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Abstract The Discontinuous Galerkin (DG) method utilizes a mesh of elements
with local functions like traditional continuous finite element methods, together with
a flux approximation between elements like finite volumemethods. This combination
yields a high locality of the overall scheme, especially for high-order representations
within elements. Two local operations need to bemainly considered. One is the appli-
cation of the mass matrix and the other is the stiffness matrix. With an appropriate
orthogonal basis as choice for the local functions both operations can be computed
with minimal complexity. In this contribution we are concerned with a DG imple-
mentation that makes use of a Legendre polynomial basis with an application to
non-linear equation systems. For non-linear systems a complication is introduced by
the scheme by the necessity to compute the non-linear flux operation, which gener-
ally can not be done in the optimal modal basis. Instead, a pointwise evaluation of
the non-linear operations is usually performed. Combining the fast evaluation of the
integrals in the modal scheme with the pointwise evaluation of the non-linear terms
requires a transformation between these two. Many methods have been developed
for a fast transformation from Legendre modes to nodal values [1]. However, most
of those methods for fast polynomial transformations are designed for extremely
high polynomial degrees in the range of several hundreds. In three-dimensional DG
simulations the polynomial degree in each dimension is more limited, and we are
looking for methods that are fast but suitable for polynomials in the range up to a
maximal degree of one hundred. We discuss some approaches to the fast transfor-
mation, especially the method proposed by Alpert and Rokhlin [2], and compare our
implementation of this method to a straight forward L2 projection. The implemen-
tation specifically addresses also the hybrid parallelism with MPI and OpenMP for
the three-dimensional DG elements.
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1 Introduction

High-order methods for CFD applications have gained popularity in the research
community in the last decades. They have the potential to provide not only high
accuracy but also efficient numerical solutions to the problems when compared to
lower order methods, as the approximation error decreases exponentially with the
order for smooth solutions. However, classical spectral methods suffer from limita-
tions to simple periodic domains and a global support. Their deployment on parallel
distributed systems for complex setups is usually limited in scalability.

The Discontinuous Galerkin (DG) method builds a class of schemes, that enable
high-order discretizations of conservation laws. It shares many of the advantages of
high-order spectral methods but overcomes its limitation of global ansatz functions
byweakly coupled, element local functions. DGmethods, due to this locality, provide
a path towards massive parallelism with high-order on distributed systems. Within
elements sharedmemory parallelism can be employed for the local operations, which
allows the numerical scheme to match the typical hierarchy of modern computing
systems.

Using an appropriate basis for the element local functions, linear operations can be
efficiently computed with optimal computational complexity. For example, Legen-
dre polynomials with their orthogonal basis and recursive definition results in a
trivially invertable diagonal mass matrix and allows for a stiffness matrix that can be
applied with optimal computational effortO(p3) for three dimensional elements and
a scheme order of p. Although an appropriate nodal basis also allows for an efficient
computation of the mass matrix, the same can not be achieved for the stiffness matrix
at the same time. With some restrictions the computational cost can be limited to
O(p4) operations in this case.

We also make use of cubical elements, which offer optimal properties for the
DG scheme. The elements are organized in an Octree that enables together with a
space-filling curve ordering an efficient partitioning and neighbor identification on
distributed parallel systems. By restricting to hexahedral meshes in combinationwith
orthogonal basis functions, we optimize the tensor-product nature in multiple dimen-
sions. This enables us to use a dim-by-dim approach with minimal computational
effort.

Though, linear equations can be efficiently computed with no added complex-
ity when the appropriate basis is used, non-linear equations can generally not be
treated so easily anymore. For example for nonlinear operations occurring in initial
conditions, boundary conditions, source terms or non-linear fluxes, a transforma-
tion of the Legendre modes to pointwise representation needs to be performed. This
forces us to look for algorithms that offer fast transformations. To allow an in-place
transformation, we use the same number of points and modal coefficients. The naive
evaluation of the polynomials at each of these pointswould result inO(p6) operations
in three dimensions, which clearly is not an option for high-order approximations.
By employing the dim-by-dim method, the cost for this can be reduced to O(p4).
However, there are fast algorithms that achieve the transformation in O(p3log(p))
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operations theoretically. Unfortunately, many methods for fast polynomial trans-
formations are designed for extremely high degrees and often do not exhibit their
asymptotically fast behavior for low polynomial degrees like the ones used in three
dimensional DG simulations. In the next paragraph, we briefly discuss some of these
algorithms which we implemented in our highly parallel framework.

