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Abstract. In this paper, a novel label fusion method is proposed and
formulated on a graph, which embraces both label priors from atlases
and anatomical priors from target image. To represent a pixel in a com-
prehensive way, three kinds of feature vectors are generated, including
intensity, gradient and structural signature. Feature Sensitive Label Prior
(FSLP), which takes both the consistency and variety of different fea-
tures into consideration, is proposed to gather atlas priors. As FSLP
is a non-convex problem, one heuristic approach is further designed to
solve it efficiently. Moreover, based on anatomical knowledge, parts of the
target pixels are also employed as graph seeds to assist the label fusion
process. The experiments carried out on two publicly available databases
give results to demonstrate that the proposed method can obtain better
segmentation quality.

1 Introduction

The human brain is a complex neural system composing many anatomical
structures. To study the functional and structural properties of its subcorti-
cal regions, image segmentation is a critical step in quantitative brain image
analysis and clinical diagnosis. Researchers have been focusing on developing
automatic atlas-based segmentation methods which can effectively incorporate
expert prior knowledge about the relationships between local intensity profiles
and tissue labels. Recently, more label fusion methods based on patches [2,9–11]
have become prevalent in medical image segmentation. Generally, there are three
stages in patch-based label fusion: first determine which kind of feature to be
adopted as pixel representation, then distinguish candidate pixels or patches for
voting and finally fuse the labels of candidate atlas nodes.

However, due to the poor contrast condition in brain Magnetic Resonance
(MR) images and similar histogram profiles among adjacent structures, general
label fusion methods can be adversely influenced and lead to a less satisfac-
tory result. As suggested in [1], embracing more features, such as contextual
information, can help improve the segmentation quality. As such, besides con-
ventional intensity and gradient features, we also extract high-level property of
each subcortical structure using Convolutional Neural Networks [7] as structural
signature, aiming to obtain a more discriminative pixel representation.
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Fig. 1. Effects of feature sensitivity. (a) Cropped target intensity image. (b) Manually
labeled Hippocampus. (c) Color image to show the effects of feature sensitivity, with
RGB values standing for the feature coefficients of intensity, gradient and structural
signature respectively. (d) 3 selected examples to illustrate their dominate features.

Rather than treating each kind of feature equally when fusing labels from
atlas nodes [1], we propose to consider the feature sensitivity during label fusion
and Feature Sensitive Label Prior (FSLP) is designed to capture priors from
atlases. The motivations to introduce FSLP are two-fold. On the one hand,
the contributions of distinct features are expected to be consistent during label
fusion, i.e., they can reach an agreement when labeling a pixel. On the other
hand, the impact of different features can change according to image conditions.
For the flat regions away from structural boundaries, intensity and gradient are
supposed to be more essential. As for the complex region near tissue bounders,
structural signature should play a more significant role. The experimental result
with our method also justifies the initial motivation, as shown in Fig. 1.

In addition to FSLP from atlases, anatomical priors from target image are
also utilized to assist our graph-based label fusion process. Based on anatomical
knowledge, to label a pixel which is deep inside or outside a subcortical structure
is easier, while to label one which is located around the boundary is challenging.
As such, rather than updating labels for all target pixels, those far away from
structural border are selected as graph seeds and their influence can be prop-
agated to other pixels through image lattice. Unlike the graph-based labeling
constructed with both atlas and target nodes [6], we further infer an equal but
more concise graph to encode FSLP and anatomical prior, which only relies on
target nodes. The objective energy function on the graph is formulated with
Random Walker and can be solved as a discrete Dirichlet problem. To evaluate
the proposed method, experiments have been carried out on two image data-
bases and results demonstrate that our approach can obtain better performance
as compared with other state-of-the-art methods.

2 Methodology

In this paper, to obtain a more discriminative representation, three kinds of
features are extracted for each pixel, including intensity, gradient and structural
signature. Given the demands of consistency and variety among distinct feature
vectors during label fusion, a novel method FSLP is proposed to deal with this
dilemma, by collecting priors from atlases with feature sensitivity. Moreover, the
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Fig. 2. (a) FSLP Illustration. y is the feature vector for the target pixel, concatenat-
ing intensity (Red), gradient (Purple) and structural signature (Green). αi is feature
coefficient and A is a dictionary constructed with atlas feature vectors. β is the vector
storing reconstruction weights. (b) Feature sensitive matrix Wα. Each diagonal sub-
matrix (Red W1, Purple W2, Green W3) corresponds to one kind of feature vector.

pixels from target image are also selected based on anatomical knowledge, acting
as anatomical prior. The whole label fusion process is modeled on an undirected
graph and formulated under the framework of Random Walker.

