
An Automatic Performance Tracking System
for Large-Scale Numerical Applications

Shoichi Hirasawa, Hiroyuki Takizawa and Hiroaki Kobayashi

Abstract In this work, we propose an Automatic Performance Tracking System
for analyzing the changes in execution performance and finding the source code
modifications that cause the degradation of performance portability. The proposed
system works in order to support evolving a large-scale numerical application while
maintaining its performance portability across multiple target computing systems.
By evaluating the performance of an application on every computing system, the pro-
posed system helps application developers find the source code modifications that
degrade the execution performance on a computing system. The proposed system
also retrieves multiple versions of an application from its code repository, and auto-
matically executes them on a newly added computing system. As a result, application
developers are able to analyze how the source code modifications in the past affect
the performance on the new computing system. Based on the evaluation results, the
application developers can review the source code changes to improve the perfor-
mance portability of the HPC application through the system.

1 Introduction

Multiple types of computing systems and tool chains are widely used these days.
High-performance computing (HPC) applications sometimes need to migrate to new
target computing systems because of their long software life cycles. The burden
of migrating HPC applications to new target computing systems is usually heavy
because of the large code sizes of such applications.

To alleviate the heavy cost of the migration, the code of an application should be
maintained in such a way as to be able to execute in high performance on multiple

S. Hirasawa (B) · H. Takizawa · H. Kobayashi
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
e-mail: hirasawa@sc.cc.tohoku.ac.jp

H. Takizawa
e-mail: takizawa@tohoku.ac.jp

H. Kobayashi
e-mail: koba@tohoku.ac.jp

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_10

119

120 S. Hirasawa et al.

computing systems. In this work, the capability of an HPC application to achieve
high performance on different types of computing systems is defined as performance
portability. If an application code has high performance portability, it is expected to
easily migrate the application to a new target computing system.

HPC applications are usually optimized only for a small number of computing
systems to increase their execution performances. When optimizations are applied
to an application with consideration only for specific computing systems, the exe-
cution performance on other types of computing systems may degrade. As a result,
optimization efforts taking a long time for a small number of computing systems
may lead to degrading performance portability of the application.

Generally, code optimizations for a specific computing system may degrade the
performance of the application on another system. Thus, it is necessary to prevent
applying such optimizations so as to keep the performance portability high. The
degradation of performance portability can be detected by finding out performance
degradation of the application on a computing system. To find out the performance
degradation, execution performance on every computing systemneeds to be obtained,
tracked, and compared. Although unit testing frameworks [1] and automatic bug
detection methods [2, 3] have been proposed, to the best of our knowledge, there is
no performance tracking system to maintain high performance portability of HPC
applications.

In this work, an Automatic Performance Tracking System (APTS) that supports
maintaining high performance portability of HPC applications is designed and devel-
oped. The APTS finds the changes of a source code that decrease the performance
portability of the application. Because of the complexity of current computing sys-
tems, it is difficult to model and predict the execution performances of HPC appli-
cations on their target computing systems. With the APTS, execution performances
of applications are obtained by actually executing them on every target computing
system.

This paper is organized as follows. Section2 discusses the performance portability
of HPC applications. Section3 proposes the APTS. Section4 evaluates the APTS and
Sect. 5 provides conclusions and future work.

2 Performance Portability of HPC Applications

In this work, computer systems used for developing and executing HPC applications
are categorized into the following three types. Figure1 shows the computer systems
that are considered to be used in developing, building, and executing the applications.

1. Development systems: computer systems that are used to edit application source
codes.

2. Building systems: computer systems that are used to compile source codes and
build execution binaries of applications.

3. Execution systems: computer systems that are used to execute applications.

An Automatic Performance Tracking System … 121

Fig. 1 Target computers for application development

When a programmer builds an application on the same system as the development
system, the building environment such as compiling tool chains needs to be installed
on the development system. Multiple building environments need to be installed on
the development systemwhen the application is developed considering multiple exe-
cution systems. However, installing all building environments on the development
system is not always possible especially when software licences for production com-
pilers are not available to programmers. In this work, therefore, an environment of
multiple building systems and one development system is supposed to be used for
developing applications. In the following subsections, programmer’s burdens that
can potentially be reduced by using tools are discussed.

2.1 Finding the Cause of Performance Degradation
on Execution Systems

The source code of an HPC application tends to be large because many algorithms
and optimizations are sometimes added during its long software life cycles. When a
programmer finds a performance degradation of such an application on an execution
system, the programmer needs to find the cause of degrading the performance of
the application from the source code. The burden is usually heavy because of the
large size of the source code of the application. To alleviate the burden, a system that
notifies the cause of performance degradation on an execution system is useful.

Additionally, new execution systems are sometimes added to the target execution
systems of an application because the life cycles of HPC applications tend to be
longer than those of current execution systems. The programmer needs to know
code modifications in the past to find the cause of performance degradation when a
new execution system is added to the target systems.

