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Abstract. In the diagnosis of myocardial infarction, magnetic resonance
imaging can provide information about myocardial contractility and tis-
sue characterization, including viability. In current clinical practice, sep-
arate scans are required for each aspect. A recently proposed method
showed how the same information can be extracted from a single, short
scan of 4 s, but made strong assumptions about the underlying cardiac
motion. We propose a fixed-point iteration scheme that retains the ben-
efits of their approach while lifting its limitations, making it robust to
cardiac arrhythmia. We compare our method to the state of the art using
phantom data as well as data from 11 patients and show a consistent
improvement of all evaluation criteria, e. g. the end-diastolic Dice coeffi-
cient of an arrythmic case improves from 86 % (state-of-the-art method)
to 94 % (proposed method).

1 Introduction

Magnetic resonance imaging (MRI) can be used for the comprehensive diagnosis
of myocardial infarction. Three important aspects are: Time-resolved cardiac
imaging (CINE imaging) allows contractility assessment of the myocardium [2].
Myocardial viability can be assessed with late gadolinium enhancement (LGE)
imaging, which visualizes scar tissue [6]. T1 mapping can be used for the diagnosis
of diffuse myocardial fibrosis [1,11]. In current clinical practice, separate scans are
performed for each aspect. For the case of LGE imaging, an additional pre-scan
is required for the a-priori selection of a parameter called inversion time (TI),
which ensures that the LGE scan suppresses signal from healthy myocardium
while highlighting scar tissue (see Fig. 1).

A recent method [10] allows the acquisition of a series of images from
which all of the above information can be extracted from a single measure-
ment. After an inversion pulse, 4 s or ∼4 cardiac cycles of real-time images are
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Fig. 1. Example images from the acquired series and corresponding points on the T1

recovery curve of different tissues. After inversion, longitudinal magnetization starts at
the negative maximum value, −Mz, and then recovers back to Mz. Most notably, the
2nd image from the left shows the optimal TI time for scar visualization, because the
myocardium is black and the scar tissue is hyperintense compared to the blood.

acquired. This leads to an image series where both the image contrast and car-
diac motion state change over time (see Fig. 1). The contrast change is related
to the tissue-dependent time constant for longitudinal magnetization recovery,
T1, and the time between inversion and acquisition of each image, TI. Simulta-
neously acquired ECG data allows the segmentation of the series into cardiac
cycles. Detsky et al. [2] also measure viability and contractility in one scan, but
use a longer, segmented acquisition, and don’t jointly estimate both parameters.

Related to the three aspects mentioned above, CINE imaging is provided
by the last cardiac cycle in the series, where the image contrast has already
stabilized. An image with optimal TI for scar visualization can be selected ret-
rospectively in the first cardiac cycle. For T ∗

1 mapping, the approach in [10] is to
estimate cardiac motion by image registration of the last cardiac cycle. Under
the assumption that motion is identical in the first and last cardiac cycles, this
estimate is then used to transform the first cardiac cycle into a consistent motion
state to perform pixel-wise least-squares regression of measured values to a sig-
nal model [8]. Additionally, a joint scar tissue and contractility visualization is
generated by animating the image with optimal TI contrast with the motion
estimate to show how wall motion abnormalities relate to scar tissue. The lim-
itations of this method are the assumption of identical motion in the first and
last cardiac cycles, and the use of just the first cardiac cycle for T ∗

1 mapping.
We propose an iterative approach to jointly estimate cardiac motion for all car-

diac cycles and utilize all available data for T ∗
1 mapping, retaining the advantages

of a-posteriori TI selection and combined contractility and scar visualization,
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while removing the limitations of the previous approach and improving robust-
ness. We tested our method with phantom data and 11 patient data sets.

2 Materials and Methods

If the motion between cardiac phases is known, i. e. we have deformation fields
di→j(x) such that an image mi(x) in one cardiac phase i ∈ [0,M [, where M is
the total number of images, can be transformed as mi(x + di→j(x) to match
the cardiac phase j in image mj(x), then pixel-wise T ∗

1 mapping is possible
using images transformed to a common reference phase. Conversely, given a
T ∗
1 mapping of an image series, cardiac motion can be estimated using intensity-

based registration, similar to the use in [12] for imperfect breath-hold correction.
We propose a fixed-point iteration scheme which alternately improves T ∗

1

mapping results and motion estimates:

Fig. 2. Overview of the iterative estimation: The measured image series is transformed
to a common cardiac phase using the current motion estimate (a), followed by pixel-
wise T ∗

1 mapping (b). From the T ∗
1 map, synthetic images at the same TI times as

the measured images are generated (c), which are then transformed to the different
cardiac phases, followed by pair-wise registration of the measured image series and
current synthetic image series to update the current motion estimate (d).