2.1 Feature Sensitive Label Prior

FSLP captures label prior from atlases by seeking for the optimal linear com-
bination of atlas nodes to reconstruct the feature vector of the target pixel,
as illustrated in Fig. 2(a). For each considered pixel from the target image, its
three kinds of features are extracted and concatenated together to formulate one
augmented vector y. Its similar pixels selected from the atlases are assembled
as dictionary A. Given that the confidence and significance of different features
can vary considerably, the feature coefficient ai is introduced to balance their
influences. The optimal weight to reconstruct y with dictionary A is stored in
vector β. The formulation of FSLP is given as follows:

min
α, β

1
2
|Wα(y − Aβ)|22 + λ|α|22, s.t.

∑

i

αi = 1, αi ≥ 0. (1)

Wα is the feature sensitive matrix, with its definition illustrated in Fig. 2(b).
Wα is split into three subregions (Red W1, Purple W2 and Green W3), each
corresponding to one kind of feature vector. The diagonal elements in the sub-
matrix Wj are defined as: ∀wii ∈ Wj , wii = αj√

nj
, where nj is the length of the

j-th feature vector. Through the division between the coefficient αj and √
nj ,

the normalization on various features is enforced in the feature sensitive matrix.
In Eq. (1), with the regularization term on the coefficient vector α, it guarantees
that no feature dominates the whole optimization procedure.

By solving Eq. (1), optimal feature coefficient α and reconstruction weight β
can be obtained and label prior can be then estimated with grouped reconstruc-
tion error. However, since FSLP needs to optimize α and β simultaneously, it
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turns into one non-convex problem, which may have multiple local optima and
can be difficult to solve. A further solution is proposed for it.

Problem Solution. When optimizing α and β simultaneously, Eq. (1) is not
a convex problem. To solve this non-convex problem efficiently, one heuristic
approach is proposed in this paper by seeking optimal solutions for α and β
alternately. The first step is to fix α and Eq. (1) turns into one least square
problem:

min
β

|Wα(y − Aβ)|22. (2)

This optimization problem is convex and its solution is β̂ = (WαA)\(Wαy).
With updated β, the second step is to fix it and Eq. (1) is then simplified to one
quadratic programming problem:

min
α

1
2
αT Λα, s.t.

∑

i

αi = 1, αi ≥ 0, (3)

where

Λ =

⎡

⎢⎢⎣

∑
f2
1j

n1
+ λ 0 0

0
∑

f2
2j

n2
+ λ 0

0 0
∑

f2
3j

n3
+ λ

⎤

⎥⎥⎦ , f = y − Aβ =

⎡

⎣
f1
f2
f3

⎤

⎦ .

The newly introduced variables f1, f2 and f3 are vectors related to three kinds of
features, with length of n1, n2 and n3 respectively. Equation (3) is also a convex
problem and can be solved efficiently. The proposed heuristic algorithm iterates
the above two steps until either one of the following two conditions are met: the
change of α is below a threshold or iterations exceed the predefined number.

With α and β acquired, the reconstruction error using each class can be
estimated as eF = |Wα(y − AβF )|2 and eB = |Wα(y − AβB)|2, where F and B
refers to the foreground and background respectively. βF and βB refers to the
weights for the foreground and background atlas nodes respectively. With the
estimated reconstruction error, FSLP is encoded as edge weight on the graph
during label fusion, which will be explained in next subsection.

