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Abstract We present and compare two coupling approaches for direct aeroacoustic
simulations. Direct aeroacoustic simulations pose a multi-scale problem, as the gen-
eration of sound in a flow field occurs at small spatial scales with high energy, while
its propagation in the farfield has to be observed on a large spatial scale with only
low energy. The challenge of different scales can be addressed by employing dif-
ferent numerical schemes in the individual spatial areas with an interaction between
them on the surfaces. Two implementation strategies of this coupling approach are
presented. The first coupling strategy employs a library that allows a wide range of
different applications to be coupled with minimal changes to the individual solvers.
Hence, this is a very flexible approach but limited access to information and therefore
cope with loss of potential performance. Further this strategy involves the handling
of multiple executables on today supercomputer. This multi-solver approach requires
data interpolation at the coupling interface which introduce another numerical error.
In contrast, the second approach is fully integrated within one numerical framework.
Thereby the solvers are invoked as a library by the coupling application and only one
single applications must be handled. Tethering high order solvers, fully access to the
data implies that no additional data interpolation is required which promise better
numerical results. This tight integration allows for the exploitation of knowledge
about internal data structures and therefore yield performance benefits accompany
with less flexibility. Both strategies will be compared with respect to numerical error
due to data interpolation at the coupling interface as well as scalability and perfor-
mance on modern supercomputer.
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1 Introduction

Increasing computational resources allow the simulation of a new range of
multi-physics and multi-scale problems that were unfeasible with former compute
resources. Such simulations have the potential to provide more insight into appli-
cations from various fields, as, for example, the sound design of aircrafts or wind
turbines. With an increased awareness for noise pollution such consideration get
more and more important in the design process of industrial applications.

In this work, we focus on the coupling of fluid flows and acoustic sound propaga-
tion. The main challenge of this coupled application is that both phenomena include
different length and energy scales. The multi-scale nature of the fluid-acoustic inter-
actions is best described in the example of a wind turbine: Noise is generated by
the vortices of the rotating geometry at a length scale in the order of centimeters.
The whole turbine size is in the scale of meters, while the noise emission is of rel-
evance in a distance of hundreds of meters up to a few kilometers from the sound
source. Simulating the entire domain while resolving the smallest turbulent scales and
resolving the boundary layer adequately would require approximately 1018 degrees
of freedom, which is out of reach even with the larges computing facilities in the
forseeable future. For fluid-acoustic interactions the phenomena can often be clearly
separated in the different areas of the domain. Different sets of equations and differ-
ent discretization resolutions and schemes can be used for each part individually. The
fluid-acoustic coupling interface is rather large and, therefore, needs to be efficient
and fully parallelized.

We describe a partitioned coupling approach, i.e., we split the physical space into
smaller domains, each covering a so-called single-physics subdomain. These sub-
domains can be solved with numerical methods and resolutions tailored to the local
physical requirements. This allows for the re-use of existing scalable software based
on decades of experience in each single-physics discipline, thus enabling acceptable
software development times along with efficiency and performance optimization.
The interaction between the domains is realized by exchanging data at the bound-
ary. By the adaptation of numerical approximations in the individual domains, the
computation of complete interactions between fluid mechanics and acoustic wave
propagation becomes feasible.

In this paper, we investigate two different partitioned coupling approaches. One
makes use of individual solvers that run as independent executables and use a cou-
pling library to exchange data. The other approach uses a more integrated approach,
where a single application is used and the individual solvers are incorporated as
libraries. This tight integration on the basis of a common framework allows for the
exploitation of knowledge about internal data structures and therefore potentially a
faster coupling mechanism. However, this comes at the cost of reduced flexibility.
The presented work focuses on establishing both approaches within the simulation
framework APES and compares numerical as well as performance results. First, we
briefly recapitulate the governing equations for fluid mechanics and acoustic wave
propagation in Sect. 2 followed by Sect. 3 describing the methodology of the flow
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and acoustic solverAteles. Section 3.2 describes the partitioned coupling approach in
general including the multi-solver approach using the open-source coupling library
preCICE, and the integrated coupling approach APESmate within the numerical
framework APES. Finally, Sect. 4 presents the results of numerical simulations of
two academic testcases as well as performance results for both approaches.

2 Governing Equations

Acoustic phenomena are based on the same principals as fluid motion. However,
while for general fluid motion nonlinear equations have to be considered, acoustic
phenomena can be represented in linearized equations, as only small perturbations
need to be considered. The linearization reduces the numerical effort drastically
and, therefore, is a necessity for large computational domains as required for the
computation of acoustic far fields.

