing CS.

This paper details the first two years of a three-year study on the landscape of CS
education for K-12 students in the U.S., surveying students, parents, teachers, princi-
pals, and superintendents. The goal of the study is to understand

K-12 Computer Science Education Across the U.S. 143

• knowledge and perceptions of CS
• disparities in access, and
• barriers to offering CS.

2 Methodology

This study details results from the first two years of implementation, surveying 1,673
students, 1,685 parents, 1,013 teachers, 9,693 principals, and 1,865 superintendents in
2014 and 1,672 students, 1,677 parents, 1,008 teachers, 9,244 principals, and 2,227
superintendents in 2015–16, representative across the United States. Samples from the
two years are not necessarily the same, though because individuals were polled from
the same panels, there may have been overlap.

Telephone surveys were conducted with students, parents, and teachers currently
living in all 50 states and the District of Columbia using a combination of two sample
sources: the Gallup Panel and the Gallup Daily tracking survey. The Gallup Panel is a
proprietary, probability-based panel of U.S. adults selected using random-digit-dial
(RDD) and address-based sampling methods. The Gallup Panel is not an opt-in panel.
The Gallup Daily tracking survey sample includes national adults with a minimum
quota of 50 % cellphone respondents and 50 % landline respondents, with additional
minimum quotas by time zone within region. Landline and cellphone numbers are
selected using RDD methods. Landline respondents are chosen at random within each
household based on which member had the most recent birthday. Eligible Gallup Daily
tracking respondents who previously agreed to future contact were contacted to par-
ticipate in this study.

Student and parent samples included targeted, detailed data on the underrepresented
(Blacks and Hispanics, including Spanish-speaking only). Students were in grades 7–
12 (around age 12–18) and parents had a child in grades 7–12. Teachers taught 1st–
12th grade (around age 6–18), with approximately 21 % teaching or have taught
computer science. The population for principals was sampled from a list of 99 % of U.
S. public schools and approximately 30 % of U.S. private schools. The population for
superintendents was from a panel including more than 20 % of all U.S. K-12 school
district superintendents.

Student and parent samples were weighted to correct for unequal selection prob-
ability and nonresponse. Student data were weighted to match national demographics
of age, gender, race, ethnicity and region. Parent data were weighted to match national
demographics of age, gender, education, race, ethnicity and region. Demographic
weighting targets were based on the most recent Current Population Survey. Teacher
samples were weighted to correct for unequal selection probability and nonresponse.
The data were weighted to match demographics of age, gender, education, race, eth-
nicity and region. Demographic weighting targets were based on the Gallup daily
tracking information. Principal and superintendent samples were weighted to match
national demographics of school ZIP code, school enrollment size, and census region.

Surveys for all five groups covered topics on perceptions of CS, interest in and desire
for CS, in- and out-of-school opportunities for CS, participation in CS, and obstacles to
providing and accessing CS opportunities. Survey items were closed-ended, with
agreement for yes/no questions and Likert scales for agreement with statements

144 H. Hong et al.

(1–3 Likert for students and parents and 1–5 Likert for teachers, principals, and super-
intendents). Surveys were not completely the same from the first year to second year, as
new questions were introduced based on findings from the first year. Many questions
were kept in order to track trends over the entire research study. The appendix includes
sample questions.

The surveys for students, parents, and teachers each lasted about 10 min over the
phone, with 30–40 questions. Principals and superintendents were emailed online
surveys. Principal surveys had approximately 30 questions. Superintendents were
surveyed as part of another regular online survey, with 10 closed-ended questions for
this study.

After data were collected, a rigorous quality assurance process was used to clean
the data. The data were then coded and reviewed by response. Indices of related
variables were created and analyzed using regression to understand trends across and
within the surveyed populations.

3 Findings

3.1 Knowledge and Perceptions

From the first-year survey, we found that most respondents do not have a clear
understanding of what computer science is, and responses were varied. The misun-
derstanding was that CS includes creating documents and presentations (78 % of
students, 64 % of parents, 75 % of teachers, and 63 % of principals said this) as well as
searching the Internet (57 % of students, 49 % of parents, 64 % of teachers, 54 % of
principals said this). In particular, Black or Hispanic students are somewhat less
knowledgeable about computer science. Female students, parents, and teachers were
also less knowledgeable about computer science. This confusion with basic computer
literacy is important to distinguish, particularly for educators and parents who may
believe they are providing CS opportunities.

However, after this initial question gauging understanding of CS, respondents were
presented with a definition of CS (see Appendix). So once they understood CS, we see
that perceptions of computer science are very positive and high across all populations.
Most agree that people who do CS make things that help improve people’s lives (93 %
of students and parents, 86 % of teachers, 82 % of principals, and 76 % of superin-
tendents agree) and that people who do CS work on fun and exciting projects (with
91 % of students and 94 % of parents agreeing in the first year, increasing to 94 % of
both students and parents in the second year; and 82 % of teachers and 78 % of
principals agree). Interestingly, we see that students and parents are most likely to have
positive perceptions of computer science careers and work, whereas educators are less
likely to have positive perceptions, with increasing authority (and distance from stu-
dents) correlating with lesser positive perceptions.

Further, we see that all populations have high utility value [18] of computer science
careers. Over 96 % of parents and students agree that CS can be used in a lot of
different types of jobs, and 81–89 % of teachers, principals, and superintendents agree.
And, most students (68 %) and parents (79 %) agreed that computer scientists have

K-12 Computer Science Education Across the U.S. 145

good-paying jobs. Over 86 % of students and parents say that the student will
“somewhat likely” or “very likely” have a job where they need to know CS.

In addition, the majority of all groups support CS in schools and believe it is
important. In the first year 90 % of parents said that they thought offering CS is a good
use of school resources, which increased to 93 % in the second year. When comparing
with required courses like math, science, history, and English, over 84 % of parents,
71 % of teachers, and two-thirds of principals and superintendents thought CS was
more or just as important. Roughly 9 in 10 of the adults say the CS is just as or more
important than elective courses like art, music, and foreign languages. Black or His-
panic parents are more likely than White parents to say that CS is even more important
than the required or elective courses. Over half of teachers, principals, and superin-
tendents think that most students should be required to take CS. With such high
support, about 7 in 10 educators agree that it is a good idea to incorporate CS into other
subjects at school.

Yet, while perceptions and value are very positive across populations, images of who
does CS are very narrow. Half of students and parents agreed that you need to be very
smart to do CS. Teachers (38 %) were less likely to agree and principals (19 %) and
superintendents (17 %) were the least likely to agree with the statement. In terms of types
of students, teachers (62 %) and principals (56 %) agreed that students good at math and
science would be more successful in computer science. But only 42 % of students rated
themselves as “very skilled” in math and 40 % as “very skilled” in science. Further,
56 % of students said they were “very confident” they could learn CS. Specifically, we
saw that Hispanic students are less likely than White or Black students to say they are
“very skilled” at science. Hispanic students are also less likely to say they are very
confident they could learn computer science if they wanted to. With lower confidence,
Hispanic students may be less likely to be encouraged or interested in fields like CS.

In the media, not surprisingly, both students and parents perceive those who do
computer science as mostly White, male, and “wearing glasses.” We also saw that of the
students who said they saw people doing CS in the media, only 16 % said that they often
see people who are like them. By gender, we see a stark contrast: 21 % of boys said they
“often” see people like them while only 11 % of girls said “often.” In fact, 31 % of girls
said they “never” see someone like them while only 18 % of boys said “never.” Thus,
students who don’t identify as looking like who they perceive as computer scientists or
who don’t identify as nerdy or smart may not feel a sense of belonging with computer
science. With lower confidence and sense of belonging, certain students may be less
likely to be encouraged, less interested, and less likely to learn CS, creating a cycle of
reinforcement. Interestingly, by race, 13 % of Hispanic students, 16 % of White students,
and 26 % of Black students said that they see someone like them doing CS “often” in the
media. This points to other complex factors that may be at play. Overall, these findings
imply a need to better shape CS learning environments and social influencers (from the
media to educators to parents and to industry) to be inclusive of all backgrounds in order
to diversify the students learning CS.

146 H. Hong et al.

3.2 Disparities in Access

Many schools do not offer CS, with disparities by demographic. About 40 % of
teachers and principals said that their school did not have any dedicated CS classes.
These numbers improved from the first year survey to the second: 43 % of principals in
the first year reported having no CS classes, which decreased to 39 % in the second
year. Black students are less likely to report having access to CS classes and CS taught
in other classes. Only about 1 in 5 of these principals said they offer Advanced
Placement CS, an advanced course that allows students to receive university credit.
However, the content is trending to more likely include programming and coding. In
the first year, 53 % of principals reported that these CS opportunities included pro-
gramming and coding, which increased to 66 % in the second year. In terms of other
programs, only about half of teachers and principals said that their school offers CS
groups or clubs, with numbers roughly the same in both years.

For opportunities outside of school, only about half of students and parents are
aware of opportunities in their community to learn CS. And just slightly more, about
two-thirds and 54 % of parents, are aware of specific websites to learn CS. Technically,
online opportunities are available to anyone anywhere, so it is surprising that not more
parents are aware of these websites. Male students in particular are more likely to be
aware of opportunities in the community and online than female students. Parents of
boys are also more likely to be aware of these opportunities. And, Hispanic students
and parents are less likely to be aware of opportunities in the community. These
discrepancies in awareness of CS opportunities fall in line with images of who does CS.

Exposure to technology also has disparities. Hispanic students are less likely to
know an adult working in technology (49 % versus 68 % of Whites and 65 % of
Blacks) and less likely to use a computer everyday at school (31 % versus 42 % of
Whites and 34 % of Blacks) or at home (26 % versus 45 % of Whites and 30 % of
Blacks, with 10 % of Hispanics saying they never use a computer at home).

In terms of how many students have learned CS, 53 % of students in the first year
of the study said they learned CS, increasing to 55 % of students in the second year
who said they learned CS. Boys are more likely to say they have learned CS than girls
(59 % boys versus 50 % girls). Among students who stated learning CS, 73 % in the
first year and 80 % in the second year said they learned it in a class at school and about
half learn it on their own, outside of any group or program (56 % in the first year and
48 % in the second year). About a third learn it online through a class or community
and about a quarter learn it through a group or club at school or through a group or
program outside school. In particular, boys are more likely to have learned CS outside
of school: online through a class or group, in an afterschool group or club, or on their
own. Black and Hispanic students are also more likely to have learned CS in a group or
club at school, and Black students are more likely to have learned it in a group or
program outside of school.

When asked about computational thinking (CT) [19], only about 37 % of students
said they’ve done CT at school while 68 % of teachers said that they’ve incorporated
CT into their classes. More students reported doing specific CT activities. Thus, stu-
dents may be learning CT without realizing that what they are doing is considered CT.

K-12 Computer Science Education Across the U.S. 147

3.3 Barriers

Despite the positive value and high support of CS among parents, as discussed earlier,
we saw that few principals and superintendents thought that demand from students and
parents was high. Less than 8 % of principals and superintendents reported that
demand from parents was high across both years of the study. We explored this further
in the second year of the study and found that of parents and teachers who have
expressed support for classes or curriculum to the school or principal, only one third of
them have specifically expressed support for CS.

Consequently, we also saw that few educators believed that CS was a top priority at
their school or district. Only about 1 in 5 teachers and principals agreed with this, and
less than 30 % of superintendents agreed. Just over 40 % of principals reported that
teachers and guidance counselors thought CS was important to offer and roughly the
same percentage of teachers, principals, and superintendents believed that their school
board was committed to offering CS. A large portion, about 25–40 %, also stated that
they did not know or were neutral about teacher, guidance counselor, and school board
support.

In both years of the study, we found that the greatest barriers to offering CS were
related to lack of a qualified teacher, budget to train or hire a teacher, as well as the
need to devote time towards standardized testing requirements1 rather than computer
science. Over 73 % of superintendents in both years said that a barrier to offering CS is
they do not have teachers at the school qualified to teach CS. In the first year of the
study, 42 % of principals said this, increasing to 63 % in the second year. Around
56 % of superintendents in both years said that there was not enough money to train or
hire a teacher. This same barrier also became more prevalent for principals, increasing
from 44 % who said this in the first year to 55 % in the second year. And about half of
principals and superintendents stated that the need to devote time to testing require-
ments and CS is not a testing requirement, increasing slightly from 47 % of principals
and 52 % of superintendents in the first year to 50 % of principals and 55 % of
superintendents in the second year. Overall, the most common single “main reason” for
not offering CS were the testing requirements, cited by about 30 % of principals and
23 % of superintendents.

Despite the lack of perceived demand, the lack of prioritization, and the challenges
with obtaining qualified CS teachers and testing requirements, an opportunity lies in
incorporating CS into existing subjects. As noted earlier, about 7 in 10 educators agree
that it is a good idea to incorporate CS into other subjects at school. In the second year,
we found that 29 % of teachers say they have already incorporated some elements of
CS in their classes. And, 62 % of teachers reported that they know where to learn more
about incorporating CS and 58 % said they would be willing to spend their own time to
learn more about CS. Because elements of CS – programming/coding and CT – are
tools of critical thinking, problem solving, and creative expression, teachers can and
have effectively incorporated CS into various subjects in order to teach content
knowledge by means of CS.

1 In the U.S., public school students are required to take annual standardized tests in math, reading,
and in later years science to provide a measure of how students and schools are performing.

148 H. Hong et al.

4 Conclusion

With all the momentum of CS education in K-12 schools, there is still a need to
distinguish CS from basic computer literacy among all populations, including educa-
tors, so that students are engaged in opportunities to advance beyond using computers
to creating technologies and tools. And more work is also needed to dispel stereotypes
of who does CS, even with the high value of CS and positive image of CS careers and
work across all groups – students who don’t fit these stereotypes often lack access to
these CS opportunities and are even unaware of existing opportunities. Further, with
barriers like discrepancies in perceived demand for CS, lack of prioritization, obtaining
qualified teachers, and testing requirements, the education infrastructure does not
provide all students with the needed exposure, particularly Blacks and Hispanics. We
also saw that girls are less likely to have learned CS. Finally, to overcome challenges in
the education infrastructure, we saw an opportunity to incorporate CS into existing
subjects. Our findings suggest:

• We need to increase awareness of the differences between basic computer literacy
and CS;

• Computer science training resources that are inclusive of all students need to be
made accessible, available, and known;

• Influencers should be aware of the images they promote and diversify images of
those who do CS;

• Educators should talk to parents, and parents should speak up about their demands
in CS;

• Policymakers and administrators should consider strategies to be more supportive of
K-12 computer science offerings, such as
– more flexible curriculum and class schedules,
– modifying requirements for standardized testing,
– allowing computer science courses to count towards graduation and college

admission requirements,
– offering a variety of paths to learn computer science in and out of school, as well

as through various means using computers, mobile devices, and without
technology.

Acknowledgements. We thank the Gallup team for their partnership, including Katherine
Black, Cynthia English, Elizabeth Keating, Brandon Busteed, Stephanie Kafka, Dawn Royal, and
countless others. We would also like to thank the many individuals at Google and in the CS
education community who have supported us from developing survey items to reviewing drafts,
including Chris Stephenson, Jason Ravitz, Mo Fong, and many more.

K-12 Computer Science Education Across the U.S. 149

Appendix

Sample survey questions. For agreement statements, students and parents were given
1–3 Likert scale and teachers, principals, and superintendents were given a 1–5 Likert
scale.

Knowledge of CS. Based on what you have seen or heard, which of the following
activities do you consider part of computer science? (yes, no, don’t know, refused).

• Programming and coding
• Creating new software
• Creating documents or presentations on the computer
• Searching the Internet

After this first question (only for students, parents, teachers, and principals),
respondents were provided a definition of CS and reminded multiple times throughout
the survey:

Computer science can involve MANY types of activities. Today we are only going to focus on a
specific type of computer science.
For the purposes of this survey, computer science is the study of how computers are designed
and how to write step-by-step instructions to get them to do what you want them to do. This is
sometimes referred to as computer programming or coding. Computer science includes things
like creating software, applications, games, websites and electronics and managing large
databases of information.
For the purposes of this survey, computer science does NOT include using a computer to do
everyday things, such as browsing the Internet. Please keep this definition in mind as you
answer the following questions.

Images of CS

• People who do computer science make things that help improve people’s lives.
• People who do computer science have the opportunity to work on fun and exciting

projects.
• Computer science can be used in a lot of different types of jobs.
• Most people who work in computer science have good-paying jobs.
• Students who are good at math and science are much more likely to succeed in

learning computer science.
• People who do computer science need to be very smart.

Self-image

• How confident are you that you could learn computer science if you wanted to?
Very confident, somewhat confident, or not very confident?

• How likely are you to have a job someday where you would need to know some
computer science? Is it very likely, somewhat likely, or not at all likely?

• How often do you see people who do computer science in movies or TV shows who
are (read and rotate Q04A–Q04F)? Do you see them most of the time, some of the
time, not very often, or never?

