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Abstract We report on first experiences in deploying the APES framework on the
NEC SX-ACE vector system. In APES there are two solvers available, implementing
different numerical schemes. Musubi is a Lattice-Boltzmann solver that can be used
to simulate incompressible flows. This numerical method is attractive as it allows
the explicit computation for incompressible flows with good scalability and robust
treatment of highly comlex geometries. The second solver, Ateles, implements a
high-order Discontinuous Galerkin method and can be used to solve hyperbolic
conservation laws, including linear equations like acoustics and non-linear equations
like compressible Navier-Stokes. The NEC SX-ACE vector system offers a memory
bandwidth to operation ratio of 1 Byte per floating point operation, which is an
interesting deployment option for many numerical schemes. Though, there are a lot
of experiences with earlier systems of the SX series, the latest installment comes
with new features and an overhaul of the programming environment.

1 Introduction

The APES framework [1] is a collection of applications and libraries to enable large
scale numerical simulations of fluid dynamics on distributed memory systems. It is
written in Fortran and utilizes some Fortran 2003 features. Though, some features
from the Fortran 2003 standard are extensively used throughout the code, the devel-
opment tried to stay off from various language constructs that were troublesome with
various compilers over a long time. One of the notable requirements from the Fortran
2003 standard is the ISO-C-Binding, which is used to incorporate the Lua scripting
language for configuration files.
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There are mainly two fluid dynamic solvers developed within APES. One is the
Lattice-Boltzmann solver Musubi [2], suitable for incompressible flows. The other
is the high-order Discontinuous Galerkin solver Ateles [3] for compressible flows,
but also other hyperbolic conservation laws. Both rely on a large part of shared
infrastructure provided by the TreElM library [4]. Meshes are described with the
help of Octree data structures, but in a sparse sense, where only elements are stored
explicitly which are part of the computational domain. This sparsity results in the
need for an indirection when accessing neighboring elements, like in unstructured
mesh representation. The mesh format has been chosen specifically to cater large
scale distributed parallel systems, besides the known topology of the Octree, a space-
filling curve is used to partition the mesh. Using a space-filling curve together with
the Octree enables a completely distributed partitioning, where each process can
locally compute the elements it is going to work on.

Both solvers have been deployed on various large systems and have been shown
to be capable of utilizing at least 100 thousand MPI processes. The APES tools have
never been deployed on any earlier NEC SX vector system. Here we report some first
experiences of porting this flexible framework to the NEC SX-ACE system. The NEC
SX series of vector computers have a long standing tradition in high performance
computing with a well-established development environment, especially for Fortran.
A high memory bandwidth in relation to the floating point operation speed yields
a well balanced system with 1 Byte per floating point operation. If we can exploit
vector instructions in the APES solvers, we expect both solvers to benefit from the
fast memory access and, thus, a high sustained performance.

Though, the APES solvers have been developed on and for cluster machines with
mostly an Intel x86 architecture, vectorization was always a considered point in the
development. Vectorization in the implementation is of increasing importance, as
larger and larger vector instructions get into the processor architectures. The AVX2
instructions, for example, allow a single instruction to process four double precision
numbers and AVX-512 extends this to eight. However, the 256 double precision
numbers processed per instruction on the NEC SX processor is a completely different
quality of vectorization, which requires a really strong level of vectorization in the
implementation.

At least for the Lattice-Boltzmann kernel itself a good vectorization is known, due
to the straight forward single loop. We therefore start out with the porting of Musubi
to the NEC SX-ACE and have a look at other important parts besides the kernel. After
that we move on to the little more involved Discontinuous Galerkin implementation
in Ateles, where the computational effort is distributed across multiple important
kernels and a vectorization is less obviously achieved.