2.2 Label Fusion with Random Walker

Besides the FSLP gathered from atlases, the anatomical knowledge from target
images is also encoded in the proposed label fusion method. As mentioned in the
Introduction section, to label pixels which locate deep inside or outside a sub-
cortical structure is relatively easier as compared with those around structural
boundary. Thanks to the location advantage, even with a rough initial label map
generated by affine transformation, the labels of these pixels (far away from the
object boundary) can be treated as confident results. This kind of confidence can
be propagated to less confident pixels (near boundary) through image lattice,
which is regarded as anatomical prior in our method. In this paper, label fusion
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Fig. 3. Graph construction for label fusion. (a) Orange and Purple nodes: atlas seeds.
Red and Black nodes: target foreground and background seeds. vi is one candidate
node and vj is one of its neighbours, with wij as edge weight. FSLP is encoded to wiFa

and wiBa . (b) An equal graph of a.

is formulated on an undirected graph G = (V,E), where V refers to a set of
nodes consisting of foreground seeds VF , background seeds VB and candidate
nodes VC . As both label and anatomical priors are employed in the proposed
framework, two kinds of foreground seeds are included in VF : VFa

from atlases
and VFT

from the target image, similarly for VB . As for VC , it represents the
set of nodes whose labels need to be determined during label fusion and these
candidate nodes are selected from the target image. E ⊆ V × V is the set of
edges eij connecting nodes vi and vj , with wij as edge weight.

Since the number and location of nodes are critical to the efficiency of segmen-
tation algorithms, the strategy for node selection needs to be deployed carefully.
As the prior from atlases has been encoded to FSLP, VFa

and VBa
can be rep-

resented with two terminal nodes. For the node selection in the target image,
affine transformation is first utilized to generate the initial label map and then
the distance between each pixel and the structural boundary can be estimated.
Using pre-defined distance threshold dT , pixels with distances larger than dT

are selected as seeds (VFT
and VBT

) and those with smaller values are treated
as candidate nodes (VC).

With seeds and candidate nodes settled, the graph for label fusion can be
constructed with edge connections, as shown in Fig. 3(a). The Orange and Purple
nodes represent the atlas seeds VFa

and VBa
. Red and Black nodes refer to the

foreground VFT
and background VBT

seeds selected from the target image. The
influences of target seeds can be propagated to candidate nodes through image
lattice, with affinity defined using classical Gaussian function as follows:

∀ vj ∈ N (vi), wij = exp(−δ(IT (vi) − IT (vj))2), (4)

where vi is one candidate node, N (vi) refers to its 6-nearest neighbours in 3D
image, IT (·) is the pixel intensity value in the target image and δ is one tuning
parameter. As for the atlas prior collected with FSLP, it is encoded as the
edge weight between vi and atlas seeds, with the following definition: wiFa

=
eB/(eF + eB) and wiBa

= eF /(eF + eB).
Given that VFa

and VFT
are all foreground seeds, the edge weights between

them are supposed to be infinity. In this case, setting up an edge between vi

and VFa
is equal to appending an edge for vi with any target foreground seed,
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as illustrated in Fig. 3. In other words, the function of the atlas seeds can be
replaced and FSLP can be assigned to the edges of wiFT

and wiBT
instead. In

this way, the graph for label fusion is constructed only with target nodes and
the graph complexity can be greatly reduced.

With the concise graph constructed, the label fusion process is modeled under
the framework of Random Walker and the energy function is as follows [8]:

min
x

∑

vi

[w2
iFT

(xi − 1)2 + w2
iBT

x2
i ] +

∑

eij

w2
ij(xi − xj)2,

s.t. xFT
= 1, xBT

= 0.

(5)

xi stands for the probability that node vi belongs to the foreground, with the
constraint xFT

= 1 and xBT
= 0. The first unary term considers the data fidelity

of each node independently and the second binary term takes the impact between
connected nodes into account. This equation can be viewed as a discrete Dirichlet
problem and solved using the Laplace equation with Dirichlet conditions through
Graph Analysis Toolbox [3]. With optimal solution obtained for x, the label of
each node can be updated: L(vi) = 1 if xi ≥ 0.5 and L(vi) = 0 otherwise. The
target label map can be updated gradually through iterations until stable.

