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Abstract In this paper, a highly scalable numerical method is presented that allows
to compute the aerodynamic sound from a turbulent flow field on HPC systems.
A hybrid CFD-CAA method is used to compute the flow and the acoustic field, in
which the two solvers are running in parallel to avoid expensive I/O operations for
the acoustic source terms. Herein, the acoustic perturbation equations are solved
by a high-order discontinuous Galerkin scheme using the acoustic source terms
obtained from an approximate solution of the Navier-Stokes equations. Both solvers
run simultaneously and operate on differently refined hierarchical Cartesian grids.
This direct-hybrid method is validated by monopole and pressure pulse simulations
and is used for performance measurements on current HPC systems. The results
highlight the limitations of classic hybrid methods and show that the new approach
is suitable for highly parallel simulations.
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1 Introduction

One of the major challenges of today’s aircraft development is noise reduction, which
is also one of the central aims in European aircraft policy. The perceived noise levels
of flying aircraft are to be reduced until 2050 by 65 % compared to the year 2000
[25]. Many sound-generating components of aircraft need to be assessed in sufficient
detail to be able to improve their design, such as the optimization of the jet nozzle
geometry to lower noise emissions at take-off without sacrificing the thrust efficiency.
To achieve such optimizations, efficient, fully parallelized algorithms are needed to
predict the flow field and the far-field noise of jet engines.

A hybrid method combining large-eddy simulation (LES) with computational
aeroacoustics (CAA) for large-scale aeroacoustics simulations has been successfully
applied in [7, 18]. It uses LES to determine the turbulent flow field for external flow
configurations. From this solution, noise-generating source terms are extracted and
used in a CAA simulation, where the acoustic field is predicted using the acoustic
perturbation equations (APE) [6]. This scheme has been applied successfully to
different problems in computational aeroacoustics, such as trailing edge noise [7],
jet noise [12], or combustion noise [4, 11]. However, it suffers from the exchange of
large data volumes for the acoustic source terms via I/O operations, which limits the
efficiency of such a two-step approach especially on high-performance computing
(HPC) systems.

To circumvent this bottleneck, the direct-hybrid method presented in this work
combines the LES and CAA solvers in a single framework such that both solvers
can run in parallel. The LES solver used for the prediction of the flow field is based
on a finite-volume method, while the CAA approach makes use of a high-order
discontinuous Galerkin (DG) method to solve the APE for the acoustic field. DG
methods were first described by Reed and Hill [24] and were subsequently applied
to various physical problems, such as incompressible and compressible flow [2, 22],
magnetohydrodynamics [29], and aeroacoustics [1, 3].

The LES and CAA computations are performed on a joint Cartesian mesh. Based
on a coloring scheme, cells are associated with different weights for the LES and CAA
solution and a space-filling curve is used for the domain decomposition. The coupling
mechanism between both simulations only requires memory transfer operations. That
is, no additional communication between the subdomains is necessary, leading to an
efficient algorithm to be used on massively parallel systems. Furthermore, this direct-
hybrid approach allows a more fine-grained control over the coupling process itself,
since the LES results are not obtained separately from the acoustic field anymore.
This means that, e.g., the time step size or the grid size can be adapted during the
simulation to account for time-dependent changes in the resolution requirements of
both solvers, enabling in situ optimizations of the simulation process.

In this paper, the coupling approach for the direct-hybrid LES-CAA simulation
is presented and results for performance measurements are shown. A CAA code is
developed and integrated with an existing LES solver. After the governing equations
are introduced in Sect. 2, the numerical methods are described in Sect. 3. In Sect. 4,
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the coupling strategy is discussed in detail. The CAA solver is validated in Sect. 5,
before it is used for strong scaling experiments on two state-of-the-art HPC systems.
In Sect. 6, the presented methods and the obtained results are summarized.

2 Governing Equations

In this hybrid CFD-CAA method, two sets of governing equations are utilized. One
solely describes the generation and propagation of acoustic waves, while the other
set of equations predicts the physics of the underlying flow field. Here, the acoustic
perturbation equations are used for the acoustic field and the Navier-Stokes equations
for the flow field. Both are briefly summarized in the following.

2.1 Navier-Stokes Equations

The Navier-Stokes equations in non-dimensional, conservative form are given by

∂ρ

∂t
+ ∇ (ρu) = 0,

∂ρu
∂t

+ ∇
(

ρuu + p + τ

Re0

)
= 0,

∂ρe

∂t
+ ∇

(
(ρe + p)u + 1

Re0
(τu + q)

)
= 0.

