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Abstract. A kernel-learning based method is proposed to integrate mul-
timodal imaging and genetic data for Alzheimer’s disease (AD) diagnosis.
To facilitate structured feature learning in kernel space, we represent each
feature with a kernel and then group kernels according to modalities. In
view of the highly redundant features within each modality and also
the complementary information across modalities, we introduce a novel
structured sparsity regularizer for feature selection and fusion, which is
different from conventional lasso and group lasso based methods. Specif-
ically, we enforce a penalty on kernel weights to simultaneously select
features sparsely within each modality and densely combine different
modalities. We have evaluated the proposed method using magnetic res-
onance imaging (MRI) and positron emission tomography (PET), and
single-nucleotide polymorphism (SNP) data of subjects from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database. The effectiveness of
our method is demonstrated by both the clearly improved prediction
accuracy and the discovered brain regions and SNPs relevant to AD.

1 Introduction

Alzheimer’s disease (AD) is an irreversible and progressive brain disorder. Early
prediction of the disease using multimodal neuroimaging data has yielded impor-
tant insights into the progression patterns of AD [11,16,18]. Among the many
risk factors for AD, genetic variation has been identified as an important one
[11,17]. Therefore, it is important and beneficial to build prediction models by
leveraging both imaging and genetic data, e.g., magnetic resonance imaging
(MRI) and positron emission tomography (PET), and single-nucleotide poly-
morphisms (SNPs). However, it is a challenging task due to the multimodal
nature of the data, limited observations, and highly-redundant high-dimensional
data.

Multiple kernel learning (MKL) provides an elegant framework to learn an
optimally combined kernel representation for heterogeneous data [4,5,10]. When
it is applied to the classification problem with multimodal data, data of each
modality are usually represented using a base kernel [3,8,12]. The selection of
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Fig. 1. Schematic illustration of our proposed framework (a), and different sparsity
patterns (b) produced by lasso (�1 norm), group lasso (�2,1 norm) and the proposed
structured sparsity (�1,p norm, p > 1). Darker color in (b) indicates larger weights.

certain sparse regularization methods such as lasso (�1 norm) [13] and group
lasso (�2,1 norm) [15], yields different modality selection approaches [3,8,12].
In particular, �1-MKL [10] is able to sparsely select the most discriminative
modalities. With grouped kernels, group lasso performs sparse group selection,
while densely combining kernels within groups. In [8], the group lasso regularized
MKL was employed to select the most relevant modalities. In [12], a class of
generalized group lasso with the focus on inter-group sparsity was introduced into
MKL for channel selection on EEG data, where groups correspond to channels.

In view of the unique and complementary information contained in different
modalities, all of them are expected to be utilized for AD prediction. Moreover,
compared with modality-wise analysis and then conducting relevant modality
selection, integration of feature-level and modality-level analysis is more favor-
able. However, for some modalities, their features as a whole or individual are
weaker than those in other modalities. In these scenarios, as shown in Fig. 1(b),
the lasso and group lasso tend to independently select the most discriminative
features/groups, making features from weak modalities having less chance to be
selected. Moreover, they are less effective to utilize complementary information
among modalities with �1 norm penalty [5,7]. To address these issues, we propose
to jointly learn a better integration of multiple modalities and select subsets of
discriminative features simultaneously from all the modalities.

