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Abstract. We present a novel method for image registration via a piece-
wise diffeomorphic deformation which accommodates sliding motion,
such as that encountered at organ boundaries. Our method jointly com-
putes the deformation as well as a coherent sliding boundary, represented
by a segmentation of the domain into regions of smooth motion. Dis-
continuities are allowed only at the boundaries of these regions, while
invertibility of the total deformation is enforced by disallowing separa-
tion or overlap between regions. Optimization alternates between dis-
crete segmentation estimation and continuous deformation estimation.
We demonstrate our method on chest 4DCT data showing sliding motion
of the lungs against the thoracic cage during breathing.
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1 Introduction

Dense image registration driven by a pointwise dissimilarity term is an ill-posed
problem, requiring regularization to produce meaningful results. For medical
images, smoothness and invertibility of the resulting deformations have become
the standard requirements used to define regularization penalties. This repre-
sents assumptions regarding the physical system being modeled — that objects
should not appear or disappear, and that nearby points should remain nearby.
However, certain anatomical motions violate these assumptions. In particular,
many organs are not directly attached to adjacent anatomical structures, but
are able to slide freely along a boundary. Most notable in CT imaging is the
sliding of the lower lungs against the thoracic cage.

We propose a method for jointly computing a segmentation representing
regions of smooth motion, and a set of deformations modeling the motion in
each region. Driven by a novel formulation of the sliding constraint as a discrete
pairwise penalty, optimization alternates between a graph-cut based estimation
of the motion segmentation and a continuous optimization of the constituent
deformations. The resulting composite deformation is globally invertible and
© Springer International Publishing AG 2016

S. Ourselin et al. (Eds.): MICCAI 2016, Part ITI, LNCS 9902, pp. 72-80, 2016.
DOI: 10.1007/978-3-319-46726-9_9



Deformation Estimation with Automatic Sliding Boundary Computation 73

piecewise-smooth. The motion segmentation guarantees that discontinuities due
to sliding occur only along coherent boundaries in the image, and the joint
estimation of mask and deformations allows anatomical structures to be auto-
matically grouped based on the similarity of their motion.

Previous work has attempted to address the errors caused by using globally
smooth deformations to represent lung motion. Wu et al. [11] segment regions
and separately register them, while adding a penalty to avoid ‘gaps’ (or over-
laps) in the resulting deformation. Recent work in this area has either required a
precomputed segmentation of the sliding boundary (e.g. [2,6]) or used a disconti-
nuity preserving regularization on the deformation (such as Total Variation [10]
or Bilateral Filtering [5]), which may introduce spurious discontinuities and does
not guarantee the invertibility of the deformation. Vandemeulebroucke et al. [9]
give an automated method for creating a ‘motion mask’ of the anatomy defin-
ing the sliding boundaries, but base this on anatomical features, and not the
observed motion. Schmidt-Richberg et al. [7] propose a diffusion-based regu-
larization which allows sliding along organ boundaries. Boundaries are either
precomputed or estimated based on an ad-hoc measure of deformation disconti-
nuity at precomputed image edge locations. Work from computer vision has also
considered motion-based segmentation (e.g. [8]), but the modalities dictate that
deformations model occlusion instead of invertibility /sliding. The most similar to
our work is [2], which also formulates the sliding conditions in terms of a region
segmentation, but assumes a predefined segmentation on one of the images.

2 Methods

We first formulate or registration problem and constraints for a piecewise
diffeomorphic deformation ¢. Given two D-dimensional scalar-valued images
fo : 20 — R and f; : 2, — R (assigned artificial time indices 0 and t) where
20, 2, C RP we attempt to find a deformation ¢ : £2, — §2y such that fyod ~ f;,

where the dissimilarity is measured by a functional of the form

Bansa(fyo 6.5) = [ Do (6(a)) @) do, 1)
where D : RxR — R is a pointwise dissimilarity term.

Our method formulates piecewise-diffeomorphic deformation ¢ via K dif-
feomorphic deformations, ¢ = {¢*}r=1. K, ¥ : 2+ — 2 (where we assume
identical codomains {2y for simplicity), and a segmentation ¢y : 2y — {1... K}
defining the region over which each deformation has effect.

