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Abstract. Accurate measurement of left ventricular volumes and Ejec-
tion Fraction from cine MRI is of paramount importance to the evalu-
ation of cardiovascular functions, yet it usually requires laborious and
tedious work of trained experts to interpret them. To facilitate this pro-
cedure, numerous computer aided diagnosis (CAD) methods and tools
have been proposed, most of which focus on the left or right ventricle
segmentation. However, the identification of ES and ED frames from
cardiac sequences is largely ignored, which is a key procedure in the
automated workflow. This seemingly easy task is quite challenging, due
to the requirement of high accuracy (i.e., precisely identifying specific
frames from a sequence) and subtle differences among consecutive frames.
Recently, with the rapid growth of annotated data and the increasing
computational power, deep learning methods have been widely exploited
in medical image analysis. In this paper, we propose a novel deep learn-
ing architecture, named as temporal regression network (TempReg-Net),
to accurately identify specific frames from MRI sequences, by integrat-
ing the Convolutional Neural Network (CNN) with the Recurrent Neural
Network (RNN). Specifically, a CNN encodes the spatial information of
a cardiac sequence, and a RNN decodes the temporal information. In
addition, we design a new loss function in our network to constrain the
structure of predicted labels, which further improves the performance.
Our approach is extensively validated on thousands of cardiac sequences
and the average difference is merely 0.4 frames, comparing favorably with
previous systems.

1 Introduction

Stroke volume (SV) and left ventricle ejection fraction, defined by the unnor-
malized and normalized difference between End-Diastole (ED) and End-Systole
(ES) volumes respectively, are the most commonly used clinical diagnostic para-
meters for cardiac systolic funtion. This is because it reflects the contractile
function of myocardium. However, current practice to calculate these parame-
ters is mostly done manually by experts. Many previous methods have been
devoted to automating this process, and the majority of them focus on left
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Fig. 1. A typical example of cardiac sequences (bright areas in red rectangles are left
ventricles, the green and yellow rectangles indicate ES and ED frames respectively).
(Color figure online)

ventricle segmentation [9,17]. However, the very first step of this automation,
recognizing the ES and ED frames is largely ignored, while it is also an impor-
tant process in the automatic system. In addition, even when SV and EF are
computed manually or semi-automatically, reliably automating this step could
reduce both inter and intra observer errors. Although the identification of ES
and ED frames seems to be relatively easy, at least for human experts, the main
challenges are the following: (1) the semantic gap between the high-level ES and
ED concepts and low-level cardiac image sequence images, (2) the complex tem-
poral relationships in cardiac cycles and subtle differences among consecutive
cardiac frames (demonstrated in Fig. 1), and (3) the requirement of high accu-
racy since mislabeling even one frame may affect the diagnosis results. Therefore,
determining ES and ED frames still remains a manual or semi-automatic task
in many scenarios. Currently, this process could be time-consuming and error-
prone, especially when dealing with large-scale datasets. It becomes a road block
of a fully automatic solution.

Several attempts have been made to automate this process. A pioneer work [4]
took advantage of rapid mitral opening in early diastole. However, it requires the
identification by the user of three important landmarks: the apex and each angle
of the mitral annulus, indicating a semi-automatic approach. Saeed Darvishi
et al. [3] used a segmentation paradigm. In particular, they segmented every left
ventricle region of the cardiac sequence by using level set. The frames correspond-
ing to the largest ventricular area are the ED frames and the smallest ventricular
area the ES frames. Since the initial contour has to be placed by the user, this
method still remains semi-automatic. In addition, the final result largely relies
on the quality of the initial contour. Another widely used method [6] tackled
this problem with unsupervised learning. For this method, every frame of the
cardiac sequence is embedded on a low-dimensional manifold, and a Euclidean
distance between every two consecutive points in the manifold is computed to
determine the ED and ES frames. However, a cardiac cycle is extremely complex
and one individual’s cardiac cycle may differ greatly from another’s. Thus, this
simple distance rule may not be applicable to other special patients, e.g., those
with cardiac diseases.
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Fig. 2. An overview of the proposed framework, temporal regression network
(TempReg-Net). Note that only convolutional layers are shown and Conv1 and Conv2
and Conv5 layers are followed by Pooling layers of size 3× 3 and stride 2.

