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 Introduction

Mesenchymal stem cells (MSCs) have recently garnered tremendous interest within 
the field of neuroscience because MSCs communicate and interact with the nervous 
system during brain development, injuries, and even tumor formation. Also, MSCs 
are easily isolated, cultured, and manipulated. Furthermore, MSCs have several 
unique characteristics, like immunomodulation, homing to sites of injury and 
secreting trophic factors. All of these make MSCs as a promising candidate to treat 
neurological diseases. In this chapter, we are trying to answer several questions 
involving the relationship between MSC, brain development, and pathology based 
on an increasing amount of experimental evidences. For example, is MSC-initiated 
neuronal transdifferentiation possible? Where are MSCs located in the brain? How 
and why can MSCs be successfully used to treat brain injuries? What are the rela-
tionships between MSCs and brain tumors?

L. Huang, Ph.D. (*) 
Research Imaging Institute, University of Texas Health Science Center at San Antonio,  
8403 Floyd Curl Drive, San Antonio, TX 78229, USA
e-mail: huangl@uthscsa.edu 

P. Huang, M.D., Ph.D. 
Department of Laboratory Medicine and Pathology, Mayo Clinic,  
4500 San Pablo Road, Jacksonville, FL 32224, USA
e-mail: Huang.Peng@Mayo.edu

mailto:huangl@uthscsa.edu
mailto:Huang.Peng@Mayo.edu


62

 MSC and the Brain

 MSC Transdifferentiate into Neural Cells

Transdifferentiation is a process where different stem cells are capable of crossing 
the germ layer boundary to form cell types of alternative layers. The transdifferentia-
tion concept has changed the notion that multipotent stem cells are restricted in their 
potency to form the cell types of a derived germ layer. For example, numerous stud-
ies show that mesodermal MSCs could transdifferentiate into ectodermal cells like 
neurons and astrocytes in vivo and in vitro [1–9, 20, 21]. It is a promising concept as 
this will make MSCs a good candidate for treatment of neurodegenerative disease, 
aiming to replace damaged or lost cells. However, to fully prove the possibility is 
still challenging.

Last decade, Woodbury et al. [1] and Sanchez-Ramos et al. [2] demonstrated for 
the first time the concept of MSCs participating in vitro in neuronal transdifferentia-
tion. Their studies reported that neurons can be obtained from MSCs treated with 
chemicals or a cocktail of trophic factors [1, 2]. However, subsequent studies chal-
lenged both methods [3, 4] and raised the question as to whether MSCs neuronal 
differentiation was an artifact.

Until now, four major approaches have been proposed in order to transdifferenti-
ate MSCs into neurons or glial cells in vitro:

 1. Chemical induction (chemical compounds): For example, Woodbury et al. [1] 
previously treated MSC with beta-mercaptoethanol, followed by dimethyl sulfox-
ide (DMSO) and butylated hydroxyanisole (BHA); Deng et al. [5] used dibutyryl 
cyclic AMP(dbcAMP) and isobutylmethylxanthine (IBMX) for 3 days to induce 
MSC transdifferentiation; Francesco et al. [6] modified a neuronal induction 
medium by adding forskolin and valproic acid, but left out BHA. After induction, 
some of the cells had neuronal-like morphology and expressed neural markers 
such as neuron-specific nuclear protein (NeuN) and neuron-specific enolase 
(NSE). However, some follow-up studies questioned the conclusion derived from 
these protocols. Studies showed the formation of neuronal morphologies did not 
only take place in MSCs but also in human embryonic kidney (HEK)-293 cells 
and pheochromocytoma cell (PC)-12 cells after chemical induction [3, 7], which 
was probably due to the consequences of cell shrinkage and cytoskeleton altera-
tions. Also, some neural proteins were spontaneously expressed on MSCs under 
standard culture conditions [4]. More importantly, these studies lacked functional 
electrophysiological evidence that shows excitatory properties of typical neuron.