The Fast Polynomial Transformation (FPT) described by Alpert and Rhoklin is
based on a fast approximative transformation of Legendre modes to Chebyshev poly-
nomials [2], followed by a Fast Fourier Transformation. Another method involves
the use of a Fast Multipole Method for a direct transformation of Legendre poly-
nomials to Legendre nodes, developed by Suda [3]. This involves one algorithmic
step less than the FPT. Both these method offer O(p3log(p)) complexity for the
transformation.

This paper is organized as follows: First, we briefly review the Discontinuous
Galerkin discretization in Sect. 2. Thenwe highlight the choice of basis for ansatz and
test function definition in Sect. 3. After that we introduce the projection algorithms
and the underlying ideas in Sect. 4, followed by some strategies for hybrid parallelism
using MPI and OpenMP in Sect. 5. Finally Sect. 6 presents the comparison and
analysis of different projection algorithms used in this work.

2 The High Order Discontinuous Galerkin Method

In this section, we briefly introduce the semi-discrete form of the Discontinuous
Galerkin Finite Element Method (DG) for compressible inviscid flows. The com-
pressible Euler equations are the non-linear system of equations describing such
flows with the conservation of mass, momentum and energy given by

∂tu + ∇ · F(u) = 0, (1)

equipped with suitable initial and boundary conditions. Here u is a vector of conserv-
ative variables and the flux function F(u) = (f(u), g(u))T for two spatial dimensions
is given by

u =

⎡
⎢⎢⎣

ρ

ρu
ρv
ρE

⎤
⎥⎥⎦ , f(u) =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
(ρE + p)u

⎤
⎥⎥⎦ , g(u) =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
(ρE + p)v

⎤
⎥⎥⎦ ,

where ρ, v = (u, v)T , E, p denotes the density, velocity vector, specific total energy
and pressure respectively. The system is closed by the quation of state assuming the
fluidobeys the ideal gas lawwithpressure defined as p = (γ − 1)ρ

(
e − 1

2 (u
2 + v2)

)
.

where γ = cp
cv
is the ratio of specific heat capacities and e is the total internal energy

per unit mass.
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The Discontinuous Galerkin formulation of the above equation is obtained by
multiplying it with a test functionψ and integrating it over the domainΩ . Thereafter,
integration by parts is used to obtain the following weak formulation

∫
Ω

ψ
∂u
∂t

dΩ +
∮

∂Ω

ψF(u) · nds −
∫

Ω

∇ψ · F(u)dΩ = 0, ∀ψ, (2)

where ds denotes the surface integral. A discrete analogue of the above equation is
obtained by considering a tessellation of the domainΩ inton closed, non-overlapping
elements given by T = {Ωi |i = 1, 2, . . . , n}, such thatΩ = ∪n

i=1Ωi andΩi ∩ Ω j =
∅∀i �= j . We define a finite element space consisting of discontinuous polynomial
functions of degree m ≥ 0 given by

Pm = { f ∈ [L2(Ω)]m}. (3)

With the above definition we can write the approximate solution uh(x, t)within each
element using a polynomial function of degree m

uh(x, t) =
m∑
i=1

ûiφi , ψh(x) =
m∑
i=1

v̂iφi , (4)

where the expansion coefficients ûi and v̂i denote the degrees of freedom of the
approximation of solution and of test function respectively. Notice, that there is no
global continuity requirement for uh and ψh in the previous definition. Splitting the
integrals in Eq. (2) into a sum of integrals over elements Ωi , we obtain the space-
discrete variational formulation

n∑
i=1

∂

∂t

∫
Ωi

ψhuhdΩ +
∮
∂Ωi

ψhF(uh) · nds −
∫
Ωi

∇ψh · F(uh)dΩ = 0, ∀ψh ,

(5)
Due to element local support of the numerical representation, the flux term is not
uniquely defined at the element interfaces. The flux function is, therefore, replaced
by a numerical flux function F∗(u−

h ,u+
h ,n)where u−

h , u
+
h are the interior and exterior

traces at the element face in the direction n normal to the interface.
For simplicity we can re-write the equation above in matrix vector notation and

obtain
∂

∂t
û = M−1 (

S · F(û) − MF · F(û)
) =: rhs(û). (6)

where M ,S denote the mass and the stiffness matrices and MF are so called face
mass lumping matrices. The above obtained ordinary differential equation (6) can be
solved in time using any standard timestepping method, e.g. a Runge-Kutta method.
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3 Choice of Basis Function