150 H. Hong et al.

– Women
– White
– Black or African-American
– Hispanic/Latino
– Asian
– Wearing glasses

• How often do you see or read about people doing computer science in each of the
following places? In TV shows (Often, Sometimes, Never)

• How often do you see or read about people doing computer science in each of the
following places? In movies (Often, Sometimes, Never)

• How often do you see or read about people doing computer science in each of the
following places? Online through social media, articles, or videos (Often, Some-
times, Never)

• Thinking about all of the people you see or read about doing computer science in
TV shows, in movies, or online, how often do you see people like you doing
computer science? (Asked only of those who see people doing CS “OFTEN” or
“SOMETIMES” on TV, movies, and/or online) (Often, Sometimes, Never)

Exposure to Technology

• How often do you use a computer at your school? (Every school day, Most school
days, Some school days, Never)

• In a typical week, how often do you/does your child use a computer at HOME?
(Every day, Most days, Some days, Not very often, Never)

• In a typical day, how many hours do you/does your child use a computer at HOME?
(Asked only of students/parents who use a computer with Internet at home every
day) (Less than 2 h, 2–5 h, More than 5 h)

• In a typical week, how often do you/does your child use a cell phone or tablet?
(Every day, Most days, Some days, Not very often, Never)

• In a typical day, how many hours do you/does your child use a cell phone or tablet?
(Asked only of students/parents who use a cell phone or tablet every day) (Less than
2 h, 2–5 h, More than 5 h)

Learning CS

• Have you ever learned computer science in any of the following ways? (yes, no,
don’t know)
– In a class at school
– In a group or club at school
– In a formal group or program outside of school, such as a camp or summer

program
– Online through a class, program, or online community
– On your own outside of a class or program

Value of CS

• It is a good idea to try to incorporate computer science education into other subjects
at school.

K-12 Computer Science Education Across the U.S. 151

• Offering opportunities to learn computer science is a good use of resources at your
child’s school.

• Do you think offering opportunities to learn computer science is more important,
just as important, or less important to a student’s future success than required
courses like math, science, history and English?

• Do you think offering opportunities to learn computer science is more important,
just as important, or less important to a student’s future success than other elective
courses like art, music, and foreign languages?

• Most students should be required to take a computer science course.

Demand

• Which of the following best describes the demand for computer science education
among parents in your school/district? Is demand… (high, moderate, low)

• Which of the following best describes the demand for computer science education
among students in your school/district? Is demand… (high, moderate, low)

Priority

• My school board believes computer science education is important to offer in our
schools.

• Computer science education is currently a top priority for my school/district.
• The majority of teachers at my school think it is important to offer opportunities to

learn computer science.
• The majority of guidance counselors at my school think it is important to offer

opportunities to learn computer science.

Barriers

• As far as you know, why doesn’t your school offer any ways to learn computer
science? (check all that apply)
– There are no teachers available at my school with the necessary skills to teach

computer science.
– There are no teachers available to hire with the necessary skills to teach com-

puter science.
– There is not enough classroom space.
– There is not enough money to train or hire a teacher.
– We do not have the necessary computer equipment.
– We do not have the necessary computer software.
– We do not have sufficient budget to purchase the necessary computer equipment.
– We do not have sufficient budget to purchase the necessary computer software.
– Internet connectivity is poor at my school.
– There is not enough demand from students.
– There is not enough demand from parents.
– There are too many other courses that students have to take in order to prepare

for college.

152 H. Hong et al.

– We have to devote most of our time to other courses that are related to testing
requirements and computer science is not one of them.

– Don’t know
• Among the reasons just mentioned, what would you say is the MAIN reason your

school doesn’t offer ways to learn computer science?

References

1. Barker, L.J., Aspray, W.: The state of research on girls and IT (2006). https://lexus.ischool.
utexas.edu/Westbrook_Lynn/2008/fall/INF180J/aspray_stateofresearch.pdf

2. Levine, T., Donitsa-Schmidt, S.: Computer use, confidence, attitudes, and knowledge: a
causal analysis. Comput. Hum. Behav. 14(1), 125–146 (1998)

3. Margolis, J., Estrella, R., Goode, J., Holme, J.J., Nao, K.: Stuck in the Shallow End:
Education, Race, and Computing. MIT Press, Cambridge (2010)

4. Jesse, J.K.: The digital divide: political myth or political reality? In: Aspray, W. (ed.)
Chasing Moore’s law: Information Technology Policy in the United States. SciTech
Publishing, Raleigh (2004)

5. Kirkpatrick, H., Cuban, L.: Should we be worried? What the research says about gender
differences in access, use, attitudes, and achievement with computers. Educ. Technol. 38(4),
56–61 (1998)

6. National Center for Education Statistics (NCES): Degrees in computer and information
sciences conferred by degree-granting institutions, by level of degree and sex of student:
1970–71 through 2010–11 (2012). http://nces.ed.gov/programs/digest/d12/tables/dt12_349.
asp

7. Wang, J., Hong, H., Ravitz, J., Ivory, M.: Gender differences in factors influencing pursuit of
computer science and related fields. In: Proceedings of the 2015 ACM Conference on
ITICSE, pp. 117–122. ACM (2015)

8. Carter, L.: Why students with an apparent aptitude for computer science don’t choose to
major in computer science. ACM SIGCSE Bull. 38(1), 27–31 (2006)

9. Cheryan, S., Plaut, V.C., Handron, C., Hudson, L.: The stereotypical computer scientist:
gendered media representations as a barrier to inclusion for women. Sex Roles 69(1–2),
58–71 (2013)

10. Denner, J., Werner, L., Martinez, J., Bean, S.: Computing goals, values, and expectations:
results from an after-school program for girls. J. Women Minor. Sci. Eng. 18(3), 199–213
(2012)

11. Cheong, Y.F., Pajares, F., Oberman, P.S.: Motivation and academic help-seeking in high
school computer science. Comput. Sci. Educ. 14(1), 3–19 (2004)

12. Smith, T.J., Pasero, S.L., McKenna, C.M.: Gender effects on student attitude toward science.
Bull. Sci. Technol. Soc. 34(1–2), 7–12 (2014)

13. Fan, X., Chen, M.: Parental involvement and students’ academic achievement: a
meta-analysis (2001). http://rd.springer.com/article/10.1023/A:1009048817385

14. Dabney, K.P., Chakraverty, D., Tai, R.H.: The association of family influence and initial
interest in science. Sci. Educ. 97(3), 395–409 (2013)

15. Lavy, V., Sand, E.: On the origins of gender human capital gaps: short and long term
consequences of teachers’ stereotypical biases (No. w20909). National Bureau of Economic
Research (2015)

16. Rosenthal, R., Jacobson, L.: Pygmalion in the classroom. Urban Rev. 3(1), 16–20 (1968)

K-12 Computer Science Education Across the U.S. 153

https://lexus.ischool.utexas.edu/Westbrook_Lynn/2008/fall/INF180J/aspray_stateofresearch.pdf
https://lexus.ischool.utexas.edu/Westbrook_Lynn/2008/fall/INF180J/aspray_stateofresearch.pdf
http://nces.ed.gov/programs/digest/d12/tables/dt12_349.asp
http://nces.ed.gov/programs/digest/d12/tables/dt12_349.asp
http://springerd.bibliotecabuap.elogim.com/article/10.1023/A:1009048817385

17. Cheryan, S., Master, A., Meltzoff, A.N.: Cultural stereotypes as gatekeepers: increasing
girls’ interest in computer science and engineering by diversifying stereotypes. Front.
Psychol. 6, 49 (2015)

18. Master, A., Cheryan, S., Meltzoff, A.: Computing whether she belongs: stereotypes
undermine girls’ interest and sense of belonging in computer science. J. Educ. Psychol.
(2015). http://dx.doi.org/10.1037/edu0000061

19. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

154 H. Hong et al.

http://dx.doi.org/10.1037/edu0000061

Combining the Power of Python with the
Simplicity of Logo for a Sustainable Computer

Science Education

Juraj Hromkovič, Tobias Kohn, Dennis Komm(B), and Giovanni Serafini

Department of Computer Science, ETH Zürich, Universitätstrasse 6,
8092 Zürich, Switzerland

{juraj.hromkovic,tobias.kohn,dennis.komm,giovanni.serafini}@inf.ethz.ch

Abstract. Computer science education in K-12 and for non-majors at
university often aims at making students confident with computational
thinking by introducing them to programming. We are convinced that
such programming classes offer a great opportunity to expose students
to core concepts of computer science and thereby contribute to a broad
and general education.

In this article, we describe our approach and experiences with teaching
programming at various levels, namely at primary schools, high schools,
and universities. We identify a set of goals that allow us to go beyond
the pure teaching of specifics of a given programming language, i. e.,
syntactical details, and shift the focus towards sustainable topics such as
algorithms as problem solving methods and their analysis.

1 Introduction

Programming education is not primarily about teaching a specific programming
language or using a computer. It is about introducing the language and thinking
of computer science itself. In this context, programming education then unfolds
merits for a broad and general education and acts as the doorway not only into
computer science.

This article describes our efforts, directed towards establishing programming
and computer science education on all three levels of education: primary school,
high school, and university. With each level having its own specific focus and
adapted curriculum, they eventually lead to a set of common goals. Bringing
programming education to schools, however, cannot be limited to the design
of curricula. We are actively involved in reaching out to teachers at primary
and high schools, and in training them to successfully teach programming and
computer science.

Our classes are all taught in Logo and Python, respectively. Both these lan-
guages serve our goals very well, particularly in that they allow a focus on con-
cepts rather than the language itself. This way, concepts such as the modular
design of algorithms can be taught without a lengthy introduction to syntactical
details. And we can start with simple commands that directly induce a visual
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 155–166, 2016.
DOI: 10.1007/978-3-319-46747-4 13

156 J. Hromkovič et al.

feedback (e. g., by moving the turtle on the screen). This way, testing and cor-
recting programs becomes available already for beginners and children. After
that, the students can write their first programs and understand that, essen-
tially, these programs increase the vocabulary of the computer. Building larger
programs that use smaller ones as building blocks is nothing else than using a
modular design to solve tasks of increasing complexity.

Neither Logo nor its turtle graphics are limited to drawing figures. As an
example, Logo’s simple repeat-loop allows for an easy way to understand the
concept of loops without introducing variables or conditionals. Even the tur-
tle itself has proven to be an invaluable asset beyond graphics due to the rich
metaphors it provides.

Organization of This Paper
Section 2 gives an overview of the context of our programming education, our
goals, and our motivation. Sections 3, 4 and 5 then discuss the respective imple-
mentation on the three levels of education, i. e., primary school (Sect. 3), high
school (Sect. 4), and university (Sect. 5). Section 6 contains concluding remarks.

2 Setting, Goals, and Motivation

In this section, we describe the Swiss educational system, and the common goals
we aim to achieve with our approach. In particular, we identify the learning goals,
which are independent of the concrete choice of the programming language.

2.1 Swiss Educational System

Switzerland is a pronounced federalist country comprising 26 states and embrac-
ing the four official languages German, French, Italian as well as Romansh. The
Swiss education system reflects the political organization of the country and has
to take care of the regional specificities of the population. Therefore, the respon-
sibility for education historically lies with the states, each of them having its
own dedicated minister.

The compulsory education takes 11 years and encompasses kindergarten, pri-
mary school as well as lower secondary school. This compulsory part is followed
by four years of high school and eventually university, or a practical apprentice-
ship with accompanying schools.

Current efforts to constitute a common standardized curriculum for primary
and lower secondary schools include computer science as a mandatory subject.
With the programming courses we have conducted in the last few years, we have
already shown a viable way of introducing students to computer science.

2.2 Learning Goals

Algorithms are the scientific core of computer science and confer the discipline
its conceptual identity. Knowledge about algorithms is nowadays an indispens-
able asset in society, industry, and research. Algorithms should therefore play an

Combining the Power of Python with the Simplicity of Logo 157

adequate role in school education. It is important to note that the term “algo-
rithm” is not bound to a concrete programming language. It is the formal finite
description of a method that solves all (usually infinitely many) instances of a
given (computational) problem within finite time. A scientifically sound com-
puter science subject at school should focus on the study of algorithms, from a
theoretical as well as from a practical perspective. In addition, a spiral curricu-
lum through the different stages of education allows to discuss different aspects
of algorithms adequately at the appropriate level.

Out of the many aspects of algorithmic and computational thinking, we have
identified three aspects as the primary goal of programming education: introduc-
ing the programming language as an example of a formal language, understand-
ing programming as the process of automation and abstraction, and discussing
the limits of practical computability.

The Concept of a Formal Language. Students start out with a very limited set
of words, each standing for a specific instruction given to the machine. A pro-
gram is then a sentence of such words and must follow certain rules imposed on
grammar and syntax. As the students progress in the curriculum, they expand
their vocabulary not only through acquisition of instructions but more impor-
tantly through the creation of new words of their own. They learn that a given
instruction set does not suffice to solve all problems in an elegant way, but can
and has to be expanded.

Formal languages clearly are the building blocks of both the human com-
puter interface and the algorithms used in the sciences. Moreover, the notion
of extending and adapting a formal language to specific needs is key in dealing
with complex problems and formulating intelligent solutions.

Automation and Abstraction. As the students’ programs grow, it becomes infea-
sible to spell out every detail. Students must rely on principles of automation and
abstraction, and employ looping constructs and subroutines in order to manage
otherwise unwieldy programs. We use a bottom-up approach to modularization
here, starting with simple programs, which then continuously grow in size and
complexity.

In recent years, the question of automation has attracted increased attention
in the form of big data problems. Concepts of how to manage huge data sets and
automate computations and manipulations on that data go far beyond computer
science and have entered political debate on more than one issue.

Limits of Practical Computability. Students are exposed to questions of the
limits of computability from the beginning on. Lacking precision quickly becomes
an issue when dealing with floating point numbers in the context of graphics, say.
Approximations are inevitable and students have to learn to take (numerical)
errors into consideration when designing their programs.

Besides the available numeric precision, students must also deal with the
efficiency of their programs and time constraints. Measuring (or even roughly
analyzing) the execution time of a program is the first step towards a more

158 J. Hromkovič et al.

general discussion of the running time of algorithms. Eventually, this discussion
will include topics such as polynomial versus exponential running time.

Computers do not only offer exciting new possibilities. There are also some
clear cut limitations on what a computer can achieve, both in precision and
extent. The study of this feasibility sets computer science apart from pure math-
ematics and is the motivation of many advancements in the field of algorithms.
Most prominently, modern cryptography rests on principles of intractability in
the sense of computer science, even though these problems are solvable when
seen from the point of mathematics.

2.3 Turtle Graphics

Programming always takes place in the context of a specific machine model that
executes the code and provides a set of available instructions. Novice program-
mers first have to understand the basic properties of this model or notional
machine they are going to program [4].

Turtle graphics provides an excellent model of a programmable machine. The
current state and the properties of the (virtual) turtle are directly observable and
the basic instructions for movement fit well into the student’s mental models.
Furthermore, the turtle serves as a metaphor for introducing various new con-
cepts. Defining a new function, for instance, can be motivated as “teaching the
Turtle a new word” [11]. Yet, the students learn that the communication with
the computer (the turtle, respectively) needs to be precise. Since computers have
no intellect, there is no room for interpretation.

The second important aspect of turtle graphics is its immediate and direct
feedback to the student. Mistakes in a program show immediately, and our expe-
rience confirms that students are highly motivated to correct their programs until
the desired output is achieved. In this way, the important concepts of testing,
verifying, and correcting programs can be introduced immediately while start-
ing to write first programs. Writing correct programs without the aid of turtle
graphics is much more abstract and students tend to think of correct programs
as those which compile and execute.

As students progress in the curriculum, the actual turtle becomes less impor-
tant and only the result of the drawing process is shown. It turned out that, in
this mode, turtle graphics is fast enough to even support simple animations,
games, and mathematical visualizations.

3 Primary Schools

The students we introduce to programming are usually 10 to 12 years old and
attend the fifth or the sixth grade of primary school. A programming course
comprises twenty 45-minutes units, which are split up into blocks of either two or
four units a week. The students are taught by a team comprehending a lecturer,
an assistant as well as the regular class teacher. The responsibility for the class

Combining the Power of Python with the Simplicity of Logo 159

lies with the lecturer, while the assistant and the class teacher are expected to
individually support students who need specific advice.

We embed the classes into the usual school activities on-site at primary
school. Swiss schools are allowed to autonomously organize ad hoc activities
for their students and can therefore reserve time slots for projects like ours. Our
programming classes are mostly part of regular math lessons [12].

The Logo programming courses at primary schools started more than 10
years ago as an initiative of our chair at ETH Zurich. The primary objectives
consisted in developing and continuously improving teaching materials for stu-
dents, in holding classes directly at school, in educating class teachers without
prior knowledge in computer science, and in practically demonstrating how a
didactically and pedagogically adequate but scientifically sound introduction to
programming at primary schools can be implemented.

The requests from schools and teachers rapidly rose. At the beginning of
2014, we launched the so called PrimaLogo project and thus started to spread
the courses all over the country. During the school year 2015/16, we and our
regional partners visited more than 80 school classes and introduced roughly
1600 students and their teachers to programming with Logo.

3.1 Settings and Goals

The goal of the programming courses is to teach the students how to interact
with the computer using a programming language. With respect to the common
goals introduced in Sect. 2.2, we focus here on the concept of a formal language
as well as on automation and abstraction. The students are taught that the
turtle they have to move on the screen has a mother language (Logo) and a very
restricted vocabulary. Each of the words in this vocabulary corresponds to one
instruction the turtle can unambiguously understand and execute.

The students learn that a program is a sequence of words taken from the
available vocabulary and understand that the abstract activity of programming
consists in writing sentences in the mother language of the turtle. Furthermore,
the students gradually realize that the initial vocabulary may not be sufficient
to meet all the expectations they have in the turtle, and learn that a new word
can be used to stand for a sentence they already wrote. The students therefore
learn how to extend the language of the turtle by giving their programs a name.

We rely on the programming language Logo and believe that Logo still is
one of the most adequate programming languages for novices, particularly for
classes at primary school. Our didactic approach focusses on a small subset of
the programming language and aims to permit the students to care for correct
syntax as well as to avoid the cognitive overload caused by an unmanageable
list of instructions or by an overcharged graphical user interface [12,13]. The
chosen programming environment is XLogo4Schools [14], a redesigned version of
the open source application XLogo [10].

