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Abstract Each new computing platform required software developers to analyze the
algorithms over and over, each time having to answer the same two questions. Does
the algorithmpossess the necessary properties tomeet the architectural requirements?
How can the algorithm be converted so that the necessary properties can be easily
reflected in parallel programs? Changes in computer architecture do not change
algorithms, but this analysis had to be performed again and againwhen a programwas
ported from one generation of computers to another, largely repeating the work that
hadbeendonepreviously. Is it possible to do the analysis “once and for all,” describing
all of the key properties of an algorithm so that all of the necessary information can
be gleaned from this description any time a new architecture appears? As simple
as the question sounds, answering it raises a series of other non-trivial questions.
Moreover, creating a complete description of an algorithm is not a challenge, it is a
large series of challenges, and some of them are discussed in the paper.

1 Introduction

Parallel computing system architectures have gone through at least six generations
over the past 40 years, each requiring its own algorithm properties and a special
programwriting style. In each case, it was important not only to find suitable features
for the algorithms, but also to express them properly in the code, using special
programming technologies. In fact, each new generation of computing architecture
required a review of the entire software pool.

The generation of vector pipeline computers got off to a rapid start in the early
seventies with the launch of the Cray-1 supercomputer. Machines of this class were
based on pipeline processing of data vectors, supported by vector functional units and
vector instructions inmachine code. Full vectorizationwas themost efficient program
implementation, which implied complete replacement of any innermost loops in the
program body with vector instructions. Hence the requirements for algorithms and

Vl.V. Voevodin (B)
Lomonosov Moscow State University, Moscow, Russia
e-mail: voevodin@parallel.ru

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_1

3



4 Vl.V. Voevodin

programs: parallelismwas to be expressed in the form of independent iterations of the
program’s innermost loops. If that representation could be found and the innermost
loops are vectored, the program would run efficiently.

During the eighties, computers came with not one, but several independent vector
pipeline processors: vector parallel computers. The requirements for algorithm
structure changed again. To support pipeline processing, inner loop parallelism was
used as before.But this time, an additional parallelism resourcewas to be foundwithin
the algorithms that would support the independent operation of several processors.
Inner loop parallelism was used to support vectorization, and outer loop parallelism
to support the simultaneous operation of several CPUs.

The next generation to become commonplace during the nineties weremassively
parallel distributed memory computers, based on thousands of processors. Two
actions were needed to make a program efficient. First, a substantial parallelism
resource had to be identified in an algorithm to ensure the independent operation of
many processors. Second, it was also important to distribute data between comput-
ing nodes to minimize data exchange during the course of program execution. This
required not just another review of the algorithm pool based on the new program-
ming technologies (with MPI becoming the de-facto standard), but also completely
rewriting the software.

Shared memory computers also appeared actively. Shared memory substan-
tially simplified the interaction between processors, making it easier to write parallel
programs. Data distribution was no longer a major consideration as global address
space and global shared variables eliminated many complex data handling issues.
OpenMP technology appeared to reflect the new paradigm of parallel program oper-
ation. Sharedmemory computers required a new parallel programmodel, newmeans
and methods of programming and new constructs which meant programs had to be
rewritten yet again.

Computers combining the features of the two previous classes, computing clus-
ters with distributed memory, based on shared memory nodes, appeared during
the early 2000s. With these systems, one part of the parallelism resource inherent in
an algorithm was to be kept for using a certain number of independent nodes, and
the other for using several processors or cores within each node. In parallel applica-
tions, the first part was described throughMPI and the second part through OpenMP.
Converting an algorithm to efficiently use these features of the architecture was no
trivial task, and was further complicated by the need to determine the proper data
distribution for the MPI part.

About 8 years ago, accelerators were first added to the computer architecture—
first as graphics processing units, and then as Xeon Phis. Now these devices can be
found everywhere, including big clusters [2]. But what did the addition of accelera-
tors mean for analyzing algorithm properties? It meant that a substantial parallelism
resource needed to be identified in an algorithm for using many computing nodes.
More parallelism needs to be present in each parallel process to utilize multiple
computing cores per node. Moreover, enough parallelism needs to be left to use the
accelerator features. Computers, like the need for parallelism, had become hetero-
geneous, which required revising the algorithm properties once more.
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2 What is a Complete Description of the Algorithm
Properties?