2.1 Fluid Equations

Frictionless flow is governed by the compressible Euler equations based on the
conservation of mass, momentum and energy. We use the superscript f to indicate
variables in the flow field. The conservation of mass can be written as

∂ρ f

∂t
+ ∇ · (ρv) f = 0, (1)

the conservation of momentum is given by

∂ (ρv) f

∂t
+ ∇ · (

(ρv) f v f
) + ∇ p f = 0, (2)

and the conservation of energy yields

∂

∂t

(
ρ f

(
e f + 1

2
v f · v f

))
+ ∇ ·

(
(ρv) f

(
e f + 1

2
v f · v f + p f

ρ f

))
= 0. (3)

The velocity field is denoted by v f, pressure is denoted with p f , and the density is
given as ρ f . The internal energy of the flow is e f . The Euler equations are derived
from the Navier-Stokes equations by neglecting viscous effects, heat flow and exter-
nal forces. We only consider ideal gases here to close the system:

p f = ρ f R T = (γ − 1)

(
e f − ρ f v f · v f

2

)
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which yields a relation between pressure p and energy e, where R is the ideal gas
constant, T is the temperature and γ is the isentropic coefficient.

2.2 Acoustic Equations

Acoustic phenomena are also fluid motion and are, therefore, governed by the Euler
equations (1)–(3). As there are only small changes in the flow, they can be linearized
around a constant background flow. The constant background flow is denoted by the
subscript 0 and the perturbation is denoted with the superscript a. In the following,
we will treat only the primitive variables density ρ, velocity v and pressure p in the
acoustic domain. The linearized Euler equations are given by the linearized equation
of mass conservation

∂ρa

∂t
+ ∇ · (

v0ρ
a + ρ0va

) = 0, (4)

the linearized momentum equation

∂va

∂t
+ ∇ ·

(
v0va + 1

ρ0
pa

)
= 0 (5)

and linearized energy equation

∂pa

∂t
+ ∇ · (

v0 p
a + γ p0 va

) = 0. (6)

Since the Euler equations require conservative variables for the coupling, the general
transformation between primitive variables ρ f , v f , p f and conservative variables
ρ f , ρ f v f , e f is required

ρ f = ρ f , v f = (ρv) f

ρ f
, p f = (γ − 1)[ρ f e f − 1

2ρ f
((ρv) f )2],

as well as vice versa

ρ f = ρ f , (vρ) f = v f ρ f , e f = 1

(γ − 1)

p f

ρ f
+ 1

2
(v f )2.

To compute the linearized variables in the acoustic domain, simple subtraction of the
background state is sufficient to obtain the perturbations:

ρa = ρ f − ρ0, va = v f − v0, pa = p f − p0,

where the background flow is defined by the user.
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3 Methodology

In this section, we describe the methodology of the established simulation approach.
First we present the flow and acoustic solverAteles. Then, we describe the partitioned
coupling approach for fluid-acoustic interaction in detail including the two imple-
mentation strategies: the multi-solver approach which uses the open-source coupling
library preCICEand the integrated approach APESmate which is incorporated within
the framework APES.

3.1 High-Order Solver Ateles

For the flow as well as the acoustic domain, we use the high-order solver Ateles
which is included in the end-to-end parallel framework APES [6, 10]. The APES
framework is designed to take advantage of the massively parallel systems available
in supercomputing today. Therefore, it provides additional tools for pre- and post-
processing on the basis of a common mesh library.1 The TreElM library [4] relies on
an octree representation of the mesh and provides a distributed neighborhood search
within that mesh. Using a space-filling curve for the domain decomposition of the
octree mesh gives hierarchically structured data and maintains locality. This locality
can be perfectly exploited by the high-order Discontinuous Galerkin solver Ateles.

Ateles is capable to solve various equation systems such as compressible flow,
linear wave propagation and electro-dynamics, which are solved with an explicit
Runge Kutta method in time and a modal discontinuous Galerkin method (DG)
with arbitrary order in space [3]. The Discontinuous Galerkin method is based on a
polynomial representation within an element and flux calculation between elements
over their faces. Hence, there is a strong coupling of data within each element and
only a loosely coupling between elements via element surfaces. The choice of the
polynomial degree controls the spatial discretization order. By choosing a high degree
for the polynomial function a high-order method is constructed. Exploiting modal
basis functions has computational reasons, e.g. that the numerical flux can be directly
evaluated in modal space, using cubical elements without any extra transformation
to a reference element [9].

A higher order scheme has several advantages. First, it yields low numerical
dissipation and dispersion errors, which is advantageous for approximating the wave
propagation over long distances in the acoustic far field. Secondly, a higher order
scheme shows high convergence rates in case of smooth solutions. Hence, a high
order approximation provides a high accuracy with only few degrees of freedom. For
nonlinear systems high-order schemes imply an increased computational cost, but for

1https://bitbucket.org/apesteam/treelm

https://bitbucket.org/apesteam/treelm
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the linear system of the acoustic domain, a modal scheme keeps the computational
effort per degree of freedom constant over increased spatial orders and solves them
efficiently.

The polynomial representation of the DG method also has an advantage in the
coupling context. For data exchange at the coupling interface, the polynomial rep-
resentation can be evaluated at any point on the surface up to the chosen order for
the method. In general, the quadrature points of the polynomial on the surface are
utilized as exchange points.