Logo allows to teach structured programming and modular development as
a key problem solving pattern in a natural and didactically effective way. For
instance, as already mentioned, Logo’s repeat-loop does not require the students

160 J. Hromkovič et al.

to deal with the abstract concept of a variable, and therefore allows to introduce
this control structure already at the beginning of a programming class.

3.2 The Role of the Class Teacher

One of the primary objectives of our programming courses is to introduce class
teachers to programming and its didactics. We aim to make class teachers confi-
dent with contents, teaching materials, and the didactic approach, so that they
feel ready to autonomously employ the same course in their future classes.

In Switzerland, a primary school teacher is required to attend high school and
to obtain a Bachelor of Arts from a school of education. Since, unfortunately,
computer science plays no or a negligible role in the current curriculum at both
these education levels, primary school teachers have no formal education in com-
puter science and thus no prior knowledge in programming at the beginning of
our projects at their schools.

To pragmatically yet adequately support class teachers, we focus on dedicated
activities divided into three parts.

– Theoretical Part. The class teachers attend a half-day workshop in which they
are introduced to programming relying on the same teaching materials and
the same approach adopted in the programming course. Furthermore, lecturers
and class teachers reflect on the contribution of computer science to education,
on the role of programming classes, and on related didactic challenges.

– Practical Part. The class teachers support the guest lecturer and her or his
assistant during the programming course in their class. For the class teachers,
the programming course is a kind of safe, practical session, in which they
actively help the students, but are not taking the responsibility for the lesson.
Nevertheless, we encourage teachers to take over at least one activity with
their class during the project and support them while preparing and carrying
it out.

– Individual Part. In addition to the workshop and to the assistance during the
courses, the class teachers are required to prepare the classes by studying the
teaching materials as well as by solving the exercises on an individual basis.

3.3 Structure and Contents of the Teaching Materials

The school projects rely on the German textbook An introduction to program-
ming in Logo (German: Einführung in die Programmierung mit Logo) [7], and on
a Logo booklet [5] covering the contents of its first seven chapters. The chapters
of the textbook include (1) programs as sequences of instructions, (2) simple
loops with the repeat-instruction, (3) naming and calling programs, (4) regular
polygons and circles, (5) programming animations, (6) programs with parame-
ters, (7) passing parameters to subprograms, (8) how to optimize the length of a
program and its computational complexity, (9) the concept of variables and the
instruction make, (10) local and global variables, (11) branch instructions and
while-loops, (12) integrating Logo and mathematics: geometry and equations,

Combining the Power of Python with the Simplicity of Logo 161

(13) recursion, (14) integrating Logo and mathematics: trigonometry, and (15)
integrating Logo and mathematics: vector geometry.

The textbook exemplifies how novices can be introduced to programming,
embedding the key concepts into a spiral curriculum that starts at primary school
and continues at lower and later at higher secondary school. To this end, the
book describes the topics in such detailed way that students of secondary schools
are even able to learn them individually, self-paced, and without a teacher.

Primary school students may be unable to cope with the form and the elabo-
rateness of the textbook. To address this problem, the booklet mentioned above
was developed. Here, the explanations are drastically reduced and the focus is
on a simple language and on a comprehensive set of exercises. The students are
expected to solve the exercises autonomously while the teacher has to accurately
introduce them to the new concepts they are going to learn. The booklet is avail-
able online and free of charge for schools, students, and educators [5]. So far, it
has been translated into English [6], French, Italian, Slovak, Serbian, Spanish,
and Portuguese.

4 High Schools

At high school level, we find a wide range of approaches to teaching programming
with little consensus on goals, contents, or methods. As outlined above, our
approach is based on algorithmic and computational thinking. We use Python,
extended by the loop structure taken from Logo, as explained further below.

4.1 The Setting

Due to its federal nature, the implementation of computer science education in
Swiss high schools differs highly between schools. The mandatory part ranges
from an introduction to current office applications to classes in programming
and algorithmic thinking. Most schools also offer an advanced elective class in
computer science for senior students.

One of the authors teaches at a school that offers an introduction to pro-
gramming as part of an elective course in physics and applied mathematics. The
course comprises two semesters in tenth grade with two classes each week.

Most students do not have any previous exposure to programming or com-
puter science. So far, none of our high school students have previously attended
a Logo course in primary school. Those students who bring prior programming
knowledge are usually self-taught and lack a deeper understanding of algorithmic
thinking.

4.2 Training Teachers

Teachers for programming classes in high schools have very diverse backgrounds.
Most teachers are trained in mathematics or science but very few have an actual
training in programming or even computer science.

162 J. Hromkovič et al.

As a result, one part of our efforts is concentrated on workshops open to all
high school teachers. The Annual National Day of Computer Science Education
(German: Schweizer Tag für den Informatikunterricht) is a prominent platform
for brief informative workshops and serves to reach out to computer science
teachers throughout the country [1]. More involved workshops of one or two
days are then held independently and allow us to go deeper and discuss topics
in more detail.

For a second part, we are involved in the training of future teachers that
leads to a diploma in secondary and higher education from our university. Our
lectures are usually attended by students of both mathematics and computer
science. However, in contrast to the workshops, we concentrate rather on the
education part and require from attending students to already bring a strong
background in computer science.

4.3 Teaching Materials

The programming class is centered around a script, which has gone through a
couple of iterations, taking into account experience from earlier classes. Out of
the many lessons learned, the following five principles have guided the writing
of the current script [8].

– Repeat each programming concept in various contexts to build a spiral cur-
riculum. Instead of a single chapter about all looping constructs, each chapter
contains a specific usage of loops and expands previous applications.

– Short units with as little explanatory text as possible, and with an emphasis
on hands-on exercises. We found that most students have a strong tendency
not to read but rather skim explanatory text.

– Complete and concise example programs to show how different elements are
used and interact. A study by Lahtinen et al. has confirmed that example
programs are the single most helpful teaching material [9].

– Put the focus on plans and applications of individual programming structures.
For instance, the important (and difficult) concept is not a for-loop itself but
how to use a for-loop to, e. g., compute a sum [4].

– Include additional problems for fast students. The heterogeneity of the classes
has to be met by offering the faster students challenging problems and sup-
plementary material.

According to these principles, the chapters are divided into short sections,
with each taking two pages with a very brief introduction, an explained exam-
ple program, and exercises, including supplementary problems for fast students.
While the first chapter acts as a gentle introduction, corresponding to the Logo
booklet used in primary schools, later chapters take into account that the class
is part of a course in applied mathematics. In contrast to primary school level,
we also include the aspect of the limits of practical computability from the
beginning on (cf. Sect. 2.2). The chapters’ contents are outlined in the following
paragraphs.

Combining the Power of Python with the Simplicity of Logo 163

(1) Learning the Basics with the Turtle. Students learn to use and control
the turtle. Their first programming concepts are user-defined functions with-
out return values (procedures), parameters, and loops with a fixed number of
iterations. This first chapter of the script corresponds largely to the Logo book-
let as explained in Sect. 3.3.

(2) Computations and Variables. Students learn to use Python without a turtle
to perform computations and implement some simple algorithms. Variables are
first introduced in the context of user input, together with conditional execution
and motivated by the need for handling values not yet known at the time of
programming. Later on, the concept of variables is then expanded to include
changing values inside a loop.

(3) Coordinate Graphics. The turtle’s screen is equipped with a coordinate sys-
tem that lets the student direct the turtle to a specific point and even react
to mouse events. In accordance with the idea of a spiral curriculum, there are
no new programming structures introduced in this chapter. However, loops and
conditional execution are both expanded with a discussion of nested structures.

(4) Functions. The true notion of functions with return values is introduced.
Students need to learn how to define their own functions as well as how to use
them properly. Our experience so far suggests that return values are the hardest
concept of the entire curriculum. Most students express distinct difficulties with
the correct use of the return-statement. The relationship between returning a
result and printing a result on the screen seems to be particularly problematic.

(5) Lists. Students learn to use lists as a means to handle a (relatively) large
amount of data. The main concept is to iterate through a list of data and perform
operations such as searching, filtering, or sorting. This chapter does not make
use of indexed access to list elements.

4.4 Logo’s Loop in Python

Python is well-suited for classroom use. For our curriculum, however, we found
one piece missing: a variable-free looping construct as in Logo. We have therefore
extended Python by introducing such a looping construct and have gained very
positive experience in that our students take loops as a natural concept and
exhibit less problems writing programs with loops.

The very basic application of a loop is to have the computer repeat a part of
the code for a given number of times. This might be a turtle drawing a regular
polygon, say. Python provides two possibilities to achieve this task, using either
a for- or a while-loop. While these are proven constructs, they both come with
a penalty from an educational point of view: they use variables.

As educators we can either choose to introduce variables prior to loops, leave
the occurring variables as a bit of magic in the code, or introduce loops together
with variables at the same time. All three approaches are unsatisfactory. The

164 J. Hromkovič et al.

first contrasts with the desire to use loops as early as possible in the curriculum
as one of the starting points of abstraction. The second one comes with the
danger of leaving students with the feeling of not being able to fully understand
the programs they are to write. Finally, the third one comes with a steep learning
curve as the students have to master at least two concepts simultaneously.

With Logo as model, we introduced a new looping construct to our Python-
environment. The repeat-loop takes a number and then directly iterates the
following code block without the need of a variable. Listing 1.1 shows a short
sequence that uses our repeat-loop to draw a square.

Listing 1.1. Drawing a square using a simple repeat-loop.

repeat 4:

forward (100)

left (90)

5 Universities

We also use Logo at university level. Mainly, we introduce students of natural
sciences to programming. In such an environment, the students have no back-
ground in computer science nor a particular interest in learning how to program
a computer.

Following our discussion from Sect. 2, the first units of the lecture give a
general introduction of how we communicate with computers in order to have
them execute our programs and algorithms. It is pointed out that this needs to
be done in an exact and unambiguous way since the machine does not have any
intellect. As an example, we introduce the task of navigating the Logo turtle on
the screen. The basic commands of Logo are described in the lecture and exam-
ples are given following the Logo booklet [5] (see Sect. 3.3). These basics (i. e.,
the main part of the booklet) are covered in roughly the first unit of the lecture.
Next, the students are supplied advanced material that is specifically designed
for this class [2]. One of the main topics introduced are variables, which are
essential to subsequent units. Moreover, a simple repeat-loop is not sufficient
anymore at this point, and the students are introduced to the concepts of condi-
tional execution and the while-loop. Finally, they are given three projects, which
ask to consolidate what they have learned so far by designing small programs to
solve specific tasks [3]. The lecture is accompanied by exercise classes in which
the students are asked to present and explain their solutions to a tutor.

After this introduction to programming with Logo, we continue with Python
making use of its facilities to handle a wide range of data and scientific prob-
lems. Here, we implement projects that are related to the typical needs of, e. g.,
a biologist. However, the first lessons learned from Logo proved to be extremely
valuable for the students, and they were able to apply many methods and par-
adigms to more complex algorithms.

Combining the Power of Python with the Simplicity of Logo 165

6 Conclusion

Computer science with its algorithmic thinking has become an essential part
of modern science. This prominent and important role renders it a necessity to
include computer science in general education and thereby provide students of
all levels with its rich set of tools for problem solving.

We envision a broad and comprehensive computer science education that
starts in primary school and then continues by carefully building upon existing
knowledge through secondary school, high school, and finally university. Starting
point of such a curriculum could be the introduction to programming with Logo.
The goal, however, is not the mastery of Logo as a specific programming language
but rather the familiarity with algorithmic thinking from the beginning on.

Our experience with bringing Logo to primary schools has been overwhelm-
ingly positive. Building upon that experience we included most of the Logo cur-
riculum in more concise form at high school and university level, using Python,
however, to tackle more abstract and advanced problems. Future work will fur-
ther increase our collaboration between different levels and help establish com-
puter science education as a central part of general education.

Acknowledgement. PrimaLogo is a cooperation of our chair, the Hasler Foundation,
the Swiss Computer Science Teacher Association, the University of Basel, and the Uni-
versities of Teacher Education of Lucerne and of Graubünden. We are deeply grateful
to all our project partners, the schools, the teachers, the local political authorities, the
dozens of university students who teach and assist at school, and to the young school
students for their contribution to the success of our activities.

References

1. Schweizer Tag für den Informatikunterricht (STIU) (2016). http://www.abz.inf.
ethz.ch/stiu-2016-am-7-september-2016/

2. Böckenhauer, H.-J., Hromkovič, J., Komm, D.: Programmieren mit LOGO
für Fortgeschrittene. http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmateri
alien/primarschulen/logo heft 2 de.pdf

3. Böckenhauer, H.-J., Hromkovič, J., Komm, D.: Programmieren mit LOGO – Pro-
jekte. http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarsch
ulen/logo projekte.pdf

4. Boulay, B.D.: Some difficulties of learning to program. J. Educ. Comput. Res. 2,
57–73 (1986)

5. Gebauer, H., Hromkovič, J., Keller, L., Kośırová, I., Serafini, G., Steffen, B.:
Programmieren mit LOGO. http://abz.inf.ethz.ch/wp-content/uploads/unterricht
smaterialien/primarschulen/logo heft de.pdf

6. Gebauer, H., Hromkovič, J., Keller, L., Kośırová, I., Serafini, G., Steffen,
B.: Programming in LOGO. http://abz.inf.ethz.ch/wp-content/uploads/unterricht
smaterialien/primarschulen/logo heft en.pdf

7. Hromkovič, J.: Einführung in die Programmierung mit LOGO - Lehrbuch für
Unterricht und Selbststudium, 3rd edn. Springer, Heidelberg (2014)

8. Kohn, T.: Python. Eine Einführung in die Computer-Programmierung. http://
jython.tobiaskohn.ch/PythonScript.pdf

http://www.abz.inf.ethz.ch/stiu-2016-am-7-september-2016/
http://www.abz.inf.ethz.ch/stiu-2016-am-7-september-2016/
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_2_de.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_2_de.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_projekte.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_projekte.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_de.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_de.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_en.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_en.pdf
http://jython.tobiaskohn.ch/PythonScript.pdf
http://jython.tobiaskohn.ch/PythonScript.pdf

166 J. Hromkovič et al.

9. Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M.: A study of the difficulties of novice
programmers. In: Proceedings of the 10th Annual SIGCSE Conference on Inno-
vation and Technology in Computer Science Education (ITiCSE 2005), pp. 14–18
(2005)

10. Löıc Le Coq:xLogo. http://xlogo.tuxfamily.org/. Accessed 28 Apr 2016
11. Papert, S.: Mindstorms.Basic Books, 2nd edn. (1993)
12. Serafini, G.: Teaching programming at primary schools: visions, experiences, and

long-term research prospects. In: Kalaš, I., Mittermeir, R.T. (eds.) ISSEP 2011.
LNCS, vol. 7013, pp. 143–154. Springer, Heidelberg (2011)

13. Sweller, J.: Cognitive load theory. In: Psychology of Learning and Motivation, vol.
55, pp. 37–76. Academic Press (2011)

14. Zivković, M.: Xlogo4school. http://sourceforge.net/projects/xlogo4schools/.
Accessed 28 Apr 2016

http://xlogo.tuxfamily.org/
http://sourceforge.net/projects/xlogo4schools/

A New Interactive Computer Science Textbook
in Slovenia

Nataša Mori1(B) and Matija Lokar2

1 Faculty of Computer and Information Science, University of Ljubljana,
Ljubljana, Slovenia

natasa.mori@fri.uni-lj.si
2 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

matija.lokar@fmf.uni-lj.si

Abstract. Informatics is only a mandatory course in the first year and
elective in the remaining three years in Slovene general secondary schools
(grades 9–12). The course curriculum lists 100 learning objectives for all
four years, but it does not specify the ones for the first (mandatory) year.
Although this gives Computer Science teachers the freedom to choose the
topics to be covered, they usually choose the ones covering digital liter-
acy. One of the reasons is that this is the most important topic in the
eighteen-year-old textbook that is currently used to teach Computer Sci-
ence. In this paper we discuss a new interactive textbook that was intro-
duced and the areas of knowledge it covers. We also discuss e-textbooks
as a technology in general and give some feedback from teachers after
the first year of using the new textbook.

1 Introduction

For the last 18 years Computer Science (CS) in Slovene secondary schools (grades
9–12) has not changed much. We have a mandatory first year of Computer Sci-
ence for all pupils, the next three years are optional, as well as the Matura
exam in Informatics. The paper talks about the four-year-long Computer Sci-
ence subject as a whole, because in Slovenia, we have a single curriculum. The
curriculum represents the topics and learning objectives (100 of them!) of the
Computer Science subject, spread over four years. This means that teachers can
be very flexible at preparing each year’s course. The curriculum has pretty much
stayed the same since 1998, with minor updates made in 2008. Updating the cur-
riculum would definitely be the proper step towards better CS, but in our case,
it is not possible. Fortunately, the committee of National Examination Centre
followed the ACM trend in improving CS, and they revised the national exam
(Matura) in Informatics. A new Subject examination catalogue was published in
2013 for the 2015 Matura examinations. This led to concern about the current
textbook - does it support the change? Unfortunately, the answer is no. The CS
textbook was first published in 1997, centered mainly on technology and its use
(Digital Literacy). Information Technology and CS as a discipline, as defined in
[19], was mostly left out. It was big and heavy, as it was supposed to cover all
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 167–178, 2016.
DOI: 10.1007/978-3-319-46747-4 14

168 N. Mori and M. Lokar

four years. It was then re-published every two years, with minimal corrections.
In 2015, teachers used the textbook, which was last revised in 2008, and contains
some ridiculous content. Therefore, we saw the need for a new CS textbook.