Accordingly, we propose a novel structured sparsity (i.e., �1,p norm with
p > 1) regularized MKL for heterogeneous multimodal data integration. It is
noteworthy that �1,2 norm was considered [6,7] in settings such as regression,
multitask learning etc. Here, we go beyond these studies by considering the �1,p
constrained MKL for multimodal feature selection and fusion and its application
for AD diagnosis. Moreover, contrary to representing each modality with a sin-
gle kernel as in conventional MKL based methods [3,4,8], we assign each feature
with a kernel and then group kernels according to modalities to facilitate both
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feature- and group-level analysis. Specifically, we promote sparsity inside groups
with inner �1 norm and pursue dense combination of groups with outer nonsparse
�p norm. Guided by the learning of modality-level dense combination, sparse fea-
ture selections in different modalities interact with each other for a better overall
performance. This �1,p regularizer is completely different from group lasso [15]
and its generalization [9] (i.e., �p,1 norm) which gives sparse groups but performs
no feature selection within each group [12,15]. An illustration of different spar-
sity patterns selected by lasso, group lasso and the proposed method is shown
in Fig. 1(b). In comparison, the proposed model can not only keep information
from each modality with outer nonsparse regularization but also support variable
interpretability and scalability with the inner sparse feature selection.

2 Method

Given a set of N labeled data samples {xi, yi}Ni=1, where xi = (xi
1, x

i
2, · · · , xi

M )T ,
M is the number of all features in all modalities, and yi ∈ {1,−1} is a class label.
MKL aims to learn an optimal combination of base kernels, while each kernel
describes a different property of the data. To also perform the task of joint
feature selection, we assign each feature a base kernel through its own feature
mapping. An overview of the proposed framework is illustrated in Fig. 1(a).

2.1 Structured Sparse Feature and Kernel Learning

Let G = {1, 2, · · ·,M} be the feature index set which is partitioned into L non-
overlapping groups {Gl}Ll=1 according to task-specific knowledge. For instance, in
our application, we partition G into L = 3 groups according to modalities. Let
{Km � 0}Mm=1 be the M base kernels for the M features respectively, which are
induced by M feature mappings {φm}Mm=1. Given the feature space defined by the
joint feature mapping Φ(x) = (φ1(x1),φ2(x2), · · · ,φM (xM ))T , we learn a lin-
ear discriminant function of the form f(x) =

∑L
l=1

∑
m∈Gl

√
θmw̃T

mφm(xm) + b.
Here, we have explicitly written out the group structure in the function f(x),
in which w̃m is the normal vector corresponding to φm, b encodes the bias, and
θ = (θ1, θ2, · · · , θM )T contains the weights for the M feature mappings. There-
fore, feature mappings with zero weights would not be active in f(x).

In the following, we perform feature selection by enforcing a structured spar-
sity on weights of the feature mappings. To introduce a more general model, we
further introduce (1) M positive weights β = (β1, β2, · · ·, βM )T for features and
(2) L positive weights γ = (γ1, γ2, · · ·, γL)T for feature groups to encode prior
information. If we have no knowledge about group/feature importance, we can
set βm = 1 and γl = 1 for each l and m. Accordingly, our generalized MKL model
with a structured sparsity inducing constraint can be formulated as below:

min
θ

min
w̃m,b

1
2

L∑

l=1

∑

m∈Gl

‖w̃m‖22 + C ′ N∑

i=1

L (
f(xi), yi

)
,

s.t. ‖θ‖1,p;β,γ �
(

L∑

l=1

γl

(
∑

m∈Gl

βm|θm|
)p) 1

p

≤ τ, 0 ≤ θ,

(1)
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where L(t, y) = max(0, 1− ty) is the hinge loss function, C ′ is a trade-off weight,
τ controls the sparsity level, and 0 is a vector of all zeros. Similar to the typical
MKL [10], this model is equivalent to learning an optimally combined kernel
K =

∑L
l=1

∑
m∈Gl

θmKm. The inequality constraint employs a weighted �1,p
mixed norm (p > 1), i.e., ‖ · ‖1,p;β,γ , which simultaneously promotes sparsity
inside groups with the inner weighted �1 norm and pursues dense combination
of groups with the outer weighted �p norm.

