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Abstract. Multiple-atlas segmentation has recently shown success in
automatic segmentation of brain images. It consists in registering the
labelmaps from a set of atlases to the anatomy of a target image, and
then fusing the multiple labelmaps into a consensus segmentation on the
target image. Accurately estimating the confidence of each atlas deci-
sion is key for the success of label fusion. Common approaches either
rely on local patch similarity, probabilistic statistical frameworks or a
combination of both. We present a probabilistic label fusion framework
that takes into account label confidence at each point. Maximum likeli-
hood atlas confidences are estimated by explicitly modelling the relation-
ship between image appearance and segmentation errors. We also pro-
pose a novel type of label-dependent appearance features based on atlas
labelmaps. Our results indicate that the proposed label fusion framework
achieves state-of-the-art performance in the segmentation of subcortical
structures.

Keywords: Multiatlas segmentation · Confidence estimation · Discrim-
inative learning · brain MRI

1 Introduction

Multiple-atlas segmentation has shown to be a promising technique for brain
structural segmentation [3]. It consists in propagating the labelmaps from a set
of atlases to a target image. There are two main steps: (1) image registration,
where the spatial transformations are computed to warp the atlas labelmaps to
the target image, and (2) label fusion, where these candidate segmentations are
fused into a consensus segmentation. When using multiple atlases rather than a
single atlas, we adapt better to the anatomical variability in the target image.
The label fusion problem consists in defining the optimal combination of atlases
at each region of the target image. The simplest approach, known as majority
voting (MV) [7], assigns each target voxel the most frequent label occurring
among the atlases. This method has shown promising results, however, since all
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the atlases are combined with equal weight, having atlases too dissimilar to the
target will push the resulting segmentation away from the true target anatomy.

A more reasonable approach would require the definition of a confidence mea-
sure for each atlas reflecting their reliability in segmenting the target image and
giving more weight during the combination to those atlases with higher confi-
dence. A possible strategy is to assign each registered atlas a global weight based
on its similarity with the target image [1]. However, image similarity sometimes
does not correlate well with atlas confidence [8]. Another kind of approaches
alleviate this problem by estimating the atlas confidence by using a more direct
measure of the anatomical overlap [10]. These approaches alternate the segmen-
tation of the target anatomy and the estimation of the atlas confidences in an
iterative fashion. As an example of these methods, STAPLE [10] defines a princi-
pled statistical framework to perform such estimation. However, these methods
do not take into consideration intensity information available from the images.

The so-called patch-based label fusion methods (PBLF) estimate local con-
fidences of each atlas for each target point based on local image similarity [5,9].
Joint label fusion [9], for instance, models pairwise dependency between atlases
to reduce the weights of correlated atlases. Other approaches incorporate the
versatility of local similarity-based approaches into the framework of STAPLE.
For example, STEPS [4] improves the target anatomy estimation in STAPLE
by using a methodology inspired by PBLF. As pointed out earlier, using image
similarity can induce a bias in the estimation of the confidence.

We propose a probabilistic label fusion framework that takes into account
local atlas confidences at each point. In the training phase, for each atlas, we com-
pute their confidence models by maximum likelihood estimation. To do so, we
register the rest of the atlases to each different atlas space. Confidence estimation
in the space of each atlas is important in order to deal with systematic segmen-
tation errors caused by registration failures. We propose two ways of estimating
the confidence models: (1) a simple one depending on local label statistics, and
(2) an advanced one modelling the relationship between local image appearance
and segmentation errors. In the testing phase, spatial confidence maps (SCMs)
are obtained for a given target image using the confidence models computed in
the training phase. Target labels are then estimated with the proposed frame-
work using the SCMs in conjunction with the atlas labelmaps. Furthermore, we
propose a new feature extraction process that takes into account the atlas labels.
Figure 1 shows the pipeline of the method.

The outline of the paper is as follows. In Sect. 2 we present the details of our
method. In Sect. 3 we describe the experimental setting and present the results,
and in Sect. 4 we conclude the paper.

2 Method

2.1 Enhanced Probabilistic Label Fusion

Consider we have a target image T , where Ti denotes the intensity value at voxel
i, and a set of atlas images A along with their labelmaps D, where Dij ∈ D and
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Fig. 1. Pipeline of the proposed method. Training: the remaining atlases are registered
onto each atlas and the confidence models are computed. Testing: given the new image,
the SCMs are obtained using the confidence models. Target labels are then estimated
according to the proposed label fusion framework.

Dij = {1, . . . , p}, indicates which one of the p structures is present at voxel i of
the j-th atlas. We denote the to-be-estimated target labelmaps as F .