To overcome the above drawbacks, a joint network which combines Convolu-
tional Neural Networks (CNN) and Recurrent Neural Network (RNN) has been
designed to automate the whole detection process. Specifically, our framework
has two phases, i.e., encoding and decoding. During the first phase, the CNN
acts as an encoder to encode the spatial pattern of the cardiac image sequence,
transforming every frame of the sequence into a fixed-length feature vector to
facilitate the decoding phase. During the second phase, the RNN is used to
decode the temporal information of the above mentioned feature vectors. The
joint network can be trained to learn the complex spatial and temporal patterns
of the cardiac sequences, and give predictions for the ED and ES frames during
testing. The contribution of our work is twofold: (1) A deep temporal regression
network is designed to recognize the ED and ES frames; and (2) A temporal
structured loss is proposed to improve the accuracy of the network. Although
deep learning has been widely used for medical image analysis [2,7,12,16], our
network architecture is novel and carefully designed for this use case. This app-
roach has several advantages compared to the previous methods: (1) No prior
information or interaction is needed in the detection framework, since our system
automatically learns everything from the patterns of the data. (2) Since RNN
is able to learn long-term patterns, our framework can detect the complex and
long temporal dynamics in the cardiac sequence.
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2 Methodology

In this section, we provide an overview of our TempReg-Net framework. Then,
we show that our framework can be trained end-to-end by jointly optimizing the
regression and temporal structured constraints.

2.1 TempReg-Net Architectures

Figure 2 shows an overview of the proposed TempReg-Net framework, combining
CNN and RNN (more specifically, the Long Short Term Memory (LSTM)). First,
a feature encoder based on CNN is trained to encode the input into vectors. Then,
the LSTM model takes over by exploring the temporal information sequentially.
Finally, the ES and ED frames are detected according to the predictions from
the LSTM model. At the training time, instead of using classification to identify
the ES and ED frames, the network is trained to regress the location of the
ES and ED frame numbers. During the testing phase, we examine the output
sequence from TempReg-Net, where the ED frame is the local maximum and
the ES frame is the local minimum.

Cardiac Frame Encoding with CNN: To fully capture the spatial infor-
mation relevant to the left ventricle in every frame, we employ a CNN as the
feature extractor in order to efficiently encode the spatial information. Recent
years have witnessed numerous different kinds of CNN architectures. The Zeiler-
Fergus (ZF) model is employed in our framework. The architecture of ZF model
is illustrated in Fig. 2 (right). The reason of our choice is twofold: (1) Leveraging
transferred knowledge across similar tasks is very useful when the labeled data is
not adequate [14] and the architecture proposed in [5] achieved intriguing results
in several image sequence analysis tasks; (2) the ZF model is reasonably deep
and produces prominent results so we have a balance between computational
complexity and the results. Essentially, a CNN acts as a feature transformer
ψ(S;V ) parametrized by V to map cardiac sequence S to fixed-length vector
sequence representations < x1, x2, ..., xT >, in which V is the learnt weights of
the CNN model and xt ∈ R

q (t = 1, 2, ..T and q = 1024 in our experiments).

Fig. 3. A diagram of a LSTM memory block.

Recognizing ED and ES Frames
via RNN: Temporal information in
cardiac sequence provides contextual
clues regarding left ventricle volume
changes. We tap into the tempo-
ral dimension by passing the above
mentioned feature vector sequence
into a RNN model. Instead of using
traditional vanilla RNN, the LSTM
model is adopted to avoid the van-
ishing or exploding gradients prob-
lem during back-propagation. The
difference between a LSTM model
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and a vanilla RNN is that a LSTM contains memory blocks instead of reg-
ular network units. A slightly simplified LSTM memory block [15] is used in
this article, shown in Fig. 3. Benefited from the memory blocks, a LSTM learns
when to forget previous hidden states ht−1 and when to update them given new
information, shown as:

it = σ(Wxixt + Whiht−1 + bi)
ft = σ(Wxfxt + Whfht−1 + bf )
ot = σ(Wxoxt + Whoht−1 + bo)
ct = ft � ct−1 + it � ϕ(Wxixt + Whiht−1 + bi)
ht = ot � ϕ(ct) (1)

where ϕ(x) = ex−e−x

ex+e−x and σ(x) = (1 + e−x)−1 are nonlinear functions which
squash its inputs to [−1, 1]. it, ft, ot are input gate, forget gate and output gate
respectively. � denotes element-wise product.

The memory cell ct is a function of the previous memory cell ct−1 and the
current input xt and the previous hidden state ht−1. it and ft enable the mem-
ory cell to selectively forget its previous memory or consider new input. These
additional units enable the LSTM to learn very complex temporal dynamics.