 2. Trophic factors: Brain-derived neurotrophic factor (BDNF) [2] or basic fibroblast 
growth factor (bFGF) [8, 9] combined with/without retinoic acid (RA) has been 
shown to induce neural differentiation. After induction, cells showed neuronal 
morphology and expressed neural marker-NeuN, microtubule-associated protein 
2 (MAP2), or glial marker–glial fibrillary acidic protein (GFAP). An electrophys-
iological study demonstrated K+ current and K+ channels on the MSCs exposed to 
trophic factors FGF and EGF [10]. Furthermore, Cho et al. [11] confirmed that 
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MSCs treated with RA had spontaneous electrical activity and postsynaptic cur-
rent, which is a unique characteristic of neuronal cells. Although this trophic fac-
tor induction appears to be promising, the function of neural-like MSC-derived 
cells still needs to be tested before translating this method to clinical usage, espe-
cially function on synaptic transmission and neurotransmitter regulation. Also, 
the host microenvironment may affect the characteristic of neural-like MSC after 
transplantation, and maintenance of the neuronal property after trophic factor 
induction needs to be further evaluated.

 3. Genetic manipulation: A study showed that upregulating BDNF gene induced 
neuronal transdifferentiation of MSC following RA induction, which also 
increased the survival rate of MSCs compared to trophic factor induction alone 
[12]. A high ratio of neurons also can be obtained by Notch intracellular domain 
(NICD) transfection of MSCs followed with treatment with three trophic factors, 
bFGF, forskolin, and ciliary neurotrophic factor [13, 14]. Na+, K+ current and 
action potentials, as well as expression of a neural marker, were found on these 
cells. Meanwhile, another study has confirmed that MSCs formed neurospheres 
and successfully differentiated into neurons, also by NICD transfection [13]. 
Most importantly, these cells improved functional recovery of “stroke” rats after 
transplantation and showed extended long neurites [13]. Upregulating expression 
of neurogenin1 (Ngn1) was also sufficient to induce MSCs differentiate into neu-
rons [15], with expression of neuron-specific proteins and voltage-gated Ca2+ and 
Na+ channels. Not only upregulating proneural gene expression could achieve 
neuronal transdifferentiation of MSCs, but also knocking down neuronal- related 
gene has shown the possibility of inducing MSCs into neurons which involved 
downregulating gene RE-1 silencing factor (REST) using siRNA [16]. Taken 
together the results of these studies indicated gene manipulation plus trophic fac-
tor induction as a better strategy for MSC transdifferentiation with long- term 
maintenance of neuronal characteristics and better electrophysiological function 
compared to trophic factor alone. However, more risk exists with viral gene trans-
fection for clinical usage. Therefore, the long-term effects of gene manipulation 
of such cells need to be further evaluated in vivo and in vitro.

 4. Coculture of MSCs with neural cell types: A few studies showed that coculture 
with several neuronal types of cells, like cerebellar granule neuron [17], or astro-
cyte [18], can induce MSCs to differentiate into neurons with morphologic and 
molecular evidence. However, the effect may be due to trophic factors secreted 
by cocultured cells thus making it hard to tell the role of direct cell–cell interac-
tion in this process.

Although tremendous progress has been made in MSCs neural transdifferen-
tiation studies in vitro, to completely fulfill the ‘neuron’ definitions on single 
neural-like MSC is still challenging, like whether synaptic transmission of neu-
ron induced from MSC can be regulated by neurotransmitters.

Evidence from in vitro studies indicated that the neuronal microenvironment 
could be important factors for MSCs neural induction. Indeed, this MSCs neural 
 transdifferentiation phenomenon has been demonstrated from in vivo studies. 
Pioneer studies from Azizi et al. [19] and Kopen et al. [20] transplanted human 
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MSCs into adult brain or lateral ventricle of neonatal mice in which the engrafted 
MSCs survived and migrated throughout the brain. Some MSCs expressed neural 
or glial marker (GFAP). Furthermore, rat MSCs were infused into embryonic rat 
brain to evaluate their survival and phenotypic expression [21]. After infusion, 
engrafted MSCs migrated along the radial glial process and expressed neural marker 
NeuN. Although these results were exciting, unfortunately, in vivo studies cannot 
totally avoid the concern that neural transdifferentiation of MSC may be caused by 
spontaneous cell fusion, even though it happens at an extremely low frequency, as 
it has been shown that MSCs can fuse with neural cell types spontaneously [22]. So 
in vivo studies need to better separate engrafted MSCs and host cells using various 
methods and demonstrate the function of neuron-like MSCs in the future.

