
A Use Case of a Code Transformation Rule
Generator for Data Layout Optimization

Hiroyuki Takizawa, Takeshi Yamada, Shoichi Hirasawa and Reiji Suda

Abstract Xevolver is a code transformation framework for users to define their
own code transformation rules. In the framework, an abstract syntax tree (AST) of
an application code is written in an XML format, and its transformation rules are
expressed in theXSLT format, which is a standardXML format to describeXMLdata
conversion; an AST and its transformation rules are both written in XML. Since it is
too low-level for standard users to manually write XSLT rules, Xevtgen is now being
developed as a tool to generate such rules from simple code description. In Xevt-
gen, users basically write just two code patterns, the original and transformed code
patterns. Then, Xevtgen automatically generates a transformation rule that trans-
forms the original code pattern to the transformed one. The generated rule is written
in XSLT, and hence usable by other tools of the Xevolver framework. This article
shows a use case of using Xevtgen for data layout optimization, and discusses the
benefits of using the tool.

1 Introduction

When data are stored in a memory space, the layout of data often needs to be opti-
mized so as to make a better use of memory hierarchy and architectural features.
Today, such data layout optimization is critically important to achieve high perfor-
mance on a modern high-performance computing (HPC) system, because the system

H. Takizawa (B) · T. Yamada · S. Hirasawa
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
e-mail: takizawa@tohoku.ac.jp

T. Yamada
e-mail: tyamada@sc.cc.tohoku.ac.jp

S. Hirasawa
e-mail: hirasawa@sc.cc.tohoku.ac.jp

R. Suda
Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan
e-mail: reiji@is.s.u-tokyo.ac.jp

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_3

21

22 H. Takizawa et al.

performance is very sensitive to memory access patterns. Memory access can easily
become a performance bottleneck of an HPC application.

The data layout of an application can be optimized by changing data structures
used in the code. One problem is that a human-friendly, easily-understandable data
representation is often different from a computer-friendly data layout. This means
that, if the data layout of a code is completely optimized for computers, the code
may be no longer human-friendly.

We have been developing a code transformation framework, Xevolver, so that
users can define their own rules to transform an application code [1, 2]. In this
article, such a user-defined code transformation rule is adopted to separate the data
representation in an application code from the actual data layout in a memory space.
Instead of simply modifying a code for data layout optimization, the original code
is usually maintained in a human-friendly way and then mechanically transformed
just before the compilation so as to make the transformed code computer-friendly.

One important question is how to describe code transformation rules. A con-
ventional way of developing such a code translator is to use compiler tools, such as
ROSE [3]. Actually, at the lowest abstraction level, Xevolver allows users to describe
a code transformation rule as an AST transformation rule. Since AST transforma-
tion is exactly what compilers internally do, compiler experts can implement various
code transformation rules by using the framework. However, standard programmers
who optimize HPC application codes are not necessarily familiar with such compiler
technologies. Therefore, we are also developing several high-level tools to describe
the rules more easily.

Xevtgen [4] is one of high-level tools to help users define custom code transfor-
mation rules. This article shows a use case of Xevtgen for data layout optimization,
and discusses how it can help users define their own transformations.

2 Data Layout Optimization

In many cases, an HPC application code is written in a low-level programming
language such as C/C++ and Fortran. In such a language, a data structure mostly
corresponds to a specific data layout. In practice, thus, the data layout of an HPC
application is usually altered by changing the data structure in the code.

A typical example of data layout optimization is so-called AoS-to-SoA conver-
sion [5]. Generally, an array of structures (AoS) is likely to be human-friendly,
leading to high code maintainability and readability. For example, the following C
code defines an AoS data structure, in which each point is a pair of two variables, x
and y.

struct { double x, y; } point2d[N];

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 23

Fig. 1 Data layout in a memory space

This would be an intuitive representation of points in a 2-dimensional space. On the
other hand, a structure of arrays (SoA) often leads to better memory access patterns.
The following is an example of SoA, in which x and y are both arrays.

struct { double x[N], y[N]; } point2d;

Each data structure leads to a different data layout in a memory space as shown in
Fig. 1. In the case of AoS, x and y appear alternately in the memory space. On the
other hand, in the case of SoA, each of the two arrays organizes a continuousmemory
region. For example, when x of every point is sequentially accessed, it is obvious
that SoA has a higher spacial locality of reference. As a result, SoA can potentially
use cache memory more effectively. In this way, the data layout in a memory space
can significantly affect the performance of an HPC application.

One severe problem is that data layout optimization needs to modify many places
in an application code, and degrades the codemaintainability and readability. As long
as thedata representation in an application code corresponds to its actual data layout in
a memory space, data layout optimization results in drastic code modification. More-
over, it could reduce the performance portability across different systems because
different systems potentially prefer different data layouts. Programmers may need
to maintain multiple versions of one application code, e.g., using many #ifdef’s,
especially if the application needs to be performance-portable. This approach likely
makes the code unmaintainable.