We want to find the target labels that maximize the following posterior prob-
ability:

f (F |D,C) =
∏

i

f (Fi|Di,Ci) =
∏

i

f (Di|Fi,Ci) f (Fi)
f (Di, |Ci)

, (1)

where Di denotes the set of atlas decisions for voxel i and Ci denotes their respec-
tive confidences. Note that we assume conditional independence in the target
voxels. Further assuming independence among the atlas decisions we obtain:

f (Fi|Di,Ci) =

∏
j f (Dij |Fi, Cij) f (Fi)∑

s∈{1,0}
∏

j f (Dij , |Fi = s, Cij) f (Fi = s)
. (2)

Here we assume that we have only two labels denoted {0, 1}. The case of multiple
labels can be handled in a one-versus-rest fashion.
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Accordingly, the probability of the target label Fi being foreground (i.e., 1)
is defined as:

f (Fi = 1|Di,Ci) =
ai

ai + bi
, (3)

where ai=f(Fi=1)
∏

j f(Dij |Fi=1,Cij) and bi=f(Fi=0)
∏

j f(Dij |Fi=0,Cij).
Here, the important quantity is f (Dij |Fi = s, Cij), which is the probability

of observing decision of j-th atlas on voxel i, given that the target label is s and
the atlas confidence at that point is Cij . This term expresses the likelihood that
the atlas and target labels coincide, and is defined as:

f (Dij |Fi = s, Cij) =
{

Cij if Dij = s
1 − Cij otherwise. (4)

The central part in our work is the computation of the confidences Cij .
STAPLE-based methods compute it using tentative estimations of the target
labels in an iterative online estimation of target labels and confidence parame-
ters. On the contrary, we use a training set of target labels to compute it in an
offline manner. This allows us to perform label fusion in a direct (non-iterative)
way. We also estimate local confidence values for each voxel.

Let us focus on the computation of the confidence for a single voxel i of a
single atlas j, denoted as c ≡ Cij for brevity (the same procedure is repeated
for the rest of the voxels on the rest of atlases). Similarly, let us denote as
d ≡ Dij the label at voxel i in the j-th atlas. We denote as f =

{
D̃ik, k �= j

}
, the

training set of target observations for the voxel i in the j-th atlas composed of
the registered labelmaps of the rest of atlases. This is indicated by the blue panel
in Fig. 1. We compute the confidence at each voxel by maximizing the following
joint likelihood:

ĉ = arg max
c

f (f , d|c) = arg max
c

∏

k

f (d|fk, c) f (fk|c) , (5)

where fk ∈ f . We discard the second term in the product since we assume that
target labels are only affected by parameters in the presence of an atlas. Taking
the logarithm and substituting the atlas likelihood term by its expression in (4)
yields:

ĉ = arg max
c

∑

k

log f (d|fk, c) = arg max
c

∑

fk=d

log c +
∑

fk �=d

log (1 − c) . (6)

Taking derivatives, the optimal confidence is c = nh

nh+nm
, where nh and

nm are the number of coincident target labels (hits) and different target labels
(misses), respectively, from the atlas label. This defines our naive case.

Nevertheless, we further believe that local image appearances provide valu-
able clues for estimating this confidence. Therefore, we extend the previous naive
method by substituting the constant confidence in (4) by a more complex func-
tion informed by the image appearances, as follows:

f (Dij |Fi = s, Cij) =
{Cij (ti,aij) if Dij = s

1 − Cij (ti,aij) otherwise , (7)
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where ti and aij are image appearance features extracted from target image and
j-th atlas around voxel i, and Cij (·) is a function denoting the confidence we
have that the atlas label is correct given the target and atlas image appearances
(as shown in the green panel in Fig. 1). By using image appearances, we can
effectively capture the effects of registration errors on modeling such confidence.
Again, our goal is to compute such function as to maximize the joint probability
of each atlas observation given the training set (5). Using a similar development
as in the naive case, we arrive at the following expression:

Ĉ = arg max
C

∑

fk=d

C (tk,a) −
∑

fk �=d

C (tk,a) , (8)

where tk and a denote the local image appearances of the k-th target training
sample and atlas in the training set, respectively. This expression corresponds to
the minimization of an empirical error subject to the constraint that the com-
puted function must be a probability density function. For this we use support
vector machines (SVM) with Platt’s scaling [6].

In the testing stage, given a new target image T , it is first warped to each of
the atlases. Then, SCMs are computed using the confidence functions of (8).
Next, SCMs and the atlas labels are transformed back to the target space.
Finally, we compute the label fusion using (1) (see red panel of Fig. 1).