1. Compute initial motion estimate from last cardiac cycle (see Sect. 2.1)
2. Iteratively update T ∗

1 map and motion parameter estimates (see Fig. 2)
(a) Transform the originally acquired image series to a single cardiac phase

using the current motion estimate
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(b) Compute pixel-wise T ∗
1 parameter estimates (see Sect. 2.2)

(c) Using the resulting parameters, compute synthetic images corresponding
to the inversion times of the acquired image sequence

(d) Update the motion estimate by performing image registration between
the original and synthetic images (see Sect. 2.3)

3. Compute the true T1 map from the final T ∗
1 map (see Sect. 2.2)

2.1 Initial Motion Estimation

The first motion estimate is computed with intensity-based registration of the
last cardiac cycle of the acquisition. The first frame of the last cycle mf (x)
is selected as the reference frame, so we obtain deformation fields di→f (x) for
i ∈ [f,M [. Non-rigid registration based on the elastix toolbox [5] with these
components is used: the transform model is uniform cubic B-splines with a 16mm
isotropic control point spacing, the similarity metric is cross-correlation, opti-
mized with the L-BFGS algorithm on a 3-level multi-resolution pyramid.

Deformation fields for the other cardiac cycles are then determined by linear
interpolation of those from the last cardiac cycle, as we no longer assume that
cardiac cycles are of the same length. For the initial motion estimation, we
assume that there is no motion between the first images of each cardiac cycle.
Thus, a deformation field di→fi(x), where fi is the first frame of the cardiac
cycle containing image i, can also be used as a deformation field di→0(x) to
transform image i to the cardiac state of the very first frame. This allows us to
transform all images i ∈ [0,M [ into a reference cardiac phase for T ∗

1 mapping.

2.2 T ∗
1 Mapping and T1 Correction

For T ∗
1 mapping, the current motion estimate di→0(x) (i ∈ [0,M [) is used to

transform all images mi(x) to the cardiac phase of the first image:

m′
i(x) = mi(x + di→0(x)). (1)

The m′
i(x) now only differ in their contrast, which is dependent on TIi, the

inversion time of image i, as well as tissue-dependent parameters a(x), b(x) and
T ∗
1 (x), which can be determined by a pixel-wise non-linear least-squares fit [8]:

min
a(x), b(x), T∗

1 (x)

∑M−1
i=0 (m′

i(x) − |a(x) + b(x) · exp(− TIi

T∗
1 (x) )|)2. (2)

Unlike [10], all cardiac cycles are considered for the fit, not just the first one,
to increase robustness. The residual error of this fit is due to noisy measurements
and errors due to misalignment, which can be reduced by improving motion
estimates in each iteration. As the MRI measurement influences the longitudinal
magnetization recovery, this does not yield the true T1 value, but an “apparent”
T1 called T ∗

1 . A correction from T ∗
1 to T1 maps can then be computed [7,8].
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2.3 Motion Estimate Updating

The current set of parameters a(x), b(x) and T ∗
1 (x) can be used to generate a

synthetic image series s′
i(x) in the reference cardiac phase as

s′
i(x) = |a(x) + b(x) · exp(− TIi

T∗
1 (x) )| (3)

and transformed to the cardiac phase it was acquired in:

si(x) = s′
i(x + d−1

i→0(x)). (4)

Pairwise registration between originally measured images mi(x) and corre-
sponding synthetic images si(x) then yields the error emi→si(x) of the current
motion estimate di→0(x), so the motion estimate is updated by concatenation:

d
(new)
i→0 = d

(old)
i→0 ◦ emi→si . (5)

As this step considers each cardiac cycle individually, errors of the initial
motion estimate will be corrected at this stage.