(1)

The quantity ρ represents the fluid density, u the velocity vector, and e the total
specific energy. The system in Eq. (1) is closed by the definition of the total specific
energy for a perfect gas

ρe = p

γ − 1
+ 1

2
ρ(u · u), (2)

where p is the pressure and γ is the specific heat ratio. For non-dimensionalization,
the stagnation state is employed, which is denoted by the subscript 0. The Reynolds
number based on the stagnation state is defined by

Re0 = ρ0c0L

μ0
, (3)

where L is a reference length and ρ0, c0, and μ0 are the stagnation density, the speed
of sound, and the dynamic viscosity. A Newtonian fluid is assumed such that the
components τi j of the stress tensor τ can be written as
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τi j = −2μSi j + 2

3
μSi jδi j , (4)

where Si j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
is the rate of strain tensor. The dynamic viscosity μ is cal-

culated by using Sutherland’s law and the vector of heat conduction q is determined
by Fourier’s law

q = − k

Pr(γ − 1)
∇T, (5)

where T is the static temperature. The Prandtl number is defined with the specific
heat at constant pressure cp by Pr = μ0cp

k0
. For a constant Prandtl number, the relation

k(T ) = μ(T ) holds for the thermal conductivity.

2.2 Acoustic Perturbation Equations

The acoustic perturbation equations (APE) were introduced in [6] and are used to
predict the acoustic field for flow-induced noise. They are derived from the linearized
Euler equations and modified to retain only acoustic modes without generating vor-
ticity or entropy modes. Neglecting all viscous, non-linear and entropy-related con-
tributions, the APE-4 system reads [6]

∂u′

∂t
+ ∇ (

ū · u′) + ∇
(
p′

ρ̄

)
= qm, (6)

∂ p′

∂t
+ c̄2∇ ·

(
ρ̄u′ + ū

p′

c̄2

)
= 0, (7)

where the source term qm is the linear Lamb vector

qm = −(ω × u)′ = −(ω′ × ū + ω̄ × u′), (8)

with ω as the vorticity vector. The variables of the APE are perturbed quantities
denoted by prime (·)′ and are defined by φ′ := φ − φ̄, where the bar (·̄) denotes
time-averaged quantities.

In the present work, the non-dimensional form of Eqs. (6) and (7) is used. As
for the Navier-Stokes equations, the stagnation state is used for the definition of
reference values. Furthermore, it is assumed here that the time-averaged values for
the speed of sound and density are constant and equal to the stagnation state, i.e.,
c̄ = c0 and ρ̄ = ρ0, which is only valid in the low-Mach number regime. By using
the following non-dimensional variables,

t̃ = tc0

L
, x̃ = x

L
, ũ = u

c0
, p̃ = p

ρ0c2
0

, (9)
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the APE can be written as

∂ũ′

∂ t̃
+ ∇̃( ˜̄u · ũ′ + p̃′) = q̃m, (10)

∂ p̃′

∂ t̃
+ ∇̃ · (ũ′ + ˜̄u p̃′) = 0. (11)

The non-dimensional source term is given by q̃m = qm
c̄2

0/L
. For convenience, in the

following discussion the tilde is dropped from the non-dimensional quantities.

3 Numerical Methods

In this section, the meshing process and the domain decomposition are outlined.
Furthermore, the numerical methods for the acoustic perturbation equations and the
Navier-Stokes equations are briefly described.

3.1 Hierarchical Mesh Topology

Both the LES solver and the CAA solver operate on a joint hierarchical Carte-
sian mesh. The cells of the grid are organized in a tree structure (2D: quadtree, 3D:
octree), with parent-child relationships between different levels and neighbor rela-
tionships within a level. The discretization process follows the method described in
[21] and starts with a single square/cube cell which encloses the whole computational
domain. This zero-level cell is then refined uniformly until the desired refinement
level is reached (see Fig. 1a). A cell to be refined is isotropically subdivided into
2d square/cube cells, with d being the number of spatial dimensions and with the
original cell becoming the parent cell of the new child cells. Individual regions of

level 0 level 1

level 2level 3

(a) Uniform mesh refinement from
level 0 to level 3.