3.2 Partitioned Coupling

Partitioned coupling is based on the idea that an entire computational domain can
be split into subdomains, where only single physics need to be considered in each
subdomain. For the example of fluid-acoustic interaction, this means: we split the
whole domain into a subdomain of flow and acoustic generation and a subdomain
where only acoustic waves propagate. Small vortices with high energy occur typi-
cally around a structure or at high Mach number and generate acoustic waves. In this
domain, the small scales of the flow must be resolved. Acoustic waves on the other
hand live on larger scales, having less energy, and are transported into the acoustic far
field. In this case, the phenomena have to be resolved over long distances. The inter-
actions are realized by a surface coupling between the compressible fluid domain and
the acoustic far field. To realize a full coupling which means including information
travelling between both subdomains, a bidirectional coupling is deployed, i.e. both
domains provide and receive data at the interface.

Figure 1 shows a partitioned coupling example using implicit coupling between
structure and fluid and explicit coupling between fluid and acoustic subdomains.

F F F F

S S S S

C

iteration time step i

F F F F

S S S S

C

iteration time step i+1

C C C C CCC

A A

Fig. 1 Overview of parallel execution of the fluid (F) -structure (S) -acoustic (A) simulations.
Implicit coupling (C) for fluid-structure interaction presenting an iterative method and explicit
coupling (C) at the beginning of the timestep
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When coupling several solvers, there are major tasks involved in a coupled setup:

• Steering of the individual single physic solvers
• Data interpolation between non-matching exchange points
• Communication of primitive variables at the interface

These tasks should be handled efficiently in parallel by the coupling tool.

Steering of individual solvers

To control the simulation and the correct update of information at the coupling
interface in time, the coupling device should steer the individual solver. The major
challenge here is the definition of the synchronization time step.

Data interpolation

For a general setup, allowing individual resolution in each subdomain, the exchange
points at the interface do not require to coincide. A non-matching coupling mesh at
the interface can occur when e.g. coupling of a higher order Discontinuous Galerkin
method which requires information at non-equidistant quadrature points. Figure 2
gives an example of such a non-matching coupling interface, when coupling the
same grid resolution but an 8th order Discontinuous Galerkin scheme with a 4th
Discontinuous Galerkin scheme where both yield 16 points at a 1d surface. Therefore,
an efficient interpolation method is required to transfer the primitive variables of one
coupling interface to the other.

Communication

The exchange of data between the solvers is also a task of the coupling device. We
aim for large scale simulations on massive parallel systems. Therefore, direct MPI

Fig. 2 Example of
non-matching exchange
points at the coupling
interface when coupling the
same grid resolution but a
8th order Discontinuous
Galerkin scheme (red) with a
4th order Discontinuous
Galerkin scheme (blue)
yielding both 16 points at a
1d surface
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communication between processes that host coupling elements is essential. This
communication takes place at each synchronization time step.

In our approach, explicit coupling is exploited. For the first attempt, we do not
allow for adaptive time stepping and sub-cycling of one solver to avoid non-consistent
coupling in time. Hence, all subdomains use the same timestep limited by the CFL
condition of the explicit timestepping within the solver. This is clearly a lack of
ideal performance and it is part of future work. Assuming no adaptive time stepping
and a fixed coupling interface, a static load balancing based on heuristics can be
achieved by choosing an appropriate number of processes for each subdomain, such
that solving each domain takes approximatively the same computational time.

3.2.1 Multi-solver Approach Using Coupling Library preCICE

For the multi-solver approach, the focus is on using the solvers as ‘black box’ which
means that the solvers are accessible only via their interfaces for input and output
values. Therefore, the aforementioned major tasks of the coupling device are more
challenging: Steering between individual solvers, communication of data between
executables and accurate interpolation methods between non-matching interfaces.
The open-source coupling library preCICE2 offers methods for all these building
blocks while allowing for a minimally invasive integration into existing solvers [1].
Additionally, for implicit coupling, which is not part of this paper but a key benefit of
preCICE, efficient solvers for fixed-point equations derived from coupling conditions
are implemented in preCICE. Clearly, the major tasks of the coupling device need
to work efficiently and should be scalable for distributed data. In [2, 7] development
and achievements of preCICEworking on distributed data are presented.

In preCICE, the initialization of the communication is done via exchanging the
entire coupling interface via master processes. The communication of coupling par-
ticipant and coupling library during the time loop is done with point-to-point commu-
nication realized via TCP/IP (based on Boost.Asio3). Coupling different numer-
ical resolution in space requires data at position on the interface which might not be
provided by one participant as illustrated in Fig. 2. Therefor interpolation methods
between non-matching coupling meshes are required. preCICEprovides two stan-
dard interpolation methods: low order projection-based mapping (nearest neighbor,
nearest projection) and second order radial basis function mapping. Both mappings
work on pure geometric information assuming ‘black box’ solvers.