One idea to solve this problem is to use code transformation. For example, various
compiler tools are available to transform a code instead of directly modifying the
code. However, transformation for data layout optimization is generally specific to
a particular application code. This is because such a transformation rule usually
depends on the definition of the data structure. In general, it is not affordable to
use a compiler tool to develop a custom code translator for individual applications.
Accordingly, we need an easier way to define a custom code transformation rule.

24 H. Takizawa et al.

3 Code Transformation Rule Generation with Xevtgen

Suppose that a legacy code written in Fortran uses a human-friendly data structure.
Then, this article discusses how the code should be converted to another version
of the code that uses a computer-friendly data structure. Thus, the purpose of this
conversion is to develop a code using human-friendly data representation and execute
it using computer-friendly data layout. To this end, we transform the code instead of
modifying it. That is, the code is transformed just before the compilation, and then
the transformed version is passed to the compiler. As a result, application developers
maintain only the original version.

One difficulty is that this conversion needs application-specific code transforma-
tions in many cases. The Xevolver framework has been developed to allow standard
users to implement such an application-specific code transformation. First, Xevolver
internally converts an application code to its AST, represents the AST in an XML
data format, and then exposes it to users. The users can apply any transformations to
the exposed AST. After the AST transformation, Xevolver converts the transformed
AST to its corresponding code. At the lowest abstraction level, Xevolver internally
uses XSLT [6] to express an AST transformation rule, because XSLT is a standard
XML data format to describe XML data conversion. It should be noted that an AST
and its transformation rules are both written in XML, i.e., text data. In comparison
with other data formats, it would be easy to quickly develop a simple tool to generate
and/or process text data for application-specific purposes. Therefore, we have been
developing various tools for the Xevolver framework and discussing the practicality
and superiority of using user-defined code transformation for optimizing an HPC
application code.

Xevtgen [4] is one of the tools to generate XSLT rules for AST transformation.
In the case of using Xevtgen, users do not need to consider their code transforma-
tion rules at an AST level. Instead, they write two code patterns, the original and
transformed code patterns. Then, Xevtgen automatically generates an XSLT rule of
custom code transformation that transforms the original code pattern to the trans-
formed one.

Figure 2 shows an example of “dummy” Fortran codes to express custom code
transformations. Such a dummy code is used by Xevtgen to generate XSLT rules for
AST transformation. In Fig. 2, the original and transformed code patterns are written
using !$xev tgen src and !$xev tgen dst directives, respectively. In the
dummy code, some special variables can be used to express a code pattern. For
example, a variable, idx, defined in Line 27 matches any expression, and hence is
used in the rule to indicate that an array index can be any expression. If such a variable
appears in both of the original and transformed code patterns, the corresponding part
of the code pattern is copied from the original code to the transformed one. Similarly,
a variable, cmp, matches any name so that a component of aos_t is translated to
its corresponding component of soa_t.

Reading a dummy Fortran code with special directives as in Fig. 2, Xevtgen gen-
erates XSLT rules that implement code transformations expressed in the dummy

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 25

Fig. 2 A dummy Fortran code written for Xevtgen

code. This is the most important feature of Xevtgen. In the case of using Xevt-
gen, users do not need any knowledge about AST transformation; they can write a
dummy code to express custom code transformations if they know Fortran program-
ming and several !$xev tgen directives. Using Xevtgen, users can easily and
quickly define a code transformation dedicated to a particular application code. In
practice, such an application-specific code transformation rule does not need to have
high generality if necessary rules can easily be defined for each application code.
As a result, an application code can remain human-friendly from the viewpoint of
application programmers, and user-defined code transformations are applied to the
code just before the compilation so that the transformed code becomes computer-
friendly and/or compiler-friendly.

Generally, two kinds of code transformations are required for AoS-to-SoA con-
version. One is called a type definition transformation rule that replaces the type
definition of an AoS data structure to that of an SoA data structure. An example of a
type definition transformation rule is Rule 1 in Fig. 2. The other is called a variable
reference transformation rule that changes the way of accessing the data structure.
An example of a variable reference transformation rule is Rule 2 in Fig. 2.

In many cases, a type definition transformation rule is explicitly defined by users
as in Fig. 2. It often looks like simple textual replacement. Since a type definition

26 H. Takizawa et al.

appears only once in an application code, simple textual replacement is usually an
easy and appropriate way to achieve type definition transformation.

