
Sustained Simulation
 Performance

Proceedings of the Joint Workshop
on Sustained Simulation Performance,
University of Stuttgart (HLRS) and
Tohoku University, 2016

123

2016

Michael M. Resch · Wolfgang Bez
Erich Focht · Nisarg Patel
Hiroaki Kobayashi Editors

Sustained Simulation Performance 2016

Michael M. Resch • Wolfgang Bez
Erich Focht • Nisarg Patel
Hiroaki Kobayashi
Editors

Sustained Simulation
Performance 2016
Proceedings of the Joint Workshop
on Sustained Simulation Performance,
University of Stuttgart (HLRS)
and Tohoku University, 2016

123

Editors
Michael M. Resch
High Performance Computing Center
(HLRS)

University of Stuttgart
Stuttgart
Germany

Wolfgang Bez
NEC High Performance Computing
Europe GmbH

Düsseldorf
Germany

Erich Focht
NEC High Performance Computing
Europe GmbH

Stuttgart
Germany

Nisarg Patel
High Performance Computing Center
(HLRS)

University of Stuttgart
Stuttgart
Germany

Hiroaki Kobayashi
Cyberscience Center
Tohoku University
Sendai
Japan

ISBN 978-3-319-46734-4 ISBN 978-3-319-46735-1 (eBook)
DOI 10.1007/978-3-319-46735-1

Library of Congress Control Number: 2016953010

Mathematics Subject Classification (2010): 68Wxx, 68W10, 68Mxx, 68U20, 76-XX, 86A10, 70FXX,
92Cxx, 65-XX

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Figure on Front Cover: Domain decomposition of a hierarchical Cartesian mesh. A Hilbert curve is used
to partition the grid at a relatively coarse refinement level. Due to the depth-first ordering of the cells, this
leads to complete subtrees being distributed among the available MPI ranks, improving the parallel
performance of coupled multiphysics simulations
Figure on Back Cover: Hierarchical Cartesian mesh with local refinement towards the lower boundary.
Among neighbouring cells, the level difference is at most one, leading to a size ratio of 2:1 (2D) or 4:1
(3D) between the cells

Preface

The field of high-performance computing is currently witnessing a significant shift
of paradigm. Ever-larger raw number crunching capabilities of modern processors
are in principle available to computational scientists. Imperative knowledge of
efficiently exploiting modern processors and performance achievements in the
scientific community is growing by leaps and bounds.

On the other hand, many areas of computational science have reached a satu-
ration in terms of problem size. Scientists often do no longer wish to solve larger
problems. Instead, they wish to solve smaller problems in a shorter time. The
current architectures, however, are much more efficient for large problems than they
are for the more relevant smaller problems.

This series of workshops focuses on Sustained Simulation Performance, i.e.,
high-performance computing for real-application use cases, rather than on-peak
performance, which is the scope of artificial problem sizes. The series was estab-
lished in 2004, initially named Teraflop Workshop, and renamed Workshop for
Sustained Simulation Performance in 2012. In general terms, the scope of the
workshop series has shifted from optimization for vector computers to emphasis on
future challenges, productivity, and exploitation of current and future high-
performance computing systems.

This book presents the combined results of the 22nd and 23rd installment of the
series. The 22nd workshop was held at the High-Performance Computing Center,
Stuttgart, Germany, in December 2015. The 23rd workshop was held in March
2016 at Sendai, Miyagi, Japan, and organized jointly with the University of
Tohoku, Sendai, Japan.

The topics studied by the contributed papers include exploitation of HPC sys-
tems (Part I) and numerical computations and approach toward multi-physics
applications (Part II).

v

We would like to thank all the contributors and organizers of this book and the
sustained simulation performance project. We thank especially Prof. Hiroaki
Kobayashi for the close collaboration over the past years and are looking forward to
intensify our cooperation in the future.

Stuttgart, Germany Michael M. Resch
August 2016 Nisarg Patel

vi Preface

Contents

Part I Exploitation of Existing HPC Systems: Potentiality,
Performance and Productivity

Parallel Algorithms: Theory, Practice and Education 3
Vl.V. Voevodin

High Performance Computing and High Performance
Data Analytics—What is the Missing Link? . 11
Bastian Koller, Michael Gienger and Michael M. Resch

A Use Case of a Code Transformation Rule Generator
for Data Layout Optimization . 21
Hiroyuki Takizawa, Takeshi Yamada, Shoichi Hirasawa and Reiji Suda

APES on SX-ACE . 31
Harald Klimach, Jiaxing Qi and Sabine Roller

Dealing with Non-linear Terms in a Modal High-Order
Discontinuous Galerkin Method. 43
Nikhil Anand, Harald Klimach and Sabine Roller

Efficient Coupling of Fluid and Acoustic Interaction
on Massive Parallel Systems . 61
Verena Krupp, Kannan Masilamani, Harald Klimach and Sabine Roller

The Spectral Structure of a Nonlinear Operator
and Its Approximation II . 83
Uwe Küster

Implementation of a Parallel Sparse Direct Solver on Vector
Architecture. 99
Atsushi Suzuki and François-Xavier Roux

vii

Directive Translation for Various HPC Systems Using
the Xevolver Framework . 109
Kazuhiko Komatsu, Ryusuke Egawa, Hiroyuki Takizawa
and Hiroaki Kobayashi

An Automatic Performance Tracking System for Large-Scale
Numerical Applications. 119
Shoichi Hirasawa, Hiroyuki Takizawa and Hiroaki Kobayashi

Part II Numerical Computations and Approach Towards
Multi-physics Applications

A Case Study of Urgent Computing on SX-ACE: Design and
Development of a Real-Time Tsunami Inundation Analysis System
for Disaster Prevention and Mitigation . 131
Hiroaki Kobayashi

CFD/CAA Simulations on HPC Systems . 139
Michael Schlottke-Lakemper, Fabian Klemp, Hsun-Jen Cheng,
Andreas Lintermann, Matthias Meinke and Wolfgang Schröder

HPC Applications for Manufacturing Innovation
in Aerospace Fields . 159
Ryoji Takaki and Seiji Tsutsumi

High Resolution Climate Projections Using the WRF Model
on the HLRS . 173
Viktoria Mohr, Thomas Schwitalla, Volker Wulfmeyer
and Kirsten Warrach-Sagi

Towards Aerodynamic Characteristics Investigation Based
on Cartesian Methods for Low-Reynolds Number
Flow Simulation . 185
Daisuke Sasaki, Yuya Kojima, Daiki Iioka, Ryohei Serizawa
and Shun Takahashi

viii Contents

Part I
Exploitation of Existing HPC Systems:

Potentiality, Performance and Productivity

Parallel Algorithms: Theory, Practice
and Education

Vl. V. Voevodin

Abstract Each new computing platform required software developers to analyze the
algorithms over and over, each time having to answer the same two questions. Does
the algorithmpossess the necessary properties tomeet the architectural requirements?
How can the algorithm be converted so that the necessary properties can be easily
reflected in parallel programs? Changes in computer architecture do not change
algorithms, but this analysis had to be performed again and againwhen a programwas
ported from one generation of computers to another, largely repeating the work that
hadbeendonepreviously. Is it possible to do the analysis “once and for all,” describing
all of the key properties of an algorithm so that all of the necessary information can
be gleaned from this description any time a new architecture appears? As simple
as the question sounds, answering it raises a series of other non-trivial questions.
Moreover, creating a complete description of an algorithm is not a challenge, it is a
large series of challenges, and some of them are discussed in the paper.

1 Introduction

Parallel computing system architectures have gone through at least six generations
over the past 40 years, each requiring its own algorithm properties and a special
programwriting style. In each case, it was important not only to find suitable features
for the algorithms, but also to express them properly in the code, using special
programming technologies. In fact, each new generation of computing architecture
required a review of the entire software pool.

The generation of vector pipeline computers got off to a rapid start in the early
seventies with the launch of the Cray-1 supercomputer. Machines of this class were
based on pipeline processing of data vectors, supported by vector functional units and
vector instructions inmachine code. Full vectorizationwas themost efficient program
implementation, which implied complete replacement of any innermost loops in the
program body with vector instructions. Hence the requirements for algorithms and

Vl.V. Voevodin (B)
Lomonosov Moscow State University, Moscow, Russia
e-mail: voevodin@parallel.ru

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_1

3

4 Vl.V. Voevodin

programs: parallelismwas to be expressed in the form of independent iterations of the
program’s innermost loops. If that representation could be found and the innermost
loops are vectored, the program would run efficiently.

During the eighties, computers came with not one, but several independent vector
pipeline processors: vector parallel computers. The requirements for algorithm
structure changed again. To support pipeline processing, inner loop parallelism was
used as before.But this time, an additional parallelism resourcewas to be foundwithin
the algorithms that would support the independent operation of several processors.
Inner loop parallelism was used to support vectorization, and outer loop parallelism
to support the simultaneous operation of several CPUs.

The next generation to become commonplace during the nineties weremassively
parallel distributed memory computers, based on thousands of processors. Two
actions were needed to make a program efficient. First, a substantial parallelism
resource had to be identified in an algorithm to ensure the independent operation of
many processors. Second, it was also important to distribute data between comput-
ing nodes to minimize data exchange during the course of program execution. This
required not just another review of the algorithm pool based on the new program-
ming technologies (with MPI becoming the de-facto standard), but also completely
rewriting the software.

Shared memory computers also appeared actively. Shared memory substan-
tially simplified the interaction between processors, making it easier to write parallel
programs. Data distribution was no longer a major consideration as global address
space and global shared variables eliminated many complex data handling issues.
OpenMP technology appeared to reflect the new paradigm of parallel program oper-
ation. Sharedmemory computers required a new parallel programmodel, newmeans
and methods of programming and new constructs which meant programs had to be
rewritten yet again.

Computers combining the features of the two previous classes, computing clus-
ters with distributed memory, based on shared memory nodes, appeared during
the early 2000s. With these systems, one part of the parallelism resource inherent in
an algorithm was to be kept for using a certain number of independent nodes, and
the other for using several processors or cores within each node. In parallel applica-
tions, the first part was described throughMPI and the second part through OpenMP.
Converting an algorithm to efficiently use these features of the architecture was no
trivial task, and was further complicated by the need to determine the proper data
distribution for the MPI part.

About 8 years ago, accelerators were first added to the computer architecture—
first as graphics processing units, and then as Xeon Phis. Now these devices can be
found everywhere, including big clusters [2]. But what did the addition of accelera-
tors mean for analyzing algorithm properties? It meant that a substantial parallelism
resource needed to be identified in an algorithm for using many computing nodes.
More parallelism needs to be present in each parallel process to utilize multiple
computing cores per node. Moreover, enough parallelism needs to be left to use the
accelerator features. Computers, like the need for parallelism, had become hetero-
geneous, which required revising the algorithm properties once more.

Parallel Algorithms: Theory, Practice and Education 5

2 What is a Complete Description of the Algorithm
Properties?

Each newcomputing platform required software developers to analyze the algorithms
over and over, each time having to answer the same two questions. Does the algorithm
possess the necessary properties to meet the architectural requirements? How can
the algorithm be converted so that the necessary properties can be easily reflected in
parallel programs? Changes in computer architecture do not change algorithms, but
this analysis had to be performed again and again when a program was ported from
one generation of computers to another, largely repeating the work that had been
done previously.

This begs a natural question: is it possible to do the analysis “once and for all,”
describing all of the key properties of an algorithm so that all of the necessary infor-
mation can be gleaned from this description any time a new architecture appears? As
simple as the question sounds, answering it raises a series of other questions. What
does it mean “to perform analysis” and what exactly needs to be studied? What kind
of “key” properties need to be found in algorithms to ensure their efficient imple-
mentation in the future? What form can (or should) the analysis results take? What
makes a description of algorithm properties “complete?” How does one guarantee
that a description is complete and that all of the relevant information for any computer
architecture is included?

The questions are indeed numerous and non-trivial. Obviously, a complete
description needs to reflect many ideas: computational kernels, determinacy, infor-
mation graphs, communication profiles, a mathematical description of the algorithm,
performance, efficiency, computational intensity, the parallelism resource, serial
complexity, parallel complexity…[3] All of these concepts, and many others, are
used to describe an algorithm’s properties from different perspectives, and they all
are quite necessary in practice under various situations.

To immediately introduce some order to these diverse concepts, one can begin
by breaking up an algorithm’s description into two parts. The first part is dedicated
to the algorithm’s theoretical properties, and the second part describes its particular
implementation features. This division allows themachine-independent properties of
algorithms to be separated from the numerous issues arising in practice. Both parts of
the description are equally important: the first one describes the algorithm’s theoreti-
cal potential, and the second one demonstrates the practical use of that potential. The
first part of the description explains the mathematical formulation of the algorithm,
its computational kernel, input and output data, information structure, parallelism
resources and properties, determinacy and computational balance of the algorithm,
etc. The second part contains information on an algorithm’s implementation: locality,
performance, efficiency, scalability, communication profile, implementation features
on various architectures, and so on.

6 Vl.V. Voevodin

3 Why Is It Hard to Describe Algorithms?

Many of the ideas described above are very well known. However, as you start
describing the properties of real algorithms, you realize that creating a complete
description of an algorithm is not a challenge, it is a large series of challenges!
Unexpected problems arise at each step, and a seemingly simple action becomes a
stumbling block. Let’s look at the information structure of an algorithm mentioned
above. It is an exceptionally useful term that contains a lot of information about the
algorithm. An information graph is a convenient representation of an algorithm’s
information structure. In many cases, looking at the information graph is enough to
understand its parallel implementation strategy. Figure 1a, b show the information
structure for typical computational kernels in many algorithms, Fig. 1c shows the
information structure of a Cholesky decomposition algorithm.

An information graph can be simple for many examples. However, in general,
the task of presenting an information graph is not a trivial exercise. To begin with,
a graph can potentially be infinite, as the number of vertices and arcs is determined
by the values of external input variables which can be very large. In this situation it
helps to look at likenesses: graphs for different values of external variables look very
“similar” to one another, so it is almost always enough to present one small graph,
stating that the graphs for other values will look “exactly the same.” Not everything
is so simple in practice, however; and one should be very careful here.

Next, an information graph is potentially a multi-dimensional object. The most
natural coordinate system for placing vertices and arcs in an information graph relies

Fig. 1 Information structure of various algorithms

Parallel Algorithms: Theory, Practice and Education 7

on the nested loops in an algorithm’s implementation. If nested loops do not go deeper
than three levels (as in a classical matrix multiplication algorithm), the graph can be
placed in the traditional three-dimensional space. More complex looping constructs
with 4 or more nesting levels require special methods for presenting and displaying
the graph. But even if the number of dimensions does not exceed three, how does one
make the graphical presentation informative? Figure 2a shows a graph in its entirety,
which is barely comprehensible. Various projections of the same graph are shown
in Figs. 2b, d, which can help assess an algorithm’s parallelism potential, but these
aren’t always helpful…

Related questions also arise: how does one visualize the parallelism potential and
illustrate parallel implementation methods for the algorithm? Sometimes a canonical
parallel layer form [3] comes in handy, which reflects both the algorithm’s parallel
complexity and the fastest method for its parallel implementation (within the infinite
parallelism concept), but it is very difficult to build and not always feasible. Figure 3
shows the sequential execution of the fragment in Fig. 2a in five steps. Red indicates
vertices within the current level that can be executed in parallel on the current step.
Green indicates vertices executed in previous steps, and white indicates vertices that
can only be executed in subsequent steps. By visualizing the step-by-step sequential
movement of the red vertices, one can evaluate the parallelism available at each step.
How does one find, analyze, describe and display the canonical parallel layer form?
The question remains open for arbitrary programs.

The issues of data locality and computation locality are of paramount impor-
tance in describing an algorithm’s properties and its implementations. Locality is

Fig. 2 Methods of displaying an algorithm’s information structure

8 Vl.V. Voevodin

Fig. 3 Sequence of steps in the parallel execution of an algorithm based on a canonical parallel
layer form

Fig. 4 A description of data locality in programs using memory access profiles

what determines program execution efficiency on modern computing platforms. To
get the complete picture of an algorithm’s particular implementation features, it is
important to analyze both temporal and spatial locality, noting positive and negative
factors related to locality, and the conditions and situations by which they are caused.
However, even a quick look makes it obvious that there are many more questions
than answers in this area. What methodology can be used to evaluate the temporal
and spatial data locality in the programs? How can one compare temporal and spa-
tial data locality between different programs? Figure 4 shows the memory access
profiles for two programs, indicating the memory address after each memory access
operation. Which program has better temporal and/or spatial data locality? In some
cases, memory usage templates help: they are simple and their characteristics are
predetermined, but once again, the issue of carefully studying locality properties in
an arbitrary program generally remains open.

Another interesting question is related to how data locality is related to the algo-
rithm structure. In other words, can we predict data locality in a given program by

Parallel Algorithms: Theory, Practice and Education 9

using just the information about its algorithm? On the one hand, there are no data
structures in algorithms—they only appear in programs; so talking about locality for
algorithms is not exactly right. On the other hand, it is the algorithm that determines
the structure and properties of a program to be coded, including its locality. Many
have probably heard the expression “the algorithm’s locality” or “this algorithm
has better locality than the other.” How appropriate are these statements, given that
algorithms do not contain data structures?

Determinacy is an important practical aspect of algorithms and programs, but how
can one describe all of the potential sources which violate this property? A serious
cause of indeterminacy in parallel programs is related to changes in the order of
executing associative operations. A typical example is the use of global operations
in Message Passing Interface (MPI) by a number of parallel processes, e.g., when
summing the elements of a distributed array. The MPI runtime system chooses the
order of execution on its own, assuming compliance with the associative law, which
results in various round-off errors and ultimately in different results when executing
the same application. This is a serious issue often encountered in massively parallel
computing systems that causes results of parallel program execution to not be repro-
ducible. If the analysis of an algorithm’s structure shows that the resulting parallel
application cannot work without global operations, this property must be included in
the algorithm description. To analyze this problem properly, a communication profile
should be built for the parallel program, pointing out the structure and interaction
method between parallel processes. A clear definition of the communication profile
hasn’t been produced to date, so it is premature to consider in-depth analysis in this
area.

Indeed, there are many open questions, and the list can go on. The main question
that still remains unanswered is “What does it mean to create a complete description
of an algorithm?”What must be included in this description, so that we can glean all
of the necessary information from it every time a new computing platform appears?
The task seems simple at first sight: an algorithm is just a sequence of mathematical
formulas, often short and simple, which should easily be analyzed. But at the same
time, no one can guarantee the completeness of such a description.

The properties of the algorithms and programs discussed in this work became
the foundation for the AlgoWiki project [1]. The project’s main goal is to provide a
description for fundamental algorithm properties which will enable a more compre-
hensive understanding of their theoretical potential and their implementation features
in various classes of parallel computing systems. The project is expected to result in
the development of an open online encyclopedia based on wiki technologies which
will be open to contributions by the entire academic and educational community.
The first version of the encyclopedia is available at http://AlgoWiki-Project.org/en,
where users can describe both their own pedagogical experience and their knowledge
of specific parallel algorithms.

http://AlgoWiki-Project.org/en

10 Vl.V. Voevodin

4 Conclusion

All of the issues discussed in this work are highly important for training future spe-
cialists [4–6]. Right from the beginning of the education process, focus should be
placed on algorithm structure since it determines both the implementation quality
and the potential for efficiently executing programs in a parallel environment. The
algorithm structure and its close relationship to parallel computing system architec-
ture are central ideas in parallel computing, which are included in many courses for
Bachelor’s and Master’s degree programs at the Faculty of Computational Mathe-
matics and Cybernetics at Lomonosov Moscow State University, as well as in the
lectures and practical courses offered by the annual MSU Summer Supercomputing
Academy [7]. We are also trying to expand this concept to the Supercomputing Con-
sortium of Russian Universities [8] in order to develop a comprehensive supercom-
puter education system, rather than offering occasional training aimed at rectifying
the situation.

Acknowledgements This project is being conducted at Moscow State University with financial
support from the Russian Science Foundation, Agreement No 14-11-00190.

References

1. Antonov, A., Voevodin, V., Dongarra, J.: AlgoWiki: an open encyclopedia of parallel algorithmic
features. Supercomput. Front. Innov. 2(1), 4–18 (2015)

2. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai, D., Berthou,
J.Y., Boku, T., Braunschweig, B., et al.: The international exascale software project roadmap.
Int. J. High Perform. Comput. Appl. 25(1), 3–60 (2011)

3. Voevodin, V.V., Voevodin. Vl.V.: Parallel Computing. BHV-Petersburg, St. Petersburg (2002).
(in russian)

4. Computing Curricula Computer Science. http://ai.stanford.edu/users/sahami/CS2013 (2013)
5. Future Directions in CSE Education and Research, Workshop Sponsored by the Society for

Industrial and Applied Mathematics (SIAM) and the European Exascale Software Initia-
tive (EESI-2), http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-draft-Mar2015.
pdf (2015)

6. NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing. http://www.cs.
gsu.edu/~tcpp/curriculum/

7. Summer Supercomputing Academy. http://academy.hpc-russia.ru/
8. Supercomputing Education in Russia, Supercomputing Consortium of the Russian Universities.

http://hpc.msu.ru/files/HPC-Education-in-Russia.pdf (2012)

http://ai.stanford.edu/users/sahami/CS2013
http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-draft-Mar2015.pdf
http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-draft-Mar2015.pdf
http://www.cs.gsu.edu/~tcpp/curriculum/
http://www.cs.gsu.edu/~tcpp/curriculum/
http://academy.hpc-russia.ru/
http://hpc.msu.ru/files/HPC-Education-in-Russia.pdf

High Performance Computing
and High Performance Data
Analytics—What is the Missing Link?

Bastian Koller, Michael Gienger and Michael M. Resch

Abstract Within this book chapter, technologies for data mining, data processing
and data interpreting are introduced, evaluated and compared. Especially, traditional
High Performance Computing, and the newly emerging fields High Performance
Data Analytics and Cognitive Computing are put into context in order to understand
their strengths and weaknesses. However, the technologies have not been evaluated
solely, but also the missing links between them have been identified and described.

1 Introduction

At this point of time, there are various technologies in the market that target data
analysis, data processing, data interpreting and data mining. So far, it has not been
clear if all of those technologies are direct competitors or can be seen in a comple-
mentary fashion. This book chapter therefore analyses the technologies carefully and
introduces as well as compares their direct angles. Being more concrete, traditional
High Performance Computing, the newly emerging field High Performance Data
Analytics as well as Cognitive Computing are evaluated. In particular, the interac-
tions between those technological fields are visualized in addition.

The book chapter is organized as follows: Section 2 is providing the High Perfor-
mance Computing context, Sect. 3 is introducing High Performance Data Analytics
whereas Sect. 4 compares the approaches and describes the missing links. Finally,
Sect. 5 concludes this book chapter.

B. Koller (B) · M. Gienger ·M. Resch
High Performance Computing Center Stuttgart, Nobelstrasse 19,
70569 Stuttgart, Germany
e-mail: koller@hlrs.de

M. Gienger
e-mail: gienger@hlrs.de

M. Resch
e-mail: resch@hlrs.de

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_2

11

12 B. Koller et al.

2 The Evolution of High Performance Computing

Within this section of the book chapter, a generic view on High Performance Com-
puting (HPC) and its evolution over time is given. Although the purpose of such
HPC systems is in principle the same, the available performance, the customer base
as well as the computational and applications models changed in the last decade. In
summary, various application areas such as computational fluid dynamics, climate or
physics simulations are considered HPC relevant at the moment, which are executed
on innovative systems that may be equipped by vector central processing units, by
commonly used x86 processors or even accelerators.

2.1 Traditional High Performance Computing

High Performance Computing has been traditionally designed to solve problems
that are too large and complex for common desktop computers or even workstations.
Those systems enable a maximum of performance for memory, compute, storage
or input/output (I/O) intensive applications and operations. However, with respect
to their special design and the corresponding drastic costs, they clearly lack on the
flexibility to combine all requirements into a unique general-purpose system.

Although there are self-appointed general-purpose systems in theworldwideHPC
market, there is always a key application that drives the selection of such systems.
Applications that require solely a high computational demand will result in a system
architecture that is based on accelerators, whereas applications that require thousands
of memory operations per second will rather tend to the vector or x86 architecture.
Thus, due to themain area of applications and the corresponding costs, a HPC system
is always tailored to its common applications so that “real” general-purpose systems
cannot be seen in the markets.

2.2 Evolution Over Time

Within the last decade, there was a huge evolution with regards to the HPC systems.
Reaching from vector machines to the widely adopted x86 architecture and modern
accelerators, especially hardware evolved quickly. In the meantime, HPC systems
with more than 1.000.000 cores are not an utopia any more1 so that besides the
efficiency of the systems, also the models and applications can benefit from the huge
amount of provided computational performance.

But not just the hardware evolved, also the customer basis changes: industrial
applications from the automotive world, academic applications dealing with, for
instance, climate simulation as well as applications from small and medium sized

1Top500: http://www.top500.org

http://www.top500.org

High Performance Computing and High Performance Data . . . 13

enterprises from various kinds of areas are targeting the High Performance Com-
puting systems. However, with the evolved systems and the immense performance,
also the execution models get more complicated. On the one hand, there are still
traditional applications that require a huge amount of resources for a single run and
on the other, parametric studies with less constant performance requirements but
generating a huge amount of results are common in state-of-the-art HPC systems.

Nevertheless, HPC driving applications are still usual in the High Performance
Computing area, but due to the changing application and executions models, general-
purpose systems are becoming more evident as large computational intensive appli-
cations typically produce a huge amount of results. So there is currently a trade-off
between providing generic systems that are flexible enough to cope with different
kinds of workloads and such systems that are solely made to provide one single key
performance type.

3 Towards High Performance Data Analytics

In contrast to Sect. 2, this chapter focusesHigh PerformanceDataAnalytics (HPDA),
a new emerging field for the High Performance Computing sector. High Performance
Data Analytics target the efficient analytics of various kinds of data, reaching from
structured up to unstructured as well as streaming data, which cannot be analysed
anymore on standard workstations or Clouds due to their volume, their variety or
their velocity.

3.1 Where Is It Needed?

As already highlighted in the introduction of this section, High Performance Data
Analytics target the analysis of available (e.g. stored) or real-time streaming data.
In contrast to HPC applications, HPDA requires typically not an extraordinary huge
amount of compute performance, but rather a very broad I/O backend that is able to
transfer data quickly enough to the actual processing engines.

The applications that typically cause such data intensive workloads are settled in
the sensor technologies area, such as the evolving Internet of Things, the aligned
Industry 4.0 and the cyber physical systems area. The physical sensors produce a
huge amount of data that has to be analysed in time, sometimes even real-time to
provide the corresponding actions.However, not just those industrial areas require the
implicitly described system architecture, but also modern Internet stores with their
designed customer marketing require as much as knowledge possible about their
customers. This fact results in strong correlations of data that have to be analysed on
huge-scale systems, since Clouds are not performing enough. Finally, not only the
described applications require HPDA functionality, fine-grained models and their

14 B. Koller et al.

corresponding applications produce Terabytes of data in the meanwhile that cannot
be analysed on a state-of-the-art HPC system anymore.

3.2 HPDA Concepts and Technologies

As already highlighted in the sections before, HPC andHPDA approaches in terms of
hardware and software require different technologies. Therefore, these requirements
will be discussed and addressed in particular in this sub-section to bridge the gap
between both technologies.

In terms of hardware, data intensive workloads require different key performance
indicators than standard HPC applications. The differences between both approaches
are highlighted below:

• Processors
In traditionalHPCsystems, fast processorswith fastmemory pipelines are focused.
For HPDA systems, the amount of Floating Point Operations Per Second is still
important, however the performance of the system is determined by the storage
system.

• Memory
Themorememory available for data analytics, the better for the overall application
execution sincemost of the data and results can be kept inmemory instead of check
pointing them to the storage backend. For HPC systems, the same statement holds,
although much smaller memory systems are targeted than in the HPDA area.

• Networks
Whenever data needs to be transferred, fast interconnects come into play. So both,
HPC and HPDA systems require fast memory and latency-oriented networks in
order to transfer the data efficiently.

• Storage
Typical HPC systems provide a central system storage from which all the required
data gets read and written. An approach like this is not possible for HPDA since
the data accessibility is the key performance indicator for the whole applications.
Therefore, data analytics systems provide fast local disks that can be used to
provide and cache the data in order to optimize the application execution.

As can be seen, themain differences betweenHPC andHPDA systems are located
in the area of processors and storages, since fast number-crunching processors are
required for HPC only. In contrast, very fast input/output systems with large capacity
are mandatory for efficient data processing.

The software requirements come along with the hardware requirements. In con-
trast to traditional HPC applications, which require programming models and para-
digms such as message passing or shared memory parallelism, data analytics appli-
cations rely on in-memory processing and programming languages such as Java,
Python or Scala. So the most important applications for data analytics are currently

High Performance Computing and High Performance Data . . . 15

theApache tools Spark2,Hadoop3, Storm4 andFlink5 aswell as some smaller projects
such as Disco Project6, DataTorrent7 or BashReduce8.

Most of those applications build on the MapReduce algorithm, which has been
introduced by the global player Google9. The MapReduce algorithm consists of
three phases—map, shuffle and reduce, whereas the map and the reduce parts are
directly specified by the user in order to allow parallel processing of data onmanifold
machines.Usinghis concept enables processing different kinds of data, reaching from
structured data including files and databases up to unstructured and real-time data
such as online data composed of several data structures.

3.3 A Practical Application Making Use of HPC and HPDA

In order to proof the statements of the last sections and sub-sections, the information
shall be complemented with a practical example from the Global Systems Science
community, which represents an emerging field in the HPC sector. Within the EC-
funded CoeGSS project10, a set of applications is focused that require particular
workflows to retrieve the results. In particular, the workflow foresees HPDA, huge-
scale HPC, small-scale HPC and visualization to generate synthetic populations,
execute the resulting agent-based models and finally, visualize the results [1]. For
clarification, the workflow and its targeted technologies is depicted in Fig. 1.

Thus, those kinds of applications demonstrate that there is a new need to support
other methods and techniques than the classical HPC applications demand. As a
consequence, being competitive in terms of hardware and software reaches a new
level of complexity.

4 The Missing Link

Summarizing the previously mentioned evolution scenarios for High Performance
Computing and the raise ofHigh PerformanceDataAnalytics, this seems as a promis-
ing and valuable way to go. However the deeper one dives into the implications of
the use of these technologies and the potential they provide, it becomes obvious that

2Apache Spark: http://spark.apache.org
3Apache Hadoop: http://hadoop.apache.org
4Apache Storm: http://storm.apache.org
5Apache Flink: http://flink.apache.org
6DiscoProject: http://www.discoproject.org
7DataTorrent RTS: https://www.datatorrent.com
8BashReduce: https://github.com/erikfrey/bashreduce
9Google Inc.: http://www.google.com
10Centre of excellence for Global Systems Science: http://www.coegss.eu

http://spark.apache.org
http://hadoop.apache.org
http://storm.apache.org
http://flink.apache.org
http://www.discoproject.org
https://www.datatorrent.com
https://github.com/erikfrey/bashreduce
http://www.google.com
http://www.coegss.eu

16 B. Koller et al.

Fig. 1 CoeGSS application
workflow

the resulting outputs, especially in terms of data variety and data size get hard to
handle for a human in the loop.

We see a tendency in so-called “business-ready solutions” to stress the support of
the human in the loop by application of technological fields such as machine learn-
ing, artificial intelligence or cognitive computing. For the remainder of this paper
we will stick to the term cognitive computing as a placeholder for the above men-
tioned disciplines, which can be described as the variety of scientific disciplines of
Artificial Intelligence and Signal Processing11. A similar view has been presented by
James Kobielus, Big Data Evangelist, 2013, in a blog entry onCognitive Computing:
Relevant at all Speeds, Scales and Scopes of Thought, where he defines cognitive
computing as

the ability of automated systems to handle the conscious, critical, logical, attentive, reasoning
mode of thought that humans engage in when they, say, play Jeopardy or try to master some
academic discipline.

11Wikipedia Definition of Cognitive Computing: https://en.wikipedia.org/wiki/Cognitive_
computing

https://en.wikipedia.org/wiki/Cognitive_computing
https://en.wikipedia.org/wiki/Cognitive_computing

High Performance Computing and High Performance Data . . . 17

4.1 Cognitive Computing

The principles of cognitive computing are not new, and nearly everyone who is in the
Information Technology business has at a certain point in time heard of this topic.
Thus is it also not surprising, that it’s base assumptions and ideas were even reported
already at the end of the 19th century, when Boole proposed its book on “The Laws
of Thoughts” [2]. Even though this was just a conceptual approach, and the first
programmable computer by Zuse needed As already mentioned before, during the
evolution of these principles, the domain of cognitive methodologies and artificial
intelligence went either side by side or showing clear overlaps. A variety of theories
and implementation approaches were taken, the probably most prominent ones being
so far IBM’s Watson [3] and the recently presented AlphaGo [4].

4.2 Benefits

Figure 2 shows how High Performance Computing, High Performance Data Analyt-
ics and Cognitive Techniques can complement each other. High Performance Com-
puting (HPC) delivers the needed processing power for those kind of applications,
requiring massive parallel execution. At the same time, these kind of applications
produce partially enormous amounts of data, which may be too big to be manually
analysed, even having current support tools at hand. Thus the discipline of High
Performance Data Analytics can be used to analyse and handle these (and other
sources’ data sets) in a sufficient way. Cognitive techniques can provide support to
both disciplines, to help to interpret and present the results in a best possible way.

In a generalway, the expected benefits fromapplying these concepts, aremanifold.
In general support for those fields where big amounts of data are collected, handled
and interpreted is improved, examples are:

• Enhanced analysis of business potentials of new offerings/new activities. This
can reach from the virtual testing of new opportunities, e.g. in drug design or
on combined virtual and real world simulations such as finding new geographic
locations for drilling

• Support of staff (e.g. engineers) in decision processes by providing thema selection
of potential paths to follow

• Improving Operations by understanding of performed operations and their para-
meters, so that either in real time or after longer-duration analysis processes can
be optimized

Taken this complementarity into account, the workflow as described in Fig. 1 can
be extended to the one presented in Fig. 3.

18 B. Koller et al.

Fig. 2 Cognitive Techniques complementing the global picture of HPC and HPDA

Fig. 3 Extending the GSS
workflow with cognitive
techniques support

High Performance Computing and High Performance Data . . . 19

4.3 Available Technologies

Within this document, we also want to have a short look at those technologies, which
may act as baseline to realize an integration of cognitive concepts into a traditional
HPC/HPDA based workflow (e.g. the one presented in Fig. 3.

In the case of Watson, a variety of APIs is available for selected developers and
business users, as well as the Watson Analytics Solution12. Furthermore there is a
variety of Open Source alternative available, which shall be discussed on a high level
in the following overview:

DARPA DeepDive
DeepDive [5, 6] is a free version of a Watson like system. It was developed within
the frame of the US Defense Advanced Research Projects Agency (DARPA) and
in opposite to Watson has the aim to extract structured data from unstructured data
sources. DeepDive uses machine learning technologies to train itself and targets
especially those users with moderate to no machine learning expertise.

UIMA
Apache Unstructured Information Management (UIMA)13 is supporting the analy-
sis of large sets of unstructured information. Its an implementation of the Oasis
Unstructured Information Management standard14 OpenCog

OpenCog [7] is a project targeting artificial intelligence and delivering an open
source framework. One output of OpenCog is the cognitive architecture OpenCog
Prime [8] for robot and virtual embodied cognition.

5 Conclusions

The previous sections have pointed out that High Performance Computing and High
Performance Data Analytics can be seen as rather complementary approaches, then
as direct competitors. Even though there are activities to provide a common software
stack, which may run on both, HPC and HPDA specific hardware, there is only a
subset of concrete problems in the problem space which can be addressed efficiently
in such a manner. Mainly, this is a result of the partially quite different hardware set
up of the respective technological environment.

Now, assuming that HPC and HPDA work with a high performance, we also
have to face the fact that the size and amount of data sets proceeded and again
resulting from this processing enter a dimension, which makes a satisfactory manual
processing by a human in the loop (e.g. an engineer) nearly impossible. Thus we see
that even if there is an issue (e.g. data analytics) solvedwith those appliances, another
issue pops up which is the understanding and respectively handling of information.

12http://www.predictiveanalyticstoday.com/ibm-watson-analytics-beta-open-business/
13http://uima.apache.org/
14https://www.oasis-open.org/committees/download.php/28492/uima-spec-wd-05.pdf

http://www.predictiveanalyticstoday.com/ibm-watson-analytics-beta-open-business/
http://uima.apache.org/
https://www.oasis-open.org/committees/download.php/28492/uima-spec-wd-05.pdf

20 B. Koller et al.

For that purposewehave introduced cognitive technologies,which can act as some
sort of “helper” technology to simplify the life of the end user and enable for improved
use of simulation results. This technology, even if it appears to be still in its infancy,
can support the (human) end user and provide decision baselines allowing improved
processing of information. We have shown that a variety of implementations already
exist, next steps need to see in how far they can cover the requirements of selected
use cases.

References

1. Wolf, S., Paolotti, D., Tizzoni, M., Edwards, M., Fuerst, S., Geiges, A., Ireland, A., Schuetze,
F., Steudle, G.: D4.1 - First report on pilot requirements. http://coegss.eu/wp-content/uploads/
2016/03/CoeGSS_D4_1.pdf

2. Boole, G.: Investigation of the Laws of Thought on Which are Founded the Mathematical
Theories of Logic and Probabilities (1853)

3. Ferrucci, D.A., Brown, E.W., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A.,Mur-
dock, J.W., Nyberg, E., Prager, J.M., Schlaefer, N., Welty, C.A.: Building Watson: an overview
of the DeepQA project. AI Mag. 31(3), 59–79 (2010)

4. Silver, D., Hassabis, D.: AlphaGo: mastering the ancient game of Go with Machine Learn-
ing, Blogpost. https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-
go.html (2016)

5. Niu, F., Zhang, C., Re, C., Shavlik, J.W.: DeepDive: web-scale knowledge-base construction
using statistical learning and inference. 884. In: VLDS: CEUR-WS.org. (CEUR Workshop
Proceedings), pp. 25–28 (2012)

6. Zhang, C.: DeepDive: a data management system for automatic knowledge base construction,
Ph.D. Dissertation, University of Wisconsin-Madison (2015)

7. Hart, D., Goertzel, B.: OpenCog: a software framework for integrative artificial general intelli-
gence. In: Wang, P., Goertzel, B., Franklin, S. (eds.) ’AGI’, pp. 468–472. IOS Press (2008)

8. Goertzel, B.: OpenCog Prime: a cognitive synerfy based architecture for artificial general intel-
ligence

9. Hurwitz, J.S., Kaufman, M., Bowles, A.: Cognitive Computing and Big Data Analytics. Wiley,
Indianapolis (2015)

http://coegss.eu/wp-content/uploads/2016/03/CoeGSS_D4_1.pdf
http://coegss.eu/wp-content/uploads/2016/03/CoeGSS_D4_1.pdf
https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html
https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html

A Use Case of a Code Transformation Rule
Generator for Data Layout Optimization

Hiroyuki Takizawa, Takeshi Yamada, Shoichi Hirasawa and Reiji Suda

Abstract Xevolver is a code transformation framework for users to define their
own code transformation rules. In the framework, an abstract syntax tree (AST) of
an application code is written in an XML format, and its transformation rules are
expressed in theXSLT format, which is a standardXML format to describeXMLdata
conversion; an AST and its transformation rules are both written in XML. Since it is
too low-level for standard users to manually write XSLT rules, Xevtgen is now being
developed as a tool to generate such rules from simple code description. In Xevt-
gen, users basically write just two code patterns, the original and transformed code
patterns. Then, Xevtgen automatically generates a transformation rule that trans-
forms the original code pattern to the transformed one. The generated rule is written
in XSLT, and hence usable by other tools of the Xevolver framework. This article
shows a use case of using Xevtgen for data layout optimization, and discusses the
benefits of using the tool.

1 Introduction

When data are stored in a memory space, the layout of data often needs to be opti-
mized so as to make a better use of memory hierarchy and architectural features.
Today, such data layout optimization is critically important to achieve high perfor-
mance on a modern high-performance computing (HPC) system, because the system

H. Takizawa (B) · T. Yamada · S. Hirasawa
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
e-mail: takizawa@tohoku.ac.jp

T. Yamada
e-mail: tyamada@sc.cc.tohoku.ac.jp

S. Hirasawa
e-mail: hirasawa@sc.cc.tohoku.ac.jp

R. Suda
Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan
e-mail: reiji@is.s.u-tokyo.ac.jp

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_3

21

22 H. Takizawa et al.

performance is very sensitive to memory access patterns. Memory access can easily
become a performance bottleneck of an HPC application.

The data layout of an application can be optimized by changing data structures
used in the code. One problem is that a human-friendly, easily-understandable data
representation is often different from a computer-friendly data layout. This means
that, if the data layout of a code is completely optimized for computers, the code
may be no longer human-friendly.

We have been developing a code transformation framework, Xevolver, so that
users can define their own rules to transform an application code [1, 2]. In this
article, such a user-defined code transformation rule is adopted to separate the data
representation in an application code from the actual data layout in a memory space.
Instead of simply modifying a code for data layout optimization, the original code
is usually maintained in a human-friendly way and then mechanically transformed
just before the compilation so as to make the transformed code computer-friendly.

One important question is how to describe code transformation rules. A con-
ventional way of developing such a code translator is to use compiler tools, such as
ROSE [3]. Actually, at the lowest abstraction level, Xevolver allows users to describe
a code transformation rule as an AST transformation rule. Since AST transforma-
tion is exactly what compilers internally do, compiler experts can implement various
code transformation rules by using the framework. However, standard programmers
who optimize HPC application codes are not necessarily familiar with such compiler
technologies. Therefore, we are also developing several high-level tools to describe
the rules more easily.

Xevtgen [4] is one of high-level tools to help users define custom code transfor-
mation rules. This article shows a use case of Xevtgen for data layout optimization,
and discusses how it can help users define their own transformations.

2 Data Layout Optimization

In many cases, an HPC application code is written in a low-level programming
language such as C/C++ and Fortran. In such a language, a data structure mostly
corresponds to a specific data layout. In practice, thus, the data layout of an HPC
application is usually altered by changing the data structure in the code.

A typical example of data layout optimization is so-called AoS-to-SoA conver-
sion [5]. Generally, an array of structures (AoS) is likely to be human-friendly,
leading to high code maintainability and readability. For example, the following C
code defines an AoS data structure, in which each point is a pair of two variables, x
and y.

struct { double x, y; } point2d[N];

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 23

Fig. 1 Data layout in a memory space

This would be an intuitive representation of points in a 2-dimensional space. On the
other hand, a structure of arrays (SoA) often leads to better memory access patterns.
The following is an example of SoA, in which x and y are both arrays.

struct { double x[N], y[N]; } point2d;

Each data structure leads to a different data layout in a memory space as shown in
Fig. 1. In the case of AoS, x and y appear alternately in the memory space. On the
other hand, in the case of SoA, each of the two arrays organizes a continuousmemory
region. For example, when x of every point is sequentially accessed, it is obvious
that SoA has a higher spacial locality of reference. As a result, SoA can potentially
use cache memory more effectively. In this way, the data layout in a memory space
can significantly affect the performance of an HPC application.

One severe problem is that data layout optimization needs to modify many places
in an application code, and degrades the codemaintainability and readability. As long
as thedata representation in an application code corresponds to its actual data layout in
a memory space, data layout optimization results in drastic code modification. More-
over, it could reduce the performance portability across different systems because
different systems potentially prefer different data layouts. Programmers may need
to maintain multiple versions of one application code, e.g., using many #ifdef’s,
especially if the application needs to be performance-portable. This approach likely
makes the code unmaintainable.