Flexibility is the key benefit of using a coupling tool like preCICE. The application
programming interface (API) is concise and enables an easy coupling of individual
solvers. Additionally, it implements several sophisticated coupling methods, which
are required to improve numerical stability at the coupling interface. The advantages
are only clouded by the decrease in performance due to generality of a ‘black-box’
approach.

2www.precice.org
3www.boost.org

www.precice.org
www.boost.org
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Furthermore, the handling of a coupled simulation involves several executables.
Porting software, establishing the correct pinning of MPI ranks in this setup, and
compiling the job script on a supercomputer is more challenging compared to running
a single application.

3.2.2 Integrated Approach Using APESmate

The integrated coupling approach APESmate is fully implemented in the previously
presented framework APES [6, 10]. Here, finding a synchronization time step is
similar to using the multi-solver approach but the steering of the coupled simulation
is direct by accessing the data structure explicitly instead of providing and return-
ing information from a library. Also, communication can be done in a direct way:
all components are implemented in a single application which efficiently distributes
domains across several processes. Starting with a global communicator, each sub-
domain gets its own MPI sub-communicator for domain-internal communications.
Therefore, a global communicator is used only for domain-domain communication.
During the initialization step, all coupling requests of one subdomain are locally
gathered such that only one large communication is necessary instead of multiple
small ones. Then this information is exchanged in a round robin fashion. Since every
solver in APES is based on an Octree data structure and uses a space-filling curve for
partitioning, it is easy to get information about the location of the individual exchange
points. The identified ranks which accommodate exchange points are provided to the
requested domains and these ranks are then used to build communication buffers for
data exchange between domains. Point coordinates are only exchanged at the initial
step, the point values are evaluated and exchanged via the global communicator once
within every time step.

Within the integrated coupling, the application can access solver specific data.
Tethering high order DG solver Ateles, obtaining data at arbitrary exchange points
on the coupling interface can be done via direct evaluation of the polynomial repre-
sentations. Hence, coupling non-matching grids with different numerical resolution,
as shown in Fig. 2, does not involve additional interpolation. This is a key benefit
compared to using a multi-solver approach. In the case of coupling other solvers
within APESmate, e.g. a Lattice-Boltzmann scheme which does not provide a poly-
nomial representation of the solution, the solver is required to provide an interpolation
method using its data representation and mathematical formulation. i.e. even if inter-
polation is necessary, it is done by the data-providing solver, making use of all the
knowledge regarding its data and data structure.

In general,APESmate is implemented in a way such that surface as well as volume
coupling can be realized to increase the range of applications, e.g. the coupling of
multi component flow and the electro-dynamic field [5].

Naturally, with this integrated approach, we can only couple solver and methods
which are included withinAPES and operating on the underlying data structure of the
common mesh library TreElM. Up to now, only explicit coupling via data exchange
at every time step is available in APESmate. However, for fluid-acoustic interaction
addressed in this paper, single physics solvers with explicit time step are sufficient.
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The performance benefits of APESmate as a single application is superior to
multi-solver approach due to communications over global MPI communicator and
direct control overAteles solver. With respect to load balancing, assuming no adaptive
time stepping and not changing the coupling interface, the same static load balancing
based on heuristic as presented for the multi-solver approach can be applied. Also,
a dynamic load balancing can be deployed easier. From the user perspective, the
handling of an integrated approach with one executable is facilitated.

4 Results

In this section, we show the comparison of the two presented coupling approaches,
using the external library preCICEas well as the integrated approach APESmate. We
setup two different scenarios, one coupling the same equations system on both sides,
but using different mesh sizes and approximation orders, and the other coupling
different equation systems, on the same and on different meshes and orders. When
using preCICE, we also vary the interpolation method between first order nearest
neighbor interpolation and second order radial basis functions.

The second part of this section describes the performance scalability of both
established coupling strategies on modern supercomputer.

4.1 Simulation Setup

We show two dedicated test cases:

(a) Gaussian distribution in density on a 2-dimensional domain (Fig. 3a)
(b) Gaussian distribution pressure on a 3-dimensional domain (Fig. 3b)

Testcase (a) is used for coupling the same equations systems and (b) to couple two
different equations e.g. a non-linear flow subdomain with a linearized Euler domain.

For test case (a) we will refer in the following to as left and right subdomain as
illustrated, and for test case (b) as flow domain and acoustic domain.

4.2 Numerical Results

4.2.1 Bidirectional Coupling of the Same Equations Systems: Flow
with Flow

To test the coupling of twice the same equation systems, we deploy a 2-dimensional
Gaussian density distribution which travels from left to right due to advection of the
flow in positive x-direction, see Fig. 3a. The whole domain is a two dimensional
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(a) Gaussian pulse in density, where the
whole flow domain is split into two subdo-
mains left and right. The • marks represents
the measurement positions.
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Euler equations

 linearized Euler equations

A B

(b) Gaussian pulse in pressure, where the in-
ner box is the flow domain (Euler equations)
and the surrounding is the acoustic domain
(linearized Euler equations). The • marks
represents the measurement positions.

