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Abstract. During the last years Deep Learning and especially Convolutional
Neural Networks (CNN) have set new standards for different computer vision
tasks like image classification and semantic segmentation. In this paper, a CNN
for 3D volume segmentation based on recently introduced deep learning compo‐
nents will be presented. In addition to using image patches as input for a CNN,
the usage of orthogonal patches, which combine shape and locality information
with intensity information for CNN training will be evaluated. For this purpose
a publically available CT dataset of the head-neck region has been used and the
results have been compared with other state-of-the art atlas- and model-based
segmentation approaches.

The presented approach is fully automated, fast and not restricted to specific
anatomical structures. Quantitative evaluation provides good results and shows
the great potential of deep learning approaches for the segmentation of medical
images.

1 Introduction

During the last years, Deep Learning algorithms have set new standards for several tasks
in computer vision. While most core components of Deep Learning have been available
for a long time, technical advancements of computational hardware which provide the
possibility to work with large training sets and extremely deep network architectures
have initiated a rebirth of Neural Networks in computer vision. This is especially true
for Convolutional Neural Networks (CNN) [1]. The introduction of the AlexNet by
Krizshevski et al. [2] was a milestone for image classification and jumpstarted the
development of even deeper and more complex network architectures. In contrast to
image classification, where the output for an input image is one class label, segmentation
tasks require additional locality output providing one label per pixel. For this purpose,
patch based approaches [3] as well as fully convolutional networks [4] have been devel‐
oped. Despite the large success of CNNs and associated Deep Learning methods in
computer vision, only a comparably low number of studies using Deep Learning for
medical imaging segmentation have been published. E.g. in [5, 6] CNN have been used
for brain (lesion) segmentation, in [7] CNN have been used for knee cartilage
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segmentation [7] and in 2015 Roth et al. presented a Deep Learning approach for
pancreas segmentation [8]. This under-representation of Deep Learning for medical
image segmentation might be due to the limited availability of large training sets and
the challenge of processing 3D image information, which further increases the
complexity and computational expense of the training process. On the other hand, human
anatomy and the way it is represented in volumetric images also provides the possibility
to use locality information as well as shape statistics and atlases in combination with
Deep Learning methods.

In this paper, we introduce an approach to use CNN for medical image segmentation
using recently introduced Deep Learning components. A pseudo 3D patch-based
approach that integrates shape and locality information into CNN in order to decrease
training time and potentially improve segmentation results will be presented. The
method is evaluated using a publically available training set of CT images of the head
neck region [9]. Used for the segmentation of parotid gland (PG), submandibular gland
(SG) and optic chiasm (OC), the approach proves to be easy to use, fast and at the same
time provides state of the art segmentation results.

2 Methods

Like almost all learning based segmentation approaches, the presented framework can
be separated into an offline training phase and an online testing/segmentation phase.

Figure 1 is giving an overview on the general workflow for training and testing phase.
More details on the single steps during training and testing will be given in the following.

Fig. 1. General workflow of the proposed segmentation approach

2.1 Training Phase

In principle, the training phase is used to train a CNN using a large number of image
patches extracted from training images. By this means the network is supposed to learn
features which can be used to label each voxel within a region of interest as being either
inside or outside a structure of interest.

a. Pre-alignment. However, in order to increase the training speed and at the same
time exclude irrelevant information from the training set, patches shall only be
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extracted within specific regions around structures of interest. For this purpose, the
segmented training images I are pre-aligned onto a publically available reference
atlas R of the head-neck area using an affine transformation. The set of preregistered
training labels L is used for two purposes: First, the pre-aligned binary labels are
summed up and thresholded using

t(g) =

{
0 if g = 0
1 if g ≥ 0 (1)

where t is a threshold function and g refers to the grey value of a voxel. By this means
n binary masks M1..n (n = number of structures) can be created. In order to create a
fuzzy boundary and account for shape variations, which are not described by the
training set, M is enlarged by including all voxels with a distance d ≤ 5 mm to the
boundary of M in order to obtain the final binary masks ML

1..n. During training and
testing the binary masks are used to restrict patch extraction to voxels within ML.
Secondly, L is used to create probability maps (P1..n), which reflect the likelihood of
each voxel in the atlas space to contain either a specific tissue type or background.
P1..n are used to integrate shape and locality information into the CNN training
process as described in the next section.

b. Patch Extraction. For each structure of interest a separate set of image patches is
created. For this purpose, 2D orthogonal patches of size s x s in the sagittal, coronal
and axial plane are extracted using each voxel within ML as center. As a result 3 sets
of 2D intensity training patches Qi

1..v(v = s ∗ m, s = number of non-zero voxels
within ML and m = number of training images) are extracted for each structure.
Intensity patches Qi

1..v are used as input in order to train a CNN, which will be referred
to as Model I in the remainder of this paper.
Equivalently, patches with the same dimensionality and orientation as Qi are
extracted from the structures probability map P1..n resulting in a set of probability
patches Qp