2.4 Experiments

Phantom data. A cardiac T1 map, acquired from a patient with a dedicated
T1 mapping protocol, was used to generate different phantom data sets for the
same TI times a real acquisition would use. This allowed to evaluate the algo-
rithm against ground truth motion and T1 values. Phantom deformation fields
mimicking 3 cardiac cycles were generated to simulate contraction of the heart.
The resulting magnitude images were distorted with Rician noise [4], the appro-
priate distribution for magnitude MRI images. The noise parameter was chosen
as 5% of the maximum magnitude. Figure 3 shows examples of the phantom
image series.

Fig. 3. Phantom images for different TI times and cardiac states.

Different datasets for the following 3 scenarios were simulated, with the last
two simulating arrhythmia: (i) Same cardiac motion in all cardiac cycles, the
ideal case assumed in method [10], (ii) Deviation of the magnitude of cardiac
motion, (iii) Deviation of the position of end-systole within the cardiac cycle.
For the quantitative evaluation of the T1 mapping step, the root-mean-squared
error (RMSE) of estimated T1 maps to ground truth and the residual of the
least-squares parameter estimation were computed. To evaluate the quality of
the motion estimate, the blood pool of the heart was manually segmented in one
cardiac phase. The resulting mask was transformed to all other cardiac phases
using the ground truth deformation fields as well as the estimated deformation
field. Finally, they were compared using Dice [3] and Hausdorff [9] coefficients.
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Patient data. Data acquisition as described in [10] was performed in 11 patients
(age 63±10, 4 female) with known or suspected status post myocardial infarction
on a 3T clinical scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen,
Germany). Prototype sequence parameters include: 4 s breath-hold acquisition,
192×150 matrix size, (1.9mm)2 in-plane, 8mm slice, 33ms temporal resolution.

For T1 mapping evaluation, the residual was computed. To evaluate the
motion estimates, the blood pool of the heart was manually segmented for each
end-diastolic (ED) and end-systolic (ES) frame. The last ED frame is also the
reference frame for registration. The resulting mask for the reference frame was
transformed to all other segmented frames using the motion estimates, and com-
pared to the manual segmentations using the Dice and Hausdorff coefficients.

3 Results and Discussion

Phantom data. Figure 4 plots the Dice coefficients for data sets (i)–(iii) for all
images in the series without and with initial motion correction (corresponding to
method [10]), and after 1 and 2 fixed-point iterations, after which the mean mag-
nitude of motion estimate updates dropped below 0.2 px and no more substantial
changes were observed. Table 1 lists T1 mapping RMSE, residual, and the mean
Dice and Hausdorff coefficients over all images. The mean Pearson correlation
between T1 mapping RMSE and residual over all data sets is 0.98 ± 0.01.
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Fig. 4. Plots of Dice coefficients for all images in all phantom data sets with the same
motion in all cardiac cycles (left), different motion strength in each cardiac cycle (mid-
dle), and different positions of end-systole (right). Results without motion correction
represent the baseline, followed by initial motion correction using motion information
from the last cardiac cycle, and two iterations of the joint T ∗

1 and motion estimation.

For phantom data set (i), the prerequisites of method [10] are met and fixed-
point iteration shows no benefit. For the cases of simulated cardiac arrhythmia
(ii) and (iii), our method improves the T1 mapping RMSE and residual as well as
the Dice and Hausdorff coefficients compared to [10], in terms of both mean and
standard deviation. The non-zero RMSE using ground truth motion is due to
interpolation. The correlation between T1 mapping RMSE and residual suggests
that we can use the latter as a surrogate to evaluate the quality of T1 maps for
patient data, where no ground truth exists.
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Table 1. Quantitative results for phantom data sets for different stages of motion
correction. For the evaluation of the T1 maps, the RMSE compared to ground truth
and residual error of least-squares estimation are given. For the evaluation of the motion
estimates, mean Dice and Hausdorff coefficients of all images are given

Data set Motion Mapping Mapping Dice Hausdorff

correction RMSE [ms] residual [a.u.] coefficient [%] coefficient [px]