The final step in estimating a regression at time t is to take a fully-connected
layer over the output of the RNN. The sequential weights W are reused at every
frame, forcing the model to learn generic time-to-time cardiac motion dynamics
and preventing the parameter size from growing linearly with respect to the
sequence length T .

2.2 Jointly Optimize the Regression and Temporal Structured
Constraints

Essentially, TempReg-Net gives a prediction for every single frame in a cardiac
sequence and there is no constraint among the prediction sequences. However,
TempReg-Net is designed to model the left ventricle volumes in a cardiac cycle,
i.e., the predictions for a cardiac sequence should decrease during the systole
phase and increase during the diastole phase. Solely doing a regression cannot
ensure such a structured output. In order to address this problem, we explicitly
model this sequential constraint by penalizing predictions with wrong structures.
Suppose that we are given the ground truth label y, which will be discussed later,
and the TempReg-Net regressor η. Ideally, given two consecutive ground truth
labels yk−1 and yk and yk−1 < yk, i.e., the kth frame is in a systole phase, we
expect that the predictions for these two frames should subject to ηk−1 < ηk

as well, and vice versa. To enforce this constraint in TempReg-Net, a new loss
function which we name as temporal structured loss is defined:
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Ltemp = 1
2 (Linc + Ldec)

Linc = 1
T

T∑

k=2

1(yk > yk−1)max(0, ηk−1 − ηk)

Ldec = 1
T

T∑

k=2

1(yk < yk−1)max(0, ηk − ηk−1)

(2)

where 1(·) is the indicator function. Linc penalizes the decreasing predictions
during a diastole phase, i.e., the left ventricle volume is increasing. Ldec penalizes
the increasing predictions during a systole phase, i.e., the left ventricle volume
is decreasing.

Having defined the temporal structured loss, the training criteria for
TempReg-Net can be further explored. We denote the training example as
(S,Nes, Ned), where Nes and Ned stand for the ES and ED frame numbers respec-
tively in the sequence S. Given the training data S = {S,Nes, Ned}, the training
objective becomes the task of estimating the network weights λ = (U, V ) (U and
V are the parameters for the CNN and RNN, respectively):

λ = arg min
λ

{ ∑

S∈S

∑

k

||yk − ηk(S, λ)||2 + αLreg(λ)+βLtemp}
Lreg(λ) = 1

2 (||U ||22 + ||V ||22)
(3)

where k is the kth frame of training sequence S. Lreg is the regularization
penalty term which ensures the learnt weights are sparse. α and β are hyper-
parameters which are cross-validated in our experiments. At training stage, the
ground truth label yk is synthesised to imitate the left ventricle volume changes
during a typical cardiac cycle [3]:

yk =

⎧
⎨

⎩

∣
∣
∣ k−Nes

Nes−Ned

∣
∣
∣
δ

, if Ned < k ≤ Nes
∣
∣
∣ k−Nes

Nes−Ned

∣
∣
∣
υ

, otherwise
(4)

where δ and υ are hyper-parameters, set as 3 and 1
3 respectively to imitate the

typical left ventricle volume changes in cardiac cycle.

3 Experiments

Experimental Setting and Implementations: Our experiments are con-
ducted on MRI sequences, acquired from our collaborative hospital and labeled
by experts. Specifically, this dataset comprises of cardiac sequences (consists of
around 113, 000 cardiac frames) gathered from 420 patients, from different imag-
ing views and different positions, including long-axis, short-axis, four-chamber
and two-chamber views. There are about 18 cardiac sequences for each patient
(around 15 for short-axis view, and one for long-axis, four-chamber and two-
chamber views, respectively). Every sequence has 20 frames with 256 × 256
pixels. ED and ES frames are carefully identified by cardiologists. Four-fold
cross-validation is performed to obtain quantitative results.
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Regarding implementation, TempReg-Net’s implementation is based on
Caffe [8]. In order to fully utilize the CNN architecture and make use of trans-
ferred knowledge, we squash all gray-scale cardiac frames to the range of [0, 255],
and these single-channel cardiac frames are replicated for three times, resulting
in three-channel images. In order to get a reasonable initialization and avoid
over-fitting, we fine-tune our TempReg-Net on a pre-trained model based on
the 1.2M ImageNet [10]. In our experiment, the learning rate for the last fully-
connected layer is set to be 1 × 10−3, which is 10 times larger than the rest layers.
Regarding the RNN, the LSTM is used to avoid vanishing and exploding gradi-
ent problems. All the parameters of the LSTM are randomly initialized within
[−0.01, 0.01]. Since each cardiac sequence in our dataset contains 20 frames, the
LSTM is unrolled to 20 time steps. All the hyper-parameters of the proposed
TempReg-Net are cross-validated for the best results. During the training stage,
we augment our datasets by randomly cropping the resized cardiac images. The
whole network is trained end-to-end with back propagation.