This paper describes the development of the new textbook and presents the
teachers first impressions after using it. First there is the Introduction section,
followed by the section where the challenge is described in more detail. The
alternative to heavy textbooks is presented and the progress in CS Education
outlined. In the third section the new textbook is described, explaining its tech-
nology and content. The fourth section represents the results of a survey among
the teachers. The paper finishes with the conclusion and intentions for the future.

2 The Challenge

The main challenge was a new educational tool. Why do we need it and what
kind? Should it be a textbook or educational software? While virtual learning
environments seem efficient and motivational enough, we decided to create an
interactive textbook. The first reason for the decision is a necessary leap from the
existing textbook, which was the Holy Grail for the majority of the teachers and
emphasized computing literacy mostly. The second reason is the effort teachers
are willing to put into their teaching. We noticed, that teachers prefer to use a
textbook than educational software, because it usually takes less time to prepare
for the teaching. For instance, project TOMO (https://www.projekt-tomo.si/,
[17]) is a Slovene online educational software for learning programming, where
teachers could create their own courses, they could copy or insert programming
tasks and much more. In three years time they only created four courses, which
are all empty, though. On the other hand using new virtual environments, how-
ever, run the risk of taking the e-textbook to become a collection of digital items,
missing the main essence of what constitutes a textbook, as a defined unit of
content with a clear message [18].

There are some online interactive textbooks: payable like TeenCoder for AP
Computer Science A course in Java (http://www.compuscholar.com/teencoder/
teencoder jv series.php) and Interactive Java for elementary Java course
(http://ijava.cs.umass.edu/index.html), free like Computer Science Circles
for programming in Python (http://cscircles.cemc.uwaterloo.ca/) and even open
source like IMI Python (http://imi.pmf.kg.ac.rs/imipython/) and How to
Think Like a Computer Scientist, both for programming in Python (http://
interactivepython.org/runestone/static/thinkcspy/index.html).

In this section the background of the textbook is explained and an alternative
is offered. Then the development of CS through important documents worldwide
is described, and the situation in Slovenia is shown.

2.1 E-textbooks

Before we look at some characteristics modern e-textbooks have or should have,
let us recall briefly what a textbook is. In [11] a textbook is defined as a part of

https://www.projekt-tomo.si/
http://www.compuscholar.com/teencoder/teencoder_jv_series.php
http://www.compuscholar.com/teencoder/teencoder_jv_series.php
http://ijava.cs.umass.edu/index.html
http://cscircles.cemc.uwaterloo.ca/
http://imi.pmf.kg.ac.rs/imipython/
http://interactivepython.org/runestone/static/thinkcspy/index.html
http://interactivepython.org/runestone/static/thinkcspy/index.html

A New Interactive Computer Science Textbook in Slovenia 169

methodologically-didactical materials, and it cooperates with the teacher in the
education process and [20] emphasises that The definition of a textbook depends
on the nature of the school system. A textbook is one of the means that help the
teacher and the student to achieve those goals.

Besides the obvious additions and improvements to the paper textbook such
as ease of access, lower weight and costs, speed of delivery, portability and ease
of navigation [14], e-textbooks should provide content adapted to human to
computer interaction with interactive elements, multimedia, instant feedback [9].
But this is not enough. An important aspect is missing. As the need for individual
approach towards each student is becoming more and more accentuated, one
of the crucial changes that is expected is that an e-textbook should allow for
customization and personalization. Therefore, e-textbooks should be designed
to be adaptable to the pedagogical situation and to the user, be it a learner
or a teacher. It should be a given that an e-textbook allows for and enables
uncomplicated customization and personalization.

What are the desired characteristics of a good e-textbook? According to
[15,16] they should be:

– Accessible: an e-textbook should be available online and there should be the
possibility of transferring it to other locations.

– Adaptable: an e-textbook should be adaptable to the needs of individual
teachers, learners and groups of learners.

– Cost effective: an e-textbook should increase the efficiency and productivity
by cutting the time and money spent on the whole lifecycle of a textbook,
including future revisions, adaptations.

– Durable: an e-textbook should be adaptable to the changes in technology
without costly redesign and re-encoding.

– Interoperable: an e-textbook should have the option of being used in dif-
ferent learning environments and with different tools. Poor examples of this
feature are some existing e-textbooks that require the use of a specific type of
interactive whiteboards.

– Reusable: an e-textbook should have the option to use its parts in different
contexts. For instance a teacher can use an applet in a frontal type lecture, and
a student who makes a certain mistake while solving an exercise, is directed
to that same applet. The exercises can be used as homework or as part of
an exam. But the major point of being reusable is to use parts of different
e-textbooks to produce a customized version of the e-textbook.

Perhaps the most important aspect of a future e-textbook is its adaptability.
An e-textbook must be adaptable to the needs of individual teachers, learners
and groups of learners. There is no real reason why the textbook used in class 7a
should be the same as the one in class 7b, or even within the same class, why Joes
textbook should be exactly the same as Janes. Some steps have already been
taken in this direction. Several publishers offer the possibility of changing the
order of the chapters; skipping and adding topics or even changing the contents.

Adaptability is the core idea and the key feature separating future
e-textbooks from their paper (as well as from digitally enhanced) versions.

170 N. Mori and M. Lokar

Moreover, it is the role of the teachers to exploit this adaptability. The teach-
ers are the ones who must adapt the e-textbooks to an actual teaching situation
and to a particular student. The authors create e-textbooks having a partic-
ular ideal situation in mind. The teachers, however, teach in the real world.
Therefore, e-textbooks should be flexible. They should enable the teachers to
change and recombine various parts from various sources. Unfortunately, in the
majority of the existing e-textbooks, this is a mostly unrealized goal, although
advantages in technology made this goal possible. However we should clarify the
role of teachers in this adaptations. As textbooks reflect the academic standards,
specific objectives, and ideologies commonly found in public curricula the role
of the authors is to provide various models according to the foreseen pedagogi-
cal situation and thus provide teachers choices [22]. Techers will pick the most
appropriate version of the e-textbook and personalize/adapt it further.

2.2 Curricula

Although Computer Science is a relatively young science, its evolution was quite
turbulent. From the theoretical Turing machine, through electronic general-
purpose computer and programming languages, to personal computer and the
goal to teach people how to use this new technology. Schools started to intro-
duce Computer Science (CS) to students. Unfortunately, with the creation of
new technology, it was necessary to learn how to use it. In most schools the
CS course was slowly replaced by an ICT course, and in some cases that even
escalated to a course in the use of office tools. Various researchers opposed the
new trend and in the last 10 years CS concepts aim to find a way back to the
curricula.

One of the first important documents about CS Education is probably IFIP’s
ICT curriculum in secondary education from 1994 (updated in 2000). While it
basically introduces ICT literacy and basic skills into the school, it mentions
creating and supporting of ICT, but is not intended for general education, but
for professional education [4]. For the next decade schools mainly thought ICT
literacy.

The first attempt to break this period was A Model Curriculum for K-12
Computer Science in 2003. Its main goal was to introduce the principles and
methodologies of CS to all students. They specify the distinctions between CS
and information technology, and recommends structure for K-12 curriculum [7].
For 5 more years, nothing much has changed until the breakthrough, which was
almost simultaneous in 3 different continents.

In New Zealand prof. Tim Bell with his colleagues made a collection of free
learning activities that teach CS through engaging games and puzzles that use
cards, string, crayons and lots of running around, named CS Unplugged [3].

In the USA they published a national report Running on Empty: The Failure
to Teach K-12 Computer Science in Digital Age. In the report they present
findings about the poor situation of CS in US schools and list recommendations
for improving CS education [23]. Soon after the report, CSTA published renewed

A New Interactive Computer Science Textbook in Slovenia 171

K-12 Computer Science Standards, where they emphasize the role of CS as a
core discipline and restructured K-12 curriculum [8].

In the UK they decided on a more aggressive approach with the report called
Shut down or restart? The way forward for computing in UK schools. The main
findings of this comprehensive report include the unsatisfactory CS education,
the role of CS as an academic discipline and poor qualifications. They thoroughly
describe issues and recommendations, and suggest terminological reform ICT is
divided to CS, Information Technology and digital literacy [19]. In the following
years, a new compulsory subject Computing was introduced to all schools. With
the help of Computing At School (CAS) organization, new materials for teachers
and students were made, along with a new curriculum [5,6].

The latest project of renewing the CS begun in the end of 2015 by a group of
various participants, from organizations ACM, CSTA and Code.org, to schools
and technology companies. Their goal is to create a general framework for K12
CS, which would identify core concepts and practices. It is not meant to be
a curriculum or standards document, but instead to provide the guidelines for
designing a new curriculum, assessments or teacher preparation programs. In the
beginning of 2016 they published A Framework for K-12 CS Education, a draft
of framework, consisting of five core concepts and seven practices. The draft was
published for open reviewing by anyone who wanted to support the development
of the framework and help to improve it. The final version will be finished and
published in the summer of 2016 [12].

In Slovenia we also came to a conclusion that the situation in schools is
alarming and change needs to be done. The Government and the National Edu-
cation Institute agreed to create a new (elective) Computer Science subject in
grades 3, 4 and 5. The new subject covers topics from CS Unplugged. We still
have an elective CS-like subjects in grades 6, 7 and 8, which remain the same,
a mandatory CS subject in grade 9 (gymnasium) and an elective CS Subject
in grades 10, 11 and 12. Overall we have one mandatory year of CS and nine
optional years of CS in K-12 school system.

While the curriculum itself could not be revised, it is fortunately quite open.
Its openness actually goes in two directions a positive and a negative one. The
positive side of the curriculum is of course the fact, that teachers can include
all the desired topics into the subject, with no set limits. They can be creative,
they can introduce the students to physical computing, they can do all sort of
things. Our curriculum is made for the whole secondary school (4 years) with no
distinction between the years. A teacher can therefore decide what he/she will
teach and when he/she will teach it. Unfortunately, in practice that means, that
a teacher teaches “easier topics”, such as the use of programs and/or computer in
the mandatory subject in the first year, and leaves the important topics, such as
algorithms, programming and networks for later (elective) courses. This means
that only a small percentage of secondary school students get familiar with the
proper content. Why there is such a small percentage of these students, is a story
for another article. The first step toward a better subject was made with the
publication of the Computer Science examination catalogue for Matura, which

172 N. Mori and M. Lokar

included ACM’s knowledge areas. However, teachers were struggling with the
new content, because the old textbook did not cover all the topics. The next
logical step was a new textbook, an interactive online textbook.

3 New E-textbook

We immediately decided that the form of the new textbook will be interactive,
it will be online and free - quite the opposite from the old traditional one. We
had the support of the ministry as well as the National Education Institute.

We faced the first challenge, where we had to decide which topics will be
included in the textbook. We quickly saw, that all of the areas cannot be included
in just one textbook, because that would be too much. Therefore we decided,
that the four most important topics: programming and algorithms, systems,
networks and distributed systems and informatics and society, need to be in the
first part of the textbook.

We wanted to make a clear and concise textbook, with less text, but with
comprehensive explanations. Therefore, the second challenge was to balance the
explanations and the limited space in the textbook, and to include just the right
amount of interactive elements [2].

The new interactive online textbook is meant for students, but can also be
used by teachers. In the following sections we will explain the technology behind
the textbook and its limitations, the importance of learning objectives from the
curriculum and the grouping of areas.

3.1 Technology

The interactive textbook was created with a tool called exeCute (http://execute.
fnm.uni-mb.si/). The tool is an adapted version of eXeLearning tool (http://
exe-learning.org/), which originates in New Zealand. It is a freely available Open
Source authoring application to assist teachers and academics in the publishing
of web content. The tool was upgraded by a Slovene team into an exeCute tool.
They used their own XML scheme that describes the content in a neutral XML
format called E-learning object XML.

As seen in Fig. 1, it supports different kinds of interactive elements which
can be made with JavaScript, some are even predefined:

– low-level interactivity elements, such as images, video, sound, animation, sim-
ulation (multimedia components);

– medium-level interactivity elements, such as various tests (true/false,
multiple-choice questions, gap-fill);

– high-level interactivity elements, such as applets and educational games.

The tool itself did not support built-in code interpreter, therefore we needed
to add it ourselves. With the help of CodeMirror (https://codemirror.net/) and
Skulpt (http://www.skulpt.org/) libraries, we added an interactive and a non-
interactive interpreter directly into the e-textbook, so pupils can code alongside

http://execute.fnm.uni-mb.si/
http://execute.fnm.uni-mb.si/
http://exe-learning.org/
http://exe-learning.org/
https://codemirror.net/
http://www.skulpt.org/

A New Interactive Computer Science Textbook in Slovenia 173

Fig. 1. Explanation of MergeSort, code and example of simulation.

the content or the exercise. CodeMirror serves as the base for the editor (line
numbers, syntax highlighting, etc.), while Skulpt interpret Python code into the
JavaScript code, execute it and return the result.

ExeCute has an index structured content covering each learning set that con-
tains learning units - which are the base of the textbook. An e-learning unit con-
sists of the title, the introduction (motivation and presentation of the content),
the body (main content and interactive elements), the conclusion (summary of
what the student learned and a set of exercises), and the sources [21].

A lot of interactive textbooks had already been made with the ExeCute
tool by various authors. In Table 1 we describe the positive and the negative
properties of the tool, based on our experience.

Moreover, the ExeCute technology supports modularization of learning
objects and their grouping. Since it is XML based it is easy extendable by intro-
ducing new attributes. Due to lack of time we were not able to fully employ
them, but the plan is to use additional attributes to support the personalization
of the learning path and consequently make our e-textbook fully adaptable.

3.2 Grouping of Areas and Learning Outcomes

In Slovenia we have a CS curriculum for secondary school (gymnasium) from
1998, which was revised in 2008. There are merely 15 pages, although it covers
all four years (from grade 9 to grade 12 in K12 system). The most interesting
part is the distribution of topics with their 100 learning objectives. As mentioned
in the beginning, the teacher can choose which topics he/she will teach in the one
mandatory year, and which ones in the later optional years. Or in other words,

174 N. Mori and M. Lokar

Table 1. Properties of the ExeCute tool.

PROS CONS

- simple graphical user - run only on Windows OS
interface - poor documentation
- easy to use - slow, if you have a large e-learning unit
- online support of the - you can open only one e-learning unit per session
authors - if you want to close and stop the program, you need
- nice design to kill its process and Mozilla Firefox processes by
- predefined medium-level hand
interactivity elements - the prosess of inserting JavaScript applets is not

straight-forward
- complicated process of exporting the e-learning unit
with all the included functionalities

which learning objectives should be presented to all students. The question is,
how could one choose the most important topics and the most important learning
objectives out of 100? In practice, the easier topics always win. Of course, the
formal reason for choosing easier topics is much smarter - with the easier topics
the teachers cover 54 % of all CS content, in one year. Sadly, 67 % of the easier
topics are about the use of different programs.

Although we agree, that digital literacy is also important part of CS, this
should not be the focus of the CS course. Computing is focused on three com-
ponents: Digital literacy, ICT and Computer Science as a discipline. The last
one is the least represented or even left out, so we will focus mainly on this
component. A very good set of the knowledge areas in CS is presented by ACM
and IEEE Computer Society [1]. After analysing other curricula and standards
documents, authors of the e-textbook, including several university professors and
secondary school CS teachers, incorporated programming and algorithms, sys-
tems, networks and distributed systems, and informatics and society into the new
e-textbook. Throughout the e-textbook there is an emphasis on computational
thinking.

The new e-textbook was published online (http://lusy.fri.uni-lj.si/ucbenik/)
in the middle of 2015 and presented to all CS teachers in Slovenia. We were
really satisfied with the result, especially when we found out that the content
of the new e-textbook corresponds to the concepts of the new guidelines of A
Framework for K-12 CS Education [12].

4 First Impressions

The new e-textbook was made and it was presented to most of Slovene CS
teachers. We wanted to know, if the teachers use the e-textbook, how they use
it, and what they think about it. We created a short online survey and received
61 replies. The complete questionnaire with analysis is available online (http://
lusy.fri.uni-lj.si/ucbenik/survey2016).

http://lusy.fri.uni-lj.si/ucbenik/
http://lusy.fri.uni-lj.si/ucbenik/survey2016
http://lusy.fri.uni-lj.si/ucbenik/survey2016

A New Interactive Computer Science Textbook in Slovenia 175

The survey was divided into four sections - Basic information, Content,
Technology, Impact on learning process, and Comparison with the old
textbook.

Out of 61 replies, there were 35 (57,4 %) male and 26 (42,6 %) female teachers.
7 (11,5 %) of them were less than 30 years old, 14 (23 %) between 30 and 40, 20
(32,8 %) between 40 and 50, and 20 (32,8 %) more than 50 years old. 11 (18 %)
teachers have just started teaching and have less than 5 years of experience, 6
(9,8 %) teachers have between 5 and 10 years of experience, 12 (19,7 %) teachers
have between 10 and 15 years of experience, 14 (23 %) teachers have between 15
and 20 years of experience, and 18 (29,5 %) teachers have more than 20 years of
experience. 5 (8,2 %) of them were not familiar with the e-textbook before, all
others (91,8 %) were familiar with it.

We can see that the majority of replies was made from senior teachers, over
40 years old (65,6 %) and with more than 15 years of experience (52,5 %).

As expected, more than half - 34 (55,7 %) teachers teach at gymnasium,
18 (29,5 %) teach in primary school, 7 (11,5 %) teach in secondary professional
schools and 2 (3,3 %) teach elsewhere.

The Content and Technology parts included three questions each; one ques-
tion with a scale and two open questions. In the Content part, the question
with a scale read The content is explained well and teachers could choose num-
bers between 1 (Strongly disagree) and 4 (Strongly agree). We chose the short
Liker scale (4-point) in order to eliminate the I do not know answer. We wanted
the teachers to decide whether they agreed or not. Most of them, 95,1 %, agreed
that the content was explained well.