122 S. Hirasawa et al.

2.2 Application Performance on Execution Systems

It is usually difficult to statically predict execution performance of an application
on an execution system. It is because current execution systems have become too
complex to create accurate performance models. As a result, an application needs to
be executed on the target execution systems to evaluate the execution performance.

To evaluate execution performance, the source code needs to be built on the
corresponding building systems of the target execution systems because execution
performance of an HPC application depends on compilers and their optimization
flags. With multiple development systems, programmers need to build and execute
applications while editing one source code multiple times on the development sys-
tems.

2.3 Source Codes Synchronization Among Multiple
Building Systems

Whenmultiple building systems are used in addition to the development system as in
Fig. 1, source codes need to be synchronized among them. Currently, programmers
need to synchronize themmanually with multiple tools while editing the source code
of the application. This task is tedious and error-prone. Therefore, a tool that auto-
matically synchronizes source codes among the development system and building
systems can potentially ease the burden.

3 An Automatic Performance Tracking System

In this work, an Automatic Performance Tracking System (APTS) is proposed. The
APTS is executed on the development system. In this work, it is assumed that a target
application already has a build script and also an execution script with input data.
Therefore, using the scripts, the APTS can build and execute the application on every
execution system for performance evaluation and result verification.

3.1 Overview of the Automatic Performance Tracking System

The APTS tracks the changes of execution performance along with the modifica-
tions on an application code. Execution performances are automatically profiled by
actually executing the application on its target execution systems. With the execu-
tion performances, the APTS finds the source code modifications that are causes of
degrading the execution performance on an execution system. A programmer is able
to use the found source code modifications to improve the performance portability

An Automatic Performance Tracking System … 123

Fig. 2 Development framework of the APTS

of the application. For a programmer, it is easy to migrate an application to a new
execution system if the application has high performance portability. The APTS has
the following functions to help a programmer develop an application while keeping
high performance portability (Fig. 2).

1. A function to track the changes of execution performance along with source code
modifications.

2. A function to automatically build and execute applications on their target execu-
tion systems.

3. A function to automatically synchronize source codes among all building systems.

3.2 Performance Tracking Function Along with Source Code
Modifications

While developing and optimizing an application, the modification to improve the
execution performance on one execution system may degrade the execution perfor-
mance on another execution system. When a new system is added to the execution
systems of an application, the execution performance on the new systemmight be too
low compared to its peak performance. In such a case, the low execution performance
might be due to a certain source code modification for performance optimization in
the past. Note that the new execution system was not available at the time, and the
programmer could not check if the modification degrades the performance until the
new system becomes available. Therefore, the programmer is required to check if
every source code modification in the past degrades the performances on the avail-
able execution systems by tracking the past source code modifications whenever a
new system becomes available.

The APTS uses version controlling systems such as CVS [4] or Git [5] to auto-
matically find the performance changes with the past source code modifications on

124 S. Hirasawa et al.

the newly added execution system. When a new system is added to the execution
systems, the APTS automatically retrieves the past source codes of the applica-
tion from the version controlling system. Then, the APTS automatically profiles the
execution performance on the new execution system for every past version of the
source code. By comparing the execution performances of two neighboring ver-
sions, performance degradation on the execution system can be detected. With the
neighboring version numbers, the programmer can inspect an actual cause of the
performance degradation on the new execution system.

4 Evaluation of the Automatic Performance Tracking
System

4.1 Evaluation Setups of Finding the Cause of Degrading
Performance portability

In this evaluation, the APTS is implemented as a plug-in program of the Eclipse
integrated development environment (Eclipse IDE). It is implemented with the Plug-
in Development Environment (PDE), which is the standard development framework
of plug-in programs for the Eclipse.Eclipse 4.2.1 Build id:20121004-
1855 is used for developing and executing the APTS.

The source codes synchronization function is implemented with the Secure
Copy (scp) command. OpenSSH_6.1p1 is used in the APTS. To build the source
codes of the target application, Makefile and make command are used. The exe-
cutable file of the application is launched using the Secure Shell (ssh) command on
the target execution systems. The time command is used to obtain the execution
performances.

The APTS is evaluated to check if it is able to find the source code modifications
that are the causes to degrade the performance portability of an application. A real
HPC application of the entire growth process of binary alloy nanopowders in thermal
plasma synthesis [6] is used in this evaluation. Three building systems are used from
one development system. All building systems are installed in Cyberscience Center
of TohokuUniversity. The development system, which is a desktop PC (Intel Core i7-
3930K 3.2GHz, 16GBMemory, SSD), is installed in another building ofmechanical
engineering in the same campus of Tohoku University. The specifications of building
systems are shown in Table1. Server 1, 2 and 3 are also used as execution systems
corresponding to the building systems.

An Automatic Performance Tracking System … 125

4.2 Results of Analysing the Degradation of the Performance
Portability

The evaluation results are shown in Fig. 3. The horizontal axis indicates version
numbers of the target application. The vertical axis on the left-hand side shows the
speedup ratio from the execution time of the application code Version 1 running on
Server 1. The vertical axis on the right-hand side shows the number of modified
source code lines between a neighboring two versions.