Fig. 3 Sketch of the two dedicated simulation setups

4 × 4 xy-plane, which is split into a left and a right subdomain. As described in Sect.
2, for the Euler equations (1)–(3) the ideal gas is considered. Here, the isentropic
coefficient is chosen to be γ = 1.4 and the ideal gas constant is R = 296.0. The
density is initially given as a Gaussian pulse shifted by (x0 = −1.0, y0 = 0.0) to be
fully located in the left subdomain:

ρ = ρ0 + ρpulse · exp
(−[(x + x0)

2 + (y + y0)
2]/d · log(2)

)

with background density ρ0 = 1.0, amplitude of the pulse ρpulse = 1.0 and half
width of the pulse d = 0.02. The flow is initialized with a constant velocity field,
vt=0 = [

2.0 0.0
]T

and pressure, pt=0 = 8.0. As shown in Fig. 3a, the left and right
boundary conditions are inflow and outflow respectively, whereas the upper and
lower boundaries are set to the full state [ρ0, v0, p0]. The analytical solution of the
density pulse traveling through the flow at time t is

ρre f = ρ0 + ρpulse · exp
(−[(x + xt )

2 + (y + yt )
2]/d · log(2)

)
(7)

with the location of the pulse xt = v0x t − x0, yt = v0yt − y0.

4.2.2 Results and Comparison

The investigation is done for both established methods, the integrated approach
APESmate and the multi-solver approaches using preCICE. The two approaches
differ mainly in the way they obtain the data required for the one side from the data
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Fig. 4 Comparison of numerical and analytical result in both subdomains for coupling of different
resolutions: Left L = 4,O = 16; Right L = 4,O = 22

provided by the other. When looking at Fig. 2, the left domain delivers and expects
data on the red points, while the right side delivers and expects data at the blue points.
When using the multi-solver approach, the coupling tool preCICEinterpolates from
red to blue and from blue to red points. Two different interpolation methods, nearest
neighbor and radial basis function, are available in preCICE. The integrated approach
in APESmate—as it is able to access directly the high-order polynomials within the
left as well as within the right part of the domain—directly evaluates the polynomials
at the points requested and thus does not interpolate at all.

For validation purposes, a first run of the simulation is performed using the same
mesh and the same order of the DG scheme on both sides. Thus, the data exchange
points match on both sides, and interpolation reduces to pure injection. The two
different interpolation schemes which are tested against each other within the multi-
solver approach with preCICEshould not show any difference, neither compared
to each other nor compared to the integrated approach with APESmate. For this
pre-testcase, all results coincide as expected.

The next variation now checks the influence of the interpolation in the case of non-
matching grids as in Fig. 2. Non-matching grids are obtained when using different
mesh sizes or different approximation orders in the DG scheme. We refer to the grid
resolution as refinement Level L of the Octree mesh and O for the numerical order
of the DG scheme in space.

Figure 4 shows the comparison of the different coupling strategies when coupling
two different discretizations, i.e. left: L = 4,O = 16; right: L = 4,O = 22. It
is measured at positions A and B (Fig. 3a) at the point in time when the maximum
amplitude of density pulse is reached. The integrated approach (Fig. 4a) as well as the
multi-solver approach using second order radial basis functions for data interpolation
at the exchange points (Fig. 4b) give good results and are identical with the analytical
solution. The first order nearest neighbor interpolation in the multi-solver approach
(Fig. 4c) produces an overshooting in point B (to the right of the coupling interface),
compared to the solution in point A (left to the coupling interface), and the analytical
solution.
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4.2.3 Error Analysis

For the error analysis, we compare the simulation result to the analytical solution
and present the error, i.e. the difference between analytical solution and simulation
at the maximum density of the Gaussian pulse in both subdomains. Table 1 gives an
overview of the simulation error at points A (left to the coupling interface) and B
(right to the coupling interface).

As mentioned before, testing the same numerical resolution in both subdomains
ensures matching exchange points at the coupling interface and avoids influences

Table 1 Comparison of simulation error at maximum of the Gaussian distribution at points ±0.01
distance from the coupling surface

Left domain Right domain

L O Error L O Error

(a) Integrated approach APESmate

4 16 −2.3833e-4 4 8 1.8816e-4

4 16 2.7661e-4 4 12 −7.9379e-4

4 16 5.7715e-5 4 16 4.1064e-5

4 16 1.1531e-5 4 22 4.5484e-6

4 16 −1.7762e-5 4 32 −2.0103e-5

4 16 −2.1650e-5 3 32 −1.8538e-5

4 16 1.1151e-4 5 8 −9.2129e-4

3 64 −2.9949e-6 4 32 −3.5793e-7

(b) Multi-solver approach with preCICEusing 2nd order radial Basis function interpolation