2 Porting of Musubi

We started our porting efforts on Musubi, as this algorithm is known to perform well
on the NEC SX architecture and the main kernel is straight forward to understand.
The first step in porting an application is to ensure that the code can be compiled
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Listing 1: No vectorization due to small intermediate arrays
1 do iVal=1,nVals
2 tmp(1) = a(iVal)
3 tmp(2) = b(iVal)
4

5 result = var(1) + var(2)
6 end do

for the target system. Luckily, the compiler environment on the NEC SX-ACE pro-
vides a Fortran 2003 compiler. This new compiler is a complete overhaul of the old
compiler that only provided a very limited subset of the Fortran 2003 standard. One
drawback of this new compiler is a less sophisticated optimization and vectorization,
when compared to the previous more restricted compiler. Nevertheless, we found the
compiler to work pretty well on Musubi and were able to tune the implementation
towards a high sustained performance of about 30 % of the peak performance in the
Lattice-Boltzmann kernel.

2.1 Porting of the Kernel

The Lattice-Boltzmann kernel basically is just a single loop over all lattice points.
It is an explicit scheme and a double buffer is used to hold the values of the new
and old time step. Therefore, there is no dependency and the expectation was a
straight forward vectorization of the loop. Thanks to the NEC sxf03 compiler the
initial porting without optimization was straight forward. Only very minor issues
arose with some modern Fortran constructs that were easily resolved. However, the
performance was disappointing and especially the vector length in vector instructions
was far below the possible maximum of 256. As it turned out, the implementation of
the Lattice-Boltzmann loop in Musubi made use of smaller arrays to hold temporary
values. This convenience confused the compiler and had it vectorizing these arrays
instead of the outer loop. To allow the compiler to put those temporary values into
vector data registers, they had to be turned into individual scalars.

An illustration of the code layout where the long loop over all lattices is not
vectorized is given in Listing 1. And the accordingly transformed code to allow
vectorization is shown in Listing 2. For Lattice-Boltzmann the number of interme-
diate scalar values is usually in the range of 20 values. There explicit declaration
is a little more cumbersome than employing arrays, but all in all this is a rather
minor code transformation. Finally we add a hint to the compiler in Listing 2 that
the outer loop iterations are indeed independent via the NODEP compiler directive.
The independence is obscured by the use of indirection to address the lattices.

With the changed loop from 2, we already achieve a good vectorization and
high sustained performance. For the standard collision operator, called BGK, the
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Listing 2: Vectorizable loop by using scalar temporary variables
1 !CDIR NODEP
2 do iVal=1,nVals
3 tmp1 = a(iVal)
4 tmp2 = b(iVal)
5

6 result = tmp1 + tmp2
7 end do

vectorization ratio reached 99.83 % with an average vector length of 256, which
results in a performance of 19.87 GFLOPs on a single SX-ACE core.

For Musubi this change in code is already sufficient to achieve a satisfactory
sustained performance in the Kernel on a single core. Unfortunately, for real problems
we also need to consider other parts of the code, as any one of them might pose a
potential bottleneck, prohibiting the execution of simulations on the machine.

2.2 Porting of the Initialization

While the kernel ran fine with the above minimal code changes, we hit a wall in
the initialization for larger problems. The initialization takes care of constructing
neighborhood information and setting up the indirect addressing accordingly. To
achieve this a dynamic data structure is used, which allows for the addition of new
elements with fast access afterwards. These are called growing arrays in Musubi and
make use of amortized allocation costs by doubling the memory when the array is
full.

This datatype is illustrated in Listing 3. The shown code makes use of CoCo
preprocessing to define this growing array for arbitrary data types. Each array is
accompanied by a counter nVals to track the actual number of entries in the possibly
larger array. New entries are appended at the end of the list and the counter is increased
accordingly. However, if the current size of the array is reached, the array is copied
into a larger array to automatically allow for the addition of the new element. This
is shown done by the shown expand routine.