An important part of the DG formulation is the choice of the ansatz functions φ to
represent the approximated solution uh and test function ψ in (4). Typical choices
are polynomials. This section briefly highlights the choice of the polynomial basis
which allows for faster evaluation of integrals in (5). From theoritical point of view the
choice of the polynomial basis is arbitrary, however, the computational effort required
to evaluate the volume and surface integral term in (5) can differ based on this choice.
For example, the mass matrix term

∫
Ωi

ψhuhdΩ can be cheaply computed when an
orthogonal basis is choosen for both uh andψh . Legendre polynomials are orthogonal
with the L2 inner product in the interval −1 to 1. Unluckily, this orthogonality is
lost for the stiffness matrix term

∫
Ωi

∇ψ · F(uh)dΩ since derivatives of Legendre
polynomials do not simply reduce to another orthogonal basis. If the fluxes have
non-linear dependence on the state (like the fluxes in the Euler equations), then this
orthogonality is also lost for the surface integral term

∮
∂Ωi

ψF(uh) · nds. For this
reason, the nodal polynomial basis like Lagrange polynomials are quite common, as
the coefficients can be directly identified as point values thereby allowing pointwise
evaluation. The DG scheme emerging from using this type of basis are classified as
nodal DG.

However, the evaluation of gradient is not cheap for Lagrange polynomials and
when used naively the computational cost falls in the order of O(p6). With some
restrictions, it can be limited to O(p4) operations in our case. However, for cubical
domains a more efficient basis could be found which allows fast evaluation of both
mass and stiffness matrix at the same time. For this we use Legendre polynomials,
which is a special type of Jacobi polynomials, following a three term recursion. Being
orthogonal it can cheaply evaluate the mass matrix and the recursion definition helps
to assemble the stiffness matrix in O(p3). The DG scheme based on these kind of
basis functions for approximation are known as modal DG. Apart from this, modal
DG has also other cheaper and efficient means when it comes to dealing with aliasing
errors, filtering and stabilization techniques or fast projection of solution onto faces
etc. We skip further details as it is not in the scope of this paper.

4 The Projection Algorithms

The Legendre polynomial series does not have a fast transform associated with it
like a Chebyshev expansion. Therefore, a p + 1-th order Legendre expansion would
normally requireO(p2) operations to evaluate point values at p nodes.Withmultiple
dimensions this high computational cost gets significant even for low orders, as the
polynomials in all directions need to be considered, resulting in O(p2d) operations
for d dimensions. With a tensor product formulation on cubical elements, a dim-by-
dim algorithm can be deployed and the number of iterations reduced toO(d · pd−1 ·
p2) = O(pd+1). Without loss of generality, but for readability, we restrict ourselves
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to a single dimension here. Next, we give a formal definition of the problem of
polynomial projection and then go on describing the algorithms we use along with
relevant implementation details in the subsequent subsections.

Given is a function f : [−1, 1] → R expressed by an n term finite Legendre
expansion of the form

f (t) =
n−1∑
i=0

ûi · Li (t). (7)

We want to convert this expansion to n nodal point values of f evaluated at the
points t1, t2, . . . , tn . Similarly, for the inverse operation, given tabulated values of
function f : [−1, 1] → R at n nodes t1, t2, . . . , tn wewant to evaluate the coefficients
û0, û1, . . . , ûn−1 such that

f (t j ) =
n−1∑
i=0

ûi · Li (t j ) (8)

holds. These transformations in the above noted general formulation require O(n2)
operations. For a polynomial representation in 3D the number of operations required
for this transformation would be proportional to n6. Thus, a naive implementation
of the general transformation is prohibitively expensive even for moderately large
polynomial degrees n. This creates the need to look for an efficient way to transform
modal expansions to point values and back in order to retain high performance for
higher order.