(i) Same motion No motion corr 40.9 184 ± 111 96.1 ± 2.1 2.6 ± 1.23

Initial motion corr. 23.3 123 ± 15 99.1 ± 0.3 1.0 ± 0.26

Iteration 1 23.4 123 ± 14 99.2 ± 0.3 1.0 ± 0.25

Iteration 2 24.0 123 ± 14 99.4 ± 0.3 0.9 ± 0.24

Ground truth motion 21.0 122 ± 12 100.0 ± 0.0 0.0 ± 0.00

(ii) Diff. strength No motion corr. 60.0 205 ± 136 96.0 ± 2.7 2.6 ± 1.51

Initial motion corr. 38.4 146 ± 66 98.2 ± 1.0 1.3 ± 0.53

Iteration 1 35.4 126 ± 17 98.7 ± 0.9 1.2 ± 0.41

Iteration 2 31.6 125 ± 16 98.9 ± 0.8 1.2 ± 0.34

Ground truth motion 22.9 124 ± 12 100.0 ± 0.0 0.0 ± 0.00

(iii) Diff. sys. length No motion corr. 42.5 185 ± 111 96.4 ± 2.2 2.4 ± 1.34

Initial motion corr. 32.4 143 ± 57 98.3 ± 1.0 1.3 ± 0.51

Iteration 1 27.0 124 ± 17 99.1 ± 0.5 1.1 ± 0.29

Iteration 2 26.6 123 ± 16 99.1 ± 0.4 1.0 ± 0.23

Ground truth motion 22.2 123 ± 16 100.0 ± 0.0 0.0 ± 0.0

Patient data. Table 2 lists mean T ∗
1 mapping residuals over all patients and mean

ED and ES Dice and Hausdorff coefficients without and with initial motion
correction (as in method [10]), and after 1 and 5 fixed-point iterations, after
which the mean magnitude of motion estimate updates dropped below 0.4 px
and no more substantial changes were observed. One patient data set contained
a premature ventricular contraction (PVC), where the Dice coefficient of ED
phase between normal systole and PVC systole using initial motion correction
was 86% and after 5 iterations was 94%. Our website1 contains visual results.

For patient data, fixed-point iteration improves all quality measures com-
pared to [10], most notably also the standard deviations. The appearance of

Table 2. Quantitative results of patient data evaluation for different stages of motion
correction. For the evaluation of the T1 maps, the residual error of least-squares estima-
tion is given. For the quality of the motion estimates, Dice and Hausdorff coefficients
of all ED and ES images are given

Motion correction Mapping ED Dice ES Dice ED Hausd. ES Hausd.

resid. [a.u.] coeff. [%] coeff. [%] coeff. [px] coeff. [px]

No motion corr. 151 ± 99 96.1 ± 4.2 77.5 ± 8.4 1.1 ± 0.71 6.3 ± 0.53

Init. motion corr. 140 ± 68 96.1 ± 4.2 86.1 ± 5.3 1.1 ± 0.85 3.8 ± 1.64

Iteration 1 124 ± 48 96.9 ± 2.6 89.3 ± 4.5 1.1 ± 0.84 2.6 ± 0.86

Iteration 5 120 ± 45 97.0 ± 2.5 89.4 ± 4.3 1.1 ± 0.85 2.5 ± 0.67

1 http://www5.cs.fau.de/our-team/wetzl-jens/suppl-material/miccai-2016/

http://www5.cs.fau.de/our-team/wetzl-jens/suppl-material/miccai-2016/
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papillary muscles near the endocardial boundary rendered blood pool segmen-
tation in ES ambiguous, which could explain the comparatively lower ES Dice
coefficients. The assumption that there is no motion between the first frames
of each cardiac cycle (which are ED frames) is shown to be reasonable by the
ED Dice coefficient without motion correction of 96%. The results for ED Dice
coefficients without and with initial motion correction are necessarily identical
due to this assumption. However, cardiac arrhythmia violates the assumption,
as demonstrated by the PVC case. Still, the T ∗

1 mapping step is robust to some
images being misaligned, with only 3 parameters fitted to ∼ 100 observations.
Thus, fixed-point iteration is able to correct the misalignment and substantially
raise the Dice coefficient closer to the mean level for ED. While its application
to 2-D imaging is susceptible to through-plane motion artifacts, our proposed
algorithm is equally applicable to 3-D data, which would eliminate this problem.

4 Conclusion

Our proposed method provides joint contractility and scar tissue visualization
as well as T1 mapping for the comprehensive assessment of myocardial infarction
patients. Evaluations on phantom and patient data show substantial improve-
ments to the state of the art, most notably robustness to cardiac arrhythmia,
which is common in this patient population.
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