For some data a dynamically growing array is not sufficient, instead it needs to
be possible to search for values in the given array. To achieve this, we employ a
very similar data structure, but with the addition of a ranking array to maintain a
sorting of array entries and allow for binary searches. This kind of data structure
has the additional complication, that for newly added values, we need to perform
an insertion in the ranking array. Though the necessary copying to shift the entries
is vectorizable here, the compiler needs again some hints to actually perform the
vectorization.

Not too surprisingly this dynamic data structures yield only little performance
on the NEC SX-ACE system, however the heavy costs getting prohibitive large for



APES on SX-ACE 35

Listing 3: Growing array to deal with dynamic data
1 ! Class definition
2 type grw_?tname?Array_type
3 integer :: nVals = 0
4 integer :: ContainerSize = 0
5 ?tstring?, allocatable :: Val(:)
6 end type
7

8 ! Double the array
9 subroutine expand(me , pos)

10 ...
11 me%containerSize = me%containerSize *2
12 if ( me%nVals > 0 ) then
13 allocate(swpval(me%ContainerSize))
14 swpval (:me%nVals) = me%Val(:me%nVals)
15 call move_alloc( swpval , me%Val )
16 else
17 if ( allocated(me%Val) ) deallocate( me%Val )
18 allocate( me%Val(me%containerSize) )
19 end if
20 ...
21 end subroutine expand
22

23 subroutine append(me , newval)
24 ...
25 if (me%nvals == me%containerSize) call expand(me)
26 me%nVals = me%nVals + 1
27 me%val(me%nVals) = newval
28 ...
29 end subroutine append

larger problems were not expected. To overcome the long running times for the
initialization the following strategies have been employed:

• Avoid many small allocations: Use an initial size for the growing arrays that is in
the range of expected array entries.

• Minimize the utilization of these data structures: Out of convenience the data
structures where used in places where some code reorganization allowed for single
allocation of fixed sized arrays instead.

• Instead of employing the data structures for arbitrary complicated derived datatype,
restrict there usage to arrays of intrinsic Fortran datatypes.

• Add a NODEP compiler directive to allow the compiler the vectorization in the
shifting of the ranked array.

These changes indeed cut down the initialization times to a reasonable amount, and
computations of large problems became feasible. The taken steps for the Kernel and
the initialization so far are crucial for all simulations. They were apparent for the most
simple simulation setups, where only minimal IO had to be performed. However, for
meaningful simulations it usually is necessary to load a mesh that describes a more
complicated geometry. Thus, after resolving the fundamental performance issues to
this point, we are now able to move on to those more involved setups.
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2.3 Porting of the IO

Most simulations require the loading of meshes to describe the geometrical setup of
the computation and the boundary conditions. As it turned out, the loading of meshes
in Musubi was awfully slow and took in serial several minutes for a small mesh file
of 32 MB. For the reading of meshes Fortran direct IO was used, which in itself
so far did never pose a problem. Some further investigation revealed that the old
sxf90 compiler was around 400 times faster with the same reading task as the sxf03
compiler. The explanation for this can be found in the buffering mechanism for the
IO. Due to the nature of the mesh data, each read only loads 8 Bytes of data. However,
the system reads 4 MB at once. The sxf90 compiler recognizes the consecutive reads
and reuses the loaded 4 MB, while the new sxf03 compiler seems to not recognize
it and reads the 4 for every read, resulting in the huge observed overhead. This will
probably be fixed in a later release of the compiler. However, the schedule for this is
not fixed yet.

To overcome this issue we now make use of MPI-IO for the reading of all data.
Most IO operations already made use of MPI-IO beforehand, but for the simple
reading this was not considered necessary up to now. After implementing the mesh
reading also via MPI-IO, the loading time for meshes was also cut down with the
sxf03 compiler.