We asked the teachers which topics they considered important and felt they
needed to be added. Most teachers missed topics about digital literacy (22 %),
a lot of them suggested all the missing topics from the curriculum (20 %), only
one teacher suggested the topic about physical computing and only one teacher
suggested the topic about mobile applications.

We expected them to miss the digital literacy part from the curriculum, but
did not expect so few different suggestions.

In the Technology part, the question with a scale read E-textbook is tech-
nologically well made and has proper interactive elements, where we chose the
short Likert scale again. The majority agreed with the statement (93,5 %). The
interactive element that the teachers liked most was animation (39 %), the sec-
ond one was the built-in Python interpreter (28 %) and the third element was
tasks with feedback (25 %). We got a few interesting answers to the open ques-
tion if they would change anything from the aspect of technology. Two teachers
suggested better support for mobile and tablet browsers, one teacher suggested
a built-in search field, one teacher suggested support for adding notes. How-
ever, four teachers suggested more interactive elements, as the current version
was too serious and boring, and one teacher suggested a printed version of the
e-textbook, so that the students would not look into the display for too long.

176 N. Mori and M. Lokar

In the Impact on learning process part, we first asked the teachers if
they use the e-textbook in class, and then, based on the answer, provided sub
questions.

Half of them, 31 (50,8 %), use the e-textbook, and 30 (49,2 %) of them do not
use it. From those who use it in class the most common two descriptions of usage
were exercises and revision. We grouped similar answers into five groups, as seen
in Fig. 2. 19 % of the teachers use the e-textbook for explaining the concepts
with interactive elements, 38 % of them use it for exercises and for revision
of the content knowledge, 24 % of them improve their own learning plans and
slides, 9,5 % use it for flipped learning, and 9,5 % for additional explanation.
From those teachers, who don’t use the e-textbook in class, 7 (23,3 %) of them
said they didn’t know about it yet but plan to use it in the future.

Fig. 2. Distribution of usage of the e-textbook.

The last part was a Comparison with an old textbook. 18 (30 %) teach-
ers did not use any textbooks, they prefer to find information on the internet,
40 (66 %) teachers used the previously mentioned textbook and 3 (4 %) teach-
ers used other textbooks. The majority of teachers - 51 (84 %) find the new
e-textbook more useful, and the content better explained, although in the open
question section they emphasize the lack of topics from the curriculum.

We can conclude, that the teachers liked the new e-textbook, both the content
and the technology. However, they need to follow the curriculum and explain all
the topics, which means the e-textbook is not yet complete.

5 Conclusion and the Future Steps

As teachers are mostly the ones who decide which textbooks are to be used in
their classrooms, they are the ones who influence textbook development [13]. On
the other hand, this also means that a careful choice of the approach used in a

A New Interactive Computer Science Textbook in Slovenia 177

textbook towards the topics prescribed by curriculum can realize some shifts in
the way computer science is taught in Slovene schools.

According to the results of the preliminary study of the teachers’ opin-
ion described in this paper the authors of a new Slovene Computer Science
e-textbook are on the right track. The topics covered are in accordance with the
latest developments of curricula of computer science, the teachers prefer the tech-
nological solutions used with plenty of interactivity, especially in programming
and algorithms.

However, the present version should be mostly seen as the first step towards
a really modern e-textbook for Computer Science. The aspect most needed, and
unfortunately missing in the current version, is adaptability. As argued in the
introduction, e-textbooks should be designed to be adaptable to the pedagogical
situation. There are several reasons why this goal has not yet been achieved
in the current version of the Slovene Computer Science e-textbook. The most
important is the fact that the Computer Science e-textbook was meant to be
included in the Slovene portal of e-textbooks [10]. This brought some require-
ments and limitations of the layout as well as of the technological solutions that
could be used. Due to some constraints the textbook described here was not
actually included in the portal, so in the future versions some more advanced
approaches in technological preparations will be used. Fortunately, as content
and technological solutions currently used are based on HTML, the adaptations
are possible. Besides adding adaptability we are planning to add support of other
programming languages, not just Python.

References

1. ACM/IEEE-CS Joint Interim Review Task Force: Computer science curricula 2013:
Curriculum guidelines for undergraduate degree programs in computer science
(2013). https://www.acm.org/education/CS2013-final-report.pdf. Accessed 4 May
2016

2. Anželj, G., Brank, J., Brodnik, A., Bulič, P., Ciglarič, M., Djukič, M., Fuerst, L.,
Kikelj, M., Krapež, A., Medvešek, H., Mori, N., Pančur, M., Sterle, P.: Computer
science and informatics 1. e-textbook for informatics in gymnasium (2015). http://
lusy.fri.uni-lj.si/ucbenik/. Accessed 4 May 2016

3. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer science unplugged:
school students doing real computing without computers. J. Appl. Comput. Inf.
Technol. 13(1), 20–29 (2009)

4. Bosler, U., Gumbo, S., Taylor, H., Wati Abas, Z., Duchteau, C., Morel, R.,
Waker, P.: Information and communication technology in secondary education.
A Curriculum for Schools. UNESCO (1994)

5. Computing At School: Computing in the national curriculum. A guide for primary
teachers, CAS (2013)

6. Computing At School: Computing in the national curriculum. A guide for sec-
ondary teachers, CAS (2014)

7. CSTA: a model curriculum for k-12 computer science (2003). http://www.acm.
org/education/curricula-recommendations. Accessed 4 May 2016

https://www.acm.org/education/CS2013-final-report.pdf
http://lusy.fri.uni-lj.si/ucbenik/
http://lusy.fri.uni-lj.si/ucbenik/
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/education/curricula-recommendations

178 N. Mori and M. Lokar

8. CSTA: Csta k-12 computer science standards (2011). http://csta.acm.org/
Curriculum/sub/K12Standards.html. Accessed 4 May 2016

9. Daniel, D., Woody, W.D.: E-textbooks at what cost? performance and use of elec-
tronic v. print texts. Comput. Educ. 62, 18–23 (2013)

10. iUčbeniki: iučbeniki - spletno mesto interaktivnih učbenikov(itextbooks - portal of
interactive textbooks) (2016). http://eucbeniki.sio.si/index.html. Accessed 4 May
2016

11. Jurman, B.: Kako narediti dober učbenik na podlagi antopološke vzgoje. Jutro,
Ljubljana (1999)

12. K12CS.org: a framework for k-12 computer science educa-
tion (2016). https://k12csdotorg.files.wordpress.com/2016/03/
k-12-cs-framework-draft-march-18-2016.pdf. Accessed 4 May 2016

13. Knecht, P., Najvarov, V.: How do students rate textbooks? A review of research
and ongoing challenges for textbook research and textbook production. J. Educ.
Media Memory Soc. 2(1), 1–16 (2010)

14. Lai, J., Chang, C.: User attitudes toward dedicated e-book readers for reading: the
effects of convenience, compatibility and media richness. Online Inf. Rev. 35(4),
558–580 (2011)

15. Lokar, M.: The future of e-textbooks. Int. J. Technol. Math. Educ. 22(3), 101–106
(2015). Burnham: Research Information Ltd

16. Lokar, M.: E-textbook of the future. In: Proceedings of the Time 2014, R&E-
SOURCE (2016). http://journal.ph-noe.ac.at/index.php/resource/article/view/
135. Accessed 4 May 2016

17. Lokar, M., Pretnar, M.: A low overhead automated service for teaching program-
ming. In: Proceedings of the 15th Koli Calling Conference on Computing Education
Research, pp. 132–136. ACM, Koli Calling 15 (2015)

18. MindCET: The future of digital textbooks (2012). http://www.mindcet.
org/wp-content/uploads/2012/10/Digital-Textbooks.-A-literature-review1.pdf.
Accessed 24 July 2016

19. The Royal Society: Shut down or restart? The way forward for computing in uk
schools (2012). http://royalsociety.org/education/policy/computing-in-schools/
report. Accessed 4 May 2016

20. Turk Škraba, M.: Učbenik kot sredstvo za kakovostno učenje in poučevanje
družboslovja. Ljubljana: diploma thesis (2005)

21. Čuk, A., Drakulič, D., Flogie, A., Jelen, S., Kaučič, B., Lipovec, A., Milekšič,
V., Mohorčič, G., Novoselec, P., Pesek, I., Prnaver, K., Regvat, J., Repolusk, S.,
Senekovič, J., Šenveter, S., Vrtačnik, M., Zmazek, B., Zmazek, B., Zmazek, E.,
Wassermann, A.: Slovenian i-textbooks. The National Education Institute Slove-
nia, Ljubljana (2014)

22. Väljataga, T., Fiedler, S.H.D.: Going digital: literature review on E-textbooks. In:
Zaphiris, P., Ioannou, A. (eds.) LCT 2014, Part I. LNCS, vol. 8523, pp. 138–148.
Springer, Heidelberg (2014)

23. Wilson, C., Sudol, L.A., Stephenson, C., Stehlik, M.: Running on empty: the fail-
ure to teach k-12 computer science in digital age (2010). http://www.acm.org/
runningonempty/. Accessed 4 May 2016

http://csta.acm.org/Curriculum/sub/K12Standards.html
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://eucbeniki.sio.si/index.html
https://k12csdotorg.files.wordpress.com/2016/03/k-12-cs-framework-draft-march-18-2016.pdf
https://k12csdotorg.files.wordpress.com/2016/03/k-12-cs-framework-draft-march-18-2016.pdf
http://journal.ph-noe.ac.at/index.php/resource/article/view/135
http://journal.ph-noe.ac.at/index.php/resource/article/view/135
http://www.mindcet.org/wp-content/uploads/2012/10/Digital-Textbooks.-A-literature-review1.pdf
http://www.mindcet.org/wp-content/uploads/2012/10/Digital-Textbooks.-A-literature-review1.pdf
http://royalsociety.org/education/policy/computing-in-schools/report
http://royalsociety.org/education/policy/computing-in-schools/report
http://www.acm.org/runningonempty/
http://www.acm.org/runningonempty/

Computer Science in the Eyes of Its Teachers
in French-Speaking Switzerland

Gabriel Parriaux(B) and Jean-Philippe Pellet(B)

University of Teacher Education, Lausanne, Switzerland
{gabriel.parriaux,jean-philippe.pellet}@hepl.ch

Abstract. This paper discusses the situation of high-school-level Com-
puter Science education (CSE) in the French-speaking part of Switzer-
land through the eyes of Computer Science teachers. After presenting the
peculiarities of the educational system in a federal state like Switzerland
and its impact on CSE, we try to answer several questions about CS
teachers, their profile, and their representations of the field. Recogniz-
ing that the primary field of study of most current CS teachers was not
CS, we question their representations of CS in search of potential differ-
ences between specialists and non-specialists. On this basis, we analyze
the distance between CS as it is taught in French-speaking Swiss high
schools and CS as its teachers think it should ideally be taught. Finally,
we present the important need for continuing education of CS teachers
and the fact that, according to them, it should include both technical
and didactic aspects.

Keywords: Computer science · Computer science education · Com-
puter science teachers · Swiss high schools · Representations of the field ·
Continuing education

1 Introduction

This paper is concerned with several issues linked to teaching Computer Science
education (CSE) in French-speaking Swiss high schools, presented according
to the following structure. Section 2 presents the characteristics of the Swiss
educational system, its impacts on the organization of CSE in high schools and
the situation of CS teachers. Section 3 outlines our research questions and our
methodology to collect data. We then present and discuss our results in Sect. 4
and sum them up in the conclusion as Sect. 5.

2 Historical Elements and Context

Switzerland is a federal state composed of 26 cantons and half-cantons. Since
their origins, Swiss people have considered very important to give cantons a lot
of independence from the federal state. It is apparent in a lot of dimensions:
political, economic, educational, to name a few. This organization has a lot of
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 179–190, 2016.
DOI: 10.1007/978-3-319-46747-4 15

180 G. Parriaux and J.-P. Pellet

positive aspects, letting political decisions be taken by people who are close to
the field, but also less positive ones, leading to a greater complexity.

This also holds for education. Education is mostly managed at a cantonal
level, which means that Switzerland has nearly 26 different educational systems
with 26 education ministers. Some processes and instances do exist to try and
coordinate decisions and systems between cantons, but nevertheless education
politics remains complex to understand.

The Case of High Schools. Even if high schools depend from the cantons, stu-
dents obtain a so-called “federal maturity” when they graduate from them—
“federal” meaning that it is valid in the whole country.

The country-wide recognition of high-school diplomas is regulated by a fed-
eral document (hereafter referred to as “RRM”1). Cantons must conform to the
rules listed in RRM in order for their diplomas to be validated by the state
[4]. RRM establishes globally the fields that must be taught in high schools
along with the rules for certification. In more details, it distinguishes four main
teaching domains (languages, mathematics and sciences, humanities, and arts)
and three lists of disciplines: (a) fundamental fields, which must be taught to
all students; (b) so-called “specific options,” which can be viewed as the high-
school version of college majors; and (c) complementary options. Students have
to choose a single specific option and a single complementary option; therefore,
each of them only concerns a (possibly small) subset of students. RRM doesn’t
dictate the number of teaching periods assigned to each field, but only gives
an indicative proportion of each of the four domains. It also doesn’t describe
the contents of the fields. Cantons have the liberty to propose canton-specific
disciplines in addition to the RRM-mandated ones.

In this context, RRM is the most important document that exists. The ver-
sion of RRM valid today was written in 1994, with some adjustments made in
2007.

With RRM having established the fields of teaching and learning, there is
a second document (hereafter referred to as “PECMAT”2) established by the
Swiss Conference of Cantonal Ministers of Education (“CDIP”3). It describes a
short “curriculum framework” for each discipline mentioned in RRM. It is not
legally binding, but makes recommendations to the cantons [2]. PECMAT dates
to 1995 and a complementary part was written in 2008 to reflect the changes
introduced in RRM in 2007.

Based on PECMAT, the cantons each establish their own operational curric-
ula, which serve as reference for teachers. The process ends here with 26 cantonal
curricula for each field (for instance, [5,7]).

1 Règlement de reconnaissance des maturités or Anerkennung von gymnasialen Matu-
ritütsausweisen.

2 Plan d’études cadre pour les écoles de maturité or Rahmenlehrplan für die Matu-
ritätsschulen.

3 Conférence suisse des directeurs cantonaux de l’instruction publique or Schweiz-
erische Konferenz der kantonalen Erziehungsdirektoren.

Computer Science in the Eyes of Its Teachers 181

Computer Science in High Schools. In the 1994 version of RRM, CS didn’t exist
as a field, but was only mentioned as a collection of transdisciplinary topics. In
the period from 1994 to 2007, considering the lack of CS or related field in the
federal rules, some cantons decided to make use of their freedom to introduce
CS as a cantonal field.

There are no studies about the motivations of the cantons to introduce CS
as a cantonal field at that time, so uncertainty remains as to how this process
precisely occurred. Certain is that it was made independently of any federal
recommendations, so each canton decided on its own on the contents to be
taught. Without aiming at providing a detailed look at those cantonal curricula
(which would be outside our current scope), a quick look at them reveals that
the contents of this field called “Computer Science” (informatique in French)
is closer to teaching and learning the use of traditional software tools (word
processing, spreadsheets, etc.) than to the academic discipline as we identify it
today. It seems that the preoccupation of education ministers at that time was
to make sure that students were able to produce proper presentations, written
texts and graphs for their school work. If it were done today, we would certainly
question the relevance of the name of “Computer Science”.

In the 2007 addendum to RRM, CS was introduced at a federal level as a new
discipline in the list of complementary options. For the first time, the opportu-
nity was given to students to study CS as a scientific field. An addendum was
written to PECMAT to propose a description of the contents of this new course
and, in a typical process for Switzerland, each canton wrote its own operational
curriculum. A quick look at the PECMAT addendum or at the cantonal cur-
ricula derived from it shows that the mentioned themes are closer to CS as a
scientific field and not so much related to the use of software tools.

The addition of CS as a complementary option was considered a major
improvement by people concerned by the state of CSE in the country. But owing
to the nature of complementary options, only a few students actually got to study
CS that way and the concrete impact of this new course was thus limited.

In reaction to the introduction of CS as a complementary option in RRM in
2007, a few cantons decided to suppress the CS cantonal field they had introduced
before, but the majority of them kept both. Today, the resulting situation can be
characterized this way: very diverse depending on the canton, with mostly two
kinds of CS courses side by side in the curricula: one cantonal with an emphasis
on the use of software tools (referred to later as “cantonal CS”), and one federal
with a scientific orientation (referred to later as “complementary-option CS”)—
both of them named “Computer Science”.

In 2013, CDIP gave mandate to one of its subgroups to write a report about
the introduction of CS in high schools as a fundamental field for all students.
In this mandate, CDIP clearly states that the presence of CS in high schools
must be strengthened in regards to its importance in society nowadays [3]. As
we write this article, work towards the final report is reportedly in progress. If
that report recommends the introduction of CS as a fundamental field, political
decisions will need to be made in order to adapt the structure of the domains

182 G. Parriaux and J.-P. Pellet

and curricula in high schools, as well as the official documents (RRM and PEC-
MAT). Understandably, said mandate generated high expectations among CSE
professionals, who see a true opportunity for the introduction of CS for all stu-
dents in Swiss high schools in the near future. The impacts of such a decision
could be very important, in particular for CS teachers.