On the other hand, a variable reference transformation rule often needs to be
expressed using generalized code patterns rather than concrete texts. This is because
a data structure could have various components. If simple text replacement is adopted
for this kind of transformation, the rule will be very wordy. To make matters worse,
since those variable references could be scattered over a whole application code, it
is a tedious and error-prone task to manually change all of them for using a different
data structure. If Xevtgen is used and there is a general code pattern that matches all
the variable references, a variable reference transformation rule could be simple as
shown in Fig. 2. Once such a simple rule is defined, all the variable references are
mechanically transformed based on the rule.

In the dummy code in Fig. 2, the part of a directive surrounded by back quotes,
such as‘aosdata(idx)%x‘, is aFortran expression.The expressionmust bevalid
when Xevtgen translates the dummy code to XSLT rules. Hence, a Tgen variable,
x, is defined to have the same variable name as a component of aos_t so that
‘aosdata(idx)%x‘ is a valid expression. Since x is a Tgen variable as well as a
component of aos_t, it matches any namewhen the generated XSLT rule is applied
to a Fortran code. As a result, the generated rule replaces not only aos(i,j,k)%x
but also aos(i,j,k)%y at the AoS-to-SoA conversion.

4 Discussions

In this article, Xevtgen is used for AoS-to-SoA conversion to discuss how Xevtgen
helps users define application-specific code transformations. In the following eval-
uation, the classic static memory allocation version of the Himeno benckmark [7]
written in Fortran77 is first modified by hand so as to use AoS data representation,
and then a dummy Fortran code for Xevtgen is written to generate XSLT rules for
AoS-to-SoA conversion. In addition, the performance difference between the AoS
version and the SoA version is also shown to discuss how important data layout
optimization is for modern computing systems.

Figure 3 shows a dummy Fortran code used by Xevtgen for AoS-to-SoA conver-
sion in this use case.

For variable reference transformation, the rule in Fig. 3 can be expressed as a
simple code of only four lines because there is a clear pattern in the transformation.
The code pattern of accessing the originalAoSdata structure ismechanically replaced
with the code pattern of accessing arrays. Since variable references are scattered over
a whole application code, it is significantly helpful if all of them are transformed
based on a certain transformation rule, especially in the case of optimizing the data
layout of a large-scale practical application code. Even in a relatively-small code of
the Himeno benchmark, 61 variable references need to be modified for changing the
data structure.

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 27

Fig. 3 A dummy Fortran code for AoS-to-SoA convesion of the Himeno benchmark

In Fig. 3, the type definition transformation rule consists of 21 code lines. One
may consider that the type definition transformation rule seems redundant because
both of the original and transformed code versions are explicitly written. However,
the type definition of a transformed data structure must be explicitly given by users
anyway, considering the correspondence between the original and transformed types.
Therefore, we believe that this is an effective and intuitive way to describe a type
definition transformation rule.

In this use case, 60 code lines are in total transformed by the rules in Fig. 3. In
case of converting AoS to SoA, a programmer traditionally needs to modify all of
the code lines by hand. This is a tedious and error-prone task. On the other hand,
in the case of using Xevtgen, user-defined code transformation can automate the
task if the rule is properly defined. Moreover, the rule is reusable and/or easily
customizable for another code. Accordingly, Xevtgen dummy codes can be used for
accumulating and sharing expert knowledge and experiences, which can be reused
by other programmers and also for other application codes.

In this article, the performance of the transformed code is comparedwith that of the
original code using the two systems listed in Table 1. One system is theNECSX-ACE
vector computing system [8] installed at TohokuUniversityCyberscienceCenter, and
the other is a commodity PC. The former has a 10x higher memory bandwidth than

28 H. Takizawa et al.

the latter. Since the performance of the Himeno benchmark is usually limited by the
memory bandwidth, SX-ACE can achieve a higher sustained performance than the
PC if the loop is properly vectorized.

Figure 4 shows the performance impact of the data layout optimization. As shown
in the figure, AoS-to-SoA conversion significantly improves the performance of each
system.The performance improvement of SX-ACE is especially remarkable, because
regular memory access to array elements, which are arranged in a continuous region,
is more efficient than stride memory access to AoS data elements. In this use case,
it is observed that the AoS-to-SoA conversion can significantly reduce memory
bank conflicts and improve the memory access efficiency. This kind of performance
optimization is very important to achieve high performance on a modern computing
system, in which the memory access can easily become a performance bottleneck.
The expressive ability of Xevtgen is high enough to express transformation rules of
this important performance optimization.

It is important that different systems potentially require different data layouts.
As a result, data layout optimization is likely to be system-specific and/or compiler-
specific. Moreover, loop optimization might also require data layout optimization
because it changes the order of accessing data elements. For example, even if SoA
had a higher spacial locality of reference thanAoSbefore optimizing a loop, SoAdoes
not necessarily have a higher locality after the optimization. Data layout optimization
often specializes an application code for a particular processor, compiler, kernel loop,
and so on. Even in such a case, our Xevolver approach [1] allows the original code
to remain human-friendly because system-specific and/or compiler-specific code
transformations can be defined separately from the original code. Namely, system-
specific and/or compiler-specific information is separated from the code.