1..v. Patch pairs 
(
Qi

1..v, Q
p

1..v

)
 are used to train a second type of CNN model

referred to as Model I + . By integrating Qp

1..v into the training process, it shall be
evaluated if CNN can learn locality and shape information for voxels and structures
based on the probability maps P1..n.

c. Neural Network Training. The architecture of the network used in this project is
illustrated in Fig. 2.
Using a feed-forward network, each layer is used to model different representations
of the underlying data by using the neurons as feature detectors. The output of each
node in the network is computed by using the activation function

f
(∑

wi ∗ xi + b
)

(2)

where xi refers to input nodes,wi and b indicate associated weights and a bias. By
concatenating weights and biases of all neurons in a vector 𝜃, the behavior of a

160 K. Fritscher et al.



network is completely defined [10]. In a stack of network layers deeper neurons
detect new features based on those detected in upper layers resulting in a variety of
features which are autonomously learned by the network.

The network presented in this work consists of three different pathways, each made
up of 3 convolutional layers. Each pathway corresponds to one of the three patch types
(orthogonal, sagittal, coronal). The 3 convolutional layers are used in order to learn
lower-level features specific for different patches. After the 3 convolutional layers the
pathways are merged followed by 3 fully connected layers. For Model I + each pathway
has two input channels, where the first channel corresponds to Qi

1..v and the second
channel to Qp

1..v, whereas Model I only has one input channel (Qi
1..v).

Convolutional Layers. Neurons of convolutional layers are only using a subset of the
input voxels commonly also referred to as the receptive field of the neuron. Receptive
fields are combined in feature maps, in which all neurons share the same size of weights
for the different receptive fields. By this means the number of parameters can be signif‐
icantly reduced. In order to avoid overfitting, “dropout” as introduced in [11] has been
used to train the network. The main idea behind using dropouts is to randomly deactivate
a certain percentage of neurons in a layer during each training iteration. By this means,
neurons are forced to learn independently potentially leading to a higher number of
useful neurons with less redundancy [11].

Fully Connected Layers. After merging the three convolutional pathways three fully
connected layers are used in order to learn higher level features. Due to the lack of
receptive fields the number of parameters in fully connected layers is typically much
higher than in convolutional layers. For this reason a two-step strategy has been used in
this project in order to avoid overfitting in fully connected layers: First - equivalently to
convolutional layers – dropout has been performed. In addition, an approach called batch
normalization [12] has been applied. Batch normalization reduces the internal-covariate-
shift problem, which leads to an amplification of input distribution changes in each layer
of the network. This phenomenon makes training deeper network significantly harder
by requiring the usage of lower learning rates and increasing the risk of getting trapped

Fig. 2. Architecture of the proposed network
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in local minima. These problems can be diminished by normalizing the input distribution
of a layer to a standard Gaussian distribution [12, 13] in order to circumvent internal-
covariate-shifts.

Activation Function. Typically hyperbolic tangent or logistic functions have been used
as activation functions (see also Eq. (1)) in Neural Networks. However, especially when
using a higher number of layers these activation functions turned out to be susceptible
to the vanishing gradients (VG) problem: When back-propagation reaches a neuron with
a very small derivative, all nodes behind this neurons only train very slowly or not at
all. In order to circumvent this problem Glorot et al. suggested to use the rectifier function
f :x → max(0, x) instead [14]. Neurons using rectified functions are also referred to as
Rectified Linear Units (RELUs) [15]. In the proposed network all neurons except for
the neurons in the last (= top) layer are RELUs. In the last layer, a softmax activation
function is used. By this means the output of the network can be interpreted as proba‐
bilities of a voxel being inside a structure of interest.

Optimization and Weight Initialization. Commonly a stochastic gradient descent (SGD)
approach has been used to optimize Deep Neural Nets. However, recently alternatives
like Adagrad and Adadelta [16] have been introduced. These methods are easy to use,
require no tuning of the learning rate and have shown better and faster convergence than
SGD especially in combination with CNNs and sparse inputs. Recently, another
stochastic optimization approach has been presented by Kingma [17]. Similar to
Adadelta, this Adaptive Moment Estimation method (Adam) computes adaptive
learning rates for each parameter. Adam stores an exponentially decaying average of
past gradients (mt) and squared gradients (𝛽1) in order to estimate the gradients’ first and
second moments (= mean and variance). Decay rates for mt and vt can be tuned using
hyperparameters 𝛽1 and 𝛽2. In this project Adam has been used with an initialization
scheme proposed by He et al. which turned out to be a good combination for optimizing
RELU networks in other projects [18].