Situation of Teachers. In the 80s, computers were introduced in Swiss schools
before any CS curriculum existed. Teachers who graduated in CS didn’t exist
either. CS curricula were not so widespread in universities and as there was no CS
in schools, there was no reason for a CS specialist to work as a teacher. Often,
mathematics teachers or physics teachers (sometimes teachers of other fields)
got in charge of managing the school computers because they were the only ones
who had ever seen computers during their college studies. Quite naturally, when
some cantons later introduced CS curricula in their schools, those same teachers
started teaching it. Even if it is a mandatory rule that high-school teachers must
hold a Master’s-level degree in their field of teaching [4], at the time, a margin
of tolerance existed, supposedly due to the fact that CS was canton specific.

Things gradually changed and starting around 2000, more students holding a
Master’s degree in CS have been seen entering teacher-education programs and
becoming CS teachers in high schools.

When CS debuted as a complementary option in RRM in 2007, there was an
important need for CS teachers with an academic background in CS. An ad hoc
continuing-education program in CS was proposed to non-specialist teachers who
were already in charge of the cantonal CS course. Between 40 and 50 teachers
graduated from that program.

3 Research Questions and Methodology

In short, the situation of CS in Swiss high schools is a bit confusing: the federal
course as a complementary option coexist with the cantonal course, both being
named “Computer Science”, but with different contents. Some curricula focus on
the use of software tools while others are closer to academic CS. CS teachers have
different profiles, some of them being CS graduates, some others being primarily
specialists of other fields. In addition, each canton has its own organization and
curricula.

As we might be on the cusp of major change with the potential introduction
of CS for all at a federal level, there is a need to clear up the confusion and get
a better understanding of the current situation.

We decided to focus our efforts on the following research questions:

1. What is the proportion of CS teachers who primarily graduated in CS?
2. Do teachers with different backgrounds view CS fundamentally differently?
3. What are the differences between ideal CS teaching, complementary-option

CS, and cantonal CS in the eyes of the teachers?
4. What topics do CS teachers need in continuing education?

Computer Science in the Eyes of Its Teachers 183

Our method of investigation is based on a survey addressed to CS teachers.
As our institution is involved in the education of teachers for the French-speaking
part of Switzerland, we focused on that part of the country. The survey was sent
to teachers through one of the most important professional associations of CS
teachers in Switzerland, the Swiss Society for Computer Science in Education
(SSIE4).

The survey was composed of four parts: 1. teachers’ profile (academic and
pedagogical studies, current teaching); 2. needs for training; 3. representations
of CS and CSE; 4. opinion on a potential CS course for all students.

In order to better design our survey, we ran a preliminary version of it during
three personal interviews with three CS teachers who had different profiles and
backgrounds. We then proceeded to some adjustments to better fit our goals.

4 Results and Discussion

The total number of respondents was N = 37. The population size (i.e., the exact
number of CS teachers in French-speaking Swiss high schools) is not known to
us as we could not readily obtain such information from the cantons, but we
estimate it to be between 150 and 200.

Like for most surveys based on voluntary participation, the sample formed
by the respondents may be biased in several ways. We expect teachers with an
interest in the development of CS teaching to be more likely to participate. In
particular, we noted a large representation of a special subpopulation: teach-
ers who participated in the CS continuing-education program mentioned at the
end of Sect. 2, offered when complementary-option CS was introduced. We also
expect teachers in need of continuing education to be more likely to want to
give their input. Finally, we had no way of ensuring that every member of the
population would effectively be notified of the survey.

Question 1. Figure 1 shows the initial fields of study of the respondents (as
multiple answers were possible, the numbers add up to more than 37). Although
most of them (31, about 84 %) primarily studied at least one STEM5 field, only
a minority (15, about 41 %) studied CS.

Older teachers are less likely to have primarily studied CS—as mentioned
before, an obvious reason is that CS curricula were not as widespread as they
have gradually become now. Since the late 90 s especially, a growing number of
CS curricula have been proposed, a lot of them by the newly appointed uni-
versities of applied sciences6. We actually found out that the proportion of CS
graduates was substantially larger for teachers who graduated after 2000: 8 out
of 11 (73 %) vs. 7 out of 25 (28 %) for those who graduated before 2000.

4 Société suisse pour l’informatique dans l’enseignement or Schweizerischer Verein für
Informatik in der Ausbildung.

5 Science, technology, engineering, and mathematics.
6 Hautes écoles spécialisées or Fachhochschulen.

184 G. Parriaux and J.-P. Pellet

Fig. 1. The fields of initial studies of the respondents.

Question 2. Do teachers with different backgrounds view CS fundamentally
differently? We asked respondents to indicate, for each of these items, whether
they completely disagree, somewhat disagree, somewhat agree, or completely
agree with it.

“Absolutely spoken, outside schools, computer science...

1. is mainly applied mathematics” (hereafter referred to as the AppliedMath sub-
question)

2. doesn’t really have stable components and changes all the time” (NotStable)
3. changes rapidly, but rests on stable notions that do not change a lot”

(StableNotions)
4. has theoretical foundations” (HasTheory)
5. focuses mostly on abilities to use software tools” (Tools)
6. mainly represents know-how rather than concepts and notions” (KnowHow)
7. is the major science of the 21st century” (MajorScience)

Looking qualitatively at the respondents’ education profiles, we categorized
them into three groups: (G1) those whose primary education was CS (NG1 = 15);
(G2) those whose primary education was not CS, but who had complementary or
continuing CS-related education (NG2 = 17); (G3) those who had no CS-related
education other than being self-taught (NG3 = 5; NG1 +NG2 +NG3 = N = 37).
Comparative results on each subquestion, for each of the three groups and for
all respondents together, are shown in Fig. 2.

These results show the following. 1. CS is considered by more than 80 % to
be more than just applied mathematics. 2. Less than 5 % think that CS doesn’t
have stable components. 3. All but one respondent somewhat or completely
agreed that CS rests on stable notions. 4. Less than 5 % disagreed that CS has
theoretical foundations. 5. About 20 % are of the opinion that CS is mainly about
how to use software tools. 6. Most (more than 80 %) disagree that CS mainly
represents know-how. 7. More than 75 % somewhat or completely agree that CS
is the major science of this century.

Although small group differences can be observed, Kruskal–Wallis H tests
[6] conducted for each subquestion revealed that only subquestions HasTheory

(H(2) = 8.37, p = 0.015) and KnowHow (H(2) = 6.71, p = 0.035) exhibited

Computer Science in the Eyes of Its Teachers 185

Fig. 2. The respondents’ declared agreement on the nature of CS on 7 axes. Data is
shown for the whole sample and for the three discussed subgroups.

Fig. 3. The respondents’ view on what CS teaching should be ideally (C0) vs. what it
is for two course types currently given in high schools (C1 and C2).

statistically significant differences between our three groups. In the former case,
the self-taught group was significantly less likely to agree that CS has its own
theoretical side; in the latter, they were significantly more likely to agree that
CS was rather about know-how than concepts and notions. However, the small
sample size of that group makes these results subject to caution.

186 G. Parriaux and J.-P. Pellet

Question 3. Teachers have an opinion of what the ideal format of CS teaching
should be. We wanted to compare this ideal representation with the two course
types that are currently given, namely, the complementary-option CS course
(hereafter referred to as C1) and the cantonal CS course (C2). We thus asked
respondents to indicate, for each of these items, whether they completely dis-
agree, somewhat disagree, somewhat agree, or completely agree with it—once
for C1, once for C2.

“CS teaching in the context of this course...

1. is mainly about learning how to use office software” (Office)
2. builds on concepts and notions” (ConceptsNotions)
3. consists mostly of know-how” (KnowHow)
4. is given with a computer rather than with paper/pencil” (WithComputer)
5. mainly has the purpose of teaching tools useful for the students’ work”

(MainlyTools)
6. gives a representative overview of what the academic discipline is” (BigPicture)

We then asked a similar question: “Ideally, CS teaching in high schools...”
with the same six subquestions as mentioned above, in a “should” form (i.e.,
item 1. becomes “should mainly be about learning how to use office software,”
2. becomes “should build [...]”, etc.). We refer to this hypothetical ideal course
as C0 and compare the responses to those given for C1 and C2.

The results are shown in Fig. 3. Looking at the C0 bars, we can say that
for about 80 % of respondents, a CS course in high school does not concern
itself with teaching how to use office or other software tools. It should build on
concepts and notions that do not systematically require the involvement of a
computer, and provide a representative overview of the discipline. Respondents
are split on the KnowHow subquestion, with about 57 % only agreeing that an
ideal CS course should mainly consist of know-how.

In an effort to better visualize the differences between the ideal case and the
two course types currently given, we performed a principal component analysis
(PCA, see e.g. [1]) of these answers. The scree plot of the PCA is shown in
Fig. 5, and the answers, divided into three groups, are shown along the first two
principal components in the scatterplot in Fig. 4. The projection of the 6 initial
dimensions have been overlaid on the scatterplot in order to better understand
the nature of the principal components.

The scree plot shows the large importance of the first component, while
the first two explain almost 80 % of the variance. This gives us confidence in the
faithfulness of the scatterplot representation, on which the three groups of points
are quite clearly separated. The C1 and C2 groups are even linearly separable.
The former has negative values along the first component, corresponding to a
teaching oriented towards concepts and notions and an overview of the discipline;
the latter is strongly oriented towards office and other software tools and know-
how. Both have positive values along the second component, which translates
to these courses being very often given in computer rooms, in interaction with
hardware.

Computer Science in the Eyes of Its Teachers 187

Fig. 4. Scatterplot of the first two components of the data shown in Fig. 3.

Fig. 5. Scree plot of the PCA whose first 2 components are shown in Fig. 4.

The comparison to the data points from the ideal group C0 is interesting.
A first observation is that C1 is closer to the ideal course than C2, but nev-
ertheless, C0 has a wider spread along the first component. Second, the most
striking difference between C0 and C1 is along the WithComputer axis, indicating
a tendency to consider that some part of CS teaching, contrary to what is being
done now, should be done with paper/pencil. Roughly spoken, the ideal course
focuses on the concept and notions like the C1 optional course does now, but
with a bigger emphasis on the know-how, and with a portion of it given outside
the computer rooms.

188 G. Parriaux and J.-P. Pellet

Regardless of the distance between their ideal representation and the courses
they are actually giving, respondents have a positive feeling towards CS teaching.
Only one out of 37 respondents indicated being not satisfied with it, all others
being either somewhat satisfied, satisfied, or very satisfied. 15 respondents (41 %)
would like to teach CS more and only one would like to teach CS less (the others
[21 people, 57 %] are satisfied with the current situation). Moreover, 92 % (33
out of 36) find it somewhat opportune, opportune, or very opportune for CS (as
a science) to be taught to all students mandatorily.

Question 4. We wanted to know on what topics CS teachers needed continuing
education. Two cases were distinguished: 1. the need for continuing education
today in the context of the CS courses currently given (C1 and C2); and 2. the
need for supplementary education that would arise if C0 existed as a fundamental
CS course for everyone (hereafter and in the legends referred to as “CS for all”).
In the former case (today’s situation), almost 90 % said they would need contin-
uing education. In the latter, 79 % of those who said they would be interested
to teach CS for all indicated they were likely to participate in a supplementary
education program. Of those, nearly half (9 out of 21) said that they were even
willing to participate in a program requiring about 300 hours of work (10 ECTS
credits).

Fig. 6. Wanted breakup of con-
tinuing education related to CS.

We are attached to a university for teacher
education, and traditionally, we are not sup-
posed to educate in matters related to the core
discipline the future teachers will teach—only in
matters of pedagogy and didactics. However, in
certain fields, the need for courses with contents
from the disciplines themselves is tangible. Thus,
we first asked respondents to indicate the pro-
portion of didactic aspects vs. aspects from the
CS discipline they wanted to appear in the con-
tinuing education. The results, shown in Fig. 6,
show that both now and in the hypothetical case
of a future CS for all course, the continuing edu-
cation courses offered to them should clearly not
only consist of pedagogical aspects, but should
review aspects from the fundamental CS discipline, too—and that even in a pro-
portion slightly in excess of 50 %. This is interesting in two ways—fundamental
scientific aspects are needed while pedagogical aspects are not dismissed as sec-
ondary or unimportant either.

Finally, we were interested in a list of topics for this continuing education that
respondents would find most relevant and useful. Both for the current situation
and in the case of a CS for all course, we asked them to grade topics as either
unimportant, rather unimportant, rather important, and important. The number
of respondents finding each topic at least rather important is shown in Fig. 7,
with the topics being ordered according to the average awarded importance. The
topics themselves are categorized in three groups, represented by different colors:

Computer Science in the Eyes of Its Teachers 189

Fig. 7. Proportion of respondents who find the list of shown topics important in their
continuing education as CS teachers.

first, fundamental topics from core CS; then, less technical topics related to the
interaction of CS with society and media; and finally, topics linked to pedagogy
and didactics.

A first observation is that the importance of topics is quite stable in the
two distinguished cases. When considering the difference in awarded importance
between the “now” and “CS for all” cases, we note a small, but statistically
significant increase in importance for the group of core CS topics at the expense
of the other two groups (H(1) = 3.07, p = 0.079). These results still give us
a strong basis for the planning of continuing education courses today whose
structure will still be relevant if and when CS for all is introduced.

We see that Algorithmics, Programming, Data Structures is the theme
deemed most important, followed by three pedagogically oriented themes.
Among the more technical themes, we can also observe that more importance is
awarded to the fundamental themes (like programming, communication, repre-
sentation of information) than to the more applied themes (like machine learning,
robotics, operating systems). It remains an open question to know whether this
is due to the fact that the respondents feel that the applied themes are less
important in the context of their teaching, or that they feel they are more easily
able to catch up on their own on such applied themes.

Then, whether we take the first 2, 6, 8, or 10 topics according to their awarded
importance, we exactly have half of them belonging to the CS discipline and half
of them treating pedagogical aspects, qualitatively reiterating the results from
Fig. 7: the proposed continuing education should definitely not exclusively focus
on pedagogical aspects to be of interest to the respondents.

5 Conclusion

We described the current state of CS teaching in Swiss high schools as well as
some of the intricacies that led to it. Starting from that, we exposed our research

190 G. Parriaux and J.-P. Pellet

questions, which we investigated with a survey sent to CS teachers from the
French-speaking part of Switzerland.

The major results from our survey showed that most teachers currently do not
have a primary education in CS, although the proportion in increasing. Most of
them, however, had some form of complementary education in CS-related topics.

Regardless of their background, the respondents’ view of what CS is does not
differ fundamentally along the dimensions we explored, even if those with no CS
education were less likely to have strong opinions on the nature of the field.

The representation of the ideal CS course, which gathers a strong agreement
among respondents, differs from the two course types that are currently offered.
The current offerings consist of a cantonal course, which is deemed as too focused
on the usage of some software tools and not focused enough on concepts and
notions, and of an optional course, which is closer to the ideal representation
of the ideal CS course—one major difference being that the ideal course should
include a more important part of pencil/paper activities and happen less often
in front of a computer.

Finally, respondents indicate strong need for continuing education with a
balanced proportion of both pedagogical topics and topics linked to the funda-
mental aspects of CS.

Our survey was only run on the French-speaking part of the country: it
would be very interesting to extend this study to the German-speaking part of
Switzerland, too, and to look into the causes for potential significant differences.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

2. Conférence suisse des directeurs cantonaux de l’instruction publique (CDIP): plan
d’études cadre pour les écoles de maturité (1994)

3. Conférence suisse des directeurs cantonaux de l’instruction publique (CDIP): infor-
matique au gymnase: remise d’un mandat pour l’établissement d’un rapport (2013)

4. Conseil fédéral, Conférence suisse des directeurs cantonaux de l’instruction publique
(CDIP): ordonnance du Conseil fédéral/règlement de la CDIP sur la reconnaissance
des certificats de maturité gymnasiale (RRM) (1995)

5. État de Fribourg: Plan des études gymnasiales, Domaine des branch-
escantonales, Informatique (2015). http://www.fr.ch/s2/files/pdf77/fr maturite
gymnasiale informatique.pdf

6. Mogey, N.: So you want to use a Likert scale. Learning Technology Dissemination
Initiative 25 (1999). http://www.icbl.hw.ac.uk/ltdi/cookbook/info likert scale/

7. État de Vaud: Plan d’études de l’école de maturité (2015). http://www.vd.ch/
fileadmin/user upload/organisation/dfj/dgep/dgvd/fichiers pdf/PET EM.pdf

http://www.fr.ch/s2/files/pdf77/fr_maturite_gymnasiale_informatique.pdf
http://www.fr.ch/s2/files/pdf77/fr_maturite_gymnasiale_informatique.pdf
http://www.icbl.hw.ac.uk/ltdi/cookbook/info_likert_scale/
http://www.vd.ch/fileadmin/user_upload/organisation/dfj/dgep/dgvd/fichiers_pdf/PET_EM.pdf
http://www.vd.ch/fileadmin/user_upload/organisation/dfj/dgep/dgvd/fichiers_pdf/PET_EM.pdf

Work in Progress

IT2School – Development of Teaching Materials
for CS Through Design Thinking

Ira Diethelm(B) and Melanie Schaumburg

Computer Science Education, Carl von Ossietzky University,
26111 Oldenburg, Germany

{ira.diethelm,melanie.schaumburg}@uni-oldenburg.de

Abstract. Design Thinking is known as a process to create ideas and
new applications. We were curious about the results when it was applied
to the challenge of developing teaching materials for a non-profit project
to support CS and IT (information technology) in schools from late pri-
mary to secondary schools. Therefore it had to take into account many
different teachers and other actors. Our aim was to create usable and
meaningful material that most teachers would like to teach with in their
classes, regardless of their background or experience or knowledge of CS.
Therefore it had to be interesting and powerful and at the same time
easy to use and understand. And it also had to be motivating and inspir-
ing for students aged 10 to 16. In this paper we report on our process
and first insights. We also present some categories of teaching materials
that came up during this process and personas of teachers. These may
be helpful in other similar projects as well.