Alpert and Rokhlin presented a fast and stable algorithm for fast transformations
of Legendre polynomials [2]. Various alternatives and extensions were proposed
since then e.g [1, 3]. A detailed analysis of fast polynomial transformations can
be found in [4]. Figure 1 shows some existing fast algorithms that can deliver fast
transformation from modal coefficients to point values and back. The solid line in
the figure higlights the transformation algorithm we implemented tailored to fit our
highly parallel framework. In the following subsections we briefly discuss the pro-
jection algorithms and its implementation details. Then we compare the algorithms
and analyse them.

4.1 Direct L2 Projection

The direct, but expensive transformation between the nodal and modal basis is the
L2 projection, which refer to as L2P in this paper. Mathematically, the L2 projection
fh , for Legendre expansion f of the form (7) projected onto any arbitrary function
space θ ∈ L2(Ω) is given by

〈 fh − f, v〉L2(Ω) = 0 ∀v ∈ θ, (9)
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Fig. 1 This figure shows some of the available fast algorithms for converting Legengre coefficients
to point values along with their expected computational complexity for transformation in single
dimension marked in red. Solid arrows highlight the algorithms we used in this work

or equivalently

〈 fh, v〉L2(Ω) = 〈 f, v〉L2(Ω) ∀v ∈ θ. (10)

Then, for each element the discrete counterpart of this system can be stated as

Mx = b, (11)

where components of matrix Mi, j = 〈ν j , νi 〉, {νi } being basis of space θ , x is the
vector containing degrees of freedom of fh = ∑

i xiνi and components of bi is given
by bi = 〈 f, ν〉.

By choosing the Lagrange polynomials as target space, this approach be be used
to transform the represenation from Legendre modes to Legendre nodes and back.
For an accurate mapping and to allow in-place transformation, we use as many
points as modal coefficients. As can be easily seen from the matrix formulation
the costs of this transformation grows quadratically with the number of degrees
of freedoms. Furthermore, the costs increase also with the dimensionality of the
polynomial. For example, a three dimensional p-th order element has p3 coefficients
for each variable. Evaluating it at all the p3 nodes would take p6 operations, which
would quickly get prohibitive expensive for higher orders. However, tensor product
basis functions and cubical elements help us to reduce the problem formulation to
multiple one dimensional operations, which in general is not possible for non tensor-
product elements like tetrahedral elements.
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Considering directions k ∈ {1, 2, 3} for 3 dimensions and order p representation
in an element Ωi we can define the spatial ansatz function as a product of ansatz
function in one dimension by

φl(x) = φl(x1, x2, x3) = φl1(x1) · φl2(x2) · φl3(x3)

l = 1 + l1 + l2 · p + l3 · p2
1 ≤ l1, l2, l3 ≤ p3

Using this, the terms of the form 〈φa(x), φb(x)〉 can be broken down into

〈φa(x), φb(x)〉 =
3∏

k=1

〈φak (xk), φbk (xk)〉 ,

From computational point of view, this makes the transformation applicable for
dimension by dimension. Exploiting this we are able to reduce the complexity of the
L2 projection down to O(p4) in three dimension.

4.2 Fast Polynomial Transformation

The FPT algorithm by Alpert and Rokhlin [2] is based on the idea to exploit the
already known fast transformation for Chebyshev polynomials in the form of the fast
cosine transform. As we are looking for the transformation of a Legendre expansion
(7), themissing component is a fast transformation betweenLegendre andChebyshev
coefficients. In this section we describe the basic concept and implementation for
this fast polynomial transformation, which we refer to as FPT.

Assuming, a function can be described by a finite Legendre expansion as given
in (7) it then can also be described by a finite Chebyshev expansion of the form

f (x) =
n−1∑
i=0

ûci · Ti (x) (12)

where Ti (x) is the i-th Chebyshev polynomial. The coefficients ûli and ûci are then
related by the equation

ûc = M · ûl (13)

where, ûc = (ûc0, û
c
1, . . . , û

c
n−1) and ûl = (ûl0, û

l
1, . . . , û

l
n−1). Also, conversely, if f

is a function defined as the Chebyshev expansion in (12) then it can be expressed as
the Legendre expansion of the form (7), with the coefficients ûl given by