2.2 Testing Phase

In order to segment images using the trained network, the new image has to be transferred
in the same reference system as the training images. For this purpose, the atlas that has
been used for training is applied. Using a multi-scale approach, masks M1..n are used in
the final stage to constrain the metric computation to different regions around the struc‐
tures of interest. As a result, n affine transforms A1..n are computed and used for pre-
alignment. Equivalently to the training phase, patches Qi

1..v and Q
p

1..v are extracted.
Finally, by using the trained CNN a probability pin of being inside the structure of interest
can be generated for each voxel within M1..n of the pre-aligned images and mapped back
into the original test image space using the inverse of A1..n. Final labels are obtained by
thresholding pin.
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3 Results

The presented approach has been evaluated using the publically available dataset used
for the MICCAI Head Neck Segmentation Challenge 2015 (HNC 2015) [19]. The
dataset contains 20 training and 10 test datasets as well as manually segmented labels
for 6 different structures. In this project, parotid gland (PG), submandibular gland (SG)
as well as optic chiasm (OC) have been used for evaluation. Accuracy of the segmen‐
tation is measured using the DICE coefficient (= 2A ∩ B∕(A + B)), where A represents
the ground truth and B the results using the proposed approach. In addition, max. Haus‐
dorff Distance is used to quantify the maximum segmentation error.

For patch extraction the images have been resampled to 1.5 × 1.5 × 1.5 mm voxel
spacing, patch size was set to 31 × 31. The affine pre-registration has been performed
using an affine transform in combination with Mutual Information metric to account for
the significant noise level in some of the test images. Parameter settings for training the
CNN are summed up in Table 1.

Table 1. Summary of parameter setting for generating the CNN

Parameter Value Parameter Value
Initial prob. distribution he_normal Loss function Logloss
β1, β2 (Adam optimizer) 0.9, 0.999 dropout rate 0.5
Learning rate (optimizer) 0.05 Epsilon (batch norm) 1e−05
Mini batch size 500

The CNNs were trained using an Nvidia K6000 GPU. During CNN training, the
training set was split into a test (15 datasets) and validation dataset (5 datasets). For each
model type (Model I and Model I +), separate CNNs (using equal parameter settings)
have been trained for each structure of interest. Between 30000 (Chiasm) and 150000
(Parotid) sample patches have been used for training (training time ~ 0.5 – 3 h).

Optimal threshold values for creating binary labels from the CNN output pin have
been obtained empirically using the validation set. Table 2 compares the segmentation
results obtained with Models I and I+ with the results of HNC 2015 based on avg. Dice
and avg. max HD (± std. dev).

Table 2. Segmentation results compared to results of HNC 2015

Struct. DICE Max HD
Model I Model I+ HNC 2015

(min-max)
Model I Model I+ HNC 2015

(min-max,
mm)

OC 0.52 (± 0.11) 0.49 (± 0.09) 0.35 − 0.57 5.6 (± 1.6) 6.8 (± 1.4) 4.7 − 6.4
PG 0.81 (± 0.04) 0.81 (± 0.04) 0.68 − 0.86 16.9 (± 8.7) 14.2 (± 6.6) 12.4 − 15.1
SG 0.65 (± 0.09) 0.65 (± 0.08) 0.42 − 0.74 12.5 (± 6.7) 9.7 (± 4.8)* 9.0 − 12.4

* Significant difference between avg. HD of Model I and I + (p <0.05)

Figure 3 is showing a representative result of SG segmentation. When looking at the
contour obtained with Model I+ (right) it can be observed that the resulting boundaries
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are smoother and more regularized than the result obtained with Model I (left). Higher
amount of regularization is also expressed by lower max. HD values for Model I+
(except for OC segmentation, most probably caused by lower pre-alignment accuracy).

Fig. 3. Result of SG segmentation using Model I (left), Model I + (right) vs manual segmentation
(center)

Applying the CNN on a new dataset took between 1 (OC) and ~20 s (PG) per dataset.
Affine pre-alignment roughly took 1 min per dataset.

4 Conclusion

A fast segmentation approach for volumetric images based on Convolutional Neural
Networks has been presented. To the best or our knowledge a deep CNN has not been
used and evaluated for segmenting multiple structures in clinical CT images before. In
contrast to [8] shape and locality information have been directly integrated into the CNN
using atlases and probability maps. In addition, the approach is applying and combining
state-of-the-art components for Deep Learning that have been introduced recently and
partly have not been used in medical imaging before.

Evaluation was performed using a publically available dataset of the Head & Neck
area. Especially compared to highly developed approaches used during HNC15, the
results are very promising especially when considering that only 75 % of the HNC data‐
sets have been used for learning (15 vs. 20 dataset for HNC15, 5 datasets have been used
as validation set for CNN training). In addition the approach is easy to use and compa‐
rably fast. Whereas combing probability patch information with intensity patches does
not significantly improve DICE scores, it (significantly) decreases the maximum HD for
PG and SG segmentation. This shows the potential of combining image information
with meta-information on shape and locality of structures. In future work, the approach
will be extended by using more complex CNNs based on residual learning in combina‐
tion with additional shape descriptors.
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