The rationale of using this regularization is that, while each individual modal-
ity contains redundant high-dimensional features, different modalities can offer
unique and complementary information. Owing to the heterogeneity of different
modalities, we sparsely select features from each homogenous feature groups, i.e.,
modalities, and densely integrate different modalities. As has been discussed in
[5], with p > 1, the non-sparse �p norm has the advantage of better combining
complementary features than �1 norm. Moreover, in view of the unequal relia-
bility of different modalities, we take a compromise of �1 lasso and �2 ridge reg-
ularization and intuitively set p = 1.5 for inter-group regularization, i.e. �1,1.5.
More specifically, due to the geometrical property of the �1.5 contour lines, it
results in unequal shrinkage of weights with higher probability than �2 norm,
thus allowing the assignment of larger weights for leading groups/modalities.

Further understanding and computation of our model can be achieved with
the following lemma and theorem. Let wm =

√
θmw̃m, w = (w1,w2, · · · ,wM )T

and also W = (‖w1‖2, ‖w2‖2, · · · , ‖wM‖2)T , we first have the following lemma.

Lemma 1. Given p ≥ 1, positive weights γ and β. We use the convention that
0/0 = 0. For fixed w �= 0, the minimal θ in Eq. (1) is attained at

θ∗
m =

‖wm‖2
β

1
2
mγ

1
p+1
lm

‖WGlm
‖

p−1
p+1
1;β

· τ

(
∑L

l=1 γ
1

p+1
l ‖WGl

‖
2p

p+1
1;β )

1
p

, ∀m = 1, 2, · · ·,M (2)

where ‖WGl
‖1;β =

∑
m′∈Gl

β
1
2
m′‖wm′‖2, and Glm is the index set containing m.

For the fixed w, this lemma gives an explicit solution for θ. The proof can be
done by deriving the first order optimality conditions of Eq. (1). Plugging Eq. (2)
into the model in Eq. (1) yields the following compact optimization problem.

Theorem 1. Let q = 2p
p+1 . For p > 1, the model in Eq. (1) is equivalent to

min
wm,b

1
2τ

(
L∑

l=1

γ
2−q
q

l ‖WGl
‖q1;β

) 2
q

+ C ′
N∑

i=1

L
(

L∑

l=1

∑

m∈Gl

wT
mφm(xi

m) + b, yi

)

.(3)

The first term is a weighted �1,q norm penalty on W with q ∈ (1, 2). By
choosing p = 1.5 and thus q = 1.2, it shares similar group-level regularization
property with that in Eq. (1) on θ. Specifically, in each group, only a small
number of wm can contribute to the decision function f(x) with nonzero values.
Accordingly, few features in each group can be selected. Meanwhile, the sparsely
filtered groups are densely combined, while allowing the presence of leading
groups.
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2.2 Model Computation

After the variable changing, we can optimize the proposed model via a block
coordinate descent. For fixed θ, the subproblem of w and b can be computed
with any support vector machine (SVM) [2] solver. According to Lemma 1, we
can analytically carry out θm with w fixed. θm can be initialized as θm =
(
∑L

l=1 γl(
∑

m′∈Gl
βm′)p)− 1

p to satisfy the constraint in Eq. (1). Moreover, from
Eq. (3), it is obvious that we can fold τ and C ′ into a single trade-off weight C
and set τ = 1. In this way, we have single model parameter C which not only
acts as the soft margin parameter but also controls the sparsity of θ and W.

3 Experimental Results

3.1 Dataset

We evaluated our method by applying it on a subset of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset1. In total, we used MRI, PET, and SNP
data of 189 subjects, including 49 patients with AD, 93 patients with Mild Cog-
nitive Impairment (MCI), and 47 Normal Controls (NC). After preprocessing,
the MRI and PET images were segmented into 93 regions-of-interest (ROIs).
The gray matter volumes of these ROIs in MRI and the average intensity of
each ROI in PET were calculated as features. The SNPs [11] were genotyped
using the Human 610-Quad BeadChip. Among all SNPs, only SNPs, belonging
to the top AD candidate genes listed on the AlzGene database2 as of June 10,
2010, were selected after the standard quality control and imputation steps. The
Illumina annotation information based on the Genome build 36.2 was used to
select a subset of SNPs, belonging or proximal to the top 135 AD candidate
genes. The above procedure yielded 5677 SNPs from 135 genes. Thus, we totally
have 93 + 93 + 5677 = 5863 features from the three modalities for each subject.