2.2 Label-Dependent Feature Extraction

The simplest approach to represent the target features ti is to use a local patch
around the i -th voxel. Here we propose 2 extensions: (1) use a non-local means
approach [5], and (2) use label-dependent features. Using non-local means is
more robust as the confidence estimators are trained to take into account larger
registration errors. The second contribution uses the j -th atlas label patch to
extract label-dependent features from the target images. As illustrated in Fig. 2,
given the label patch of the j -th atlas around the i -th voxel, we identify the
target voxels corresponding to foreground and background regions (in the case of
binary segmentation) and compute different summary statistics, namely, mean,
maximum and minimum intensity, and the center of mass of each region. Finally,
the difference between foreground and background features is calculated and the
resulting features are appended to the intensity patch.

Fig. 2. Label-dependent feature extraction.



510 O.M. Benkarim et al.

3 Experiments

In this section, we compare our approach with state-of-the-art methods in the
literature for the segmentation of 7 subcortical brain structures: accumbens,
amygdala, caudate, hippocampus, pallidum, putamen and thalamus proper.

3.1 Data and Preprocessing

The proposed method was evaluated on a dataset of 35 T1-weighted brain MR
images from the OASIS project, with corresponding manual segmentations made
public by the MICCAI 2013 challenge.1 We registered all images to a common
space using the symmetric diffeomorphic mapping (SyN) [2]. Pairwise mappings
were then obtained by composing the transformation of the source image to the
template and the inverse transformation of the target. Furthermore, for image
intensity to be consistent across atlases, histogram matching was used.

3.2 Experimental Setup

For comparison, we considered the following methods: MV, STAPLE, STEPS
and joint label fusion (JOINT). Three different versions of our method were
used: (1) the naive approach, (2) SCM using only patch intensities (SCMNF),
and (3) SCM with additional label-dependent features (SCMLF). Regarding the
parameters, we used the default values for all methods, except for the radius
of the patch and window search that was set to 1. For our method, we used
SVM with a linear kernel and the penalty parameter C = 1. Finally, a 3-fold
cross-validation procedure was used in our validation strategy. For quantitative
comparison, we used the Dice similarity coefficient.

3.3 Results

Figure 3 shows a boxplot of Dice overlaps achieved by each method for all struc-
tures. There is a clear difference between the first set of methods (i.e., MV, our
naive approach, STAPLE and STEPS) and the second one, including JOINT
and our two SCM-based approaches. The naive method yields similar results to
MV. In fact, when all atlases are used to compute the confidences, it is equivalent
to MV, being the additional transformations between atlas spaces the only dif-
ference. STAPLE-based methods used in this comparison have a slightly higher
Dice score than MV. Moreover, although STEPS uses image intensities to drive
the fusion process, there is no consistent improvement over STAPLE, as the
latter provides better overlaps in the amygdala and the pallidum.

The methods in the second set provided the most accurate segmentations,
with statistically significant difference in all structures. Albeit statistically equiv-
alent, the inclusion of label-dependent features boosted the overall performance
of SCMLF compared to SCMNF. JOINT (μ = 0.872, σ = 0.049) performed
1 https://masi.vuse.vanderbilt.edu/workshop2013.

https://masi.vuse.vanderbilt.edu/workshop2013
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Fig. 3. Dice scores for all methods.

(a) Image (b) STEPS (c) JOINT (d) SCMLF

Fig. 4. Illustration of caudate automatic segmentation in axial view. Red and green
depict manual and automatic segmentations respectively. Overlap is depicted in blue.

slightly better than SCMLF (μ = 0.871, σ = 0.054) in terms of average overall
Dice, but no statistical significance was found. Particularly, both methods yield
comparable results in all structures except for the accumbens and the amygdala
where JOINT provided better outcomes, and the caudate where segmentations
obtained from SCMLF where more accurate as shown in Fig. 4.

Concerning computational complexity, segmentation of the accumbens, for
instance, takes less than 2 s for all methods except for JOINT that takes 10 s.
Our method requires an additional step for training the confidence estimators
that takes around 88 min, although this is performed only once.

4 Conclusions

Registration errors are one of the main sources of systematic errors in multiat-
las segmentation. In this work, we have presented a novel label fusion frame-
work where the confidence learning process is performed in atlas space, which
makes our method robust to registration errors. As opposed to STAPLE-like
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approaches, SCMs estimation in our method is done offline using the available
training atlases. Therefore, computational complexity at test time is comparable
to the simplest approaches, such as MV. Furthermore, given the nature of the
proposed method, we can include label-dependent features, supplying valuable
information in the prediction of the confidences. Our experiments demonstrate
that our method yields comparable results to state-of-the-art approaches.
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2012-COFUND Action, Grant agreement no: 600387.
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