(b) Mesh with higher resolution 
boundary.near no-slip

Fig. 1 Cell refinement for a hierarchical Cartesian grid in 2D
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Fig. 2 Domain partitioning
on two domains with four
subtrees starting at level lα

Hilbert
curve

domain n domain n+1

subtree

the mesh can be further refined to meet resolution requirements, e.g., in areas with
small-scale physical features such as wall-bounded shear layers or to accurately
resolve boundaries (see Fig. 1b). A smoothing algorithm ensures that the level dif-
ference between neighboring cells does not exceed one, i.e., each cell has at most
2d−1 neighbor cells in each spatial direction. Special treatment is necessary for cells
that are intersected by the body geometry. In this paper, only non-intersected cells
are considered. During grid generation, the zero-level cell is homogeneously refined
to a minimum level lα and all coarser cells are discarded [21]. These cells at level
lα become the roots of their subtrees and are further subdivided until the required
refinement level is reached.

For the domain decomposition, a Hilbert space-filling curve [26] is used to map
the grid at level lα to the interval [0, 1]. Each cell at level lα is assigned a load that
depends on the number of cells in its subtree and on the type of the cells, i.e., whether
they are LES or CAA cells. Load balancing is achieved by taking into account these
load values when distributing the cells among the processes and for each lα cell the
entire subtree is placed on the same rank (see Fig. 2). By consecutively placing lα
cells and their subtrees on the MPI ranks according to their position on the Hilbert
curve, spatial compactness is ensured, reducing the overall communication cost.

3.2 Discontinuous Galerkin Approximation of the APE

A discontinuous Galerkin spectral element method (DGSEM) is used to determine
the acoustic field. In Kopriva et al. [19], the DGSEM was proposed and has been used
extensively [9, 17]. Since it was derived for quadrilateral/hexahedral mesh elements,
it is well-suited for the use on hierarchical Cartesian grids. Furthermore, its compact
formulation allows a very efficient parallelization, when explicit time stepping is
used, and the parallel efficiency is independent of the chosen order of the scheme.

Since the DGSEM elements correspond to cells in a finite-volume context, the
words cell or element will be used interchangeably. In the following, the main com-
ponents of the DGSEM are outlined. First, the system of equations is mapped to
a reference element for efficiency reasons. The derivation of the DG formulation
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then starts with the weak formulation, choosing Lagrange polynomials to represent
the solution within each element. This gives rise to an integral equation, which is
approximately solved using Gauss quadrature. Finally, the discrete DG operator is
integrated in time using a Runge-Kutta scheme.

A general system of hyperbolic conservation equations in three dimensions reads

∂U
∂t

+ ∇ · f (U) = 0, (12)

where U = U(x, t) is the vector of conservative variables {ui }nvi=1 and f is the flux
vector. For efficiency reasons, the differential equation is mapped to a reference ele-
ment E , which is in three dimensions given by a cube of size [−1, 1] × [−1, 1] ×
[−1, 1]. Introducing the reference coordinate vector ξ = (ξ1, ξ2, ξ3)ᵀ, the final trans-
formed equation reads [17]

ĴU t + ∇ξ · f = 0, (13)

where Ĵ is the Jacobian, which for cube-to-cube transformations is just h
2 , h being

the side length of the cube, and U t is the time derivative of the vector of conservative
variables.

The derivation of the DG method starts with the weak form of the equation.
Therefore, Eq. (13) is multiplied by a test function φ = φ(ξ) and integrated over the
reference element E ∫

E

(
ĴU t + ∇ξ · f

)
φ dξ = 0. (14)

Using integration by parts on the flux term, the weak formulation of the differential
equation is obtained

∫
E
ĴU tφ dξ +

∫
∂E
( f · n)∗φ ds −

∫
E
f · ∇ξφ dξ = 0, (15)

where n is the surface normal vector in the reference system. Similar to the finite-
volume approach, the value for the normal flux f · n is not uniquely defined on the
element boundaries ∂E , since the solutions in the left U− and right U+ elements are
discontinuous. Therefore, a numerical flux ( f · n)∗ = g(U+,U−, n) is chosen that
combines values from both sides to a single flux. In this work, the local Lax-Friedrichs
flux formulation is used,

g(U+,U−, n) = 1

2

(
f (U+) + f (U−)

) · n + 1

2

(
max

U∈[U+,U−]
|a(U) · n|(U+ − U−)

)
, (16)

where a is the vector of eigenvalues of the flux Jacobian. The solution U is approx-
imated by a polynomial basis