 Brain Pericytes

MSCs were initially isolated from the bone marrow of an adult organism. However, 
subsequent studies demonstrated MSCs can also be obtained from nonmarrow tis-
sues, such as adult muscle [23], adipose tissue [24], even brain [25]. Using the same 
culture method for bone marrow-derived MSCs, MSCs were successfully isolated 
from mouse brain with expression of mouse MSCs marker as well as their ability to 
undergo mesodermal differentiation [26]. Similarly, a group of cells, isolated from 
human brain ventricular wall and neocortex, expressed MSCs marker and have true 
multilineage potential toward a mesodermal and neuroectodermal phenotype [27].

Although MSCs can be isolated retrospectively from different tissues, the native 
distribution of MSCs has long been a mystery. Two landmark studies [28, 29] published 
in 2008 partly unveiled the reason for this mystery. Thus, Crisan et al. [28] identified a 
subset of pericytes from multiple adult tissues, which expressed CD146, neural/glial 
antigen 2 (NG2), and platelet-derived growth factor (PDGF)-Rβ, and exhibited the same 
osteogenic, chondrogenic, adipogenic, and myogenic potential as MSCs. This indicated 
that the pericyte may be integral to the origin of the elusive MSCs [28]. Since then, the 
characteristics and function of pericyte have been reexplored and recognized, as this 
type of cells was first found 140 years ago [30]. Pericytes are perivascular cells, which 
form an incomplete layer on the abluminal surface of capillary endothelial cells. In addi-
tion, the known functions of pericytes include vascular support, participating in angio-
genesis, matrix protein synthesis, vessel stabilization, and regulation of vascular tone 
[31]. Most importantly, recent studies showed that pericytes have been regarded as a 
potential reservoir of stem cells for adult tissue repair.

In the central nervous system, the pericyte is an important part of the neurovascu-
lar unit (NVU), which consists of neural cells and vascular cells. The pericyte is 
involved in the regulation of angiogenesis, vascular tone, and blood–brain barrier 
function. They are mainly distributed around cerebral capillaries and cover more 
than 30 % surface of capillaries [30]. Paul et al. [27] indicated that adult brain peri-
cytes have all the features of MSCs, such as expressing MSCs immunological mark-
ers, CD105+, CD90+, CD73+, as well as mesenchymal differentiation potential [27].
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 MSCs and Brain Injury

 Therapeutic Roles of MSC for Brain Injury

MSC transplantation in human patients began in 1995, aimed at promoting the survival 
of engrafted hematopoietic stem cell. Based on the safety of MSC transplantation and 
multiple potentials of MSCs, subsequent studies have been performed to investigate 
the therapeutic role in numerous diseases and disorders, including brain injury.

Stroke and traumatic brain injury (TBI) are the leading causes of adult disability 
worldwide, arising from the loss of neurons and impairment of neurological function. 
Unfortunately, there is limited treatment for these diseases. Preclinical studies, using 
MSCs transplantation to treat stroke and TBI, began early this century. Li et al. [32] 
transplanted bone marrow-derived MSCs into “stroke” mouse brain. They found that 
the engrafted MSCs survived and improved functional recovery. From that, numerous 
follow-up studies tried to figure out the optimized source of MSCs, delivery routes, 
time window, and dosage for MSCs transplantation for stroke and TBI.

 Delivery Routes

Three major routes have been investigated for stroke treatment: intracerebral [33–36], 
intracarotid [37, 38], and intravenous [39–41]. A growing number of studies showed 
MSCs administration decreased infarct size and improved neurological outcome in 
“stroke” animals through all three routes. However, it remains unclear which route is 
more efficient based on existing experimental evidence, as these studies lacked a 
direct comparison with different delivery routes of MSCs. One meta-analysis, based 
on preclinical studies of MSCs for ischemic stroke, showed that the effect size of 
intracerebral administration was larger than with the intravenous one [42]. This indi-
cated that direct transplant of MSCs into brain may be more efficient, but it is invasive 
and needs complex neurosurgery. Furthermore, intracerebral [43, 44] and intravenous 
[43] MSCs transplantation have also been evaluated for TBI treatment. Both routes of 
MSCs administration improved functional recovery after TBI. However, which route 
is ideal remains unclear.