The application has been optimized for Server 1 along with the version numbers.
Hence, the performance of Server 1 increases with the version number. On the other
hand, the performance degrades by changing from Version 5 to 6 on Server 2. The
Tesla C2070 GPU of Server 2 is newer than the Tesla C1060 GPU of Server 1.
From these results, it is observed that the change from Version 5 to 6 degrades the
performance portability of the application.

As the execution performance does not degrade on Server 3, which has a newer
K20 GPU than C2070, the modification between Versions 5 and 6 only degrades the
execution performance on Server 2 among the three. The number of different source
code lines between Versions 5 and 6 is 37.

In the evaluation results, it is shown that the APTS is able to limit the number of
source code lines that cause the performance degradation on execution systems. In
this particular evaluation, the APTS can successfully reduce the number of source

Table 1 Specifications of building systems and execution systems

System name Linux ver. CPU GPU CUDA

Server 1 2.6.18 Core i7 920 2.67GHz Tesla C1060 5.0

Server 2 2.6.32 Core i7 930 2.8GHz Tesla C2070 5.0

Server 3 2.6.18 Core i7 920 2.67GHz Tesla K20c 5.0

Fig. 3 Execution performances of application versions and line numbers of corresponding code
difference

126 S. Hirasawa et al.

code lines that cause the performance degradation to 37. As a result, the APTS is able
to support programmers to develop a large-scale application with high performance
portability.

5 Conclusions and Future Work

In this paper, we have designed and implemented an Automatic Performance Track-
ing System (APTS). It automatically finds the version of an application, from which
the performance is degraded on an execution system. It is implemented as a plug-in
program of the Eclipse IDE. It has a function of transferring necessary files of an
application to build machines. It then builds and executes the application to collect
its execution performance on each execution system.

The APTS supports the development work of programmers by alleviating the
burden of building and executing the application on multiple systems. It finds the
version of an application code that degrades the execution performance on an execu-
tion system. As a result, the APTS helps a programmer maintain high performance
portability of an application by keeping the execution performance high on multiple
execution systems.

With the evaluation results, it has been shown that the APTS can successfully
find the version of the real application that degrades the execution performance on
an execution system. It has also been shown that the APTS can obtain the execution
performances of the application on multiple execution systems by transferring and
building the application on multiple building systems. With these functions, the
manual work of performance evaluation necessary for programmers is automated
and, as a result, the APTS is able to support the development work on maintaining
high performance portability of HPC applications.

Realizing functions such as automatically evaluating the performance with profil-
ers such as gprof and nvprof, obtaining the performance profile results, and reasoning
the codes that degrade performance portability by providing the profiling results to
the programmers are parts of our future work. Supporting batch queuing systems
for executing applications on HPC computing systems is also important. Migrating
the implementation for the code base of PTP [7] is also considered to provide the
information of execution performance in the editor.

Acknowledgements The authors would like to thank Prof. Shigeta of Osaka University for allow-
ing us to use the application. This work is partially supported by JST CREST “An Evolutionary
Approach to Construction of a Software Development Environment for Massively-Parallel Hetero-
geneous Systems.”

An Automatic Performance Tracking System … 127

References

1. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.
Surv. 29(4), 366–427 (1997)

2. Kim, S., Zimmermann, T., Pan, K.,Whitehead, E.J.: Automatic identification of bug-introducing
changes. In: 21st IEEE/ACM International Conference on Automated Software Engineering,
2006. ASE ’06, pp. 81–90 (2006)

3. Williams, C.C., Hollingsworth, J.K.: Automatic mining of source code repositories to improve
bug finding techniques. IEEE Trans. Soft. Eng. 31(6), 466–480 (2005)

4. http://cvs.nongnu.org/. Cvs - concurrent versions system
5. http://gitscm.com/. Git - the fast version control system
6. Shigetam, M., Watanabe, T.: Growth model of binary alloy nanopowders for thermal plasma

synthesis. J. Appl. Phys. 108(4), 043306–043306–15 (2010)
7. Watson, G.R., Rasmussen, C.E., Tibbitts, B.R.: An integrated approach to improving the parallel

application development process. In: IEEE International Symposium on Parallel Distributed
Processing, 2009. IPDPS 2009, pp. 1–8, May 2009

http://cvs.nongnu.org/
http://gitscm.com/

	An Automatic Performance Tracking System for Large-Scale Numerical Applications
	1 Introduction
	2 Performance Portability of HPC Applications
	2.1 Finding the Cause of Performance Degradation on Execution Systems
	2.2 Application Performance on Execution Systems
	2.3 Source Codes Synchronization Among Multiple Building Systems

	3 An Automatic Performance Tracking System
	3.1 Overview of the Automatic Performance Tracking System
	3.2 Performance Tracking Function Along with Source Code Modifications

	4 Evaluation of the Automatic Performance Tracking System
	4.1 Evaluation Setups of Finding the Cause of Degrading Performance portability
	4.2 Results of Analysing the Degradation of the Performance Portability

	5 Conclusions and Future Work
	References