U(ξ, t) ≈
N∑

i, j,k=0

ūi j k(t)ψi jk(ξ), ψi jk(ξ) = li (ξ
1)l j (ξ

2)lk(ξ
3), (17)
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Fig. 3 Legendre-Gauss
nodes in a 2D reference
element for N = 3

where the basis functions ψi jk are the product of one-dimensional Lagrange poly-
nomials l of degree N in each spatial direction and ūi j k(t) are the coefficients to be
determined. The nodal basis is defined on a set of interpolation points {ξ}Ni=0 on the
interval ξ ∈ [−1, 1], which in this work are the Legendre-Gauss nodes (Fig. 3). For
the fluxes, the same approach is used for the approximation.

The three integrals in Eq. (15) are approximated by Gauss quadrature. Generally,
the Gauss quadrature of an arbitrary function f (x) on the interval [a, b] with N + 1
nodes can be written as

b∫
a

f (x) dx ≈
N∑
i=1

ωi f (xi ), (18)

where the weights ωi and the integration nodes xi are specific to the chosen quadrature
type. These weights are pre-calculated and stored to make the algorithm efficient.
With the interpolation points {ξi } collocated at the Gauss nodes, all sums collapse
into single values, yielding the discrete DG operator L (U, t) = U t [17]. In the next
step, the semi-discrete formulation is integrated in time to obtain the solution at the
next time step, for which a low-storage fourth-order Runge-Kutta scheme is used [5].

3.3 Finite-Volume Method for the Flow Simulation

A second-order finite-volume method is used to solve the unsteady Navier-Stokes
equations for compressible flow as given in Sect. 2.1. The solver has been exten-
sively validated and used for various flow problems previously [15, 16]. A detailed
description of the method can be found in [13, 15, 16, 28].

4 Coupling Strategy

To solve the acoustic perturbation equations, the averaged quantities ū and c̄ and
the source term qm have to be determined first. The flow solution is advanced with-
out coupling until the averaged quantities are statistically converged. The coupling
process for each time step of the LES reads:
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1. Advance the LES solution.
2. Calculate the source terms from instantaneous and averaged quantities.
3. Advance the CAA solution.

The actual coupling takes place via the source terms computed from the LES solution,
which are then used to solve the APE. This means that there is a one-way coupling
from the flow solution to the acoustic field, while the flow solution is not influenced
by the acoustic field.

In the direct-hybrid method described here, the LES and the CAA simulation
are both performed within a single simulation framework and by using the same
grid topology. This makes certain aspects of the coupling process more efficient and
allows a more fine-grained control over the interface between the two solvers. In the
following, some details of the method are presented.

4.1 Spatial Coupling

The instantaneous variables of the source term qm are available after each time step
from the flow simulation. They have to be transferred, however, from the LES to
the acoustic grid. Since both simulations typically operate on different levels of the
same grid, identification of corresponding cells is possible by traversing the octree
constituting the hierarchical Cartesian mesh. While LES and CAA leaf cells can
generally be of different size, the coupling always happens within a single subtree.
Since the domain decomposition algorithm distributes entire subtrees on different
processes (see also Sect. 3.1), no additional inter-rank communication is required
for the exchange of data between CFD and CAA cells.

This type of mesh also guarantees that there are no partially overlapping cells,
i.e., a smaller cell is always fully contained inside a larger cell. Note that the DG
elements are generally of higher order than the finite-volume cells. Depending on
the resolution of the fluid and acoustics problems, four types of transformations are
possible.

In the simplest case, one fluid cell corresponds exactly to one acoustics cell
(Fig. 4a). That is, the source term is calculated once in the finite-volume part and
the same value is used at all Gauss nodes of the DG element. This approach is used
exclusively in the present work, i.e., no spatial interpolation is performed. Similar
to the one-to-one mapping, the source term is calculated once and then used at all
Gauss nodes of all elements if one fluid cell is mapped to multiple acoustics cells
(Fig. 4b).