One idea to solve this problem is to use code transformation. For example, various
compiler tools are available to transform a code instead of directly modifying the
code. However, transformation for data layout optimization is generally specific to
a particular application code. This is because such a transformation rule usually
depends on the definition of the data structure. In general, it is not affordable to
use a compiler tool to develop a custom code translator for individual applications.
Accordingly, we need an easier way to define a custom code transformation rule.

24 H. Takizawa et al.

3 Code Transformation Rule Generation with Xevtgen

Suppose that a legacy code written in Fortran uses a human-friendly data structure.
Then, this article discusses how the code should be converted to another version
of the code that uses a computer-friendly data structure. Thus, the purpose of this
conversion is to develop a code using human-friendly data representation and execute
it using computer-friendly data layout. To this end, we transform the code instead of
modifying it. That is, the code is transformed just before the compilation, and then
the transformed version is passed to the compiler. As a result, application developers
maintain only the original version.

One difficulty is that this conversion needs application-specific code transforma-
tions in many cases. The Xevolver framework has been developed to allow standard
users to implement such an application-specific code transformation. First, Xevolver
internally converts an application code to its AST, represents the AST in an XML
data format, and then exposes it to users. The users can apply any transformations to
the exposed AST. After the AST transformation, Xevolver converts the transformed
AST to its corresponding code. At the lowest abstraction level, Xevolver internally
uses XSLT [6] to express an AST transformation rule, because XSLT is a standard
XML data format to describe XML data conversion. It should be noted that an AST
and its transformation rules are both written in XML, i.e., text data. In comparison
with other data formats, it would be easy to quickly develop a simple tool to generate
and/or process text data for application-specific purposes. Therefore, we have been
developing various tools for the Xevolver framework and discussing the practicality
and superiority of using user-defined code transformation for optimizing an HPC
application code.

Xevtgen [4] is one of the tools to generate XSLT rules for AST transformation.
In the case of using Xevtgen, users do not need to consider their code transforma-
tion rules at an AST level. Instead, they write two code patterns, the original and
transformed code patterns. Then, Xevtgen automatically generates an XSLT rule of
custom code transformation that transforms the original code pattern to the trans-
formed one.

Figure 2 shows an example of “dummy” Fortran codes to express custom code
transformations. Such a dummy code is used by Xevtgen to generate XSLT rules for
AST transformation. In Fig. 2, the original and transformed code patterns are written
using !$xev tgen src and !$xev tgen dst directives, respectively. In the
dummy code, some special variables can be used to express a code pattern. For
example, a variable, idx, defined in Line 27 matches any expression, and hence is
used in the rule to indicate that an array index can be any expression. If such a variable
appears in both of the original and transformed code patterns, the corresponding part
of the code pattern is copied from the original code to the transformed one. Similarly,
a variable, cmp, matches any name so that a component of aos_t is translated to
its corresponding component of soa_t.

Reading a dummy Fortran code with special directives as in Fig. 2, Xevtgen gen-
erates XSLT rules that implement code transformations expressed in the dummy

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 25

Fig. 2 A dummy Fortran code written for Xevtgen

code. This is the most important feature of Xevtgen. In the case of using Xevt-
gen, users do not need any knowledge about AST transformation; they can write a
dummy code to express custom code transformations if they know Fortran program-
ming and several !$xev tgen directives. Using Xevtgen, users can easily and
quickly define a code transformation dedicated to a particular application code. In
practice, such an application-specific code transformation rule does not need to have
high generality if necessary rules can easily be defined for each application code.
As a result, an application code can remain human-friendly from the viewpoint of
application programmers, and user-defined code transformations are applied to the
code just before the compilation so that the transformed code becomes computer-
friendly and/or compiler-friendly.

Generally, two kinds of code transformations are required for AoS-to-SoA con-
version. One is called a type definition transformation rule that replaces the type
definition of an AoS data structure to that of an SoA data structure. An example of a
type definition transformation rule is Rule 1 in Fig. 2. The other is called a variable
reference transformation rule that changes the way of accessing the data structure.
An example of a variable reference transformation rule is Rule 2 in Fig. 2.

In many cases, a type definition transformation rule is explicitly defined by users
as in Fig. 2. It often looks like simple textual replacement. Since a type definition

26 H. Takizawa et al.

appears only once in an application code, simple textual replacement is usually an
easy and appropriate way to achieve type definition transformation.

On the other hand, a variable reference transformation rule often needs to be
expressed using generalized code patterns rather than concrete texts. This is because
a data structure could have various components. If simple text replacement is adopted
for this kind of transformation, the rule will be very wordy. To make matters worse,
since those variable references could be scattered over a whole application code, it
is a tedious and error-prone task to manually change all of them for using a different
data structure. If Xevtgen is used and there is a general code pattern that matches all
the variable references, a variable reference transformation rule could be simple as
shown in Fig. 2. Once such a simple rule is defined, all the variable references are
mechanically transformed based on the rule.

In the dummy code in Fig. 2, the part of a directive surrounded by back quotes,
such as‘aosdata(idx)%x‘, is aFortran expression.The expressionmust bevalid
when Xevtgen translates the dummy code to XSLT rules. Hence, a Tgen variable,
x, is defined to have the same variable name as a component of aos_t so that
‘aosdata(idx)%x‘ is a valid expression. Since x is a Tgen variable as well as a
component of aos_t, it matches any namewhen the generated XSLT rule is applied
to a Fortran code. As a result, the generated rule replaces not only aos(i,j,k)%x
but also aos(i,j,k)%y at the AoS-to-SoA conversion.

4 Discussions

In this article, Xevtgen is used for AoS-to-SoA conversion to discuss how Xevtgen
helps users define application-specific code transformations. In the following eval-
uation, the classic static memory allocation version of the Himeno benckmark [7]
written in Fortran77 is first modified by hand so as to use AoS data representation,
and then a dummy Fortran code for Xevtgen is written to generate XSLT rules for
AoS-to-SoA conversion. In addition, the performance difference between the AoS
version and the SoA version is also shown to discuss how important data layout
optimization is for modern computing systems.

Figure 3 shows a dummy Fortran code used by Xevtgen for AoS-to-SoA conver-
sion in this use case.

For variable reference transformation, the rule in Fig. 3 can be expressed as a
simple code of only four lines because there is a clear pattern in the transformation.
The code pattern of accessing the originalAoSdata structure ismechanically replaced
with the code pattern of accessing arrays. Since variable references are scattered over
a whole application code, it is significantly helpful if all of them are transformed
based on a certain transformation rule, especially in the case of optimizing the data
layout of a large-scale practical application code. Even in a relatively-small code of
the Himeno benchmark, 61 variable references need to be modified for changing the
data structure.

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 27

Fig. 3 A dummy Fortran code for AoS-to-SoA convesion of the Himeno benchmark

In Fig. 3, the type definition transformation rule consists of 21 code lines. One
may consider that the type definition transformation rule seems redundant because
both of the original and transformed code versions are explicitly written. However,
the type definition of a transformed data structure must be explicitly given by users
anyway, considering the correspondence between the original and transformed types.
Therefore, we believe that this is an effective and intuitive way to describe a type
definition transformation rule.

In this use case, 60 code lines are in total transformed by the rules in Fig. 3. In
case of converting AoS to SoA, a programmer traditionally needs to modify all of
the code lines by hand. This is a tedious and error-prone task. On the other hand,
in the case of using Xevtgen, user-defined code transformation can automate the
task if the rule is properly defined. Moreover, the rule is reusable and/or easily
customizable for another code. Accordingly, Xevtgen dummy codes can be used for
accumulating and sharing expert knowledge and experiences, which can be reused
by other programmers and also for other application codes.

In this article, the performance of the transformed code is comparedwith that of the
original code using the two systems listed in Table 1. One system is theNECSX-ACE
vector computing system [8] installed at TohokuUniversityCyberscienceCenter, and
the other is a commodity PC. The former has a 10x higher memory bandwidth than

28 H. Takizawa et al.

the latter. Since the performance of the Himeno benchmark is usually limited by the
memory bandwidth, SX-ACE can achieve a higher sustained performance than the
PC if the loop is properly vectorized.

Figure 4 shows the performance impact of the data layout optimization. As shown
in the figure, AoS-to-SoA conversion significantly improves the performance of each
system.The performance improvement of SX-ACE is especially remarkable, because
regular memory access to array elements, which are arranged in a continuous region,
is more efficient than stride memory access to AoS data elements. In this use case,
it is observed that the AoS-to-SoA conversion can significantly reduce memory
bank conflicts and improve the memory access efficiency. This kind of performance
optimization is very important to achieve high performance on a modern computing
system, in which the memory access can easily become a performance bottleneck.
The expressive ability of Xevtgen is high enough to express transformation rules of
this important performance optimization.

It is important that different systems potentially require different data layouts.
As a result, data layout optimization is likely to be system-specific and/or compiler-
specific. Moreover, loop optimization might also require data layout optimization
because it changes the order of accessing data elements. For example, even if SoA
had a higher spacial locality of reference thanAoSbefore optimizing a loop, SoAdoes
not necessarily have a higher locality after the optimization. Data layout optimization
often specializes an application code for a particular processor, compiler, kernel loop,
and so on. Even in such a case, our Xevolver approach [1] allows the original code
to remain human-friendly because system-specific and/or compiler-specific code
transformations can be defined separately from the original code. Namely, system-
specific and/or compiler-specific information is separated from the code.

Xevtgen enables users to achieve the separationmuchmore easily than the original
Xevolver approach. In this use case, the XSLT rules generated by Xevtgen consist
of 293 lines in total. In the original Xevolver framework, users are supposed to
write such XSLT rules by themselves, as reported in [9]. Writing those XSLT rules
requires not only a fair amount ofwriting effort but also special knowledge about both
XML and compilers, because users have to learn how to write XSLT rules for AST
transformation. On the other hand, Xevtgen allows users to briefly express their own
code transformation rules without requiring special knowledge about XML, XSLT,

Table 1 System configurations

NEC SX-ACE Commodity PC

Processor SX-ACE processor Intel Core i7 930

Peak performance 256 Gflop/s 44 Gflop/s

Memory capacity 64 GB 32 GB

Memory bandwidth 256 GB/s 25.6 GB/s

Operating system SUPER-UX Linux 2.6.32

Compiler sxf90 Rev. 520 gfortran 4.4.7

Compiler options -P auto -C hopt -O3

A Use Case of a Code Transformation Rule Generator for Data Layout Optimization 29

and compilers. As a result, they can easily improve the performance portability of
their application codes across different systems.

5 Conclusions

This article explains a code transformation rule generator, Xevtgen, for user-defined
code transformations dedicated to each application code. As discussed in this article,
Xevtgen allows standard users to define their own code transformations much more
easily than conventional compiler-based approaches, because the users no longer
need to consider code transformation rules at an AST level. They can generate code
transformation rules if they knowFortran programming and several special directives.

The use case described in this article shows that Xevtgen can express code trans-
formations required for data layout optimization, which is one of the most important
code optimization techniques to exploit the performance of a modern computing

Fig. 4 Performance impacts
of data layout optimization

(a) SX-ACE.

(b) Commodity PC.

30 H. Takizawa et al.

system. In terms of the number of code lines, XSLT rules generated by Xevtgen
are longer than a dummy Fortran code input to Xevtgen. Moreover, standard Fortran
programmers would be able to describe such a dummy Fortran code if they learn how
to use several special directives used by Xevtgen. In comparison with the original
Xevolver approach [1] of directly writing XSLT rules by hand, the Xevtgen approach
offers a much easier way of defining a practical code transformation rule.

Acknowledgements This research was partially supported by JST CREST “An Evolutionary
Approach to Construction of a Software Development Environment for Massively-Parallel Het-
erogeneous Systems” and Grant-in-Aid for Scientific Research(B) 16H02822. The authors would
like to thank all team members of the CREST project, especially Profs. Egawa, Takahashi, and
Komatsu, for fruitful discussions on the design and development of the Xevolver framework.

References

1. Takizawa, H., Hirasawa, S., Hayashi, Y., Egawa, R., Kobayashi, H.: Xevolver: an XML-based
code translation framework for supporting HPC application migration. In: IEEE International
Conference on High Performance Computing (HiPC) (2014)

2. TheXevolver Project: JSTCREST“an evolutionary approach to construction of a software devel-
opment environment for massively-parallel heterogeneous systems”. http://xev.arch.is.tohoku.
ac.jp/

3. Quinlan, D.: ROSE: Compiler support for object-oriented frameworks. Parallel Process. Lett.
10(02n03), 215–226 (2000)

4. Suda, R., Takizawa, H., Hirasawa, S.: Xevtgen: Fortran code transformer generator for high
performance scientific codes. In: The Third International Symposium on Computing and Net-
working, pp. 528–534 (2015)

5. Sung, I.J., Liu, G.D., Hwu,W.M.W.: DL: a data layout transformation system for heterogeneous
computing. In: Innovative Parallel Computing (InPar), pp. 1–11 (2012)

6. Kay, M.: XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer to Programmer), 4
edn. Wrox Press Ltd. (2008)

7. Himeno benchmark. http://accc.riken.jp/en/supercom/himenobmt/
8. Momose, S., Hagiwara, T., Isobe, Y., Takahara, H.: The brand-new vector supercomputer, SX-

ACE. In: International Supercomputing Conference, pp. 199–214. Springer (2014)
9. Yamada, T., Hirasawa, S., Takizawa, H., Kobayashi, H.: A case study of user-defined code trans-

formations for data layout optimizations. In: The Third International Symposium on Computing
and Networking, pp. 535–541 (2015)

http://xev.arch.is.tohoku.ac.jp/
http://xev.arch.is.tohoku.ac.jp/
http://accc.riken.jp/en/supercom/himenobmt/

APES on SX-ACE

Harald Klimach, Jiaxing Qi and Sabine Roller

Abstract We report on first experiences in deploying the APES framework on the
NEC SX-ACE vector system. In APES there are two solvers available, implementing
different numerical schemes. Musubi is a Lattice-Boltzmann solver that can be used
to simulate incompressible flows. This numerical method is attractive as it allows
the explicit computation for incompressible flows with good scalability and robust
treatment of highly comlex geometries. The second solver, Ateles, implements a
high-order Discontinuous Galerkin method and can be used to solve hyperbolic
conservation laws, including linear equations like acoustics and non-linear equations
like compressible Navier-Stokes. The NEC SX-ACE vector system offers a memory
bandwidth to operation ratio of 1 Byte per floating point operation, which is an
interesting deployment option for many numerical schemes. Though, there are a lot
of experiences with earlier systems of the SX series, the latest installment comes
with new features and an overhaul of the programming environment.

1 Introduction

The APES framework [1] is a collection of applications and libraries to enable large
scale numerical simulations of fluid dynamics on distributed memory systems. It is
written in Fortran and utilizes some Fortran 2003 features. Though, some features
from the Fortran 2003 standard are extensively used throughout the code, the devel-
opment tried to stay off from various language constructs that were troublesome with
various compilers over a long time. One of the notable requirements from the Fortran
2003 standard is the ISO-C-Binding, which is used to incorporate the Lua scripting
language for configuration files.

H. Klimach (B) · J. Qi · S. Roller
University of Siegen, 57076 Siegen, Germany
e-mail: harald.klimach@uni-siegen.de

J. Qi
e-mail: jiaxing.qi@uni-siegen.de

S. Roller
e-mail: sabine.roller@uni-siegen.de

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_4

31

32 H. Klimach et al.

There are mainly two fluid dynamic solvers developed within APES. One is the
Lattice-Boltzmann solver Musubi [2], suitable for incompressible flows. The other
is the high-order Discontinuous Galerkin solver Ateles [3] for compressible flows,
but also other hyperbolic conservation laws. Both rely on a large part of shared
infrastructure provided by the TreElM library [4]. Meshes are described with the
help of Octree data structures, but in a sparse sense, where only elements are stored
explicitly which are part of the computational domain. This sparsity results in the
need for an indirection when accessing neighboring elements, like in unstructured
mesh representation. The mesh format has been chosen specifically to cater large
scale distributed parallel systems, besides the known topology of the Octree, a space-
filling curve is used to partition the mesh. Using a space-filling curve together with
the Octree enables a completely distributed partitioning, where each process can
locally compute the elements it is going to work on.

Both solvers have been deployed on various large systems and have been shown
to be capable of utilizing at least 100 thousand MPI processes. The APES tools have
never been deployed on any earlier NEC SX vector system. Here we report some first
experiences of porting this flexible framework to the NEC SX-ACE system. The NEC
SX series of vector computers have a long standing tradition in high performance
computing with a well-established development environment, especially for Fortran.
A high memory bandwidth in relation to the floating point operation speed yields
a well balanced system with 1 Byte per floating point operation. If we can exploit
vector instructions in the APES solvers, we expect both solvers to benefit from the
fast memory access and, thus, a high sustained performance.

Though, the APES solvers have been developed on and for cluster machines with
mostly an Intel x86 architecture, vectorization was always a considered point in the
development. Vectorization in the implementation is of increasing importance, as
larger and larger vector instructions get into the processor architectures. The AVX2
instructions, for example, allow a single instruction to process four double precision
numbers and AVX-512 extends this to eight. However, the 256 double precision
numbers processed per instruction on the NEC SX processor is a completely different
quality of vectorization, which requires a really strong level of vectorization in the
implementation.

At least for the Lattice-Boltzmann kernel itself a good vectorization is known, due
to the straight forward single loop. We therefore start out with the porting of Musubi
to the NEC SX-ACE and have a look at other important parts besides the kernel. After
that we move on to the little more involved Discontinuous Galerkin implementation
in Ateles, where the computational effort is distributed across multiple important
kernels and a vectorization is less obviously achieved.

2 Porting of Musubi

We started our porting efforts on Musubi, as this algorithm is known to perform well
on the NEC SX architecture and the main kernel is straight forward to understand.
The first step in porting an application is to ensure that the code can be compiled

APES on SX-ACE 33

Listing 1: No vectorization due to small intermediate arrays
1 do iVal=1,nVals
2 tmp(1) = a(iVal)
3 tmp(2) = b(iVal)
4

5 result = var(1) + var(2)
6 end do

for the target system. Luckily, the compiler environment on the NEC SX-ACE pro-
vides a Fortran 2003 compiler. This new compiler is a complete overhaul of the old
compiler that only provided a very limited subset of the Fortran 2003 standard. One
drawback of this new compiler is a less sophisticated optimization and vectorization,
when compared to the previous more restricted compiler. Nevertheless, we found the
compiler to work pretty well on Musubi and were able to tune the implementation
towards a high sustained performance of about 30 % of the peak performance in the
Lattice-Boltzmann kernel.

2.1 Porting of the Kernel

The Lattice-Boltzmann kernel basically is just a single loop over all lattice points.
It is an explicit scheme and a double buffer is used to hold the values of the new
and old time step. Therefore, there is no dependency and the expectation was a
straight forward vectorization of the loop. Thanks to the NEC sxf03 compiler the
initial porting without optimization was straight forward. Only very minor issues
arose with some modern Fortran constructs that were easily resolved. However, the
performance was disappointing and especially the vector length in vector instructions
was far below the possible maximum of 256. As it turned out, the implementation of
the Lattice-Boltzmann loop in Musubi made use of smaller arrays to hold temporary
values. This convenience confused the compiler and had it vectorizing these arrays
instead of the outer loop. To allow the compiler to put those temporary values into
vector data registers, they had to be turned into individual scalars.

An illustration of the code layout where the long loop over all lattices is not
vectorized is given in Listing 1. And the accordingly transformed code to allow
vectorization is shown in Listing 2. For Lattice-Boltzmann the number of interme-
diate scalar values is usually in the range of 20 values. There explicit declaration
is a little more cumbersome than employing arrays, but all in all this is a rather
minor code transformation. Finally we add a hint to the compiler in Listing 2 that
the outer loop iterations are indeed independent via the NODEP compiler directive.
The independence is obscured by the use of indirection to address the lattices.

With the changed loop from 2, we already achieve a good vectorization and
high sustained performance. For the standard collision operator, called BGK, the

34 H. Klimach et al.

Listing 2: Vectorizable loop by using scalar temporary variables
1 !CDIR NODEP
2 do iVal=1,nVals
3 tmp1 = a(iVal)
4 tmp2 = b(iVal)
5

6 result = tmp1 + tmp2
7 end do

vectorization ratio reached 99.83 % with an average vector length of 256, which
results in a performance of 19.87 GFLOPs on a single SX-ACE core.

For Musubi this change in code is already sufficient to achieve a satisfactory
sustained performance in the Kernel on a single core. Unfortunately, for real problems
we also need to consider other parts of the code, as any one of them might pose a
potential bottleneck, prohibiting the execution of simulations on the machine.

2.2 Porting of the Initialization

While the kernel ran fine with the above minimal code changes, we hit a wall in
the initialization for larger problems. The initialization takes care of constructing
neighborhood information and setting up the indirect addressing accordingly. To
achieve this a dynamic data structure is used, which allows for the addition of new
elements with fast access afterwards. These are called growing arrays in Musubi and
make use of amortized allocation costs by doubling the memory when the array is
full.

This datatype is illustrated in Listing 3. The shown code makes use of CoCo
preprocessing to define this growing array for arbitrary data types. Each array is
accompanied by a counter nVals to track the actual number of entries in the possibly
larger array. New entries are appended at the end of the list and the counter is increased
accordingly. However, if the current size of the array is reached, the array is copied
into a larger array to automatically allow for the addition of the new element. This
is shown done by the shown expand routine.

For some data a dynamically growing array is not sufficient, instead it needs to
be possible to search for values in the given array. To achieve this, we employ a
very similar data structure, but with the addition of a ranking array to maintain a
sorting of array entries and allow for binary searches. This kind of data structure
has the additional complication, that for newly added values, we need to perform
an insertion in the ranking array. Though the necessary copying to shift the entries
is vectorizable here, the compiler needs again some hints to actually perform the
vectorization.

Not too surprisingly this dynamic data structures yield only little performance
on the NEC SX-ACE system, however the heavy costs getting prohibitive large for

APES on SX-ACE 35

Listing 3: Growing array to deal with dynamic data
1 ! Class definition
2 type grw_?tname?Array_type
3 integer :: nVals = 0
4 integer :: ContainerSize = 0
5 ?tstring?, allocatable :: Val(:)
6 end type
7

8 ! Double the array
9 subroutine expand(me , pos)

10 ...
11 me%containerSize = me%containerSize *2
12 if (me%nVals > 0) then
13 allocate(swpval(me%ContainerSize))
14 swpval (:me%nVals) = me%Val(:me%nVals)
15 call move_alloc(swpval , me%Val)
16 else
17 if (allocated(me%Val)) deallocate(me%Val)
18 allocate(me%Val(me%containerSize))
19 end if
20 ...
21 end subroutine expand
22

23 subroutine append(me , newval)
24 ...
25 if (me%nvals == me%containerSize) call expand(me)
26 me%nVals = me%nVals + 1
27 me%val(me%nVals) = newval
28 ...
29 end subroutine append

larger problems were not expected. To overcome the long running times for the
initialization the following strategies have been employed:

• Avoid many small allocations: Use an initial size for the growing arrays that is in
the range of expected array entries.

• Minimize the utilization of these data structures: Out of convenience the data
structures where used in places where some code reorganization allowed for single
allocation of fixed sized arrays instead.

• Instead of employing the data structures for arbitrary complicated derived datatype,
restrict there usage to arrays of intrinsic Fortran datatypes.

• Add a NODEP compiler directive to allow the compiler the vectorization in the
shifting of the ranked array.

These changes indeed cut down the initialization times to a reasonable amount, and
computations of large problems became feasible. The taken steps for the Kernel and
the initialization so far are crucial for all simulations. They were apparent for the most
simple simulation setups, where only minimal IO had to be performed. However, for
meaningful simulations it usually is necessary to load a mesh that describes a more
complicated geometry. Thus, after resolving the fundamental performance issues to
this point, we are now able to move on to those more involved setups.

36 H. Klimach et al.

2.3 Porting of the IO

Most simulations require the loading of meshes to describe the geometrical setup of
the computation and the boundary conditions. As it turned out, the loading of meshes
in Musubi was awfully slow and took in serial several minutes for a small mesh file
of 32 MB. For the reading of meshes Fortran direct IO was used, which in itself
so far did never pose a problem. Some further investigation revealed that the old
sxf90 compiler was around 400 times faster with the same reading task as the sxf03
compiler. The explanation for this can be found in the buffering mechanism for the
IO. Due to the nature of the mesh data, each read only loads 8 Bytes of data. However,
the system reads 4 MB at once. The sxf90 compiler recognizes the consecutive reads
and reuses the loaded 4 MB, while the new sxf03 compiler seems to not recognize
it and reads the 4 for every read, resulting in the huge observed overhead. This will
probably be fixed in a later release of the compiler. However, the schedule for this is
not fixed yet.

To overcome this issue we now make use of MPI-IO for the reading of all data.
Most IO operations already made use of MPI-IO beforehand, but for the simple
reading this was not considered necessary up to now. After implementing the mesh
reading also via MPI-IO, the loading time for meshes was also cut down with the
sxf03 compiler.

2.4 Porting of Boundary Conditions

Related to the usage of more complicated meshes is also the treatment of boundary
conditions. Indeed, after resolving the issues in the initialization and loading of the
mesh, the major performance hurdle was encountered in the boundary conditions. The
boundary conditions use conditionals to decide what to do in a loop over boundary
lattices. As this is only badly vectorizable an alternative implementation has been
put into place. To allow for a vectorization also in the boundary treatment some
additional memory is introduced to maintain lists of lattices with the same boundary
condition. This enables the vectorized processing of each boundary condition and
finally yields an implementation that is capable of running non-trivial simulation
setups with a high sustained performance on the NEC SX-ACE system.

2.5 Parallel Performance

As shown, we were able to port Musubi to the NEC SX-ACE system with relatively
little effort. Missing now is the parallel performance of Musubi on the system. The
NEC SX-ACE provides 4 cores per node and we employ a MPI parallelization
strategy to utilize the parallelism offered by the system. For the scaling analysis we

APES on SX-ACE 37

103 104 10 5 10 6 107

0

50

100

150

200

250

300

Elements perNode

Pe
rf

or
m

an
ce

in
 M

L
U
Ps

 p
er

 N
od

e

1 node
2 nodes
4 nodes
8 nodes
16nodes
32 nodes
64nodes
128 nodes
256 nodes
512 nodes

Fig. 1 Performance map of Musubi on the Tohoku NEC SX-ACE installation with up to 512 nodes
(2048 MPI processes)

are using the machine of the Tohoku University in Sendai, where up to 512 nodes
can be used in a parallel computation job.

To assess the parallel performance of Musubi, we use a performance map, which
shows the performance per node over the problem size per node for various node
counts. This graph is shown in Fig. 1. As a measure for the performance we use
million lattice updates per second (MLUPs), which can also be translated into floating
point operations per second. It shows a strong dependency of the performance on the
problem size. For small problem sizes the performance gets diminished.

The performance map in Fig. 1 provides a full picture of the performance behavior
of Musubi. We can extract the weak scaling for given problem sizes per node out of it
by comparing the vertical distance between the lines for different node counts. And
the strong scaling can be seen by starting on the right for a single node and moving
to the left for larger and larger node counts. Thus, we recognize that weak scaling
appears to rather poor, but still reasonable, while strong scaling always suffers from
the strong dependency of the performance on the problem size.

Figure 2 shows the parallel efficiency when doing a weak scaling with 4 million
elements per node. As can be seen the parallel efficiency drops immediately when
the network is utilized (step from 1 node to 2 nodes). However, overall the drop
in performance is moderate and on 512 nodes a parallel efficiency around 70 % is
achieved.

A more concerning behavior is observed with respect to the performance in
dependency on the problem size. Even on a single node with 4 MPI processes the

38 H. Klimach et al.

Fig. 2 Weak scaling
efficiency for 4 million
elements per node

100 101 10 2
0

0.2

0.4

0.6

0.8

1

number of nodes

pa
ra

lle
l

ef
fic

ie
nc

y

Fig. 3 Communication time
in relation to the overall
running time for increasing
problem sizes on a single
node (4 MPI processes)

104 105 106 107
0

10

20

30

40

Problemsize

C
om

m
un

ic
at

io
n

T
im

e
in

 %

performance drops drastically for small problem sizes. This is not observed for serial
runs and we can trace this drop in performance back to the communication over-
head. Figure 3 illustrates the communication overhead on a single node with 4 MPI
processes. For the smallest problem of only 4096 elements we observe a communi-
cation time of around 44 % of the overall running time. This large fraction of time
for the communication only slowly decreases for larger problems, which results in
the bad parallel performance for a wide range of problem sizes per node.

This high communication cost is probably due to a flushing of the ADB, which
becomes necessary for the MPI communication. For small problems the data from
the ADB is relatively large and the costs for purging it in the communication calls
get the dominating factor for the running time.

APES on SX-ACE 39

Unfortunately we are currently stuck with this situation as all attempts to over-
come this performance bottleneck failed so far. One hope would be to avoid MPI
communication by utilizing OpenMP parallelism within each node. However, the
current sxf03 compiler seems to deactivate most vectorization as soon as OpenMP
is activated, resulting in a poor performance in comparison to the MPI-only imple-
mentation even with the shown communication overheads. Another hope to speed
the communication up was the utilization of global memory, which is available via
the MPI_alloc_mem call of MPI. Incorporating this special memory did also not yield
any benefit.

Despite the relatively poor scaling behavior due to these issues, the execution
on the NEC SX-ACE compares quite well with more common large scale high
performance computing systems because of the high sustained performance of nearly
30 % of the peak performance on a single node. This is illustrated in the comparison
Fig. 4 by showing the sustained performance over the theoretical peak performance
of utilized machine fractions in a strong scaling setup for more than 16 million
elements. The comparison was done on the german systems:

• Kabuki: a small installation of NEC SX-ACE at the HLRS Stuttgart.
• Hornet: a Cray XC40 system with Intel Xeon E5-2680 v3 processors at the HLRS.
• SuperMUC: a Lenovo NeXtScale nx360M5 WCT system with Intel Xeon E5-2697

v3 processors located at the LRZ in Munich.
• Juqueen: a IBM BlueGene/Q system at the FZJ in Jülich.

As can be seen in Fig. 4, the scaling is on the NEC SX-ACE system Kabuki not
as good as on the other many-core systems. However, due to the higher sustained

10−1 10 0 101 10 2 10 3 10 4

10−1

10 0

101

Peak Performance of Machine Fraction in TFLOPs

A
ch

ie
ve

d
T

FL
O
Ps

Kabuki
Hornet

SuperMUC
Juqueen

Fig. 4 Comparison of achieved performance by Musubi on different machines

40 H. Klimach et al.

performance the other systems need to utilize a much larger peak performance
to obtain the same performance. Thus, even with the observed bad scaling at the
moment, the NEC SX-ACE system appears to be an attractive execution option for a
wide range of simulation setups. Especially, when considering the power consump-
tion for a given simulation with Musubi, the NEC SX-ACE system shows a large
advantage over the other high performance computing systems.

3 Some Notes on the Porting of Ateles

In contrast to Musubi, Ateles is not so straight forward to port to the vector system.
The computational load is spread across multiple kernels and the data organization is
more involved. Nevertheless, we hope to utilize the NEC SX-ACE system also with
this solver and its porting is ongoing work. Though the work is not yet complete we
want to share some first experiences with this Discontinuous Galerkin solver on the
NEC SX-ACE.

Ateles implements a high order Discontinuous Galerkin scheme with many
degrees of freedom per element. While the elements are unstructured like in Musubi,
the internal organization of degrees of freedom in each element is highly regular.
Our hope, therefore, is to allow a vectorized processing of the data within elements.

As a large part of the code is shared with Musubi, the initial porting without opti-
mizations did not yield big surprises, and a first measurement could be done for a
discretization of 128th order. This revealed multiple routines with significant contri-
butions to the compute time. The three most expensive routines used respectively 32,
22 and 13 % of the compute time. For this high order, a good average vector length
of 254 was achieved. However, the vector operation ratio only reached 11 % in the
most expensive routine. Upon investigation, we found that a major problem in the
code are again smaller loops that are put inside longer loops. Mostly these issues can
be overcome by loop exchanges.

At first our attempts to remedy these problems with short loops did not yield the
benefits, we would hope for. For a much smaller problem with only 16th order in the
discretization scheme, the vectorization ratio only increased from 14.5 to 38 % with
an average vector length of 140. A surprising discovery here was that vectorization
seemed to be limited because of the size of source file. Splitting the Fortran module
and using a smaller source file yielded a vectorization ratio of 99 %. This appears to
be a compiler shortcoming and hopefully will be fixed in future revisions of the new
compiler.

A compiler problem also seems to prohibit further vectorization of the next most
important routine. This routine contains a loop, which is only partially vectorized in
the new compiler, but in the old sxf90 compiler this loop gets fully vectorized. Thus,
the performance porting of Ateles on the NEC SX-ACE seems to be more demanding
for the vectorizing compiler and for further improvements we are looking forward
to new compiler releases.

APES on SX-ACE 41

4 Summary

The porting effort of the APES solvers to the NEC SX-ACE proofed to be surpris-
ingly smooth. For the Lattice-Boltzmann implementation in Musubi a high sustained
performance of around 30 % on a single node was achieved. It has been shown that
for real simulations not only the kernel needs to perform well, but also bottlenecks in
the supporting infrastructure need to be overcome to allow actual simulations with
complex setup. We have explained which roadblocks we encountered for the com-
plete porting of Musubi and how they have overcome. The parallel performance has
been investigated and a problem with the MPI communication was uncovered. This
scalability issue remains the major shortcoming of the NEC SX-ACE for Musubi.
However, despite the limited scalability, the system offers an attractive alternative to
other systems due to the high sustained performance.

For the Discontinuous Galerkin solver only very first experiences could be shared,
as the performance optimization got stuck early on due to a shortcoming of the
current compiler version. Work on further improvements for Ateles are ongoing and
we hope to be able to utilize the vectorization for the high order discretization with
future compiler versions.

Acknowledgements We would like to thank Holger Berger from NEC for his ongoing kind support.
This work would not have been possible without the possibility to use the NEC SX-ACE system
at the Cyberscience Center, Tohoku University in Sendai and we are deeply grateful to Ryusuke
Egawa to provide us with access to the system and Kazuhiko Komatsu for his support in running the
jobs on the system. We also thank Uwe Küster for insightful discussions and the possibility to make
use of the SX-ACE testsystem Kabuki at the HLRS in Stuttgart. Finally, we thank the Gauss-Center
for supercomputing for providing the computing resources on Hornet, SuperMUC and Juqueen.

References

1. Roller, S., et al.: An adaptable simulation framework based on a linearized octree. In: Resch,
M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S. (eds.) High Performance Computing
on Vector Systems 2011. Springer, Heidelberg (2011)

2. Hasert, M., et al.: Complex fluid simulations with the parallel tree-based lattice Boltzmann
solver Musubi. J. Comp. Sci. 5, 784–794 (2014)

3. Zudrop J., et al.: A fully distributed CFD framework for massively parallel systems. In: Cray
User Group 2012. Stuttgart (2012)

4. Klimach, H., et al.: Distributed octree mesh infrastructure for flow simulations. In: Eberhard-
steiner, J. (ed.) Eccomas 2012 - European Congress on Computational Methods in Applied
Sciences and Engineering, e-Book Full Papers. Vienna (2012)

Dealing with Non-linear Terms in a Modal
High-Order Discontinuous Galerkin Method

Nikhil Anand, Harald Klimach and Sabine Roller

Abstract The Discontinuous Galerkin (DG) method utilizes a mesh of elements
with local functions like traditional continuous finite element methods, together with
a flux approximation between elements like finite volumemethods. This combination
yields a high locality of the overall scheme, especially for high-order representations
within elements. Two local operations need to bemainly considered. One is the appli-
cation of the mass matrix and the other is the stiffness matrix. With an appropriate
orthogonal basis as choice for the local functions both operations can be computed
with minimal complexity. In this contribution we are concerned with a DG imple-
mentation that makes use of a Legendre polynomial basis with an application to
non-linear equation systems. For non-linear systems a complication is introduced by
the scheme by the necessity to compute the non-linear flux operation, which gener-
ally can not be done in the optimal modal basis. Instead, a pointwise evaluation of
the non-linear operations is usually performed. Combining the fast evaluation of the
integrals in the modal scheme with the pointwise evaluation of the non-linear terms
requires a transformation between these two. Many methods have been developed
for a fast transformation from Legendre modes to nodal values [1]. However, most
of those methods for fast polynomial transformations are designed for extremely
high polynomial degrees in the range of several hundreds. In three-dimensional DG
simulations the polynomial degree in each dimension is more limited, and we are
looking for methods that are fast but suitable for polynomials in the range up to a
maximal degree of one hundred. We discuss some approaches to the fast transfor-
mation, especially the method proposed by Alpert and Rokhlin [2], and compare our
implementation of this method to a straight forward L2 projection. The implemen-
tation specifically addresses also the hybrid parallelism with MPI and OpenMP for
the three-dimensional DG elements.

N. Anand (B) · H. Klimach · S. Roller
University of Siegen, 57076 Siegen, Germany
e-mail: nikhil.anand@uni-siegen.de

H. Klimach
e-mail: harald.klimach@uni-siegen.de

S. Roller
e-mail: sabine.roller@uni-siegen.de

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_5

43

44 N. Anand et al.

1 Introduction

High-order methods for CFD applications have gained popularity in the research
community in the last decades. They have the potential to provide not only high
accuracy but also efficient numerical solutions to the problems when compared to
lower order methods, as the approximation error decreases exponentially with the
order for smooth solutions. However, classical spectral methods suffer from limita-
tions to simple periodic domains and a global support. Their deployment on parallel
distributed systems for complex setups is usually limited in scalability.

The Discontinuous Galerkin (DG) method builds a class of schemes, that enable
high-order discretizations of conservation laws. It shares many of the advantages of
high-order spectral methods but overcomes its limitation of global ansatz functions
byweakly coupled, element local functions. DGmethods, due to this locality, provide
a path towards massive parallelism with high-order on distributed systems. Within
elements sharedmemory parallelism can be employed for the local operations, which
allows the numerical scheme to match the typical hierarchy of modern computing
systems.

Using an appropriate basis for the element local functions, linear operations can be
efficiently computed with optimal computational complexity. For example, Legen-
dre polynomials with their orthogonal basis and recursive definition results in a
trivially invertable diagonal mass matrix and allows for a stiffness matrix that can be
applied with optimal computational effortO(p3) for three dimensional elements and
a scheme order of p. Although an appropriate nodal basis also allows for an efficient
computation of the mass matrix, the same can not be achieved for the stiffness matrix
at the same time. With some restrictions the computational cost can be limited to
O(p4) operations in this case.

We also make use of cubical elements, which offer optimal properties for the
DG scheme. The elements are organized in an Octree that enables together with a
space-filling curve ordering an efficient partitioning and neighbor identification on
distributed parallel systems. By restricting to hexahedral meshes in combinationwith
orthogonal basis functions, we optimize the tensor-product nature in multiple dimen-
sions. This enables us to use a dim-by-dim approach with minimal computational
effort.

Though, linear equations can be efficiently computed with no added complex-
ity when the appropriate basis is used, non-linear equations can generally not be
treated so easily anymore. For example for nonlinear operations occurring in initial
conditions, boundary conditions, source terms or non-linear fluxes, a transforma-
tion of the Legendre modes to pointwise representation needs to be performed. This
forces us to look for algorithms that offer fast transformations. To allow an in-place
transformation, we use the same number of points and modal coefficients. The naive
evaluation of the polynomials at each of these pointswould result inO(p6) operations
in three dimensions, which clearly is not an option for high-order approximations.
By employing the dim-by-dim method, the cost for this can be reduced to O(p4).
However, there are fast algorithms that achieve the transformation in O(p3log(p))

Dealing with Non-linear Terms in a Modal High-Order … 45

operations theoretically. Unfortunately, many methods for fast polynomial trans-
formations are designed for extremely high degrees and often do not exhibit their
asymptotically fast behavior for low polynomial degrees like the ones used in three
dimensional DG simulations. In the next paragraph, we briefly discuss some of these
algorithms which we implemented in our highly parallel framework.

The Fast Polynomial Transformation (FPT) described by Alpert and Rhoklin is
based on a fast approximative transformation of Legendre modes to Chebyshev poly-
nomials [2], followed by a Fast Fourier Transformation. Another method involves
the use of a Fast Multipole Method for a direct transformation of Legendre poly-
nomials to Legendre nodes, developed by Suda [3]. This involves one algorithmic
step less than the FPT. Both these method offer O(p3log(p)) complexity for the
transformation.

This paper is organized as follows: First, we briefly review the Discontinuous
Galerkin discretization in Sect. 2. Thenwe highlight the choice of basis for ansatz and
test function definition in Sect. 3. After that we introduce the projection algorithms
and the underlying ideas in Sect. 4, followed by some strategies for hybrid parallelism
using MPI and OpenMP in Sect. 5. Finally Sect. 6 presents the comparison and
analysis of different projection algorithms used in this work.

2 The High Order Discontinuous Galerkin Method

In this section, we briefly introduce the semi-discrete form of the Discontinuous
Galerkin Finite Element Method (DG) for compressible inviscid flows. The com-
pressible Euler equations are the non-linear system of equations describing such
flows with the conservation of mass, momentum and energy given by

∂tu + ∇ · F(u) = 0, (1)

equipped with suitable initial and boundary conditions. Here u is a vector of conserv-
ative variables and the flux function F(u) = (f(u), g(u))T for two spatial dimensions
is given by

u =

⎡
⎢⎢⎣

ρ

ρu
ρv
ρE

⎤
⎥⎥⎦ , f(u) =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
(ρE + p)u

⎤
⎥⎥⎦ , g(u) =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
(ρE + p)v

⎤
⎥⎥⎦ ,

where ρ, v = (u, v)T , E, p denotes the density, velocity vector, specific total energy
and pressure respectively. The system is closed by the quation of state assuming the
fluidobeys the ideal gas lawwithpressure defined as p = (γ − 1)ρ

(
e − 1

2 (u
2 + v2)

)
.

where γ = cp
cv
is the ratio of specific heat capacities and e is the total internal energy

per unit mass.

46 N. Anand et al.

The Discontinuous Galerkin formulation of the above equation is obtained by
multiplying it with a test functionψ and integrating it over the domainΩ . Thereafter,
integration by parts is used to obtain the following weak formulation

∫
Ω

ψ
∂u
∂t

dΩ +
∮

∂Ω

ψF(u) · nds −
∫

Ω

∇ψ · F(u)dΩ = 0, ∀ψ, (2)

where ds denotes the surface integral. A discrete analogue of the above equation is
obtained by considering a tessellation of the domainΩ inton closed, non-overlapping
elements given by T = {Ωi |i = 1, 2, . . . , n}, such thatΩ = ∪n

i=1Ωi andΩi ∩ Ω j =
∅∀i �= j . We define a finite element space consisting of discontinuous polynomial
functions of degree m ≥ 0 given by

Pm = { f ∈ [L2(Ω)]m}. (3)

With the above definition we can write the approximate solution uh(x, t)within each
element using a polynomial function of degree m

uh(x, t) =
m∑
i=1

ûiφi , ψh(x) =
m∑
i=1

v̂iφi , (4)

where the expansion coefficients ûi and v̂i denote the degrees of freedom of the
approximation of solution and of test function respectively. Notice, that there is no
global continuity requirement for uh and ψh in the previous definition. Splitting the
integrals in Eq. (2) into a sum of integrals over elements Ωi , we obtain the space-
discrete variational formulation

n∑
i=1

∂

∂t

∫
Ωi

ψhuhdΩ +
∮
∂Ωi

ψhF(uh) · nds −
∫
Ωi

∇ψh · F(uh)dΩ = 0, ∀ψh ,

(5)
Due to element local support of the numerical representation, the flux term is not
uniquely defined at the element interfaces. The flux function is, therefore, replaced
by a numerical flux function F∗(u−

h ,u+
h ,n)where u−

h , u
+
h are the interior and exterior

traces at the element face in the direction n normal to the interface.
For simplicity we can re-write the equation above in matrix vector notation and

obtain
∂

∂t
û = M−1 (

S · F(û) − MF · F(û)
) =: rhs(û). (6)

where M ,S denote the mass and the stiffness matrices and MF are so called face
mass lumping matrices. The above obtained ordinary differential equation (6) can be
solved in time using any standard timestepping method, e.g. a Runge-Kutta method.