2.4 Porting of Boundary Conditions

Related to the usage of more complicated meshes is also the treatment of boundary
conditions. Indeed, after resolving the issues in the initialization and loading of the
mesh, the major performance hurdle was encountered in the boundary conditions. The
boundary conditions use conditionals to decide what to do in a loop over boundary
lattices. As this is only badly vectorizable an alternative implementation has been
put into place. To allow for a vectorization also in the boundary treatment some
additional memory is introduced to maintain lists of lattices with the same boundary
condition. This enables the vectorized processing of each boundary condition and
finally yields an implementation that is capable of running non-trivial simulation
setups with a high sustained performance on the NEC SX-ACE system.

2.5 Parallel Performance

As shown, we were able to port Musubi to the NEC SX-ACE system with relatively
little effort. Missing now is the parallel performance of Musubi on the system. The
NEC SX-ACE provides 4 cores per node and we employ a MPI parallelization
strategy to utilize the parallelism offered by the system. For the scaling analysis we
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Fig. 1 Performance map of Musubi on the Tohoku NEC SX-ACE installation with up to 512 nodes
(2048 MPI processes)

are using the machine of the Tohoku University in Sendai, where up to 512 nodes
can be used in a parallel computation job.

To assess the parallel performance of Musubi, we use a performance map, which
shows the performance per node over the problem size per node for various node
counts. This graph is shown in Fig. 1. As a measure for the performance we use
million lattice updates per second (MLUPs), which can also be translated into floating
point operations per second. It shows a strong dependency of the performance on the
problem size. For small problem sizes the performance gets diminished.

The performance map in Fig. 1 provides a full picture of the performance behavior
of Musubi. We can extract the weak scaling for given problem sizes per node out of it
by comparing the vertical distance between the lines for different node counts. And
the strong scaling can be seen by starting on the right for a single node and moving
to the left for larger and larger node counts. Thus, we recognize that weak scaling
appears to rather poor, but still reasonable, while strong scaling always suffers from
the strong dependency of the performance on the problem size.

Figure 2 shows the parallel efficiency when doing a weak scaling with 4 million
elements per node. As can be seen the parallel efficiency drops immediately when
the network is utilized (step from 1 node to 2 nodes). However, overall the drop
in performance is moderate and on 512 nodes a parallel efficiency around 70 % is
achieved.

A more concerning behavior is observed with respect to the performance in
dependency on the problem size. Even on a single node with 4 MPI processes the
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performance drops drastically for small problem sizes. This is not observed for serial
runs and we can trace this drop in performance back to the communication over-
head. Figure 3 illustrates the communication overhead on a single node with 4 MPI
processes. For the smallest problem of only 4096 elements we observe a communi-
cation time of around 44 % of the overall running time. This large fraction of time
for the communication only slowly decreases for larger problems, which results in
the bad parallel performance for a wide range of problem sizes per node.

This high communication cost is probably due to a flushing of the ADB, which
becomes necessary for the MPI communication. For small problems the data from
the ADB is relatively large and the costs for purging it in the communication calls
get the dominating factor for the running time.
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Unfortunately we are currently stuck with this situation as all attempts to over-
come this performance bottleneck failed so far. One hope would be to avoid MPI
communication by utilizing OpenMP parallelism within each node. However, the
current sxf03 compiler seems to deactivate most vectorization as soon as OpenMP
is activated, resulting in a poor performance in comparison to the MPI-only imple-
mentation even with the shown communication overheads. Another hope to speed
the communication up was the utilization of global memory, which is available via
the MPI_alloc_mem call of MPI. Incorporating this special memory did also not yield
any benefit.

Despite the relatively poor scaling behavior due to these issues, the execution
on the NEC SX-ACE compares quite well with more common large scale high
performance computing systems because of the high sustained performance of nearly
30 % of the peak performance on a single node. This is illustrated in the comparison
Fig. 4 by showing the sustained performance over the theoretical peak performance
of utilized machine fractions in a strong scaling setup for more than 16 million
elements. The comparison was done on the german systems:

• Kabuki: a small installation of NEC SX-ACE at the HLRS Stuttgart.
• Hornet: a Cray XC40 system with Intel Xeon E5-2680 v3 processors at the HLRS.
• SuperMUC: a Lenovo NeXtScale nx360M5 WCT system with Intel Xeon E5-2697

v3 processors located at the LRZ in Munich.
• Juqueen: a IBM BlueGene/Q system at the FZJ in Jülich.