We define indicator functions of each label as

Koy )1 ifbo(y) =k
Xo(y) = {O otherwise (2)

and the indicator function deformed by the corresponding deformation as

Xi = XG0 0",
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We assume that each ¢* is diffeomorphic, and therefore invertible. In order
to maintain invertibility of the composite deformation we require that it does
not result in ‘tearing’ or ‘overlap’ between regions. This can be expressed as a
pointwise constraint on the sum of indicator functions

K
fo(:c)zl Va e (. (3)
k=1

Intuitively, x¥ = 1 asserts that deformation ¢* is in effect at point x. The

constraint stated in terms of the labeling is then at each x, £y ((;Sk(a:)) =k
should be true for exactly one k. If the statement is not true for any label k,
then we have tearing in the deformation at time ¢, and if it is true for two or
more labels we have overlap at this point.

We can now define the segmentation at time ¢

l(x) =k s.t. xF(x) =1 (4)

which, for © € (%, is guaranteed to exist and be unique by (3). We can then
define a single piecewise-smooth deformation as

(@) = ¢" @ (). ()

It is easy to verify that ¢(z) is invertible. It is surjective since each point y € 2y
can be mapped to a point & € £2; via x = (¢°®))~1(y) via the invertibility of
the constituent deformations, and injective because ¢(x) s.t.x € x¥ is a unique
mapping among & € x¥ via the invertibility of the constituent deformations, and

unique among & ¢ x¥ as & ¢ x¥ implies x§(4(2)) # k, contradicting = € xF.

2.1 Optimization Criteria

We have now given constraints on the labeling ¢y and deformations ¢ guaran-
teeing a piecewise-diffeomorphic deformation, and we choose among these valid
deformations by optimizing over a composite objective function that balance
the tradeoff between data matching and the regularity of the deformation and
labeling

K

E(¢, KO) = Edata(¢’» 60) + )\perEper(ZO) + Apdepdf(EO) + )\reg Z Ereg(¢k)v (6)
k=1

where we reformulate the data term (1) as a function of ¢ and ¢,

K
Bauald.fo) = 3 [ xE@)Dlta (¢(@) (@) da (7)
k=171

and the regularization is taken over each constituent deformation (the form of the
deformation regularization E,e, is dependent on the registration method used).
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The term Epe, is a ‘perimeter’ penalty on the size of the segmentation bound-
aries, enforcing the notion that discontinuity should be allowed at a limited set
of points. In addition, the penalty Epqr is a region-based intensity segmenta-
tion penalty, encouraging the labeling £, to segment regions of similar intensity.
This helps produce ‘anatomically reasonable’ results (where segmentations fol-
low organ boundaries) in regions such as the top of the lungs, where no sliding
is observed and therefore motion segmentation is ambiguous.
The problem we wish to solve can then be stated as

K
argmin E(¢, {y) s.t. fo(m) =1 Vze (8)
#.to k=1

This is clearly a challenging nonconvex optimization problem. In order to achieve
an approximate solution, the hard constraint (3) is relaxed to a penalty,

Eaum (6, Lo) == Hsz:l o1

, 9)

1

We write the relaxed version of (8) as

argmin E(¢, 45) + AsumEsum (@, %), (10)
b.%0

and optimization alternates between finding an optimal labeling ¢, for a fixed set
of deformations ¢, and optimizing over ¢ while keeping ¢y fixed. This alternat-
ing optimizations do not increase the objective (10) at each step, guaranteeing
convergence.

2.2 Segmentation Estimation

In the segmentation estimation step we hold the deformations ¢ fixed and opti-
mize (10) over £y

arg;nin Edata(¢); 60) + )\perEper(EO) + Apdepdf(EO) + )\sumEsum(d)v EO) (11)
0

Note that for a large enough value of Ay, this becomes a hard constraint;
since a single-label segmentation k s.t.k(x) = k Vx is guaranteed to sat-
isfy the constraints and also have zero boundary cost (Eper(k) = 0), setting
Asum = mkin (Edata(®, k)) + € guarantees that the optimal solution satisfies the

constraint.