3.2 Experimental Settings

For method evaluation, we used the strategy of 10 times repeated 10-fold
cross-validation. All parameters were learned by conducting 5-fold inner cross-
validation. Three measures including classification accuracy (ACC), sensitivity
(SEN), and specificity (SPE) were used. We compared the proposed method
with (1) feature selection based methods, i.e., Fisher Score (FS) [2], and Lasso
[13], and (2) MKL based methods, i.e., the method of Zhang et al. in [16], and
�1-MKL [10]. In the Lasso method, the logistic loss [2] was used. The method in
[16] represented each modality with a base kernel and further learned a linearly-
combined kernel with cross validation. For FS, Lasso and the method in [16], the
linear SVM implemented in LibSVM software3 was used as the classifier. For all

1 http://adni.loni.usc.edu.
2 http://www.alzgene.org.
3 https://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

http://adni.loni.usc.edu
http://www.alzgene.org
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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methods, we used t-test [2] thresholded by p-value as a feature pre-selection step
to reduce feature size and improve computational efficiency. The commonly used
p-value < 0.05 was applied for MRI and PET. Considering the large number of
SNP features, we selected the p-value from {0.05, 0.02, 0.01}. Therefore, t-test-
SVM that combined t-test and SVM was designed for comparison with the same
p-value setting as well. For our proposed model, �1-MKL and Zhang’s method,
to avoid further kernel parameter selection, each kernel matrix was defined as a
linear kernel on a single feature. Furthermore, we simply assumed no knowledge
on both feature and group weights and thus we set γ = 1 and β = 1. The soft
margin parameter C was selected with grid search from {2−5, 2−4, · · · , 25}.

3.3 Results and Discussions

The classification results of AD vs. NC and MCI vs. NC using all the three
modalities are listed in Table 1. By taking advantage of the structured feature
learning in kernel space, the proposed method outperforms all competing meth-
ods in classification rate. For AD vs. NC classification, our method achieves an
ACC of 96.1% with an improvement of 2.1% over the best performance of other
methods. Meanwhile, the standard variance of the proposed method is also lower,
demonstrating the stability of the proposed method. For classifying MCI from
NC, the improvements by the proposed method is 2.4% in terms of ACC. In com-
parison with t-test-SVM, we obtained 4.2% and 7.6% improvements in terms
of ACC for classifying AD and MCI from NC, respectively. Similar results are
obtained for the classification of AD and MCI, which has not listed in Table 1 due
to space limit. For example, the ACC of Lasso-SVM, �1-MKL and our method
are 70.3 ± 1.5 %, 73.0 ± 1.6 %, and 76.9 ± 1.4 %, respectively. In summary, these
results show the improved classification performance by our method.

To further investigate the benefit of SNP data and multimodality fusion,
in Table 2 we illustrate the performance of the proposed method w.r.t different
modality combinations. First of all, the performance of any single modality is
much lower than that of their combinations. Among the three modalities, the

Table 1. Performance comparison of different methods in terms of “mean ± stan-
dard deviation” for AD vs. NC and MCI vs. NC classifications, using MRI, PET and
SNPs. The superscript “∗” indicates statistically significant difference (p-value < 0.05)
compared with the proposed method

Methods AD vs. NC (%) MCI vs. NC (%)