Each newcomputing platform required software developers to analyze the algorithms
over and over, each time having to answer the same two questions. Does the algorithm
possess the necessary properties to meet the architectural requirements? How can
the algorithm be converted so that the necessary properties can be easily reflected in
parallel programs? Changes in computer architecture do not change algorithms, but
this analysis had to be performed again and again when a program was ported from
one generation of computers to another, largely repeating the work that had been
done previously.

This begs a natural question: is it possible to do the analysis “once and for all,”
describing all of the key properties of an algorithm so that all of the necessary infor-
mation can be gleaned from this description any time a new architecture appears? As
simple as the question sounds, answering it raises a series of other questions. What
does it mean “to perform analysis” and what exactly needs to be studied? What kind
of “key” properties need to be found in algorithms to ensure their efficient imple-
mentation in the future? What form can (or should) the analysis results take? What
makes a description of algorithm properties “complete?” How does one guarantee
that a description is complete and that all of the relevant information for any computer
architecture is included?

The questions are indeed numerous and non-trivial. Obviously, a complete
description needs to reflect many ideas: computational kernels, determinacy, infor-
mation graphs, communication profiles, a mathematical description of the algorithm,
performance, efficiency, computational intensity, the parallelism resource, serial
complexity, parallel complexity…[3] All of these concepts, and many others, are
used to describe an algorithm’s properties from different perspectives, and they all
are quite necessary in practice under various situations.

To immediately introduce some order to these diverse concepts, one can begin
by breaking up an algorithm’s description into two parts. The first part is dedicated
to the algorithm’s theoretical properties, and the second part describes its particular
implementation features. This division allows themachine-independent properties of
algorithms to be separated from the numerous issues arising in practice. Both parts of
the description are equally important: the first one describes the algorithm’s theoreti-
cal potential, and the second one demonstrates the practical use of that potential. The
first part of the description explains the mathematical formulation of the algorithm,
its computational kernel, input and output data, information structure, parallelism
resources and properties, determinacy and computational balance of the algorithm,
etc. The second part contains information on an algorithm’s implementation: locality,
performance, efficiency, scalability, communication profile, implementation features
on various architectures, and so on.
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3 Why Is It Hard to Describe Algorithms?

Many of the ideas described above are very well known. However, as you start
describing the properties of real algorithms, you realize that creating a complete
description of an algorithm is not a challenge, it is a large series of challenges!
Unexpected problems arise at each step, and a seemingly simple action becomes a
stumbling block. Let’s look at the information structure of an algorithm mentioned
above. It is an exceptionally useful term that contains a lot of information about the
algorithm. An information graph is a convenient representation of an algorithm’s
information structure. In many cases, looking at the information graph is enough to
understand its parallel implementation strategy. Figure 1a, b show the information
structure for typical computational kernels in many algorithms, Fig. 1c shows the
information structure of a Cholesky decomposition algorithm.

An information graph can be simple for many examples. However, in general,
the task of presenting an information graph is not a trivial exercise. To begin with,
a graph can potentially be infinite, as the number of vertices and arcs is determined
by the values of external input variables which can be very large. In this situation it
helps to look at likenesses: graphs for different values of external variables look very
“similar” to one another, so it is almost always enough to present one small graph,
stating that the graphs for other values will look “exactly the same.” Not everything
is so simple in practice, however; and one should be very careful here.

Next, an information graph is potentially a multi-dimensional object. The most
natural coordinate system for placing vertices and arcs in an information graph relies

Fig. 1 Information structure of various algorithms
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on the nested loops in an algorithm’s implementation. If nested loops do not go deeper
than three levels (as in a classical matrix multiplication algorithm), the graph can be
placed in the traditional three-dimensional space. More complex looping constructs
with 4 or more nesting levels require special methods for presenting and displaying
the graph. But even if the number of dimensions does not exceed three, how does one
make the graphical presentation informative? Figure 2a shows a graph in its entirety,
which is barely comprehensible. Various projections of the same graph are shown
in Figs. 2b, d, which can help assess an algorithm’s parallelism potential, but these
aren’t always helpful…

Related questions also arise: how does one visualize the parallelism potential and
illustrate parallel implementation methods for the algorithm? Sometimes a canonical
parallel layer form [3] comes in handy, which reflects both the algorithm’s parallel
complexity and the fastest method for its parallel implementation (within the infinite
parallelism concept), but it is very difficult to build and not always feasible. Figure 3
shows the sequential execution of the fragment in Fig. 2a in five steps. Red indicates
vertices within the current level that can be executed in parallel on the current step.
Green indicates vertices executed in previous steps, and white indicates vertices that
can only be executed in subsequent steps. By visualizing the step-by-step sequential
movement of the red vertices, one can evaluate the parallelism available at each step.
How does one find, analyze, describe and display the canonical parallel layer form?
The question remains open for arbitrary programs.