ûl = L · ûl (14)
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Alpert and Rokhlin showed that the entries of matrices M and L can be expressed
by meromorphic functions of the matrix indices and have the following structure:

Mi, j =

⎧⎪⎨
⎪⎩

1
π
Λ

(
j/2

)
if 0 = i ≤ j < g + 1 and j is even

2
π
Λ

( j−i
2

)
Λ

( j+i
2

)
if 0 < i ≤ j < g + 1 and j + i is even

0 otherwise

(15a)

Li, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = j = 0√
π/

(
2Λ(i)

)
if 0 < i = j < g + 1

− j (i+1/2)
( j+i+1)( j−i)Λ

( j−i−2
2

)
Λ

( j+i−1
2

)
if 0 ≤ i < j < g + 1 and i + j is even

0 otherwise
(15b)

The function Λ : C → C is defined by Λ(z) = Γ (z + 1/2)/Γ (z + 1). Therefore,
blocks in the matrices can be approximated cheaply by e.g. a Taylor series expansion
using only a few coefficients. The farther away the blocks from the diagonal, the less
accurate their approximation needs to be. Thus, approximation costs can drop with
distances to the diagonal. For further details and analysis we refer to [2] The matrices
M and L are subdivided into entries close to the diagonal, triangle submatrices and
blocks. Diagonals and triangles are evaluated directly, while for the blocks only an
approximation is used. The block-size grows with the distance from the diagonal. A
sketch of this decomposition of the matrices is given in Fig. 2.

Due to the fact that the number of rows scales proportional to p and the number
of blocks scale as O(log(p)), the computational complexity of the algorithm is
O(p log(p)) as a constant effort for all blocks is used no matter their size.

Also, this algorithm is more stable than the direct L2 projection as the scheme
does not give rounding errors when the points are located close to the boundary of
the reference element.

4.3 Spherical Harmonic Transform Using Fast Multipole
Method

Spherical harmonics are set of spatial functions forming orthogonal system defined
on the surface of a sphere. Several transformation exist for performing spherical
harmonic transforms [5–7]. Suda proposes a fast transformation algorithm for the
same using the Fast Multipole Method (FMM) [7, 8]. In this section we describe the
basic idea of algorithm proposed by Suda.

Spherical harmonic can be expressed as product of an associated Legengre func-
tion and a trigonometric function. This way, the spherical harmonic transform breaks
down into successive evaluation of an associated Legendre transform and an inverse
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Fig. 2 Subdivision of
matrices M and L . Entries
close to the diagonal are
directly applied while the
blocks further away are
approximated using a Taylor
series expansion. The
triangles are also computed
directly, just like the
diagonals

Remainder

Add. 1 Block

5 Blocks in total (nBlocks)

Adapter Approximated

fourier transform. Fast algorithm for the latter already exists, so it is sufficient to
accelerate the associated Legendre transform for fast spherical harmonic transform.
Suda [7] uses polynomial interpolation to evaluate associated Legendre transform
and accelerates the polynomial interpolation using Fast Multipole Method (FMM).
For detailed algorithm we refer to [7].

A spherical Harmonic function Y k
j (λ, μ) can be represented as a product of an

associated Legendre function and a trigonometric function as

Y k
j (λ, μ) = Lk

j (μ)eikλ (16)

where μ and λ are spherical angular coordinates. Lk
j is the associated Legendre

function of degree j and order k. The evaluation of the spherical harmonic expression

g(λ, μ) =
p+1∑
k=1

p+1∑
j=k

gkj Y
k
j (λ, μ) (17)

can also be split into an associated Legendre function transform and a Fourier trans-
form as
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gk(μ) =
p+1∑
j=k

gkj L
k
j (μ), (18)

g(λ, μ) =
p+1∑
k=1

gk(μ)eikλ (19)

The inverse spherical harmonic transform involves the computation of g(λr , μs) from
the input coefficients gkj , while the spherical harmonic transform is the computation
of gkj from sampled values from g(λr , μs). For the so-called alias free condition, the
indices are restricted in the following way

{r ∈ (1, R), s ∈ (1, S); R ≥ 3p + 1, S ≥ 3p + 1

2
}. (20)

Thus the inverse transform consists of associated Legendre function transform (18)
and Fourier transform (19). The Fast Fourier Transform already enables (19) to
be computed optimally in O(p log(p)). Thus accelerating the associated Legen-
dre function transform is sufficient enough to reduce the complexity of the whole
transformation. Suda proposes an algorithm based on this idea, and the computa-
tional complexity of the whole transformation is O(p log(p)) for 1D. There is also
a set of routines publicly available as a C library to perform these transformations
[9]. We integrated the FXTPACK routines into our program and use it to perform
transformations.