4 16 −2.7129e-3 4 8 1.9446e-3

4 16 2.820e-4 4 12 1.0909e-3

4 16 5.7715e-5 4 16 4.1064e-5

4 16 4.0299e-5 4 22 −3.1967e-4

4 16 −1.4563e-5 4 32 −3.0865e-4

4 16 3.4437e-5 3 32 3.3906e-4

4 16 1.4550e-4 5 8 1.0778e-3

3 64 −7.6588e-6 4 32 −2.6305e-5

(c) Multi-solver approach with preCICEusing Nearest Neighbor interpolation

4 16 1.5106e-2 4 8 −1.3613e-1

4 16 1.3116e-2 4 12 2.7013e-3

4 16 5.7715e-5 4 16 4.1064e-5

4 16 3.6480e-3 4 22 4.3454e-2

4 16 5.6850e-3 4 32 −3.7787e-2

4 16 5.0766e-4 3 32 3.6137e-2

4 16 7.2353e-4 5 8 8.0711e-4

3 64 −8.3883e-4 4 32 2.3469e-3
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of the data interpolation required for the multi-solver approach. Comparing the
simulation error for the same numerical resolution, i.e Left: L = 4,O(16); Right:
L = 4,O(16), 3 line in Table 1, demonstrates a good agreement of all strategies as
expected.

Comparing different numerical resolutions demonstrates the important influence
of the data mapping strategy on the coupling interface. Table 1 indicates that a
first order nearest neighbor interpolation is no option for coupling non-matching
grids since disproportionally large numerical errors arise. Only one out of the 8
combinations results in errors comparable to the other approaches, which is line 7,
Left:L = 4,O(16); Right:L = 5,O(8). This might be due to the exact position of
the exchange points on the surface. In this setting, the distance between the coupling
points on both sides of the coupling interface is nearly minimal.

In general, it can be stated that the integratedAPESmate as well as the multi-solver
approach preCICEwith a second order radial basis function (RBF) interpolation give
good results, whereby the simulation error for APESmate yields a simulation error
which is even one or two orders of magnitude lower than for the preCICE and, order
RBF approach.

4.2.4 Performance Results

In this section, we present the performance of integrated coupling APESmate and
multi-solver coupling preCICEusing nearest neighbor interpolation only on the
SuperMuc Phase 1 IBM system at LRZ, Munich. This system comprises a total
of 9216 nodes on 18 islands with 2 Sandy Bridge-EP Xeon E5-2680 processor with
8 cores per node resulting in 147,456 cores. The nodes are connected with Infiniband
FDR10. For performance measurements, both coupling approaches are scaled up to
a single island, i.e 512 compute nodes or 8192 cores. Using more than one island is
not possible at the moment due to limitations of MPI-IO on SuperMuc. Only MPI
parallelism is considered here.

A 3D version of the test case presented in the previous section (Gaussian pulse
in density traveling from left to right domain) is used with a total problem size of
8192 elements, i.e 4096 elements per coupling domain. The total problem size of
8192 elements is chosen such that there is at least one element per core and the
polynomial order, O is chosen to fit maximally to the memory per node which is
found to beO(20). The simulations are run for 100 iterations. The number of degrees
of freedom per element is 109760, resulting in 163840000 DoF for problem size of
4096 elements per domain.

In Fig. 5, the strong scaling of both strategiesAPESmate and preCICEcoupling on
left and right domain are shown together with the number of processes on the X-axis
and the total run time in seconds on Y-axis. Both approaches have good scalability up
to 1024 processes per domain. Beyond that, the integrated approach APESmate does
not scale anymore and gets flat where as the scalability of the multi-solver approach
preCICEgets worse, i.e run time increases with number of processes. The increase
in run time might be due to load imbalances stemming from only few processes
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Fig. 5 Strong scaling of
integrated coupling
APESmate and multi-solver
coupling preCICE
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participating in the coupling. Nevertheless, at all points, the integrated approach
APESmate is roughly 20 % faster then the multi-solver approach using the external
coupling library preCICE. To determine the performance critical step, the overall
run time is split into initialization, computation and coupling. Figure 6 shows this
breakdown of overall run time for APESmate in Fig. 6a and preCICEin Fig. 6b. For
both approaches, the initialization step is further split into initialization of solver and
coupling. In Fig. 6, the total initialization time increases with the number of processes
for both approaches but preCICEinitialization time is much higher than APESmate.
As stated in [2], the initialization step is not fully parallelized and work in progress.
In APESmate, we can measure the time spent on computation and initialization
separately where as in preCICEcoupling initialization time is part of computation
time and difficult to calculate explicitly. This can be seen from the computation time
in Fig. 6a since both approaches uses the Ateles solver which is scalable on its own.
The coupling step involving the evaluation of point values and data exchange is faster
with preCICEthan APESmate. The coupling in APESmate involves the evaluation
point values using polynomial which is expensive but more accurate than the fast, but
inaccurate nearest neighbor approach used in preCICE. Also, theAPESmate coupling
approach shows better scalability than preCICE. From Fig. 6b, we can conclude that
for preCICE, the increase in run time beyond 1024 processes per domain is mainly
due to the initialization of coupling.