Dealing with Non-linear Terms in a Modal High-Order … 47

3 Choice of Basis Function

An important part of the DG formulation is the choice of the ansatz functions φ to
represent the approximated solution uh and test function ψ in (4). Typical choices
are polynomials. This section briefly highlights the choice of the polynomial basis
which allows for faster evaluation of integrals in (5). From theoritical point of view the
choice of the polynomial basis is arbitrary, however, the computational effort required
to evaluate the volume and surface integral term in (5) can differ based on this choice.
For example, the mass matrix term

∫
Ωi

ψhuhdΩ can be cheaply computed when an
orthogonal basis is choosen for both uh andψh . Legendre polynomials are orthogonal
with the L2 inner product in the interval −1 to 1. Unluckily, this orthogonality is
lost for the stiffness matrix term

∫
Ωi

∇ψ · F(uh)dΩ since derivatives of Legendre
polynomials do not simply reduce to another orthogonal basis. If the fluxes have
non-linear dependence on the state (like the fluxes in the Euler equations), then this
orthogonality is also lost for the surface integral term

∮
∂Ωi

ψF(uh) · nds. For this
reason, the nodal polynomial basis like Lagrange polynomials are quite common, as
the coefficients can be directly identified as point values thereby allowing pointwise
evaluation. The DG scheme emerging from using this type of basis are classified as
nodal DG.

However, the evaluation of gradient is not cheap for Lagrange polynomials and
when used naively the computational cost falls in the order of O(p6). With some
restrictions, it can be limited to O(p4) operations in our case. However, for cubical
domains a more efficient basis could be found which allows fast evaluation of both
mass and stiffness matrix at the same time. For this we use Legendre polynomials,
which is a special type of Jacobi polynomials, following a three term recursion. Being
orthogonal it can cheaply evaluate the mass matrix and the recursion definition helps
to assemble the stiffness matrix in O(p3). The DG scheme based on these kind of
basis functions for approximation are known as modal DG. Apart from this, modal
DG has also other cheaper and efficient means when it comes to dealing with aliasing
errors, filtering and stabilization techniques or fast projection of solution onto faces
etc. We skip further details as it is not in the scope of this paper.

4 The Projection Algorithms

The Legendre polynomial series does not have a fast transform associated with it
like a Chebyshev expansion. Therefore, a p + 1-th order Legendre expansion would
normally requireO(p2) operations to evaluate point values at p nodes.Withmultiple
dimensions this high computational cost gets significant even for low orders, as the
polynomials in all directions need to be considered, resulting in O(p2d) operations
for d dimensions. With a tensor product formulation on cubical elements, a dim-by-
dim algorithm can be deployed and the number of iterations reduced toO(d · pd−1 ·
p2) = O(pd+1). Without loss of generality, but for readability, we restrict ourselves

48 N. Anand et al.

to a single dimension here. Next, we give a formal definition of the problem of
polynomial projection and then go on describing the algorithms we use along with
relevant implementation details in the subsequent subsections.

Given is a function f : [−1, 1] → R expressed by an n term finite Legendre
expansion of the form

f (t) =
n−1∑
i=0

ûi · Li (t). (7)

We want to convert this expansion to n nodal point values of f evaluated at the
points t1, t2, . . . , tn . Similarly, for the inverse operation, given tabulated values of
function f : [−1, 1] → R at n nodes t1, t2, . . . , tn wewant to evaluate the coefficients
û0, û1, . . . , ûn−1 such that

f (t j) =
n−1∑
i=0

ûi · Li (t j) (8)

holds. These transformations in the above noted general formulation require O(n2)
operations. For a polynomial representation in 3D the number of operations required
for this transformation would be proportional to n6. Thus, a naive implementation
of the general transformation is prohibitively expensive even for moderately large
polynomial degrees n. This creates the need to look for an efficient way to transform
modal expansions to point values and back in order to retain high performance for
higher order.

Alpert and Rokhlin presented a fast and stable algorithm for fast transformations
of Legendre polynomials [2]. Various alternatives and extensions were proposed
since then e.g [1, 3]. A detailed analysis of fast polynomial transformations can
be found in [4]. Figure 1 shows some existing fast algorithms that can deliver fast
transformation from modal coefficients to point values and back. The solid line in
the figure higlights the transformation algorithm we implemented tailored to fit our
highly parallel framework. In the following subsections we briefly discuss the pro-
jection algorithms and its implementation details. Then we compare the algorithms
and analyse them.

4.1 Direct L2 Projection

The direct, but expensive transformation between the nodal and modal basis is the
L2 projection, which refer to as L2P in this paper. Mathematically, the L2 projection
fh , for Legendre expansion f of the form (7) projected onto any arbitrary function
space θ ∈ L2(Ω) is given by

〈 fh − f, v〉L2(Ω) = 0 ∀v ∈ θ, (9)

Dealing with Non-linear Terms in a Modal High-Order … 49

Legendre
Chebyshev

nodes
Legendre

nodes

Chebyshev

Tygert, Suda

[p log (p)]

Al
pe

rt,
 R

ok
hl

in

Fast C
osine Transform

Potts et al.

[p
]

[p log (p)]
[p log2 (p)]

Fig. 1 This figure shows some of the available fast algorithms for converting Legengre coefficients
to point values along with their expected computational complexity for transformation in single
dimension marked in red. Solid arrows highlight the algorithms we used in this work

or equivalently

〈 fh, v〉L2(Ω) = 〈 f, v〉L2(Ω) ∀v ∈ θ. (10)

Then, for each element the discrete counterpart of this system can be stated as

Mx = b, (11)

where components of matrix Mi, j = 〈ν j , νi 〉, {νi } being basis of space θ , x is the
vector containing degrees of freedom of fh = ∑

i xiνi and components of bi is given
by bi = 〈 f, ν〉.

By choosing the Lagrange polynomials as target space, this approach be be used
to transform the represenation from Legendre modes to Legendre nodes and back.
For an accurate mapping and to allow in-place transformation, we use as many
points as modal coefficients. As can be easily seen from the matrix formulation
the costs of this transformation grows quadratically with the number of degrees
of freedoms. Furthermore, the costs increase also with the dimensionality of the
polynomial. For example, a three dimensional p-th order element has p3 coefficients
for each variable. Evaluating it at all the p3 nodes would take p6 operations, which
would quickly get prohibitive expensive for higher orders. However, tensor product
basis functions and cubical elements help us to reduce the problem formulation to
multiple one dimensional operations, which in general is not possible for non tensor-
product elements like tetrahedral elements.

50 N. Anand et al.

Considering directions k ∈ {1, 2, 3} for 3 dimensions and order p representation
in an element Ωi we can define the spatial ansatz function as a product of ansatz
function in one dimension by

φl(x) = φl(x1, x2, x3) = φl1(x1) · φl2(x2) · φl3(x3)

l = 1 + l1 + l2 · p + l3 · p2
1 ≤ l1, l2, l3 ≤ p3

Using this, the terms of the form 〈φa(x), φb(x)〉 can be broken down into

〈φa(x), φb(x)〉 =
3∏

k=1

〈φak (xk), φbk (xk)〉 ,

From computational point of view, this makes the transformation applicable for
dimension by dimension. Exploiting this we are able to reduce the complexity of the
L2 projection down to O(p4) in three dimension.

4.2 Fast Polynomial Transformation

The FPT algorithm by Alpert and Rokhlin [2] is based on the idea to exploit the
already known fast transformation for Chebyshev polynomials in the form of the fast
cosine transform. As we are looking for the transformation of a Legendre expansion
(7), themissing component is a fast transformation betweenLegendre andChebyshev
coefficients. In this section we describe the basic concept and implementation for
this fast polynomial transformation, which we refer to as FPT.

Assuming, a function can be described by a finite Legendre expansion as given
in (7) it then can also be described by a finite Chebyshev expansion of the form

f (x) =
n−1∑
i=0

ûci · Ti (x) (12)

where Ti (x) is the i-th Chebyshev polynomial. The coefficients ûli and ûci are then
related by the equation

ûc = M · ûl (13)

where, ûc = (ûc0, û
c
1, . . . , û

c
n−1) and ûl = (ûl0, û

l
1, . . . , û

l
n−1). Also, conversely, if f

is a function defined as the Chebyshev expansion in (12) then it can be expressed as
the Legendre expansion of the form (7), with the coefficients ûl given by

ûl = L · ûl (14)

Dealing with Non-linear Terms in a Modal High-Order … 51

Alpert and Rokhlin showed that the entries of matrices M and L can be expressed
by meromorphic functions of the matrix indices and have the following structure:

Mi, j =

⎧⎪⎨
⎪⎩

1
π
Λ

(
j/2

)
if 0 = i ≤ j < g + 1 and j is even

2
π
Λ

(j−i
2

)
Λ

(j+i
2

)
if 0 < i ≤ j < g + 1 and j + i is even

0 otherwise

(15a)

Li, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if i = j = 0√
π/

(
2Λ(i)

)
if 0 < i = j < g + 1

− j (i+1/2)
(j+i+1)(j−i)Λ

(j−i−2
2

)
Λ

(j+i−1
2

)
if 0 ≤ i < j < g + 1 and i + j is even

0 otherwise
(15b)

The function Λ : C → C is defined by Λ(z) = Γ (z + 1/2)/Γ (z + 1). Therefore,
blocks in the matrices can be approximated cheaply by e.g. a Taylor series expansion
using only a few coefficients. The farther away the blocks from the diagonal, the less
accurate their approximation needs to be. Thus, approximation costs can drop with
distances to the diagonal. For further details and analysis we refer to [2] The matrices
M and L are subdivided into entries close to the diagonal, triangle submatrices and
blocks. Diagonals and triangles are evaluated directly, while for the blocks only an
approximation is used. The block-size grows with the distance from the diagonal. A
sketch of this decomposition of the matrices is given in Fig. 2.

Due to the fact that the number of rows scales proportional to p and the number
of blocks scale as O(log(p)), the computational complexity of the algorithm is
O(p log(p)) as a constant effort for all blocks is used no matter their size.

Also, this algorithm is more stable than the direct L2 projection as the scheme
does not give rounding errors when the points are located close to the boundary of
the reference element.

4.3 Spherical Harmonic Transform Using Fast Multipole
Method

Spherical harmonics are set of spatial functions forming orthogonal system defined
on the surface of a sphere. Several transformation exist for performing spherical
harmonic transforms [5–7]. Suda proposes a fast transformation algorithm for the
same using the Fast Multipole Method (FMM) [7, 8]. In this section we describe the
basic idea of algorithm proposed by Suda.

Spherical harmonic can be expressed as product of an associated Legengre func-
tion and a trigonometric function. This way, the spherical harmonic transform breaks
down into successive evaluation of an associated Legendre transform and an inverse

52 N. Anand et al.

Fig. 2 Subdivision of
matrices M and L . Entries
close to the diagonal are
directly applied while the
blocks further away are
approximated using a Taylor
series expansion. The
triangles are also computed
directly, just like the
diagonals

Remainder

Add. 1 Block

5 Blocks in total (nBlocks)

Adapter Approximated

fourier transform. Fast algorithm for the latter already exists, so it is sufficient to
accelerate the associated Legendre transform for fast spherical harmonic transform.
Suda [7] uses polynomial interpolation to evaluate associated Legendre transform
and accelerates the polynomial interpolation using Fast Multipole Method (FMM).
For detailed algorithm we refer to [7].

A spherical Harmonic function Y k
j (λ, μ) can be represented as a product of an

associated Legendre function and a trigonometric function as

Y k
j (λ, μ) = Lk

j (μ)eikλ (16)

where μ and λ are spherical angular coordinates. Lk
j is the associated Legendre

function of degree j and order k. The evaluation of the spherical harmonic expression

g(λ, μ) =
p+1∑
k=1

p+1∑
j=k

gkj Y
k
j (λ, μ) (17)

can also be split into an associated Legendre function transform and a Fourier trans-
form as

Dealing with Non-linear Terms in a Modal High-Order … 53

gk(μ) =
p+1∑
j=k

gkj L
k
j (μ), (18)

g(λ, μ) =
p+1∑
k=1

gk(μ)eikλ (19)

The inverse spherical harmonic transform involves the computation of g(λr , μs) from
the input coefficients gkj , while the spherical harmonic transform is the computation
of gkj from sampled values from g(λr , μs). For the so-called alias free condition, the
indices are restricted in the following way

{r ∈ (1, R), s ∈ (1, S); R ≥ 3p + 1, S ≥ 3p + 1

2
}. (20)

Thus the inverse transform consists of associated Legendre function transform (18)
and Fourier transform (19). The Fast Fourier Transform already enables (19) to
be computed optimally in O(p log(p)). Thus accelerating the associated Legen-
dre function transform is sufficient enough to reduce the complexity of the whole
transformation. Suda proposes an algorithm based on this idea, and the computa-
tional complexity of the whole transformation is O(p log(p)) for 1D. There is also
a set of routines publicly available as a C library to perform these transformations
[9]. We integrated the FXTPACK routines into our program and use it to perform
transformations.

5 Hybrid Parallelization of the Projection Algorithms

As we discussed earlier, a high locality coming from loosely coupled elements in
DG is key to good scalability on distributed systems. Also, the workload per element
gets high with increasing order. For example, for p-th order scheme there are p3

unknows per variable per element. However, this workload can not be distributed
among different processes efficiently, as access pattern within an element is quite
random and tightly coupled. However, with shared memory parallelization of oper-
ations within each element the scalability can be increased, especially for high order
discretizations. So, the elements can be distributed among the processes and within
elements shared memory parallelism can be deployed. Using this technique, its pos-
sible to scale down to one element per node. We used OpenMP to parallelise the L2P
projection algorithm. We present and discuss the results for hybrid parallelization in
Sect. 6.

54 N. Anand et al.

6 Comparison of Different Algorithms

In this section we discuss the comparison of different transformation algorithms,
highlighting the expected and achieved performances. Then we go on presenting
some results on the hybrid parallelization as discussed in Sect. 5. Finally, we briefly
analyse the performance behavior with respect to vectorization and OpenMP.

As a testcase we use the compressible Euler equation in 3D to simulate the flow
of a fluid in a simple cubic domain with periodic boundaries. For time stepping, we
use 4-step explicit Runge-Kutta (RK4) method. Because of the non-linear flux term
the computation requires the conversion from modal to nodal coefficients and back
in the otherwise modal scheme. With explicit RK4 time stepping, it needs to do this
transformation 4 times for each single time step iteration and for each conservative
variable (a total of 5 conservative variables).

To measure the performance, we consider the whole computation loop. There are,
of course, several other operations apart from polynomial transformations contribut-
ing to the overall performance. However, for sufficiently high orders the transfor-
mations are the most significant factor. And also for the overall behavior, which is
in the end the relevant measure, the impact of the transformation performance can
be observed. With all other simulation parameters remaining the same, we believe
the overall performance is a valid indication for a comparison between the differ-
ent transformation algorithms in the actual simulation setup. We use the measure
of thousand degree of freedom updates per second (KDUPS) for the performance
assessment. A degree of freedom update refers to the time taken to update a single
degree of freedom from one timestep to the next. Larger KDUPS imply better perfor-
mance and vice versa. Also notice that the performance attained includes effects of
the implementation and the computing hardware, such as caching or vectorization.

In Fig. 3 we plot the performance of the different transformation algorithms. First
in Fig. 3a we measure the performance on our small development platform, which
uses intel Xeon X5650 (Westmere) processors. The performance index KDUPS is
plotted against the increasing order on the horizontal axis. The overall problem size
is kept nearly constant around 80million degrees of freedom per variable. Thus, with
an increasing order the mesh resolution gets coarser to maintain the overall problem
size (or total number of degrees of freedom). The peak in the low order range shows
a caching effect, where a single elements can be kept completely in the cache. There,
the computation is faster as it benefits of the data locality for all operations inside
the element. For higher orders this effect gets lost as data needs to be fetched from
memory even for element local operations. The performance flattens out. On this
machineweobserve that that after the 8th order the performance of FPT is betterwhen
compared to others, even though the asymptotic fast regime seems to be achieved only
for very high orders. At an order of 256 we observe a small dip in the performance of
the FPT, but apart from that the FPT always appears to be the fastest option. Running
exactly the same setup on an Intel Xeon E5-2680v3 (Haswell) processor, we observe
a different behavior. While the performance for all transformation methods improves
due to the faster processor, we can also observe a speed-up for L2P, which becomes

Dealing with Non-linear Terms in a Modal High-Order … 55

21 22 23 24 25 26 27 2 8 29
0

100

200

300

400

500

600

700

800

900

1,000

Order

K
D
U
P
S

fpt
fxt
l2p
1

log(p)
1
p

(a) Comparison of projetion algorithms on intel Xeon X5650 (Westmere) processor

20 21 22 23 24 25 26 27 28 29

200

400

600

800

1,000

1,200

1,400

Order

K
D
U
P
S

fpt
fxt
l2p
1

log(p)
1
p

(b) Comparison of projetion algorithms on Intel Xeon E5-2680v3 (Haswell) processor

Fig. 3 Performancemeasure of the transformation algorithms. L2Pdenotes the direct L2 projection,
FPT is the fast polynomial transformation and FXT is the spherical harmonic transform of the
FXTPACK library

56 N. Anand et al.

comparable to the performance of the FPT. This benefit is likely due to the well
vectorizable parts of the L2P algorithm, which is of increased importance on the
newer processor. At the same time, the FXT implementation can not profit from the
improved performance on the newer processor, which is probably due to the irregular
memory access patterns in the FMM.

We observe the direct L2 projection with the dim-by-dim optimization yields a
peformance equivalent to the FPT up to scheme orders as high as 400. Though,
the FPT should asymptotically provide a computational complexity of p3 logp and
the L2P of p4. These operation estimations correspond to a line following 1

logp and
1
p respectively. The expected asymptotic behaviors are included in the figures for
reference. As we can see, it is hard for the fast algorithms to compete with the
simple direct transformation, which just inflicts a matrix-vector product that can be
computed very efficiently.

Aswementioned inSect. 5, theDGschemecan exploit sharedmemoryparallelism
for higher orders as the number of degrees of freedom within an element increases
and with them the data parallelism. Due to its simplicity, it is possible to trivially
parallelize the matrix vector multiplications in the L2P. Fig. 4 shows the intra-node
performance with OpenMP and MPI.

Plotted is the performance for various combinations of MPI processes and
OpenMP thread counts on a single node of Hazel Hen. The problem size (approx. 800
million degrees of freedom) is kept constant for all the runs. Thus with an increasing
spatial scheme order along the X-axis, the total number of elements in the mesh

21 22 23 24 25 26 27 28
0

2

4

6

8

10

12

14

16

18

20

22

24

·103

Order

K
D
U
P
S

PureMPI(24 Procs)
12Procs2Threads
8Procs3Threads
6Procs4Threads
4Procs6Threads
2Procs12Threads
1Procs24Threads

Fig. 4 OpenMP performance of the L2P for various process-thread counts

Dealing with Non-linear Terms in a Modal High-Order … 57

21 22 23 24 25 26 27
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

·10 4

Order

K
D
U
P
S

PureMPI(24 Procs)
12Procs2Threads
6Procs4Threads

(a) vlen = 8

21 22 23 24 25 26 27
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
·104

Order

K
D
U
P
S

PureMPI(24 Procs)
12Procs2Threads
6Procs4Threads

(b) vlen = 32

21 22 23 24 25 26 27
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
·10 4

Order

K
D
U
P
S

PureMPI(24 Procs)
12Procs2Threads
6Procs4Threads

(c) vlen = 256

Fig. 5 L2P performance for different proc-thread combination with varying vector length from a,
b, c

decreases. Also, the number of elements used is always a multiple of 24, such that
it can always be evenly distributed among the up to 24 MPI processes on the single
node. This ensures there is no load imbalance due to different number of elements on
each MPI ranks and thereby the pure MPI performance does not get distorted. The
run with the highest order in the graph makes use of 24 elements. We would expect
the performance of hybrid runs to be close to pure MPI runs so that it would enable
us to use OpenMP without loosing performance. In Fig. 4 we see the performance
of pure MPI is clearly better for scheme orders up to 16. This is expected as for 16th
order (or 4096 degrees of freedeom per variable and element), the computational
load within a single element is relatively low and insufficient to break even with
the overheads introduced by the OpenMP parallelization. However, we can see that
the performance of hybrid runs closes in to MPI-only computations for increasing
scheme orders. We observe using 4 threads gets us quite close to the performance
obtained using 24 MPI processes for high orders. At the same time, it doesn’t pay

58 N. Anand et al.

off to use large number of threads (>6) as the performance deteoriates as soon as
threads span multiple NUMA domains. Also, its worth mentioning that hybrid par-
allelization allows us to fit larger problem per element within a node still attaining
optimal performance. For example, when hit the memory bound with a certain order
on a node, with shared memory parallelisn we can reduce the number of elements
per node to half and use 2 OpenMP threads instead and use even higher orders, while
still utilizing all cores.

Many modern hardwares offer possibilities of speeding up the computation using
data level parallelization with vectorization. We also exploit this feature inside our
L2P implementation by vectorizing our loop operations. We perform matrix vector
multiplication using chunks or vectors of specific length. This vector length can be
set up during the compilation and helps us boost the performance on vectormachines.
OpenMP parallelism is implemented on this vector chunks. Thus, it needs to be tuned
to obtain the optimum performance on a given system. Figure 3 shows the OpenMP
performance for 3 different vector lengths. When the vector size is too small (e.g.
Fig. 5a), we see that the OpenMP overheads are too high and, therefore, a larger
difference in performance. As we increase the vector length, the OpenMP threads
get more work and we see the improvement in the performance of hybrid runs.

7 Conclusion

In this work we presented some of the fast algorithms available as an option to effi-
ciently transform between modal and nodal spaces specially needed when dealing
with non-linear terms in modal high order Discontinuous Galerkin methods. We dis-
cussed the implementation aspects and the performance comparison of the algorithms
we implemented in our code. Then we also talked about hybrid parallelizing the DG
method and presented some performance plots highlighting efficient implementa-
tion. However, we did not find the performance of the fast algorithms convincing
especially for lower orders. They mostly start to pay off for orders which are not
feasible for 3D simulations. We found the L2P algorithm quite handy and a decent
option since it is easy to optimise because of its simple structure. We still look out for
some fast algorithms paying off for order less then hundred. We are further working
on implementing shared memory parallelism of our FPT implementation and make
it suit our framework and exploit dimension by dimension approach.

Acknowledgements The performancemeasurementwere performed on theHornet supercomputer
at the High Performance Computing Center Stuttgart (HLRS). The authors wish to thank for the
computing time and the technical support.

Dealing with Non-linear Terms in a Modal High-Order … 59

References

1. Hale, N., Townsend, A.: A fast, simple, and stable Chebyshev-Legendre transform using an
asymptotic formula. SIAM J. Sci. Comput. 36(1), A148–A167 (2014)

2. Alpert, B.K., Rokhlin, V.: A fast algorithm for the evaluation of legendre expansions. SIAM J.
Sci. Stat. Comput. 12(1), 158–179 (1991). doi:10.1137/0912009

3. Potts, D., Steidl, G., Tasche, M.: Fast algorithms for discrete polynomial transforms. Math.
Comp. 67(224), 1577–1590 (1998). doi:10.1090/S0025-5718-98-00975-2

4. Iserles, A.: A fast and simple algorithm for the computation of legendre coefficients.
Numerische Mathematik 117(3), 529–553 (2011). doi:10.1007/s00211-010-0352-1

5. Mohlenkamp, M.J.: A fast transform for spherical harmonics. J. Fourier Anal. Appl. 5(2),
159–184 (1999). doi:10.1007/BF01261607

6. Schaeffer, N.: Efficient spherical harmonic transforms aimed at pseudospectral numerical sim-
ulations. Geochem. Geophys. Geosyst. 14, 751–758 (2013). doi:10.1002/ggge.20071

7. Suda, R., Takami,M.: A fast spherical harmonics transform algorithm 71(238), 703–715 (2002)
8. Suda, R., Kuriyama, S.: Another preprocessing algorithm for generalized one-dimensional fast

multipole method. J. Comput. Phys. 195(2), 790–803 (2004). doi:10.1016/j.jcp.2003.10.018
9. Suda, R.: Fxtpack. http://sudalab.is.s.u-tokyo.ac.jp/~reiji/fxtpack.html

http://dx.doi.org/10.1137/0912009
http://dx.doi.org/10.1090/S0025-5718-98-00975-2
http://dx.doi.org/10.1007/s00211-010-0352-1
http://dx.doi.org/10.1007/BF01261607
http://dx.doi.org/10.1002/ggge.20071
http://dx.doi.org/10.1016/j.jcp.2003.10.018
http://sudalab.is.s.u-tokyo.ac.jp/~reiji/fxtpack.html

Efficient Coupling of Fluid and Acoustic
Interaction on Massive Parallel Systems

Verena Krupp, Kannan Masilamani, Harald Klimach
and Sabine Roller

Abstract We present and compare two coupling approaches for direct aeroacoustic
simulations. Direct aeroacoustic simulations pose a multi-scale problem, as the gen-
eration of sound in a flow field occurs at small spatial scales with high energy, while
its propagation in the farfield has to be observed on a large spatial scale with only
low energy. The challenge of different scales can be addressed by employing dif-
ferent numerical schemes in the individual spatial areas with an interaction between
them on the surfaces. Two implementation strategies of this coupling approach are
presented. The first coupling strategy employs a library that allows a wide range of
different applications to be coupled with minimal changes to the individual solvers.
Hence, this is a very flexible approach but limited access to information and therefore
cope with loss of potential performance. Further this strategy involves the handling
of multiple executables on today supercomputer. This multi-solver approach requires
data interpolation at the coupling interface which introduce another numerical error.
In contrast, the second approach is fully integrated within one numerical framework.
Thereby the solvers are invoked as a library by the coupling application and only one
single applications must be handled. Tethering high order solvers, fully access to the
data implies that no additional data interpolation is required which promise better
numerical results. This tight integration allows for the exploitation of knowledge
about internal data structures and therefore yield performance benefits accompany
with less flexibility. Both strategies will be compared with respect to numerical error
due to data interpolation at the coupling interface as well as scalability and perfor-
mance on modern supercomputer.

V. Krupp (B) · K. Masilamani · H. Klimach · S. Roller
University of Siegen, Hölderlinstr. 3, Siegen, Germany
e-mail: verena.krupp@uni-siegen.de

K. Masilamani
e-mail: kannan.masilamani@uni-siegen.de

H. Klimach
e-mail: harald.klimach@uni-siegen.de

S. Roller
e-mail: sabine.roller@uni-siegen.de

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_6

61

62 V. Krupp et al.

1 Introduction

Increasing computational resources allow the simulation of a new range of
multi-physics and multi-scale problems that were unfeasible with former compute
resources. Such simulations have the potential to provide more insight into appli-
cations from various fields, as, for example, the sound design of aircrafts or wind
turbines. With an increased awareness for noise pollution such consideration get
more and more important in the design process of industrial applications.

In this work, we focus on the coupling of fluid flows and acoustic sound propaga-
tion. The main challenge of this coupled application is that both phenomena include
different length and energy scales. The multi-scale nature of the fluid-acoustic inter-
actions is best described in the example of a wind turbine: Noise is generated by
the vortices of the rotating geometry at a length scale in the order of centimeters.
The whole turbine size is in the scale of meters, while the noise emission is of rel-
evance in a distance of hundreds of meters up to a few kilometers from the sound
source. Simulating the entire domain while resolving the smallest turbulent scales and
resolving the boundary layer adequately would require approximately 1018 degrees
of freedom, which is out of reach even with the larges computing facilities in the
forseeable future. For fluid-acoustic interactions the phenomena can often be clearly
separated in the different areas of the domain. Different sets of equations and differ-
ent discretization resolutions and schemes can be used for each part individually. The
fluid-acoustic coupling interface is rather large and, therefore, needs to be efficient
and fully parallelized.

We describe a partitioned coupling approach, i.e., we split the physical space into
smaller domains, each covering a so-called single-physics subdomain. These sub-
domains can be solved with numerical methods and resolutions tailored to the local
physical requirements. This allows for the re-use of existing scalable software based
on decades of experience in each single-physics discipline, thus enabling acceptable
software development times along with efficiency and performance optimization.
The interaction between the domains is realized by exchanging data at the bound-
ary. By the adaptation of numerical approximations in the individual domains, the
computation of complete interactions between fluid mechanics and acoustic wave
propagation becomes feasible.

In this paper, we investigate two different partitioned coupling approaches. One
makes use of individual solvers that run as independent executables and use a cou-
pling library to exchange data. The other approach uses a more integrated approach,
where a single application is used and the individual solvers are incorporated as
libraries. This tight integration on the basis of a common framework allows for the
exploitation of knowledge about internal data structures and therefore potentially a
faster coupling mechanism. However, this comes at the cost of reduced flexibility.
The presented work focuses on establishing both approaches within the simulation
framework APES and compares numerical as well as performance results. First, we
briefly recapitulate the governing equations for fluid mechanics and acoustic wave
propagation in Sect. 2 followed by Sect. 3 describing the methodology of the flow

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 63

and acoustic solverAteles. Section 3.2 describes the partitioned coupling approach in
general including the multi-solver approach using the open-source coupling library
preCICE, and the integrated coupling approach APESmate within the numerical
framework APES. Finally, Sect. 4 presents the results of numerical simulations of
two academic testcases as well as performance results for both approaches.

2 Governing Equations

Acoustic phenomena are based on the same principals as fluid motion. However,
while for general fluid motion nonlinear equations have to be considered, acoustic
phenomena can be represented in linearized equations, as only small perturbations
need to be considered. The linearization reduces the numerical effort drastically
and, therefore, is a necessity for large computational domains as required for the
computation of acoustic far fields.

2.1 Fluid Equations

Frictionless flow is governed by the compressible Euler equations based on the
conservation of mass, momentum and energy. We use the superscript f to indicate
variables in the flow field. The conservation of mass can be written as

∂ρ f

∂t
+ ∇ · (ρv) f = 0, (1)

the conservation of momentum is given by

∂ (ρv) f

∂t
+ ∇ · (

(ρv) f v f
) + ∇ p f = 0, (2)

and the conservation of energy yields

∂

∂t

(
ρ f

(
e f + 1

2
v f · v f

))
+ ∇ ·

(
(ρv) f

(
e f + 1

2
v f · v f + p f

ρ f

))
= 0. (3)

The velocity field is denoted by v f, pressure is denoted with p f , and the density is
given as ρ f . The internal energy of the flow is e f . The Euler equations are derived
from the Navier-Stokes equations by neglecting viscous effects, heat flow and exter-
nal forces. We only consider ideal gases here to close the system:

p f = ρ f R T = (γ − 1)

(
e f − ρ f v f · v f

2

)

64 V. Krupp et al.

which yields a relation between pressure p and energy e, where R is the ideal gas
constant, T is the temperature and γ is the isentropic coefficient.

2.2 Acoustic Equations

Acoustic phenomena are also fluid motion and are, therefore, governed by the Euler
equations (1)–(3). As there are only small changes in the flow, they can be linearized
around a constant background flow. The constant background flow is denoted by the
subscript 0 and the perturbation is denoted with the superscript a. In the following,
we will treat only the primitive variables density ρ, velocity v and pressure p in the
acoustic domain. The linearized Euler equations are given by the linearized equation
of mass conservation

∂ρa

∂t
+ ∇ · (

v0ρ
a + ρ0va

) = 0, (4)

the linearized momentum equation

∂va

∂t
+ ∇ ·

(
v0va + 1

ρ0
pa

)
= 0 (5)

and linearized energy equation

∂pa

∂t
+ ∇ · (

v0 p
a + γ p0 va

) = 0. (6)

Since the Euler equations require conservative variables for the coupling, the general
transformation between primitive variables ρ f , v f , p f and conservative variables
ρ f , ρ f v f , e f is required

ρ f = ρ f , v f = (ρv) f

ρ f
, p f = (γ − 1)[ρ f e f − 1

2ρ f
((ρv) f)2],

as well as vice versa

ρ f = ρ f , (vρ) f = v f ρ f , e f = 1

(γ − 1)

p f

ρ f
+ 1

2
(v f)2.

To compute the linearized variables in the acoustic domain, simple subtraction of the
background state is sufficient to obtain the perturbations:

ρa = ρ f − ρ0, va = v f − v0, pa = p f − p0,

where the background flow is defined by the user.

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 65

3 Methodology

In this section, we describe the methodology of the established simulation approach.
First we present the flow and acoustic solverAteles. Then, we describe the partitioned
coupling approach for fluid-acoustic interaction in detail including the two imple-
mentation strategies: the multi-solver approach which uses the open-source coupling
library preCICEand the integrated approach APESmate which is incorporated within
the framework APES.

3.1 High-Order Solver Ateles

For the flow as well as the acoustic domain, we use the high-order solver Ateles
which is included in the end-to-end parallel framework APES [6, 10]. The APES
framework is designed to take advantage of the massively parallel systems available
in supercomputing today. Therefore, it provides additional tools for pre- and post-
processing on the basis of a common mesh library.1 The TreElM library [4] relies on
an octree representation of the mesh and provides a distributed neighborhood search
within that mesh. Using a space-filling curve for the domain decomposition of the
octree mesh gives hierarchically structured data and maintains locality. This locality
can be perfectly exploited by the high-order Discontinuous Galerkin solver Ateles.

Ateles is capable to solve various equation systems such as compressible flow,
linear wave propagation and electro-dynamics, which are solved with an explicit
Runge Kutta method in time and a modal discontinuous Galerkin method (DG)
with arbitrary order in space [3]. The Discontinuous Galerkin method is based on a
polynomial representation within an element and flux calculation between elements
over their faces. Hence, there is a strong coupling of data within each element and
only a loosely coupling between elements via element surfaces. The choice of the
polynomial degree controls the spatial discretization order. By choosing a high degree
for the polynomial function a high-order method is constructed. Exploiting modal
basis functions has computational reasons, e.g. that the numerical flux can be directly
evaluated in modal space, using cubical elements without any extra transformation
to a reference element [9].

A higher order scheme has several advantages. First, it yields low numerical
dissipation and dispersion errors, which is advantageous for approximating the wave
propagation over long distances in the acoustic far field. Secondly, a higher order
scheme shows high convergence rates in case of smooth solutions. Hence, a high
order approximation provides a high accuracy with only few degrees of freedom. For
nonlinear systems high-order schemes imply an increased computational cost, but for

1https://bitbucket.org/apesteam/treelm

https://bitbucket.org/apesteam/treelm

66 V. Krupp et al.

the linear system of the acoustic domain, a modal scheme keeps the computational
effort per degree of freedom constant over increased spatial orders and solves them
efficiently.

The polynomial representation of the DG method also has an advantage in the
coupling context. For data exchange at the coupling interface, the polynomial rep-
resentation can be evaluated at any point on the surface up to the chosen order for
the method. In general, the quadrature points of the polynomial on the surface are
utilized as exchange points.

3.2 Partitioned Coupling

Partitioned coupling is based on the idea that an entire computational domain can
be split into subdomains, where only single physics need to be considered in each
subdomain. For the example of fluid-acoustic interaction, this means: we split the
whole domain into a subdomain of flow and acoustic generation and a subdomain
where only acoustic waves propagate. Small vortices with high energy occur typi-
cally around a structure or at high Mach number and generate acoustic waves. In this
domain, the small scales of the flow must be resolved. Acoustic waves on the other
hand live on larger scales, having less energy, and are transported into the acoustic far
field. In this case, the phenomena have to be resolved over long distances. The inter-
actions are realized by a surface coupling between the compressible fluid domain and
the acoustic far field. To realize a full coupling which means including information
travelling between both subdomains, a bidirectional coupling is deployed, i.e. both
domains provide and receive data at the interface.

Figure 1 shows a partitioned coupling example using implicit coupling between
structure and fluid and explicit coupling between fluid and acoustic subdomains.

F F F F

S S S S

C

iteration time step i

F F F F

S S S S

C

iteration time step i+1

C C C C CCC

A A

Fig. 1 Overview of parallel execution of the fluid (F) -structure (S) -acoustic (A) simulations.
Implicit coupling (C) for fluid-structure interaction presenting an iterative method and explicit
coupling (C) at the beginning of the timestep

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 67

When coupling several solvers, there are major tasks involved in a coupled setup:

• Steering of the individual single physic solvers
• Data interpolation between non-matching exchange points
• Communication of primitive variables at the interface

These tasks should be handled efficiently in parallel by the coupling tool.

Steering of individual solvers

To control the simulation and the correct update of information at the coupling
interface in time, the coupling device should steer the individual solver. The major
challenge here is the definition of the synchronization time step.

Data interpolation

For a general setup, allowing individual resolution in each subdomain, the exchange
points at the interface do not require to coincide. A non-matching coupling mesh at
the interface can occur when e.g. coupling of a higher order Discontinuous Galerkin
method which requires information at non-equidistant quadrature points. Figure 2
gives an example of such a non-matching coupling interface, when coupling the
same grid resolution but an 8th order Discontinuous Galerkin scheme with a 4th
Discontinuous Galerkin scheme where both yield 16 points at a 1d surface. Therefore,
an efficient interpolation method is required to transfer the primitive variables of one
coupling interface to the other.

Communication

The exchange of data between the solvers is also a task of the coupling device. We
aim for large scale simulations on massive parallel systems. Therefore, direct MPI

Fig. 2 Example of
non-matching exchange
points at the coupling
interface when coupling the
same grid resolution but a
8th order Discontinuous
Galerkin scheme (red) with a
4th order Discontinuous
Galerkin scheme (blue)
yielding both 16 points at a
1d surface

68 V. Krupp et al.

communication between processes that host coupling elements is essential. This
communication takes place at each synchronization time step.

In our approach, explicit coupling is exploited. For the first attempt, we do not
allow for adaptive time stepping and sub-cycling of one solver to avoid non-consistent
coupling in time. Hence, all subdomains use the same timestep limited by the CFL
condition of the explicit timestepping within the solver. This is clearly a lack of
ideal performance and it is part of future work. Assuming no adaptive time stepping
and a fixed coupling interface, a static load balancing based on heuristics can be
achieved by choosing an appropriate number of processes for each subdomain, such
that solving each domain takes approximatively the same computational time.

3.2.1 Multi-solver Approach Using Coupling Library preCICE

For the multi-solver approach, the focus is on using the solvers as ‘black box’ which
means that the solvers are accessible only via their interfaces for input and output
values. Therefore, the aforementioned major tasks of the coupling device are more
challenging: Steering between individual solvers, communication of data between
executables and accurate interpolation methods between non-matching interfaces.
The open-source coupling library preCICE2 offers methods for all these building
blocks while allowing for a minimally invasive integration into existing solvers [1].
Additionally, for implicit coupling, which is not part of this paper but a key benefit of
preCICE, efficient solvers for fixed-point equations derived from coupling conditions
are implemented in preCICE. Clearly, the major tasks of the coupling device need
to work efficiently and should be scalable for distributed data. In [2, 7] development
and achievements of preCICEworking on distributed data are presented.

In preCICE, the initialization of the communication is done via exchanging the
entire coupling interface via master processes. The communication of coupling par-
ticipant and coupling library during the time loop is done with point-to-point commu-
nication realized via TCP/IP (based on Boost.Asio3). Coupling different numer-
ical resolution in space requires data at position on the interface which might not be
provided by one participant as illustrated in Fig. 2. Therefor interpolation methods
between non-matching coupling meshes are required. preCICEprovides two stan-
dard interpolation methods: low order projection-based mapping (nearest neighbor,
nearest projection) and second order radial basis function mapping. Both mappings
work on pure geometric information assuming ‘black box’ solvers.

Flexibility is the key benefit of using a coupling tool like preCICE. The application
programming interface (API) is concise and enables an easy coupling of individual
solvers. Additionally, it implements several sophisticated coupling methods, which
are required to improve numerical stability at the coupling interface. The advantages
are only clouded by the decrease in performance due to generality of a ‘black-box’
approach.

2www.precice.org
3www.boost.org

www.precice.org
www.boost.org

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 69

Furthermore, the handling of a coupled simulation involves several executables.
Porting software, establishing the correct pinning of MPI ranks in this setup, and
compiling the job script on a supercomputer is more challenging compared to running
a single application.

3.2.2 Integrated Approach Using APESmate

The integrated coupling approach APESmate is fully implemented in the previously
presented framework APES [6, 10]. Here, finding a synchronization time step is
similar to using the multi-solver approach but the steering of the coupled simulation
is direct by accessing the data structure explicitly instead of providing and return-
ing information from a library. Also, communication can be done in a direct way:
all components are implemented in a single application which efficiently distributes
domains across several processes. Starting with a global communicator, each sub-
domain gets its own MPI sub-communicator for domain-internal communications.
Therefore, a global communicator is used only for domain-domain communication.
During the initialization step, all coupling requests of one subdomain are locally
gathered such that only one large communication is necessary instead of multiple
small ones. Then this information is exchanged in a round robin fashion. Since every
solver in APES is based on an Octree data structure and uses a space-filling curve for
partitioning, it is easy to get information about the location of the individual exchange
points. The identified ranks which accommodate exchange points are provided to the
requested domains and these ranks are then used to build communication buffers for
data exchange between domains. Point coordinates are only exchanged at the initial
step, the point values are evaluated and exchanged via the global communicator once
within every time step.

Within the integrated coupling, the application can access solver specific data.
Tethering high order DG solver Ateles, obtaining data at arbitrary exchange points
on the coupling interface can be done via direct evaluation of the polynomial repre-
sentations. Hence, coupling non-matching grids with different numerical resolution,
as shown in Fig. 2, does not involve additional interpolation. This is a key benefit
compared to using a multi-solver approach. In the case of coupling other solvers
within APESmate, e.g. a Lattice-Boltzmann scheme which does not provide a poly-
nomial representation of the solution, the solver is required to provide an interpolation
method using its data representation and mathematical formulation. i.e. even if inter-
polation is necessary, it is done by the data-providing solver, making use of all the
knowledge regarding its data and data structure.

In general,APESmate is implemented in a way such that surface as well as volume
coupling can be realized to increase the range of applications, e.g. the coupling of
multi component flow and the electro-dynamic field [5].

Naturally, with this integrated approach, we can only couple solver and methods
which are included withinAPES and operating on the underlying data structure of the
common mesh library TreElM. Up to now, only explicit coupling via data exchange
at every time step is available in APESmate. However, for fluid-acoustic interaction
addressed in this paper, single physics solvers with explicit time step are sufficient.

70 V. Krupp et al.

The performance benefits of APESmate as a single application is superior to
multi-solver approach due to communications over global MPI communicator and
direct control overAteles solver. With respect to load balancing, assuming no adaptive
time stepping and not changing the coupling interface, the same static load balancing
based on heuristic as presented for the multi-solver approach can be applied. Also,
a dynamic load balancing can be deployed easier. From the user perspective, the
handling of an integrated approach with one executable is facilitated.