Having multiple finite-volume cells mapped onto one DG element (Fig. 4c)
requires the values at the Gauss nodes to be interpolated from several flow cells.
A natural choice would be to interpret the finite-volume cells as equidistant nodes of
a polynomial and to obtain the values at the Gauss nodes through projection. This,
however, can lead to spurious oscillations if the number of finite-volume cells and
thus the polynomial degree is high, especially in regions with large flow gradients.
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(a) One-to-one (b) One-to-multiple (c) Multiple-to-one

Fig. 4 Possible spatial mappings for coupled simulations. Aeroacoustics cells (top) are white, fluid
cells (bottom) are grey

Other possibilities are weighted least squares methods, nearest neighbor interpola-
tion, or inverse distance weighting. Which approach is best depends on a number of
factors. A practical consideration is the computational cost of the chosen method,
e.g., whether the effort scales linearly with the number of degrees of freedom or
worse, since the interpolation has to take place at each flow simulation time step.
The smoothness of the interpolated function is also important, especially in high-
gradient zones. Furthermore, it is desireable to have a conservative interpolation
scheme such as proposed by Farrell and Maddison [8], to avoid distorting the source
terms.

If there are regions without either a flow or acoustics grid, no coupling is per-
formed. If only acoustic cells exist, far-field values for the averaged quantities c̄ and
ū have to be specified for the APE, e.g., the freestream values from the flow field.
The source term qm is set to zero with a smooth transition from non-zero to zero
values.

4.2 Temporal Coupling

The coupling between the flow and the acoustics simulations has to be realized at
each time step. Due to the explicit global time stepping it is possible that the time
step size differs between the two solvers. In this case, at each time step the source
term from the LES solution needs to be interpolated to the simulation time of the
CAA solver.

Depending on the features of the geometry, the time step for the aeroacoustics
simulation may be smaller than that for the flow simulation or vice versa and thus
the source terms have to be interpolated between two flow time steps. As for the spa-
tial coupling, there are many different interpolation methods to choose from. Linear
interpolation is the most straightforward approach, with sometimes inferior results.
Several temporal interpolation methods suitable for hybrid aeroacoustics simulations
are compared and evaluated by Geiser et al. [10] and least-squares optimized inter-
polators were found to have the best properties when it comes to broadband error
reduction.
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The simplest approach is using the same time step for both simulations, which
requires no interpolation between the two datasets. In this case, the next time step
based on the CFL condition is determined for the CFD and the CAA method and the
minimum of both methods is used, which is also the procedure that is used in this
work.

4.3 Data Transfer

There exist two options for transferring data between the flow solution and the
acoustics solution: via data files written to disk, i.e., offline coupling as used in
standard hybrid approaches, or through in-memory data access, i.e., online coupling
as done in the new direct-hybrid approach. Both methods are discussed in the fol-
lowing.

In offline coupling, the processes of obtaining the flow solution and running
the aeroacoustics simulation are completely separated. At first, the flow solution is
obtained and the source term qm is written to a file at certain time intervals. During the
acoustics simulation, the source terms are determined from the files by interpolation
in time. Conceptually, this is the simplest approach, since except for the I/O routines
nothing has to be changed inside the two simulations. However, the high amount
of data that has to be transferred to and from the disk makes this method expensive
in terms of computational cost, especially for large-scale simulations on thousands
of cores. However, it is also the first step towards a simulation which makes use of
online coupling as outlined next.

In online coupling, the flow and the acoustics simulations are fully integrated and
run synchroneously at the same time. Typically, the flow solution will be advanced
by one time step and the acoustics solution has to be updated until they are both
synchronized. Since no files have to be written to disk, this approach is more efficient
than offline coupling. If the acoustics cells are kept on the same computational core as
the corresponding flow cells, the acoustics simulation can directly access the relevant
information by simple memory transfer operations. This locality of data is achieved
by the specific subdomain decomposition, which operates on the joint LES-CAA
grid. On the other hand, the increased memory consumption makes it necessary to
use more computational cores. Furthermore, due to the different number of operations
for the finite-volume and the DG operator, paired with different numbers of flow cells
per acoustics cell, load balancing between the cores becomes mandatory to achieve
reasonable parallel efficiency. This is accomplished by assigning appropriate loads
to the fluid and acoustics cells.



150 M. Schlottke-Lakemper et al.

5 Results

The CFD solver has already been extensively tested and used in the past, e.g., in [13,
15, 16, 23, 28]. Thus in Sect. 5.1, only the new CAA solver is validated. Additionally,
parallel performance results for the CAA solver are presented in Sect. 5.2.

5.1 Validation of the Aeroacoustics Solver

The DG method described in Sect. 3.2 is validated by solving the acoustic perturba-
tion equations for several generic problems. It is demonstrated that the solver is able
to correctly predict the acoustic pressure field for sheared mean flow, for acoustic
reflection at a solid wall, and for sound waves emanating from a boundary layer.