As the segmentation ¢, takes discrete values, we propose a discrete optimiza-
tion formulation for its estimation. We discretize our problem by defining fy and
o only on a discrete set of points arranged on a regular grid, {y,, }\_; C £,
and similarly define f;, £y, ¢*, etc. on {x,}_, C . For simplicity we will
assume equal numbers of points indexed by n. For interpolation of images lin-
ear interpolation is used, and for label images nearest-neighbor interpolation is
used. The objective is written as a discrete set of unary and pairwise functions
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of node labelings which can be solved exactly for binary labelings (K=2), and
approximately otherwise, via graph-cut algorithms [3].

The data matching term Eqat, (7) can be written discretely as a unary point-
wise penalty on the labeling ¢y, as can Eyqr. We write Epqr as a negative log
likelihood penalty on ¢

N
Epat (bo) := —log(p(filto)) = = > p(Ei(y,)[lo(w,)), (12)
n=1

where p(f(y,,)[%(y,,) = k) is a kernel density estimate of the distribution of
{ti(y,,) s.t. (o))" (y,,) = k}, and ({p)~ is the segmentation from the previous
iteration. As this penalty is intended only to resolve ambiguous situations, and
not lead to an intensity based segmentation, its influence is kept relatively weak.

We now formulate Epe; and Egum discretely as sums of pairwise terms. For
ease of notation when working with label values, we define the functions q :
{1...K} — {0,1} (and similarly —q) for indicating equality (or inequality) of
labelings (q for equals):

ai,5) == {1 Hi=J i) = {1 e (13)

0 otherwise 0 otherwise

Our ‘perimeter’ penalty Ep, is written as a simple Potts model smoothness term
on f,

Barlt) =3 3 o). ol (14)

n=ly,,eN(y,)

where N (y,,) is a set containing the neighbors of y,,, in our case a 4- or 6-
connected neighborhood in 2D or 3D, respectively.

We can directly write the discretized version of Egum (¢, o) (9) as the sum
of N terms (one associated with each x,, ), term n taking as inputs the labelings

{to (6" (=n)) Ha

sum ¢ KO

(15)

(Z_:q (lo (¢*(zn)), k)>—1.

Due to nearest-neighbor interpolation of the labeling, each ¢ ((b (zcn)) is equiv-
alent to {o(y,,) for some n € {1... N}. However, the K-input terms associated
with each point are difficult and costly to optimize over. Instead, we introduce
auxiliary variables representing the labeling ¢;, and optimize over both £, and
¢;. Under the sum constraint (9), ¢; is uniquely determined via ¢y and ¢, so we
have not introduced any additional unknowns. However it allows us to rewrite
each K-input term in (15) as the sum of K pairwise terms

N K
aum ¢a éO;gt . chk (60 ((bk(mn))vgt(mn))a (16)

n=1k=1
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where ¢* (i, j) := —q(q(i, k), q(j, k)). The function c* (¢y (¢*(xn)), l(xy)) indi-
cates whether labels ¢y (¢*(x,)) and ¢;(z,) agree that deformation & is (or is
not) in effect at ¢*(x,). It takes value zero if &y (¢*(x,)) = €i(xn) = k (the
labelings agree that ¢(x,,) = ¢*(x,)) or if £ (¢*(x,)) # k and €, (x,,) # k (the
labelings agree that ¢(x,) # ¢*(x,)), but takes value 1 if the labelings are in
disagreement.

We now have the objective function (11) written as unary (Eqata and Epar)
and pairwise (Eper and Egun) terms on the label values ¢y (y,,) and ¢;(x,,), which
can be optimized by efficient discrete methods [3].

In practice, the effects of discretization mean that enforcing hard constraints
give unsatisfactory results, even if the true deformations are known. Instead,
Asum 1S chosen to allow some constraint violations. In locations of constraint
violation the labeling of ¢; is ambiguous, but the given optimization chooses
among ambiguous labels by minimizing the data energy.