4 Results

In this section, we show the comparison of the two presented coupling approaches,
using the external library preCICEas well as the integrated approach APESmate. We
setup two different scenarios, one coupling the same equations system on both sides,
but using different mesh sizes and approximation orders, and the other coupling
different equation systems, on the same and on different meshes and orders. When
using preCICE, we also vary the interpolation method between first order nearest
neighbor interpolation and second order radial basis functions.

The second part of this section describes the performance scalability of both
established coupling strategies on modern supercomputer.

4.1 Simulation Setup

We show two dedicated test cases:

(a) Gaussian distribution in density on a 2-dimensional domain (Fig. 3a)
(b) Gaussian distribution pressure on a 3-dimensional domain (Fig. 3b)

Testcase (a) is used for coupling the same equations systems and (b) to couple two
different equations e.g. a non-linear flow subdomain with a linearized Euler domain.

For test case (a) we will refer in the following to as left and right subdomain as
illustrated, and for test case (b) as flow domain and acoustic domain.

4.2 Numerical Results

4.2.1 Bidirectional Coupling of the Same Equations Systems: Flow
with Flow

To test the coupling of twice the same equation systems, we deploy a 2-dimensional
Gaussian density distribution which travels from left to right due to advection of the
flow in positive x-direction, see Fig. 3a. The whole domain is a two dimensional

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 71

co
up

lin
g

su
rf

ac
e

velocity

x

y

A B

(a) Gaussian pulse in density, where the
whole flow domain is split into two subdo-
mains left and right. The • marks represents
the measurement positions.

coupling surface

x

y

Euler equations

 linearized Euler equations

A B

(b) Gaussian pulse in pressure, where the in-
ner box is the flow domain (Euler equations)
and the surrounding is the acoustic domain
(linearized Euler equations). The • marks
represents the measurement positions.

Fig. 3 Sketch of the two dedicated simulation setups

4 × 4 xy-plane, which is split into a left and a right subdomain. As described in Sect.
2, for the Euler equations (1)–(3) the ideal gas is considered. Here, the isentropic
coefficient is chosen to be γ = 1.4 and the ideal gas constant is R = 296.0. The
density is initially given as a Gaussian pulse shifted by (x0 = −1.0, y0 = 0.0) to be
fully located in the left subdomain:

ρ = ρ0 + ρpulse · exp
(−[(x + x0)

2 + (y + y0)
2]/d · log(2)

)

with background density ρ0 = 1.0, amplitude of the pulse ρpulse = 1.0 and half
width of the pulse d = 0.02. The flow is initialized with a constant velocity field,
vt=0 = [

2.0 0.0
]T

and pressure, pt=0 = 8.0. As shown in Fig. 3a, the left and right
boundary conditions are inflow and outflow respectively, whereas the upper and
lower boundaries are set to the full state [ρ0, v0, p0]. The analytical solution of the
density pulse traveling through the flow at time t is

ρre f = ρ0 + ρpulse · exp
(−[(x + xt)

2 + (y + yt)
2]/d · log(2)

)
(7)

with the location of the pulse xt = v0x t − x0, yt = v0yt − y0.

4.2.2 Results and Comparison

The investigation is done for both established methods, the integrated approach
APESmate and the multi-solver approaches using preCICE. The two approaches
differ mainly in the way they obtain the data required for the one side from the data

72 V. Krupp et al.

0.46 0.48 0.50 0.52 0.54

Time(s)

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90
D
en
sit
y

A
analytical solution A
B
analytical solution B

(a) Integrate dapproach

APESmate.

0.46 0.48 0.50 0.52 0.54

Time(s)

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

D
en
sit
y

A
analytical solution A
B
analytical solution B

(b) Multi-solver approach
preCICE using Radial basis

function.

0.46 0.48 0.50 0.52 0.54

Time(s)

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

D
en
sit
y

A
analytical solution A
B
analytical solution B

(c)Multi-solver approach
preCICE using nearest
neighbor.

Fig. 4 Comparison of numerical and analytical result in both subdomains for coupling of different
resolutions: Left L = 4,O = 16; Right L = 4,O = 22

provided by the other. When looking at Fig. 2, the left domain delivers and expects
data on the red points, while the right side delivers and expects data at the blue points.
When using the multi-solver approach, the coupling tool preCICEinterpolates from
red to blue and from blue to red points. Two different interpolation methods, nearest
neighbor and radial basis function, are available in preCICE. The integrated approach
in APESmate—as it is able to access directly the high-order polynomials within the
left as well as within the right part of the domain—directly evaluates the polynomials
at the points requested and thus does not interpolate at all.

For validation purposes, a first run of the simulation is performed using the same
mesh and the same order of the DG scheme on both sides. Thus, the data exchange
points match on both sides, and interpolation reduces to pure injection. The two
different interpolation schemes which are tested against each other within the multi-
solver approach with preCICEshould not show any difference, neither compared
to each other nor compared to the integrated approach with APESmate. For this
pre-testcase, all results coincide as expected.

The next variation now checks the influence of the interpolation in the case of non-
matching grids as in Fig. 2. Non-matching grids are obtained when using different
mesh sizes or different approximation orders in the DG scheme. We refer to the grid
resolution as refinement Level L of the Octree mesh and O for the numerical order
of the DG scheme in space.

Figure 4 shows the comparison of the different coupling strategies when coupling
two different discretizations, i.e. left: L = 4,O = 16; right: L = 4,O = 22. It
is measured at positions A and B (Fig. 3a) at the point in time when the maximum
amplitude of density pulse is reached. The integrated approach (Fig. 4a) as well as the
multi-solver approach using second order radial basis functions for data interpolation
at the exchange points (Fig. 4b) give good results and are identical with the analytical
solution. The first order nearest neighbor interpolation in the multi-solver approach
(Fig. 4c) produces an overshooting in point B (to the right of the coupling interface),
compared to the solution in point A (left to the coupling interface), and the analytical
solution.

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 73

4.2.3 Error Analysis

For the error analysis, we compare the simulation result to the analytical solution
and present the error, i.e. the difference between analytical solution and simulation
at the maximum density of the Gaussian pulse in both subdomains. Table 1 gives an
overview of the simulation error at points A (left to the coupling interface) and B
(right to the coupling interface).

As mentioned before, testing the same numerical resolution in both subdomains
ensures matching exchange points at the coupling interface and avoids influences

Table 1 Comparison of simulation error at maximum of the Gaussian distribution at points ±0.01
distance from the coupling surface

Left domain Right domain

L O Error L O Error

(a) Integrated approach APESmate

4 16 −2.3833e-4 4 8 1.8816e-4

4 16 2.7661e-4 4 12 −7.9379e-4

4 16 5.7715e-5 4 16 4.1064e-5

4 16 1.1531e-5 4 22 4.5484e-6

4 16 −1.7762e-5 4 32 −2.0103e-5

4 16 −2.1650e-5 3 32 −1.8538e-5

4 16 1.1151e-4 5 8 −9.2129e-4

3 64 −2.9949e-6 4 32 −3.5793e-7

(b) Multi-solver approach with preCICEusing 2nd order radial Basis function interpolation

4 16 −2.7129e-3 4 8 1.9446e-3

4 16 2.820e-4 4 12 1.0909e-3

4 16 5.7715e-5 4 16 4.1064e-5

4 16 4.0299e-5 4 22 −3.1967e-4

4 16 −1.4563e-5 4 32 −3.0865e-4

4 16 3.4437e-5 3 32 3.3906e-4

4 16 1.4550e-4 5 8 1.0778e-3

3 64 −7.6588e-6 4 32 −2.6305e-5

(c) Multi-solver approach with preCICEusing Nearest Neighbor interpolation

4 16 1.5106e-2 4 8 −1.3613e-1

4 16 1.3116e-2 4 12 2.7013e-3

4 16 5.7715e-5 4 16 4.1064e-5

4 16 3.6480e-3 4 22 4.3454e-2

4 16 5.6850e-3 4 32 −3.7787e-2

4 16 5.0766e-4 3 32 3.6137e-2

4 16 7.2353e-4 5 8 8.0711e-4

3 64 −8.3883e-4 4 32 2.3469e-3

74 V. Krupp et al.

of the data interpolation required for the multi-solver approach. Comparing the
simulation error for the same numerical resolution, i.e Left: L = 4,O(16); Right:
L = 4,O(16), 3 line in Table 1, demonstrates a good agreement of all strategies as
expected.

Comparing different numerical resolutions demonstrates the important influence
of the data mapping strategy on the coupling interface. Table 1 indicates that a
first order nearest neighbor interpolation is no option for coupling non-matching
grids since disproportionally large numerical errors arise. Only one out of the 8
combinations results in errors comparable to the other approaches, which is line 7,
Left:L = 4,O(16); Right:L = 5,O(8). This might be due to the exact position of
the exchange points on the surface. In this setting, the distance between the coupling
points on both sides of the coupling interface is nearly minimal.

In general, it can be stated that the integratedAPESmate as well as the multi-solver
approach preCICEwith a second order radial basis function (RBF) interpolation give
good results, whereby the simulation error for APESmate yields a simulation error
which is even one or two orders of magnitude lower than for the preCICE and, order
RBF approach.

4.2.4 Performance Results

In this section, we present the performance of integrated coupling APESmate and
multi-solver coupling preCICEusing nearest neighbor interpolation only on the
SuperMuc Phase 1 IBM system at LRZ, Munich. This system comprises a total
of 9216 nodes on 18 islands with 2 Sandy Bridge-EP Xeon E5-2680 processor with
8 cores per node resulting in 147,456 cores. The nodes are connected with Infiniband
FDR10. For performance measurements, both coupling approaches are scaled up to
a single island, i.e 512 compute nodes or 8192 cores. Using more than one island is
not possible at the moment due to limitations of MPI-IO on SuperMuc. Only MPI
parallelism is considered here.

A 3D version of the test case presented in the previous section (Gaussian pulse
in density traveling from left to right domain) is used with a total problem size of
8192 elements, i.e 4096 elements per coupling domain. The total problem size of
8192 elements is chosen such that there is at least one element per core and the
polynomial order, O is chosen to fit maximally to the memory per node which is
found to beO(20). The simulations are run for 100 iterations. The number of degrees
of freedom per element is 109760, resulting in 163840000 DoF for problem size of
4096 elements per domain.

In Fig. 5, the strong scaling of both strategiesAPESmate and preCICEcoupling on
left and right domain are shown together with the number of processes on the X-axis
and the total run time in seconds on Y-axis. Both approaches have good scalability up
to 1024 processes per domain. Beyond that, the integrated approach APESmate does
not scale anymore and gets flat where as the scalability of the multi-solver approach
preCICEgets worse, i.e run time increases with number of processes. The increase
in run time might be due to load imbalances stemming from only few processes

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 75

Fig. 5 Strong scaling of
integrated coupling
APESmate and multi-solver
coupling preCICE

100 101 102 103 104

Number of processes

101

102

103

104

T
im

e(
s)

Apes left
Precice left
Apes right
Precice right

participating in the coupling. Nevertheless, at all points, the integrated approach
APESmate is roughly 20 % faster then the multi-solver approach using the external
coupling library preCICE. To determine the performance critical step, the overall
run time is split into initialization, computation and coupling. Figure 6 shows this
breakdown of overall run time for APESmate in Fig. 6a and preCICEin Fig. 6b. For
both approaches, the initialization step is further split into initialization of solver and
coupling. In Fig. 6, the total initialization time increases with the number of processes
for both approaches but preCICEinitialization time is much higher than APESmate.
As stated in [2], the initialization step is not fully parallelized and work in progress.
In APESmate, we can measure the time spent on computation and initialization
separately where as in preCICEcoupling initialization time is part of computation
time and difficult to calculate explicitly. This can be seen from the computation time
in Fig. 6a since both approaches uses the Ateles solver which is scalable on its own.
The coupling step involving the evaluation of point values and data exchange is faster
with preCICEthan APESmate. The coupling in APESmate involves the evaluation
point values using polynomial which is expensive but more accurate than the fast, but
inaccurate nearest neighbor approach used in preCICE. Also, theAPESmate coupling
approach shows better scalability than preCICE. From Fig. 6b, we can conclude that
for preCICE, the increase in run time beyond 1024 processes per domain is mainly
due to the initialization of coupling.

4.2.5 Bidirectional Coupling of Differing Equation Systems:
Euler with Linearized Euler

To test the coupling of differing equation systems e.g. Euler equations with linearized
Euler equations, we use an acoustic pulse initialized at time t = 0 with a Gaussian
pressure distribution which is spreading spherically symmetric with respect to the

76 V. Krupp et al.

Fig. 6 Strong scaling
breakdown of overall time
into initialization,
computation and coupling of
integrated approach
APESmate and multisolver
approach preCICE

100 101 102 103 104

Number of processes

10−1

100

101

102

103

104

T
im

e
(s

)

Init
Init Solver
Init Coupling
Computation
Coupling
Total

(a) APESmate.

100 101 102 103 104

Number of processes

10−2

10−1

10 0

10 1

10 2

10 3

10 4

T
im

e
(s

)

Init
Init Solver
Init Coupling
Computation
Coupling
Total

(b) Precice.

origin of the pulse as described in [8], sketched in Fig. 3. The 3-dimensional flow
domain in which the pulse is located is a 20 × 20 × 20 box with a surrounding
acoustic domain of size 60 × 60 × 60. For both domains, the isentropic coefficient
is set toγ = 1.4 and the ideal gas constant is R = 296.0. Additionally, for the acoustic
domain, treating the linearized Euler equations (4)–(6), the background flow is set to
ρ0 = 1.0, v0 = [

0.0, 0.0, 0.0
]T

, p0 = 1
γ

yielding a speed of sound c = 1.0. For the
inner flow domain, the initial condition for the Euler domain is a Gaussian pressure
distribution:

p = p0 + ppulse · exp
(−[(x + x0)

2 + (y + y0)
2 + (z + z0)

2]/d · log(2)
)

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 77

with amplitude of the pulse ppulse = 0.001 and half width set to d = 3. The back-
ground for the flow is set to background of the acoustic domain. The Euler domain is
initialized with density ρt=0 = 1.0 and velocity vt=0 = [

0.0, 0.0, 0.0
]T

. For the sur-

rounding acoustic domain, the initial condition
[
ρa, va, pa

]T
is specified to 0, since

at the start of the simulation, no acoustic perturbation should occur. The outer bound-
aries for the acoustic domain are set to a Dirichlet boundary condition for all state
variables i.e. ρa = 0.0, va = [

0.0, 0.0, 0.0
]T

, pa = 0.0. The analytical solution for
a Gaussian pressure distribution spreading spherically symmetric with respect to the
origin (0.0, 0.0, 0.0) and the radial distance r = √

(x − x0)2 + (y − y0)2 + (z − z0)2

is :

p = p0 + ppulse·
[
r−c·t

2·r · exp
(
− log(2) · (r−c·t

b

)2
)

+ r+c·t
2·r · exp

(
− log(2) · (

r+c·t
b

)2
)]

(8)

with speed of sound defined by the material c =
√

γ ·p0

ρ0
.

4.2.6 Results and Comparison

We look at the temporal evolution at the specific points A and B close (±0.01) to
the coupling interface as sketched in Fig. 3a. Figure 7 shows a coupled simulation
using the non-linear Euler equations in the inner domain, and the linearized Euler

0 5 10 15 20 25 30 35

Time (s)

0.71420

0.71422

0.71424

0.71426

0.71428

0.71430

0.71432

0.71434

0.71436

0.71438

Pr
es
su
re

analytical
matching resolution
non-matching resolution

Fig. 7 Time evolution of pressure at measure positions, see Fig. 3b. Comparing a coupled sim-
ulation with same numerical resolution—matching [flow domain: 8,000 elements, element size
= 1, O(6), acoustic domain: 208,000 elements, element size = 1, O(6)] with different numerical
resolution—non-matching [flow domain: 8,000 elements, element size = 1, O(6), acoustic domain:
3,250 elements, element size = 5, O(12)]

78 V. Krupp et al.

Table 2 Absolute and relative error for the different simulations of the Gaussian pulse distribution
measured at positions ±0.1 off from the coupling surface in the flow respectively in the acoustic
domain. Relative error is normalized to the acoustic perturbation in the pressure since this is the
travelling information

Flow domain Acoustic domain

Absolute error Relative error Absolute error Relative error

Maximum of pressure distribution

Matching
coupling

1.5e-07 1.9e-03 7.25e-08 9.37e-04

Non-matching
coupling

1.53e-07 1.98e-03 8.07e-08 1.04e-03

Minimum of pressure distribution

Matching
coupling

1.14e-07 1.471e-03 3.73e-08 4.83e-04

Non-matching
coupling

1.16e-07 1.497e-03 4.27e-08 5.53e-04

equations in the outer domain. In the first setup, only the equations are switched, but
mesh level and order of the scheme are kept the same in both parts of the domain
(matching resolution). In a second setup, the effort for the outer domain is decreased
by using a coarser mesh, but a higher order in the DG scheme compared to the inner
domain (non-matching). The numerical configuration for the matching simulation
is flow domain: 8,000 elements, element size = 1, O(6), acoustic domain: 208,000
elements, element size = 1, O(6). The configuration for the non-matching setup
is flow domain: 8,000 elements, element size = 1, O(6), acoustic domain:3,250
elements, element size = 5, O(12).

Table 2 shows the comparison of the results for matching and non-matching grid in
terms of absolute and relative error in pressure. The table shows the good accordance
of the results, i.e. the quality of the solution is the same for the finer mesh with lower
order (matching configuration) as for the coarser mesh with higher resolution. We
will now investigate the gain in performance by this variation.

4.2.7 Performance Benefits for Coupling Differing Equation Systems

Coupling non-linear Euler equations with linearized Euler equations yield different
computational load on the corresponding subdomains. Therefore, a coupled simu-
lation with properly chosen computational resources can reduce the computational
cost. Besides the variation in the numerical parameters (matching/non-matching),
also the distribution of the two subdomains to available compute resources can be
optimized. Table 3 illustrates the overall runtime of the Gaussian pressure pulse sim-
ulation for different settings of the parallel distribution where the overall number of
512 MPI-ranks is used on the SuperMuc Phase 1 IBM system at LRZ, Munich. The
particular number of MPI ranks is chosen to fill a full node with 16 processes. In the

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 79

Table 3 Load balancing for different distributions of total 512 MPI-ranks on SuperMUC of a
coupled simulation of Gaussian pressure pulse against monolithic simulation. Using 64 ranks for
the flow domain and 448 for the acoustic domain yield the faster computation for same resolution
on both subdomains

Type Number of MPI-ranks Total computation
time (s)

Flow domain Acoustic domain

Matching coupling 256 256 1336

128 384 886.65

112 400 845.573

96 416 824.695

80 432 847.923

64 448 832.06

48 464 838.607

32 480 902.342

16 496 1535

Non-matching
coupling

96 416 476.886

case of matching grids, we found that utilizing 96 ranks for the flow domain and 416
for the acoustic domain yields the fastest computation with 824s. Table 3 illustrates
how the imbalance moves from the acoustic domain, when using a low number of
MPI-ranks here, to the flow domain since when using more MPI-ranks in acoustics,
less in the flow domain. Using a too small number of MPI-ranks for this domain, i.e.
16 MPI ranks for the flow domain as well using a too small number of MPI-ranks
for the acoustics, leads to the longest runtimes of 1336 and 1535 s respectively. The
optimal setting is neither to the one nor to the other extreme, but in a medium, best
suited distribution which reduces the runtime by roughly a factor of 2.

The best setup nevertheless is the adapted configuration which uses a much coarser
mesh for the acoustic domain, yet settled by an increased order for the DG scheme.
By this change in the numerical parameters, the runtime can be decreased by another
factor of 2. These performance benefits become even more crucial when enlarging
the acoustic far field even more or when solving different numerical problem where
the length scale in the flow domain are magnitudes smaller than in the presented
testcase.

5 Conclusion

Partitioned coupling is a promising strategy to solve multi-scale as well as multi-
physic problems on todays supercomputer. By splitting the whole domain into sin-
gle physics subdomains and enabling interaction via surface coupling, each single

80 V. Krupp et al.

physics domain can be solved by individual solvers using numerical methods which
are perfectly tailored to the underlying physics. Hence, problems which might not be
not feasible in a monolithic approach, due to e.g. too different length scales ending
in large computational costs, can be accomplished.

We presented two different coupling approaches namely a multi-solver approach
utilizing an external coupling library which takes care about steering, data map-
ping as well as data communication, but uses the individual solvers as black boxes,
and an integrated approach, making use of all knowledge available on the solver,
implemented within one numerical framework. This approach suffers from a loss of
generality but gains performance.

Exploiting a higher order method in the solver has the advantage that polyno-
mial approximations on the coupling surface are available and therefore, can be
used within the integrated coupling approach APESmate. In contrast, the multi-
solver approach with the coupling library preCICErequires an additional interpola-
tion method for the data mapping. For non-matching grids, which typically occur
when coupling different numerical resolution, using first order interpolation show
unsatisfactory simulation error. Using direct polynomial evaluation for the data map-
ping, which is one key benefit ofAPESmate exhibits very good results when coupling
high order which was shown with the example of coupling 64th order in space with
and 32th order in space. For medium order, using preCICEwith 2nd order radial
basis functions and APESmate with direct evaluation, both yield satisfying numeri-
cal results.

Comparing the performance of the integrated approach APESmate with the multi-
solver approach using preCICEon a modern supercomputer SuperMuc at LRZ,
Munich, APESmate shows an advantage of 20 % lower overall computation time.
This confirms the expected performance benefits gained by the tight integration of
the coupling with the solver, which allows for exploitation of knowledge about inter-
nal data structures. But even that the multi-solver approach can not compete with a
fully integrated approach in terms of overall runtime, the scalability is nevertheless
satisfying.

Partitioned coupling leads to different work load in the single physics domains
and hence, properly chosen number of compute resources can reduce the overall
computational costs. This is shown on the example of a Gaussian pressure distribu-
tion, where a non-linear flow domain (Euler equations) is coupled to a surrounding
acoustic domain (linearized Euler equations). Chosing the right distribution of MPI-
ranks per subdomain, the computational cost is reduced by a factor of 2. Adaption of
the numerical resolution in the individual domains, e.g. by coarsening the grid reso-
lution and increasing the order in the acoustic domain can reduce the computational
cost even more, in our example by a factor of 2 compared to the matching resolution
coupling.

The focus of future work is on numerical challenges, in particular the coupling
of different timesteps. Enabling subcycling of one solver by assuring a consistent
timestep even for large differences in individual timesteps will give further perfor-
mance benefits.

Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems 81

Acknowledgements The financial support of the priority program 1648 - Software for Exascale
Computing 214 (www.sppexa.de) of the German Research Foundation. The performance mea-
surements were performed on the Supermuc supercomputer at Leibniz Rechenzentrum (LRZ) der
Bayerischen Akademie der Wissenschaften. The authors wish to thank for the computing time and
the technical support.

References

1. Bungartz, H.J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann,
B.: Precice – a fully parallel library for multi-physics surface coupling. Comput. Fluids (2015).
Accepted

2. Bungartz, H.J., Lindner, F., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: Partitioned
Fluid-structure-acoustics interaction on distributed data - coupling via preCICE. In: Bungartz,
H.J., Neumann, P., Nagel, E.W. (eds.) Software for Exa-scale Computing - SPPEXA 2013–
2015. Springer, Berlin (2016)

3. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis,
and Applications, 1st edn. Springer Publishing Company, Incorporated (2007)

4. Klimach, H.G., Hasert, M., Zudrop, J., Roller, S.P.: Distributed octree mesh infrastructure
for flow simulations. In: J. Eberhardsteiner (ed.) ECCOMAS 2012 - European Congress on
Computational Methods in Applied Sciences and Engineering, e-Book Full Papers (2012)

5. Masilamani, K., Klimach, H., Roller, S.: Highly efficient integrated simulation of electro-
membrane processes for desalination of sea water. In: W.E. Nagel, D.B. Kröner, M.M. Resch
(eds.) High Performance Computing in Science and Engineering ’13, pp. 493–508. Springer,
New York (2013). doi:10.1007/978-3-319-02165-2

6. Roller, S., Bernsdorf, J., Klimach, H., Hasert, M., Harlacher, D., Cakircali, M., Zimny, S.,
Masilamani, K., Didinger, L., Zudrop, J.: An adaptable simulation framework based on a
linearized octree. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S. (eds.)
High Performance Computing on Vector Systems 2011, pp. 93–105. Springer, Berlin (2012)

7. Shukaev, A.K.: A fully parallel process-to-process intercommunication technique for precice.
Master’s thesis, Institut für Informatik, Technische Universität München (2015)

8. Tam, C.K.W.: Computational Aeroacoustics. Cambridge University Press (2012). http://dx.
doi.org/10.1017/CBO9780511802065. Cambridge Books Online

9. Zudrop, J.: Efficient numerical methods for fluid- and electro-dynamics on massively parallel
systems. Ph.D. thesis, RWTH Aachen (2015)

10. Zudrop, J., Klimach, H., Hasert, M., Masilamani, K., Roller, S.: A fully distributed CFD
framework for massively parallel systems. In: Cray User Group 2012. Stuttgart, Germany
(2012)

www.sppexa.de
http://dx.doi.org/10.1007/978-3-319-02165-2
http://dx.doi.org/10.1017/CBO9780511802065
http://dx.doi.org/10.1017/CBO9780511802065

The Spectral Structure of a Nonlinear
Operator and Its Approximation II

Uwe Küster

Abstract Linear operators allow for a structural analysis by their spectra and the
related decomposition in stable linear subspaces. This does not apply to nonlinear
operators, which are relevant for most natural phenomena. But this problem could be
overcome. The nonlinear operator can induce a special linear operator in a large linear
space. The induced linear operator is named Koopman operator offering structures to
bemapped to the original settings.We try to give approaches for a numerical handling
of some properties, generalizing the approach of the Dynamic Mode Decomposition
of Peter Schmid.

1 Introduction

This paper is directly related to a first part [9] from the author and is to be considered
as an extension of the numerical approaches. The analysis of linear operators as used
in simulation problems is attractive because of the inherent spectral structures, which
might simplify the theoretical and numerical analysis or may be substantial part of
the observable natural properties. Surely more important are the nonlinear operators
governing nearly all natural processes. They are typically very complex and seem to
lack the obvious structures induced by linearity. Sometimes people try to linearize
the operators in a small region of interest to get linear structures. But this approach
does not show global implications of local solutions, might show critical features,
but not there global effects. But there is a functional analytic mechanism, by which
an nonlinear operator with some weak assumptions can be extended to a linear
operator on another larger space. This so-called Koopman operator has structures
which might be helpful for analysis of the natural problem. The Koopman operator
appears in Ergodic Theory founded by Ludwig Boltzmann and developed later by
John von Neumann, John von Neumann, George David Birkhoff, Bernard Osgood
Koopman, Norbert Wiener, Aurel Friedrich Wintner. See the monograph [1] also

U. Küster (B)
High Performance Computing Center Stuttgart (HLRS), Nobelstraße,
19 70569 Stuttgart, Germany
e-mail: kuester@hlrs.de

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_7

83

84 U. Küster

for modern developments. On the other hand their are more empirically motivated
developments as the Dynamic Mode Decomposition of Peter Schmid [7]. These
showed to be related to the Koopman operator theory, as pointed out by Igor Mesić
and coworkers in [4] and also Clarence Rowley and his coworkers in [5].
Our interest here is to give some remarks on the relation of the spectral structure
of the Koopman operator to the possibility to approximate a part of the spectrum
numerically. The approach is motivated by the Dynamic Mode Decomposition and
generalizing it. No examples are given.

2 The Koopman Operator

Let

ϕ : K −→ K (1)

be a continuous nonlinear operator on the compact space K and assume F being a
linear subspace of “observables”, of C (K) the continuous functions on K . F shall
have the stability property

f ∈ F ⇒ f ◦ ϕ ∈ F (2)

that means, that an observable coupled with the operator is again in the observable
space. Observablesmight be any useful functional on the space of interest as themean
pressure of a (restricted) fluid domain Ω or the evaluation operators δx at all points
x ∈ Ω . The nonlinear operator ϕ has no further restrictions. It might describe non
wellposed unsteady problems, the case where trajectories are not convergent (also
strange attractors), chaotic or turbulent behaviour, mixing fluids, particle systems or
ensembles of trajectories for weather forecast. The operator could also be defined by
an agent based system for the simulation of traffic, epidemics, social dependencies,
where the agents determine their next status by the current status of some other
neighbouring agents. In this case K is the set product of the status of all agents with
some topology and surely not a subset of a vector space in contrast to F . Even
the pictures of a movie could be understood as elements of a space K ordered in a
trajectory which is produced by an unknown operator ϕ (Kutz, SIAM Conference
on Applications of Dynamical Systems 2015, Snowbird). As an important numerical
example ϕ could be taken as a time discretization of the Navier-Stokes equations on
a finite set of grid points in a domain and time steps. It is even possible to understand
K here as the product of the status of all variables on the discretization grid together
with varying boundary conditions and geometrical parameters.

The Spectral Structure of a Nonlinear Operator and Its Approximation II 85

By a simple mechanism the nonlinear operator ϕ acting on a set without linear
structure induces a linear operator on the space of observables F . The operator Tϕ

on the observables defined by

Tϕ : F −→ F (3)

f �→ Tϕ f = f ◦ ϕ (4)

is named the Koopman operator of ϕ on F [2]. It is immediately clear that Tϕ is
linear and continuous.
As an infinite dimensional operator Tϕ may have a (complicated) spectrum with
discrete and continuous parts. We are mainly interested in the point spectrum with
eigenvalues providing eigenfunctions which are elements of F .
The drawback is that Tϕ acts on an infinite dimensional space even in very simple
cases, which is a pain for numerical analysis.

2.1 Unusual properties of the Koopman-Operator

Even for simple cases the space of observables F is large because of the stability
property. For numerical applications it can be restricted in a still meaningful way.
Only a small finite part of the point spectrum can be approximated in a numerical
way. The eigenvectors or eigenfunctions f are elements of the space of observables
F , not of the state space K as it would be in the linear case. They fulfill Schröders
functional equation

f (ϕq) = λ f (q) ∀ q ∈ K

It might be difficult to be interpret this equation in terms of specific phenomena
in application cases. The eigenfunctions f are typically nonlinear as K has no lin-
ear structure. The point spectrum Pσ

(
Tϕ

)
of the Koopman operator has unusual

properties. Dependent on the extent of the space of observables F and eigenpairs
(λ, f), (λ1, f1), (λ2, f2) with f1 · f2 �= 0 we have the following. λ1 · λ2 ∈ Pσ

(
Tϕ

)
with eigenfunction f1 · f2 and |λ| ∈ Pσ

(
Tϕ

)
with eigenfunction | f | assuming, that

f1 · f2, | f | ∈ F .

3 The Numerical Approach: The Space of Observables

For numerical calculations it is important to find a reasonable linear space of observ-
ablesF which should be as small(!) as possible, whereas functional analysis takes
the continuous functions on K (F = C (K)) or even larger spaces.

86 U. Küster

Necessary are the stability conditions (2). In a numerical context this can be reached
by simply iterating the observable. The smallest reasonable numerical setting is to
investigate the finite sequence

G f (q) =
[
g f
k (q)

]
k=0,··· ,n

= [
f
(
ϕkq

)]
k=0,··· ,n (5)

for a single observable f starting with an arbitrary single state q = q0 ∈ K . Starting
with q

′ = ϕ j q is also a reasonable option enforcing the significance of a shifted
sequence on the same trajectory. Nevertheless the trajectory could be large, even
dense in K . A finite number of linear independent observables S can be combined
in this way in a vector h. Explicit knowledge of the operator ϕ is not needed for
numerical purposes; the effect of the operator on the state space as measured by
the observables is sufficient. This is very helpful for numerical purposes. Essential
for the following to find a (normalized) vector c of degree p ≤ n with the property
G f (q) c ≈ 0 in some way to be defined. This vector c is understood as a polynom
coefficient vector with polynomial roots λl .

3.1 Relation to the Koopman Operator

The values for the k-times iterated Koopman operator Tϕ on the trajectory are

(
T k

ϕ h
)
(ql) = h

(
ϕkql

) = h
(
ϕk+lq0

) = gk+l ∀ k, l ∈ N0 (6)

The space of observables F and the Koopman operator for the restriction of ϕ to
the trajectory are completely described in this way. The vectors gk+l are given by
measurements or numerical calculations. The Krylov space matrix of the first p iter-
ations of the infinite-dimensional vector consisting on finite dimensional subvectors
(h (ql))l∈N0

is

⎡
⎢⎢⎢⎢⎢⎣

h (q0)
(
Tϕ h

)
(q0) . . .

(
T p

ϕ h
)
(q0)

h (q1)
(
Tϕ h

)
(q1) . . .

(
T p

ϕ h
)
(q1)

h (q2)
(
Tϕ h

)
(q2) . . .

(
T p

ϕ h
)
(q2)

h (q3)
(
Tϕ h

)
(q3) . . .

(
T p

ϕ h
)
(q3)

...

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h (q0) h
(
ϕ1q0

)
. . . h (ϕ pq0)

h (q1) h
(
ϕ1q1

)
. . . h (ϕ pq1)

h (q2) h
(
ϕ1q2

)
. . . h (ϕ pq2)

h (q3) h
(
ϕ1q3

)
. . . h (ϕ pq3)

...

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

g0 g1 . . . g0+p

g1 g2 . . . g1+p

g2 g3 . . . g2+p

g3 g4 . . . g3+p
...

⎤
⎥⎥⎥⎥⎥⎦

(7)

The Spectral Structure of a Nonlinear Operator and Its Approximation II 87

This is a Hankel type matrix. Any row in this infinite matrix is the left shifted row
above. The entries are constant along antidiagonals. Only a finite number of rows
can be handled in a numerical procedure.

3.2 Hankel Matrices

We therefore consider the Hankel matrix of measurements

G0:n−p, 0:p =

⎡
⎢⎢⎢⎣

g0+0 g1+0 . . . gp+0

g0+1 g1+1 . . . gp+1
...

...
...

g0+n−p g1+n−p . . . gn

⎤
⎥⎥⎥⎦ (8)

where the j-th line is given by the measurements 0 + j : p + j for j = 0, · · · , n −
p. The elements may be whole vectors consisting on observables. The whole matrix
may be understood as a set of combined measurements. We try to minimize the
l2-norm of the error r for a coefficient-vector c with deg c = p

G c = r (9)

with

r =

⎡
⎢⎢⎢⎣

r0
r1
...

rn−p

⎤
⎥⎥⎥⎦ (10)

in some appropriate way. r consists on multiple vectors of element type. The vector
c is a polynom coefficient vector of degree deg p and is normalized in the l2-Norm.

3.3 Convolution of Polynom Coefficient Vectors

Definition 3.1 The convolution of two coefficient vectors c with deg c = p and b
with deg b = q is the given by the coefficient vector of the product polynom

(c ∗ b) (λ) = c (λ) b (λ) ∀ λ ∈ C (11)

The convolution-matrix An(c) for a coefficient vector c of deg c = p is the matrix
of the progressively shifted vector c

88 U. Küster

A(c) = An(c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 n − p

0 c0

1 c1
. . .

. . c0

. . c1

p cp
...

.
. . .

n cp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

The convolution and the convolution matrix have the following properties.

Theorem 3.2 Let c be the coefficient-vector of a polynom with deg c = p (cp �= 0).

1. The convolution matrix acts as the convolution product (deg b = n − p)

A(c) b = c ∗ b (13)

2. The convolution matrix has full rank

dim Im An(c) = n − p + 1 (14)

3. If deg b = q ≤ n − p for a second polynom b, then for the product of the two
polynoms we have

An(c ∗ b) = An(c) An−p(b) = An(b) An−q(c) (15)

a matrix with columns ranging from 0 to n − (deg b + deg c).
4. The convolution matrix of a vector with single column is the vector itself.

Ap(c) = c (16)

5. A polynom coefficient vector d is element of Im An(c) if and only if the related
polynom is divisable by the polynom of c.

6. If the polynom related to c divides the polynom of d, then the Moore-Penrose
inverse of d

b = (
An(c)

∗An(c)
)−1

An(c)
∗d (17)

defines the remaining factor b with d = c ∗ b. This remark is useful, because
the Euclidian algorithm used for the theoretical factorization is numerically not
stable.

7. The representation of a product by a Hankel matrix (8) with a polynom coefficient
vector c

The Spectral Structure of a Nonlinear Operator and Its Approximation II 89

G0:n−p, 0:p c =

⎡
⎢⎢⎢⎣

g0+0 g1+0 . . . gp+0

g0+1 g1+1 . . . gp+1
...

...
...

g0+n−p g1+n−p . . . gn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c0
c1
...

cp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

r0
r1
...

rn−p

⎤
⎥⎥⎥⎦ (18)

can be written by reordering as

[
g0 g1 g2 · · · gn

]
An(c) = [

r0 r1 · · · rn−p
]

(19)

or G An(c) = R (20)

To see this, multiply the Hankel matrix row by row by c. This is the same as
multiplying the whole set of measurements G with the shifted vector c as part of
the matrix An(c).

8. Assume, that for a symmetric matrix H we have non negative constants ν and μ

such that

ν A(c)∗A(c) ≤ A(c)∗H A(c) ≤ μ A(c)∗A(c) (21)

as operators, than for another coefficient vector b with an appropriate degree we
have also

ν A(b)∗A(c)∗A(c) A(b) ≤ A(b)∗A(c)∗H A(c) A(b) ≤ μ A(b)∗A(c)∗A(c) A(b)

and

ν A(b ∗ c)∗A(b ∗ c) ≤ A(b ∗ c)∗H A(b ∗ c) ≤ μ A(b ∗ c)∗A(b ∗ c) (22)

4 The Decomposition of a Signal in Koopman Modes

Using the roots λl of the polynom coefficient vector cwith degree p for defining enti-
ties v f

l (q) in the next equation we will construct an approximative decomposition
of G f (q) for all q ∈ Q of the type

N0
 k �→ g f
k (q) ≈ g̃ f

k =
p∑

l=1

v f
l (q) λ k

l ∀ f ∈ S (23)

The p roots are related to the stability. |λl | = 1 describe unsteady but stable modes
(typical); for |λl | < 1 the mode disappears; modes with |λl | > 1 are not stable. This
describes the iterative development with respect to index k of all observables in S by
common modes λl , the so-called Ritz values, which may be independent on q and

f . The complex vectors vl (q) =
(
v f
l (q)

)
f ∈S

are named Koopman modes [4]. They

are independent on the iteration number k. Even if the approximating sequence is not

90 U. Küster

describing the complete signal, it gives the chance in getting insight in the behaviour
of the underlying operator.
For p = n the procedure is a reformulation of the so-called Dynamic Mode Decom-
position of [7].

4.1 Vandermonde Decomposition for a Polynom Coefficient
Vector

Let cwith deg c = p be the coefficient vector of the polynom c (λ) = ∑p
k=0 ckλ

k ∀λ

∈ C. We assume that the p roots λl are pairwise different. Otherwise the relations
are more confusing; but we will not expect multiple roots of modulus 1 for stable
cases. Each rootλl , l = 1, . . . , p of the polynom c defines the coefficient-vectorwl =[
wl 0, wl 1, · · · , wl p−1

]T
with deg wl = p − 1 and wl (λl) �= 0 by factorizing c

c (λ) = (λ − λl)wl (λ) ∀ λ ∈ C or c = wl ∗
[−λl

1

]
(24)

The p vectorswl are linearly independent. To see this multiply 0 =
[
1, λm, λ2

m, . . . ,

λ
p−1
m

] ∑p
l=1 αl wl = ∑p

l=1 αl wl (λm) = αm wm (λm). Because λm is a simple root,

wm (λm) �= 0, and we have αm = 0. It can be shown that (multiply by wm from the
right)

I0:p−1 =
p∑

l=1

1

wl (λl)
wl

[
1, λl , λ

2
l , . . . , λ

p−1
l

]
(25)

is the identity operator. By this way every polynom coefficient vector c of degree p
with pairwise different roots is associatedwith a p-dimensional subspace of polynom
coefficient vectors. This will help to derive eigenmodes only from the set of roots or
eigenvalues.

5 The Koopman Eigenvectors for a Decomposition

Rewriting equation (23) by stacking (0 : p) subsequent elements leads to

⎡
⎢⎢⎢⎣

g̃k (q)

g̃k+1 (q)
...

g̃k+p (q)

⎤
⎥⎥⎥⎦ =

p∑
l=1

⎡
⎢⎢⎢⎣

vl (q) λ0
l

vl (q) λ1
l

...

vl (q) λ
p
l

⎤
⎥⎥⎥⎦ λ k

l =
p∑

l=1

vl (q)

⎡
⎢⎢⎢⎣

λ0
l

λ1
l
...

λ
p
l

⎤
⎥⎥⎥⎦ λ k

l (26)

The Spectral Structure of a Nonlinear Operator and Its Approximation II 91

Multiplying from the left by a vector u∗ = w∗
i

wi (λi)
d∗, wherewi is a polynom coefficient

vector of degree p − 1 with wi (λl) = 0 ∀ l �= i and di is an arbitrary vector, this
transforms the decomposition to the action on the single mode i

u∗
i

⎡
⎢⎢⎢⎣

g̃k (q)

g̃k+1 (q)
...

g̃k+p (q)

⎤
⎥⎥⎥⎦ =

p∑
l=1

d∗
i vl (q)

wi (λl)

wi (λi)
λ k
l = d∗

i vi (q) λ k
i (27)

Returning back to the definition (5) of g̃ f
k (q) ≈ g f

k (q) = f
(
ϕkq

)

u∗
i

⎡
⎢⎢⎢⎣

f
(
ϕk ◦ ϕ q

)
f
(
ϕk+1 ◦ ϕ q

)
...

f
(
ϕk+p ◦ ϕ q

)

⎤
⎥⎥⎥⎦ ≈ d∗

i vi (q) λ k+1
i ≈ λi u

∗
i

⎡
⎢⎢⎢⎣

f
(
ϕkq

)
f
(
ϕk+1q

)
...

f
(
ϕk+pq

)

⎤
⎥⎥⎥⎦ (28)

showing, that u∗
i

[
f ◦ ϕk+ j

]
j=0,··· ,p approximates a Koopman eigenfunction for the

eigenvalue λi on the trajectories starting with q ∈ Q. Remarkable is, that the approx-
imate eigenfunction is composed by the values only on the specific trajectory belong-
ing to q ∈ Q. Because di is an arbitrary vector, the eigenspace of λi is as large as
the dimension of the linear space generated by the observables f ∈ S. This does not
imply, that λi is a multiple root of c. For a case of having the vectors gk as functions
on a discrete set Ω , the vectors di may be evaluation operators, showing that the
Koopman eigenfunctions can be understood themselves as discrete functions on the
same set Ω .

5.1 Wiener-Wintner Eigenfunctions and Decomposition

Assumed is a measure μ on K with the property μ
(
ϕ−1 (A)

) = μ (A) for all mea-
surable sets A of K . Then for μ-almost all q ∈ K and for real ω the sum

f̃ω (q) = lim
N→∞

1

N

N−1∑
k=0

f
(
ϕkq

)
ei 2π ωk (29)

converges. This is the content of the theorem of Wiener-Wintners (1931), see [1].
Clearly we see that by

f̃ω (ϕq) = e−i 2πω f̃ω (q) for μ-almost all q ∈ K (30)

92 U. Küster

that
(
e−i 2πω, f̃ω

)
is an eigenpair. The sum remembers the inverse Discrete Fourier

Transform but with arbitrary real ω instead of the rational fractions ω = m
N . For

the special case ω = 0 the mean value along the trajectory is an eigenfunction with
eigenvalue 1.
How does that fit the described context? For all l = 0, 1, · · · , N , define angles by
ω l = ω + l

N and eigenvalues λl = e−i2πω l . The convolution of the polynom coeffi-

cient vectors wl and the linear factors

[−λl

1

]
result in

e−i2π(N−1)ω l wl ∗
[−λl

1

]
= e−i2π(N−1)ω l

⎡
⎢⎢⎢⎣

1
ei2πω l

.