4.2.5 Bidirectional Coupling of Differing Equation Systems:
Euler with Linearized Euler

To test the coupling of differing equation systems e.g. Euler equations with linearized
Euler equations, we use an acoustic pulse initialized at time t = 0 with a Gaussian
pressure distribution which is spreading spherically symmetric with respect to the
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Fig. 6 Strong scaling
breakdown of overall time
into initialization,
computation and coupling of
integrated approach
APESmate and multisolver
approach preCICE
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origin of the pulse as described in [8], sketched in Fig. 3. The 3-dimensional flow
domain in which the pulse is located is a 20 × 20 × 20 box with a surrounding
acoustic domain of size 60 × 60 × 60. For both domains, the isentropic coefficient
is set toγ = 1.4 and the ideal gas constant is R = 296.0. Additionally, for the acoustic
domain, treating the linearized Euler equations (4)–(6), the background flow is set to
ρ0 = 1.0, v0 = [

0.0, 0.0, 0.0
]T

, p0 = 1
γ

yielding a speed of sound c = 1.0. For the
inner flow domain, the initial condition for the Euler domain is a Gaussian pressure
distribution:

p = p0 + ppulse · exp
(−[(x + x0)

2 + (y + y0)
2 + (z + z0)

2]/d · log(2)
)
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with amplitude of the pulse ppulse = 0.001 and half width set to d = 3. The back-
ground for the flow is set to background of the acoustic domain. The Euler domain is
initialized with density ρt=0 = 1.0 and velocity vt=0 = [

0.0, 0.0, 0.0
]T

. For the sur-

rounding acoustic domain, the initial condition
[
ρa, va, pa

]T
is specified to 0, since

at the start of the simulation, no acoustic perturbation should occur. The outer bound-
aries for the acoustic domain are set to a Dirichlet boundary condition for all state
variables i.e. ρa = 0.0, va = [

0.0, 0.0, 0.0
]T

, pa = 0.0. The analytical solution for
a Gaussian pressure distribution spreading spherically symmetric with respect to the
origin (0.0, 0.0, 0.0) and the radial distance r = √

(x − x0)2 + (y − y0)2 + (z − z0)2

is :

p = p0 + ppulse·
[
r−c·t

2·r · exp
(
− log(2) · ( r−c·t

b

)2
)

+ r+c·t
2·r · exp

(
− log(2) · (

r+c·t
b

)2
) ]

(8)

with speed of sound defined by the material c =
√

γ ·p0

ρ0
.

4.2.6 Results and Comparison

We look at the temporal evolution at the specific points A and B close (±0.01) to
the coupling interface as sketched in Fig. 3a. Figure 7 shows a coupled simulation
using the non-linear Euler equations in the inner domain, and the linearized Euler
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Fig. 7 Time evolution of pressure at measure positions, see Fig. 3b. Comparing a coupled sim-
ulation with same numerical resolution—matching [flow domain: 8,000 elements, element size
= 1, O(6), acoustic domain: 208,000 elements, element size = 1, O(6)] with different numerical
resolution—non-matching [flow domain: 8,000 elements, element size = 1, O(6), acoustic domain:
3,250 elements, element size = 5, O(12)]
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Table 2 Absolute and relative error for the different simulations of the Gaussian pulse distribution
measured at positions ±0.1 off from the coupling surface in the flow respectively in the acoustic
domain. Relative error is normalized to the acoustic perturbation in the pressure since this is the
travelling information

Flow domain Acoustic domain

Absolute error Relative error Absolute error Relative error

Maximum of pressure distribution

Matching
coupling

1.5e-07 1.9e-03 7.25e-08 9.37e-04

Non-matching
coupling

1.53e-07 1.98e-03 8.07e-08 1.04e-03

Minimum of pressure distribution

Matching
coupling

1.14e-07 1.471e-03 3.73e-08 4.83e-04

Non-matching
coupling

1.16e-07 1.497e-03 4.27e-08 5.53e-04

equations in the outer domain. In the first setup, only the equations are switched, but
mesh level and order of the scheme are kept the same in both parts of the domain
(matching resolution). In a second setup, the effort for the outer domain is decreased
by using a coarser mesh, but a higher order in the DG scheme compared to the inner
domain (non-matching). The numerical configuration for the matching simulation
is flow domain: 8,000 elements, element size = 1, O(6), acoustic domain: 208,000
elements, element size = 1, O(6). The configuration for the non-matching setup
is flow domain: 8,000 elements, element size = 1, O(6), acoustic domain:3,250
elements, element size = 5, O(12).

Table 2 shows the comparison of the results for matching and non-matching grid in
terms of absolute and relative error in pressure. The table shows the good accordance
of the results, i.e. the quality of the solution is the same for the finer mesh with lower
order (matching configuration) as for the coarser mesh with higher resolution. We
will now investigate the gain in performance by this variation.