5.1.1 Monopole in Sheared Mean Flow

Figure 5 shows the results for wave propagation in a sheared mean flow. The example
was chosen since mixing layer-type flow configurations with sheared mean flow are
typical for noise generation, e.g., for turbulent jets. An S-shaped velocity profile is
prescribed for the mean velocity,

ū = 1

2
tanh

(
2y

δw

)
, (19)

where the shear-layer thickness is set to δw = 50 and an analytical source term is used
to generate an acoustic monopole [6]. The domain was discretized using 200 × 200
elements with a polynomial degree N = 3. Figure 5 shows the result in comparison
to the perturbed pressure field obtained in [6] from the linearized Euler equations
(LEE). It can be seen that the DG results agree well with the reference solution.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-100 -50  0  50  100

p'

x

DG-APE
LEE

y= 70

Fig. 5 Monopole in sheared mean flow (left perturbed pressure p′, right p′ at y = 70 and t = 180)
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Fig. 6 Reflection of a pressure pulse at a solid wall (left perturbed pressure p′, right p′ at x = y
and t = 30)

5.1.2 Acoustic Reflection at a Solid Wall

A pressure pulse impinging on a plane wall in the presence of a uniform mean flow
was simulated to validate the wall boundary conditions. The wall is located at y = 0
and the initial conditions at time t = 0 are

u′ = v′ = 0, p′ = exp

{
−(ln 2)

x2 + (y − 25)2

25

}
. (20)

The mean flow is prescribed parallel to the wall by setting ū = 0.5, v̄ = 0.0. Both
the setup and the analytical values are taken from [14]. The square-shaped computa-
tional domain with side length l = 200 was discretized using 256 elements in each
spatial direction with a polynomial degree of N = 5. In Fig. 6, results for the acoustic
pressure field of the reflected pulse are shown. They confirm that the CAA solver is
able to correctly predict the reflection of acoustic waves from a solid wall.

5.1.3 Monopole in a Boundary Layer

In this case, a plane sound wave is assumed to travel through a small channel and
to exit through a small orifice in a plane wall. Due to the small size of the channel,
the emanating wave is an approximation for a singular monopole at the wall [3]. The
domain is defined by x ∈ [−25.6, 25.6] in the x-direction and y ∈ [0.0, 20.0] in the
y-direction, and it is discretized by 400,000 elements with a polynomial degree of
N = 3. The monopole has a size of ε = 0.1 and is located at the origin. It is created
by enforcing a sinusoidal boundary state by setting

u′ = 0, v′ = p′ = sin(2πt). (21)
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Fig. 7 Contour plot of perturbed pressure p′ for monopole in boundary layer

Fig. 8 Directivities for rms
pressure along r = 15

 0  0.2  0.4  0.6  0.8  1
0°

30°

60°

90°

120°

150°

180°

θ

p'rms/p'ref

Bauer et al. [3]
DG-CAA

In addition to the monopole at the wall, a non-zero mean velocity is prescribed, which
decreases to zero in the boundary layer region:

ū =
{
Mx (2y − 2y2 + y4), if 0 ≤ y ≤ 1,

Mx , if y > 1,
v̄ = 0, (22)

where the Mach number is set to Mx = 0.3. Figure 7 shows a contour plot of the result-
ing pressure field. In Fig. 8 the results are compared to those in [3]. The DG-CAA
solution is virtually indistinguishable from the reference solution, which demon-
strates that the DG-APE method is able to adequately capture the refraction and
reflection of sound waves in flow fields with velocity gradients, both in the channel
region at θ < 10◦ and in the shadow region at 140◦ < θ < 180◦.

5.2 Parallel Performance Analysis

To assess the parallel performance of the newly developed aeroacoustics solver, a
strong scaling experiment with two setups was performed on HPC systems. In each
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Fig. 9 Strong scaling experiments for the CAA solver on a Cray XC 40 (left) and a BlueGene/Q
(right)

setup, the three-dimensional domain is cube-shaped. To obtain meaningful error
measures, a manufactured solution approach was used, i.e., an auxiliary source term
was added to the system of equations such that the analytical initial conditions, which
are based on trigonometric functions, fulfill the system of equations exactly. In the
first setup, a grid with 16.8 million cells and a polynomial degree N = 3 was used
(low-order case). For the second setup, the number of cells was reduced to 2.1 million
and the polynomial degree was set to N = 7 (high-order case). This yields the same
global number of degrees of freedom for both cases (1.1 billion). The setups were
chosen to be representative of typical large-scale aeroacoustics simulations under
realistic conditions.