 Cell Resources

MSCs, derived from various resources, have been investigated for stroke and TBI 
treatment, including bone marrow [45, 46], placenta [47], peripheral blood [48], 
adipose [45, 46], and umbilical cord blood [49, 50]. All of these cells have been 
shown beneficial impact on neural injury after transplantation. However, few stud-
ies have compared the efficacy of different MSCs. There was one study that indi-
cated adipose-derived MSCs maybe a preferable source than bone marrow-derived 
MSCs for stroke therapy because of higher proliferative activity, more vascular 
endothelial growth factor (VEGF) secretion, and easier access [45].
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 Timing

Time of MSCs delivery after stroke varied from 1 h to 1 month [42]. Several studies 
published recently indicated 24 h after stroke is optimized for MSCs intraarterial or 
intravenous transplantation with improved behavior and more cell migration to 
infarcts [51–53]. Also 24 h is clinically reasonable, when patients tend to be stabi-
lized. For TBI, 24 h following TBI were typically used for MSC transplantation, 
based on known study results [54]. However, the optimized time (i.e., window) for 
transplantation remains unclear, since it is hard to decide based on current available 
information.

 Dosage

The MSCs dosage used for stroke preclinical studies ranges from 4 × 105 to 
1.2 × 108 cells/kg [54]. Chen et al. [41] evaluated the relationship between cell dose 
and efficacy. High dosage (3 × 106) was more efficient than low dosage (1 × 106) for 
MSCs intravenous transplantation on the cerebral ischemic rat with better behav-
ioral recovery. Also MSCs transplantation dose dependently restored cerebral blood 
flow (CBF) and blood–brain barrier (BBB) function [55]. However, various quan-
tity and presentation of cell dosage make it harder to compare the efficacy among 
different preclinical studies and to directly guide clinical studies. Thus, dosage used 
for TBI studies varied from 6 × 106 to 3.2 × 108 cells/kg depending on the adminis-
tration route [54]. However, optimized dosage for stroke and TBI therapy still needs 
to be explored.

 Mechanisms of MSCs Cell Therapy on Brain Injury

 Immunomodulation

MSCs undergo crosstalk with the innate and adaptive immune system. Their immu-
nomodulatory functions depend on the microenvironment, through cell contact and 
independent mechanisms (reviewed by Blanc et al. [56]). Stroke and TBI induce a 
strong inflammatory response that leads to subsequent recruitment of leukocytes to 
the infarct zone. MSCs transplantation significantly reduced inflammation and sub-
sequent cell death. Ohtaki et al. [57] used microarray to detect gene changes after 
MSCs transplantation on global cerebral ischemic mice. Over 10 % of proinflamma-
tion genes were downregulated after human bone marrow-derived MSCs transplan-
tation and three neuroprotective genes were upregulated [57]. Similarly, engrafted 
MSCs reduced brain inflammation and suppressed microglia and macrophage activ-
ity after TBI [44, 58]. The resolution of the postinjury inflammatory milieu will also 
ameliorate brain self-repair, as evidence has showed that MSCs reduced glial scar 
formation after stroke or TBI [59].
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More interestingly, engrafted MSC-induced immunomodulation is not limited to 
injured brain and it affects peripheral immune organs as well. Thus, a recent study 
showed a dramatic spleen distribution of MSCs after intravenous administration to 
rat after induction of stroke [60]. Engrafted MSCs not only had a remote anti- 
inflammation role on brain but also reduced TNF-α expression in spleen [60].

 Trophic Factors

Although numerous studies have confirmed the neural transdifferentiation potential 
of MSCs in vitro, solid evidences that indicate a therapeutic role for MSCs on stroke 
and TBI is due to cell replacement is still lacking. On the other hand, bystander 
effects of MSCs transplantation play a more important role in brain recovery, espe-
cially involving secreted trophic factors by engrafts. In vitro studies showed cocul-
tured with stroke and TBI brain extracts upregulated MSCs synthesis and expression 
of trophic factors, BDNF, NGF, VEGF, and HGF in vitro [61]. Meanwhile, MSCs 
transplantation increased trophic factors expression not only in engrafted cells but 
also in host brain tissue after stroke [62]. Also, the expression of host NGF and 
BDNF genes was significantly increased after intravenous administration of MSCs 
for TBI [63]. Furthermore, compared to MSC alone, BDNF gene-modified human 
MSCs resulted in increased BDNF expression and enhanced the therapeutic effect 
of cell therapy on stroke [64]. As Li and Chopp et al. [65] described, transplanted 
MSCs work as ‘small molecular factories’ by continually secreting trophic factors 
for brain repair. Maybe that’s why cell therapy is more efficient than single molecu-
lar therapy.