4.2.7 Performance Benefits for Coupling Differing Equation Systems

Coupling non-linear Euler equations with linearized Euler equations yield different
computational load on the corresponding subdomains. Therefore, a coupled simu-
lation with properly chosen computational resources can reduce the computational
cost. Besides the variation in the numerical parameters (matching/non-matching),
also the distribution of the two subdomains to available compute resources can be
optimized. Table 3 illustrates the overall runtime of the Gaussian pressure pulse sim-
ulation for different settings of the parallel distribution where the overall number of
512 MPI-ranks is used on the SuperMuc Phase 1 IBM system at LRZ, Munich. The
particular number of MPI ranks is chosen to fill a full node with 16 processes. In the
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Table 3 Load balancing for different distributions of total 512 MPI-ranks on SuperMUC of a
coupled simulation of Gaussian pressure pulse against monolithic simulation. Using 64 ranks for
the flow domain and 448 for the acoustic domain yield the faster computation for same resolution
on both subdomains

Type Number of MPI-ranks Total computation
time (s)

Flow domain Acoustic domain

Matching coupling 256 256 1336

128 384 886.65

112 400 845.573

96 416 824.695

80 432 847.923

64 448 832.06

48 464 838.607

32 480 902.342

16 496 1535

Non-matching
coupling

96 416 476.886

case of matching grids, we found that utilizing 96 ranks for the flow domain and 416
for the acoustic domain yields the fastest computation with 824s. Table 3 illustrates
how the imbalance moves from the acoustic domain, when using a low number of
MPI-ranks here, to the flow domain since when using more MPI-ranks in acoustics,
less in the flow domain. Using a too small number of MPI-ranks for this domain, i.e.
16 MPI ranks for the flow domain as well using a too small number of MPI-ranks
for the acoustics, leads to the longest runtimes of 1336 and 1535 s respectively. The
optimal setting is neither to the one nor to the other extreme, but in a medium, best
suited distribution which reduces the runtime by roughly a factor of 2.

The best setup nevertheless is the adapted configuration which uses a much coarser
mesh for the acoustic domain, yet settled by an increased order for the DG scheme.
By this change in the numerical parameters, the runtime can be decreased by another
factor of 2. These performance benefits become even more crucial when enlarging
the acoustic far field even more or when solving different numerical problem where
the length scale in the flow domain are magnitudes smaller than in the presented
testcase.

5 Conclusion

Partitioned coupling is a promising strategy to solve multi-scale as well as multi-
physic problems on todays supercomputer. By splitting the whole domain into sin-
gle physics subdomains and enabling interaction via surface coupling, each single
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physics domain can be solved by individual solvers using numerical methods which
are perfectly tailored to the underlying physics. Hence, problems which might not be
not feasible in a monolithic approach, due to e.g. too different length scales ending
in large computational costs, can be accomplished.

We presented two different coupling approaches namely a multi-solver approach
utilizing an external coupling library which takes care about steering, data map-
ping as well as data communication, but uses the individual solvers as black boxes,
and an integrated approach, making use of all knowledge available on the solver,
implemented within one numerical framework. This approach suffers from a loss of
generality but gains performance.

Exploiting a higher order method in the solver has the advantage that polyno-
mial approximations on the coupling surface are available and therefore, can be
used within the integrated coupling approach APESmate. In contrast, the multi-
solver approach with the coupling library preCICErequires an additional interpola-
tion method for the data mapping. For non-matching grids, which typically occur
when coupling different numerical resolution, using first order interpolation show
unsatisfactory simulation error. Using direct polynomial evaluation for the data map-
ping, which is one key benefit ofAPESmate exhibits very good results when coupling
high order which was shown with the example of coupling 64th order in space with
and 32th order in space. For medium order, using preCICEwith 2nd order radial
basis functions and APESmate with direct evaluation, both yield satisfying numeri-
cal results.

Comparing the performance of the integrated approach APESmate with the multi-
solver approach using preCICEon a modern supercomputer SuperMuc at LRZ,
Munich, APESmate shows an advantage of 20 % lower overall computation time.
This confirms the expected performance benefits gained by the tight integration of
the coupling with the solver, which allows for exploitation of knowledge about inter-
nal data structures. But even that the multi-solver approach can not compete with a
fully integrated approach in terms of overall runtime, the scalability is nevertheless
satisfying.

Partitioned coupling leads to different work load in the single physics domains
and hence, properly chosen number of compute resources can reduce the overall
computational costs. This is shown on the example of a Gaussian pressure distribu-
tion, where a non-linear flow domain (Euler equations) is coupled to a surrounding
acoustic domain (linearized Euler equations). Chosing the right distribution of MPI-
ranks per subdomain, the computational cost is reduced by a factor of 2. Adaption of
the numerical resolution in the individual domains, e.g. by coarsening the grid reso-
lution and increasing the order in the acoustic domain can reduce the computational
cost even more, in our example by a factor of 2 compared to the matching resolution
coupling.

The focus of future work is on numerical challenges, in particular the coupling
of different timesteps. Enabling subcycling of one solver by assuring a consistent
timestep even for large differences in individual timesteps will give further perfor-
mance benefits.
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