3 Experiments

To evaluate the performance of the proposed method, experiments have been
carried out on two publicly available MR brain image databases – IBSR1 and
LPBA402. The IBSR v2.0 database consists of 18 T1-weighted images with 84
manually labeled structures and the LPBA40 database includes 40 images with
56 manually labeled structures. In the experiments, each database was sepa-
rated into two parts randomly, with equal number of images as training (atlas)
and testing (target) data sets. Considering the intensity inconsistency, histogram
matching was first conducted with the Insight Toolkit3. Then efficient pair-wise
affine transformations between each target image and all atlases were estimated
with FLIRT [4] provided by FSL toolbox [5]. With multiple label maps propa-
gated by various atlases, majority voting was applied to generate the initial label
map and the results were also employed as the base line during comparison.

Dice Coefficient (DC) is utilized to evaluate the quality of label fusion.
The input patch size for intensity and gradient features was set to 5 × 5 × 5.
The size of input patch to Convolutional Neural Networks was 20 × 20 and
the length of extracted structural signature was 18. In Eq. (3) during FSLP
estimation, rather than choosing a fixed λ value, it was set to be adaptive

λ = 1
3 (
∑

f2
1j

n1
+
∑

f2
2j

n2
+
∑

f2
3j

n3
) in each iteration. The settings of the rest parameters

are listed as follows: signed distance threshold dT = 2 for node selection, and

1 http://www.nitrc.org/projects/ibsr.
2 http://www.loni.usc.edu/atlases/Atlas Detail.php?atlas id=12.
3 http://www.itk.org/.

http://www.nitrc.org/projects/ibsr
http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id=12
http://www.itk.org/
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Table 1. Experimental results on IBSR and LPBA40 database.

the tuning parameter used in Eq. (4) was set to δ = 5. As the iterative strat-
egy is exploited to update target label map gradually in the proposed frame-
work, to test the iterative effects, preliminary experiments have been conducted
on LPBA40 database with available subcortical structures. The experimental
results demonstrate the segmentation accuracy increases with the number of
iterations and tends to remain stable after three iterations. Based on the test on
LPBA40, for the experiments on IBSR, the iteration was set to 3.

Besides majority voting (MV), the comparison with the conventional patch-
based label fusion (PBL) [9] has been made for evaluation. Considering multiple
features employed in the proposed method, it was also compared with the state-
of-the-art method – patch-based label fusion with augmented features (PBAF)
[1]. In addition to intensity information, the spatial and context features are
also appended for label fusion in PBAF. To keep consistency, the patch size for
PBL and PBAF was set to 5 × 5 × 5 and the size of search volume was set to
9 × 9 × 9. For PBL, the key parameter is the Gaussian kernel value and it was
tested from {1, 10, 100, 1000, 10000, 100000} on two databases. Results indicate
that 10 and 10000 gives the best performance on IBSR and LPBA40 respectively.
For PBAF, the parameter setting of pre-selected atlas nodes amount was tested
from {2, 16, 32, 64, 128, 256, 512} and 128 produces the peak of accuracy.

The segmentation results on two databases generated with our method and
compared methods are listed in Table 1, with highest DC values written in Red.
There are six subcortical structures delineated in the IBSR database and each
structure is separated into two parts, located in the left and right hemispheres
respectively. As for LPBA40, the segmentation quality with available subcor-
tical structures is also reported in this Table. When compared with the base
line MV, our approach can create the considerable increase of 16.7 % and 9.3 %
respectively on two databases. The proposed method can still outperform the
preeminent label fusion method PBAF by 3.3 % and 0.7 %.

4 Conclusion

In this paper, a novel framework for atlas-based image segmentation is proposed,
which encodes both the label priors from atlases and anatomical prior from the
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target image. Three kinds of features are employed to obtain a more discrimina-
tive pixel representation and the feature sensitivity during label fusion is taken
into consideration. Besides the FSLP from atlases, the anatomical prior from the
target itself is also employed for final label estimation. The label fusion process
is formulated on a graph with Random Walker, with priors encoded as edge
weights. Although atlas seeds involved in graph construction, an equal but sim-
pler graph can be inferred which just relies on nodes from target image. The
proposed framework has been compared with other state-of-the-art methods for
comprehensive evaluation and experimental results indicate that it can obtain
better label fusion quality consistently on two publicly available databases.
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time and accurate label fusion. In: Golland, P., Hata, N., Barillot, C., Hornegger, J.,
Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 105–112. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-10443-0 14
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