Results and Analysis: To quantitatively evaluate our method, we use average
Frame Difference (aFD) to quantify the error of the prediction, following the
convention [6,11]. Assuming that the frame label for the mth patient is Nm and
the predicted frame label is N̂m, aFD can be defined as:

aFD =
1
M

M∑

m=1

|N̂m − Nm|, (5)

where M is the total number of examples in the testing set.
Table 1 shows the evaluation of our framework. Even without using the tem-

poral structured constraints (TSC), our TempReg-Net is already a competitive
solution to detect ED and ES from MRI. It has achieved good performance, i.e.,
aFD 0.47 and 0.52 for identifying ED and ES, respectively, meaning that the
error is within one frame. This is a promising result considering that our frame-
work is end-to-end and automatic, with no requirement for interactions. After
adding the temporal structured constraints, the aFD is improved to 0.38 and
0.44 for ED and ES, reducing the errors by around 15%. This shows that the
structures enforced upon the predictions contribute positively to the network.
Regarding the computational efficiency, this framework takes merely 1.4 seconds
to process one sequence. Therefore, it has the potential to be integrated with
cardiac analysis systems owing to the small overhead.

We also compare our method with other types of systems or algorithms. For
example, the system in [1] first segments the left ventricle, and then identifies
the ED and ES by measuring areas of segmented regions. We have developed
a similar system, using variations of level set (used in [3]) or graph cut (used
in [13]) to segment the left ventricle. This type of segmentation-based system
is very intuitive and widely used. However, compared to our solution, it has
several limitations, including the computational efficiency, human interactions,
and the segmentation errors. In our experiments, the system takes 2.9 and 3.5
seconds to segment the left ventricle from one sequence using level set and graph
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Table 1. Average frame differences, standard deviation and running time of different
methods.

Methods Seg-based:
Level Set [3]

Seg-based:
Graph Cut
[13]

Reg-based:
CNN + Reg

TmpReg-Net
(without
TSC)

TempReg-Net

aFD ED 1.54 2.27 1.30 0.47 0.38

ES 1.24 1.65 1.97 0.52 0.44

STD ED 1.93 2.89 1.77 0.49 0.39

ES 1.64 1.96 2.42 0.53 0.46

Time (s) 2.9 3.5 1.5 1.4 1.4

cut, respectively, which are slower than our method. Note that we do not count
the time of human interactions to initialize the segmentation procedure (e.g.,
graph cut method needs to specify foreground and/or background), which could
take extra time. The aFD is 1.54 for ED and 1.24 for ES when using level set,
and 2.27 as well as 1.65 when using graph cut, both of which are much worse
than ours. The reason is that these segmentation algorithms cannot perfectly
segment left ventricles in all frames, while even small errors adversely affect the
prediction results based on the subtle difference of areas. Moreover, a similar
regression framework is implemented. In this framework, The only difference is
that logistic regression is used to predict the ventricle volumes. The aFD is 1.30
for ED and 1.97 for ES when using this method, still worse than the proposed
method. Note that [13] is a recently proposed method and it has achieved sound
accuracy for the segmentation of myocardium. The standard deviation is 0.39
and 0.46 for ED and ES respectively when using the proposed methods, which
compares favorably against other methods. This further proves its effectiveness.
Therefore, our end-to-end deep learning solution is more competitive in this task.

4 Conclusion

In this paper, we proposed a novel deep neural network, TempReg-Net, by inte-
grating the CNN and RNN to identify specific frames in a cardiac sequence. In
our method, a CNN and RNN tap into the spatial and temporal information
respectively. Since the predictions should be temporally ordered, we explicitly
model this constraint by adding a novel loss function in our framework. Exten-
sive experiments on cardiac sequences demonstrate the efficacy of the proposed
method. As deep learning methods have advanced segmentation tasks as well,
future work will be devoted to develop a segmentation framework to fully auto-
mate the calculation of cardiac functional parameters.
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