Keywords: Design thinking · CS teaching materials · Personas

1 Projects to Support CS

Although Computers and information technology in general are already part of
our everyday life, CS is in many countries not a compulsory subject at schools.
Therefore many projects are created to support CS or Informatics or Compu-
tational Thinking or programming at schools, like ‘Hour of Code’ [4], ‘code.org’
or the ‘CoderDojo’ [2], the ‘Beaver Contest’, ‘CS Unplugged’ [3] and lately the
‘Micro:Bit’ [1] just to name a few that are known internationally. But there are
also very many national or regional activities that focus on supporting CS as
a subject at schools or want to engage children and youths in creating their
own pieces of information technology to play with and do something meaningful
with. These are often initiated by private persons and also sometimes run in
cooperation with local companies or local communities of software developers.

Most of these projects focus on one topic or method, like ‘programming’ or
‘unplugged’ or ‘learning to program’ or ‘creating projects with a certain micro
controller’. Sometimes they focus on environmental topics like geo-data, energy
or light. Therefore, they tend to give a focused but maybe narrow view on CS at
school. And most of these projects address students directly or are run outside
of school and do not address whole schools and regular classes in the first place.
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 193–198, 2016.
DOI: 10.1007/978-3-319-46747-4 16

https://code.org

194 I. Diethelm and M. Schaumburg

2 Challenge

The German association ‘Wissensfabrik’ is a widespread and stable network of
over 120 different big and small companies with long tradition of cooperation
between companies and schools for supporting STEM and economical thinking
inside the regular school schedule. As one of their scientific partners we were
faced with the task to design and develop teaching material for the project
‘IT2School’, meeting each of the following requirements:

– to raise the motivation of children and youths for CS and IT,
– to give a wide insight into the variety of CS and IT in our everyday life,
– to lead to an understanding of some important principles of CS and to a

stronger self-efficacy of students and teachers regarding CS and IT,
– to fit most grades at secondary schools, maybe even late primary schools,
– to be taught by primary and secondary school teachers who do not have a CS

background and yet be interesting for those who have,
– to be taught inside other subjects like e.g. physics or art due to the fact that

CS is often not a compulsory subject, and
– to be used in cooperation with local companies and their staff who also may

not have a CS background or may have different notions of what might be
important to teach in schools.

This challenge appeared quite unsolvable with other common methods inside
a time frame of a year and a half of development time. So we tried Design
Thinking to approach a most suitable solution.

3 Design Thinking

Design Thinking is a solution oriented process and also a toolbox with different
methods. Design Thinking helps people to think like designers: Before creating
a product, you should first try to understand the problem or issue by observing
and talking with customers. Usually models or prototypes are created to be
validated with the target group. The creative part of design is to create ideas
to solve a problem, not to implement the solution. And one important point in
Design Thinking is not to fall in love with the ideas, to allow to fail early and
often, see [7].

Design thinking is an intentional and iterative process in order to achieve new,
relevant solutions with positive impact. Design Thinking gives faith in creative
abilities and a process for transforming difficult challenges into opportunities for
design. And it is a solution oriented process - the mindset of Design Thinkers is
that a solution can be found for any problem.

The design process is also a structured approach to generating and evolving
ideas. It has six phases shown in Fig. 1 that help navigate the Design Thinking
team from identifying a design challenge to finding and building a solution. After
you have iterated your prototypes and when you think you and your target group

IT2School – Development of Teaching Materials 195

Fig. 1. Design Thinking process

are satisfied you can step into the ‘implementation phase’ - which is not a Design
Thinking phase, but the next step to bring your proposed solution into real life.

It is a deeply human approach that relies on the ability to be intuitive, to
interpret what you observe and to develop ideas that are emotionally meaningful
to those you are designing for. The process is iterative and if necessary you can
start at each phase again or go back to each phase. It is also collaborative,
optimistic and experimental. That means, it begins from deep empathy and an
understanding of needs and motivations of people, their goals and pains. To try
to solve the problem in a team and benefits greatly from the views of multiple
perspectives, and others’ creativity. Design Thinking is the fundamental belief
that we all can create change - no matter how big a problem, how little time or
how small a budget. Irrespective of any existing constraints designing can be an
enjoyable process. It gives permission to fail and to learn from mistakes as it is
an iterative process, see [7].

4 Personas

One of the most important points in the design thinking process is the definition
of ‘points of view’ or so called personas. Personas are detailed but fictional
descriptions of certain different types of users or customers. In the first two
phases of the design thinking process the needs of the target group(s) are in
focus to come very close to good personas. For our task the teachers are the
most crucial part. They are the ones who decide what to teach and when in
what class. And they also decide whether they cooperate with a company or
not. So first we put our focus on them.

With our experience and considering the research on teacher education in
general and on CS teachers in particular, and also research on teacher personali-
ties, see [10] in several iterations of step 1 and 2 we came to the following points
of view:

Sabrina: She is extroverted and wants to save the world. Her intention in teach-
ing CS is to engage all students and also to show her colleagues what is pos-
sible. She is heading for being a teacher educator or principal. She needs a
project that results also in reading her name in the local newspapers and
meet interesting people to network with from outside of school.

196 I. Diethelm and M. Schaumburg

Susan: She is a very reflected and well-educated and a slightly introverted
teacher who is emotionally connected with teaching and will always be a
teacher. Her main aim is to prepare all students as well as possible for the
future. She needs meaningful content and enlightening ideas for her lessons
that are always in progress.

Robert: He did not plan to be a teacher, he once missed a chance to become
a professional football player. But now he has a family to care for and many
other things on his mind. He cannot afford to spend much time on preparation
or rethinking lesson plans. He needs something that works more or less out
of the box and ensures that the students are occupied for some hours so that
he can think of something else.

Tim: He is a self-conscious tinkerer who teaches physics and technology. He is
also interested in computers but mostly in hardware. He is open-minded and
believes that if some students of his class gets the ideas and the motivation
the others will follow. He needs only a few hints and some hardware items as
an example. Then he will try it in his class and adjust the intended curriculum
to his needs spontaneously.

Irene: She is a very experienced teacher who really wants the students to learn
a lot and therefore she is a bit afraid of failing with new content inside her
classroom. She is quite open but only likely to try something if it is written
down in detail what to do when and why. She will try it only if she is convinced
that it will work for all students in her class.

Herbert: He is a very experienced teacher who likes to keep control over the
class and likes a clear outline of what is done in which lesson. He likes tradition
and is not likely to change his curriculum that he has taught for many years
now. He also has little interest in new or fancy technology.

5 Ideas and Prototype

With these personas in mind we went into the ‘ideate’ phase of the Design
Thinking process. In this phase all ideas are allowed and welcome: the safe bets,
the crazy ideas and also delighting ones. It is not allowed to argue against any
idea you or your team brings up in this phase. Every idea is written on a post-it
note and put on a wall. We collected many ideas from existing projects and also
came up with a few new ones for CS at school that would meet these needs and
allow an authentic teaching style.

From our experience in teacher education and also from [9] we derived two
dimensions on how teachers and especially our personas would judge teaching
material at first sight:

Look and Feel: What does the material look like? What is the nature of the
materials it analogous or paper-based or with software or with hardware pieces
or are other places or persons from outside of school part of it? (right)

Student Activity: How do the students interact with it? What is the teacher’s
role - is it to teach or to guide? Are the classroom activities focusing on

IT2School – Development of Teaching Materials 197

understanding, detecting principles or recognizing them or are the students
exploring, trying out? Or do students create something on their own and
share it with other people, parents, friends or relatives? (up)

In a next step we sorted every post-it note into this matrix and tried to find
at least one idea for every square in the matrix, see Fig. 2.

Fig. 2. Matrix for the ideation phase based on personas

Then, we tried to validate the teachers’ needs and to anticipate what each
of the personas would understand and like or dislike about each idea. In this
phase many other people, mostly teachers, who came by our office were asked
what they thought how each persona would deal with the ideas and how the
requirements are met. Only those ideas resulted as one of the basic modules
that would fit all personas. It was not necessary that they would all use the
same module in the same way. As a first result we found five basic modules:

1. Communication from blinking to encryption: This modules starts at coding
information via blinking, see also [5], and the historical dimension of trans-
porting information over large distances by Morse code, also building a string
telephone and submitting pictures are part of the experience [3,6] and it ends
with easy Caesar’s encryption.

2. Understanding the internet: How does such a big world fit into such a tiny
box? This question guides a setting to explain how the internet works, with
paper and other craft materials only, but also using IP-addresses.

3. Codes in a supermarket: How does the checkout know the price? What hap-
pens if we manipulate barcodes and how are these used to run a supermarket
are discovered in this module. Here, students and teacher should visit a local
supermarket and get a view behind the scenes. Afterwards students think
about useful innovations using QR-Codes in their school, e.g. for a game.

4. How to program, using Scratch, also must be part of such a setting and is
also usable for all kinds of personas.

5. My very special input: What happens if we connect bananas or play-doh to
the computer and use them as a keyboard is discovered in this module using
Makey Makeys [8] or similar controllers.

For these basic modules we created prototypes to test with teachers, students
and members of cooperating companies. This sample consists of persons from

198 I. Diethelm and M. Schaumburg

the Wissensfabrik’s network and from our teacher trainings. This process is
constantly taking place and we are collecting feedback from each of these groups
and refine our ideas and prototypes.

6 Test and Next Iteration

We continuously iterate the Design Thinking phases. While collecting feedback
we learn more and more about our target groups. Resulting from feedback that
we collected in the first iteration we noticed another need for two more basic
modules: One was to add a module for the methodology of Design Thinking
itself. This is not suitable for every teacher but many of our (open-minded)
teachers we worked with were interested in how we created the modules.

The second need was to add something that was a bit more challenging and
had to do with smartphones. So we created a module to programm one’s own
app with AppInventor to control a light via bluetooth. This is a module for
teachers like Sabrina who are already quite confident and search for something
special. All module descriptions for present basic modules are already available
for free at the project’s webpage www.it2school.de in German.

The project is (and maybe always will be) work in progress. More modules
are planned: some for smaller children and some more challenging ones that go
deeper into CS regarding security issues or exploring big amounts of data. We
are now also creating personas for the employees of companies who co-operate
with these teachers to create training sessions for them.

References

1. BBC - The Micro Bit - home. https://www.microbit.co.uk/. Accessed 09 June 2016
2. CoderDojo. https://coderdojo.com/about/. Accessed 09 June 2016
3. Computer Science Unplugged. http://csunplugged.org/. Accessed 09 June 2016
4. Hour of Code. http://hourofcode.com/. Accessed 09 June 2016
5. Curzon, P.: Computational Thinking: Searching to Speak — Teaching London

Computing. http://teachinglondoncomputing.org/free-workshops/computational-
thinking-searching-to-speak/

6. Hunkin, T.: The Secret Life Of The Fax Machine. http://www.secretlifeofmachines.
com/secret life of the fax machine.shtml. Accessed 09 June 2016

7. Ideo, L.L.C.: Design Thinking for Educators, 2nd edn. Riverdale, Riverdale (2012)
8. JoyLabz. Makey makey. http://makeymakey.com/. Accessed 09 June 2016
9. Stoffers, A.-M., Diethelm, I.: Teacher profiles for planning informatics lessons.

In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 150–160.
Springer, Heidelberg (2014)

10. Terhart, E. (ed.): Handbuch der Forschung zum Lehrerberuf, 2nd edn. Waxmann,
Münster (2014)

www.it2school.de
https://www.microbit.co.uk/
https://coderdojo.com/about/
http://csunplugged.org/
http://hourofcode.com/
http://teachinglondoncomputing.org/free-workshops/computational-thinking-searching-to-speak/
http://teachinglondoncomputing.org/free-workshops/computational-thinking-searching-to-speak/
http://www.secretlifeofmachines.com/secret_life_of_the_fax_machine.shtml
http://www.secretlifeofmachines.com/secret_life_of_the_fax_machine.shtml
http://makeymakey.com/

“Why Can’t I Learn Programming?”
The Learning and Teaching Environment

of Programming

Zsuzsanna Szalayné Tahy1(B) and Zoltán Czirkos2

1 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
sztzs@caesar.elte.hu

2 Department of Electron Devices,
Budapest University of Technology and Economics, Budapest, Hungary

czirkos@eet.bme.hu

http://inf.elte.hu, http://vik.bme.hu

Abstract. This article focuses on teaching a textual programming lan-
guage as the first programming language (allowing for previously stud-
ied visual programming languages). The teaching process is placed into a
real educational environment in connection with the national curriculum,
social expectations and students reactions. In order to write a program,
several abilities and pieces of knowledge are required. There are tools
and syllabuses for teaching these skills but the result mainly depends on
the personality of the students and teachers. We use the term “Learning
Activity Unit” to describe the teaching–learning process of program-
ming and detecting gaps in every day practice. This very simple model
is practical for teachers to detect problems. In the global view of teaching
programming, the implementation of the curriculum could be analysed.

Keywords: Computational thinking · Curriculum design · Program-
ming · Teaching-learning process · Learning Activity Unit

1 Introduction

Twenty years in practice gives many impressions in teaching informatics. Focus-
ing on textual programming, the main concepts are almost the same, but the tools
have changed. The choice of language has changed from Pascal to C-based lan-
guages and nowadays the object oriented programming concept is preferred. Sev-
eral methods have been tested to improve the effectiveness of teaching. At the
beginning it was 10–20% of the students who had to learn programming, nowadays
this number should approach 100 % [3]. The extension of teaching programming
skills raises new question: Is everybody able to learn programming?

Teachers have some practice based on other subjects to use special methods
in several cases. There are studies on how to teach some skills in a selected,
already-known group, or well-known prior knowledge/abilities [1]. However, the
digital age is too young to know all the answers.

The Learning Activity Unit is a diagnostic tool used for analysing expec-
tations and individual achievement of knowledge and skills required to develop
c© Springer International Publishing AG 2016
A. Brodnik and F. Tort (Eds.): ISSEP 2016, LNCS 9973, pp. 199–204, 2016.
DOI: 10.1007/978-3-319-46747-4 17

200 Zs. Szalayné Tahy and Z. Czirkos

computational thinking [4]. This article presents some sample cases to demon-
strate how this tool can be used in the learning environment analysis. Curric-
ula, syllabuses and lesson plans can be analysed by the Learning Activity Unit
concerning aims, methods and timing. This analysis gives a global view of the
learning process, guiding the long-term work. The presented collection is far from
being complete but the examples describe real problems or contra-productive
practices and their recommend solutions.

2 Programming – The Learning Activity Unit Framework

In this section we present the Learning Activity Unit (LAU), a framework whose
main objective is to understand the learning process of programming, and to
diagnose learning problems. The Learning Activity Unit encompasses the com-
plete learning cycle, from the starting point, when the students first meet a
concept of programming, to the point when they are able to use it on their own.
The phases defined by the model are as follows:

1. Initial learning: As the first step, programs, solutions of programming tasks
are written by following the instructions.
(A) Active learning: students are motivated to learn, they read sources, listen

to lectures. They follow the logic of problem solving.
(M) Moderated learning: students make notes; they observe what the teacher

does and try to do the same.
(P) Passive learning: students are outside observers, they scroll the readings.

2. Trying phase: students (or the teacher) explore how the new knowledge or
skill could be used.

3. Experimenting phase: students have to change the written program, or they
have to solve some very similar tasks with the help of teacher.

4. Pause: some learned details could be forgotten.
5. Using:

a. Repeating means repeating the learned things in phase 1.
b. Modifying: students are able to learn creativity, but only at the original

level presented.
c. Creating new programs could give the sense of success.

6. Back to phase 4 or phase 1. It implies a lifelong learning process; however,
the process could be broken in every phase.

2.1 The Using of the Learning Activity Unit

The LAU is not homogeneous and not absolute. It is a practical tool to focus on
the main points of the learning and teaching process of programming. We apply
LAU in a similar way to how programmers work with functions and threads.
Every LAU allocates a part of capacity in the human’ mind. There are LAUs
running parallel, calling each other and embedded into each other. The LAU
Model – with the relationships between LAUs – describes a complex learning
process.

The Learning and Teaching Environment of Programming 201

There are many cases in the preparatory period of learning textual program-
ming, where we can observe this activity model with the return to phase 1,
for example learning a visual language or learning how applications work. If a
curriculum is well-structured, these studies develop many important skills and
always gives new knowledge to the student. On the other side, there are many
courses, programming actions what provide only a foretaste of the knowledge,
a short insight, but no more. There are courses focusing on phases 1–3. These
courses seem to be very successful, but the outcome is useless.

For illustration only, a humanities educated parent wrote: “My 12-year old
daughter is very good in logical tasks. She does programs in Scratch but follows
always the trodden path. . . She attends courses but it seems there is no novelty
for her.” However, we do not explore those courses, but this opinion shows two
problems: (1) This girl prefers 5a Repeating activity and courses do not moti-
vate her to choose 5c Creating. (2) These courses are only good for wakening
up interest for programming, but cannot improve or develop the knowledge to
a usable level. Even if courses could develop skills, they are not in connection,
they are not structured therefore every course starts from the same basic level.

The LAU seems to be simple enough to use in every day practice, never-
theless, it fits to Bloom’s renewed taxonomy and takes into consideration the
effectiveness of learning methods as well as the forgetting rates and benefits of
linear and spiral curriculum design.

3 Programming Curriculum in Hungary

According to the Hungarian National Curriculum1, students are required to learn
programming. The advanced level secondary school final exam in Informatics
includes a task testing the algorithmic and programming skills. The history of
informatics education is similar to the Polish system, described in 2015 at the
ISSEP conference [5]. The Hungarian National Curriculum was accepted in 2008
but it was renewed in 2012, expanding knowledge expectation compared to the
former version. Skill expectations are similar to the new Polish Curriculum but
supplemented with topics of hardware and network knowledge (e.g. ISO OSI
Model). Unfortunately, the Core Curriculum2 – prescribed by government –
cut the number of lessons to the third compared to the National Curriculum.
However, the Hungarian IT sector, the representatives of universities and civil
groups (e.g. parents) demand an increase number of lessons of Informatics.