Figure 9 shows the strong scaling results for both setups on two state-of-the-art
supercomputers, i.e., the Cray XC 40 of the High-Performance Computing Center
Stuttgart and the BlueGene/Q of the Forschungszentrum Jülich. On both machines,
the simulations were executed with one MPI rank per core and two OpenMP threads
per rank. For the Cray system, the low-order case has a parallel efficiency of 79 %
on 93,600 cores, which improves to 98 % for the high-order case. Both values are
very satisfactory. On the BlueGene/Q, the efficiency for the low-order case on the
full machine is 80 %. From these results, it can be concluded that the CAA solver
is highly scalable and that it is well-suited for large-scale aeroacoustics simulations.
Furthermore, the comparison of the two setups on the Cray XC 40 shows that it is
beneficial for the parallel efficiency to use a higher-order approximation in the DG
scheme.

To highlight the necessity of developing a new coupling approach for hybrid
CFD-CAA simulations, another scaling experiment was conducted. In this case,
a CAA simulation of a two-dimensional mixing layer was performed with offline
coupling, i.e., the source term information was read from data files [27]. Figure 10
shows the speedup and the absolute wall-clock time for a single-threaded scaling
from 32 to 4,096 cores. In the left figure, the speedup is shown once for the overall
simulation, with an ultimate efficiency of 61 % at 4,096 cores. When excluding the
I/O time, i.e., the time spent reading the source term data from disk, the efficiency
improves to 92 %. The reason for this behavior can be understood when looking at the
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Fig. 10 Speedup (left) and wall-clock time (right) for a offline coupling simulation with 31.4
million cells and N = 1 on a BlueGene/Q
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wall-clock time for computation and I/O separately (see right figure): while the time
for computation continuously decreases when using higher core counts, the curve
for I/O time flattens out when going from 2,048 to 4,096 cores. This means that the
I/O component ceases to scale beyond a certain number of cores, effectively turning
the I/O into a bottleneck for the overall simulation.

The degradation of the parallel efficiency for offline-coupled simulations due to
I/O performance limits can be further substantiated by examining the I/O bandwidth
on current HPC systems. In Fig. 11, the measured maximum write speed for a single
63 GiB file is shown at increasing numbers of cores. The numbers were obtained
with the Parallel netCDF library [20] using collective I/O and one MPI rank per core.
On both machines, i.e., a Cray XC 40 with a Lustre file system (left figure) and a
BlueGene/Q with a GPFS file system (right figure), the I/O bandwidth peaks at a
certain number of cores and actually decreases for higher core counts. These results
strongly suggest the need for an online coupling approach, where the CFD and the
CAA solvers do not have to rely on the file I/O system to exchange data.
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6 Conclusions

A direct-hybrid method suitable for large-scale aeroacoustic simulations has been
presented. The flow field is predicted using an LES solver based on the finite-volume
method. For the CAA solution, a nodal DG method is used to solve the acoustic per-
turbation equations for the determination of the acoustic field. In the novel approach,
both solvers use the same hierarchical Cartesian grid, enabling an efficient data
exchange between the two solvers. Appropriate strategies for the spatial and tempo-
ral coupling are described.

The CAA method is shown to correctly predict the acoustic pressure field for a
monopole in sheared mean flow, acoustic reflection at a solid wall, and a monopole
in a boundary layer. In addition, the parallel performance of the new scheme is
investigated in several strong scaling experiments. They show that the new DG-CAA
solver is capable of efficiently running simulations on hundreds of thousands of cores.
Furthermore, while the direct-hybrid method with offline coupling involving disk I/O
scales well up to a 128-fold increase in MPI ranks, the I/O operations necessary for
reading the source terms from disk are identified as a bottleneck towards extreme
scaling. This observation is further corroborated by an analysis of the I/O bandwidth
on two current HPC systems, which emphasizes the need for the online coupling
approach.

Overall, the proposed direct-hybrid method has shown to be a good candidate
for efficient, highly parallel CAA simulations. As a next step, spatial as well as
temporal interpolation schemes need to be investigated to lessen the restriction on
the resolution requirements in space and time. A dynamic load balancing scheme will
be developed to further improve the parallel performance for moving geometries.
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