ACC SEN SPE ACC SEN SPE

t-test-SVM 91.9± 1.9∗ 92.7± 2.0 91.1± 3.0 72.7± 2.1∗ 85.4± 2.9 47.7± 5.2

FS-SVM 92.4± 1.3∗ 93.5± 2.7 91.3± 1.9 76.1± 1.4∗ 84.3± 2.2 59.8± 3.1

Zhang et al. 92.6± 1.4∗ 92.7± 1.4 92.6± 2.7 75.1± 2.2∗ 82.8± 3.0 59.8± 2.9

Lasso-SVM 93.5± 1.4∗ 94.9± 1.7 92.1± 1.8 76.3± 2.3∗ 85.2± 2.3 58.7± 4.3

�1-MKL 94.0± 1.4∗ 94.3± 2.5 93.6± 2.0 77.9± 1.4∗ 85.7 ± 1.4 62.6± 4.0

Proposed 96.1 ± 1.0 97.3 ± 1.0 94.9 ± 1.8 80.3 ± 1.6 85.6 ± 1.9 69.8 ± 3.7
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SNP data shows the lowest performance. However, when combined with other
modalities, genetic data can obviously help improve predictions. For example, in
AD and NC classification, the performances using MRI+SNP and PET+SNP
demonstrate 2.7% and 5.7% improvements in terms of ACC over the cases of
only using MRI and PET, respectively; the improvement with MRI+PET+SNP
over that with MRI+PET is 3.8%. Similar results are obtained for MCI vs. NC.

Table 2. Comparison of our proposed method in the cases of using different modality
combinations. “∗” indicates statistically significant difference with MRI+PET+SNP

Modalities AD vs. NC (%) MCI vs. NC (%)

ACC SEN SPE ACC SEN SPE

MRI 88.4∗ 84.1 93.0 71.6 83.9 47.2

PET 86.3∗ 84.5 88.1 68.8 85.5 35.7

SNP 76.0∗ 69.8 82.6 66.2 75.4 48.1

MRI+PET 92.3∗ 91.9 91.7 76.4 83.9 61.5

MRI+SNP 91.1∗ 89.8 92.6 74.9 84.5 55.7

PET+SNP 92.0∗ 90.8 93.2 71.3 81.4 51.3

MRI+PET+SNP 96.1 97.3 94.9 80.3 85.6 69.8

The most selected brain regions and SNPs in our algorithm can also be the
potential biomarkers used in clinical diagnosis. In MRI, hippocampal formation
and uncus in parahippocampal gyrus are recognized in both AD vs. NC and MCI
vs. NC classifications, as well as multiple temporal gyrus regions. This is in line
with the findings of the most affected regions in AD in previous neuro-studies
[3,8,16,18]. Amygdala, one of the subcortical regions, is the integrative center
for emotions, is also identified as AD. In PET, angular gyri, precuneus, and
entorhinal cortices are the regions identified, which are also among the altered
regions in AD reported in prior studies [16,18]. As to the genetic information, the
most selected SNPs for AD and NC classification are from APOE gene, VEGFA
gene, and SORCS1 gene. For MCI prediction, the most selected SNPs are from
KCNMA1 gene, APOE gene, VEGFA gene and CTNNA3 gene. Generally, our
results are consistent with the existing results [11,17]. For instance, APOE and
SORCS1 genes are the well-known top candidate genes related to AD and MCI
[11]. VEGFA, the expression of vascular endothelial growth factor, represents a
potential mechanism where vascular and AD pathologies are related [1].

4 Conclusion

We developed a kernel-based multimodal feature selection and integration
method, and further applied it on imaging and genetic data for AD diagno-
sis. Instead of independently selecting features from each modality and then
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combining them together [16] or performing most relevant modality selection
[8,14], we integrated the multimodal feature selection and combination in a
novel structured sparsity regularized kernel learning framework. A block coordi-
nate descent algorithm was derived to solve our general �1,p (p ≥ 1) constrained
non-smooth objective function. Comparisons by various experiments have shown
better AD diagnosis performance by our proposed method. In future work, we
will incorporate prior knowledge about feature/group importance into the pro-
posed framework.
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