.

.

ei2π(N−1)ω l

⎤
⎥⎥⎥⎦ ∗

[−λl
1

]
=

⎡
⎢⎢⎢⎢⎢⎣

−ei2πNω

0
.
.
.

0
1

⎤
⎥⎥⎥⎥⎥⎦

= cω

(31)

with a coefficient vector cω and wl (λl) = N independent on l. For l = 0 we find
the sequence generating the sum (29). That means, the Wiener-Wintner sequence is
generated by cω belonging to the family of ω l .

6 Polynom Coefficient Vector and Hankel Matrix

Theorem 6.1 Assume a vector c with deg c = p for an approximating sequence
G̃ = [

g̃0 g̃1 . . . g̃n
]
, such that its product with the Hankel matrix vanishes

0 = G̃0:n−p, 0:p c =

⎡
⎢⎢⎢⎣

g̃0+0 g̃1+0 . . . g̃p+0

g̃0+1 g̃1+1 . . . g̃p+1
...

...
...

g̃0+n−p g̃1+n−p . . . g̃n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

c0
c1
...

cp

⎤
⎥⎥⎥⎦ (32)

Than for the rootsλl of c and the vectorswl definedby c = wl ∗
[−λl

1

]
(l = 1, · · · , p)

[
g̃0 g̃1 . . . g̃n

] =
p∑

l=1

vl
[
1, λl , λ

2
l , . . . , λ

n
l

]
(33)

with the vectors (wl enlarged by 0 for components p + 1, · · · , n)

The Spectral Structure of a Nonlinear Operator and Its Approximation II 93

vl = g̃0:p−1
1

wl (λl)
wl = G̃

1

wl (λl)

⎡
⎢⎢⎢⎣

wl

0
...

0

⎤
⎥⎥⎥⎦ (34)

A smaller p implies less eigenvalues λl used in the decomposition. The matrix
G̃0:n−p, 0:p must have more inner dependencies for smaller p.

Proof We have by (24) in (32) G̃0:n−p, 0:p wl ∗
[−λl

1

]
= G̃0:n−p, 0:p c = 0 for

every l = 1, · · · , p
and therefore G̃

0:n−p,
↓

1:p
wl = λl G̃

0:n−p,
↓

0:p−1
wl or row by row g̃0+ j+1 : p+ j wl =

λl g̃0+ j : p−1+ j wl and by induction

g̃0+ j+1 : p+ j wl = λ
j+1
l g̃0 : p−1 wl ∀ j = 0, · · · , n − p (35)

Using the Vandermonde decomposition (25) we get

⎡
⎢⎢⎢⎢⎢⎣

g̃0 :p−1

g̃1 :p
...

g̃n−p :n−1

g̃n−p+1 :n

⎤
⎥⎥⎥⎥⎥⎦

=
p∑

l=1

⎡
⎢⎢⎢⎢⎢⎣

g̃0 :p−1

g̃1 :p
...

g̃n−p :n−1

g̃n−p+1 :n

⎤
⎥⎥⎥⎥⎥⎦

wl

wl (λl)

[
1, λl , λ

2
l , . . . , λ

p−1
l

]

(35)=
p∑

l=1

1

wl (λl)
g̃0:p−1 wl

⎡
⎢⎢⎢⎢⎢⎣

1
λl
...

λ
n−p
l

λ
n−p+1
l

⎤
⎥⎥⎥⎥⎥⎦

[
1, λl , λ

2
l , . . . , λ

p−1
l

]
(36)

by definition of the Hankel matrix (32) that means

g̃k =
p∑

l=1

1

wl (λl)
g̃0:p−1 wl λk

l ∀ k = 0, · · · , n (37)

such that we get finally the decomposition

[
g̃0 g̃1 . . . g̃n

] =
p∑

l=1

vl
[
1, λl , λ

2
l , . . . , λ

n
l

]
(38)

94 U. Küster

6.1 Approximatve Decomposition of a Signal in Modes

Given is an arbitrary coefficient vector c with deg c = p. We will described who
G can be decomposed in two parts G = Gmodes + ΔG related to c. The first part
Gmodes will be given by a linear decomposition in modes defined by the roots of c
and by the requirement Gmodes A(c) = 0 and will described later. The second part
defines the defect in relation (20) given byΔG A(c) = R. There are some reasonable
requirements in selecting ΔG. First we restrict ΔG by

Im ΔG ⊂ Im R (39)

that means ΔG = R β∗ for some matrix β and consequentially R β∗A(c) = R. For
a general non restricted R , this enforces β∗A(c) = I . Defining β∗ = (α∗A(c))−1 α∗
fulfills this condition, if α∗A(c) is invertible. We simply take α = A(c), but this not
mandatory. With these assumptions we get (remember, that A(c) has full rank)

R A(c)∗ = R
(
A(c)∗A(c)

)−1
A(c)∗ (20)= G A(c)

(
A(c)∗A(c)

)−1
A(c)∗ = G Q

and therefore

ΔG = R A(c)∗ = G Q (40)

for the selfadjungated projection Q (Q = Q2, Q = Q∗) on Im ΔG

Q = A(c)
(
A(c)∗A(c)

)−1
A(c)∗ (41)

with the property

(I − Q) A(c) = 0 (42)

This implies for the decomposition G = Gmodes + ΔG = G (I − Q) + G Q and
the property 0 = Gmodes A(c) = [

g̃0 g̃1 . . . g̃n
]
A(c). Switching to the equivalent

Hankel representation of Gmodes = G̃ we have (32) and the decomposition (33) and
therefore

Gmodes = [
g̃0 g̃1 . . . g̃n

] =
p∑

l=1

vl
[
1, λl , λ

2
l , . . . , λ

n
l

]
(43)

with the modes vl = Gmodes
1

wl (λl)

[
wl

0

]
from (34).

We pave now the way for quantification of the l2-norm ‖ΔG‖2 of the defect operator
ΔG. Using the l2-norm is a clear restriction. It might be more appropiate to investi-
gate the l∞-norm. Taking the quantity μ = ‖ΔG‖22 we have to analyse the operator

The Spectral Structure of a Nonlinear Operator and Its Approximation II 95

inequality ΔG∗ΔG ≤ μ I or by (40)

Q∗ H Q ≤ μI (44)

with the SPD matrix H = GT G and the projection Q in (41).
The operator inequality (44) with explicit Q can be written as

A(c)
(
A(c)∗A(c)

)−1
A(c)∗ H A(c)

(
A(c)∗A(c)

)−1
A(c)∗ ≤ μI. (45)

Because A(c) has full rank, this is equivalent to

A(c)∗ H A(c) ≤ μ A(c)∗ A(c) (46)

We end up with the following theorem.

Theorem 6.2 Given is an arbitrary coefficient vector c with deg c = p. Assume that
the polynom c has no multiple roots.
We can decompose G in two parts

G = Gmodes + ΔG (47)

where for ΔG = G Q with Q = A(c)
(
A(c)∗A(c)

)−1
A(c)∗ fulfilling the require-

ments (39)
we have ‖ΔG‖2 ≤ √

μ iff

A(c)∗ H A(c) ≤ μ A(c)∗ A(c) (48)

For the roots λl of c and vl = 1
wl (λl)

Gmodes

[
wl

0

]
from (33) with c = wl ∗

[−λl

1

]

Gmodes =
p∑

l=1

vl
[
1, λl , λ

2
l , . . . , λ

n
l

]
(49)

6.2 Simplified Approach

Applying the trace on both sides of operator inequality (48), we get by definition of
H = GT G for the j-th shifted row G j = [

g0+ j g1+ j . . . gn+ j
]

1

n − p + 1

n−p∑
j=0

∥∥G j c
∥∥2 ≤ μ

n − p + 1

n−p∑
j=0

‖ c ‖2 = μ ‖ c ‖2 (50)

96 U. Küster

orwith the collapsedmatrix Hn−p which is composed by a sumof shifted submatrices
of H

Hn−p = 1

n − p + 1

n−p∑
j=0

(
G j

)T
G j (51)

we have for the pair (c, μ)

< Hn−p c , c > ≤ μ ‖ c ‖2 (52)

suggesting to take c as eigenvector of Hn−p with the smallest eigenvalue. But inequal-
ity is only a necessary and not sufficient condition for (48).

7 Remarks

1. With this operator valued estimate it is possible to calculate the approximation
quality of the modes defined by the roots of c for any polynom coefficient vector
c with degree p.

2. We have an algorithm approximating the minimal value μ and the respective c
for a given degree p. It uses Rellichs theorem [10] that an eigenvalue problem
with symmetric matrices depending analytically on a real parameter provides
eigenvalues and eigenvectors also depending analytically on that parameter.

3. The algorithm delivers eigenvalues with modulus near to 1 for our test cases.
Some of these fulfill the condition λ jλk ≈ λm(j,k) for some j, k. The calculation
of the eigenvalues is stiff. Some small changes in c may change some of the
eigenvalues significantly. We will try to control this by the later condition.

4. Changing the degree p has influence on some eigenvalues but not on all.
5. The degree p of c should be small to limit the number of modes; on the other

hand a small degree enlarges the approximation error μ. For the largest possible
p = n, we have A(c) = c and (v, μ) can be an eigenpair for smallest eigenvalue
of H . This is the setting for the Dynamic Mode Decomposition (DMD) of [7].

6. The simplified approach might help to find appropriate polynom coefficient vec-
tors c. The related constant μ is underestimating the true error. But if μ is small
and n − p is not large, then c might be appropriate.

7. Whereas G might be a very large matrix with many rows, H is a quadratic matrix
having the number of e.g. time steps as dimension which is typically smaller.

8. If (48) is given for several G respective H coming from different test cases for a
common small μ, then all these test cases share a common decomposition with
the same Ritz-values λl . In this way ensembles could be handled.

The Spectral Structure of a Nonlinear Operator and Its Approximation II 97

8 Conclusions

Extending the work in [9] we try to understand how to transfer the idea and the
properties of theKoopman operator from functional analysis to stimulate the analysis
of non wellposed simulation problems.
We showhow to determine eigenvalues as roots of a vector, which is near to the kernel
of the matrix of measurements in a specific sense. The roots enable the construction
of the so-called Koopman modes as well the Koopman eigenfunctions. The resulting
roots are only partially near to Koopman eigenvalues. To identify the spurious eigen-
values and to delete these or to shift these to a reasonable position is important. We
think, that the property of the Koopman operator, that products of eigenvalues are
again eigenvalues (if the product of their eigenfunctions does not disappear), might
help to identify true Koopman eigenvalues and eigenfunctions.

References

1. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory.
Graduate Texts in Mathematics. Springer (2015)

2. Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad.
Sci. USA 17(5), 315318 (1931)

3. Mezić, I.: Spectral properties of dynamical systems, model reduction, and decompositions.
Nonlinear Dyn. 41(1–3), 309325 (2005)

4. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22, 047510 (2012). doi:10.
1063/1.4772195

5. Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary
condition, Koopman, and Fourier analyse. J. Nonlinear Sci. 22(6), 887915 (2012)

6. Peller,V.V.:An excursion into the theory ofHankel operators, inHolomorphic spaces (Berkeley,
CA, 1995). In: Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, vol. 33, pp.
65120 (1998)

7. Schmid, P.J.: Dynamicmode decomposition of numerical and experimental data. J. FluidMech.
656, 24 (2010)

8. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of
nonlinear flows. J. Fluid Mech. Cambridge University Press (2009)

9. Küster, U.: The spectral structure of a nonlinear operator and its approximation. In: Sustained
Simulation Performance 2015: Proceedings of the jointWorkshop on Sustained Simulation Per-
formance, University of Stuttgart (HLRS) and Tohoku University, 2015, pp. 109–123, Springer
International Publishing, ISBN:978-3-319-20340-9, doi:10.1007/978-3-319-20340-9_9

10. Rellich, F.: Störungstheorie der Spektralzerlegung I., Analytische Störung der isolierten Punk-
teigenwerte eines beschränkten Operators. Math. Ann. 113, 600–619 (1937)

http://dx.doi.org/10.1063/1.4772195
http://dx.doi.org/10.1063/1.4772195
http://dx.doi.org/10.1007/978-3-319-20340-9_9

Implementation of a Parallel Sparse Direct
Solver on Vector Architecture

Atsushi Suzuki and François-Xavier Roux

Abstract Linear systems with large sparse matrices are solved in finite element
analysis of elasticity and/or fluid problems. Thanks to development of graph parti-
tioning software, it becomes feasible to extract dense sub-matrices efficiently with
minimizing fill-in during factorization. By analyzing task dependency of block fac-
torization of dense matrix, multi-cores of CPUs which share the main memory are
used in parallel and asynchronously. The tasks in dense sub-matrices consist of BLAS
level 3 kernels which efficiently use arithmetic capabilities of modern super-scalar
CPUwith large cachememory and also of modern vector CPU. BLAS level 3 kernels
can also efficiently use vector architecture, without writing any directives for explicit
vectorization in the code. Nevertheless, the sparse part still remains in factorization
process. Although it is only a small fraction of the whole process and almost negli-
gible on the super-scalar CPU, its optimization is important on vector architecture
due to short vector loop.

1 Introduction

We deal with large sparse matrices obtained from discretization by finite element
methods, and we assume that unsymmetric N × N matrix A has symmetric structure
of non-zero entries and has an LDU -factorization with symmetric partial pivoting,

A = ΠT LDUΠ . (1)

Here L and U are a unit lower or upper triangle, respectively. When the matrix has
k-dimensional null space, the last k entries of the diagonal matrix D become zero.

A. Suzuki (B)
Cybermedia Center, Osaka University, Machikaneyama,
Toyonaka, Osaka 560-0043, Japan
e-mail: atsushi.suzuki@cas.cmc.osaka-u.ac.jp

F.-X. Roux
LJLL, UPMC (Paris 6)/ONERA, 4 place Jussieu, 75005 Paris, France
e-mail: roux@ann.jussieu.fr

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_8

99

100 A. Suzuki and F.-X. Roux

We apply standard nested-dissection [1] algorithm to obtain amulti-frontal factor-
ization strategy for effective parallel computation. Since nested-dissection is based
on recursive bisection procedure of graph partitioning, sparse sub-matrices lie in
the lowest level of the bisection tree, and number of sub-matrices in each level is
two to the power of the level number. Parallel execution of factorizations of sparse
sub-matrix in the lowest level is natural even though variation of size of sub-matrices
needs to be taken account. It is mandatory to parallelize dense matrix in the higher
level of the bisection tree, in multi-core CPU environment. By introducing block
strategy for factorization of dense matrix, both utilization of BLAS level 3 kernels
suitable to cachememory architecture and parallelization become possible. However,
this block strategy changes pivoting procedure drastically because search range of
diagonal entries during pivoting is limited within the block size, which may request
usage of combination of 1 × 1 and 2 × 2 pivoting entries. Hence, we need to consider
factorization with symmetric permutation,

A = ΠT L̃ D̃ŨΠ (2)

where D̃ consists of mixture of 1 × 1 and 2 × 2 blocks. In practice, usage of 2 × 2
pivoting is minimized by recomputing Schur complement from postponed entries.
Here diagonal entry is postponed when the ratio to a successive entry becomes less
than a given threshold. The postponing strategy is rather common technique and
dynamic data management is used for implementation [2]. In our strategy, null pivot
candidates are postponed in the last Schur complement, which brings usage of static
data management.

Many of modern supercomputers consist of cluster of multi-core CPU system,
super-scalar core combined with large sized cache memory or vector core with small
sized cache memory. On the both systems, BLAS level 3 kernels efficiently use
arithmetic units of the core, which can hide difference of architecture, super-scalar
or vector arithmetic units, and the same code can run on the both systems.

We aim to run the code on shared memory architecture, where data transfer
between CPUs is no necessary. For distributed environment, LDU -factorization of
sparse matrix is used as a subdomain solver of domain decomposition algorithms,
for example, FETI [3] and BDD [4] methods.

In Sect. 2, factorization strategies using block substructure in both sparse and
dense sub-matrices are discussed. In sparse matrix computation, implementation to
vector architecture takes different approach than to super-scalar architecture for com-
putational efficiency. Asynchronous parallel execution of block elimination of dense
matrix is reviewed from previous paper [5]. In Sect. 3, difference of computational
efficiency between super-scalar and vector architectures is reported by using a finite
element matrix from incompressible Navier-Stokes equations. In the last section, we
conclude our results.

Implementation of a Parallel Sparse Direct Solver on Vector Architecture 101

2 Factorization of Sparse and Dense Sub-matrices

2.1 Recursive Computation of Schur Complement

By bisection procedure, the whole sparse matrix is decomposed into a union of
an interface that produces a dense sub-matrix and two sparse sub-matrices. This
procedure is applied recursively and a decomposition intomixture of sparse and dense
sub-matrices is obtained. Fig. 1 shows an example of three-level nested-dissection
by analogy with decomposition of a two dimensional domain and corresponding
binary tree. To get such a nested-dissection graph partitioning, software packages
METIS [6] and SCOTCH [7] which reduce fill-in and optimize number of multi-
fronts for parallel computation are available.

In each level of the bisection tree, sub-matrix is factorized as

[
A11 A12

A21 A22

]
=

[
L11 0

A21U
−1
11 D−1

11 I2

] [
D11 0
0 S22

] [
U11 D−1

11 L
−1
11 A12

0 I2

]
, (3)

with S22 = A22 − A21A
−1
11 A12 = A22 − A21(L11D11U11)

−1A12. Here S22 is com-
puted from data of one side of domains sharing the interface and is gathered with the
other side for the next level of the bisection tree.

In the lowest level of the bisection tree, sparse matrix A11 is factorized with
tridiagonal block structure explained in the following subsection. We note that A12

consists of sparse matrix and needs to be dealt by using sparse data structure. For
unsymmetric matrix, A21U

−1
11 is computed by U−T

11 AT
21, where data are stored in a

transposed way with the same structure as for A12. This treatment is optimal because
structural symmetry on non-zero entries is assumed.

In other levels of the bisection tree, A11 is dense matrix and A12 and A21 consist
of strip structure inheriting sparsity of the original matrix. The dense sub-matrix A11

is factorized by introducing block strategy.

Fig. 1 Schematic figure of nested-dissection of two dimensional domain (left) and corresponding
binary tree (right)

102 A. Suzuki and F.-X. Roux

In the following,we discuss two kinds of block structure for factorization to reduce
computational complexity for the sparse layer, and to introduce parallel computation
for the dense layer.

2.2 Tridiagonal Block Structure for Sparse Sub-matrix

The sparse matrix is renumbered into a block tridiagonal structure with variable
block size by reverse Cuthill-McKee ordering [8], which is similar to a uni-frontal
approach. Let Ns be the size of the square sparse matrix. Left side of Fig. 2 shows
tridiagonal block structure with variable block size bm . The first diagonal block
is factorized into LDU denoted as task α

(1)
1 , forward substitutions of the linear

system with the sparse matrix for multiple right-hand sides are performed for both
upper (β(1)

+2) and lower blocks (β(1)
−2), and then rank-b2 update (γ (1)

2) is performed
to generate the second diagonal block. Here factorization procedure is completely
serial. However, number of node in the lowest bisection level is usually large and
then there are a lot of independent tasks for sparse factorization. In order to reduce
complexity of computation of Schur complement, multiple right hand sides (RHS)
which are denoted as A12 or AT

21 are sorted in column by decreasing order of the
height of column vector which is defined by the first non-zero entry in the row. This
is depicted in right side of Fig. 2. By using this reordering, sparse RHS is formed in
block structure and forward substitution of someblocks can be completely or partially
omitted due to zero entries, which achieves reduction of complexity in computation
of L−1

11 A12.
Since the size of sparse matrix is usually given as almost same order of the length

of the vector register, 256, block size bm is too small for vectorization. Therefore,
on the vector architecture, after completion of LDU factorization of the tridiagonal
matrix, the factorized matrix is stored in Ns × Ns dense matrix and the standard
DTRSM routine for triangular solver in BLAS is called for forward substitution of the
lower triangle and transposed forward substitution without reordering of multiple
RHS. Efficiency of this implementation is reported in Sect. 3.

Fig. 2 Tridiagonal blocks sparse matrix (left), forward substitution of condensed sparse multiple
right hand side (center), and sorted multiple RHS, where the first nonzero entry in each row is
shown (right)

Implementation of a Parallel Sparse Direct Solver on Vector Architecture 103

2.3 Block Strategy to Enforce Parallelization for Dense
Factorization

The dense matrix is decomposed into a block structure with constant block size b.
Right side of Fig. 1 shows the first stage of block elimination with three tasks, α:
LDU -factorization,β+, β− : forward substitution and scalingwithout/with transpos-
ing realized by DTRSM, γ : rank-b update realized by DGEMM. On the super-scalar
architecture this block size b is taken as large as possible so that the blocks can fit in
cache memory to archive highest possible ratio between number of arithmetic opera-
tions and number of floating point data access. In the following numerical experiment
described in Sect. 3, b is set as 480.

During factorization, when an entry of the diagonal block becomes smaller than
the previous value with a certain ratio, the factorization is terminated and treatment
for the rest of entries is postponed. At the end of factorization procedure, Schur
complement of postponed null pivots is examined by a new kernel (null space)
detection algorithm [5]. This postponing procedure is implemented using static data
structure and overall parallel efficiency is not deteriorated in usual case when the
matrix has a small dimensional null space or is invertible.

A task queue for block elimination of dense matrix following the first, second,
third stages depicted in Fig. 3 and so on is made as

α
(1)
1 ← {β(1)

+2-β
(1)
−2-γ

(1)
2,2 -α

(2)
2 , β

(1)
+3, β

(1)
−3β

(1)
+4, β

(1)
−4, . . . , β

(1)
+n, β

(1)
−n}

← {γ (1)
2,3 , γ

(1)
3,3 , . . . , γ

(1)
3,2 , . . . , γ

(1)
n,n }

← {β(2)
+3-β

(2)
−3-γ

(2)
3,3 -α

(3)
3 , β

(2)
+4 , β

(2)
−4 , . . . , β

(2)
+n , β

(2)
−n}

← {γ (2)
3,4 , . . . , γ

(2)
4,3 , . . . , γ

(2)
n,n } ← · · ·

← β
(n−1)
+n -β(n−1)

−n -γ (n−1)
n,n -α(n)

n . (4)

Here the symbol ‘←’ shows a dependence between tasks. Tasks in braces ‘{’ and
‘}’ do not depend on each other. Four ones connected with the symbol ‘-’ show

Fig. 3 Tasks of block elimination for dense matrix: 1st procedure (right), 2nd (center) and 3rd
(left)

104 A. Suzuki and F.-X. Roux

sequentially executed ones in a single core. This definition of ones dependency allows
asynchronous parallel execution. In the computational code, tasks are assigned to
cores of CPU by POSIX threads [9]. Detail of task management strategy is found
in [5].

3 Efficiency of the Solver on Both Super-Scalar and Vector
Architecture

“Dissection” code is written by C++, compiled by Intel C++ compiler ver. 16.0.2
and linked with SCOTCH ver. 6.0.4 [10] and sequential BLAS library in Intel MKL
ver. 11.3.2 [11], or compiled by C++/SX rev. 103 and linked with sequential BLAS
library in MathKeisan provided by NEC.

Numerical performance of Dissection is measured for a finite element matrix
to solve stationary three dimensional Navier-Stokes equations with Re=300 in a
cubic cavity box whose dimensionless size is 1. Finite element pair P2/P1 is used
to approximate velocity and pressure, respectively. The matrix is unsymmetric and
it has one dimensional null space due to pressure underdetermination. Mesh size of
finite element tetrahedron is 1/34, by excluding degrees of freedomgiven asDirichlet
data, number of DOF is 945,164, and number of nonzero entries of the sparse matrix
is 89,588,848.

Two multi-core systems with different architecture, two noded super-scalar CPU
and one vector CPU are used : Intel Xeon E5-2695v3 running at 2.3GHz with peak
performance 36.8GFlop/s by one core and 1,030.4GFlop/s by 28 cores, and NEC
SX-ACE at 1GHz, 64.0GFlop/s by one core and 256.0GFlop/s by four cores. Both
system have 64GB main memory.

As a comparison of parallel efficiency on super-scalar architecture, Intel Pardiso
in MKL ver. 11.3.2 [11] is used on Intel Xeon. Since the matrix is singular and
the symmetric part of the matrix is not positive definite, adequate pivoting strategy
and capability to deal with rank deficiency are mandatory. Intel Pardiso uses

√
ε-

perturbation strategy combined with pivoting during factorization [12], and as a
result it has no capability to detect the null space of the matrix. Obtained error of
the solution is 5.7133 × 10−15 by Dissection and 5.2005 × 10−3 by Intel Pardiso,
respectively. Table 1 shows parallel efficiency of Dissection and Pardiso solvers with
elapsed time in seconds and CPU time. Dissection on Intel Xeon has good strong
scalability about 48% for 28 cores. Increase of CPU time in Dissection is smaller
than in Pardiso, which coincides with parallel efficiency. This is caused by usage
of sequential BLAS library and asynchronous parallelization where coarse grain
parallelization is realized.

The top of Fig. 4 shows timelines on Intel Xeon with 1, 2 and 4 cores, where
we can observe well assigned parallel tasks that are asynchronously executed. Dis-
tinguishing five colors correspond to major tasks; purple to the sparse factorization
with tridiagonal data structure explained in Sect. 2.2, yellow to computing local

Implementation of a Parallel Sparse Direct Solver on Vector Architecture 105

Table 1 Parallel efficiency of finite element matrix from Navier-Stokes equations (n = 945,164,
nnz = 89,588,848), CPU and elapsed time in seconds

Intel Pardiso (Intel Xeon) Dissection (Intel Xeon) Dissection (NEC SX-ACE)

of
cores

CPU Elapsed Speed-
up

CPU Elapsed Speed-
up

CPU Elapsed Speed-
up

1 2,052.4 2,053.3 — 1,268.0 1,268.9 — 1,080.4 1081.9 —

2 2,479.3 1,255.7 ×1.64 1,269.9 659.39 ×1.95 1,108.3 590.96 ×1.83

4 2,757.6 698.19 ×2.94 1,350.6 356.22 ×3.56 1,178.5 345.84 ×3.12

8 3,535.8 448.13 ×4.58 1,469.2 201.24 ×6.31

16 4,556.9 298.88 ×6.87 1,813.2 129.63 ×9.78

24 5,246.1 222.33 ×9.24 1,879.8 96.18 ×13.19

28 5,322.4 191.76 ×10.71 2,002.0 94.34 ×13.45

Schur complement matrix of the sparse layer, dark blue to DGEMM operation within
LDU -factorization of the dense layer which is explained as task γ in Sect. 2.3,
light blue to DGEMM operation to compute Schur complement matrix of the dense
layer, light green to DTRSM operation for forward substitution of multiple RHS in
the off-diagonal block, i.e., computation of L−1

11 A12 and U
−T
11 AT

21 in the dense layer.
The center of Fig. 4 shows timelines of Dissection code on SX-ACE without

modification, where BLAS routines are linked to ones in MathKeisan and no
explicit vector directive is added. We observe that elapsed time for DGEMM shown by
light blue, DTRSM by light green in the dense layer are reduced than those on Intel
Xeon. However, elapsed time for the sparse layer takes around four times, which is
clearly seen by one core execution. Yellow color is dominant in one core execution,
which indicates that computation of local Schur complement including permutation
of multiple RHS, forward substitution with tridiagonal structure is not efficiently
performed by vector units because of short loops.

The bottom of Fig. 4 shows timelines of Dissection code on SX-ACE with mod-
ification to use DTRSM for the whole forward substitution in the sparse matrix and
no ordering for multiple RHS, discussed in the end of Sect. 2.2. Performance of the
sparse layer is improved and elapsed time becomes less than half by this strategy.

We note that purple color becomes dominant with four cores and sum of elapsed
time with four cores is bigger than time with one core. This indicates that sparse
factorization with tridiagonal structure is memory bounded and four cores seem to
cause conflicts for accessing the main memory.

Table 2 shows measured GFlop/s of DGEMM kernel in the dense layer on both
Intel Xeon E5-2695v3 and NEC SX-ACE. DGEMM kernal achieves 65% of the peak
performance on SX-ACE by calling sequential one and 62% on Intel Xeon with 28
cores that run at 2.3GHz. Since Intel Xeon E5-2695v3 has capability to increase
running frequency up to 3.3GHz, average performance of DGEMM by one core is
almost same as the theoretical peak performance of 2.3GHz.

106 A. Suzuki and F.-X. Roux

-ACE

-ACE

Fig. 4 Timelines of Dissection solver on Intel Xeon (top) NEC SX-ACE (center and bottom) with
1, 2 and 4 cores

Though the exact same source code written by C++ is used, there are difference
in memory usage; 46.62GB for Intel Xeon and 59.94GB for SX-ACE, due to some
difference of dynamical memory management by the operating system.

Implementation of a Parallel Sparse Direct Solver on Vector Architecture 107

Table 2 GFlop/s of DGEMM
BLAS level 3 kernel in the
dense layer of Dissection

of cores Intel Xeon NEC SX-ACE

1 36.35 44.85

2 36.27 43.76

4 34.06 41.31

8 31.23

16 25.25

24 24.38

28 22.90

4 Conclusion

Parallel sparse direct solver named as “Dissection” is developed for multi-core CPU
with sharedmemory architecture.Nested-dissection graph partitioning providesmix-
ture of factorization in the sparse layer and the dense layer. The code is written by
C++ and aimed to run on super-scalar CPU efficiently, because the major opera-
tion of the code consists of BLAS level 3 operations. Dependency analysis of tasks
for block factorization achieves asynchronous parallel execution realized by POSIX
threads. Parallel efficiency better than Intel Pardiso on Intel XeonCPU is verified by a
numerical example using a finite element matrix from incompressible Navier-Stokes
equations.

On NEC SX-ACE, which has modern vector arithmetic architecture, it is not
necessary to introduce explicit vector directives in the code, and optimization for
vectorization is carried out by calling vectorized sequential BLAS level 3 kernels.
However some inefficiency remains for vector units in the sparse layer of the code,
which consumes only 6% of the elapsed time in super-scalar architecture. This part
becomes a bottleneck because BLAS level 3 computation in the dense layer on vector
CPU becomes faster than on super-scalar CPU and the block size of sparse part is
not enough for vectorization due to sparse structure. One idea to improve vector
efficiency is shown. It consists in replacing small block structure by large one thanks
to ignoring sparse structure after factorization completed.

We conclude that the usage of sequential BLAS level 3 kernels is not only efficient
on super-scalar architecture but also on modern vector CPU, which allows us to have
a common code that is independent of the architecture, and asynchronous parallel
execution well utilizes multi-core CPUs.

Acknowledgements This work is partially supported by “Joint Usage/Research Center for Inter-
disciplinary Large-scale Information Infrastructures” in Japan. Computational time for Cray XC30
in Institute for Information Management and Communication, Kyoto University, and for NEC
SX-ACE in Cybermedia Center, Osaka University, are provided by this grant.

108 A. Suzuki and F.-X. Roux

References

1. George, A.: Numerical experiments using dissection methods to solve n by n grid problems.
SIAM J. Numer. Anal. 14, 161–179 (1977). doi:10.1137/0714011

2. Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and
unsymmetirc solvers. Comput. Meth. Appl. Mech. Eng. 184, 501–520 (2000). doi:10.1016/
S0045-7825(99)00242-X

3. Farhat, C., Roux, F.-X.: Implicit parallel processing in structural mechanics. Comput. Mech.
Adv. 2, 1–124 (1994)

4. Mandel, J.: Balancingdomaindecomposition.Commun.Numer.Meth.Eng.9, 233–241 (1993).
doi:10.1002/cnm.1640090307

5. Suzuki, A., Roux, F.-X.: A dissection solver with kernel detection for symmteric finite element
martices on shared memory computers. Int. J. Numer. Meth. Eng. 100, 136–164 (2014). doi:10.
1002/nme.4729

6. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput. 20, 359–392 (1998). doi:10.1137/S1064827595287997

7. Pellegrini, F., Roman, J., Amestoy, P. : Hybridizing nested dissection and halo approximate
minimum degree for efficient sparse matrix ordering. Concurr.: Pract. Experience 12, 69–84
(2000)

8. George, A., Liu, J.W.H.: Algorithms for matrix partitioning and the numerical solution of finite
element systems. SIAM J. Numer. Anal. 15, 297–327 (1978). doi:10.1137/0715021

9. Lewis, B., Berg, D.J.: Multithreaded Programming with Pthreads. Sun Microsystems Press
(1998)

10. Web site of Soctch and PT-Scotch. https://www.labri.fr/perso/pelegrin/scotch. Accessed 9 Sep
2016

11. Web site of Intel Math Kernel Library. http://software.intel.com/en-us/intel-mkl. Accessed 9
Sep

12. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for sparse symmetric indefinite
systems. Electron. Trans. Numer. Anal. 23, 158–179 (2006)

http://dx.doi.org/10.1137/0714011
http://dx.doi.org/10.1016/S0045-7825(99)00242-X
http://dx.doi.org/10.1016/S0045-7825(99)00242-X
http://dx.doi.org/10.1002/cnm.1640090307
http://dx.doi.org/10.1002/nme.4729
http://dx.doi.org/10.1002/nme.4729
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/0715021
https://www.labri.fr/perso/pelegrin/scotch
http://software.intel.com/en-us/intel-mkl

Directive Translation for Various HPC
Systems Using the Xevolver Framework

Kazuhiko Komatsu, Ryusuke Egawa, Hiroyuki Takizawa
and Hiroaki Kobayashi

Abstract This paper proposes a directive translation approach that translates a spe-
cial placeholder to different directives, depending on the target HPC system. The
special placeholder in an application code is used as a trigger for the directive trans-
lation. By employing a code translation framework,Xevolver, the special placeholder
can be translated to various directives that fit to any target HPC systems. Instead of
using multiple directives, it can keep maintainability and readability of the original
code because only special placeholders are inserted into an application code. This
paper also demonstrates a translation of a special placeholder intoOpenMPdirectives
to clarify the effectiveness of the proposed directive translation approach.

1 Introduction

A huge number of transistors can be utilized to design a processor by the advance-
ments in semiconductor technologies. As this has brought a wide design space of
processors, various processors have been developed. For example, there are a scalar
processor of multiple cores and large cache memories, an accelerator of a lot of small
simple computational cores, and a vector processor of several cores specialized for
vector calculations with a high memory bandwidth.

K. Komatsu (B) · R. Egawa
Cyberscience Center, Tohoku University, 6-3 Aramaki-aza-aoba, Aoba,
Sendai 980-8578, Japan
e-mail: komatsu@tohoku.ac.jp

R. Egawa
e-mail: egawa@tohoku.ac.jp

H. Takizawa · H. Kobayashi
Graduate School of Information Sciences Tohoku University,
6-6-01 Aramaki-aza-aoba, Aoba, Sendai 980-8579, Japan
e-mail: takizawa@tohoku.ac.jp

H. Kobayashi
e-mail: koba@tohoku.ac.jp

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_9

109

110 K. Komatsu et al.

In addition, the diversity of HPC systems has naturally increased by the various
kinds of processors. Recent statistical data on the TOP 500 list [1] show that the
variety of the HPC systems has been increasing. Scalar systems that consist of a
large number of scalar processors perform highly parallel calculations for massively
parallel applications [2]. Accelerator-type systems have been equipped with accel-
erators or co-processors such as GPUs (Graphics Processing Units) and Intel Xeon
Phi processors. These accelerator-type systems can efficiently perform data parallel
calculations by utilizing their high computational potential and memory bandwidth
[3, 4].Vector systems that employ vector processors can calculate sets of data ele-
ments at the same time by utilizing powerful vector computation cores and their
essentially high sustained memory bandwidths [5, 6].

In order to exploit the potential of variousHPCsystems, an application code should
be appropriately written for effectively utilizing features of each HPC system. One of
the most promising approaches is to employ directives that enable an application to
effectively utilize the features. For example, OpenMP [7] provides a set of directives,
called an OpenMP directive set, to enable a serial code to be executed by multithread
parallel processing on a shared memory system. OpenACC [8] provides a set of
directives, called an OpenACC directive set, to allow a code to be executed on an
accelerator. Compiler-specific directive sets give a compiler additional information
to use unique features of HPC systems and/or to encourage more effective analyses
and aggressive compiler optimizations.

However, an effective way of using those directives strongly depends on both
an application code and a target HPC system. To efficiently run one application on
multiple HPC systems, various directives defined in different directive sets might
be required to exploit the performances of those systems. Generally, an OpenMP
directive set is used for a multiple core system, while an OpenACC directive set
is used for an accelerator-type system. If the target HPC systems are both of the
systems, different kinds of directive sets have to be maintained in one code; for
example, both OpenMP and OpenACC directives are inserted into one application
code. As a result, a large number of code lines would be spent for directives, which
do not express the program behavior and are used only for performance. Thus, the
maintainability and readability of the code decreases.

This paper proposes a directive translation approach that translates a special place-
holder in an application code into different directives, depending on a target system.
By utilizing a code translation framework, Xevolver, the special placeholder can be
translated into any other directives for various HPC systems. Therefore, a single
application code with special placeholders can be used for various HPC systems,
which can keep the maintainability and readability of the original code.

The rest of this paper is organized as follows. Section 2 describes commonly used
directive sets that exploit the potential of HPC systems. Section 3 proposes a directive
translation approach that translates a special placeholder into any appropriate direc-
tives by using the Xevolver code translation framework. Section 4 demonstrates a
translation of the special placeholder into an OpenMP directive for a target HPC sys-
tem to clarify the effectiveness of the proposed approach. Section 5 gives concluding
remarks and future work.

Directive Translation for Various HPC Systems Using the Xevolver Framework 111

2 Utilization of Directive Sets for HPC Systems

In the field of HPC, directives are often used in various ways. For example, direc-
tives are adopted to allow parallel execution by multiple threads on a shared memory
system, parallel execution on an accelerator, use of particular features of HPC sys-
tems, and so on. One of the reasons to use directives is that various functions offered
by different directive sets are easily utilized by inserting directives into an existing
application code. Furthermore, inserted directives can be ignored by compilers if
the corresponding compiler function is disabled. All the directives are treated as
comment lines. Moreover, an application code using directives can be incrementally
developed. Even if a whole application code is not optimized and the optimization
process is ongoing, the application can at worst execute. Therefore, an application
developer can easily try using directives.

Another reason is that use of directives can avoid drastic codemodification. Simply
inserting directives into a code does not need to modify the structure of the original
code. Thus, an application developer can easily continue to use the original code
with directives.

However, effective use of directives for an application depends on theHPC system
executing the application. As a result, various directives from multiple directive sets
need to be used into one application code in order to maintain one unified version
of the code. Figure 1 shows a code example, in which three kinds of directive sets,
OpenMP, OpenACC, and compiler-specific directives, are used. In the code, Ope-
nACC, OpenMP, and compiler-specific directives start with !$acc, !$omp, and !cdir,

Fig. 1 An application code with multiple directive sets

112 K. Komatsu et al.

respectively. In this way, simultaneous use of various kinds of directive sets increases
the number of code lines, and spoils the code maintainability and readability.

Therefore, keeping the maintainability and readability of an original code is
strongly required even by applying directive-based optimization, especially in vari-
ous HPC systems.

3 Directive Translation using Xevolver Code Translation
Framework

This section proposes a directive translation approach that translates a special place-
holder to different directives. This paper assumes that a special placeholder is used
to specify the code line where one or more directives are potentially inserted for high
performance.

A key idea of the proposed approach is to translate those placeholders to appro-
priate directives for individual HPC systems by using the Xevolver code translation
framework. The Xevolver framework is a code translation framework that can define
custom translation rules for any code modifications [9, 10]. The pre-defined and/or
user-defined translation rules can be applied to a code. Because code modifications
can be represented separately from an application code, the Xevolver framework
can keep the maintainability of the original code. By defining translation rules for
directive translation on the Xevolver framework, the special placeholders can be
translated into directives for any target HPC systems.

Figure 2 shows an overview of the proposed directive translation approach. First,
instead of OpenMP, OpenACC, and/or compiler-specific directives, a special place-

OpenMP

OpenACC

!$acc ker
…
!$acc end ker

!cdir par
…
!cdir end par

…

To
Original

code

Insert
Marks

!$xev par

placeholders

!$omp par

$omp end par
…
!

Compiler

Fig. 2 An overview of directive translations

Directive Translation for Various HPC Systems Using the Xevolver Framework 113

...........
!$xev
...........
...........
...........

ROSE AST XML ASTOriginal code

ROSE AST XML ASTModified code

...........
!$omp
...........
...........
...........

ROSE
parser

ROSE
unparser

Translation
rule (XSLT)

!$xev
↓

!$omp

src2xml

xml2src

User-defined
transformation

Fig. 3 An overview of directive translation using the Xevolver framework

holder is inserted into the original application code. Then, the Xevolver framework
takes responsibility of translation of the special placeholder into appropriate direc-
tives. Considering the target HPC system, the translation is carried out based on
user-defined translation rules. By defining multiple translation rules, each of which
is corresponding to one HPC system, appropriate directive translation for individual
systems can be realized. In the figure, the placeholder !$xev can be translated into
OpenMP, OpenACC, or compiler-specific directives. As a result, one application
code with a placeholder can be utilized for various HPC systems, which can keep
the maintainability and readability of the original code.

Figure 3 shows an overview of directive translation by the Xevolver framework.
First, an application code with a placeholder is parsed by using the ROSE com-
piler infrastructure [11], and then its AST (Abstract Syntax Tree) is converted to an
XML document by the src2xml command of the Xevolver framework. An AST is
represented as an XML document called an XML AST. The XML AST is translated
into a new XML AST based on a translation rule. By considering code patterns and
structures using AST information, more advanced directive translation can be real-
ized than just text replacements using a sed command and so on. The translation
rule can be described by XML data conversion format XSLT (XML Stylesheet Lan-
guage Transformations) [12] or can also be generated from Fortran codes by using an
Xevolver tool chain [13]. After the transformation of the original XMLAST, the new
XML AST is converted by the xml2src command of the Xevolver framework. Then,
it is unparsed through the ROSE compiler infrastructure. Finally, an application code
with translated directives is generated [10].

114 K. Komatsu et al.

4 Translation of a Placeholder into OpenMP Directives

This section shows a case study of the translation of a special placeholder into
an OpenMP directive set. A kernel of an atmospheric simulation code [14, 15] is
used for the case study. Figure 4 shows the kernel of the simulation code, into
which a special placeholder is already inserted. The placeholder is inserted based
on compile information that is obtained by NEC SX Fortran compiler Rev.520 [16].
In Line 52, the placeholder “!$xev sx_parallelizable” is inserted because the SX
Fortran compiler could apply automatic parallelization for the loop body from Lines
53 to 83.