2.3 Deformation Estimation

In the deformations estimation step, we hold the labeling ¢y fixed and opti-
mize (10) over the deformations ¢

K

a‘rgglin Edata(¢7 EO) + )\reg Z Ereg((bk) + )\sumEsum(d)a 60)7 (17)
k=1

We represent each ¢* via a b-spline control grid, and impose additional reg-
ularization via Eyeg(¢F) := [[V@F||2. While invertibility is not guaranteed by
this regularization, it can be easily verified. In practice the regularization is
significant (as allowed by the piecewise formulation) and the deformations are
sufficiently well-behaved that we do not observe noninvertibility during opti-
mization. However, the optimization is agnostic towards the deformation model,
and in particular a flow-based diffeomorphic model could be substituted without
additional changes.

The L' norm in Eguy (9) is replaced by a differentiable approximation, and
optimization is performed via gradient descent.

2.4 Segmentation Initialization

As we are optimizing a highly nonconvex function, a reasonable initialization is
needed. As the goal is to segment deformations along regions of motion discon-
tinuity, we automatically create an initial segmentation which separates regions
showing different motion. We first generate a deformation on downsampled ver-
sions of the input data enforcing only the anisotropic TV penalty

v

D
argmin / Dfo( + v(@)),f) + 3 [Var(e)| da, (18)
2 d=1
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where V4 is the gradient along dimension d.

This penalty results in a discontinuous motion field containing piecewise-
constant regions. The elements of v are then grouped into K clusters using
the k-means algorithm, and the cluster labels are then mapped back to the
corresponding spatial locations creating an initial segmentation.

3 Results

We test our method on the publicly available DIR-lab dataset [1], which consists
of ten 4DCT datasets as well as landmark correspondences. Resolution (voxel
size) is &~ 1x 1x2.5mm. Datasets 6-10 contain a large volume of empty space
around the patient, and were cropped to a region of interest around the patient
body. We use a binary motion segmentation (K = 2) to represent the breath-
ing motion. A multiscale optimization was used, both on the image resolution
and the b-spline grid resolution (two image resolutions, with a total of three
b-spline grid refinements for cases 1-5 and four for cases 6-10). Other parame-
ters for both the initialization and optimization steps were empirically chosen,
but fixed across all datasets. In order to better register fine features and over-
come intensity differences due to density changes in the lung during breathing,
we chose a Normalized Gradient Field (NGF) dissimilarity [4] as the pointwise
image dissimilarity measure. Figure 1 shows the computed motion segmentation
for each dataset. The segmented region includes the lungs as well as regions of
visible motion continuing into the organs of the abdominal cavity, while exclud-
ing structures such as bone which show little motion. Table 1 gives the landmark
errors on these datasets, showing similar results to methods which rely on a
precomputed segmentation, or do not guarantee the invertibility of the deforma-
tion (average correspondence error of 1.07 mm across all ten datasets, compared
to 1.00mm for method NGF(b) of [4] and 1.01 mm for method pTV of [10]).
Figure 2 compares the effect of the piecewise-smooth deformation to that of a
single smooth deformation run with the same parameters.

Fig. 1. Motion segmentation results for all datasets. Top row shows a coronal slice near
the spine with motion mask region highlighted in red. Bottom row shows transparent
3D rendering of this region. Bottom number indicates the dataset. (Color figure online)
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Table 1. landmark errors (in millimeters) for the n = 300 landmarks defined at the
extreme breathing phases for each dataset

dataset 1 2 3 4 5 6 7 8 9 10 | ttl
err mean (mm) | 0.79 1 0.79 | 0.87|1.35|1.25|1.05|1.12|1.22 | 1.12 | 1.12 | 1.07
err std (mm) 0.90/0.95/1.04|1.28/1.563/1.04{1.18/1.26/1.03|1.38|1.17

ot

I 27!

(a) (b) (©) (d)

Fig. 2. Comparison of our piecewise-smooth deformation ((a) and (c)), and a single
globally smooth deformation ((b) and (d)), on the DIR-lab dataset 1. The figures on
the left show the jacobian determinant of the deformation on a log-scale colormap.
Note the clear sliding boundary (dark/red colors where the jacobian is undefined along
the tearing boundary) in (a), and the nonphysical deformation of the spine region in
(b). On the right are difference images between exhale and deformed inhale for the two
methods. Again notice the motion of the spine with a single deformation. (Color figure
online)
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