5 Hybrid Parallelization of the Projection Algorithms

As we discussed earlier, a high locality coming from loosely coupled elements in
DG is key to good scalability on distributed systems. Also, the workload per element
gets high with increasing order. For example, for p-th order scheme there are p3

unknows per variable per element. However, this workload can not be distributed
among different processes efficiently, as access pattern within an element is quite
random and tightly coupled. However, with shared memory parallelization of oper-
ations within each element the scalability can be increased, especially for high order
discretizations. So, the elements can be distributed among the processes and within
elements shared memory parallelism can be deployed. Using this technique, its pos-
sible to scale down to one element per node. We used OpenMP to parallelise the L2P
projection algorithm. We present and discuss the results for hybrid parallelization in
Sect. 6.
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6 Comparison of Different Algorithms

In this section we discuss the comparison of different transformation algorithms,
highlighting the expected and achieved performances. Then we go on presenting
some results on the hybrid parallelization as discussed in Sect. 5. Finally, we briefly
analyse the performance behavior with respect to vectorization and OpenMP.

As a testcase we use the compressible Euler equation in 3D to simulate the flow
of a fluid in a simple cubic domain with periodic boundaries. For time stepping, we
use 4-step explicit Runge-Kutta (RK4) method. Because of the non-linear flux term
the computation requires the conversion from modal to nodal coefficients and back
in the otherwise modal scheme. With explicit RK4 time stepping, it needs to do this
transformation 4 times for each single time step iteration and for each conservative
variable (a total of 5 conservative variables).

To measure the performance, we consider the whole computation loop. There are,
of course, several other operations apart from polynomial transformations contribut-
ing to the overall performance. However, for sufficiently high orders the transfor-
mations are the most significant factor. And also for the overall behavior, which is
in the end the relevant measure, the impact of the transformation performance can
be observed. With all other simulation parameters remaining the same, we believe
the overall performance is a valid indication for a comparison between the differ-
ent transformation algorithms in the actual simulation setup. We use the measure
of thousand degree of freedom updates per second (KDUPS) for the performance
assessment. A degree of freedom update refers to the time taken to update a single
degree of freedom from one timestep to the next. Larger KDUPS imply better perfor-
mance and vice versa. Also notice that the performance attained includes effects of
the implementation and the computing hardware, such as caching or vectorization.

In Fig. 3 we plot the performance of the different transformation algorithms. First
in Fig. 3a we measure the performance on our small development platform, which
uses intel Xeon X5650 (Westmere) processors. The performance index KDUPS is
plotted against the increasing order on the horizontal axis. The overall problem size
is kept nearly constant around 80million degrees of freedom per variable. Thus, with
an increasing order the mesh resolution gets coarser to maintain the overall problem
size (or total number of degrees of freedom). The peak in the low order range shows
a caching effect, where a single elements can be kept completely in the cache. There,
the computation is faster as it benefits of the data locality for all operations inside
the element. For higher orders this effect gets lost as data needs to be fetched from
memory even for element local operations. The performance flattens out. On this
machineweobserve that that after the 8th order the performance of FPT is betterwhen
compared to others, even though the asymptotic fast regime seems to be achieved only
for very high orders. At an order of 256 we observe a small dip in the performance of
the FPT, but apart from that the FPT always appears to be the fastest option. Running
exactly the same setup on an Intel Xeon E5-2680v3 (Haswell) processor, we observe
a different behavior. While the performance for all transformation methods improves
due to the faster processor, we can also observe a speed-up for L2P, which becomes
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Fig. 3 Performancemeasure of the transformation algorithms. L2Pdenotes the direct L2 projection,
FPT is the fast polynomial transformation and FXT is the spherical harmonic transform of the
FXTPACK library
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comparable to the performance of the FPT. This benefit is likely due to the well
vectorizable parts of the L2P algorithm, which is of increased importance on the
newer processor. At the same time, the FXT implementation can not profit from the
improved performance on the newer processor, which is probably due to the irregular
memory access patterns in the FMM.