The inserted placeholder is translated into OpenMP directives by the proposed
approach. Figure 5 shows the translation rule to translate the placeholder into the
OpenMP do and OpenMP end do directives, which is written in XSLT. From Lines
1 to 3, the type of this document is defined. These lines indicate that this docu-
ment is described in XSLT. Line 5 declares the variable placeholder that has “!$xev
sx_parallelizable”. Lines 7 to 9 specify that the following templates from Lines 11
to 37 are applied for whole AST. From Lines 12 to 17, all nodes in AST are copied
by the copy and copy-of elements. Since each XML element of PreprocessingInfo
represents a comment or a directive, Line 22 checks if each PreprocessingInfo ele-
ment represents a placeholder. Thus, Line 22 looks for the PreprocessingInfo whose
text starts with “!$xev sx_parallelizable”. Finally, the directives “!$omp parallel
do” and ”!$omp end parallel do”, target directives of the placeholder, are inserted
by Lines 23 to 25 and Lines 26 to 28, respectively. In order to insert “!$omp end
parallel do” into an appropriate position, the end of the loop body has to be figured
out. Then, right after the loop body, the OpenMP end directive needs to be inserted.
Only the value of the pos attribute in Line 26 is set to 3. As a result, the OpenMP
end directive is appropriately inserted after the loop body. Because it is difficult for
text replacements to find the appropriate position and to insert such directives, AST
translation is essential.

Figure 6 shows the kernel with the translated OpenMP directives. By using the
Xevolver framework and the translation rule, the OpenMP directives are successfully
inserted into Lines 53 and 85 in the code. Therefore, this case study demonstrates
that a special placeholder can be translated for a particular directive. As a result, an

Fig. 4 An atmospheric
simulation kernel with a
placeholder

Directive Translation for Various HPC Systems Using the Xevolver Framework 115

Fig. 5 The translation rule to translate the placeholder into OpenMP directives

Fig. 6 An atmospheric
simulation kernel with
translated OpenMP
directives

application developer can concentrate on maintaining only the original code with a
special placeholder.

By defining multiple translation rules in advance, each of which is corresponding
to one HPC system, the placeholder can be translated into an appropriate directive
for any target HPC systems.

116 K. Komatsu et al.

5 Conclusions

This paper proposes a directive translation that can translate a special placeholder into
directives for various HPC systems by using the Xevolver code translation frame-
work. To exploit the potential of variousHPC systemswith only one application code,
various directives of multiple directive sets tend to be inserted because an appropriate
way of using directives for each HPC system is different. To avoid decreasing the
maintainability and readability due to multiple kinds of directive sets, the proposed
approach inserts a special placeholder instead of inserting actual directives. Then, the
placeholder is translated into any directives for HPC systems by using the Xevolver
code translation framework. By defining multiple translation rules in advance, each
of which is corresponding to one HPC system, the placeholder can be translated
into an appropriate directive for any target HPC systems. Finally, the demonstration
illustrates that translation from a special placeholder into OpenMP directives can be
successfully achieved. Especially, because the information about code structure is
essential to insert OpenMP end directives, it is clarified that the translation through
AST is required for the proposed directive translation approach. It also clarified that
as a translation rule can be written in an external file, the proposed approach can
keep the maintainability and readability of the original code.

Our future work includes translation of a special placeholder into other directives
to clarify the effectiveness of the proposed directive translation approach. Further-
more, the performance with the translated directives needs to be clarified.

Acknowledgements This research was partially supported by Core Research of Evolutional Sci-
ence and Technology of Japan Science and Technology Agency (JST CREST) “An Evolutionary
Approach to Construction of a Software Development Environment for Massively-Parallel Hetero-
geneous Systems”. This research uses SX-ACE in Cyberscience Center of Tohoku University.

References

1. Top500 supercomputer sites. http://www.top500.org/
2. Hasegawa, Y., Iwata, J.I., Tsuji, M., Takahashi, D., Oshiyama, A., Minami, K., Boku, T., Shoji,

F., Uno, A., Kurokawa, M., Inoue, H., Miyoshi, I., Yokokawa, M.: First-principles calculations
of electron states of a silicon nanowire with 100,000 atoms on the k computer. In: Proceedings
of 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, pp. 1:1–1:11 (2011). doi:10.1145/2063384.2063386

3. Rahimian, A., Lashuk, I., Veerapaneni, S., Chandramowlishwaran, A., Malhotra, D., Moon,
L., Sampath, R., Shringarpure, A., Vetter, J., Vuduc, R., Zorin, D., Biros, G.: Petascale direct
numerical simulation of blood flow on 200k cores and heterogeneous architectures. In: Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pp. 1–11 (2010). doi:10.1109/SC.2010.42

4. Shimokawabe, T., Aoki, T., Takaki, T., Endo, T., Yamanaka, A., Maruyama, N., Nukada, A.,
Matsuoka, S.: Peta-scale phase-field simulation for dendritic solidification on the tsubame
2.0 supercomputer. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pp. 3:1–3:11 (2011). doi:10.1145/
2063384.2063388

http://www.top500.org/
http://dx.doi.org/10.1145/2063384.2063386
http://dx.doi.org/10.1109/SC.2010.42
http://dx.doi.org/10.1145/2063384.2063388
http://dx.doi.org/10.1145/2063384.2063388

Directive Translation for Various HPC Systems Using the Xevolver Framework 117

5. Dunigan Jr., T.H., Vetter, J.S., White III, J.B., Worley, P.H.: Performance evaluation of the cray
x1 distributed shared-memory architecture. IEEE Micro 25(1), 30–40 (2005). doi:10.1109/
MM.2005.20

6. Soga, T.,Musa,A., Shimomura,Y., Egawa,R., Itakura,K., Takizawa,H.,Okabe,K.,Kobayashi,
H.: Performance evaluation of nec sx-9 using real science and engineering applications. In:
Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pp. 28:1–28:12 (2009). doi:10.1145/1654059.1654088

7. The OpenMP API specification for parallel programming. http://openmp.org/
8. OpenACC directives for accelerometers. http://www.openacc-standard.org/
9. Komatsu, K., Egawa, R., Hirasawa, S., Takizawa, H., Itakurayz, K., Kobayashi, H.: Migration

of an atmospheric simulation code to an openacc platform using the xevolver framework. In:
Proceedings of the Third International Symposium on Computing and Networking, pp. 528–
534 (2015)

10. Takizawa, H., Hirasawa, S., Hayashi, Y., Egawa, R., Kobayashi, H.: Xevolver: An XML-based
code translation framework for supporting HPC application migration. In: 21st International
Conference on High Performance Computing (HiPC 2014), pp. 1–11 (2014). doi:10.1109/
HiPC.2014.7116902

11. Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In: Cetus Users and
Compiler Infrastructure Workshop, in conjunction with PACT 2011 (2011)

12. XSL transformations (XSLT) version 2.0. https://www.w3.org/TR/xslt20/
13. Suda, R., Takizawa, H., Hirasawa, S.: Xevtgen: fortran code transformer generator for high

performance scientific codes. In: Proceedings of the Third International Symposium on Com-
puting and Networking, pp. 528–534 (2015)

14. Takahashi, K., Azami, A., Tochihara, Y., Kubo, Y., Itakura, K., Goto, K., Kataumi, K., Taka-
hara, H., Isobe, Y., Okura, S., Fuchigami, H., Yamamoto, J.i., Takei, T., Tsuda, Y., Watanabe,
K.: World-highest resolution global atmospheric model and its performance on the Earth Sim-
ulator. In: International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2011, pp. 1–12 (2011)

15. Takahashi, K., Onishi, R., Sugimura, T., Baba, Y., Goto, K., Fuchigami, H.: Seamless simu-
lations in climate variability and HPC. In: Resch, M., Roller, S., Benkert, K., Galle, M., Bez,
W., Kobayashi, H. (eds.) High Performance Computing on Vector Systems 2009, pp. 199–219.
Springer, Berlin (2010)

16. Komatsu, K., Egawa, R., Takizawa, H., Kobayashi, H.: A compiler-assisted OpenMPmigration
method based on automatic parallelizing information. In: Proceedings of 29th International
Supercomputing Conference, vol. 8488, pp. 450–459 (2014)

http://dx.doi.org/10.1109/MM.2005.20
http://dx.doi.org/10.1109/MM.2005.20
http://dx.doi.org/10.1145/1654059.1654088
http://openmp.org/
http://www.openacc-standard.org/
http://dx.doi.org/10.1109/HiPC.2014.7116902
http://dx.doi.org/10.1109/HiPC.2014.7116902
https://www.w3.org/TR/xslt20/

An Automatic Performance Tracking System
for Large-Scale Numerical Applications

Shoichi Hirasawa, Hiroyuki Takizawa and Hiroaki Kobayashi

Abstract In this work, we propose an Automatic Performance Tracking System
for analyzing the changes in execution performance and finding the source code
modifications that cause the degradation of performance portability. The proposed
system works in order to support evolving a large-scale numerical application while
maintaining its performance portability across multiple target computing systems.
By evaluating the performance of an application on every computing system, the pro-
posed system helps application developers find the source code modifications that
degrade the execution performance on a computing system. The proposed system
also retrieves multiple versions of an application from its code repository, and auto-
matically executes them on a newly added computing system. As a result, application
developers are able to analyze how the source code modifications in the past affect
the performance on the new computing system. Based on the evaluation results, the
application developers can review the source code changes to improve the perfor-
mance portability of the HPC application through the system.

1 Introduction

Multiple types of computing systems and tool chains are widely used these days.
High-performance computing (HPC) applications sometimes need to migrate to new
target computing systems because of their long software life cycles. The burden
of migrating HPC applications to new target computing systems is usually heavy
because of the large code sizes of such applications.

To alleviate the heavy cost of the migration, the code of an application should be
maintained in such a way as to be able to execute in high performance on multiple

S. Hirasawa (B) · H. Takizawa · H. Kobayashi
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
e-mail: hirasawa@sc.cc.tohoku.ac.jp

H. Takizawa
e-mail: takizawa@tohoku.ac.jp

H. Kobayashi
e-mail: koba@tohoku.ac.jp

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_10

119

120 S. Hirasawa et al.

computing systems. In this work, the capability of an HPC application to achieve
high performance on different types of computing systems is defined as performance
portability. If an application code has high performance portability, it is expected to
easily migrate the application to a new target computing system.

HPC applications are usually optimized only for a small number of computing
systems to increase their execution performances. When optimizations are applied
to an application with consideration only for specific computing systems, the exe-
cution performance on other types of computing systems may degrade. As a result,
optimization efforts taking a long time for a small number of computing systems
may lead to degrading performance portability of the application.

Generally, code optimizations for a specific computing system may degrade the
performance of the application on another system. Thus, it is necessary to prevent
applying such optimizations so as to keep the performance portability high. The
degradation of performance portability can be detected by finding out performance
degradation of the application on a computing system. To find out the performance
degradation, execution performance on every computing systemneeds to be obtained,
tracked, and compared. Although unit testing frameworks [1] and automatic bug
detection methods [2, 3] have been proposed, to the best of our knowledge, there is
no performance tracking system to maintain high performance portability of HPC
applications.

In this work, an Automatic Performance Tracking System (APTS) that supports
maintaining high performance portability of HPC applications is designed and devel-
oped. The APTS finds the changes of a source code that decrease the performance
portability of the application. Because of the complexity of current computing sys-
tems, it is difficult to model and predict the execution performances of HPC appli-
cations on their target computing systems. With the APTS, execution performances
of applications are obtained by actually executing them on every target computing
system.

This paper is organized as follows. Section2 discusses the performance portability
of HPC applications. Section3 proposes the APTS. Section4 evaluates the APTS and
Sect. 5 provides conclusions and future work.

2 Performance Portability of HPC Applications

In this work, computer systems used for developing and executing HPC applications
are categorized into the following three types. Figure1 shows the computer systems
that are considered to be used in developing, building, and executing the applications.

1. Development systems: computer systems that are used to edit application source
codes.

2. Building systems: computer systems that are used to compile source codes and
build execution binaries of applications.

3. Execution systems: computer systems that are used to execute applications.

An Automatic Performance Tracking System … 121

Fig. 1 Target computers for application development

When a programmer builds an application on the same system as the development
system, the building environment such as compiling tool chains needs to be installed
on the development system. Multiple building environments need to be installed on
the development systemwhen the application is developed considering multiple exe-
cution systems. However, installing all building environments on the development
system is not always possible especially when software licences for production com-
pilers are not available to programmers. In this work, therefore, an environment of
multiple building systems and one development system is supposed to be used for
developing applications. In the following subsections, programmer’s burdens that
can potentially be reduced by using tools are discussed.

2.1 Finding the Cause of Performance Degradation
on Execution Systems

The source code of an HPC application tends to be large because many algorithms
and optimizations are sometimes added during its long software life cycles. When a
programmer finds a performance degradation of such an application on an execution
system, the programmer needs to find the cause of degrading the performance of
the application from the source code. The burden is usually heavy because of the
large size of the source code of the application. To alleviate the burden, a system that
notifies the cause of performance degradation on an execution system is useful.

Additionally, new execution systems are sometimes added to the target execution
systems of an application because the life cycles of HPC applications tend to be
longer than those of current execution systems. The programmer needs to know
code modifications in the past to find the cause of performance degradation when a
new execution system is added to the target systems.

122 S. Hirasawa et al.

2.2 Application Performance on Execution Systems

It is usually difficult to statically predict execution performance of an application
on an execution system. It is because current execution systems have become too
complex to create accurate performance models. As a result, an application needs to
be executed on the target execution systems to evaluate the execution performance.

To evaluate execution performance, the source code needs to be built on the
corresponding building systems of the target execution systems because execution
performance of an HPC application depends on compilers and their optimization
flags. With multiple development systems, programmers need to build and execute
applications while editing one source code multiple times on the development sys-
tems.

2.3 Source Codes Synchronization Among Multiple
Building Systems

Whenmultiple building systems are used in addition to the development system as in
Fig. 1, source codes need to be synchronized among them. Currently, programmers
need to synchronize themmanually with multiple tools while editing the source code
of the application. This task is tedious and error-prone. Therefore, a tool that auto-
matically synchronizes source codes among the development system and building
systems can potentially ease the burden.

3 An Automatic Performance Tracking System

In this work, an Automatic Performance Tracking System (APTS) is proposed. The
APTS is executed on the development system. In this work, it is assumed that a target
application already has a build script and also an execution script with input data.
Therefore, using the scripts, the APTS can build and execute the application on every
execution system for performance evaluation and result verification.

3.1 Overview of the Automatic Performance Tracking System

The APTS tracks the changes of execution performance along with the modifica-
tions on an application code. Execution performances are automatically profiled by
actually executing the application on its target execution systems. With the execu-
tion performances, the APTS finds the source code modifications that are causes of
degrading the execution performance on an execution system. A programmer is able
to use the found source code modifications to improve the performance portability

An Automatic Performance Tracking System … 123

Fig. 2 Development framework of the APTS

of the application. For a programmer, it is easy to migrate an application to a new
execution system if the application has high performance portability. The APTS has
the following functions to help a programmer develop an application while keeping
high performance portability (Fig. 2).

1. A function to track the changes of execution performance along with source code
modifications.

2. A function to automatically build and execute applications on their target execu-
tion systems.

3. A function to automatically synchronize source codes among all building systems.

3.2 Performance Tracking Function Along with Source Code
Modifications

While developing and optimizing an application, the modification to improve the
execution performance on one execution system may degrade the execution perfor-
mance on another execution system. When a new system is added to the execution
systems of an application, the execution performance on the new systemmight be too
low compared to its peak performance. In such a case, the low execution performance
might be due to a certain source code modification for performance optimization in
the past. Note that the new execution system was not available at the time, and the
programmer could not check if the modification degrades the performance until the
new system becomes available. Therefore, the programmer is required to check if
every source code modification in the past degrades the performances on the avail-
able execution systems by tracking the past source code modifications whenever a
new system becomes available.

The APTS uses version controlling systems such as CVS [4] or Git [5] to auto-
matically find the performance changes with the past source code modifications on

124 S. Hirasawa et al.

the newly added execution system. When a new system is added to the execution
systems, the APTS automatically retrieves the past source codes of the applica-
tion from the version controlling system. Then, the APTS automatically profiles the
execution performance on the new execution system for every past version of the
source code. By comparing the execution performances of two neighboring ver-
sions, performance degradation on the execution system can be detected. With the
neighboring version numbers, the programmer can inspect an actual cause of the
performance degradation on the new execution system.

4 Evaluation of the Automatic Performance Tracking
System

4.1 Evaluation Setups of Finding the Cause of Degrading
Performance portability

In this evaluation, the APTS is implemented as a plug-in program of the Eclipse
integrated development environment (Eclipse IDE). It is implemented with the Plug-
in Development Environment (PDE), which is the standard development framework
of plug-in programs for the Eclipse.Eclipse 4.2.1 Build id:20121004-
1855 is used for developing and executing the APTS.

The source codes synchronization function is implemented with the Secure
Copy (scp) command. OpenSSH_6.1p1 is used in the APTS. To build the source
codes of the target application, Makefile and make command are used. The exe-
cutable file of the application is launched using the Secure Shell (ssh) command on
the target execution systems. The time command is used to obtain the execution
performances.

The APTS is evaluated to check if it is able to find the source code modifications
that are the causes to degrade the performance portability of an application. A real
HPC application of the entire growth process of binary alloy nanopowders in thermal
plasma synthesis [6] is used in this evaluation. Three building systems are used from
one development system. All building systems are installed in Cyberscience Center
of TohokuUniversity. The development system, which is a desktop PC (Intel Core i7-
3930K 3.2GHz, 16GBMemory, SSD), is installed in another building ofmechanical
engineering in the same campus of Tohoku University. The specifications of building
systems are shown in Table1. Server 1, 2 and 3 are also used as execution systems
corresponding to the building systems.

An Automatic Performance Tracking System … 125

4.2 Results of Analysing the Degradation of the Performance
Portability

The evaluation results are shown in Fig. 3. The horizontal axis indicates version
numbers of the target application. The vertical axis on the left-hand side shows the
speedup ratio from the execution time of the application code Version 1 running on
Server 1. The vertical axis on the right-hand side shows the number of modified
source code lines between a neighboring two versions.

The application has been optimized for Server 1 along with the version numbers.
Hence, the performance of Server 1 increases with the version number. On the other
hand, the performance degrades by changing from Version 5 to 6 on Server 2. The
Tesla C2070 GPU of Server 2 is newer than the Tesla C1060 GPU of Server 1.
From these results, it is observed that the change from Version 5 to 6 degrades the
performance portability of the application.

As the execution performance does not degrade on Server 3, which has a newer
K20 GPU than C2070, the modification between Versions 5 and 6 only degrades the
execution performance on Server 2 among the three. The number of different source
code lines between Versions 5 and 6 is 37.

In the evaluation results, it is shown that the APTS is able to limit the number of
source code lines that cause the performance degradation on execution systems. In
this particular evaluation, the APTS can successfully reduce the number of source

Table 1 Specifications of building systems and execution systems

System name Linux ver. CPU GPU CUDA

Server 1 2.6.18 Core i7 920 2.67GHz Tesla C1060 5.0

Server 2 2.6.32 Core i7 930 2.8GHz Tesla C2070 5.0

Server 3 2.6.18 Core i7 920 2.67GHz Tesla K20c 5.0

Fig. 3 Execution performances of application versions and line numbers of corresponding code
difference

126 S. Hirasawa et al.

code lines that cause the performance degradation to 37. As a result, the APTS is able
to support programmers to develop a large-scale application with high performance
portability.

5 Conclusions and Future Work

In this paper, we have designed and implemented an Automatic Performance Track-
ing System (APTS). It automatically finds the version of an application, from which
the performance is degraded on an execution system. It is implemented as a plug-in
program of the Eclipse IDE. It has a function of transferring necessary files of an
application to build machines. It then builds and executes the application to collect
its execution performance on each execution system.

The APTS supports the development work of programmers by alleviating the
burden of building and executing the application on multiple systems. It finds the
version of an application code that degrades the execution performance on an execu-
tion system. As a result, the APTS helps a programmer maintain high performance
portability of an application by keeping the execution performance high on multiple
execution systems.

With the evaluation results, it has been shown that the APTS can successfully
find the version of the real application that degrades the execution performance on
an execution system. It has also been shown that the APTS can obtain the execution
performances of the application on multiple execution systems by transferring and
building the application on multiple building systems. With these functions, the
manual work of performance evaluation necessary for programmers is automated
and, as a result, the APTS is able to support the development work on maintaining
high performance portability of HPC applications.

Realizing functions such as automatically evaluating the performance with profil-
ers such as gprof and nvprof, obtaining the performance profile results, and reasoning
the codes that degrade performance portability by providing the profiling results to
the programmers are parts of our future work. Supporting batch queuing systems
for executing applications on HPC computing systems is also important. Migrating
the implementation for the code base of PTP [7] is also considered to provide the
information of execution performance in the editor.

Acknowledgements The authors would like to thank Prof. Shigeta of Osaka University for allow-
ing us to use the application. This work is partially supported by JST CREST “An Evolutionary
Approach to Construction of a Software Development Environment for Massively-Parallel Hetero-
geneous Systems.”

An Automatic Performance Tracking System … 127

References

1. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM Comput.
Surv. 29(4), 366–427 (1997)

2. Kim, S., Zimmermann, T., Pan, K.,Whitehead, E.J.: Automatic identification of bug-introducing
changes. In: 21st IEEE/ACM International Conference on Automated Software Engineering,
2006. ASE ’06, pp. 81–90 (2006)

3. Williams, C.C., Hollingsworth, J.K.: Automatic mining of source code repositories to improve
bug finding techniques. IEEE Trans. Soft. Eng. 31(6), 466–480 (2005)

4. http://cvs.nongnu.org/. Cvs - concurrent versions system
5. http://gitscm.com/. Git - the fast version control system
6. Shigetam, M., Watanabe, T.: Growth model of binary alloy nanopowders for thermal plasma

synthesis. J. Appl. Phys. 108(4), 043306–043306–15 (2010)
7. Watson, G.R., Rasmussen, C.E., Tibbitts, B.R.: An integrated approach to improving the parallel

application development process. In: IEEE International Symposium on Parallel Distributed
Processing, 2009. IPDPS 2009, pp. 1–8, May 2009

http://cvs.nongnu.org/
http://gitscm.com/

Part II
Numerical Computations and Approach

Towards Multi-physics Applications

A Case Study of Urgent Computing
on SX-ACE: Design and Development
of a Real-Time Tsunami Inundation Analysis
System for Disaster Prevention
and Mitigation

Hiroaki Kobayashi

Abstract In 2011, a huge earthquake named Great East-Japan Earthquake gave a
serious damage in Japan, especially due to Tsunami inundation caused by the earth-
quake. After this terrible natural disaster, there is a growing concern about future big
earthquakes and Tsunami disasters in Japan, and a demand for their prevention and
mitigation is increasing. To react this high demand, we are designing and developing
a realtime Tsunami inundation analysis system on a brand-new vector supercom-
puter SX-ACE installed at Tohoku University as a case study of urgent computing
for earthquake and Tsunami disasters. In this article, we will present an overview of
the system and its performance in the Nankai trough earthquake case.

1 Introduction

On March 11, 2011, the East-Japan earthquake occurred with a magnitude of 9.0 in
the Pacific coast of Tohoku, which is a northern part of the mainland of Japan. A
huge Tsunami with a height of more than 40m triggered by the earthquake arrived
at coastal cities of the Tohoku area 30min after the earthquake, went into the inland
up to 10 Km, and destroyed the cities. More than 18,000 victims (dead or missing)
are due to the huge Tsunami.

After the great East-Japan earthquake, there is a growing concern about future big
earthquakes and Tsunami disasters in Japan, and a demand for their prevention and
mitigation is increasing, because there is a high probability of several big earthquakes
expected in the very near future in the sea around Japan. For example, according to
the report published by Cabinet Office, Government of Japan [1], the probability of
the Nankai Trough earthquake in the next 30years is 70%, and the total number of
deaths due to this huge earthquake would have been estimated to reach 320,000 in
the worst case, with an economical loss of 220 trillion yen.

H. Kobayashi (B)
Tohoku University, Sendai 980-8578, Japan
e-mail: koba@tohoku.ac.jp

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_11

131

132 H. Kobayashi

To react such a high demand, we start considering our contribution to the society
for prevention and mitigation of natural disasters by using our HPC resources and
research achievements. Here we focuses on the following three points:

• Prompt responses to disasters to reduce damages such as warning evacuation from
dangerous zones and rescuing survivors as soon as possible,

• Detailed and highly accurate analysis and forecasting of Tsunami inundation soon
after a big earthquake that may trigger a huge Tsunami, and

• Enhancement of the social resiliency against natural disasters by precise simulation
using HPC.

Under these considerations, we are designing and developing a real-time Tsunami
inundation analysis system. This article presents an overview of the system and
discusses the Tsunami simulation on the SX-ACE supercomputer, which is the brand-
new vector supercomputer developed by NEC and has been installed in 2015 at
Tohoku University [2].

2 A Real-Time Tsunami Inundation Analysis System

Figure1 shows a configuration of the Tsunami inundation analysis system. The sys-
tem has been designed to provide the information about the inundation in the coastal
cities with a high resolution of 10-m grids within 20min at the latest after an earth-
quake occurrence. To realize such an aggressive target of a highly accurate, 10-m
mesh-level Tsunami inundation simulation within a short time period, we can suc-
cessfully construct a coupled system of a real-time GPS-based earthquake observa-
tion system and an on-line Tsunami simulation on our SX-ACE system. The GPS-
observation systemmonitors the landmotion atmore than 1,300 points in Japan in the
24/7 operation. By using real-time measured land-motion data after an earthquake,
the fault model of the earthquake is estimated, and the necessary parameters for the
Tsunami simulation are automatically generated. These parameters are transferred

Fig. 1 Overview of the real-time Tsunami Inunation analysis system

A Case Study of Urgent Computing on SX-ACE: Design and Development … 133

to the Tsunami simulator on SX-ACE immediately via a network connecting them,
and the simulation will be triggered soon after the parameters arrival. A job manage-
ment system has specially be modified for the real-time Tsunami inundation analysis
system. The job management system named NQS II has been enhanced to support
urgent job prioritization so that the urgent job management function can execute the
Tsunami inundation simulation job on the SX-ACE system at the highest priority,
while immediately suspending other active jobs on the system. The suspended jobs
automatically resume as soon as the Tsunami inundation simulation completes.

After the Tsunami simulation completes on the SX-ACE system, the results will
be visualized on a citymap, and delivered to officers of designated local governments.
The visualized information provided includes Tsunami arrival time, maximum inun-
dation depth, Tsunami level changes, estimation of damaged population, houses, and
buildings, inundation start time, and maximum water level. All the visualized data
can be available through the web-interface.

To realize a highly-accurate Tsunami inundation simulation within a reasonable
time, we divide a computation domain in a hierarchical fashion. Figure2 shows an

Region 3

Region 4
Reg. 5

NankaiTrough
Earthquake M9.1

Fig. 2 Computation domain with a hierarchical decomposition for Kochi-City

134 H. Kobayashi

Table 1 Grid size of computation domain for Kochi-City

Region Grid size (m) Num. of grid (X) Num. of grid (Y)

1 810 1536 1020

2 270 1680 990

3 90 2292 1260

4 30 1782 1188

5 10 3504 2364

example of a hierarchical decomposition of the computation domain for Kochi city
and its coastal area. Table1 shows an actual grid sizes starting from a coarse grids
of a 810-m mesh down to the finest grids of a 10-m mesh. With these multi-level
grids, we implement the TUNAMI, (TohokuUniversity’s Numerical AnalysisModel
for Investigating tsunami) code [3] for SX-ACE. The TUNAMI code has originally
been developed by Tohoku University, and authorized by UNESCO and Japanese
Government as the official code for Tsunami inundation analysis.

The TUNAMI code solves non-linear shallow water equations, and uses the stag-
gered leap-frog 2D finite difference method as the numerical scheme [3]. Figure3
shows a structure of the TUNAMI code. There are two high cost kernels in the
TUNAMI code: one is to calculate mass conservation, and the other is to calculate
motion equation. Therefore, we intensively apply several optimization techniques to
these two kernels to exploit the potential of the SX-ACE supercomputer. As these
kernels have the same structure of doubly nested loops, we vectorized the inner
loop for efficient vector operations by the vector processor of the node, and paral-
lelized the outer loopwithMPI processes for efficientmulti-node parallel processing.

Fig. 3 Structure of TUNAMI code

A Case Study of Urgent Computing on SX-ACE: Design and Development … 135

In addition to the vectorization and parallelization, we developed several tuning tech-
niques such as inlining subroutines, the optimization of I/O routines, andADB tuning
of stencil operations. Among these techniques, the ADB tuning is very important and
effective to obtain a high sustained performance, because an on-chip memory named
ADB (Assignable Data Buffer) is introduced to the vector processor of the SX-ACE
to effectively provide data with a high locality to the vector pipes on a chip, without
hight-cost off-chip memory accesses [4].

3 Performance Evaluation

In this section, we examine the performance of our implementation of the TUNAMI
code on the SX-ACE system in comparison with a Xeon-based scalar-parallel system
and the K computer. Table2 summarizes the specifications of these systems. SX-9
and SX-ACE are vector systems and their advantages against scalar systems, LX
406 and the K-computer, are their higher memory bandwidths, when comparing the
systems with the same peak performance, resulting in a higher system B/F, a ratio
of a memory bandwidth to a peak performance. As many applications are memory-
intensive, higher B/F is a key factor to improve their sustained performances. The
Nankai trough case with a magnitude of 9.0 is used for the experiments.

The TUNAMI code was originally developed for Xeon-based scalar systems,
however, our optimization techniques for its migration to the SX-ACE system lead
to a significant performance improvement by a factor of 5.5 in comparison with the
performance of the LX 406 system in the case of a single core execution as shown in
Fig. 4. As a ratio of peak performances of two systems’ cores is three, the computing
efficiency, which is a ratio of the sustained performance to the peak performance, of
the SX-ACE processor core is twice higher than that of the Xeon Ivy Bridge’s core
of the LX406.

The high memory bandwidth plays an important role to obtain higher efficiency
rather than the peak performance in the execution of the TUNAMI code, because the
TUNAMI code is amemory-intensive application.When comparing the performance
of SX-ACE with that of SX-9, their execution times are almost same, even though
the single core performance is only 62.5% of SX-9’s single core-performance. The
higher computing efficiency of SX-ACE compared with SX-9 is the result of the
enhancement of the memory subsystem of SX-ACE compared with that of SX-9,
such as its shorter memory latency, an enlarged ADB with MSHR (Miss Status
Handling Registers), a short-cut mechanism in chaining vector pipes, and out-of-
order vector load operations [5].

Figure5 shows the execution time of the simulation in themulti-node environment
on SX-ACE, LX406 and the K computer. In the figure, numbers of marks mean the
execution times of each system when changing the number of threads(cores). Figure
5 indicates that the performance of the SX-ACE system with 512 cores is equivalent

136 H. Kobayashi

Ta
bl
e
2

Sp
ec
ifi
ca
tio

n
of

ev
al
ua
te
d
sy
st
em

s

Sy
st
em

N
o.

of
so
ck
-

et
s/
no
de

Pe
rf
./s
oc
ke
t

(G
flo

p/
s)

N
o.

of
co
re
s/
so
ck
et

Pe
rf
./c
or
e

(G
flo

p/
s)

M
em

.
B
W
/s
oc
ke
t

G
B
/s

O
n-
ch
ip

m
em

N
W

B
W

(G
B
/s
)

Sy
s.

B
/F

SX
-A

C
E

1
25
6

4
64

25
6

1M
B
A
D
B
/c
or
e

2
×

4
IX

S
1.
0

SX
-9

16
10
2.
4

1
10
2.
4

25
6

25
6K

B
A
D
B
/c
or
e

2
×

12
8
IX

S
2.
5

L
X
40
6
(I
vy

B
ri
dg
e)

2
23
0.
4

12
19
.2

59
.7

25
6K

B
L
2/
co
re

30
M
B

Sh
ar
ed

L
3

5
IB

0.
26

K
(S
PA

R
K
64
V
II
II
)

1
12
8

8
16

64
6M

B
Sh

ar
ed

L
2

5-
50

To
fu

N
W

0.
5

A Case Study of Urgent Computing on SX-ACE: Design and Development … 137

Fig. 4 Single-core
performance

Fig. 5 Core scalability

to that of 13K cores of the K computer. This is because SX-ACE can achieve a high
computation efficiency mainly thanks to its high memory bandwidth in cooperation
with an on-chip memory named ADB. The high sustained performance of a single
core also contributes to the decreasing number of MPI processes to obtain the certain
level of the performance for the real-time Tsunami inundation simulation.

Figure6 shows the timing chart of the entire process from the earthquake detection
to the visualization of the simulation results. The process of the Tsunami inundation
analysis system consists of two phases: coseismic fault estimation phase and tsunami
inundation simulation phase.Using this system for theNankai trough earthquake case
in Japan with 6-h simulation of Tsunami’s behavior, these two phases can complete
in less than 8min and 5min, respectively. In addition, the simulation results can be
visualized and sent to local governments within 4min after the simulation. Thus,
the system completes the Tsunami inundation analysis with a 10-m grids resolution
within 20min.

138 H. Kobayashi

Fig. 6 Timing chart of the entire process

4 Summary

This article briefly described design and implementation of a real-timeTsunami inun-
dation analysis system on the vector supercomputer SX-ACE. This is the world-first
achievement of real-time Tsunami inundation analysis of a 6-h inundation behavior
at the level of a 10-m meshWe can implement the system very efficiently by exploit-
ing the potential of SX-ACE, and as a results, even with 512 nodes, we can complete
a real-time simulation in 8min after the occurrence of a big earthquake, which is
equivalent to the performance of the K-computer with 13K nodes. Therefore, we
can successfully demonstrate that our SX-ACE system with the capability of the
real-time Tsunami inundation simulation has a potential as a social infrastructure for
the homeland safety like a weather forecasting system, in addition to as a research
infrastructure for computation science and engineering applications.

Acknowledgements Manycolleagues ofTohokuUniversity,NECand its related companiesmade a
great contribution to this project, and in particular great thanks go to Professors ShunichiKoshimura,
Ryota Hino, Yusaku Ohta, Visiting Professors Akihiro Musa and Yoichi Murashima, and Visiting
Researchers Hiroshi Matsuoka and Osamu Watanabe, all from Tohoku University

References

1. Cabinet Office, Government of Japan. http://www.bousai.go.jp/jishin/nankai/nankaitrough_
info.html

2. Kobayashi,H.:AnewSX-ACE-based supercomputer systemofTohokuUniversity. In: Sustained
Simulation Performance 2015, pp. 3–151. Springer (2015)

3. Koshimura, S., et al.: Developing fragility functions for tsunami damage estimation using numer-
ical model and post-tsunami data from Banda Aceh, Indonesia. Coastal Eng. J. 243–273 (2009)

4. Momose, S.: SX-ACE, Brand-new vector supercomputer for higher sustained performance I.
In: Sustained Simulation Performance 2014, pp. 199–214. Springer (2014)

5. Momose, S.: Next generation vector supercomputer for providing higher sustained performance.
In: COOL Chips 2013 (2013)

http://www.bousai.go.jp/jishin/nankai/nankaitrough_info.html
http://www.bousai.go.jp/jishin/nankai/nankaitrough_info.html

CFD/CAA Simulations on HPC Systems

Michael Schlottke-Lakemper, Fabian Klemp, Hsun-Jen Cheng,
Andreas Lintermann, Matthias Meinke and Wolfgang Schröder

Abstract In this paper, a highly scalable numerical method is presented that allows
to compute the aerodynamic sound from a turbulent flow field on HPC systems.
A hybrid CFD-CAA method is used to compute the flow and the acoustic field, in
which the two solvers are running in parallel to avoid expensive I/O operations for
the acoustic source terms. Herein, the acoustic perturbation equations are solved
by a high-order discontinuous Galerkin scheme using the acoustic source terms
obtained from an approximate solution of the Navier-Stokes equations. Both solvers
run simultaneously and operate on differently refined hierarchical Cartesian grids.
This direct-hybrid method is validated by monopole and pressure pulse simulations
and is used for performance measurements on current HPC systems. The results
highlight the limitations of classic hybrid methods and show that the new approach
is suitable for highly parallel simulations.

M. Schlottke-Lakemper (B) · A. Lintermann
Jülich Aachen Research Alliance - High Performance Computing, RWTH Aachen University,
Aachen, Germany
e-mail: m.schlottke-lakemper@aia.rwth-aachen.de

A. Lintermann
e-mail: lintermann@jara.rwth-aachen.de

F. Klemp · H.-J. Cheng · M. Meinke · W. Schröder
Institute of Aerodynamics, RWTH Aachen University, Aachen, Germany
e-mail: f.klemp@aia.rwth-aachen.de

H.-J. Cheng
e-mail: h-j.cheng@aia.rwth-aachen.de

M. Meinke
e-mail: m.meinke@aia.rwth-aachen.de

W. Schröder
e-mail: office@aia.rwth-aachen.de

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_12

139

140 M. Schlottke-Lakemper et al.

1 Introduction

One of the major challenges of today’s aircraft development is noise reduction, which
is also one of the central aims in European aircraft policy. The perceived noise levels
of flying aircraft are to be reduced until 2050 by 65 % compared to the year 2000
[25]. Many sound-generating components of aircraft need to be assessed in sufficient
detail to be able to improve their design, such as the optimization of the jet nozzle
geometry to lower noise emissions at take-off without sacrificing the thrust efficiency.
To achieve such optimizations, efficient, fully parallelized algorithms are needed to
predict the flow field and the far-field noise of jet engines.

A hybrid method combining large-eddy simulation (LES) with computational
aeroacoustics (CAA) for large-scale aeroacoustics simulations has been successfully
applied in [7, 18]. It uses LES to determine the turbulent flow field for external flow
configurations. From this solution, noise-generating source terms are extracted and
used in a CAA simulation, where the acoustic field is predicted using the acoustic
perturbation equations (APE) [6]. This scheme has been applied successfully to
different problems in computational aeroacoustics, such as trailing edge noise [7],
jet noise [12], or combustion noise [4, 11]. However, it suffers from the exchange of
large data volumes for the acoustic source terms via I/O operations, which limits the
efficiency of such a two-step approach especially on high-performance computing
(HPC) systems.

To circumvent this bottleneck, the direct-hybrid method presented in this work
combines the LES and CAA solvers in a single framework such that both solvers
can run in parallel. The LES solver used for the prediction of the flow field is based
on a finite-volume method, while the CAA approach makes use of a high-order
discontinuous Galerkin (DG) method to solve the APE for the acoustic field. DG
methods were first described by Reed and Hill [24] and were subsequently applied
to various physical problems, such as incompressible and compressible flow [2, 22],
magnetohydrodynamics [29], and aeroacoustics [1, 3].

The LES and CAA computations are performed on a joint Cartesian mesh. Based
on a coloring scheme, cells are associated with different weights for the LES and CAA
solution and a space-filling curve is used for the domain decomposition. The coupling
mechanism between both simulations only requires memory transfer operations. That
is, no additional communication between the subdomains is necessary, leading to an
efficient algorithm to be used on massively parallel systems. Furthermore, this direct-
hybrid approach allows a more fine-grained control over the coupling process itself,
since the LES results are not obtained separately from the acoustic field anymore.
This means that, e.g., the time step size or the grid size can be adapted during the
simulation to account for time-dependent changes in the resolution requirements of
both solvers, enabling in situ optimizations of the simulation process.

In this paper, the coupling approach for the direct-hybrid LES-CAA simulation
is presented and results for performance measurements are shown. A CAA code is
developed and integrated with an existing LES solver. After the governing equations
are introduced in Sect. 2, the numerical methods are described in Sect. 3. In Sect. 4,

CFD/CAA Simulations on HPC Systems 141

the coupling strategy is discussed in detail. The CAA solver is validated in Sect. 5,
before it is used for strong scaling experiments on two state-of-the-art HPC systems.
In Sect. 6, the presented methods and the obtained results are summarized.

2 Governing Equations

In this hybrid CFD-CAA method, two sets of governing equations are utilized. One
solely describes the generation and propagation of acoustic waves, while the other
set of equations predicts the physics of the underlying flow field. Here, the acoustic
perturbation equations are used for the acoustic field and the Navier-Stokes equations
for the flow field. Both are briefly summarized in the following.

2.1 Navier-Stokes Equations

The Navier-Stokes equations in non-dimensional, conservative form are given by

∂ρ

∂t
+ ∇ (ρu) = 0,

∂ρu
∂t

+ ∇
(

ρuu + p + τ

Re0

)
= 0,

∂ρe

∂t
+ ∇

(
(ρe + p)u + 1

Re0
(τu + q)

)
= 0.

(1)

The quantity ρ represents the fluid density, u the velocity vector, and e the total
specific energy. The system in Eq. (1) is closed by the definition of the total specific
energy for a perfect gas

ρe = p

γ − 1
+ 1

2
ρ(u · u), (2)

where p is the pressure and γ is the specific heat ratio. For non-dimensionalization,
the stagnation state is employed, which is denoted by the subscript 0. The Reynolds
number based on the stagnation state is defined by

Re0 = ρ0c0L

μ0
, (3)

where L is a reference length and ρ0, c0, and μ0 are the stagnation density, the speed
of sound, and the dynamic viscosity. A Newtonian fluid is assumed such that the
components τi j of the stress tensor τ can be written as

142 M. Schlottke-Lakemper et al.

τi j = −2μSi j + 2

3
μSi jδi j , (4)

where Si j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
is the rate of strain tensor. The dynamic viscosity μ is cal-

culated by using Sutherland’s law and the vector of heat conduction q is determined
by Fourier’s law

q = − k

Pr(γ − 1)
∇T, (5)

where T is the static temperature. The Prandtl number is defined with the specific
heat at constant pressure cp by Pr = μ0cp

k0
. For a constant Prandtl number, the relation

k(T) = μ(T) holds for the thermal conductivity.

2.2 Acoustic Perturbation Equations

The acoustic perturbation equations (APE) were introduced in [6] and are used to
predict the acoustic field for flow-induced noise. They are derived from the linearized
Euler equations and modified to retain only acoustic modes without generating vor-
ticity or entropy modes. Neglecting all viscous, non-linear and entropy-related con-
tributions, the APE-4 system reads [6]

∂u′

∂t
+ ∇ (

ū · u′) + ∇
(
p′

ρ̄

)
= qm, (6)

∂ p′

∂t
+ c̄2∇ ·

(
ρ̄u′ + ū

p′

c̄2

)
= 0, (7)

where the source term qm is the linear Lamb vector

qm = −(ω × u)′ = −(ω′ × ū + ω̄ × u′), (8)

with ω as the vorticity vector. The variables of the APE are perturbed quantities
denoted by prime (·)′ and are defined by φ′ := φ − φ̄, where the bar (·̄) denotes
time-averaged quantities.

In the present work, the non-dimensional form of Eqs. (6) and (7) is used. As
for the Navier-Stokes equations, the stagnation state is used for the definition of
reference values. Furthermore, it is assumed here that the time-averaged values for
the speed of sound and density are constant and equal to the stagnation state, i.e.,
c̄ = c0 and ρ̄ = ρ0, which is only valid in the low-Mach number regime. By using
the following non-dimensional variables,

t̃ = tc0

L
, x̃ = x

L
, ũ = u

c0
, p̃ = p

ρ0c2
0

, (9)

CFD/CAA Simulations on HPC Systems 143

the APE can be written as

∂ũ′

∂ t̃
+ ∇̃(˜̄u · ũ′ + p̃′) = q̃m, (10)

∂ p̃′

∂ t̃
+ ∇̃ · (ũ′ + ˜̄u p̃′) = 0. (11)

The non-dimensional source term is given by q̃m = qm
c̄2

0/L
. For convenience, in the

following discussion the tilde is dropped from the non-dimensional quantities.

3 Numerical Methods

In this section, the meshing process and the domain decomposition are outlined.
Furthermore, the numerical methods for the acoustic perturbation equations and the
Navier-Stokes equations are briefly described.