The elimination of informatics lessons has two consequences. On the side of
public education, skills and knowledge is to be learnt in only one third of the
required time. Although this seems to be nonsense, it is written in the certified
syllabus3. Analysing the syllabus, timing limits teaching to the list of concepts.
1 Nemzeti alaptanterv (National Curriculum), http://www.kozlonyok.hu/nkonline/

MKPDF/hiteles/MK12066.pdf, Magyar Közlöny vol 66 (2012) (in Hungarian).
2 KT 9-12G (Core Curriculum of informatics for grade 9–12) http://kerettanterv.ofi.

hu/03 melleklet 9-12/3.2.16 informat 9-12.doc (2012) (in Hungarian).
3 Informatika 10. tanmenet (Syllabus for grade 10) http://ofi.hu/sites/default/files/

attachments/nt 17173 informatika 10.docx (2016) (in Hungarian).

http://www.kozlonyok.hu/nkonline/MKPDF/hiteles/MK12066.pdf
http://www.kozlonyok.hu/nkonline/MKPDF/hiteles/MK12066.pdf
http://kerettanterv.ofi.hu/03_melleklet_9-12/3.2.16_informat_9-12.doc
http://kerettanterv.ofi.hu/03_melleklet_9-12/3.2.16_informat_9-12.doc
http://ofi.hu/sites/default/files/attachments/nt_17173_informatika_10.docx
http://ofi.hu/sites/default/files/attachments/nt_17173_informatika_10.docx

202 Zs. Szalayné Tahy and Z. Czirkos

Students hear (or do not hear) the concepts but there is no time to practice
them. Described in LAU terms, this is only part of the Initial learning (1),
because it is based on informal learning, too. The Trying (2) is homework,
the Experimenting (3) and sometimes the Using (5) would be part of other
subjects. In many cases, the Pause phase is too long, or there is too much time
between the next Initial learning and previous Using phase.

On the other side, many companies from the IT sector try to supplement the
programming lessons, to fill in the gaps of public education. But this effort cannot
reach the goal because they are not able to ensure long-term development. A 10-
hours crash course, or a 30-hours weekend-only courses, maybe a one-week-long
camp or a half-year-long course in learning programming gives “a sneak peek”.
It looks very good, but these courses are not connected to each other, therefore
long-term effectiveness is uncertain. In the view of LAU: Phases 1–3 are prepared
but phase 4 is too long, phase 5 may never come. The return (loop back to phase
1) will result in random development or backwardness. Moreover, this practice is
very dangerous at the point when governmental education management envisions
the teaching of informatics as activities of summer camps.

4 Introduction to Textual Programming

4.1 Expected Skills and Hidden Gaps

In order to code a program, one needs almost a dozen skills. Studies of teach-
ing programming explore the role of these skills; describe methods of developing
one or a group of skills [6]. Modern educational systems offer opportunities to
improve these skills before learning textual programming. Skills and knowledge
are mentioned in different ways according to the focus of research. The follow-
ing skills were found useful to learn before text-based programming: (1) typing,
(2) mother tongue based comprehension, (3) basic reading and writing in Eng-
lish, (4) practice in multi window software using, (5) abstraction, (6) logical
decision, (7) recognizing and defining data types (boolean, character, integer,
real, string), (8) recognition and defining data structures (array, 1D, 2D, 3D,
record, graph), (9) object modelling, (10) algorithmic thinking (sequence, alter-
nation, loop) in real word situations, (11) understanding and using functions
of applications (e.g. text editor, spreadsheet, animation designer), (12) system
(process) modelling.

The list, of course, may not be complete, but the more important aspect
is the knowledge level of skills. When one writes a for-loop, six skills are acti-
vated from the above mentioned ones, and every, missing skill is a gap. As it
is described in [2], “small steps” are very important in effective teaching. The
authors of this article analysed books and described a tool for detecting gaps in
textbooks, but practically there were no textbooks without big gaps. It seems
that text-based programming is too complex, and the success of teaching text-
based programming depends on how many items are known before using them.

The Learning and Teaching Environment of Programming 203

This problem can be observed at the Basics of Programming 1 course4 of
Engineering Information Technology at BME. We conducted an experiment in
2014, asking 3–10 questions from 525 students every week about the topic of
the lecture. For example, after the second lecture, 225 students answered this
question about variables:

Have you ever heard about variables before this lecture?
1. I haven’t ever heard about them, this is new for me.
2. I have heard about them, but I’ve never tried them.
3. I have seen, I’ve tried in some cases
4. I have used this knowledge, I am experienced.

The average result of the first test written by students who used variables before
the course (i.e. who had chosen answers 3. or 4. in the questionnaire) was 72%.
On the other hand, those who had chosen answers 1. or 2. only scored 46% in the
test. The lack of prior knowledge caused difficulties in their learning progress.

In September 2015 we asked the 565 new-coming students to fill in a 26-item
questionnaire about the input skills and knowledge and some question about the
learning habits. There were 346 students who answered 77% of the questions
on average. We correlated the answers with the test results, created a table of
26 rows (the questions) and 13 columns (the test results) with values between
0.45 and −0.13. Selecting the highest three values from every column (for the
tests of different topics during the semester) we get the highest ranking, most
correlating questions. This way we found that the most relevant prior skills are:

1. Knowing data structures (12) – What kind of data structures have you used?
2. Knowing Code::Blocks (11) – Have you used Code::Blocks before?
3. Programming (6) – How many points did (could) you get in the secondary

school final exam’s programming task?
4. Maths knowledge (6) – What mark did you get in the Maths exam?
5. Algorithms (2) – What kind of algorithms have you learnt?
6. Physics knowledge (1) – How would you mark your physics knowledge?

Physics was in connection with the homework, the students’ own programmed
game. We asked about music, spreadsheet, databases, Nassi-Shneiderman chart,
languages, grammar and other topics as well. We can say that the most correlated
skills are the most relevant in the course.

We would like to extend our research to the Eötvös Loránd University, Fac-
ulty of Informatics. There are also almost 600 students but the courses are in
Maths science while BME is the centre of engineering education. The gathered
information would be very important to determine programming expectations
in secondary schools.

Even though we still have to clear the details, we can say at this moment that
the compensating the lack of prior knowledge needs more time. It involves the
multiple usage of the LAU, and the preparation phase should be longer for suc-
cessful teaching. The formal courses of Introduction to Computer Science, Basics
of Programming or Introduction to <any text-based> Programming Language
starts with a huge gap for real beginners.
4 Z. Czirkos, G. Nagy: INFOC Portal for course https://infoc.eet.bme.hu/.

https://infoc.eet.bme.hu/

204 Zs. Szalayné Tahy and Z. Czirkos

4.2 De-gap Before Start

Teaching programming must be preceded by a long preparatory period, when
students learn particular competences. This period starts at the beginning of
education and the effectiveness depends on the awareness of educators. Many
people – students, parents, teachers and experts among them – say, the prepara-
tory period is not for programming. However, as cooking starts with shopping
the ingredients, learning textual programming starts with learning the necessary
skills. Shopping is much more effective if you know what you want to cook. By
the analogy, it would be very useful if primary school teachers would be able to
write codes. Not to actually teach programming, but to understand how they
should teach the basics.

5 Summary

Textual programming is based on several abilities and skills. The successful learn-
ing programming requires the creative usage of basics, therefore text-based pro-
gramming should be preceded by a designed preparatory period. We described
a Learning Activity Unit model based on main concepts of pedagogy to charac-
terize the skill level of computational thinking. Having applied it for analysing
Hungarian curricula and courses, we detected problems of effectiveness: only
Initial learning is planned but sometimes it is also compacted. Our further
research will focus on teaching practice of programming in classroom.

References

1. Heintz, F., Mannila, L., Nyg̊ards, K., Parnes, P., Regnell, B.: Computing at school
in Sweden - experiences from introducing computer science within existing subjects.
In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378, pp. 118–130.
Springer, Heidelberg (2015)

2. Hofoku, Y., Cho, S., Nishida, T., Kanemune, S.: Why is programming
difficult? - Proposal for learning programming in “Small Steps” and a prototype
tool for detecting “gaps”. In: ISSEP 2013, pp. 13–14. Universitätsverlag Potsdam
(2013)

3. Informatics Europe & ACM Europe Working Group on Informatics Education:
Informatics education: Europe cannot afford to miss the boat (2013)

4. Lee, I., et al.: Computational Thinking Resources (2011). https://hcsta.acm.org/
Curriculum/sub/CompThinking.html. Accessed 21 July 2016

5. Syslo, M.M., Kwiatkowska, A.B.: Introducing a new computer science curriculum
for all school levels in Poland. In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015.
LNCS, vol. 9378, pp. 141–154. Springer, Heidelberg (2015)

6. Szlávi, P., Zsakó, L.: Methods of teaching programming 1(2). In: Teaching Mathe-
matics and Computer Science, 1.02, pp. 247–258. University of Debrecen, Hungary
(2003)

https://hcsta.acm.org/Curriculum/sub/CompThinking.html
https://hcsta.acm.org/Curriculum/sub/CompThinking.html

Author Index

Asad, Khaled 3

Barendsen, Erik 14, 65, 105, 130

Czirkos, Zoltán 199

Dagienė, Valentina 28, 78
Demo, G. Barbara 118
Diethelm, Ira 193

Graswald, Dorothee 40
Grgurina, Nataša 105, 130

Hejazi Moghadam, Sepehr 142
Henze, Ineke 65
Hong, Hai 142
Hromkovič, Juraj 155
Hubwieser, Elena 40
Hubwieser, Peter 40

Kohn, Tobias 155
Komm, Dennis 155

Lessner, Daniel 53
Lokar, Matija 167

Mori, Nataša 167

Parriaux, Gabriel 179
Pellet, Jean-Philippe 179

Rahimi, Ebrahim 65

Schaumburg, Melanie 193
Sentance, Sue 28
Serafini, Giovanni 155
Steenvoorden, Tim 14
Stupurienė, Gabrielė 78
Suhre, Cor 130
Szalayné Tahy, Zsuzsanna 199

Tolboom, Jos 105

van Veen, Klaas 130
Vaníček, Jiří 90
Vinikienė, Lina 78

Wang, Jennifer 142

Zwaneveld, Bert 130

	Preface
	Organization
	Elements to Define a Coherent Curriculum for the K12 Education: The Example of France (Invited Paper)
	Contents
	Research Papers
	Teaching Computer Image Processing Subject to Middle School Students: Cognitive and Affective Aspects
	Abstract
	1 Introduction
	2 Theoretical Background and Related Work
	2.1 Contextual Learning
	2.2 Interdisciplinary Learning
	2.3 Knowledge Types

	3 The Computer Image Processing Course
	3.1 Computer Image Processing as an Interdisciplinary Subject

	4 The Study
	4.1 The Study Plan and Objectives
	4.2 The Study Population
	4.3 Teaching the Course
	4.4 Methodology and Data Collection Tools

	5 Findings
	5.1 Achievements in Learning Image Processing Principles
	5.2 Achievements in Project Work
	5.3 Achievements in Learning Mathematical Concepts
	5.4 Students’ Attitudes

	6 Discussion and Conclusions
	References

	Analyzing Conceptual Content of International Informatics Curricula for Secondary Education
	1 Introduction
	2 Aim of the Study
	3 Method
	4 Results
	4.1 Data
	4.2 Algorithms
	4.3 Engineering
	4.4 Society
	4.5 Rest Category

	5 Conclusion and Discussion
	References

	It’s Computational Thinking! Bebras Tasks in the Curriculum
	Abstract
	1 Introduction
	2 Computational Thinking
	3 Computational Thinking and Bebras
	4 Bringing Bebras into the Curriculum
	4.1 Learning About Data Structures
	4.2 Learning About Logical Operations
	4.3 Learning About Networks

	5 Pedagogical Issues
	6 Conclusion
	Acknowledgements
	References

	How to Attract the Girls: Gender-Specific Performance and Motivation in the Bebras Challenge
	1 Introduction
	2 Theoretical Background
	3 The Bebras Challenge
	4 The Data
	5 Results
	5.1 Differences over All Tasks
	5.2 Differences on Task Level

	6 Application of the ARCS Model
	6.1 Attention
	6.2 Relevance
	6.3 Confidence

	7 Conclusion and Future Work
	References

	Attitudes Towards Computer Science in Secondary Education: Evaluation of an Introductory Course
	1 Introduction
	2 Relevant Previous Work
	3 Preconditions, Decisions
	3.1 Organizational Aspects
	3.2 Sociocultural Related Factors
	3.3 Educational Objectives and Content

	4 Data Collection
	5 Data Processing and Evaluation
	6 Results
	6.1 Difficulty, Emotions, Homework and Popularity
	6.2 Key Competences
	6.3 CS, ICT and Other Subjects
	6.4 What Is ``informatics''
	6.5 Why Is CS Necessary in General Education

	7 Methodological Recommendations
	8 Conclusions
	References

	Typifying Informatics Teachers' PCK of Designing Digital Artefacts in Dutch Upper Secondary Education
	1 Introduction
	2 Pedagogical Content Knowledge (PCK)
	3 The Study Setting
	4 Results
	5 Elaboration
	6 Conclusion and Discussion
	References

	Students’ Success in the Bebras Challenge in Lithuania: Focus on a Long-Term Participation
	Abstract
	1 Introduction
	2 Related Works
	3 Data Analysis
	3.1 Students Are Interested to Participate in the Bebras Contest Year-by-Year
	3.2 Participants Are Able to Improve Their Results During a Long-Term Participation
	3.3 Value of Task Difficulty

	4 Conclusion
	Acknowledgements
	References

	What Makes Situational Informatics Tasks Difficult?
	Abstract
	1 Introduction
	2 How to Set the Test Item Difficulty
	3 What Affects a Task Difficulty
	4 Method
	4.1 Selection of Indicators for Stating Difficulty Index
	4.2 Comparison of Indicators to State a Task Difficulty
	4.3 Search for Factors with Impact on a Task Difficulty

	5 Research and Results
	5.1 Defining a Task Difficulty Index
	5.2 Factors Affecting a Task Difficulty

	6 Conclusion
	Acknowledgment
	References

	Best-Practice Papers and Country Reports
	A New Informatics Curriculum for Secondary Education in The Netherlands
	1 Introduction
	2 Educational Context in The Netherlands
	2.1 The Dutch Educational System
	2.2 Informatics in Dutch Upper Secondary Education

	3 Design Principles
	4 The New Curriculum
	4.1 Curriculum Structure
	4.2 Domain A: Skills
	4.3 Knowledge Domains of the Core Curriculum
	4.4 Elective Themes

	References

	And Now What Do We Do with Our Schoolchildren?
	1 Introduction
	2 Key Principles of the Project and First Meetings
	2.1 Scuola2.0 Principles
	2.2 Unplugged Programming
	2.3 Plugged in Activities During the First Part of Scuola2.0

	3 Long Activities to Be Proposed in Schools
	3.1 The ``Story Telling'' Pattern
	3.2 Inventing Riddles

	4 Questioning
	5 Conclusions
	References

	Defining and Observing Modeling and Simulation in Informatics
	Abstract
	1 Introduction
	2 Modeling and Simulation
	2.1 Modeling
	2.2 Simulation Modeling

	3 Method
	4 Results
	5 Conclusion and Discussion
	Acknowledgments
	References

	K-12 Computer Science Education Across the U.S.
	Abstract
	1 Introduction
	2 Methodology
	3 Findings
	3.1 Knowledge and Perceptions
	3.2 Disparities in Access
	3.3 Barriers

	4 Conclusion
	Acknowledgements
	Appendix
	References

	Combining the Power of Python with the Simplicity of Logo for a Sustainable Computer Science Education
	1 Introduction
	2 Setting, Goals, and Motivation
	2.1 Swiss Educational System
	2.2 Learning Goals
	2.3 Turtle Graphics

	3 Primary Schools
	3.1 Settings and Goals
	3.2 The Role of the Class Teacher
	3.3 Structure and Contents of the Teaching Materials

	4 High Schools
	4.1 The Setting
	4.2 Training Teachers
	4.3 Teaching Materials
	4.4 Logo's Loop in Python

	5 Universities
	6 Conclusion
	References

	A New Interactive Computer Science Textbook in Slovenia
	1 Introduction
	2 The Challenge
	2.1 E-textbooks
	2.2 Curricula

	3 New E-textbook
	3.1 Technology
	3.2 Grouping of Areas and Learning Outcomes

	4 First Impressions
	5 Conclusion and the Future Steps
	References

	Computer Science in the Eyes of Its Teachers in French-Speaking Switzerland
	1 Introduction
	2 Historical Elements and Context
	3 Research Questions and Methodology
	4 Results and Discussion
	5 Conclusion
	References

	Work in Progress
	IT2School -- Development of Teaching Materials for CS Through Design Thinking
	1 Projects to Support CS
	2 Challenge
	3 Design Thinking
	4 Personas
	5 Ideas and Prototype
	6 Test and Next Iteration
	References

	``Why Can't I Learn Programming?'' The Learning and Teaching Environment of Programming
	1 Introduction
	2 Programming -- The Learning Activity Unit Framework
	2.1 The Using of the Learning Activity Unit

	3 Programming Curriculum in Hungary
	4 Introduction to Textual Programming
	4.1 Expected Skills and Hidden Gaps
	4.2 De-gap Before Start

	5 Summary
	References

	Author Index