 Angiogenesis

Angiogenesis is an important event related to the long-term repair and restoration 
process of the brain after brain injury. Cultured MSCs continually secrete angio-
genic cytokines including, VEGF, bFGF, and placental growth factor (PLGF) [66–
69]. Thus, MSC transplantation promoted VEGF secretion, VEGF receptor 2 
(VEGFR2) expression, and angiogenesis in the ischemic boundary zone (IBZ) after 
stroke [70, 71]. A recent study also indicated that only exosomes derived from cul-
tured MSCs were able to enhance angiogenesis in animals following stroke [72]. 
Furthermore, effect of brain angiogenesis after stroke was greater after transplanta-
tion of PLGF gene-modified MSCs, compared to nonmodified MSCs [73].

In addition to secreting angiogenic factors, MSCs also have the potential to dif-
ferentiate into an endothelial lineage [74]. This unique property could be beneficial 
for vascular repair after brain injury. Indeed, Liao et al. [50] observed a subset of 
engrafted cells that differentiated into endothelial cells after intracerebral trans-
planted human umbilical-derived MSCs (UC-MSCs) in a rat model of stroke. Also, 
the UC-MSCs treatment increased vascular density and VEGF expression in ipsilat-
eral hemisphere [50].
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 MSC and Cancer

 Cancer Stem Cells (CSCs)

A tumor or cancer can be viewed as an aberrant organ initiated by a tumorigenic 
cancer cell that acquired the capacity for indefinite proliferation through accumu-
lated mutation [75]. Two hypothetical models, stochastic and hierarchal, have been 
proposed to explain tumor initiation and development [76]. Cancer-stem-cell theory 
derived from the hierarchal model asserts that only a rare subset of cells within the 
tumor have the ability to generate new tumors [75]. In 1997, the confirmatory exper-
imental evidence for this theory was demonstrated by Bonnet and Dick [77]. Since 
then, numerous studies have verified the existence of cancer stem cells in various 
kinds of cancer, for example, breast cancer [78], brain tumor [79, 80]. Compared to 
normal stem cells, cancer stem cells have similar properties of self-renewal and dif-
ferentiation, but cancer stem cells usually have genomic or karyotypic mutation and 
aberrant differentiation [80]. The concept of cancer stem cell has propelled research-
ers in a direction to better understand the oncogenesis and to rethink the strategy for 
cancer therapy.

 MSC and Brain Tumor

Glioblastoma multiforme is an aggressive and invasive neoplasm characterized by 
extensive neovascularization [76]. Several groups demonstrated tropism of MSC to 
gliomas by implanting MSCs into gliomas of animals and tracking the migration of 
MSCs [81, 82]. This tumor-specific migratory pattern makes MSCs a promising 
cellular vehicle for delivery of therapeutic agents, although whether tumor cells 
recruit endogenous MSCs remain to be clarified. Meanwhile, glioblastoma stem 
cells (GSC) are able to transdifferentiate into pericytes or MSC-like cells [83], con-
tributing to the maintenance of microvasculature itself [84, 85]. In addition, the 
selective elimination of GSC-derived pericytes disrupted the neovasculature and 
potently inhibited tumor growth [84].

The effect of native MSCs on tumor growth is still controversial. On the one 
hand, MSCs have been shown to suppress tumor growth of glioma [81, 86], through 
suppressed tumor angiogenesis [86]. On the other hand, others have reported MSC 
implantation can promote tumor growth [87], partly by supporting tumor vascula-
ture [82, 88], and by reducing tumor cell apoptosis [87].

Even though the relationship between brain tumor/CSCs and MSCs is controver-
sial, several studies indicated MSCs could be regarded as vector to deliver therapeu-
tic molecules [89, 90], based on the homing property of MSCs to tumor. Sasportas 
et al. [89] gene-modified MSC to secrete cytokine tumor necrosis factor apoptosis 
ligand (TRAIL). In vitro and in vivo studies showed TRAIL-MSCs successfully 
inhibited growth of glioma through inducing tumor cell apoptosis [89]. Similar 

L. Huang and P. Huang



69

results have been verified by another group [90]. Moreover, the results of this study 
demonstrated that antitumor effect of TRAIL-MSC was better than TRAIL alone 
using adenovirus-mediated delivery [90]. Other antitumor molecules, such as 
HSV-tk [91], IL-17 [92], and IFN-α [93], have also been investigated and have 
shown reduced tumor development. All of these studies indicated using MSCs as a 
vehicle to target tumor is a promising strategy for future tumor therapy.
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