As can be seen in Fig. 4, the scaling is on the NEC SX-ACE system Kabuki not
as good as on the other many-core systems. However, due to the higher sustained
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Fig. 4 Comparison of achieved performance by Musubi on different machines
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performance the other systems need to utilize a much larger peak performance
to obtain the same performance. Thus, even with the observed bad scaling at the
moment, the NEC SX-ACE system appears to be an attractive execution option for a
wide range of simulation setups. Especially, when considering the power consump-
tion for a given simulation with Musubi, the NEC SX-ACE system shows a large
advantage over the other high performance computing systems.

3 Some Notes on the Porting of Ateles

In contrast to Musubi, Ateles is not so straight forward to port to the vector system.
The computational load is spread across multiple kernels and the data organization is
more involved. Nevertheless, we hope to utilize the NEC SX-ACE system also with
this solver and its porting is ongoing work. Though the work is not yet complete we
want to share some first experiences with this Discontinuous Galerkin solver on the
NEC SX-ACE.

Ateles implements a high order Discontinuous Galerkin scheme with many
degrees of freedom per element. While the elements are unstructured like in Musubi,
the internal organization of degrees of freedom in each element is highly regular.
Our hope, therefore, is to allow a vectorized processing of the data within elements.

As a large part of the code is shared with Musubi, the initial porting without opti-
mizations did not yield big surprises, and a first measurement could be done for a
discretization of 128th order. This revealed multiple routines with significant contri-
butions to the compute time. The three most expensive routines used respectively 32,
22 and 13 % of the compute time. For this high order, a good average vector length
of 254 was achieved. However, the vector operation ratio only reached 11 % in the
most expensive routine. Upon investigation, we found that a major problem in the
code are again smaller loops that are put inside longer loops. Mostly these issues can
be overcome by loop exchanges.

At first our attempts to remedy these problems with short loops did not yield the
benefits, we would hope for. For a much smaller problem with only 16th order in the
discretization scheme, the vectorization ratio only increased from 14.5 to 38 % with
an average vector length of 140. A surprising discovery here was that vectorization
seemed to be limited because of the size of source file. Splitting the Fortran module
and using a smaller source file yielded a vectorization ratio of 99 %. This appears to
be a compiler shortcoming and hopefully will be fixed in future revisions of the new
compiler.

A compiler problem also seems to prohibit further vectorization of the next most
important routine. This routine contains a loop, which is only partially vectorized in
the new compiler, but in the old sxf90 compiler this loop gets fully vectorized. Thus,
the performance porting of Ateles on the NEC SX-ACE seems to be more demanding
for the vectorizing compiler and for further improvements we are looking forward
to new compiler releases.
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4 Summary

The porting effort of the APES solvers to the NEC SX-ACE proofed to be surpris-
ingly smooth. For the Lattice-Boltzmann implementation in Musubi a high sustained
performance of around 30 % on a single node was achieved. It has been shown that
for real simulations not only the kernel needs to perform well, but also bottlenecks in
the supporting infrastructure need to be overcome to allow actual simulations with
complex setup. We have explained which roadblocks we encountered for the com-
plete porting of Musubi and how they have overcome. The parallel performance has
been investigated and a problem with the MPI communication was uncovered. This
scalability issue remains the major shortcoming of the NEC SX-ACE for Musubi.
However, despite the limited scalability, the system offers an attractive alternative to
other systems due to the high sustained performance.

For the Discontinuous Galerkin solver only very first experiences could be shared,
as the performance optimization got stuck early on due to a shortcoming of the
current compiler version. Work on further improvements for Ateles are ongoing and
we hope to be able to utilize the vectorization for the high order discretization with
future compiler versions.
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