3.1 Hierarchical Mesh Topology

Both the LES solver and the CAA solver operate on a joint hierarchical Carte-
sian mesh. The cells of the grid are organized in a tree structure (2D: quadtree, 3D:
octree), with parent-child relationships between different levels and neighbor rela-
tionships within a level. The discretization process follows the method described in
[21] and starts with a single square/cube cell which encloses the whole computational
domain. This zero-level cell is then refined uniformly until the desired refinement
level is reached (see Fig. 1a). A cell to be refined is isotropically subdivided into
2d square/cube cells, with d being the number of spatial dimensions and with the
original cell becoming the parent cell of the new child cells. Individual regions of

level 0 level 1

level 2level 3

(a) Uniform mesh refinement from
level 0 to level 3.

(b) Mesh with higher resolution
boundary.near no-slip

Fig. 1 Cell refinement for a hierarchical Cartesian grid in 2D

144 M. Schlottke-Lakemper et al.

Fig. 2 Domain partitioning
on two domains with four
subtrees starting at level lα

Hilbert
curve

domain n domain n+1

subtree

the mesh can be further refined to meet resolution requirements, e.g., in areas with
small-scale physical features such as wall-bounded shear layers or to accurately
resolve boundaries (see Fig. 1b). A smoothing algorithm ensures that the level dif-
ference between neighboring cells does not exceed one, i.e., each cell has at most
2d−1 neighbor cells in each spatial direction. Special treatment is necessary for cells
that are intersected by the body geometry. In this paper, only non-intersected cells
are considered. During grid generation, the zero-level cell is homogeneously refined
to a minimum level lα and all coarser cells are discarded [21]. These cells at level
lα become the roots of their subtrees and are further subdivided until the required
refinement level is reached.

For the domain decomposition, a Hilbert space-filling curve [26] is used to map
the grid at level lα to the interval [0, 1]. Each cell at level lα is assigned a load that
depends on the number of cells in its subtree and on the type of the cells, i.e., whether
they are LES or CAA cells. Load balancing is achieved by taking into account these
load values when distributing the cells among the processes and for each lα cell the
entire subtree is placed on the same rank (see Fig. 2). By consecutively placing lα
cells and their subtrees on the MPI ranks according to their position on the Hilbert
curve, spatial compactness is ensured, reducing the overall communication cost.

3.2 Discontinuous Galerkin Approximation of the APE

A discontinuous Galerkin spectral element method (DGSEM) is used to determine
the acoustic field. In Kopriva et al. [19], the DGSEM was proposed and has been used
extensively [9, 17]. Since it was derived for quadrilateral/hexahedral mesh elements,
it is well-suited for the use on hierarchical Cartesian grids. Furthermore, its compact
formulation allows a very efficient parallelization, when explicit time stepping is
used, and the parallel efficiency is independent of the chosen order of the scheme.

Since the DGSEM elements correspond to cells in a finite-volume context, the
words cell or element will be used interchangeably. In the following, the main com-
ponents of the DGSEM are outlined. First, the system of equations is mapped to
a reference element for efficiency reasons. The derivation of the DG formulation

CFD/CAA Simulations on HPC Systems 145

then starts with the weak formulation, choosing Lagrange polynomials to represent
the solution within each element. This gives rise to an integral equation, which is
approximately solved using Gauss quadrature. Finally, the discrete DG operator is
integrated in time using a Runge-Kutta scheme.

A general system of hyperbolic conservation equations in three dimensions reads

∂U
∂t

+ ∇ · f (U) = 0, (12)

where U = U(x, t) is the vector of conservative variables {ui }nvi=1 and f is the flux
vector. For efficiency reasons, the differential equation is mapped to a reference ele-
ment E , which is in three dimensions given by a cube of size [−1, 1] × [−1, 1] ×
[−1, 1]. Introducing the reference coordinate vector ξ = (ξ1, ξ2, ξ3)ᵀ, the final trans-
formed equation reads [17]

ĴU t + ∇ξ · f = 0, (13)

where Ĵ is the Jacobian, which for cube-to-cube transformations is just h
2 , h being

the side length of the cube, and U t is the time derivative of the vector of conservative
variables.

The derivation of the DG method starts with the weak form of the equation.
Therefore, Eq. (13) is multiplied by a test function φ = φ(ξ) and integrated over the
reference element E ∫

E

(
ĴU t + ∇ξ · f

)
φ dξ = 0. (14)

Using integration by parts on the flux term, the weak formulation of the differential
equation is obtained

∫
E
ĴU tφ dξ +

∫
∂E
(f · n)∗φ ds −

∫
E
f · ∇ξφ dξ = 0, (15)

where n is the surface normal vector in the reference system. Similar to the finite-
volume approach, the value for the normal flux f · n is not uniquely defined on the
element boundaries ∂E , since the solutions in the left U− and right U+ elements are
discontinuous. Therefore, a numerical flux (f · n)∗ = g(U+,U−, n) is chosen that
combines values from both sides to a single flux. In this work, the local Lax-Friedrichs
flux formulation is used,

g(U+,U−, n) = 1

2

(
f (U+) + f (U−)

) · n + 1

2

(
max

U∈[U+,U−]
|a(U) · n|(U+ − U−)

)
, (16)

where a is the vector of eigenvalues of the flux Jacobian. The solution U is approx-
imated by a polynomial basis

U(ξ, t) ≈
N∑

i, j,k=0

ūi j k(t)ψi jk(ξ), ψi jk(ξ) = li (ξ
1)l j (ξ

2)lk(ξ
3), (17)

146 M. Schlottke-Lakemper et al.

Fig. 3 Legendre-Gauss
nodes in a 2D reference
element for N = 3

where the basis functions ψi jk are the product of one-dimensional Lagrange poly-
nomials l of degree N in each spatial direction and ūi j k(t) are the coefficients to be
determined. The nodal basis is defined on a set of interpolation points {ξ}Ni=0 on the
interval ξ ∈ [−1, 1], which in this work are the Legendre-Gauss nodes (Fig. 3). For
the fluxes, the same approach is used for the approximation.

The three integrals in Eq. (15) are approximated by Gauss quadrature. Generally,
the Gauss quadrature of an arbitrary function f (x) on the interval [a, b] with N + 1
nodes can be written as

b∫

a

f (x) dx ≈
N∑
i=1

ωi f (xi), (18)

where the weights ωi and the integration nodes xi are specific to the chosen quadrature
type. These weights are pre-calculated and stored to make the algorithm efficient.
With the interpolation points {ξi } collocated at the Gauss nodes, all sums collapse
into single values, yielding the discrete DG operator L (U, t) = U t [17]. In the next
step, the semi-discrete formulation is integrated in time to obtain the solution at the
next time step, for which a low-storage fourth-order Runge-Kutta scheme is used [5].

3.3 Finite-Volume Method for the Flow Simulation

A second-order finite-volume method is used to solve the unsteady Navier-Stokes
equations for compressible flow as given in Sect. 2.1. The solver has been exten-
sively validated and used for various flow problems previously [15, 16]. A detailed
description of the method can be found in [13, 15, 16, 28].

4 Coupling Strategy

To solve the acoustic perturbation equations, the averaged quantities ū and c̄ and
the source term qm have to be determined first. The flow solution is advanced with-
out coupling until the averaged quantities are statistically converged. The coupling
process for each time step of the LES reads:

CFD/CAA Simulations on HPC Systems 147

1. Advance the LES solution.
2. Calculate the source terms from instantaneous and averaged quantities.
3. Advance the CAA solution.

The actual coupling takes place via the source terms computed from the LES solution,
which are then used to solve the APE. This means that there is a one-way coupling
from the flow solution to the acoustic field, while the flow solution is not influenced
by the acoustic field.

In the direct-hybrid method described here, the LES and the CAA simulation
are both performed within a single simulation framework and by using the same
grid topology. This makes certain aspects of the coupling process more efficient and
allows a more fine-grained control over the interface between the two solvers. In the
following, some details of the method are presented.

4.1 Spatial Coupling

The instantaneous variables of the source term qm are available after each time step
from the flow simulation. They have to be transferred, however, from the LES to
the acoustic grid. Since both simulations typically operate on different levels of the
same grid, identification of corresponding cells is possible by traversing the octree
constituting the hierarchical Cartesian mesh. While LES and CAA leaf cells can
generally be of different size, the coupling always happens within a single subtree.
Since the domain decomposition algorithm distributes entire subtrees on different
processes (see also Sect. 3.1), no additional inter-rank communication is required
for the exchange of data between CFD and CAA cells.

This type of mesh also guarantees that there are no partially overlapping cells,
i.e., a smaller cell is always fully contained inside a larger cell. Note that the DG
elements are generally of higher order than the finite-volume cells. Depending on
the resolution of the fluid and acoustics problems, four types of transformations are
possible.

In the simplest case, one fluid cell corresponds exactly to one acoustics cell
(Fig. 4a). That is, the source term is calculated once in the finite-volume part and
the same value is used at all Gauss nodes of the DG element. This approach is used
exclusively in the present work, i.e., no spatial interpolation is performed. Similar
to the one-to-one mapping, the source term is calculated once and then used at all
Gauss nodes of all elements if one fluid cell is mapped to multiple acoustics cells
(Fig. 4b).

Having multiple finite-volume cells mapped onto one DG element (Fig. 4c)
requires the values at the Gauss nodes to be interpolated from several flow cells.
A natural choice would be to interpret the finite-volume cells as equidistant nodes of
a polynomial and to obtain the values at the Gauss nodes through projection. This,
however, can lead to spurious oscillations if the number of finite-volume cells and
thus the polynomial degree is high, especially in regions with large flow gradients.

148 M. Schlottke-Lakemper et al.

(a) One-to-one (b) One-to-multiple (c) Multiple-to-one

Fig. 4 Possible spatial mappings for coupled simulations. Aeroacoustics cells (top) are white, fluid
cells (bottom) are grey

Other possibilities are weighted least squares methods, nearest neighbor interpola-
tion, or inverse distance weighting. Which approach is best depends on a number of
factors. A practical consideration is the computational cost of the chosen method,
e.g., whether the effort scales linearly with the number of degrees of freedom or
worse, since the interpolation has to take place at each flow simulation time step.
The smoothness of the interpolated function is also important, especially in high-
gradient zones. Furthermore, it is desireable to have a conservative interpolation
scheme such as proposed by Farrell and Maddison [8], to avoid distorting the source
terms.

If there are regions without either a flow or acoustics grid, no coupling is per-
formed. If only acoustic cells exist, far-field values for the averaged quantities c̄ and
ū have to be specified for the APE, e.g., the freestream values from the flow field.
The source term qm is set to zero with a smooth transition from non-zero to zero
values.

4.2 Temporal Coupling

The coupling between the flow and the acoustics simulations has to be realized at
each time step. Due to the explicit global time stepping it is possible that the time
step size differs between the two solvers. In this case, at each time step the source
term from the LES solution needs to be interpolated to the simulation time of the
CAA solver.

Depending on the features of the geometry, the time step for the aeroacoustics
simulation may be smaller than that for the flow simulation or vice versa and thus
the source terms have to be interpolated between two flow time steps. As for the spa-
tial coupling, there are many different interpolation methods to choose from. Linear
interpolation is the most straightforward approach, with sometimes inferior results.
Several temporal interpolation methods suitable for hybrid aeroacoustics simulations
are compared and evaluated by Geiser et al. [10] and least-squares optimized inter-
polators were found to have the best properties when it comes to broadband error
reduction.

CFD/CAA Simulations on HPC Systems 149

The simplest approach is using the same time step for both simulations, which
requires no interpolation between the two datasets. In this case, the next time step
based on the CFL condition is determined for the CFD and the CAA method and the
minimum of both methods is used, which is also the procedure that is used in this
work.

4.3 Data Transfer

There exist two options for transferring data between the flow solution and the
acoustics solution: via data files written to disk, i.e., offline coupling as used in
standard hybrid approaches, or through in-memory data access, i.e., online coupling
as done in the new direct-hybrid approach. Both methods are discussed in the fol-
lowing.

In offline coupling, the processes of obtaining the flow solution and running
the aeroacoustics simulation are completely separated. At first, the flow solution is
obtained and the source term qm is written to a file at certain time intervals. During the
acoustics simulation, the source terms are determined from the files by interpolation
in time. Conceptually, this is the simplest approach, since except for the I/O routines
nothing has to be changed inside the two simulations. However, the high amount
of data that has to be transferred to and from the disk makes this method expensive
in terms of computational cost, especially for large-scale simulations on thousands
of cores. However, it is also the first step towards a simulation which makes use of
online coupling as outlined next.

In online coupling, the flow and the acoustics simulations are fully integrated and
run synchroneously at the same time. Typically, the flow solution will be advanced
by one time step and the acoustics solution has to be updated until they are both
synchronized. Since no files have to be written to disk, this approach is more efficient
than offline coupling. If the acoustics cells are kept on the same computational core as
the corresponding flow cells, the acoustics simulation can directly access the relevant
information by simple memory transfer operations. This locality of data is achieved
by the specific subdomain decomposition, which operates on the joint LES-CAA
grid. On the other hand, the increased memory consumption makes it necessary to
use more computational cores. Furthermore, due to the different number of operations
for the finite-volume and the DG operator, paired with different numbers of flow cells
per acoustics cell, load balancing between the cores becomes mandatory to achieve
reasonable parallel efficiency. This is accomplished by assigning appropriate loads
to the fluid and acoustics cells.

150 M. Schlottke-Lakemper et al.

5 Results

The CFD solver has already been extensively tested and used in the past, e.g., in [13,
15, 16, 23, 28]. Thus in Sect. 5.1, only the new CAA solver is validated. Additionally,
parallel performance results for the CAA solver are presented in Sect. 5.2.

5.1 Validation of the Aeroacoustics Solver

The DG method described in Sect. 3.2 is validated by solving the acoustic perturba-
tion equations for several generic problems. It is demonstrated that the solver is able
to correctly predict the acoustic pressure field for sheared mean flow, for acoustic
reflection at a solid wall, and for sound waves emanating from a boundary layer.

5.1.1 Monopole in Sheared Mean Flow

Figure 5 shows the results for wave propagation in a sheared mean flow. The example
was chosen since mixing layer-type flow configurations with sheared mean flow are
typical for noise generation, e.g., for turbulent jets. An S-shaped velocity profile is
prescribed for the mean velocity,

ū = 1

2
tanh

(
2y

δw

)
, (19)

where the shear-layer thickness is set to δw = 50 and an analytical source term is used
to generate an acoustic monopole [6]. The domain was discretized using 200 × 200
elements with a polynomial degree N = 3. Figure 5 shows the result in comparison
to the perturbed pressure field obtained in [6] from the linearized Euler equations
(LEE). It can be seen that the DG results agree well with the reference solution.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-100 -50 0 50 100

p'

x

DG-APE
LEE

y= 70

Fig. 5 Monopole in sheared mean flow (left perturbed pressure p′, right p′ at y = 70 and t = 180)

CFD/CAA Simulations on HPC Systems 151

0

0.1

P

-0.0499

0.186

x = y

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 20 40 60 80 100

p'

x

DG-APE
theory

Fig. 6 Reflection of a pressure pulse at a solid wall (left perturbed pressure p′, right p′ at x = y
and t = 30)

5.1.2 Acoustic Reflection at a Solid Wall

A pressure pulse impinging on a plane wall in the presence of a uniform mean flow
was simulated to validate the wall boundary conditions. The wall is located at y = 0
and the initial conditions at time t = 0 are

u′ = v′ = 0, p′ = exp

{
−(ln 2)

x2 + (y − 25)2

25

}
. (20)

The mean flow is prescribed parallel to the wall by setting ū = 0.5, v̄ = 0.0. Both
the setup and the analytical values are taken from [14]. The square-shaped computa-
tional domain with side length l = 200 was discretized using 256 elements in each
spatial direction with a polynomial degree of N = 5. In Fig. 6, results for the acoustic
pressure field of the reflected pulse are shown. They confirm that the CAA solver is
able to correctly predict the reflection of acoustic waves from a solid wall.

5.1.3 Monopole in a Boundary Layer

In this case, a plane sound wave is assumed to travel through a small channel and
to exit through a small orifice in a plane wall. Due to the small size of the channel,
the emanating wave is an approximation for a singular monopole at the wall [3]. The
domain is defined by x ∈ [−25.6, 25.6] in the x-direction and y ∈ [0.0, 20.0] in the
y-direction, and it is discretized by 400,000 elements with a polynomial degree of
N = 3. The monopole has a size of ε = 0.1 and is located at the origin. It is created
by enforcing a sinusoidal boundary state by setting

u′ = 0, v′ = p′ = sin(2πt). (21)

152 M. Schlottke-Lakemper et al.

Fig. 7 Contour plot of perturbed pressure p′ for monopole in boundary layer

Fig. 8 Directivities for rms
pressure along r = 15

 0 0.2 0.4 0.6 0.8 1
0°

30°

60°

90°

120°

150°

180°

θ

p'rms/p'ref

Bauer et al. [3]
DG-CAA

In addition to the monopole at the wall, a non-zero mean velocity is prescribed, which
decreases to zero in the boundary layer region:

ū =
{
Mx (2y − 2y2 + y4), if 0 ≤ y ≤ 1,

Mx , if y > 1,
v̄ = 0, (22)

where the Mach number is set to Mx = 0.3. Figure 7 shows a contour plot of the result-
ing pressure field. In Fig. 8 the results are compared to those in [3]. The DG-CAA
solution is virtually indistinguishable from the reference solution, which demon-
strates that the DG-APE method is able to adequately capture the refraction and
reflection of sound waves in flow fields with velocity gradients, both in the channel
region at θ < 10◦ and in the shadow region at 140◦ < θ < 180◦.

5.2 Parallel Performance Analysis

To assess the parallel performance of the newly developed aeroacoustics solver, a
strong scaling experiment with two setups was performed on HPC systems. In each

CFD/CAA Simulations on HPC Systems 153

 0

 400

 800

 1200

 1600

 2000

48 24576 49152 73728 93600

S
pe

ed
up

Number of cores

Ideal speedup
Low-order case
High-order case

 0

 50

 100

 150

 200

 250

2048 65536 196608 327680 458752

S
pe

ed
up

Number of cores

Ideal speedup
Low-order case

Fig. 9 Strong scaling experiments for the CAA solver on a Cray XC 40 (left) and a BlueGene/Q
(right)

setup, the three-dimensional domain is cube-shaped. To obtain meaningful error
measures, a manufactured solution approach was used, i.e., an auxiliary source term
was added to the system of equations such that the analytical initial conditions, which
are based on trigonometric functions, fulfill the system of equations exactly. In the
first setup, a grid with 16.8 million cells and a polynomial degree N = 3 was used
(low-order case). For the second setup, the number of cells was reduced to 2.1 million
and the polynomial degree was set to N = 7 (high-order case). This yields the same
global number of degrees of freedom for both cases (1.1 billion). The setups were
chosen to be representative of typical large-scale aeroacoustics simulations under
realistic conditions.

Figure 9 shows the strong scaling results for both setups on two state-of-the-art
supercomputers, i.e., the Cray XC 40 of the High-Performance Computing Center
Stuttgart and the BlueGene/Q of the Forschungszentrum Jülich. On both machines,
the simulations were executed with one MPI rank per core and two OpenMP threads
per rank. For the Cray system, the low-order case has a parallel efficiency of 79 %
on 93,600 cores, which improves to 98 % for the high-order case. Both values are
very satisfactory. On the BlueGene/Q, the efficiency for the low-order case on the
full machine is 80 %. From these results, it can be concluded that the CAA solver
is highly scalable and that it is well-suited for large-scale aeroacoustics simulations.
Furthermore, the comparison of the two setups on the Cray XC 40 shows that it is
beneficial for the parallel efficiency to use a higher-order approximation in the DG
scheme.

To highlight the necessity of developing a new coupling approach for hybrid
CFD-CAA simulations, another scaling experiment was conducted. In this case,
a CAA simulation of a two-dimensional mixing layer was performed with offline
coupling, i.e., the source term information was read from data files [27]. Figure 10
shows the speedup and the absolute wall-clock time for a single-threaded scaling
from 32 to 4,096 cores. In the left figure, the speedup is shown once for the overall
simulation, with an ultimate efficiency of 61 % at 4,096 cores. When excluding the
I/O time, i.e., the time spent reading the source term data from disk, the efficiency
improves to 92 %. The reason for this behavior can be understood when looking at the

154 M. Schlottke-Lakemper et al.

 0

 20

 40

 60
 80

 100

 120

 140

32 512 1024 2048 4096

S
pe

ed
up

Number of cores

Ideal speedup
DG-CAA

DG-CAA (without I/O)

 1

 10

 100

 1000

32 512 1024 2048 4096

W
al

l-c
lo

ck
 ti

m
e

[s
]

Number of cores

Total
Computation

I/O

Fig. 10 Speedup (left) and wall-clock time (right) for a offline coupling simulation with 31.4
million cells and N = 1 on a BlueGene/Q

 0

 5

 10

 15

 20

 25

 30

48 6144 12288 24576

G
iB

/s

Number of cores

Lustre, 168 OSTs
Lustre, 96 OSTs

 0
 1
 2
 3
 4
 5
 6
 7
 8

2048 32768 65536 98304 131072

G
iB

/s

Number of cores

GPFS

Fig. 11 Strong scaling results for the I/O write performance of a 63 GiB file on a Cray XC 40
using two Lustre file systems with 96 and 168 object storage targets (OST) respectively (left) and
a BlueGene/Q using a GPFS file system (right)

wall-clock time for computation and I/O separately (see right figure): while the time
for computation continuously decreases when using higher core counts, the curve
for I/O time flattens out when going from 2,048 to 4,096 cores. This means that the
I/O component ceases to scale beyond a certain number of cores, effectively turning
the I/O into a bottleneck for the overall simulation.

The degradation of the parallel efficiency for offline-coupled simulations due to
I/O performance limits can be further substantiated by examining the I/O bandwidth
on current HPC systems. In Fig. 11, the measured maximum write speed for a single
63 GiB file is shown at increasing numbers of cores. The numbers were obtained
with the Parallel netCDF library [20] using collective I/O and one MPI rank per core.
On both machines, i.e., a Cray XC 40 with a Lustre file system (left figure) and a
BlueGene/Q with a GPFS file system (right figure), the I/O bandwidth peaks at a
certain number of cores and actually decreases for higher core counts. These results
strongly suggest the need for an online coupling approach, where the CFD and the
CAA solvers do not have to rely on the file I/O system to exchange data.

CFD/CAA Simulations on HPC Systems 155

6 Conclusions

A direct-hybrid method suitable for large-scale aeroacoustic simulations has been
presented. The flow field is predicted using an LES solver based on the finite-volume
method. For the CAA solution, a nodal DG method is used to solve the acoustic per-
turbation equations for the determination of the acoustic field. In the novel approach,
both solvers use the same hierarchical Cartesian grid, enabling an efficient data
exchange between the two solvers. Appropriate strategies for the spatial and tempo-
ral coupling are described.

The CAA method is shown to correctly predict the acoustic pressure field for a
monopole in sheared mean flow, acoustic reflection at a solid wall, and a monopole
in a boundary layer. In addition, the parallel performance of the new scheme is
investigated in several strong scaling experiments. They show that the new DG-CAA
solver is capable of efficiently running simulations on hundreds of thousands of cores.
Furthermore, while the direct-hybrid method with offline coupling involving disk I/O
scales well up to a 128-fold increase in MPI ranks, the I/O operations necessary for
reading the source terms from disk are identified as a bottleneck towards extreme
scaling. This observation is further corroborated by an analysis of the I/O bandwidth
on two current HPC systems, which emphasizes the need for the online coupling
approach.

Overall, the proposed direct-hybrid method has shown to be a good candidate
for efficient, highly parallel CAA simulations. As a next step, spatial as well as
temporal interpolation schemes need to be investigated to lessen the restriction on
the resolution requirements in space and time. A dynamic load balancing scheme will
be developed to further improve the parallel performance for moving geometries.

Acknowledgements This work has been performed with the support from the JARA-HPC SimLab
Fluids & Solids Engineering of the RWTH Aachen University, Germany and the Forschungszentrum
Jülich, Germany. The authors gratefully acknowledge the allocation of supercomputing time as well
as the technical support by the High-Performance Computing Center Stuttgart of the University of
Stuttgart, Germany and by the Jülich Supercomputing Centre of the Forschungszentrum Jülich,
Germany.

References

1. Atkins, H.L.: Continued development of the discontinuous Galerkin method for computational
aeroacoustic applications. AIAA Paper (97-1581) (1997)

2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numer-
ical solution of the compressible Navier-stokes equations. J. Comput. Phys. 131(2), 267–279
(1997)

3. Bauer, M., Dierke, J., Ewert, R.: Application of a discontinuous Galerkin method to discretize
acoustic perturbation equations. AIAA J. 49(5), 898–908 (2011)

4. Bui, T.Ph., Schröder, W., Meinke, M.: Numerical analysis of the acoustic field of reacting flows
via acoustic perturbation equations. Comput. Fluids 37(9), 1157–1169 (2008)

156 M. Schlottke-Lakemper et al.

5. Carpenter, M.H., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. NASA Report
TM 109112, NASA Langley Research Center (1994)

6. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via
source filtering. J. Comput. Phys. 188, 365–398 (2003)

7. Ewert, R., Schröder, W.: On the simulation of trailing edge noise with a hybrid LES/APE
method. J. Sound Vibr. 270(3), 509–524 (2004)

8. Farrell, P., Maddison, J.: Conservative interpolation between volume meshes by local Galerkin
projection. Comput. Meth. Appl. Mech. Eng. 200(1–4), 89–100 (2011)

9. Flad, D., Frank, H., Beck, A.D., Munz, C.D.: A Discontinuous Galerkin spectral element
method for the direct numerical simulation of aeroacoustics. AIAA Paper (2014-2740) (2014)

10. Geiser, G., Marinc, D., Schröder, W.: Comparison of source reconstruction methods for hybrid
aeroacoustic predictions. International Journal of Aeroacoustics 12(7–8), 639–662 (2014)

11. Geiser, G., Schlimpert, S., Schröder, W.: Thermoacoustical noise induced by laminar flame
annihilation at varying flame thicknesses. In: 18th AIAA/CEAS Aeroacoustics Conference
(33rd AIAA Aeroacoustics Conference), 04–06 June 2012, Colorado Springs, CO, AIAA
2012–2093 (2012)

12. Gröschel, E., Schröder, W., Renze, P., Meinke, M., Comte, P.: Noise prediction for a turbulent
jet using different hybrid methods. Comput. Fluids 37(4), 414–426 (2008)

13. Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple
interacting interfaces in embedded boundary methods. Comput. & Fluids 102, 182–202 (2014)

14. Hardin, J., Ristorcelli, J.R., Tam, C.K.W. (eds.): ISCASE/LaRC Workshop on Benchmark
Problems in Computational Aeroacoustics (CAA), vol. NASA Conference Publication 3000.
NASA (1995)

15. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for
Cartesian hierarchical grid methods. Comput. Fluids 37, 1103–1125 (2008)

16. Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for
compressible viscous flows on adaptive grids. Comput. Meth. Appl. Mech. Eng. 200, 1038–
1052 (2011)

17. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit
discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)

18. Koh, S., Schröder, W., Meinke, M.: Turbulence and heat excited noise sources in single and
coaxial jets. J. Sound Vibr. 329, 786–803 (2010)

19. Kopriva, D., Woodruff, S., Hussaini, M.: Discontinuous spectral element approximation of
Maxwell’s equations. In: B. Cockburn, G. Kariadakis, C.W. Shu (eds.) Proceedings of the
International Symposium on Discontinuous Galerkin Methods. Springer (2000)

20. Li, J., Zingale, M., Liao, W.k., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R.,
Siegel, A., Gallagher, B.: Parallel netCDF: a high-performance scientific I/O interface. In:
Proceedings of the 2003 ACM/IEEE Conference on Supercomputing - SC ’03, p. 39. ACM
Press, New York, USA (2003)

21. Lintermann, A., Schlimpert, S., Grimmen, J.H., Günther, C., Meinke, M., Schröder, W.: Mas-
sively parallel grid generation on HPC systems. Comput. Meth. Appl. Mech. Eng. 277, 131–153
(2014)

22. Liu, J.G., Shu, C.W.: A high-order discontinuous Galerkin method for 2D incompressible flows.
J. Comput. Phys. 160(2), 577–596 (2000)

23. Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simulation of
tip-leakage flow. Phys. Fluids 27(7), 075106 (2015)

24. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Rep.
LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

25. Directorate-General for Research, Innovation European Union: Flightpath 2050: Europe’s
Vision for Aviation: Maintaining Global Leadership and Serving Society’s Needs. Office for
Official Publications of the European Communities (2011)

26. Sagan, H.: Space-filling curves, 1st edn. In: Universitext. Springer, New York (1994)
27. Schlottke, M., Cheng, H.J., Lintermann, A., Meinke, M., Schröder, W.: A direct-hybrid method

for computational aeroacoustics. In: AIAA Aviation, 22–26 June 2015, Dallas, TX, 21st
AIAA/CEAS Aeroacoustics Conference, AIAA-2015–3133 (2015)

CFD/CAA Simulations on HPC Systems 157

28. Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary for-
mulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)

29. Yakovlev, S., Xu, L., Li, F.: Locally divergence-free central discontinuous Galerkin methods
for ideal MHD equations. J. Comput. Sci. 4(1–2), 80–91 (2013)

HPC Applications for Manufacturing
Innovation in Aerospace Fields

Ryoji Takaki and Seiji Tsutsumi

Abstract JAXA promotes research and development of High Performance
Computing technology in order to help aerospace developments. From April, 2016,
JAXA started full operation of JAXA Supercomputer System 2:JSS2. Amain engine
of JSS2 is calledSORA-MA,which isFUJITSUSupercomputer PRIMEHPCFX100.
It is amany-core based scalable parallel cluster system.With supercomputer systems,
JAXA has been driving the incorporation of numerical simulation technologies into
the design process in order to innovate the manufacturing in aerospace fields. This
paper reports brief overview and preliminary performance evaluation of JAXA’s new
supercomputer system. An example of numerical simulations applied to a develop-
ment of a launch-pad for a new rocket called Epsilon is also presented.

1 Introduction

Japan Aerospace Exploration Agency (JAXA) is a national aerospace agency in
Japan. JAXA was born in 1 October 2003, through the merger of three previously
independent organizations. JAXA is a core agency to support the Japanese govern-
ment’s overall aerospace development and utilization. Therefore, JAXA has been
working on a variety of aerospace activities: space and planetary science research by
asteroid probeHAYABUSA, planetary probes and astronomy satellites, development
of space transportation systems likeH-IIA,H-IIBandEpsilon launchvehicles, human
space activities such as Japanese module of International Space Station, astronauts
and unmanned cargo transporter HTV, utilization with satellite for earth observation,
communication and navigation using various satellite, aviation programs for the next
generation airplane and jet engines. Basic technology research and educations are
also important missions in JAXA.

R. Takaki (B) · S. Tsutsumi
Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku,
Sagamihara, Kanagawa 252-5210, Japan
e-mail: ryo@isas.jaxa.jp

S. Tsutsumi
e-mail: tsutsumi.seiji@jaxa.jp

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_13

159

160 R. Takaki and S. Tsutsumi

One of the HPC (High Performance Computing) center in JAXA is JAXA’s Engi-
neeringDigital InnovationCenter, called JEDICenter. The name of the center “JEDI”
was determined by the belief that JAXA’s simulation and digital engineering tech-
nology will be a strong help for the credibility improvement of JAXA’s activity.
The objective of this center is a contribution to space development by applying
information technologies and simulation technologies. Three key roles are defined
as the main task of JEDI center to realize the previous objective. First is an intro-
duction of up-to-date IT (Information Technology) into the spacecraft and aircraft
projects. Second is a research and development on numerical simulation technology
and its application to the spacecraft and aircraft projects. The last is introduction
and operation of JAXA’s supercomputer system and research and development of its
application technology. Currently, the name of JEDI was formally disappeared due
to an organizational change of JAXA. However, the spirit of JEDI center has been
preserved and the our group is informally still called “JEDI center”.

This paper reports brief overview and preliminary performance evaluation of
JAXA’s new supercomputer system. An example of numerical simulations applied
to a development of a launch-pad for a new rocket called Epsilon is also presented.

2 JAXA’s Supercomputer System 2

2.1 System Overview

From April 2016, JAXA started full operation of JAXA’s Supercomputer System 2
(JSS2), which consists of SORA (Supercomputer for earth Observation, Rockets and
Aeronautics) and J-SPACE (JAXA’s Storage Platform for Archiving, Computing and
Exploring). Figure1 shows system configuration of JSS2, which consists of several
systems.

SORA-MA is a main computational engine. SORA-PP is a pre-post processing
system, which is used for grid generation, visualization and data analysis of com-
puted results. It is also used as a platform for commercial softwares because it has
commonly used Intel CPUs. SORA-LM has a large memory and it is used for non-
parallelized applications which require large memory space. SORA-LI is a login
system and SORA-FS is a file system for JSS2. SORA-TPP and SORA-TFS are a
local sever and a local file system at Tsukuba region. SORA-KFS and SORA-SFS
are local file systems at Kakuda region and Sagamihara region, respectively. These
systems support remote users to use SORA-MA and SORA-PP through the network
from Tsukuba, Kakuda and Sagamihara.

SORA-MA is FUJITSU Supercomputer PRIMEHPC FX100 [1] (cf. Fig. 2). It is
a many-core based scalable parallel cluster system, which has 3,240 compute nodes.
Each compute node has one CPU:SPARC64TMXIfx chip of 2.2GHz clock speed and
is connected by Tofu2 (Torus Fusion 2) interconnect. HMC (Hybrid Memory Cube)
is used as a main memory of nodes, which shows 480GB/s memory bandwidth:

HPC Applications for Manufacturing Innovation in Aerospace Fields 161

Fig. 1 System configuration of JSS2

Fig. 2 SORA-MA (Fujitsu Supercomputer PRIMEHPC FX100)

162 R. Takaki and S. Tsutsumi

240GB/s for read and 240GB/s for write. The bandwidth of Tofu2 is 12.5GB/s.
SPARC64TMXIfx has 32 cores and 2 assistant cores. The theoretical peak perfor-
mance is about 1TFLOPS. Assistant cores are used by system daemons, file I/O
processes and data transfer processes, which help performance advances in large
scale computations. Thirty-two cores (and also 2 assistant cores) are divided into
2 CMGs (Core Memory Groups), which shares L2 Cache. Each core has 8 FMAs
(Floating-point Multiply and Add) and 4-wide SIMD.

SORA-PP is FUJITSU PRIMERGYRX350 S8. Each compute node has two Intel
Xeon E5-2643V2 CPUs of 3.5GHz. There are 6 cores on one CPU, hence 12 cores
in one compute node.

Because of an internal hierarchical structure (core/CMG/CPU/node) of the com-
pute node, several parallel programming models, a Flat-MPI model and a Hybrid
model can be applicable. In the Flat-MPI model, 32 MPI processes can run at each
compute node. In the Hybrid model, several combinations of the number of MPI
processes and the number of threads can be considered. Considering the hardware
structure, a combination of 2MPI processes and 16 threads are recommended, where
each MPI process run on each CMG in CPU.

2.2 Performance Measurements

The performance of SORA-MA was measured by the basic benchmark program
STRAM [2] and an application program UPACS-Lite.

Figure3 shows results of STREAM TRIAD on SORA-MA. In this test, one com-
pute node with 16 cores was used; one CMG was used by using the Hybrid model
with one MPI process and 16 threads. There are 3 lines in this figure, showing same
performance with different type of Fortran arrays: a static array, an allocatable array
and a pointer array. The theoretical peak memory bandwidth is 180GB/s on one
CMG (namely 16 cores). Therefore the efficiency is about 85.7%. Same efficiency
is also obtained by the case using one CPU with 32 cores.

UPACS-Lite was used to measure the performance of SORA-MA. UPACS-Lite is
a full kernel of a real application programUPACS [3], which has been used to conduct
several computations in order to support JAXA’s projects. UPACS-Lite is a typical
compressible Navire-Stokes solver. It is a stencil type program. Features of UPACS-
Lite are as follows, multi-block structured gridmethod, implicit time integrationwith
2nd order inner iterations and hybrid parallel model (MPI and OpenMP are used).
BlockRed-Black parallelization are applied to the time integration for parallelization.
In this multi-block structured grid method, a computational space is divided into
several blocks and each block is represented by structured grid. Physical values such
as density, velocity, pressure and so on, are assigned to each structured grid point in
every blocks. This physical structure is mapped to the data structure of the program.
Moreover, each block must have different size and shape because of the convenience
of grid generation. Considering these features of multi-block structured grid, Fortran
functions of structure and dynamic allocatable array in Fortran 90 are applied. As for

HPC Applications for Manufacturing Innovation in Aerospace Fields 163

Fig. 3 Memory access
performance of SORA-MA
(FX100) measured by
STREAM TRIAD

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 1000 10000 100000 1x106 1x107 1x108

 0.0024 0.024 0.24 2.4 24 240 2400

M
em

or
y

P
er

fo
rm

an
ce

 [G
B

/s
]

loop_size

memory_size [MB]

 Static
 Allocatable

 Pointer
L2-cache

parallelization, conventional domain decomposition method is used. Several blocks
are assigned to each MPI process. This feature is vary important because it can give
more flexibility to create multi-block structured grids.

Figure4 shows the comparison of computational time among FX1, FX10, FX100
(SORA-MA) and Intel (SORA-PP), where one compute node was used and program
tunings for FX10 and FX100 were applied. FX11 and FX10 are Fujitsu’s supercom-
puters of preceding generation of FX100.

Red bars show computational time for certain test condition. Blue line shows
speedup ratio to FX1 and green line shows efficiency related to FX1, where the
efficiency is calculated as the speedup ratio divided by the peak performance ratio
to FX1. In this figure, “(aPbT)” represents the core usage on the compute node; a
is the number of processes and b is the number of threads. Regarding FX100, the
case of 16 MPI processes with 2 threads is the fastest, showing 37 times faster than
FX1, where the peak performance ratio of the hardware between FX1 and FX100 is
25. The case of typical Hybrid model (2 processes with 16 threads), which fits the
hardware structure shows 32 times faster than FX1. The Flat-MPI model is often
faster than any Hybrid models currently because the computational scale of most
computations in JAXA was not so big. As computational scales become larger then
the superiority of the Hybrid model comes to be observed.

1FX1 was a main computational engine of previous system:JSS1. Peak performance of the FX1
node is 40GFLOPS.

164 R. Takaki and S. Tsutsumi

Fig. 4 Comparison of
computational time of
UPACS-Lite with software
tuning among FX1, FX10,
FX100 and Intel

As for FX100, following program tunings were applied. Regarding data structure,
array of structure (AOS) is changed to structure of array (SOA); index order of
multi-dimensional arrays is optimized. Regarding loop structure, outer two loops
are collapsed by the OpenMP directive to get better scalability for sixteen threads;
innermost loops are unrolled to promote SIMD utilization. The order of multiple
loops and indices of multi-dimensional arrays are optimized by trial and error, shown
in Table 1. Here, indices i, j, k show positions in the computational space, whosemax
values imax, jmax, kmax areO(10) ∼ O(100). The index n indicates physical values
whose max value nPhys is O(1).

Figure5 shows the comparison of computational time of UPACS-Lite without
software tuning, which means the comparison of hardware capabilities. In this case,
Flat-MPI model is the fastest, showing 16 time faster than FX1. Green line shows
the decrease of the efficiency of FX10 and FX100 compared to FX1, which means
the speedup tuning is indispensable to utilize the hardware features.

3 Application to the Project

A example of HPC application to JAXA’s project is presented here. A new rocket
called Epsilon [4] has been developed in JAXA and 1st Epsilon rocket was launched
in Oct. 2013. Epsilon rocket is a solid propellant rocket, whose aims are to reduce
the cost by a third of that for the former M-V rocket as well as to lower hurdles to
space by making rocket launches much simpler.

HPC Applications for Manufacturing Innovation in Aerospace Fields 165

Table 1 Effects of the index order of multiple loops and multi-dimensional arrays

Source program Time (s) Source program Time (s)

do n = 1, nPhys

!$omp parallel do

do k = 1, kmax; do j = 1, jmax

do i = 1, imax

a(i, j, k, n) = ...

enddo

enddo; enddo

!$omp end parallel do

enddo

0.320

do n = 1, nPhys

!$omp parallel do

do k = 1, kmax; do j = 1, jmax

do i = 1, imax

a(n, i, j, k) = ...

enddo

enddo; enddo

!$omp end parallel do

enddo

0.703

!$omp parallel do

do k = 1, kmax; do j = 1, jmax

do i = 1, imax

a(i, j, k, 1) = ...

a(i, j, k, 2) = ...

...

a(i, j, k, nPhys) = ...

enddo

enddo; enddo

!$omp end parallel do

0.247

!$omp parallel do

do k = 1, kmax; do j = 1, jmax

do i = 1, imax

a(1, i, j, k) = ...

a(2, i, j, k) = ...

...

a(nPhys, i, j, k) = ...

enddo

enddo; enddo

!$omp end parallel do

0.246

!$omp parallel do

do k = 1, kmax; do j = 1, jmax

do n = 1, nPhys

do i = 1, imax

a(i, j, k, n) = ...

enddo;
enddo

enddo; enddo

!$omp end parallel do

0.250

!$omp parallel do

do k = 1, kmax; do j = 1, jmax

do n = 1, nPhys

do i = 1, imax

a(n, i, j, k) = ...

enddo;
enddo

enddo; enddo

!$omp end parallel do

0.268

There are several subjects in the rocket development. Acoustic loading generated
by the rocket propulsion system is one of such critical issues. Low-frequency oscilla-
tion by the plume acoustics is observed during the launch of the rockets in the world.
Acoustic power, radiated from the Epsilon rocket is estimated to be about 3MW.
It is extremely huge comparing a typical peak power of usual audio device, which
is about 40W even at full volume operations. This low-frequency oscillation may
cause critical troubles in rockets and spacecraft on board. Therefore, it is necessary to
accurately predict and ease the acoustic environment. To improve acoustic environ-
ment, various methods are applied to the launch-pad in the world. Each launch-pad
has it’s own concept and ideas to reduce acoustic environment. It is a problem how
to develop the launch-pad for the newly developed Epsilon rocket.

166 R. Takaki and S. Tsutsumi

Fig. 5 Comparison of
computational time of
UPACS-Lite without
software tuning among FX1,
FX10, FX100 and Intel

0

20

40

60

80

100

F
X

1 (1P
4T

)

F
X

10 (1P
16T

)

F
X

100 (1P
32T

)

F
X

100 (2P
16T

)

F
X

100 (32P
1T

)

E
5-2643V

2 (2P
6T

)

0

5

10

15

20

25

E
la

ps
e

tim
e

[s
ec

] /
 E

ffi
ci

en
cy

 [%
]

S
pe

ed
 u

p
ra

tio
 to

 F
X

1

Machines

Elapse Efficiency Ratio

Prediction of the acoustic loading on spacecraft is not established well. Currently
the empirical method proposed in NASA SP-8072 [5] is the only way to predict the
acoustic loading. However, this method doesn’t have enough reliability, accuracy and
applicability because it is not based on the physical basis but on the experimental
data. Therefore, it is not sure if this method can be applied to JAXA’s new rocket and
launch-pad. In fact, this empirical method, applied to the design of new Epsilon’s
launch-pad, suggests that it is necessary to dig a 70m depth groove as a gas duct
in order to achieve the required acoustic environment. It is too expensive and is not
acceptable for the project. Therefore a new design method is necessary. It should be
based on the physical basis of the plume acoustics. Therefore, numerical simulation
was conducted in order to understand the physical mechanism of acoustic wave
generation and propagation.