Xevtgen enables users to achieve the separationmuchmore easily than the original
Xevolver approach. In this use case, the XSLT rules generated by Xevtgen consist
of 293 lines in total. In the original Xevolver framework, users are supposed to
write such XSLT rules by themselves, as reported in [9]. Writing those XSLT rules
requires not only a fair amount ofwriting effort but also special knowledge about both
XML and compilers, because users have to learn how to write XSLT rules for AST
transformation. On the other hand, Xevtgen allows users to briefly express their own
code transformation rules without requiring special knowledge about XML, XSLT,

Table 1 System configurations

NEC SX-ACE Commodity PC

Processor SX-ACE processor Intel Core i7 930

Peak performance 256 Gflop/s 44 Gflop/s

Memory capacity 64 GB 32 GB

Memory bandwidth 256 GB/s 25.6 GB/s

Operating system SUPER-UX Linux 2.6.32

Compiler sxf90 Rev. 520 gfortran 4.4.7

Compiler options -P auto -C hopt -O3

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 29

and compilers. As a result, they can easily improve the performance portability of
their application codes across different systems.

5 Conclusions

This article explains a code transformation rule generator, Xevtgen, for user-defined
code transformations dedicated to each application code. As discussed in this article,
Xevtgen allows standard users to define their own code transformations much more
easily than conventional compiler-based approaches, because the users no longer
need to consider code transformation rules at an AST level. They can generate code
transformation rules if they knowFortran programming and several special directives.

The use case described in this article shows that Xevtgen can express code trans-
formations required for data layout optimization, which is one of the most important
code optimization techniques to exploit the performance of a modern computing

Fig. 4 Performance impacts
of data layout optimization

(a) SX-ACE.

(b) Commodity PC.

30 H. Takizawa et al.

system. In terms of the number of code lines, XSLT rules generated by Xevtgen
are longer than a dummy Fortran code input to Xevtgen. Moreover, standard Fortran
programmers would be able to describe such a dummy Fortran code if they learn how
to use several special directives used by Xevtgen. In comparison with the original
Xevolver approach [1] of directly writing XSLT rules by hand, the Xevtgen approach
offers a much easier way of defining a practical code transformation rule.

Acknowledgements This research was partially supported by JST CREST “An Evolutionary
Approach to Construction of a Software Development Environment for Massively-Parallel Het-
erogeneous Systems” and Grant-in-Aid for Scientific Research(B) 16H02822. The authors would
like to thank all team members of the CREST project, especially Profs. Egawa, Takahashi, and
Komatsu, for fruitful discussions on the design and development of the Xevolver framework.

References

1. Takizawa, H., Hirasawa, S., Hayashi, Y., Egawa, R., Kobayashi, H.: Xevolver: an XML-based
code translation framework for supporting HPC application migration. In: IEEE International
Conference on High Performance Computing (HiPC) (2014)

2. TheXevolver Project: JSTCREST“an evolutionary approach to construction of a software devel-
opment environment for massively-parallel heterogeneous systems”. http://xev.arch.is.tohoku.
ac.jp/

3. Quinlan, D.: ROSE: Compiler support for object-oriented frameworks. Parallel Process. Lett.
10(02n03), 215–226 (2000)

4. Suda, R., Takizawa, H., Hirasawa, S.: Xevtgen: Fortran code transformer generator for high
performance scientific codes. In: The Third International Symposium on Computing and Net-
working, pp. 528–534 (2015)

5. Sung, I.J., Liu, G.D., Hwu,W.M.W.: DL: a data layout transformation system for heterogeneous
computing. In: Innovative Parallel Computing (InPar), pp. 1–11 (2012)

6. Kay, M.: XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer to Programmer), 4
edn. Wrox Press Ltd. (2008)

7. Himeno benchmark. http://accc.riken.jp/en/supercom/himenobmt/
8. Momose, S., Hagiwara, T., Isobe, Y., Takahara, H.: The brand-new vector supercomputer, SX-

ACE. In: International Supercomputing Conference, pp. 199–214. Springer (2014)
9. Yamada, T., Hirasawa, S., Takizawa, H., Kobayashi, H.: A case study of user-defined code trans-

formations for data layout optimizations. In: The Third International Symposium on Computing
and Networking, pp. 535–541 (2015)

http://xev.arch.is.tohoku.ac.jp/
http://xev.arch.is.tohoku.ac.jp/
http://accc.riken.jp/en/supercom/himenobmt/

	A Use Case of a Code Transformation Rule Generator for Data Layout Optimization
	1 Introduction
	2 Data Layout Optimization
	3 Code Transformation Rule Generation with Xevtgen
	4 Discussions
	5 Conclusions
	References