We observe the direct L2 projection with the dim-by-dim optimization yields a
peformance equivalent to the FPT up to scheme orders as high as 400. Though,
the FPT should asymptotically provide a computational complexity of p3 logp and
the L2P of p4. These operation estimations correspond to a line following 1

logp and
1
p respectively. The expected asymptotic behaviors are included in the figures for
reference. As we can see, it is hard for the fast algorithms to compete with the
simple direct transformation, which just inflicts a matrix-vector product that can be
computed very efficiently.

Aswementioned inSect. 5, theDGschemecan exploit sharedmemoryparallelism
for higher orders as the number of degrees of freedom within an element increases
and with them the data parallelism. Due to its simplicity, it is possible to trivially
parallelize the matrix vector multiplications in the L2P. Fig. 4 shows the intra-node
performance with OpenMP and MPI.

Plotted is the performance for various combinations of MPI processes and
OpenMP thread counts on a single node of Hazel Hen. The problem size (approx. 800
million degrees of freedom) is kept constant for all the runs. Thus with an increasing
spatial scheme order along the X-axis, the total number of elements in the mesh
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Fig. 5 L2P performance for different proc-thread combination with varying vector length from a,
b, c

decreases. Also, the number of elements used is always a multiple of 24, such that
it can always be evenly distributed among the up to 24 MPI processes on the single
node. This ensures there is no load imbalance due to different number of elements on
each MPI ranks and thereby the pure MPI performance does not get distorted. The
run with the highest order in the graph makes use of 24 elements. We would expect
the performance of hybrid runs to be close to pure MPI runs so that it would enable
us to use OpenMP without loosing performance. In Fig. 4 we see the performance
of pure MPI is clearly better for scheme orders up to 16. This is expected as for 16th
order (or 4096 degrees of freedeom per variable and element), the computational
load within a single element is relatively low and insufficient to break even with
the overheads introduced by the OpenMP parallelization. However, we can see that
the performance of hybrid runs closes in to MPI-only computations for increasing
scheme orders. We observe using 4 threads gets us quite close to the performance
obtained using 24 MPI processes for high orders. At the same time, it doesn’t pay
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off to use large number of threads (>6) as the performance deteoriates as soon as
threads span multiple NUMA domains. Also, its worth mentioning that hybrid par-
allelization allows us to fit larger problem per element within a node still attaining
optimal performance. For example, when hit the memory bound with a certain order
on a node, with shared memory parallelisn we can reduce the number of elements
per node to half and use 2 OpenMP threads instead and use even higher orders, while
still utilizing all cores.

Many modern hardwares offer possibilities of speeding up the computation using
data level parallelization with vectorization. We also exploit this feature inside our
L2P implementation by vectorizing our loop operations. We perform matrix vector
multiplication using chunks or vectors of specific length. This vector length can be
set up during the compilation and helps us boost the performance on vectormachines.
OpenMP parallelism is implemented on this vector chunks. Thus, it needs to be tuned
to obtain the optimum performance on a given system. Figure 3 shows the OpenMP
performance for 3 different vector lengths. When the vector size is too small (e.g.
Fig. 5a), we see that the OpenMP overheads are too high and, therefore, a larger
difference in performance. As we increase the vector length, the OpenMP threads
get more work and we see the improvement in the performance of hybrid runs.

7 Conclusion

In this work we presented some of the fast algorithms available as an option to effi-
ciently transform between modal and nodal spaces specially needed when dealing
with non-linear terms in modal high order Discontinuous Galerkin methods. We dis-
cussed the implementation aspects and the performance comparison of the algorithms
we implemented in our code. Then we also talked about hybrid parallelizing the DG
method and presented some performance plots highlighting efficient implementa-
tion. However, we did not find the performance of the fast algorithms convincing
especially for lower orders. They mostly start to pay off for orders which are not
feasible for 3D simulations. We found the L2P algorithm quite handy and a decent
option since it is easy to optimise because of its simple structure. We still look out for
some fast algorithms paying off for order less then hundred. We are further working
on implementing shared memory parallelism of our FPT implementation and make
it suit our framework and exploit dimension by dimension approach.
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