Figure6 shows a numerical simulation of a impinging jet [6], where the jet and
the oblique plate represent a rocket plume and a flame deflector in a launch-pad,
respectively. This figure shows pressure distributions by color contours whose stripe
pattern represents acoustic waves. The jet impinges on the oblique plate generating
several acoustic waves. The generation and propagation of the acoustic waves can
be seen clearly from this result. Numerical simulations can help to understand phys-
ical mechanism of acoustic wave generation and propagation. Therefore, numerical
simulations can help to take effective action against the problems by not a heuristic
approach but a rational approach. After understanding the physical mechanisms by
numerical simulations, several concepts and ideas to reduce plume acoustics effec-

HPC Applications for Manufacturing Innovation in Aerospace Fields 167

Fig. 6 Numerical simulation of a impinging jet. Color contours show pressure distributions

Primary design Detailed design

Scaled model test

Empirical model

Past flight data

Simple model test

CFD (High accuracy)
2−5 months/case

Scaled model test

CFD (Conventional)
3 days/case

Conventional method

Present method

Fig. 7 A new design method by using numerical simulations (CFD)

168 R. Takaki and S. Tsutsumi

tively were discussed. Moreover, a parametric study to optimize design parameters
were conducted.

Figure7 shows the design process applied to the Epsilon’s launch-pad design.
In conventional method, empirical models, past flight data and simple model test

are used at a primary design phase and several scaled model tests are conducted to
ensure the design results at a detailed design phase. In our new method, numeri-
cal simulations using conventional CFD (Computational Fluid Dynamics) methods
were conducted at the primary design phase. Conventional CFD can calculate in
relatively shorter time (3days per one case) and help to conduct many simulations
as a parametric study. As the parametric study, 20 cases were conducted within 2
months by using 768 nodes (3, 072 cores) of JSS1 (Fujitsu FX1). After the primary
design phase, precise but expensive simulations with a high accuracy method were
applied at the detailed design phase. It took a few months for one case by using
JSS1 at that time. Figure8 shows an example of precise simulations conducted at the
detailed design phase. There can be seen the rocket just after the lift-off, a launch-pad
construction and acoustic waves around the launch-pad in this figure. A few scaled
model tests were still used due to the limitation of CFD because CFD can’t resolve

Fig. 8 Precise simulation of acoustic environment around the launch pad. Color contours show
pressure distributions

HPC Applications for Manufacturing Innovation in Aerospace Fields 169

higher frequency range of acoustics. The upper limit of frequency was 800Hz at that
time. New supercomputer JSS2 is expected to extend the upper limit of the frequency
range up to 2,000Hz, which is enough for the launch-pad design.

Thanks to knowledge and understanding of the physical mechanisms obtained
from numerical simulations, several new features are adopted to realize low acoustic
environment for Epsilon’s launch-pad. Figure9 shows Epsilon’s launch-pad. The
shape of the flame deflector inside the duct was optimized and concept of the lofty
pad, exhaust duct on the ground and the roof shape of the duct are accomplished by
numerical simulations. The cost to build this launch-pad designed by using numerical
simulations, is reduced by tenth part compared to that designed by the conventional
method.

Figure10 shows the acoustic environment of several small and medium size rock-
ets in the world. In this figure, a red bar shows Epsilon rocket, showing the world-
leading quietness. Where, Pegasus XL seems to be the most quiet. However, it is
an air-launched rocket and can’t be compared with other ground launched rockets.
This quietness is obtained not only by numerical simulations but also by the acoustic
absorbent attached to the inside of the rocket fairing. However, numerical simulations
played an important role in this launch-pad design.

In the development of Epsilon rocket, numerical simulations were appropriately
utilized for the preliminary design and the detailed design of the launch-pad. Rel-
atively light simulations using conventional methods were conducted in order to

 Shape optimized flame deflectorLofty pad

Fig. 9 Epsilon’s launch-pad

170 R. Takaki and S. Tsutsumi

Fig. 10 Comparison of acoustic level for typical small and medium class rockets in the world

conduct parametric studies at the preliminary design phase and precise but expen-
sive simulations were conducted at the detailed design phase to assess quantitatively.
Numerical simulations can help to understand physical mechanisms and help to take
effective action against the design problems by not a heuristic approach but a rational
approach. This is an innovative design approach which is not a empirical or experi-
mental based design but a simulation based design. In this launch-pad development,
the simulation based design contributed to the cost reduction to one-tenth as well as
to the reduction of acoustic level to one-tenth, which is the top level performance in
the world.

4 Conclusions

Overview of JAXA’s new supercomputer system JSS2 is presented. Main compu-
tational system is SORA-MA, which is a many-core based scalable parallel cluster
system. The performance of SORA-MA is evaluated by the basic benchmark pro-
gram STRAM and the application program UPACS-Lite. The result obtained by
UPACS-Lite shows the importance of program tuning in order to utilize the hard-
ware features.

The HPC application applied to the aerospace development in JAXA is also pre-
sented.Newdesignmethod usingHPC technology is applied to the launch-pad design
of newly developed Epsilon rocket. Thanks to this innovative designmethod, the cost

HPC Applications for Manufacturing Innovation in Aerospace Fields 171

of the launch-pad is reduced to one-tenth and the acoustic level is also reduced to
one-tenth, which is the top level quietness in the world.

JAXA has been driving the incorporation of HPC technology into the design
process of spacecraft. They are not mere troubleshooting tools any more. JAXA
keeps on showing the future of the development process with HPC technology in
aerospace field for 5 or 10years ahead.

References

1. FUJITSU Supercomputer PRIMEHPC FX100. http://www.fujitsu.com/global/products/
computing/servers/supercomputer/primehpc-fx100/

2. STREAM: Sustainable memory bandwidth in high performance computers. http://www.cs.
virginia.edu/stream/

3. Takaki, R., Yamamoto, K., Yamane, T., Enomoto, S., Mukai, J.: The development of the UPACS
CFD Environment. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds.) Lecture Notes in
Computer Science, p. 2858. Springer (2003)

4. Morita, Y., Imoto, T., Tokudome, S., Ohtsuka, H.: Epsilon rocket launcher and future solid rocket
technologies. In: 28th International Symposium on Space Technology and Science (2011)

5. Eldred, M., et al.: Acoustic loads generated by the propulsion system. NASA SP-8072 (1971)
6. Tsutsumi, S., Takaki, R., Nakanishi, Y., Okamoto, K., Teramoto, S.: Numerical study on acoustic

generation of a supersonic jet impinging to deflectors. J. Acoust. Soc. Am. 134(5), 4057 (2013)

http://www.fujitsu.com/global/products/computing/servers/supercomputer/primehpc-fx100/
http://www.fujitsu.com/global/products/computing/servers/supercomputer/primehpc-fx100/
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/

High Resolution Climate Projections
Using the WRF Model on the HLRS

Viktoria Mohr, Thomas Schwitalla, Volker Wulfmeyer
and Kirsten Warrach-Sagi

Abstract Considering the projections of different climate scenarios, global mean
surface temperature is expected to rise over the 21st century accompanied by an
increase of other weather extremes due to the past anthropogenic emissions of green-
house gases. As the warming of many land areas is higher than on the global average,
the impact of future climate conditions needs to be estimated rather on a regional
scale. Thus, climate projections of spatially high resolution simulations are required
in combination with their uncertainties and robustness. For a selected area, these sim-
ulations are being performed within the framework of EURO-CORDEX. ReKliEs-
De (Regional Climate Ensembles Germany) is a Project which complements these
simulations by providing projections of model ensembles about the development of
future climate and climate extremes for Germany. With the Weather Research and
Forecasting (WRF) model and its land surface model NOAH we are performing
simulations from 1950 to 2100 with 0.44◦ (∼50km) and 0.11◦ (∼12km) resolution
on the CRAY XC 40 at the High Performance Computing Center Stuttgart (HLRS).
Results of the simulations on the 0.44◦ grid for a period from 1971–2000 and as com-
parison for two different future scenarios from 2071–2099 show an increase of the
average temperature of up to 2–4 ◦C in Europe with respect to the chosen emission
scenario. However, seasonally the changes are much more diverse.

1 Introduction

The expected climate change within the next decades is predicted to be caused by an
increase of the emissions of anthropogenic CO2 and other greenhouse gases. These
processes will have a huge influence on the future climate and consequently on the
society. Although climate change will be noticeable on the global scale, the effects
will be much more diverse and extreme regarding the regional scale.

V. Mohr (B) · T. Schwitalla · V. Wulfmeyer · K. Warrach-Sagi
Institut für Physik und Meteorologie, Universität Hohenheim,
70599 Garbenstrasse 30, Stuttgart, Germany
e-mail: viktoria.mohr@uni-hohenheim.de

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_14

173

174 V. Mohr et al.

General circulation models (GCMs) currently are the most advanced tools for
simulating the response of the global climate system to increasing greenhouse gas
concentrations. They are able to numerically solve the equations of physics hence,
GCMs have the ability of representing physical processes of the atmosphere, ocean,
cryosphere and the land surface using a 3-D grid over the globe with a typical reso-
lution. Nowadays, typically GCMs use a horizontal resolution of 100–200km. How-
ever, to better understand also regional climate phenomena such as local extremes
and in order to assess the effect of the expected climate change, scientists and end
users like federal agencies and climate impact and adaptation researchers require
projections on the regional scale with a higher horizontal resolution.

The Coupled Model Intercomparison Project Phase 5 (CMIP5) [1] provides a
framework for coordinated climate change experiments, where 20 different mod-
elling groups carried out global climate projections with their GCMs, contributing to
the latest assessment report of the Intergovernmental Panel on climate change (IPCC).
Those projections are based on Representative Concentration Pathways (RCPs) [2],
representing four different possible greenhouse gas (GHG) concentration scenarios
of the future climate. Namely, these scenarios are the RCP8.5, RCP6, RCP4.5 and
RCP2.6 scenario, indicating the possible range in the change of radiative forcing (in
W/m2) by the year 2100 relative to pre-industrial values.

In 2009 the COordinated Regional climate Downscaling EXperiment (CORDEX,
http://wcrp-cordex.ipsl.jussieu.fr) was established by the World Climate Research
Programme (WCRP), in order to provide ensembles of regional climate simulations
on a higher spatial resolution. The task within CORDEX is to apply the GCMswhich
contributed to the CMIP5 database for the boundary forcing of different regional cli-
mate models (RCMs). CORDEX is separated into different sub-groups, covering all
continental regions of the globe, serving as input for climate change and adapta-
tion studies. EURO-CORDEX, the european branch of the CORDEX initiative, is
focusing on grid sizes of 0.11◦ (∼12km), but simulations using a resolution of 0.44◦
(∼50km) are carried out simultaneously.

The ReKliEs-De project funded by the Federal Ministry of Education and
Research (BMBF), contributes to EURO-CORDEX by carrying out a certain number
of regional climate projections. Several institutes in Germany are part of ReKliEs-De
applying different downscaling techniques (dynamical and statistical downscaling),
by forcing their RCMs with CMIP5 data. The goal of the ReKliEs-De project (http://
www.reklies.hlnug.de/) is to provide robust informations about the future evolution
of the climate in Germany based on regional climate projections using a high spatial
resolution of 0.11◦. Beside scientifically analysing the results of the simulations, the
focus is also laid on producing user friendly data by providing special climate indices
which can be applied easily by the end users. Today, the dynamical downscaling of
GCM data is a well respected standard technique to produce high resolution climate
projections.

An ensemble of RCMs participating in EURO-CORDEX, forced with ERA-
Interim reanalyses data [3] were evaluated e.g. by [4]. Although model biases, pre-
dominantly cold and wet biases, emerged in the majority of the experiments, the

http://wcrp-cordex.ipsl.jussieu.fr
http://www.reklies.hlnug.de/
http://www.reklies.hlnug.de/

High Resolution Climate Projections Using the WRF Model on the HLRS 175

authors documented the general ability of the RCMs to represent the basic spa-
tiotemporal patterns for the european climate.

The scope of this part of the WRFCLIM project at HLRS (see also [5]), is to
produce high resolution regional climate projections in the framework ofReKliEs-De
on 0.11◦. We will carry out this long term simulations by dynamically downscaling
different GCM model output from 1958 to 2100 with the Weather Research and
Forecasting (WRF) [6] Model.

In the following chapter a technical description to the simulations within WRF-
CLIMatHLRS is presented.A summary of the current analysis and somepreliminary
results of the simulations which were carried out from April 2015 to April 2016 are
reported as well.

2 Simulation Setup with WRF and Forcing Data

The climate simulations are carried out on the CRAY XC40 System at the HLRS.
The downscaling process of the coarse GCM output data to the required 0.44◦ and
0.11◦ grid resolution is performed by the WRF model version 3.6.1 with its coupled
land surface model NOAH [7]. WRF uses the dynamical technique by numerically
solving the governing equations of the atmosphere on a finer grid. The simulations
are forced 6 hourly at the lateral boundaries with the sea surface temperature and the
3-D fields of temperature, horizontal winds and moisture from the forcing GCMs.
We apply a one-way nesting approach via 0.44◦ to 0.11◦. WRF was compiled at
HLRS with PGI 14.7 and applied in a hybrid configuration using MPI and OpenMP
to optimize the speed of the simulation. The model configuration was set to the same
parameterizations like it was applied in [8]. Table1 shows some technical details of
the planned and the so far partly finalized simulations performed on hazelhen.

The WRF projections presented in this chapter are carried out within the frame
of EURO-CORDEX to create climate projections. The simulation domains which
were specified within CORDEX are displayed in Fig. 1 (left). The analysis focuses
on Germany and its contributing river catchments area as shown in Fig. 1 (right). For
the future climate projections, four different GCMs and two different RCP scenarios
of the CMIP5 project, are applied as boundary forcing with the WRF model. The
historical runs of the GCMs cover the period from 1850 to 2005. This period is
forced by observed atmospheric composition changes of anthropogenic and natural
sources. The RCP scenarios of the GCMs cover the period from 2006 to 2100. They
representmitigation scenarios that assume policy actionswill be taken into account to
achieve certain emission targets [1]. The numbers of the RCPs give a rough estimate
of the range in the change of the radiative forcing by the year 2100 relative to the
preindustrial values. The forcing data we applied, the resolution of the GCMs, its
scenarios and the chosen simulation period is presented in Table2.

176 V. Mohr et al.

Table 1 Technical details of WRF simulations. Note: the raw model output size is minimized after
simulation in the postprocessing process as the amount of the results cannot be stored in its raw
output

Simulation Nr. CPUs
with
openMPI

Simulation
period

Nr. of
grid
cells

Δt (s) Walltime
(h)

Nr. of
simula-
tions

Raw
output
size

0.44◦ historical 1536 01.01.1958–
31.12.2005

129 ×
139 ×
50

180 300 4 42 TB

0.44◦
RCP8.5/2.6

1536 01.01.2006–
31.12.2100

129 ×
139 ×
50

180 570 5 99 TB

0.11◦ historical 5400 01.01.1958–
31.12.2005

452 ×
460 ×
50

60 1200 4 700 TB

0.11◦
RCP8.5/2.6

5400 01.01.2006–
31.12.2100

452 ×
460 ×
50

60 2280 5 1330
TB

(a) (b)

Fig. 1 Simulation domain as specified by CORDEX (a), and focal domain within ReKliEs-De
with Germany (red) and the areas of its main river catchments (coloured) (b)

3 Results

Based on the WRF downscaling simulations to the 50 km grid, first results of the
different forcing GCMs are presented (see GCM description in Table2). Simula-
tions were carried out for the EURO CORDEX domain with lateral boundaries from
approximately 25◦N to 75◦N and 30◦W to 50◦E. Since our model simulations are
still ongoing by this time (May 2016) exemplary results of the 2m temperature will

High Resolution Climate Projections Using the WRF Model on the HLRS 177

Table 2 Applied GCM data for the WRF simulations

GCM scenarios Simulation Period GCM resolution

MPI-ESM-LR historical 1958–2005 1.8653◦ × 1.875◦

RCP8.5 2006–2100

RCP2.6 2006–2100

MIROC5 historical 1958–2005 1.4008◦ × 1.40625◦

RCP8.5 2006–2100

HadGEM2-ES historical 1958–2005 1.25◦ × 1.875◦

RCP8.5 2006–2100

EC-EARTH historical 1958–2005 1.1215◦ × 1.125◦

RCP8.5 2006–2100

be presented. In the first part the focus is based on a time period of the historical sim-
ulations from 1971–2000 represented by the four forcig GCMs which were applied
in our study. The second part shows a time period of the projected simulations for the
two future scenarios RCP2.6 and RCP8.5 represented by the MPI-ESM-LR model
for the years 2071–2099. The average near surface temperature is presented in the
following based on the annual and on the seasonal scale for the Northern Hemisphere
(NH) summer and winter. It is emphasized that the results of this study are based on
just one regional model and will need further analyses within the EURO-CORDEX
ensemble and the ReKliEs-De project.

3.1 Historical Temperatures

The simulated annual average near surface temperature from 1971–2000 is given in
Fig. 2. The four simulations show a common agreement of the average temperature
pattern for Europe, which indicates a generally good performance of the models. The
temperature ranges from around 264K (−9 ◦C) in the North to 294K (21 ◦C) in the
Southern part of the simulation domain. However, some differences in the tempera-
ture range is apparent among the GCMs. Compared to HadGEM2-ESM Fig. 2b and
MPI-ESM-LR Fig. 2d, lower temperatures are simulated by MIROC5 Fig. 2c and
EC-EARTH Fig. 2a in the Northern and in the Eastern part of the CORDEX domain.
Most of the GCMs show a cold bias. MIROC5 indicated to have the strongest bias
compared to the other three which are presented here.

The average near surface temperature for the time period 1971–2000 as simulated
by WRF with the four different forcing GCMs is given for the winter season (DJF)
in Fig. 3 and for the summer season (JJA) in Fig. 4. The average temperatures during
NH winter vary from around 258K (−15 ◦C) in North-East to around 290K (17 ◦C)
over the atlantic ocean in the south-west of the domain. During NH summer the
lowest temperatures occur over Iceland in the north-east and over the arctic ocean

178 V. Mohr et al.

Fig. 2 Average near surface temperature on the 50km resolution simulations fromWRF. Boundary
forcing with the different GCMs: EC-EARTH (a), HadGEM2-ESM (b), MIROC5 (c) and MPI-
ESM-LR (d)

High Resolution Climate Projections Using the WRF Model on the HLRS 179

Fig. 3 Average near surface temperature on the 50km resolution simulations from WRF during
winter. Boundary forcingwith the different GCMs: EC-EARTH (a), HadGEM2-ESM (b),MIROC5
(c) and MPI-ESM-LR (d)

180 V. Mohr et al.

Fig. 4 Average near surface temperature on the 50km resolution simulations from WRF dur-
ing summer. Boundary forcing with the different GCMs: EC-EARTH (a), HadGEM2-ESM (b),
MIROC5 (c) and MPI-ESM-LR (d)

High Resolution Climate Projections Using the WRF Model on the HLRS 181

with 276K (3 ◦C). Highest temperatures in Europe aside from the Sahara desert are
around 296 K (23 ◦C) over the mediteranean and the greek islands. Similar as for the
annual average, EC-EARTH and MIROC5 indicate lower temperatures (Figs. 3a–c
and 4a–c) in both presented seasons compared to the two GCMs HadGEM2-ESM
and MPI-ESM-LR (Figs. 3b–d and 4b–d).

3.2 Projections for Temperature Changes

The future changes, based on the differences of the simulated average temperatures
from 1971–2000 and 2071–2099, is shown in Fig. 5. Following the RCP2.6 scenario,
the highest temperature increase reaches 2–2.4 ◦C above the Norwegian Sea and
the Russian peninsula Kola. Following the RCP8.5 scenario, highest temperature
changes are simulated above the Russian peninsula with an increase of around 5 ◦C.

The seasonal changes are displayed in Fig. 6 for the winter and for the summer
averages. During winter the RCP2.6 scenario indicates a maximum increase of the
temperatures over the peninsula of Russia with up to 4.5 ◦C (Fig. 6a). For the RCP8.5
scenario the temperature difference is even higher, revealing an increase of up to 6 ◦C
(Fig. 6b). Beside Russia, also the eastern part of Turkey will experience as simulated
for this high emission scenario a high temperature increase of around 5 ◦C compared
to the historical period.

Fig. 5 Differences of the average near surface temperature on the 50km resolution simulations
from WRF. Boundary forcing with MPI-ESM-LR for 1971–2100 RCP 26 (a) and RCP8.5 (b)

182 V. Mohr et al.

Fig. 6 Differences of the average near surface temperature on the 50km resolution simulations
from WRF. Boundary forcing with MPI-ESM-LR for 1971–2100 for the winter season: RCP 26
(a) and RCP8.5 (b) and for the summer season RCP 26 (c) and RCP8.5 (d)

High Resolution Climate Projections Using the WRF Model on the HLRS 183

Compared to the temperature changes in winter, the increase of the average sum-
mer temperature is less intense for both scenarios. The increase in the temperature
will reach around 1.5 ◦C in central Europe and in the southern part of the norwegian
sea for the RCP2.6 scenario (Fig. 6a). For the RCP8.5 scenario the highest tempera-
ture increases are simulated over south and south eastern Europe and northern africa
indicating a temperature increase of around 5 ◦C in Spain and up to 6 ◦C in Turkey.

4 Conclusion

The results shown in this chapter highlighted preliminary results based on the near
surface temperature of the downscaling of four GCMs (EC-EARTH, HadGEM2-
ESM, MIROC5 and MPI-ESM-LR) from the original model grid of around 150km
with WRF to a refined grid on 50km resolution for the EURO-CORDEX domain.
Further downscaling simulations to the 12km grid for the historical and future time
periods are still ongoing. It is expected to finalize the simulations as described in
Table1 by the end of this year (2016) accompanied with further improvements of
the projection skills due to a better representation of the orographic effects.

The short insight of the seasonal differences which was shown in this chapter,
pointed out the need of further analyses. In particular different variables and climate
indices need to be investigated in more detail as the information about future changes
of the climate is a major need for cultivators world wide. Precipitation is a parameter
which needs to be pointed out and analysed carefully as it showed to be highly
variable throughout the year in germany and also Europe.

We would like to point out the importance of analysing a model ensemble rather
than choosing a single RCMwhen predictions of the evolution of climate parameters
are being done. To achieve robust predictions, ReKliEs-De is an appropriate platform.
Within this project a huge ensemble member of climate simulations can be realized
with the contribution of several RCMs applying different techniques and GCMs.

Acknowledgements This work is part of the ReKliEs-De project funded by the BMBF (Federal
Ministry for Education and Research) and the Research Unit 1695 funded by the DFG (Deutsche
Forschungsgemeinschaft). We would like to thank the staff for the support of the DKRZ (Deutsches
Klimarechenzentrum) to give access to the GCM data. Computational Resources for the model
simulations on the HLRS CRAY XC40 within WRFCLIM were kindly provided by HLRS, we
appreciate the great support.

References

1. Karl, E.: Taylor, Ronald J Stouffer, and Gerald A Meehl. An overview of cmip5 and the experi-
ment design. Bulletin of the American Meteorological Society 93(4), 485–498 (2012)

2. Van Vuuren, Detlef P., Edmonds, Jae, Kainuma, Mikiko, Riahi, Keywan, Thomson, Allison,
Hibbard, Kathy, Hurtt, George C., Kram, Tom, Krey, Volker, Lamarque, Jean-Francois, et al.:
The representative concentration pathways: an overview. Climatic change 109, 5–31 (2011)

184 V. Mohr et al.

3. Dee, D.P., Uppala, S.M., Simmons, A.J., Paul Berrisford, P., Poli, S.Kobayashi, Andrae, U.,
Balmaseda, M.A., Balsamo, G., Bauer, P., et al.: The era-interim reanalysis: Configuration and
performance of the data assimilation system. Quarterly Journal of the Royal Meteorological
Society 137(656), 553–597 (2011)

4. Kotlarski, Sven, Keuler, Klaus: Ole Bossing Christensen, Augustin Colette, Michel Déqué,
Andreas Gobiet, Klaus Goergen, Daniela Jacob, Daniel Lüthi, Erik van Meijgaard, Gregory
Nikulin, Christoph Schär, Class Teichmann, Robert Vautard, Kirsten Warrach-Sagi, and Volker
Wulfmeyer. Regional climate modeling on european scales: a joint standard evaluation of the
euro-cordex rcm ensemble. Geoscientific Model. Development 7(4), 1297–1333 (2014)

5. Kirsten Warrach-Sagi, Thomas Schwitalla, Hans-Stefan Bauer, et al. A regional climate model
simulation for euro-cordex with the wrf model. In Sustained Simulation Performance 2013,
pages 147–157. Springer, 2013

6. William C Skamarock, Joseph BKlemp, Jimy Dudhia, David OGill, DaleMBarker, WeiWang,
and Jordan G Powers. A description of the advanced research wrf version 2. Technical report,
DTIC Document, 2005

7. Chen, Fei, Dudhia, Jimy: Coupling an advanced land surface-hydrology model with the penn
state-ncarmm5modeling system. part i:Model implementation and sensitivity.MonthlyWeather
Review 129(4), 569–585 (2001)

8. Warrach-Sagi, Kirsten, Schwitalla, Thomas,Wulfmeyer, Volker, Bauer, Hans-Stefan: Evaluation
of a climate simulation in europe based on the wrf-noah model system: precipitation in germany.
Climate Dynamics 41(3–4), 755–774 (2013)

Towards Aerodynamic Characteristics
Investigation Based on Cartesian Methods
for Low-Reynolds Number Flow Simulation

Daisuke Sasaki, Yuya Kojima, Daiki Iioka, Ryohei Serizawa
and Shun Takahashi

Abstract Micro Aerial Vehicles (MAVs) are recently focused for various usage
such as monitoring, photographing, and filming. One of the issues of MAVs is the
limitation of operation time. An efficient configuration is required for MAVs, how-
ever, complex low-Reynolds number flows causes the difficulty. In this research,
Cartesian-based CFD approach is applied to a flat plate, a NACA0012 airfoil, and a
circular arc at low-Reynolds number flows to investigate the aerodynamic character-
istics. Block-structured Cartesian mesh solver, Building-Cube Method, was capable
to investigate the complicated flowfields at lower angles of attacks.

1 Introduction

Micro Air vehicles (MAVs) have been widely researched and developed in recent
years for various purposes, such as the disaster monitoring and aerial photographs.
The aerodynamic characteristics of MAVs is different from large passenger aircrafts
because of low Reynolds number flows. Conventional airfoils such as NACA series,
which are thick and streamlined shapes, generally produce low aerodynamic perfor-
mance at low Reynolds number in MAVs flight regime. Instead, it is well-known
that thin airfoils can often increase the aerodynamic performance by making use
of laminar separation bubble at sharp leading-edge [1]. Therefore, the complicated
flow phenomena needs to be precisely investigated through Computational Fluid
Dynamics (CFD) and wind/water tunnel tests to improve aerodynamic performances
[2, 3].

It is required to solve complicated flowfields precisely to obtain accurate aerody-
namic performance at low Reynolds number conditions. Cartesian mesh is expected
to solve such flowfields because it can prevent numerical vortex dissipation andmain-
tain vortices. Building-CubeMethod (BCM [4]) is a block-structured Cartesianmesh

D. Sasaki (B) · Y. Kojima · D. Iioka
Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Japan
e-mail: dsasaki@neptune.kanazawa-it.ac.jp

R. Serizawa · S. Takahashi
Tokai University, 4-1-1 Kitakaname, Hiratsuka, Japan

© Springer International Publishing AG 2016
M.M. Resch et al. (eds.), Sustained Simulation Performance 2016,
DOI 10.1007/978-3-319-46735-1_15

185

186 D. Sasaki et al.

CFD solver proposed for efficient parallel computation. The objective of the study
is to conduct incompressible flow computations on various airfoils at different com-
putational conditions to investigate the capabilities of BCM solver for low-Reynolds
number flows. The computationalmodels are a flat plate, a thick airfoil (NACA0012),
and a circular arc, all of which have different flow characteristics.

2 Building-Cube Method

This study adopts block-structured Cartesian mesh solver, Building-Cube Method
(BCM). The code employs incompressible Navier-Stokes equations. BCM simpli-
fies pre-process, computation, and post-process. It is easy to generate mesh for a
real-world complicated shape, and also to implement spatial higher-order accuracy
scheme.BCMdivides computational domainwithmany blocks, namedCubes,which
are shown in Fig. 1. Equally-spaced Cartesian mesh, so-called Cells, are then filled
in each Cube. Computational domain is composed of many Cubes with different
size, but each Cube possess the same number of Cells regardless the Cube size. The
method allocates a lot of small-size Cubes near the model where physical quanti-
ties change largely, thus dense mesh is only distributed to the vicinity of the model.
Therefore, in the domain allocated with minimum cell, high spatial accuracy is main-
tained and also numerical vortex dissipation is prevented. This is advantage against
complicated flowfields with separation bubble and large vortices around thin airfoil
under low Reynolds number range. In addition, it can be easy to conduct parallel
computation while maintaining parallel efficiency. Individual Cubes are computed
independently, thusBCMneeds to exchange physical quantities between the adjacent

Fig. 1 Cube allocation around multi-element airfoil (cube and cell)

Towards Aerodynamic Characteristics Investigation Based … 187

Fig. 2 Flowchart of
fractional step method

Cubes during the computational process. In this computation, there are overlap area
of 2 Cells between adjacent Cubes. Therefore, at the exchange process, Cubes of the
same size can maintain the interpolation accuracy at Cube boundaries. However, in
the case of Cubes of different size between adjacent Cubes, linear interpolation is
conducted from small size Cube to large size one. Nearest neighbor interpolation is
conducted from large size to small size Cubes.

The governing equations are equation of continuity and two- and three-dimen-
sional Navier-Stokes equations. It is discretized on the collocated-mesh scheme.
Pressure and velocity are located at cell-center, and additional quantity called con-
travariant velocity is located at cell-face. Navier-Stokes equation is integrated in time
by fractional step method in Fig. 2. Adams-Bashforth explicit scheme is employed
for convective and diffusive terms. The convective term is discretized using first-
order accurate upwind difference scheme. Second-order accurate central difference
scheme of second derivative is adopted for the diffusive term. Wall is treated as stair-
case representation. In this study, turbulent model is employed, and thus the inflow
boundary condition is set as laminar flow.

3 Computational Model and Conditions

The target of the computation is 2% flat plate, NACA0012 airfoil, and circular arc
as shown in Fig. 3, which were experimented by Kuroda et al. [2]. The mesh near the
airfoil is also shown in the figure. The characteristic length is chord length c, and the

188 D. Sasaki et al.

Fig. 3 Computational model: flat plate (left), NACA0012 (middle), circular arc (right)

Fig. 4 Computational
domain

Table 1 Computational conditions

Item Flat plate NACA0012 Circular arc

Reynolds number 5.0 × 103 2.8 × 103 2.8 × 103

Min. cell size 5.86 × 10−3 2.93 × 10−3 2.93 × 10−3

Cells in a cube 163 163 163

Number of cubes 3,112 5,112 5,112

Number of cells 12,746,572 20,938,752 20,938,752

span length is three times of the chord length as shown in Fig. 4. Three-dimensional
flow analysis is conducted and the periodic boundary condition is applied to both
side of the wing tips. The inflow of computational domain is laminar flow. Table1
describes computational condition.

4 Results and Discussion

4.1 Aerodynamic Computations of a Flat Plate

Two- and three-dimensional BCM incompressible solvers were applied to flows
around a flat plate. The aerodynamic coefficients of the computations are plotted

Towards Aerodynamic Characteristics Investigation Based … 189

Fig. 5 Aerodynamic coefficient of a flat plate

in Fig. 5. Lift coefficients of two-dimensional and three-dimensional computations
are well-matched with experiments except for the very high angles of attack, and
the non-linearity of the CL distribution are captured. However, drag coefficients
show the discrepancy between two-dimensional and three-dimensional results. Two-
dimensional results are relativelymatchedwith experiments at lower angles of attack,
while three-dimensional results are matched with experiments at large angles of
attack. Freestream velocity distributions of 2.5 and 10◦ are shown in Figs. 6 and 7,
respectively. At the low angle of attack (2.5◦), the distributions are almost identical in

Fig. 6 Freestream velocity contours at 2.5◦: 3D results (left), 2D results (right)

Fig. 7 Freestream velocity contours at 10◦: 3D results (left), 2D results (right)

190 D. Sasaki et al.

Fig. 8 Vortex structures (iso-surface).: 2◦ (left), 10◦ (right)

two-dimensional and three-dimensional cases. However, the difference is observed
at the wake region in Fig. 7. Figure8 shows the vortex structure at 2 and 10◦. It is
obvious that the generated vortices are three-dimensional at higher angles of attack,
thus three-dimensional computations agree well with experiments.

4.2 Aerodynamic Computations of NACA0012

Figure9 shows the computational and experimental aerodynamic coefficients of
NACA0012. Experimental results show the slight non-linearity of CL distribution,
while computational results show the linear relation with regard to angles of attacks.

Fig. 9 Aerodynamic coefficient of a NACA0012 airfoil

Towards Aerodynamic Characteristics Investigation Based … 191

Fig. 10 Freestream velocity contours around NACA0012 airfoil.: 2◦ (top left), 6◦ (top right), 10◦
(bottom)

Freestream velocity contours with streamlines of NACA0012 airfoil are shown in
Fig. 10. The separation location at 2◦ is close to the middle and the small separation
vortex is formed. As the angle of attacks increases, the separation location moves
forward and the separation vortex at the trailing edge becomes larger as appeared at
6◦. The further increases of angle of attacks causes the separation location forward
and the large separation vortex formed. Since the lift slope becomes lower at high
angles of attacks, it is expected that the movement of separation location influences
the non-linearity of CL distribution.

4.3 Aerodynamic Computations of Circular Arc

Figure11 shows the computed aerodynamic coefficients of a circular arc. Experimen-
tal results show the linear distribution of CL , and computational results also show
the similar trend that the linear relation with regard to angles of attacks is observed
at lower angles of attacks. However, large discrepancy of computed CL with exper-
iments is observed at higher angles of attacks. Freestream velocity contours and
streamlines in Fig. 12 shows that the separation occurs at near the maximum camber
location at 2 and 6◦, while the separation occurs at near the leading edge and the
upper surface is covered with large vortices in computations. The strong unsteadi-
ness is observed at 2◦, but the unsteadiness gets weaker as the increase of angles of
attacks to 6◦. At the lower angles of attacks, the vortex is formed at near the trailing
edge. On the other hand, separation location moves forward and the vortex covers the
whole upper surface at higher angles of attacks, which leads the rapid increase of lift
coefficient. It is possible the present computation at 10◦ or higher can not fully cap-
ture the flow features due to the lack of wake-region mesh resolution or the staircase

192 D. Sasaki et al.

Fig. 11 Aerodynamic coefficient of a circular arcl

Fig. 12 Freestreamvelocity contours around a circular arc.: 2◦ (top left), 6◦ (top right), 10◦ (bottom)

representation of curved surface or the employment of 1st order accurate scheme.,
which causes the difference with experimental values. Thus, further investigations
of flowfields will be needed at higher angles of attacks.

5 Concluding Remarks

Cartesian-mesh based CFD solver, Building-Cube Method, was applied to various
airfoils at low Reynolds number flows to investigate the aerodynamic characteristics.
Three-dimensional flow computations are needed, where three-dimensional effects

Towards Aerodynamic Characteristics Investigation Based … 193

of flowvortices can not be negligible.A conventional thick airfoil such asNACA0012
can not achieve good aerodynamic performance at the flow regime because of the sep-
aration vortex, while thin airfoil such as circular arc can produce higher aerodynamic
performance because of the vortex formed. Thus, the present flow solver is capable
to investigate the complicated flowfields at low Reynolds number region. However,
more precise investigations are needed in terms of schemes and mesh density for
high angles of attacks.

Acknowledgements Part of the work was carried out under the Collaborative Research Project of
the Institute of Fluid Science, Tohoku University. Part of this research used computational resources
of theHPCI systemprovidedbyCyberscienceCenter atTohokuUniversity through theHPCISystem
Research Project (Project ID:hp140138 and hp150130).

References

1. Alam,M., Sandham, N.D.: Direct numerical simulation of short laminar separation bubbles with
turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000)

2. Kuroda, T., Okamoto M.: Unsteady aerodynamic forces measurements on oscillating airfoils
with heaving and featheringmotions at very lowReynolds Number. In: Proceedings Asia-Pacific
International Symposium on Aerospace Technology 2013. Takamatsu (2013)

3. Iioka, D., Kojima, Y., Okamoto, M., Sasaki, D., Obayashi, S., Shimoyama, K.: Analysis of
thin angular airfoils using block-structured Cartesian Mesh CFD. In: Prooceedings Asia-Pacific
International Symposium on Aerospace Technology 2015, (2015)

4. Sakai, R., Obayashi, S., Matsuo, K., Nakahashi, K.: Practical large-scale turbulent flow simula-
tion using building-cube method. In: Proceedings 45th Fluid Dynamics Conference/Aerospace
Numerical Simulation Symposium 2013, JSASS-2013-2116-A, Funahori (2013)

	Preface
	Contents
	Part I Exploitation of Existing HPC Systems: Potentiality, Performance and Productivity
	Parallel Algorithms: Theory, Practice and Education
	1 Introduction
	2 What is a Complete Description of the Algorithm Properties?
	3 Why Is It Hard to Describe Algorithms?
	4 Conclusion
	References

	High Performance Computing and High Performance Data Analytics---What is the Missing Link?
	1 Introduction
	2 The Evolution of High Performance Computing
	2.1 Traditional High Performance Computing
	2.2 Evolution Over Time

	3 Towards High Performance Data Analytics
	3.1 Where Is It Needed?
	3.2 HPDA Concepts and Technologies
	3.3 A Practical Application Making Use of HPC and HPDA

	4 The Missing Link
	4.1 Cognitive Computing
	4.2 Benefits
	4.3 Available Technologies

	5 Conclusions
	References

	A Use Case of a Code Transformation Rule Generator for Data Layout Optimization
	1 Introduction
	2 Data Layout Optimization
	3 Code Transformation Rule Generation with Xevtgen
	4 Discussions
	5 Conclusions
	References

	APES on SX-ACE
	1 Introduction
	2 Porting of Musubi
	2.1 Porting of the Kernel
	2.2 Porting of the Initialization
	2.3 Porting of the IO
	2.4 Porting of Boundary Conditions
	2.5 Parallel Performance

	3 Some Notes on the Porting of Ateles
	4 Summary
	References

	Dealing with Non-linear Terms in a Modal High-Order Discontinuous Galerkin Method
	1 Introduction
	2 The High Order Discontinuous Galerkin Method
	3 Choice of Basis Function
	4 The Projection Algorithms
	4.1 Direct L2 Projection
	4.2 Fast Polynomial Transformation
	4.3 Spherical Harmonic Transform Using Fast Multipole Method

	5 Hybrid Parallelization of the Projection Algorithms
	6 Comparison of Different Algorithms
	7 Conclusion
	References

	Efficient Coupling of Fluid and Acoustic Interaction on Massive Parallel Systems
	1 Introduction
	2 Governing Equations
	2.1 Fluid Equations
	2.2 Acoustic Equations

	3 Methodology
	3.1 High-Order Solver Ateles
	3.2 Partitioned Coupling

	4 Results
	4.1 Simulation Setup
	4.2 Numerical Results

	5 Conclusion
	References

	The Spectral Structure of a Nonlinear Operator and Its Approximation II
	1 Introduction
	2 The Koopman Operator
	2.1 Unusual properties of the Koopman-Operator

	3 The Numerical Approach: The Space of Observables
	3.1 Relation to the Koopman Operator
	3.2 Hankel Matrices
	3.3 Convolution of Polynom Coefficient Vectors

	4 The Decomposition of a Signal in Koopman Modes
	4.1 Vandermonde Decomposition for a Polynom Coefficient Vector

	5 The Koopman Eigenvectors for a Decomposition
	5.1 Wiener-Wintner Eigenfunctions and Decomposition

	6 Polynom Coefficient Vector and Hankel Matrix
	6.1 Approximatve Decomposition of a Signal in Modes
	6.2 Simplified Approach

	7 Remarks
	8 Conclusions
	References

	Implementation of a Parallel Sparse Direct Solver on Vector Architecture
	1 Introduction
	2 Factorization of Sparse and Dense Sub-matrices
	2.1 Recursive Computation of Schur Complement
	2.2 Tridiagonal Block Structure for Sparse Sub-matrix
	2.3 Block Strategy to Enforce Parallelization for Dense Factorization

	3 Efficiency of the Solver on Both Super-Scalar and Vector Architecture
	4 Conclusion
	References

	Directive Translation for Various HPC Systems Using the Xevolver Framework
	1 Introduction
	2 Utilization of Directive Sets for HPC Systems
	3 Directive Translation using Xevolver Code Translation Framework
	4 Translation of a Placeholder into OpenMP Directives
	5 Conclusions
	References

	An Automatic Performance Tracking System for Large-Scale Numerical Applications
	1 Introduction
	2 Performance Portability of HPC Applications
	2.1 Finding the Cause of Performance Degradation on Execution Systems
	2.2 Application Performance on Execution Systems
	2.3 Source Codes Synchronization Among Multiple Building Systems

	3 An Automatic Performance Tracking System
	3.1 Overview of the Automatic Performance Tracking System
	3.2 Performance Tracking Function Along with Source Code Modifications

	4 Evaluation of the Automatic Performance Tracking System
	4.1 Evaluation Setups of Finding the Cause of Degrading Performance portability
	4.2 Results of Analysing the Degradation of the Performance Portability

	5 Conclusions and Future Work
	References

	Part II Numerical Computations and Approach Towards Multi-physics Applications
	A Case Study of Urgent Computing on SX-ACE: Design and Development of a Real-Time Tsunami Inundation Analysis System for Disaster Prevention and Mitigation
	1 Introduction
	2 A Real-Time Tsunami Inundation Analysis System
	3 Performance Evaluation
	4 Summary
	References

	CFD/CAA Simulations on HPC Systems
	1 Introduction
	2 Governing Equations
	2.1 Navier-Stokes Equations
	2.2 Acoustic Perturbation Equations

	3 Numerical Methods
	3.1 Hierarchical Mesh Topology
	3.2 Discontinuous Galerkin Approximation of the APE
	3.3 Finite-Volume Method for the Flow Simulation

	4 Coupling Strategy
	4.1 Spatial Coupling
	4.2 Temporal Coupling
	4.3 Data Transfer

	5 Results
	5.1 Validation of the Aeroacoustics Solver
	5.2 Parallel Performance Analysis

	6 Conclusions
	References

	HPC Applications for Manufacturing Innovation in Aerospace Fields
	1 Introduction
	2 JAXA's Supercomputer System 2
	2.1 System Overview
	2.2 Performance Measurements

	3 Application to the Project
	4 Conclusions
	References

	High Resolution Climate Projections Using the WRF Model on the HLRS
	1 Introduction
	2 Simulation Setup with WRF and Forcing Data
	3 Results
	3.1 Historical Temperatures
	3.2 Projections for Temperature Changes

	4 Conclusion
	References

	Towards Aerodynamic Characteristics Investigation Based on Cartesian Methods for Low-Reynolds Number Flow Simulation
	1 Introduction
	2 Building-Cube Method
	3 Computational Model and Conditions
	4 Results and Discussion
	4.1 Aerodynamic Computations of a Flat Plate
	4.2 Aerodynamic Computations of NACA0012
	4.3 Aerodynamic Computations of Circular Arc

	5 Concluding Remarks
	References