The issues of data locality and computation locality are of paramount impor-
tance in describing an algorithm’s properties and its implementations. Locality is

Fig. 2 Methods of displaying an algorithm’s information structure
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Fig. 3 Sequence of steps in the parallel execution of an algorithm based on a canonical parallel
layer form

Fig. 4 A description of data locality in programs using memory access profiles

what determines program execution efficiency on modern computing platforms. To
get the complete picture of an algorithm’s particular implementation features, it is
important to analyze both temporal and spatial locality, noting positive and negative
factors related to locality, and the conditions and situations by which they are caused.
However, even a quick look makes it obvious that there are many more questions
than answers in this area. What methodology can be used to evaluate the temporal
and spatial data locality in the programs? How can one compare temporal and spa-
tial data locality between different programs? Figure 4 shows the memory access
profiles for two programs, indicating the memory address after each memory access
operation. Which program has better temporal and/or spatial data locality? In some
cases, memory usage templates help: they are simple and their characteristics are
predetermined, but once again, the issue of carefully studying locality properties in
an arbitrary program generally remains open.

Another interesting question is related to how data locality is related to the algo-
rithm structure. In other words, can we predict data locality in a given program by
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using just the information about its algorithm? On the one hand, there are no data
structures in algorithms—they only appear in programs; so talking about locality for
algorithms is not exactly right. On the other hand, it is the algorithm that determines
the structure and properties of a program to be coded, including its locality. Many
have probably heard the expression “the algorithm’s locality” or “this algorithm
has better locality than the other.” How appropriate are these statements, given that
algorithms do not contain data structures?

Determinacy is an important practical aspect of algorithms and programs, but how
can one describe all of the potential sources which violate this property? A serious
cause of indeterminacy in parallel programs is related to changes in the order of
executing associative operations. A typical example is the use of global operations
in Message Passing Interface (MPI) by a number of parallel processes, e.g., when
summing the elements of a distributed array. The MPI runtime system chooses the
order of execution on its own, assuming compliance with the associative law, which
results in various round-off errors and ultimately in different results when executing
the same application. This is a serious issue often encountered in massively parallel
computing systems that causes results of parallel program execution to not be repro-
ducible. If the analysis of an algorithm’s structure shows that the resulting parallel
application cannot work without global operations, this property must be included in
the algorithm description. To analyze this problem properly, a communication profile
should be built for the parallel program, pointing out the structure and interaction
method between parallel processes. A clear definition of the communication profile
hasn’t been produced to date, so it is premature to consider in-depth analysis in this
area.

Indeed, there are many open questions, and the list can go on. The main question
that still remains unanswered is “What does it mean to create a complete description
of an algorithm?”What must be included in this description, so that we can glean all
of the necessary information from it every time a new computing platform appears?
The task seems simple at first sight: an algorithm is just a sequence of mathematical
formulas, often short and simple, which should easily be analyzed. But at the same
time, no one can guarantee the completeness of such a description.

The properties of the algorithms and programs discussed in this work became
the foundation for the AlgoWiki project [1]. The project’s main goal is to provide a
description for fundamental algorithm properties which will enable a more compre-
hensive understanding of their theoretical potential and their implementation features
in various classes of parallel computing systems. The project is expected to result in
the development of an open online encyclopedia based on wiki technologies which
will be open to contributions by the entire academic and educational community.
The first version of the encyclopedia is available at http://AlgoWiki-Project.org/en,
where users can describe both their own pedagogical experience and their knowledge
of specific parallel algorithms.

http://AlgoWiki-Project.org/en
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4 Conclusion

All of the issues discussed in this work are highly important for training future spe-
cialists [4–6]. Right from the beginning of the education process, focus should be
placed on algorithm structure since it determines both the implementation quality
and the potential for efficiently executing programs in a parallel environment. The
algorithm structure and its close relationship to parallel computing system architec-
ture are central ideas in parallel computing, which are included in many courses for
Bachelor’s and Master’s degree programs at the Faculty of Computational Mathe-
matics and Cybernetics at Lomonosov Moscow State University, as well as in the
lectures and practical courses offered by the annual MSU Summer Supercomputing
Academy [7]. We are also trying to expand this concept to the Supercomputing Con-
sortium of Russian Universities [8] in order to develop a comprehensive supercom-
puter education system, rather than offering occasional training aimed at rectifying
the situation.
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